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L I S T  OF SYMBOLS 

Symbol Meaning 

A Cross sectional area of element 

E Modulus of elasticity of material 

F Force applied to element node 
-
F 	 Force applied to element node referenced to undeformed 

element coordinate system 

+ 
F 	 Proportionality constants between forces, F ,  and lateral 

load, p 

G =  [GI Geometric stiffness matrix defined by equation (46)
N 

I Moment of inertia of element c ross  section 


K =  [K] Conventional stiffness matrix defined by equation (45) 

N 

NKf= [ Kf]* Total element stiffness matrix (see equation (44)) 

K= [ K] Element stiffness matrix in global coordinate system
N 

KO = E KO1 Nonlinear stiffness matrix defined by equation (91)
N 

L Length of element 


L =  [L]  Load behavior stiffness matrix 

N 

kF = LF1 Nodal force behavior stiffness matrix 

L ‘ILJ Lateral load behavior stiffness matrix
“P 

1 	 Distance from element node to point through which the F
Xnodal forces are directed 

V 




L I S T  OF SYMBOLS (Continued) 

Symbol Meaning 

M Bending moment applied to element node 

M = M  	 Bending moment applied to element node referenced to 
undeformed element coordinate system 

m, n Unit vectors in element coordinate system 

iii, n Unit vectors in global coordinate system 

P Lateral load applied to element 

Q Nodal force o r  moment 

Q = { Q }  Column vector of nodal forces and momentsN 

g = {a} 	 Column vector of nodal forces and moments referenced to 
global coordinate system 

Nodal displacement o r  rotation 

Column vector of nodal displacements 

Column vector of nodal displacements in global coordinate 
system 

R Distance from element centerline to point through which lateral 
forces are directed; also radius of circular arch 

T =  [TI Coordinate transformation matrix defined by equation (81)
N 

U Strain energy of the element 

U Displacement in x direction 

-
U Displacement in Z direction 
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LIST OF SYMBOLS (Continued) 

Meaning 

Volume of the element 

Displacement in z direction 

Displacement in E direction 

Element coordinates 

Global coordinates 
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Angle between element and global coordinate systems 

Displacement functions defined by equation ( 6 )  

Change in strain energy, virtual work of external 
forces 

Strain of element in x direction at any point 
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Curvature of beam element centerline 


Stress in x direction at any point in the element 


Displacement functions defined by equation ( 5 )  


Unit rotation vector 
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Symbol 

Subscript 

1, 2 

9-x; r m c  

1
Superscript 
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L I S T  OF SYMBOLS (Concluded) 

Meaning 

Matrices defined by equations (55) through (61) 

Meaning 

Denotes left and right nodes respectively of the elements; 
also denotes a particular displacement function, y 

Denotes a particular @ displacement function 

Denotes a particular element of a general structure 

Denotes a particular node of the element or one of the 
displacement functions, y or @ 

Indicates no summation on double subscript, i 

Direction of the coordinates x and z 

Fi r s t  and second derivatives with respect to x 

Meaning 

Denotes displacements of the structure just prior to buckling 

Denotes displacements of the structure just after buckling 

Inverse of a matrix 

Transpose of a matrix 
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A FINITE'ELEMENT APPROACH TO THE STRUCTURAL 

INSTAB l L l T Y  OF BEAM COLUMNS, 


FRAMES, AND ARCHES 


SUMMARY 


From the principle of virtual displacements and the bifurcation theory of 
elastic stability a stiffness matrix is developed for a beam column element with 
shear ,  moment, and axial load applied to the ends ( nodes) of the element and a 
uniformly distributed load applied along the span of the element. The stiffness 
matrix developed relates the forces applied at the nodes to the displacements of 
the nodes and is a function of the magnitude of the applied load. Three types of 
behavior of the applied loads are considered as separate cases. These are:  the 
loads remain normal to the deformed element; the loads remain parallel to their 
original direction; and, the loads remain directed toward a fixed point. 

A method is given for using the element stiffness matrix to predict the 
buckling load for a structure which may be represented by beam column elements. 
A s  an example, the buckling load of an arch for each of the three load-behavior 
cases is calculated and compared to known solutions. 

INTRODUCTION 

In recent years interest in the solution of structural problems by the 
finite element method has greatly increased. This interest can be attributed to 
the fact that the digital computer has made possible the solution of a great num­
ber of complex, yet practical, problems by this method. 

Those active in publishing results in the field include a group at the 
University of Washington and The Boeing Company [ 1-91, J. H. Argyris at the 
University of London [ I O ,  111, and R. H. Gallagher and his associates at Bell 
Aerosystems Company [ 12- 141. 

