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EXPERIMENTAL REPORT ON 16 GHZ AND
35 GHZ RADIOMETERS ASSOCIATED WITH
-THE ATS-V MILLIMETER WAVE EXPERIMENT

Yuichi Otsu
ABSTRACT

An experiment on the 16 GHz and 35 GHz radiom-
eters that areto be used in connection with the ATS-V
Millimeter Wave Experiment was carried ouf during
June and July 1969 at Goddard Space Flight Center to
measure sky temperature, and to estimate the antenna
loss factor and the long time drift, which cause an-
tenna temperature increase and error in temperature
measurements, respectively.

The relationbetween the rainfall rate ai one point
and the temperature increase due to rain and rain
cloud is described.

Some aspects about the temperature scintillation
due to cloud are aiso discussed. Sky temperature
calculations have been made for a standard atmospheric
model and other precipitation conditions.
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EXPERIMENTAL REPORT ON 16 GHZ AND
35 GHZ RADIOMETERS ASSOCIATED WITH
THE ATS-V MILLIMETER WAVE EXPERIMENT

Yuichi Otsu
FOREWORD

Mr. Yuichi Otsu is a member of the staff of the Radio Research Labora-
tories, Ministry of Posts and Telecommunications, Tokyo, Japan. Since November
1968, -Mr. Otsu has been performing studies and experiments at Goddard Space
Flight Center, Greenbelt, Maryland, in relation to the Millimeter Wave Propa-
gation Experiment being flown on NASA's. fifth application technology satellite
(ATS-V).

During the past decade, NASA and the Ministry of Posts and Telecommuni-
cations have had continuing cooperative endeavors with respect to earth/space
communications, particularly as associated with the ATS Program. Inasmuch as
the communication bands at microwave frequencies are overcrowded, attention
is being focused on the possible use of millimeter wave frequencies to meet the
increasing communication demands of the future. Unfortunately, millimeter
wave frequencies suffer losses from atmospheric water vapor conditions — the
weather. Numerous propagation studies have been made of terrestrial milli-
meter wave characteristics as affected by prevailing and ever-changing meteor-
ological conditions. Since surface conditions differ from that of the upper atmos-
phere, if earth/space millimeter wave communication systems are to be realized,
it is necessary to measure the losses along the propagation path from ground to
satellite. Hence, engineers at Goddard Space Flight Center designed an experi-
ment for implementation in connection with the ATS-V. For this purpose 15.3
GHz and 31.65 GHz signal characteristics as transmitted to the earth and to the
satellite respectively are to be measured and related to meteorological condi-
tions. Since weather patterns change and vary throughout the world it becomes
necessary to make earth/space measurements from as many localities as pos-
sible; hence the experiment was designed to permit a cooperative endeavor.
Scientists at the Ministry of Post and Telecommunications, among others, signi-
fied their desire to participate. However, since the ATS-V was designed for
geostationary orbit and it was decided to 'park' it at 108° West longitude, foreign
participation was to be excluded. As a result, an exchange program between
NASA and the Ministry of Post and Telecommunications was consummated, which
provided for a staff member of the Radio Research Laboratories to work at
Goddard Space Flight Center and assist with the implementation of the experi-
ment. Mr. Otsu was selected to serve this tenure, his previous work in ter-
restial millimeter wave link studies uniquely qualifying him for this duty.
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As was previously mentioned, the measured millimeter wave signal charac-
teristics must be related to the prevailing measured meteorological conditions
existing between the ground terminal and the satellite. This raises the question
of what surface-based instrumentation can be used to measure the conditions
upward through the atmosphere. The radiometer, which provides a measure of
sky temperature dependent on water vapor content, is one such instrument
deemed worthy of deployment during the experiment. Therefore GSFC personnel
built two radiometers for this purpose. Upon Mr, Otsu's joining the experiment
staff he was asked to test and evaluate these instruments prior to their deploy-
ment at a ground terminal. This document was prepared by Mr. Otsu to record
the experiments and analysis which he performed on the radiometers. He is to
be commended for his effort, both from the standpoint of making a significant
technical contribution to the ATS-V Millimeter Wave Experiment and for his
rapid attainment of an ability to use the English language during his tenure.
This report reflects these accomplishments.

In conclusion it should be noted that the first ATS-V Millimeter Wave sig-
nals were received by Ground Terminal stationed at Rosman, North Carolina on

September 27, 1969, and that Mr, Otsu assisted with the installation of the radiom-
eters at the site.
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"EXPERIMENTAL REPORT ON 16 GHZ AND
35 GHZ RADIOMETERS ASSOCIATED WITH
THE ATS-V MILLIMETER WAVE EXPERIMENT

1. INTRODUCTION

A new and higher-frequency microwave region (over 10 GHz) is necessary
for future space-to-ground and space-to-space communication. At these micro-
wave frequencies, there exist many digturbances in the atmosphere. For ex-
ample, atmospheric gaseous attenuaticn and precipitation losses are much
greater for frequencies over 30 GHz than for frequencies around 10 GHz. There
fore, it is a fundamental necessity to investigate the character of propagation
through atmosphere of the microwave frequencies. One of the equipments used
for such investigations is the radiometer. It shows the noise temperature of the
sky at a certain frequency, which corresponds exactly to the attenuation through
the atmosphere. Thus the radiometer is very useful for investigating millimeter
wave space communication links. The purpose of this experiment was to check
the antenna loss and feeder loss of the 16 GHz and 35 GHz radiometers that will
provide comparative data for the ATS-V Millimeter Wave Experiment and to
provide some information on the temperature increase due to rain and cloud.
Calculations of sky temperature for clear, cloudy, and rainy days have been car-
ried ov* using some standard models of the atmosphere. The daily changes of
the atiwu. sphere have a statistical feature; therefore, in connection with the com-
munication studies, a statistical treatment of the data must he employed.

2., SYSTEMS DESCRIPTION

The two radiometers that will be used in the NASA ATS-V Millimeter Wave
Experiment at the Rosman, North Carolina station were put in operation at
Goddard Space Flight Center (GSFC), Greenbelt, Maryland for preliminary
measurements of sky temperature, calibration, and checks of system stability.
The diagrams and the characteristics of the two radiometers are shown in
Figure 2.1 and Table 2.1. These radiometers are of normal "Dicke" type and
the principal difference between both radiometers is the mechanical modulator
at 16 GHz and the ferrite modulator at 35 GHz, as shown in Figure 2.1.

For this experiment, being conducted at GSFC, the radiometers were lo-
cated in a parking lot adjacent to Building 22 as shown in Figure 2.2. The
building is 45 feet high. The locations of other buildings and surrounding trees
are also shown in Figure 2.2. The azimuth and elevation angles of the radiometers
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Figure 2.1(a). Block diagram for 16 GHz radiometer.
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Figure 2.1(b). Block diagram for 35 GHz radiometer.