Basically the method consists of representing an actual structure by an 
idealized structure made up of elements for which relationships between the 
forces applied to points (nodes) on the boundary of the element and the displace­
ments of the nodes is known. This relationship is conveniently represented by 



an element stiffness matrix. If all of the element stiffness matrices are trans­
formed to a common (global) coordinate system, the sum of.forces applied to 
the elements meeting at each node is equated to the externally applied force at 
that node, and the displacements of elements which meet at each node a r e  equated, 
a s e t  of equations relating the externally applied forces to the nodal displacements 
results. When this s e t  is expressed in matrix form, the matrix relating the ex­
ternally applied forces to the nodal displacements is called the master stiffness 
matrix. Then for any given combination of known applied external forces and 
nodal displacements the above relationships may be algebraically manipulated to 
determine internal loads and displacements throughout the structure. 

Once a sufficient variety and quality of element stiffness matrices a r e  
available to idealize a particular structure, the remainder of the above procedure 
to solve a particular problem becomes tedious but quite mechanical. Hence the 
advantage of the computer in solving such problems is obvious. 

Although the use of such techniques in solving complex structural prob­
lems is now an everyday occurrence, a great deal of developmental activity in  
the field still persists for several reasons. First, there is no such thing as a 
correct stiffness matrix for a particular element which excludes other stiffness 
matrices for that same element as incorrect. A number of correct stiffness 
matrices may be developed for the same element if different assumptions a re  
made for the derivation. Each of these matrices may have its own advantages 
for some particular application and all of them may converge to identical answers 
if  the structure to be analyzed is broken into small  enough elements. It is the 
search for the most advantageous element for particular applications or  for all-
inclusive elements which gives r i s e  to much of the current research. 

Second, many derivations have been based on geometrical considerations 
only and have sometimes led to incorrect stiTfness matrices o r  matrices with 
poor convergence characteristics. The recent trend has been to base derivations 
on basic elasticity principles and to use more care  in assuring that adjacent 
element deformations conform to each other not only a t  the nodes but along the 
complete boundary 15, 15-19]. 

Third, extension of the finite element techniques to include a larger class 
of problems has received a great deal of recent attention. In particular, the 
solution of nonlinear problems including large deformations and structural 
instability has been of interest [ 1-3, 5, 8, 9, 13-15, 17, 201. 
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This report was motivated to some extent by all three of the above con­
siderations. The objective was to develop a beam column element, beginning 
with fundamental principles, which would account for the applied load behavior 
and could be used for structural stability analysis. 

It is assumed that the reader is familiar with the conventional matrix and 
index notation used throughout the report. Since there is no stringent space 
limitation, the work is presented in an unusual amount of detail with the pre­
sumption that the development could serve as a guide for  the development of 
curved or three-dimensional elements. 

GENERAL THEORY 


Basic Assumptions and Limitations 


The usual Euler-Bernoulli beam assumptions a r e  made for developing 
the beam column element stiffness matrix. These are basic engineering assump­
tions and may be listed as follows: 

I. The material of the element is homogeneous and isotropic. 

2. Plane sections remain plane after bending. 

3. The stress-strain curve is identical in tension and compression. 

4. Hooke's law holds. 

5. The effect of transverse shear is negligible. 

6 .  The deflections are small  compared to the cross  sectionai dimensions. 

7. The loads act in a single plane passing through a principal axis of 
inertia of the cross  section. 

8. No initial curvature of the element exists. 

9. No local type of instability will occur within the element. 

I O .  Loads are applied quasi-statically. 
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The above assumptions limit the application of results to structures that 
lie in a plane and are loaded in the same plane. Out-of-plane and torsional 
buckling are not treated. 

Method of Analysis 

The work done during a virtual displacement of the element is equated 
to zero, as presented by Hoff in Reference 21  and derived more rigorously by 
Langhaar in Reference 22, to obtain the equilibrium equations for the element. 
The bifurcation concept of elastic stability as presented by Novozhilov in Refer­
ence 23, Chapter V,  is used to postulate that two possible sets of,displacements 
which satisfy the equilibrium equations may exist under the same magnitude of 
external load if  the magnitude is such that a structure is unstable. Each of these 
sets of displacements is substituted in turn into the equilibrium equations. The 
resulting sets of equations are combined to obtain a relationship between the 
nodal forces and the nodal displacements during buckling. When placed in matrix 
form this relationship becomes 

where Qi is the column matrix of nodal forces , is the column matrix of nodal 
displacgments, K is the usual beam element stiffness matrix, G is the geometric

N

stiffness matr ixrand L is the load behavior stiffness matrix. G and L both 
contain the magnitudezf external load as a factor. Thus an elekent  syiffness 
matrix can be derived which is a function of the applied load including the applied 
load behavior. 

A number of such elements may be combined to represent a particular 
structure, s o  that equation ( I) applies to the entire structure and K + G + L is 
the master stiffness matrix. Boundary conditions may be applied To r&ucg the 
s ize  of the master  stiffness matrix. For instability to exist the determinant of 
the master stiffness matrix must vanish. Hence, an eigenvalue problem is 
formulated where the eigenvalues are the magnitudes of the applied load at which 
the structure is unstable. 
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Development of Element' Stiffness Matr ix 

Description of Element. Consider a beam column element as shown in 
Figure 1 which is subjected to nodal forces and moments and a uniformly dis­
tributed load, p, applied along its length. It is desired to determine a stiffness 
matrix for the element which may be used to calculate the stability of structures 
made up of such elements. The stiffness matrix is to account for the fact that 
the components of the nodal forces or  distributed load, or  both, may be a function 
of the element displacements. Three cases a r e  to be considered: the loads 
remain normal to the deformed elemeht; the loads remain parallel to their 
original direction; and, the loads remain directed toward a fixed point. 

FIGURE I. BEAM COLUMN ELEMENT 

Displacement Functions. If it is assumed that the lateral displacement 
of the beam element of Figure i may be represented by 

and the longitudinal displacement is given by 

5 




then the six unknown constants, a!i’ may be determined in terms of the nodal 

displacements from the element boundary conditions, 

w = w i  at x = O  

w, 
X 

= - e l  at x = O  

w = w 2  a t x = L  

w, 
X 

= -e2 at x = L 

u = u i  a t x = O  

u = u 2  a t x = L  . 

The resulting displacement functions a r e  

w = w i  (1 - 3 - + 2  9 + w 2 ( 3 $ 2 $:: L3 

+ e , (  - x  + 2”” -2)L L2 + e2($ 5) 

= w .  @.(XI
1 1 
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These displacement functions have been used by others for the beam 
column element (see Reference 5, for example). However, it should be men­
tioned that an  inconsistency ar i ses  when the cubic function is used for the lateral 
displacement of the present element which has a distributed load. This is illus­
trated by taking the third derivative of w, which should be the equation for the 
shear load on the element, and observing that a constant results. But the ele­
ment has a distributed load, and the shear  should obviously be a linear function, 
not a constant. Since the change in shear over the length of an element becomes 
negligible in the limit as the element becomes smaller and smaller,  this incon­
sistency is not unacceptable and it will be seen that adequate results are obtained. 
The correct fourth order function could not be used for  w because there is no 
other boundary condition available for evaluating another constant in equation ( 2 ) .  
This will be discussed further in the conclusions. 

Development of Equilibrium Equations. The element equilibrium equa­
tions will now be developed from the principle of virtual displacements, 

6 U - 6 V = O  ( 7 )  

where 6U is the change in strain energy and 6V is the work done by the external 
forces during a virtual displacement. 

For the uniaxial state of stress assumed to exist in a beam the change 
in strain energy is given by 

6U = J ax6 exdv 
V 

Here, E 
X 

is the strain of the beam at any point of the cross  section and is given 
by 

where E is the s t ra in  of the beam mid-surface, z is the distance of the point in xx 
the beam from the mid-surface, and 

K = W ,xx xx 

7 




is the beam curvature. The nonlinear strain-displacement relationship 

1
E xx = u , x + 2 w ’ x  
2 + - u ,  

x 
2 


2 


is used for the mid-surface strain. The u , ~
X 

term in this expression is not 

known to have been used in previous derivations of nonlinear beam element 
stiffness matrices. Substituting equations ( 9 ) ,  ( I O ) ,  and (11) into equation 
( 8 ) ,  

6 U = s  [,,cxx6t 
xx 

+ E I K  
xx 

6K 
xx1dx 

L 

where 

d �  = 6 u ,  + d ( i w , ; )  +d(&;) = 6 u , x + w ,  x 6w, x + u ,  x 6% x 

xx X 


+ z I u, 2, t u ,  + w,  dw, + u, ~ u , ~ ) + - E I w , ~ ~ ~ w , ~ ]u , ~I w,: + z dx 


L X X x x X 
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+ higher order terms. (14) 

The virtual work of the external forces acting on the element is given by: 

where the force components depend upon the load behavior. Three load behavior 
cases will  be considered. 

Case I. Loads Remain Normal to the Deformed Element (Fig. 2) 

Pz = P 

-
pX - - P K x  
-
F = F . + F  exi xi z i  -i 
F = F  - F  e

zi zi xi -i 
Z. = M. 