Table 2.1

Characteristics of the two Radiometers

Characteristic

35 GHz Radiometer

16 GHz Radiometer

Antenna TRG Lens Ant, TRG Lens Ant.
Diameter 12 inch 12 inch
Gain 32 dB 39 dB
Matching (VSWR) < 1.01 <1.01
Antenna efficiency ~0.8 ~0.8
Beam width 4.0° 2.0°

RF Amp. T.D.A. 15 dB (NF7dB) Not used.

IF Amp.
Bandwidth 80 MHz 2.0 GHz
Noise Figure 6 dB 12 dB

Local Oscillators

Klystron (Varian)

Klystron {Varian)

Modulator Mechanical Ferrite Switching
Mod. Freq. 94 100 Hz 94 100 Hz
Recorder

{Amp. Lock-in Amp Lock-in Amp

Out 0-5V 0 -5V
Sensitivity

/ T sys o o

=K —= 0.22°K 0.45°K

\ VBt
(t=1 sec

k=2
Ambient temp.
of radiometer
(RF, IF) 40°C + 1°C 40°C + 1°C
Hot load 318°K (45°C) 318°K (45°C)
Cold load Liquid Nitrogen (77°K), dry ice (198°K)

or ice cubes (273°K)
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could be adjusted. Temperature, humidity, and rainfall rate (a single bucket-
type gauge) measurements were made using instruments located near the
radiometers. These measurements were always checked against Weather
Bureau data in Washington,

3. SKY TEMPERATURE ESTIMATION
3.1 Temperature Estimation Method.

To carry out accurate measurements of sky temperature, the waveguide
losses must be known since they appear as a certain temperature increase at
the recorder. The waveguide losses for hot and cold load were measured by
the power meter method at 16 and 35 GHz. The data are given in Table 3.1 and

3.2.

Table 3.1
16 GHz Feeder Losses and a
Fractional transmission
Type of Loss Loss (dB) Coefficient (a) 1/a
Antenna 0.9 dB 0.813 1.23
Hot load loss 0.95 dB 0.804 1.24
Cold load loss 1.15 dB 0.767 1.30

(The antenna loss 0.9 dB was calculated by assuming the antenna efficiency of
1= 0.8. Therefore, the exact antenna and feeder losses must be determined by
other methods.)

Table 3.2
35 GHz Feeder Losses and o |

. Fractional Transmission

T
ype of Loss Loss (dB) Coefficient (z) 1/a

Antenna 1.30 0.741 1.35
Hot load loss ; 1.40 0.725 1.38
Cold load loss 1.40 0.725 1.38 |

S RS e
NN 2 it LR RANGIE B e e

3.1.1 Sky temperature expectation at 16 GHz.

By using the values in Table 3.1, the measured sky temperature can be de-
rived from ‘ ‘

T,=T,a+T_ (1 -a) (31




where

T p Dicke Temperature (the temperature at the input to Dicke switch which
can be converted to a nominal value on the recorder);

T, Sky Temperature;

T, Ambient temperature inside the box, which causes the temperature
increase effect upon Dicke Temperature.

For hot load,

T, =T, =273 + 45° C = 318° K,
T,., = 273 + 40° C = 313° K,
a=0.804;
therefore
T, = 317.0° K.
For cold load
T, =T, =77°K,
Tamb = 3,130 K’

a=0.767;
therefore f g

T, = 132°K.

For the antenna: Under the assumption that the scale of the recorder is linear
(see appendix 1.1), we can calculate T from Equation (3.1) as follows:

TR R
Lt *




Ty =T, *a+ Ty, (1 -a),

1 Tab

Since

a=0,813 and T,p = 313° K,
T, =1.23T, - 72. (3.2)

For a quick determination, Figure 3.1 is convenient. The sky temperature T_
can be read directly from Figure 3.1 for various recorded Dicke temperatures
T, . Equation (3.2) must be revised later, because of the assumed antenna loss.

3.1.2 Sky temperature expectation at 35 GHz.

By using equation (3.1), Dicke temperature T, for the hot load, cold load
and antenna are calculated as follows:

For a hot load:

@=0.725 T,  =313°K, Ty = 318° K;
thus

T, = 317° K.

For a cold load:

a=0.725 T, =313°K, T, =77°K;
thus

T“d =142°K.
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Figure 3.1. Temperature reading for the 16 GHZ radiometer.




For the antenna:

T, =1.35T, - 110. (3.3)

The sky temperature can be determined from Figure 3.2; which is also subject
to change as mentioned in 3.1.1.

3.2 Comparison between the Measured Sky Temperature and the Expected
True Sky Temperature.

After calibration with hot and cold loads, the sky temperature can be obtained
by using equations (3.2) and (3.3) in section 3.1.

In this case, antenna losses have been assumed to be 0.9 dB for 16 GHz,
and 1.3 dB for 35 GHz. Thus the exact losses must be measured for the true
sky temperature. Many ways of obtaining the value of antenna losses can be
found, but the easiest way is to compare the expected true value and the measured
one (including some assumptions), in order to know the difference hetween them.
The differences between them can be regarded as due partly to antenna and wave-
guide losses, and partly to the antenna pattern. The differences between the
measured and the expected true sky temperature are shown in Tables 3.3 and
3.4. In addition, these tables contain measured data and time, the absolute
humidity, the expected true and measured sky temperatures, and the sky
temperatures calculated using the equations derived by some other authors
(Reference 1 and 2). The humidity is that obtained from the Weather Bureau
near the time and the place measured. The expected true sky temperature was
calculated (Reference 3 and 4) by converting the vertical loss into the true sky
tempecature at the 45° elevation angle.

The 16 GHz radiometer indicated large differences in temperature before
and after calibration, This could have been due to an observed intermittent
function of the waveguide switch. The averages of the differences between the
measured and the expected true sky temperature are 35°K at 16 GHz and 24°K
at 35 GHz. Equations (3.2) and (3.3) must be changed, to take these differences
into account. The true sky temperatures at 16 GHz and 35 (GHz, using the same
values of Dicke temperature T, as in equations (3.2) and (3.3), are

For 16 GHz T_=1.39T, - 121; (3.24)
and ,
for 35GHz T_=1.50T, - 157. (3.3A)
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As already mentioned, these differences are due to antenna patterns and antenna
losses, including those of the waveguide switch, The antenna pattern effects will
be considered in the next section,

3.3 Surrounding Circumstance Effects on the Radiometer Temperature

In this section we describe an approximate method for determining the
value of the sky temperature increase due to the trees and buildings.

Both radiometers were located near Building 22 at GSFC, which was not an
ideal place (Fig. 3.3a). Therefore, some temperature increase due to the side-
lobes must be expected during measurement of sky temperature.