1 1 

Then 

9 




c 


= p  cos 9 H p  4 

pz I 


I 


FIGURE 2. LOADS REMAIN NORMAL TO ELEMENT 

Case 11. Loads Remain Parallel to Their Original Direction (Fig. 3) 

P, = P 


p = o  

X 

- -
Fxi - Fxi 
-
FZi = FZi 

M. = M. 

1 1 
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FIGURE 3. LOADS RENIAIN PARALLEL TO ORIGINAL DIRECTION 

6V = Fx1.6u .  
1 

+ Fz1.dwi + M. 68 . i - s  p6wdx (19)
l L  

Case 111. Loads Remain Directed Toward a Fixed Point (Fig. 4) 

Pz = P 

PUP, = 

- UiFxi = Fx1. + F Z i ~  
- WiFZi = FZi - Fxi 1 
k.= M.

1 1 



Fxi + FZi% 6 ~ .u’) + (FZi - Fxi?)6w i 

FIGURE 4. LOADS REMAIN DIRECTED TOWARD A FIXED POINT 
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Substituting equations ( 14), (17) , ( 19), and ( 21) into equation (7), we 
obtain the following results: 

Case I. 

I{ [EA(USx + z w ,  2 + 3 2)6u,x + EA(u,xw,x)6W,x 
x 2 'x 

+ EIw ,xx 6w, -1 dx = (Fxi ;FZi Bi 
-
)6ui + (FZi - Fxi ,)6wi 

Case 11. 

dx = F .6u .  + F . 6 ~ .+ Misei+ p6wdxxx 
L 

Case 111. 

L 

From the displacement functions, equations ( 5) and ( 6 )  

u, 
X 

= u. 
1

y.l ,x  

w, X =wi  cPi,x 
(25) 

w, xx = wi cPi,- . 

13 



- 

And the above variations can be written, 

6u = y .  6Ui 
1 

-6u, 
X Yi,x 6ui 

6w = Gi6Wi 

6WYx = @i,xdWi 

- 6w .6WYn - @i,xx i 

Upon substituting equations (25) and (26) into equations (22) through 
(24) and recalling that Oi = wi +2, the following equations are obtained: 

Case I. 

) 6 u i - ( F  zi - Fxi wi + 2)6w i 
-

Case 11. 

- Fx1. 6 u . - F  z1.6w.-M.6w i + 2  - p@.6w.dx=O
1 1 1 1 1L 

14 
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L 

+( Ju.y.J , X  wk qJk,x)'i,x 

+ FZi %)hi-U i  

P
Swi + -u. y. y.  6ui 

Case 111. 

+ EIw.J @.6wl 1,xx CPj , xx  

(FZi - Fxi "') 6wi - Mi 6wi+ 

R J J 1  
(29) 

For independent virtual displacements , 6u. and 6w
i' 

the equilibrium
1 

equations are obtained from equations (27) through ( 2 9 ) .  

Case I. 

I 3 
j ,xy i ,x + - w w $j k ,x@.

J , X
y i ,x  + - u u y2 k 2 k j k ,xy j ,xy i ,x 

EAuj yj , x  wk CP k , x  CP i ,x  +EIw.@.J I , =  CPj y =  - P ( @ i ) ] h  
L 

, 

Case 11. 

i
2 k wj @k,x @. 3[..('jyj,xYi,x +-w J , X  yi , ~ + 2 % ~ j ~ k , x ~ j , x ' i , x

L 

15 
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Case 111. 
F 


I 3
bA('j 'j ,x 'i, x + ZWk"j 'k, x 'j ,x 'i, x +;% "j 'k, x 'j ,x 'i, x 


W i-
- Qzi 

+ F
xi 
-
1 

= o  (35) 

Equations (30 )  through ( 3 5 )  a r e  the final equilibrium equations for the 
beam column element. 

Bifurcation Theory of Instability. Let a solution of the equilibrium 
equations be uo woi' 

According to the bifurcation concept of instability, at the
i' 

instability load magnitude there is another set of displacements, arbitrarily 
close to the first set, which. also satisfies the equations of equilibrium. Denote 
this second set of nodal displacements by uo

1 
t.u1 w? + w1i .
i ' i  


Upon substituting this new solution into the equilibrium equations, there 

results for Case I 
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---- -. ........_... ... ..- -. . .,, 

k 
y
j , x  

@
k , x  

@
i , x  

(37)  

Similar results are obtained for Cases I1 and 111, 

If these equations are expanded, if the q? state terms (which themselves 
1 

satisfy the equations) are canceled, and if only linear te rms  in the arbitrarily 
small  q! state are retained, the following sets of equations result. 

1 


Case I. 

oFA($'j,xyi,x + wji Wkgk,x+. 
J , X  

y.1 ,x  + 3Y(:ulyk, x 'j ,x 'i, xJ 

+pw!@. y. d x - Fzi 0'
i 

= O  ( 3 8 )
J JYX 11 ­

i , x  
@

k ,x  
y
j , x  

+ w i
j \  

'+.
i , x  

@.
J , X  

y
k , x  

+ EIW!+ 
J i ,xx  +j , xx1dx 

+ Fx1.e! 
-1 

= 0 ( 3 9 )  

Case 11. 

Y.' +W!W0 k @k ,x  @.
J , X  

y.
1 , ~  J1 , ~  J 

+ 3 q u i yk,xyj ,  x 'i, x)I dx = 0 
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r 7 

~ [ E A ( u ~ w ~ ' i y x  1,x +. J+k , x  Yj , x  + w ij u kO9. J , X  Yk,x  + E I W ~ +i,= +j , =  J dx 

Case 111. 

i , x  
@

k,x  
y
j , x  

+ w i
j \  

' @ .1,x @.
J , X  

Yk , x  

These equations may be expressed in matrix notation sa-a three cases 
as follows: 

o r  

[Kil (q'} = ( 0 )  

where 

[K1] = [ K  1 + [GI+ [Lp] + [LFl 

1 8  




--- ----- ---------- 

1s 3EA $yk,xyj,x'i,x dx 1 s EAwL'k,x'j,xYi,x 
L 

1 - I-
E A w 0 $  i ,x  $k,x yj ,x  dx Is EA$$ i ,x  @.

J , X  
yk,xk ' L  

[GI (q'} = 

for all cases. 

I 

The L matrices are different for each case. 
N 

Case I. 

[Lpl {si} = 

[L,l{ql} = 

[ L  1 = [L,I=[Ol
P 

Case 11. 

Case 111. 

(47 1 

(48)  

(49) 




Conventional Stiffhess Matrix 5, Equation (45)represents the conven­

tional beam column e l e m e n t a t r i x ,  which is suitable for use when 
there is no interest in nonlinear effects o r  instability. The elements of this 
matrix may be derived from the general expression, equation (45) .  For 
example, 

from equations ( 5) and ( 6 ) .  Then, 

Therefore, 

L L 2 I2EI
d x =  EI(-j!$+%) dx=- L3 

0 0 

Other elements of K a r e  obtained similarly to yield:N 

20 




- -  

- -  

-- -- -- 

-- 

U I  uz 
-

AE L E  
L L Fxi 

AE AE-
L L 0 0 0 0 Fx2 

12EI 12EI 6EI 6EI-0 0 
L3 L3 L2 L2 F Z i  

[Kl = 
0 0 12EI 12EI 6EI 6EI (52)- - ­

-L3 L3 L2 L2 F Z 2  

0 0 MI 

0 0 M2-
Geometric Stiffness Matrix G. Equation (46) is the general form of the 

N 
-~ 

geometric stiffness matrix which accounts for the effect of loads existing in  the 
element on the stiffness of the element. For  example, it is well known that the 
axial load in a beam column has an appreciable effect on the lateral  stiffness. 
The geometric stiffness matrix is an adjustment to the conventional stiffness 
matrix to account for such effects. Such matrices have also been referred to in 
the literature as stability coefficient matrices and incremental stiffness matrices. 
Elemehts of the G matrix will  now be derived. 

N 

L 
Evaluation of 

0 
@k,x@j , x  Yi , x  d x .  

For  i =  1 , 

21 



when k =  I,j = I , 

For i = 2
- 9  

d 

Other values of j and k are evaluated similarly to yield 
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-- - -  

-- 

-- 

-- 

L IOL 
'k.x 'j , x  Y2 ,x  dx= I -I -4 I (54) 

0 iOL iOL 30 30 

4-
30
-

L 
Evaluation of 

0 
'i,x'j,x 'k,x dx . 

For i =  I 

j = I,k =  1 

L 

0 

when j = I, k =  2 . 

6 6-
L 5L2 5L2 

J ' l , xCpk ,xYj ,xdx = 
0 -i 

i0L 
i 

IOL 

( 5 5 )  

1 i __
IOL i0L 
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-i -L--
IOL IOL 

L 

.f0 '3,x'k,x'j,x dx = 

-
-I -L--
IOL IOL 

L 
dx = 

0 '4,x'k,xyjyx 

L 
Evaluation of 

0 
yk, 'Yj , Yi , dx . 