3.3.1 Approximation of the energy distribution angle for both radiometer
antennas

First, the antenna energy distribution patterns must be known for the esti-
mation of the temperature increase due to sidelobes around 360°, However, for
this experiment, the antenna patterns were not available*, and for that reason
an approximate energy distribution was derived from Reference 5, and was

ELEVATION ANGLE FROM RADIOMETERS (degrees)

3 $
0 - VERY NEARBY
HIGH TREES REGULAR
OBSERVATION
J\f\_‘z ANGLE
8
i ) VERY NEARBY
NOT DENSE
30 - £
BLDG 22
10 | £
BeDG 5 1
C 90 180 270 360
VERY NEARBY
(N} (E) () DENSE TREES (W) (N)

AZIMUTH ANGLE FROM RADIOMETERS (degrees)

Figure 3.3(a). Surrounding features.

*See Appendix 4 correction.
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Figure 3.3(c). Surrounding ‘emperature at 35 GHz.
Table 3.5
Antenna Energy Distribution
Value from Reference 5 Modified value for the 1-foot Antenna
Main Lobe 70% ~ Main lobe (~2°) 70%
Side lobes (0-3°) 23% Side lobes (2~12°)  23% | ;
Side lobes (3-7°) 5% Side lobes (12~30°) 5%
Side lobes (7-180°) 2% Bide lobes (30~180°) 2% ‘




modified according to the size of our antennas. In Table 3.5 are shown the
values from Reference 5 and the modified distribution angle for the 1-foot an-
tenna of the 35 GHz radiometers. The values of the distribution angle from
Reference 5 are applicable for most 'large' antennas, for which diameters can
be supposed to be larger than 1 meter. Therefore, in this case, the 35 GHz
antenna (diameter 1 foot) is about 4 times smaller than most "large' antennas, :
and the distribution angles ir Table 3.5 become 4 times larger than those for )
the large antennas. For the 16 GHz antenna, the distribution angles become

twice as great as those of the 35 GHz antenna. As indicated in Table 3.5, 98% of all

the incoming energy of the antennas is included within 30° at 35 GHz and 60° at

16 GHz.

3.3.2 Sky temperature increase due to the side lobes for 35 GHz radiom-
eters (at zenith)

The modified energy distribution is only approximate for our antenna.
Therefore when the sky temperature increase due to sidelobes hitting trees and
buildings is calculated, the following experimental procedures are necessary
for estimating the sky temperature increase at zenith.

1. The measured and calculated dependence of sky temperature along the
zenith angle, ¢, in the direction of daily observation is plotted in Figure 3.4.

2. In the top of Figure 3.4 is shown the temperature difference due to the
deviation from the secant ¢ law, which probably is caused by the sidelobes (see
Figure 3.5 (b) @) ) hitting the trees, C, in Figure 3.3.(a).

3. When the antenna is tipped from zenith to horizen, other sidelobes (see :
Figure 3.5.(a)) besides those which hit the trees C have constant effects upon
the sky temperature increase; these will be calculated in following paragraphs. i

4. The skytemperature increases due totrees and buildings, exceptingtrees A
and B (see Figure 3.3(a)), are considered first. The deviation value of sky tem-
perature at 30° zenith angle (top of Figure 3.4 and also Figure 3.6(a)) can be . ,
applied to the case when the antenna main beam has a 60° difference in angle
from the trees D, which surrounded the radiometer at the 30° elevation angle
(Figure 3.3 (a) and 3.6 (b)). Therefore, the following formula can be introduced X
for calculating the temperature increase due to sidelobes: |

pe =BTXB_zog (3.4)

fo Rt . .
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Figure 3.5(a). Main volume and other side
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Figure 3.6{b‘). Angle difference
between the main beam 8at zen-
ith) and trees.




where

At = sky temperature increase due to sidelobes hitting trees '""D" in
TFigure 3.3 (a),

AT = sky temperature increase at the ¥ = 60° angle difference between the
main beam and trees "D in Figure 3.3 (a),

B = angle of horizontal spreading of the trees '"D" at 30° elevation angle
(90°)

o = volumes which can be supposed to have 98% of all energy in the ideal
antenna of this type (60°, in this case).

As for the buildings surrounding the antenna (see Figure 3.3 (a) E, F), the tem~
perature increase effect due to sidelobes can be neglected even if they are at a
30° elevation angle. The reason is that when the horizontal sweep is made at a
30° elevation angle, (see Figure 3.3 (c)) the sky temperatures are 3 - 7°K less
in the sky temperature compared to the temperature near '"C" in Figure 3.3 (a).

5. Using the equation (3.4) as in paragraph 4, the sky temperature increase
due to the trees A can be obtained as follows:

ATx B _

At: -ZASOK,
a

where AT = 7.5°K is obtained from the angle differencey between the main beam
and the trees "A'", (= 20° in this case) corresponding to ¢ = 70 (Figure 3.4) so

- the temperature increase AT at ¢ = 70° is 7.5°K); 8 = 20° = the opening angle;
and o = 60° = the main volume (see Figure 3.7(a) and (b)).

6. The temperature increase due to the trees '"B' can b calculated easily
just as in paragraph 4: '

')/:450, ,8: 100, AT: 40 K,

28x 90 -0.67~1°K.
60 |

7. The sky temperature increase due to sidelobes which are directed
towards the ground is (Figure 3.8): A 2°K temperature increase from the ground
can be expected for 35 GHz radiometers. : :
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8. Overall, at zenith, temperature increase due to sidelobes is approxi-
mately 8.5°K (3 + 2.5 + 1 + 2) for the 35 GHz radiometer.

3.3.3 Sky temperature increase due to the sidelobes for the 16 GHz radiom-~
The secant ¢ pattern was measured for the 16 GHz radiometer at the same

time as the one for the 35 GHz radiometer. However, the temperature increase
due to sidelobes cannot be found distinctly until the tipping angle is larger than

ZENITH

60°
MAIN
VOLUME
20°
B
Figure 3.7(a). Angle difference Figure 3.7(b). Horizontal spreading
between the main beam and angle B: opening angle.

trees A",

b
2T

Figure 3.8. Geometry
of the main volume,
sidelobes, and ground

eter (at zenith)

60° from zenith., From the measured values (not shown here), temperature in-

crease can be estimated as follows.
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For trees D at elevation angle 30° (see Iigure 3.3 (a) the temperature
increase is '"negligible."

For tree A, which is 20° from the main beam,

20
3° K —=0.5°K.
* 120

For trees B, the temperature increase is ''negligible.”

For the temperature increase due to the sidelobes looking at the ground,
the calculation can be done in the same way as in (g) of 3.3.1:

180

e 2% = 4° K.
350 - 126 * 2%

295° K x

Thus the total temperature increase due to all the sidelobes of a 1-foot antenna
-at 16 GHz is

4°K +0.5K =4.5°K.
3.3.4 Temperature increase due to the sidelobes at 45° elevation angle for
both radiometers.
(a) For the 35 GHz radiometer.
When tipping the antenna until 45°, temperature increase due to the sidelobes
(mentioned in Figure 3.5 (b)) is 3.5°K (see Figure 3.4 Top), and the temperature
increase due to other sidelobes (mentioned in Figure 3.5 (a)) is assumed to be

constant upon the radiometer. Therefore, the total temperature increase due to
the sidelobes is:

3.5+8.5= 12°K.
(b) For the 16 GHz radiometer.