Then, 
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Evalllation of 	 1 @. @. y dx . 
0 1YX JYX k , x  

The above matrices a r e  now multiplied by the cyo state displacements as 
indicated in equation (46) , k 

- -
6 -6 -I -I 

5L2 5L2 IOL IOL 

6 6 1 I-
5L2 5L2 IOL IOL 

-I I 4 I-
iOL IOL 30 30 
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-- 

-- 

L 

Similarly, 

L r 7 

0 0 0 

wo s 'I,x'k,x'j,x 

dx = [wlw2 el0 e2J 
k O 
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--I -I I -4 
IOL IOL 30 30- L 

--
6 6-

5L2 5u 

6 6-
5L2 5L2 

I I-
IOL i0L 

(64) 

I I-
IOL IOL--



The above matrices a r e  combined to form the G matrix (Equation ( 46) ) : 
N 
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[GI = 

Load Behavior Matrix. The effect of applied load behavior on the element 
stiffness is obtained by adjusting the 5 matrix with the k m a t r i x ,  where 

[ L l =  [L
P '

1 + [LFl . (75) 

The L matrix will now be derived from equations (47) throug,, (51) for each of 
the t&ee load behavior cases. 

Case I. 

28 

I 



-- 

- -  

p 


Then, 

-- I L L-0 0 2 12 12 

I L -A­0 0 2 12  12 

0 0 0 . o  0 

(761 
0 0 0 0 0 

0. 0 0 0 0 

0 0 0 0- 0 -

L-F may be written directly from equation (48)in view of equations ( 3 8 )  

and (39 )  ; 

0 0 0 -FZ2 

0 0 0 

[LFl  = P 
F X l  (77) 

0 Q 0 "2 

0 0 0 0 

0 0 0 0 

where F's are proportionality constants between the indicated forces and p. 
The magnitudes of the applied forces' are assumed to remain in a constant ratio 
to each other and to the lateral load, p, during loading of the element. This 

29  



-- 
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-

assumption is made here and in the Stability Criterion section for illustrative 
purposes. The assumption is easily altered to study buckling under pressure 
with specified nodal forces or  buckling under nodal forces with specified 
pres sure. 

Case 11. 

[L 1 = [LFl = io1
P 

Case 111. 

dx 

L 
="[(x-r+3 X2 x3 ) uj +($ -$) "11R 

0 

L 0 0 0
6R 

L 0 0 0
3R 

0 
[ L

P 
I ' P  

0 

0 

0 
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-- 

L may be written directly from equation (51) ;-F 

O 0 0 
4 

F Z 2  

R 0 0 
4 

F X l
0 1 0 

[LFl = p 4 

Fx2
0 0 

1 

0 0 0 

0I- 0 0 

-

0 

0 

0 

0 

0 

0­
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Coor di nate Transformation 

The developments thus far have been in a coordinate system which was 
oriented so that the x-axis coincides with the element centerline. To combine 
several  elements for  solution of a particular problem, it is necessary to obtain 
the stiffness matrices of the elements in a common or global coordinate system. 
This system wi l l  be denoted by x, z as shown in Figure 5. 

FIGURE 5. COORDINATE TRANSFORMATION 

The figure shows that vectors in the two coordinate systems transform 
according to the relationships 

m = fi cos p + ii sin p 

n = ii cos ,8 - GI sin p 

-
o = w  . 
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Writing in matrix notation, we see that 

Thus the displacements and forces of the element transform according to 

I -
T I FZ i 


I 

* 


0 I 
 T F Z 2 

I 

I 

I G2 
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or 


If the nodal forces and displacements are related by the stiffness Ki 
N 

(equation (44)) , then 

where Ki has been rearranged to conform to the Q and q matrices. Upon sub-
N

stitutini equations (82) and (83)  into equation (8z) , 

But in this case, 
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where if is the stiffness matrix of the element in the global coordinate system.
N 

Master Stiffness Matrix 

The stiffness matrix for  complete s t ruc ture  is obtained by combining the 
element stiffness matrices in the global coordinate system. This section 
describes the method of accomplishing this combination. 

Consider par t  of an overall structure schematically represented by 
Figure 6. The &.Is in Figure 6 are intended to represent the total load vector 

1 


FIGURE 6. GENERAL STRUCTURE 
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I 

at the point of application, 

Load-displacement relationships for  each of the three elements in the 
global coordinate system are expressed from equation ( 87) as follows: 

By combining the above relationships with the fact that gi is the same for 

both elements b and c, and noting that 

and that similar relationships hold for the other nodes, the master stiffness 
matrix is obtained: 
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- ­_--
K a i - i . i - l  +Eb i - 1 , i - 1  K b i - i ,  j 0 

- - ­
0 %i,  i - 1  Kbii +Ec i i  Kci,  i +  1 

-
0 0 K .  tx

c i + l , i  K c i + l , i + l  d i + l , i t  

0 0 0 -_­

-

Note that this is a relationship between the externally applied loads 
and the nodal displacements of theassembled structure in the global coordinate 
system. 