This calculation can be done in the same way as in (a). But there is no
- temperature increase for the radiqmeter, even at the zenith angle 45°, Thus,
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4.5°K is also the temperature increase due to all the sidelobes. Therefore, the
antenna and feeder losses that can be expected are (24* - 12° = 12°K for the 35

GHz radiometer and 35°* - 4,5° = 30.5°K for the 16 GHz radiometer.

4. SKY TEMPERATURE INCREASE DUE TO RAIN AND CLOUD
4.0 General Description

In this section, the sky temperature increase A T is defined as being equal
to the difference between the temperature of the clear sky, and that of the rainy
or cloudy sky. Temperature change due to the change of water vapor content
could not be found clearly on the radiometric recording, because data are not
plentiful and also the water vapor content did not change greatly during the
measurement, over several clear days.

The 35 GHz radiometric temperature sometimes suddenly rose from the
clear sky temperature to about 250° - 270°K within 2 or 3 minutes, (8 to 10
minutes for 16 GHz), after which a severe rain storm struck the site. When it
is raining, the temperature increase, AT, is easily obtained but this temperature
increase includes the temperature of the raindrops residual on the protective
antenna cover of RF-transparent film.** This latter increase must be taken
into consideration for the data obtained during rain.

4.1 Temperature Increase due to Rain

The relation between the 10-minute average temperature increase and the
10-minute average rainfall rate at the receiving point are shown from Figure
4.1 to Figure 4.3. One of these (Figure 4.1) seems to be in good correlation,
when it rained uniformly. But most of the rain data (when it rained heavily in
summer) showed a time delay for the rain starting; the temperature increased
quickly to the highest temperature (near ground temperature) within 5 minutes
at 35 GHz, and in 8 minutes at 16 GHz (Figure 4.4).

:Considering Figure 4.1 through 4.3, if the rainfall rate is less than 10 mm/
hr, correlation seem to be good among theory, the other experimental data, and
the measured data, even at a 45° elevation angle. This is of course due to the
widespread structure of light rain. In heavy rain, the rain cell is small and
usually the measured temperatures at slant angles are less than the calculated
ones. This is easily understood as follows. ~

~ *See section 3.2.

**This film has been changed to a better one; no residual raindrops cling to it.
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Figure 4.1. Rainfell rate vs. temperature increase for 16 GHz.

In Figure 4.5, Raytheon model (Reference 6) for heavy rain structure shows
that point B has a maximum rainfall rate, but the temperature for 45° elevation
at point B becomes smaller (about 60% of the vertical loss, for example, at 35
GHz). But in that figure, the slant path loss of 45° elevation becomes largest at
line 2, about 80% of the point B vertical loss. As indicated ahove, this structure
shows less temperature in heavy rain, at a certain elevation angle. When think-
ing of a one-point rainfall and a one-point radiometer temperature measure-
ment, a time delay method would be useful to find the correlation between the
measured temperature increase and rainfall rate. If the best correlation eould
be found, by shifting the time scale of the rain, the time delay could be used to
show the storm speed toward the observing point. This is not analyzed here.

4.2 Temperature Increase due to Cloud.
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TEMPERATURE INCREASE, AT (°K)

] ] 1 | | |
5 10 20 30 40 50 60

RAINFALL RATE, AVERAGED OVER 10 MINUTES (mm/hr)

Figure 4.3. Rainfall rate vs. temperature increase for 35 GHz.

4,2.,1 Scintillation of cloud.

These radiometers each have an integration time of a second, but scintilla-
tions within 1 minute are mostly due to noise fluctuations, and the scintillation
period with cloud is usually longer than 1 minute. A 10 minute interval has
been chosen for so-called cloud scintillation here. Also, the maximum-to-
minimum temperature range within ten minutes has been measured and a
comparison has been made between that temperature range for 35 GHz and
that for 16 GHz. '
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- Figure 4,5, One of the Raytheon models; profile of heavy rain structure.

4.,2.2.1 Distribution of scintillation numbers

The scintillation number is defined as the number of crossings of the aver-
age temperature line within 10 minutes, when cloud intersects the radiometer
beams. In Table 4.1 (a) and (b), the scintillation numbers per 10 minutes versus
the occurrence fime are shown. These numbers were measured at a 45° eleva-
tion angle without rain during the experiment period (from June 18 through July
31st, 1969). Table 4.1 is translated into the graph Figure 4.6 (a) and (b) to dis-
play the distribution. The scintillation numbers which occur in 90% of all the
measured data are 4 at 16 GHz and 5 at 35 GHz. Figure 4.6 (a) and (b) show that
larger scintillation numbers than 4 and 5 occur less often. And a scintillation
number of 1 per 10 minutes covers almost 40% of the total measured data for
both radiometers. Therefore we can conclude that cloud often comes into the
radiometer antenna beams in large clumps.

This scintillation can be regarded as the typical effect of cloud upon the
radiometers. The average scintillation numbers of all measured data are 2 per
19 minutes at 16 GHz and 3 per 10 minutes at 35 GHz. The 35 GHz radiometer
is very sensitive to cloud movement and this number, 3 per 10 minutes, is very
close to the ascending speed of the iocal small convective clouds (cumulus)
(Reference 7) for which the temperature increase due to the cloud would occur
largely within the main beam.
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Table 4.1

Scintillation Number Distribution Within 10 Minutes

(a) For 35 GHz

Average
Number Decurrence Percent Temperature
Increase
1 82 42.2 15,6°K
2 16 8.2 - 11,9
3 29 14.9 13,4
4 %8 14..5 12.1
5 17 8.8 17.0
6 6 3.1 13.0
7 9 4,6 11.5
8 2 1.0 18.5
9 1 0.5 13.0
10 4 2.0 16.3
Weighting Average , o , o
Scintillation Number 2.4 (100%) 14.3°K
Average Increment
(by For 16 GHz
Average
Number Occurrence Percent Temperature
Increase
1 49 36.0 6.6
2 39 28.6 4.3
3 24 17.6 9.5
4 13 9.6 5.0
5} 3 2.2 6.0
6 7 5.1 4.7
7 U 0 0
8 1 0.7 3.0
Weighting Averagé | " o
Scintillation Number 2.2 - (100%) il

Average Increment
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Figure 4.6(b). Scinﬁllafibn num_Ber for 35 GHz.
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Table 4.2
Distribution of the Scintillation Number 1 Per 10 Minutes

(a) For 35 GHz

Number %

Increment
of Occurrences

100 - 100(°K)
90 ~ 100
80 - 90
70 - 80
60 - 70
50 - 60
40 - 50
30 - 40
20 - 30
10 = 20

0 - 10°K

11%
26% ~ 90%

52%

NMRHEORPRPONNRRMEO M

BN

(b) For 16 GHz

Number %

Increment
of Occurrences

40 - 50 (°K)
30 - 40
20 - 30
10 - 20
0 - 10 45 92%

=N O

The average temperature increases with cloud are 6°K at 16 GHz and 14°K
at 35 GHz. At 35 GHz, the average temperature increase of 14°K is the middle
of the range of data, 5 - 25°K, mezsured by K. N. Wulfsburg A.F.C.R.L. (Refer-

ence 4).
4,2.1.2 Distribution of the scintillation number 1 per 10 minutes

The distx'i_bution of the scintillation number 1 per 10 minutes (Table 4.2 (a)
and (b)) shows that increases of less than 10°K account for 92% of all the tem~

perature increases with cloud at 16 GHz; and increases of less than 30°K account

for 90% of all the increases at 35 GHz. The remaining 10% are caused by rain
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cloud (Nimbostratus). This measurement was carried out at a 45° elevation
angle; at zenith a different distribution would be expected.

4.2.2 Temperature increases due to large clumps of clouds and their
duration

This paragraph shows only a partial analysis of the data. The temperature
increases due to big clumps of clouds are defined in Figure 4.7. In Table 4.3
an example is shown of the temperature increase AT and their duration time At
for a couple of days in our experiment. These data include the rain clouds for
some of which the temperature increases 80°K. If these temperature increases
are mainly caused by cumulus (i.e., or local convection) clouds, the longest
duration would be 20 to 30 minutes. Longer times than this occur for the case-:
when widely spread rain cloud (Nimbostratus and other clouds) intersects the
main beam. No analysis of longer periods is made here.

At

Figure 4.7. Changes of temperature (AT) due to clouds.

30

Ly

EH e




Table 4.3
Examples of the Temperature Rising Time and the Range of Temperature
Increase Due to the Big Lumps of Clouds

Date 35 GHz 16 GHz Ratio
At TeK) | Ot T(°K) AT 35/AT 16 ;
6/13 5.5 19 2 5 3.8
23 82 16 24 2.9
7 37 6 10 3.7
2.5 16 1.5 3 5.3 |
4 25 9 19 1.3
1 10 2 3 3.3
10 54
6/18 3 17 4 4 4.3 ;'
1.5 7 2 3 2.3 ;
3 20 4 7 2.8 :
6/19 2 7
3 7
16 46 17 17 2.7
8.5 13 7 3 4.3
11 17 7 8 2.1
Average Ratio
3.2
i

5. CALCULATION OF SKY TEMPERATURE AND MEAN TEMPERATURE
FROM 10 GHZ TO 40 GHZ

5.1 The Calculation Procedures of Sky Temperature

(@ -A The attenuation at each one-kilometer height increment was calcu-
lated according to the standard atmospheric model (Figure 5.1) and integrated
over the whole atmospheric path.

-278/T | i C. A :
| - Cl>< 10 Av /c s Av/c ; 2 v/e

K
P Hy0 T5/2 )2 1 1\2 Av\2 1 1\2 /Av\?
&) F) ) )

T A2

(5.1)
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Figure 5.1. Model of standard atmosphere (Reference 3).
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k : attenuation dB/m
C1 = 4,77 X 104
Av/c =161 X10°3 (P + 3.7e) T~1/2 (P, e in mb, T in K°)
C, =(0.207 p +14.4), p : Water vapor content g/ms3
. )\0 = 1,349 cm
P : atmospheric pressure,

e : water vapor pressure

T : temperature (°K) at certain height

- 0. 358 AV/C ’ . AV/C + AV/C (5.2)
e (LI P (TP ) (I @)
Ao N "\ec 7>\0+)\/ "\ c x ¢

K . indB/km

= |
0

p : is the oxygen density g/m3

Av/c =3.38 x 1074 P+ T-1/2 (c; velocity of light)

= 0,02 (T = 293°K, P = 1013 mb)

>‘o = 0,5 cm

Equations (5.1) and (5.2) used by Shulkin (Reference 1) were originally derived
by Van Vleck (References 8, 9, 10).

. @T_ and T are calculated as follows:
o
f Te"dr
T =22 (5.3)
1-¢70 |
< = ( 1 - a) . 'I‘m ) ) (5.4)
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T : mean temperature
T.: sky temperature
T : temperature at certain height
Ty ¢ total attenuations in dB.
~+ attenuation up to certain height
o=¢€ "0 fractional transmission coefficient, in Neper
For zenith angle larger than zero, secant ¢ law comes into the equation (4.4).

Therefore we have to replace 7 for7 sec ¢.

7= Tsecant ¢, ¢ in zenith angle

TS - (1 _ e'-'ro secant c,b) Tm

= (1 ~asecamtéy (5.5)

@ Computations were carried out for T and T, under various ground
conditions and several atmospheric precipitation models. See following para-
graphs. For reference, another calculation was carried out, as follows.

@ -B Next, equations of Bean and Dutton (Reference 2) were used for an-
other calculation of atmospheric attenuations at the same frequencies as men-
tioned in (1) -A and the results were compared with those of the method written in

(@ -A in this section.

Ly _3.53x 1073 Av/c . Av/c <293>2.5 .
p Hy0 A2 (1 1\2 Av>2 1 1\2 +<Av>2 T
XO‘X'> +(c <>\o+>\> < |
+ 895 nusey <.213.> | R (5.6)
)\2 T




P 318\172 ‘
Avy/C=0, 1 .
¥/ 087 x (1013.25>< T> (1 +0.0046 p)

0. 34 (bv/e), ) (Bv/e), (bv/c), X(zgs) (5:7)
2

0 2 * T
) A 1 -1\2 <AV>2 <-1_ 1>2 AV’>2 12 /Ay
NR) T\, RSN T, <>\ +(c2

at Ground

(Av/c), =0.018 (P/1013.25) (293/T)°7S
(bv/c), = 0.049 (P/1013.25) (293/T)°" 75

P02 =0.210x P (P: atmospheric pressure)

Py

Po, =0.385" —’I—‘g (P02: partial pressure of oxygen)

Therefore, the density of O, changes as a function of P/T. For the calculation
of oxygen attenuation at various heights, (P/T) must be multiplied by (5.7). A
slight calculation difference was found between the value of Av/c calculated by
(5.2) and by (5.1) when both calculations were carried out for oxygen.

5.2 Mean Temperature Calculation

The mean temperature, T , was calculated by converting vertical loss
(Reference 3) into sky temperature; and T, is derived from T . The T, changes
were computed by using (5.3) and (5.5) under various frequencies, ground con-
ditions and also for several zenith angles.

Calculated mean temperatures are shown in Figure 5.2. The T values
were calculated between 10 GHz and 40 GHz, at constant temperature T, = 288°K
on the ground; the maximum T_ differences with changing humidity are 8°K.
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Therefore, when T, is calculated with T, derived from ground temperature
(for example, T = 1.12 T, - 50) (Reference 4) a must be larger than 0.8, if the
permissible error is DT, S 2°K. A simple calculation follows:

T, = (1-0)T, , (5.8)
=(1-a)"T, , (5.9)

where

T, 1is derived from ground temperature, and
. :

T includes the effect of humidity.
2

Then

T, - T, =AT, =(1 - a) (Tml "Tma) <2
and

'1f’1‘mI —Tmn =8, then a20.7S.