StabiIity C r i t e r i o n  
Elements with stiffness matrices of the type given by equation (44) may 

be assembled into a master  stiffness matrix to represent a structure subjected 
to the critical (buckling) magnitude of applied loads. Thus, 

[[Kl + P [Eol]{G1)= (0) 

where, 

p[liol = [GI + [Ep] + [E,] 9 ( 9 1 )  

and the null matrix of applied external loads indicates that the structural stiffness 
has vanished under the critical load magnitude ( a  physical interpretation of 
instability). Boundary conditions may be applied to reduce the size of the se t  of 
equations (90)  and the new reduced se t  again denoted by the equations (90 ) . 

The E, G, and matrices above are obtained by assembly of element 
" "P 

matrices as described in the preceding sections, The E matrix is more"F 
conveniently obtained by direct  application of equations (48) and (51) to each 
node of the assembled structure in the global coordinate system. 

A nontrivial solution of equations ( 90) will exist only when the determinant 
of the matrix + p E, vanishes;

N N 

This is an eigenvalue problem where the magnitudes of applied load, p,  at which 
instability will occur are the eigenvalues. 
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Pr imary Equil ibr ium State 

It should be noted at this point that the foregoing solution is contingent 
upon a knowledge of the primary equilibrium state. That is, the G matrix can­
not be formulated until the qodisplacements are known in terms the applied 
loads. Given a se t  of applied loads, the nonlinear equilibrium equations (30) 
through ( 3 5 )  may be solved for  the qodisplacements. An iterative procedure 
for  incorporating this solution into the stability problem is given in Reference 14. 

Another approach which is consistent with many classical stability prob­
lem solutions is to linearize equations ( 3 0 )  through (35)  for the purpose of 
obtaining the primary state solution. If this is done these equations become for 
all three cases 

( 9 3 )  

A l l  t e rms  in the above equations have previously been evaluated and 
expressed in matrix form except the p@.term which is as follows: 

1 

Y0 -0 \ 
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l or  
0 

0 

L-
2 

{P@> = P  L 
Y 

2 

L2-
12 

L2
-
12 

Equations ( 9 3 ,  94) may then be expressed in the form 

From this expression for each element, the master  stiffness matrix for 
the entire structure is assembled as before. Then for the complete structure, 

A further simplification fo r  obtaining 9' which has also been used 
extensively in classical problems is the use of a membrane solution for zo. The 
structure is assumed to take no loads in bending before buckling. For  many 
practical problems such a solution can readily be obtained by inspection, ele­
mentary equilibrium considerations, or  from the literature. For simplicity this 
approach is used in the example problem of this report. 

APPLICATION OF THE THEORY 

This section is intended to give a step by step approach for applying the 
theory to the solution of practical problems. For problems with several  elements 
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either a general computer program would need to be developed o r  a relatively 
simple computer program for each application could be developed as was  done 
for the example to follow later. 

One begins by dividing the structure to be analyzed into discrete elements, 
the number depending upon the desired accuracy. From the known properties 
and loading on each element the K matrix can be calculated from equation (52)

N 

and the L and L matrices determined from the appropriate equations (76), (77),"P -F 
(78 ) ,  (79), o r  (80) .  Note that the critical magnitude, p, of the applied loading 
remains as the unknown to be determined. 

The qo primary state is now determined from a known membrane solution 
o r  from equztion (97).  The K matrix in equation (97) is assembled by using 
equations (81) and (86 )  to tr&sform elements to the global coordinate system 
and equation (89) for combining the elements. Boundary conditions a r e  applied 
and equation (97) is solved for qo. Once the qo state is determined the G 
matrix can be found from equatl'uon (74) ,  using the definitions (53) throcgh (61) .  

The K' matrix defined by equation (44) is now known for each element. 
These a r e  agsembled into a master stiffness matrix by equations (86)  and (89 ) ,  
and boundary conditions are applied to the resulting set of equations to obtain 
equations (90) .  Eigenvalues of the characteristic determinant, equations (92), 
which is obtained from equation (90 )  , a r e  the magnitudes of the buckling load. 
The mode shape for each buckling load c.an be determined by substituting each 
eigenvalue in turn into equations (90)  and solving for  the relative amplitudes of 
displacements, 6

i' 

EXAMPLE PROBLEM 

Circular Arch With Uniform Pressure 

The above application procedure was  applied to the uniform circular arch 
shown in Figure 7. The known membrane solution for a circular arch under 
uniform pressure is 
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r 1 

for all elements. 