In one of the frequencies, the range of T, due to humidity changes is about 4°K,
so a must be larger than 0.5, calculated in the same way as above.

In case of changing ground temperature Tg the change in T is proportional
to this change in T, , ground temperature, as has been shown ﬂlso by Wulfsburg
(Reference 4). A companson of the Wulfsburg results, T, = 1.12 T, - 50, with
our computed values shows fairly good agreement for frequencies larger than

10 GHz (Tigure 5.3).

The mean temperature also varies 6n1y slightly with zenith angle cb at all
frequencies calculated (Tables (5.6) and (5.7)). Therefore, there is no problem
in calculatmg T, at about 40° elevation angle (for satellite data acquisition).

5.3 Calculat1_on Results for Clear Days, Using Shulkin's Method
In Figure 5.4 is shown the range of variation in sky temperature due to

water vapor (humidity) changes and also due to ground temperature changes. For
a constant ground temperature of 288°K, the sky temperature varies from 3 to
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5.56°K at 15* GHz, and 8 to 18°K at 35 GHz. And under constant humidity, sky
temperatures change from 4°K to 8°K for 15* GHz, and 13 to 27°K for 35 GHz.

Near the water vapor resonance peak, A = 1.25 cm, the sky temperature
varies greatly, from 9° to 32°K for constant ground temperature T, =288°K
and from 21° to 57°K for a constant relative humidity of 60%. The Sky temper-
ature ranges with changing T, and humidity are listed in Tables 5.1 and 5.2,
The values in Table 5.2 were calculated by the method of Bean and Dutton
(Reference 2). For frequencies below 30 GHz, both calculations are in fairly
good agreement, but above 30 GHz there exists a difference of nearly 10°K at
lowest humidity. These differences are due mainly to the use of the oxygen
calculation method.

*This is referred to 16 GHz. Calculation was done at 15 GHz; almost no difference exists.
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Figure 5.4, Temperature change due to atmospheric conditions (by Shulkins).
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Table 5.1

In the graph (Figure 5.5 (a) to (d)), the temperature increment due to the

water vapor content can easily be found for the quasi-millimeter and millimeter g
wavelength regions. Thus if the ground temperatuie and humidity are known the |
sky temperature can be obtained easily from Figure 5.5. i

3ky Temperature Variations by the Method of Shulkins (Reference 1). No cloud.
Frequency (GHz) 10 15 20 30 35 40
Wavelength, A
(cm)
° 3 2 1.5 1.0 0.8 | 0.75
Tﬁ (°K) Humidity
20%/100%
(g/m?)
Sky 'l‘emperature Increment (°K)
588 2.6 2.3 2.9 6.2 6.5 8.3 | 12.7
13.0 3.1 5.5 20,1 | 26.1 17.5 | 23.1
203 3.4 2.3 3.1 7.4 7.2 8.9 | 13.2
17.2 3.4 6.7 26.2 | 20.3 | 21.6 27.7
998 4.6 2.3 3.3 9.0 8.1 9.7 14.1
23.0 4.0 8.3 | 34.2 | 26.1 | 27.3 | 34.1
508 6.0 2.4 3.6 | 1L.1 9.3 | 10.8 | 15.2
30.3 4.6 10.4 44,3 | 33.7 | 85.0 | 42.7
308 7.9 2.5 | 4.0 | 13.7 | 109 | 12.3 | 16.8
39.6 5.6 13.4 56,9 | 44.0 | 45.4 | 54.6

In Table 3.3 the '""Reference' column shows the expected true temperature by
the method of Shulkin (Reference 1) and that of Bean and Dutton (Reference 2). It
would bz anticipated that the latter method would give nearly the same value as
that of Cglumn 4 (in Table 3.3), which has been converted into expected tempera-
ture from the experimental value of Reference 1. Below 16 GHz, no sky fempel a~
ture difference between two methods of calculat;on can be found
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Figure 5.5(a). Sky temperature increase due to water vapor for

15 GHz (Reference 4).
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Table 5.2

Sky Temperature Variations by the Method of Bean and Dutton (Reference 2).

No Cloud.

Frequency (GHz) 10 15 20 30 35 40
Wavelength, A\ :
(cm) j
°K 3 2 1.5 1.0 | 0.86 | 0.75
Ty OK) Humidity, 1
20%/100% ;
(g/m?3)
Sky Temperature Increment (°K)
988 2.6 2.4 3.8 7.3 | 9.8 | 14.4 | 24.7
13.0 3.2 5.9 | 22.0 | 19.3 | 23.2 | 34.2
003 3.4 2.4 | 3.4 | 83 | 104 | 147 | 24.8
17.2 3.4 6.9 | 27.5 | 22.9 | 26.4 | 37.5
008 4.6 2.4 | 3.6 | 9.8 | 111 | 1563 | 25.2
23.0 3.8 8.2 | 345 | 27.6 | 30.8 | 42.1
303 6.0 2.4 3.8 | 115 | 12.1 | 16.1 | 25.8 |

30.3 4.3 9.9 | 42.8 | 335 | 36.4 | 48.1
308 7.9 2.5 4.2 | 18.7 | 23.4 | 17.2 | 26.9 ;
39.6 5.0 | 12,1 | 52.9 | 41.1 | 43.6 | 55.8

Table 5.3 gives a conversion of the sky temperature range of Table 5.1 and
5.2 into the loss in dB along the vertical path and shows how the vertical losses
change with ground temperature and humidity. Also, the NASA reference values
from Reference 11 are listed in Table 5.4.

The values of Table 5.4 are distributed from 0.13 dB to 0.6 dB. This may
be explained by the calculated values, from 0.14 dB to 0.7 dB, when ground
temperature and humidity change, as shown in Table 5.3. Attenuation data, cal-
culated by the method of Bean and Dutton (Reference2), are also shown in col-
umns 4 and 6 of Table 5.3. The value from Bean and Dutton is 0.1 dB larger than
the values by Shulkin's method for the lower humidity, as indicated earlier.
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Table 5.3
Vertical Loss in dB

15* GHz 35 GHz
Ground Absolute
Humidi
Ter;pe(i?gwe (u l}lrllf;;y Shulkin llg)ii?of Shulkin | D030 &
9 B/X0 (Reference 1) Dutton
(Reference 2)
288 2.56 (20%) 0.05 dB 0.05 dB MT dB 0.24‘dB
{ ¢ ~
12.8 (100%) 0.09 0.096 0.29 0.39
293 3.4 | 0.05l 0.0?5 0.1% 0.24
17.2 0.105 0.109 - 0.35 0.44
298 4.6 | - 0.05‘ 0.0?6 0.13 0.25‘
23.0 0.13 0.127 0.44 0.50
303 6.06 1 0.055 0.06 0.17 0.25
30.3 0.16 0.15 0.55 0.58
308 7.9 ‘ 0.06 0.0(; o.zsi 0.27l
39.6 0.2 0.18 0.71 0.69

L . Y LIt
*Calculation was carried out at 15 Sz,

5.4 Temperature Inciease due to Cloud

Figure 5.6 is also found in the paper of Altshuler et al. (Reference 3).
This model was used to calculate the temperature increase due to cloud. At-
tenuation constants for four frequencies at nearly 0°C are also found in the
paper of Gunn and East (Reference 12). Calculations were carried out only for
the frequencies for which 0°C attenuation constants are given.

In the calculation for the temperature increase due to cloud, ice cloud . ‘
attenuation was neglected, because the loss due to ice cloud is two orders of g
magnitude less than that due to water cloud (Table 5.5). When T is calculated,
the following formula must be used (Reference 5): P




Table 5.4
Measurement List From T. N. Report (Reference 11)

(cm) Vertical Att, (dB) Experimenters

2 0.06 - 0.1 Wulfsburg (Radio Science, Vol. 2,
p. 319, 1967)

0.87 0.363 Aarons, Barron (IEE, V¢i, 46, p. 325,
1958)

0.86 0.22 -~ 0.32 Wulfsburg (Radio Sci., Vol. 2, p. 319,
1967)

0.86 0.13 - 0.34 Kalagham and Albertini (AFCRL, 1965)

0.86 0.2 Copeland and Tylor (Astrophy. dJ.,

Vol. 139, p. 407, 1964)

0.86 0.18 - 0.39 Gibson (IRE, Vol. 46, p. 280, 1958)

0.86 0.2 =~ 0.6 Gibson (Astrophy. J., Vol. 137, p. 611,
1963)

0.85 0.15 - 0.18 Lymn, Meeks (Astron. J., 69, p. 65~
67, 1964)

Table 5.5

Attention Due to Precipitation and Cloud

Condition Wavelength, .
of Atmosphere A\ (em) 3.2 1.8 1.24 0.9
Rain Attenuation, | o o7y g1.31 | g 045 R1-14 0.12 R!+98 0.22 R!- 00

DB/km

Water (0°C) M 858X 1072 M [26.7%X 1072 M [53.2%X 1072 M| 99%X10"2 M

cloud (10°C) water’ 6.3 X107 M | 17.9% 1072 M [ 40.6 X 1072 M | 68.1% 1072 M
content, : : :

Ice  (-10°C) M 8.19X 1074 M | 14.6 X 1074 M | 21.1 X 10™% M | 29.3 X 10”4 M

cloud (-20°C) (g/m3) 5.63% 1074 M |10 X 10" M | 14,6 X10°* M | 20.0 x 107 M




TSKT = TS o o+ ( 1 - a.) Tmc (5010)
where
T ...+ total sky temperature
a: loss inftegrated to the height of 3 km

sky temperature above 3 km

!

—~3

T with cloud, from ground to 3 km.

Me

This equation is also used for the calculation when including rain. Figure 5.7
shows the temperature increase due to cloud, calculated by equation (5.10). The
temperature increase due to water content is much more prominent in the milli-
meter wave frequencies. IFor example:

Temperature Increase AT

No 1lg water
Cloud Cloud
= 1.8 cm: 7°K 23°K
A= 0.9 cm: 15°K 68°K
3
6 -
ICE CLOUD
5 I P:6i— 059/m
A X 4 : :
o :
‘ 5 5 \"\;..\.A/Lj 735 oK |
+ RAIN CLOUD_ ; ' .
2 —a 280 K
| oo
0 GT=293°K 70%

- Figure 5.6. Model of atmosphere with precipitation.
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Figure 5.7. Temperature increase due to water cloud.

Next are shown the calculated data sheets for reterence. Table 5.6 (a) to

(e), Figure 5.8, Table 5.7 (a) to (e) and Figure 5.9 show zenith angle versus the

sky temperatures (T g, ), the atmospheric loss (a, TAOSS) and T when the sky

. contains rain clouds from 2 kmto 3 km (Figure 5.6). TMG and TSGwere calculated
from all the losses including atmospheric and cloud loss. T, KT and TSG seem

to have the same value because T is much smaller than TMC, the cloud mean ,

temperature (T,  in the equation’(5.10)). | i

5.5 Teraperature Increase due to Rain and Rain Attenuation in dB

When it is raining, the vertical structure in Figure 5.6 canbe assumed. The
attenuations for rain and nearly 0°C cloud are also listed in Table 5.5. The
ground temperature and the relative humidity are 293°K and 70% respectively. 3
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The total loss is as follows:

By + B.g+ B, =8 (in dB), (5.11)

where
B,, = atmospheric gaseous loss,
8,4 = loss due to water cloud

B = loss due to rain,
r
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Figure 5,10, Temperature increase due to rain (vertical),
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Figure 5.11. Temperature variations (vertical) due to water content of
cloud when it rains at the rate of 10 mm/hr.

By changing 8 into o (fractional transmission coefficient), the temperature cal-
culation was done in the same way as in Section 5.4 (equation (5.10). In Figure
5.10, the temperature increase due to rain and cloud is shown, assuming the
cloud water content at 1g/m3. Figure 5.11 shows the temperature change due
to the water content of the cloud during rains at 10 mm/hr: The change is 155°
235°K at 35 GHz, and 50°-90°K at 16 GHz, during rainfall at that rate.

6. CONCLUSIONS

~ The average difference values between the expected and the measnred true
temperature were 35°K for the 16 GHz radiometer and 24°K for the 3¥# {iHz

61




radiometer. The differences include antenna and feeder losses and the tem-
perature increase due to the radiometer sidelobes hitting surrounding trees.

Taking the surrounding environment into consideration, the estimation of
sky temperafure increase due to sidelobes was carried out, and values of 4.5°K
at 16 GHz and 12°K at 35 GHz were obtained for sidelobe effects. p

The correlation between one~-point rainfall rate near the radiometers and
the measured temperature increase due to rain at a 45° elevation angle was not '
good during severe summer thunderstorms, but much better for rather light
rain (less than 10 mm/hr).

Statistics on the cloud scintillation show that the scintillation number 1 oc-
curred most frequently, The scintillation number reached 10 at its maximum.
Computation for the expected sky temperature shows that, under various ground
conditions, sky temperature change is very small (3 to 5.5°K) at 15 GHz, hut
larger temperature changes (8°-18°K) were found at 35 GHz by the method of
Shulkin (Reference 1). Data computed by the method of Bean and Dutton (Ref-
erence 2) are in good agreement with those calculated by Shulkin's method for
the high water vapor content,

Concerning the temperature increase due to rain or cloud, the water content
of cloud has an important effect upon the radiometer temperature, reaching
above the frequency 30 GHz (see Figure 5.7),

o3
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APPENDIX A
Calibration Methods and Their Problems

Two cold loads were used for the linearity check on the recorder; they
were:

(a) dry ice + alcohol, -75°C (198°K),
(b) ice cubes + water, 0°C (273°K).