The G matrix is formulated as indicated by equation (74) : 
m .  

EA 
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- - 

- -  

- -  -- 

I Ill I I Illlllll1ll11l1l1lll I l l  I I 

+I z‘w 

MOMENT OF INERTIA = I = 0.314159 in4  (13.1 .m44 
YOUNG’S MODULUS = E = lo7 p s i  (6.9 x 1010 N/m ) 

FIGURE 7. UNIFORM CIRCULAR ARCH 

Other elements of the ,G matrix a r e  calculated similarly to yield for all 
elements 

3 -3 0 ‘ 0  0 0 
L L Fxl 

3 -3 0 0 0 0 
L L Fx2 

-6 -6 -I I I 
0 0 - 5L 5L 10 10 F Z l  

[GI = P R  -6 -- 6 _ - I _ -I 
(99) 

0 O 5L 5L i o  10 Fz2 

I i 4L L- -- _ - ­0 O i o  10 30 30 MI 

I i L 4L.- ­0 O 10 10 30 30- M2-
where the four terms in the upper left corner can be traced directly to the 
u * term in equation ( ii ) . 
,x 
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Now for all  elements the K matrix is given by equation (52) , the L 
N "P 

matrices for the three load cases a re  given by equations (76) , (78), and (79), 
respectively, and all L matrices a r e  null.-F 

The K ,  G, and L matrices are now all rearranged to the order, 
N N  -F 

I 


I 1
FXl 


I 4 2  FZ I 
I 
I - - - -
I Fx2 
I 

I Ki2 F Z 2  


I 

M2 

A l l  element matrices a r e  now rotated to the global coordinate system, 
x, y by the operation, 

as indicated by equation (86) .  The T matrix is of course calculated separately
N 

for each element as  indicated by equation (81) where p is the angle measured 
clockwise from the element x axis to the iT axis. 

The element matrices a r e  now combined to form the master stiffness 
matrix as indicated by equation (89) .  The size of this matrix is reduced by 
applying the boundary conditions, 

uI= w i = ~ i = y = w l = ~1 = o  (102)  

where Y,wl' 81 are displacements of the right end of the last element. From 
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this reduced matrix the characteristic determinant ( 92) is formed and eigenvalues 
are calculated. The above operations were performed on a computer for idealiza­
tions of 2, 3, 6, 9, and 12 elements. A hand calculation was also made for the 
two-element arch. Results of the analysis are shown in Table I. A s  can be seen 
from the table, comparison with known results is excellent and there is rapid 
convergence to the exact solutions. The exact solutions were  obtained from the 
analysis by Wempner and Kesti; [ 241. The 12-element solution for Case I1 has 
also been previously obtained by the finite element method in Reference 14. 

TABLE I. COMPARISON OF ARCH BUCKLING LOADS 

Number 
of 

Elements 

2 

3 

6 

9 

12 

Exact solution 
~ ~ _ _ _ _  

Buckling Pressure (lb/in)~- ~-

Case I Case 11 Case I11 

94. I 94. I 94. I 

57.1 64.7 67.4 

57.4 62. 6 64.4 

56.6 61. 9 63.6 

56.4 61. 6 63.3 

56.87 60. 95 63.46 

CONCLUS IONS 

The results of the example problem above show that the theory 
developed here  may be quite useful in solving practical engineering stability 
problems . 
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The implicit assumption of uniform shear on the element mentioned 
in Development of Element Stiffness Matrix section does not appear to adversely 
affect the results. However, if desired, this assumption could possibly be 
eliminated by the technique introduced by Pian [ 191. Also, the u term of 

, x  
equation (11) apparently has a negligible effect on the results for the particular 
example solved, since the exact solutions used for comparison do not contain 
effects of this term. 

A very important item to note is that the present theory applies to 
unconservative systems (repreqented by Case I )  as well as conservative 
systems since the principle of virtual work was used. It is known, however, 
that certain unconservative systems a r e  stable in the static sense (considered 
he re ) ,  but unstable in the dynamic sense. (See Reference 25, page 152 
through 156. ) Thus the present analysis could not be expected to adequately 
treat  this type of problem, and great care  should be used in applications to 
unconservative systems. 

Fruitful extensions of the present theory would likely be found in the 
area of curved and three-dimensional elements and in a general automation of 
the theory application. 

George C.  Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 35812, May I,1968 
981- I O - I O - 0000-5 0- 00- 008 
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