These points have been shown also in the i"isure Al, This figure indicates a
reasonable linearity of both radiometers.

Calibrations of both radiometers were accomplished by using waveguide
switches (WGSW)., Besides the difficulties associated with waveguide switching,
some calibration difficulties in cold load occurred due to a buildup of dewdrops
inside the waveguide between the cold load and the WGSW.

During the cold load calibration, the waveguide was evacuated or filled with
high pressure helium gas to avoid an accumulation of water drops, which caused
temperature instability.
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Figure A.1. Radiometer calibrations (July 2).
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APPENDIX B
Temperature Drift Problems
When long time changes of sky temperature (say, hourly or daily) are con-
sidered, temperature drift must be taken into account. This drift is mainly
caused by the system instability.
In Figures Bl through B3 are shown examples of the hourly changes in the
temperature indications of both radiometers. In these examples, no typical

drift can be found except during the calibration time.

Driit or unnatural change in the temperature can be found, however, in the
following circumstances:

() Mainly after changing the zero point and scale in the recorder amplifiers.

(ii) After removing the cover from the radiometer package box (this should be
avoided after obtaining a uniform temperature in the package).

(iii) After changing the klystron voltage and current working conditions.,
This change of the klystron (local oscillator) has a large and long-

lasting effect upon the mixer before it becomes stable again.

(iv) When working with waveguide switches.

Mixer currents, which have a long time drift due to the change of klystron con-
dition, dc amplifier level, and zero point of the recorders, should be separately
recorded for later reference to better understand drift problems in the radio-
metric data.
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Figure B.2. Two-hourly change for 16 GHz radiometers on June 29.
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APPENDIX C

Seasonal Sky Temperature Range due to Water Vapor for the Stations
Participating in the ATS-V Millimeter Wave Experiment

The 16 GHz and 35 GHz radiometers which were tested at GSFC by the
author are to be used at Rosman, North Carolina during the ATS-V Millimeter
Wave Experiment. Continuous recordings will be made of the sky temperature
along the slant path from the Rosman ground terminal to the ATS-V. An attempt
will be made to correlate the radiometric data with propagation data being re-
ceived from the 15 GHz and 31 GHz beacons on board the spacecraft.

Of equalinterest, it is also important to determine if the calculated values
of sky temperature variation due to water vapor content agree with the actual
values. Consequently as a follow-on endeavor for testing the radiometers,
calculations have been carried out, to give the expected sky temperature
changes in February and August. The method of calculating the sky temperature
change due to the water content is as follows.

1. For the 15 GHz loss and water vapor, (Reference 3)

a, =0.055 +0.004 p;

For the 35 GHz loss and water vapor,

a, =0.17 + 0.013 p; |

where a ,» @, are the losses in dB and . is the water vapor content.
2. The values of absolute humidity expected to be exceeded 99%, 50%, and

1% of the time during February and August can be found in Figures 7.3-

7.8 of Reference 2.

3. "Loss" is converted to int¢ o (fractional transmission coefficient).

4, T, =(1 -a®*¢¢) T, ‘

where ¢ is the zenith angle at these stations.

5. T =270°K at 15 GHz.




(There is not a great difference, in sky temperature even if T is~ 280°K.)
6. At 36 GHz,

T, =270°K (0 - 5 g/m?® water vapor content)

= 278°K (5 - 15 g/m® water vapor content)

= 289°K (15 ~ 20 g/m® water vapor content).

Calculation results arelisted in Table C1, (a) and (b).
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Table C-1

Sky Temperature Change Due to Water Content

(@) Tor 16 GHz Radiometers

Month Feb. Aug,
Humidity Expected to be |
Exceeded 99, 50, 1% of 1% 50% 99% 1% 50%  99%
the Time
1. Rosman (N.C.) 6 7 9°K 9 11 14°K
(Brevard)
2. NELC (Calif.) 6 7 8°K 8 9 11°K
3. Uof T (Texas) 5 6 7°K 7 9 10°K
4. OSU (Ohio) 6 7 9°K 8 11 13°K
5. Wash. D.C. 7 8 11°K 11 13 16°K
(b) For 35 GHz Radiometers
Month Feb. Aug.
Humidity Expected to be
Exceeded 99 and 1% 1% 99% 1% 99%
of the Time
. Rosman (N.C,) 18 28°K 27 41°K
(Brevard)
. NELC (Calif.) 17 25°K 22  33°K
. Uof T (Texas) 16 24°K 21 33°K
. OSU (Ohio) 18 28°K 26 40°K
. Wash. D.C, 20 30°K 31 47°K
T2
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APPENDIX D

Correction for the Energy Distribution Pattern
for both Radiometer Antennas

The antenna pattern of the 1.6 GHz radiometer was not obtained until after
the analytical portion of this paper was completed. Therefore, a correction

must be employed for Section 3.3.

In Figure D.1 are shown the antenna patterns measured in the E plane and
the H plane for the 16 GHz radiometer antenna. Scale reduction into half of the
16 GHz holizontal angle values may be applied to the 35 GHz radiometer antenna

(parenthetic numbers).

E PLANE
26°  22° J)8°  14° 10°  6° & 10°  14°  1g°
(13°) "~ (0I°) (9°) (7 (5°) (3°) {3°) (5°) (79 {9°)
H PLANE
NO SIDELOBES o
ABOVE THIS LEVEL -
\ \ 1 | L | 1 \ 1
26° 22° I8 14° 0°  6° 6 I1I0° 14 18°
(139 (11°) (9°) (790 (59 (3% (3% (5% (7% (9°)

Figure D.1. “Actual antenna pattern for 16 GHz 1-foot aﬁtenna.
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In the H plane pattern, the sidelobes are fairly low under 30 dB and the
effective temperature increase due to them is negligible. Therefore, only the
E plane pattern need be considered in the investigation of the temperature in-
crease due to sidelobes. By measuring the area of antenna pattern, approximate
energy distribution for the 16 GHz radiometer antenna is obtained (Table D.1).

Table D.1
Mainbeam0 - & 5° 66% For 35 GHz, Angle values
side lobes -+ 20° 30% are about half of these
side lobes + 60° 3% interpolated from the
side lobes +180° 1% values of

It can be seen that 99% of all the energy falls within +60° for the 16 GHz
radiometer and within 30° for the 35 GHz radiometer. The same technique
which was used in Section 3.3 can be applied here for the temperature increase
due to sidelobes.

Slight changes can be found in the estimates of the temperature increase
due to sidelobes intersecting the ground: 2°K for 16 GHz and 1°K for 35 GHz
can be obtained for the temperature increase due to ground thermal emission.

Thus, overall, 2,5°K at 16 GHz and 7.5°K at 35 GHz seem to be the values
of the temperature increase due to sidelobes at zenith.
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