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TECHNICAL MEMORANDUM X-53857

ACCELEROMETER CALIBRATION
IN THE LOW g RANGE
BY MEANS OF MASS ATTRACTION

SUMMARY

Mass attraction is used as an equivalent acceleration input to calibrate
an accelerometer. The upper limit of the acceleration by a reasonable mass
size is 10~ g in orbit and 1077 g in the lal oratory. The calibration has been
carried out in the laboraiory for an electrostatic suspended single-axis accel-
erometer (MESA) with a variable mass attraction. The mass attraction input
to the accelerometer was a sine wave with the amplitude of 23 nano g. The
response of the accelerometer to this acceleration input by mass attraction
was obtained by data analysis and data reduction with a computer. The results
of the experiment agree with the scale factor of the accelerometer for higher
acceleration inputs. Application of the mass attraction principle as a calibration
method of accelerometers for very low accelerations (for instance, in orbit)
is proposed.

INTRODUCTION

Generally, the single-axis accelerometer, used for inertial navigation,
is tilted in the earth's gravitational field for its calibration between +1 g and
+1 ug, where the acting acceleration is a function of the angle between the
sengitive accelerometer axis and the local vertical. The input axis is almost
horizontal for low g calibration, and the accuracy of this method is limited
by the measurement of a very small angle. The resolution of the best available
theodolite is 0. 1 arc sec with an accuracy of 0. 2 arc sec. The angle of 0. 2 arc
sec limits the calibration accuracy to 1. 0 ug. This is sufficient for almost
every inertial navigation system. An acceleration error of 1.0 ug in an inertial
navigation system would cause a position error of 50 m after 1 hour.

However, some necessary measurements in space require a calibration
of the accelerometer far beyond this i-ug limit. The Apollo Application Program
includes the measurement of the gravity gradient anomalies of the moon from a
satellite [1]. Gravity gradient is a function of mass distribution, and every




mass concentration near the surface of the moon will generate a deviation of
the measured gravity gradient from the calculated gravity gradient of a homo-
geneous sphere., These gravity gradient anomalies of the moon are expected tc
be very large because of the big mass concentrations (mascons), which have
already been detected by the lunar orbiter data [2]. The gravity gradient of
the moon in the proposed 55-km orbit is about 2% 10° Eoetvoes units. The
required performance of the experiment is fo measure 0. 5 Eoetvoes units to
determine the magnitude and direction of the lunar gravity gradient anomalies.

1
- or 1,018x10-12—8— | If an accelerometer is
sec cm

used as a gravity gradient sensor at a 2-m distance from the mass center of
the satellite, the required threshold is 1070 g,

One Eoetvoes unit is 102

The accelerometer must be tested and calibrated for this low g appli-
cation. Because a range of just 10-¢ g is in the state of the art, the acceler-
ometer must be switched in the orbit to this high sensitive range after the large
acceleration of the launch.

An attempt has been made to calibrate an accelerometer in earth orbit
with a centrifuge [3]. (This calibration was limited to 1078 g, ) The apparent
acceleration is a function of the distance from the rotation center and of the

angular velocity. The angular velocity would be as small as 10~3 % for a

10~%-g acceleration of a mass point at a 2. 5-cm distance from the rotation
center. It would be very difficult to get such a low constant angular velocity
in the satellite.

This paper describes the use of the mass attraction of a rigid body for
the calibration of an accelerometer in the range below 10-? g in a satellite and
below 1077 g in the laboratory. The size of the mass that can be handled is
the limiting factor.

Calibration in the laboratory with the mass attraction method has been
carried out and is described. A proposal is made for the calibration of an
accelerometer in a satellite.

MASS ATTRACTION AS CALIBRATION FORCE

Generally, a component of the mass attraction force between the
accelerometer and the edrth is used for calibration, but, for the low g range,
the mass attraction of a smaller rigid body has some advantage because the




acting acceleration is a function of the size of the mass. It is very easy to
generate a small acceleration by mass attraction, but there are two problems:
The accelerometer must be able to sense this small acceleration, and the
system must often separate this small input acceleration from much larger
background disturbances.

The lower limit of acceleration sensing is given by the threshold of the
accelerometer and the requirements for the experiment. The upper limit is
given by the size of the mass. Because the mass must change its position to
generate a variable additional acceleration input, the mass should be of a
size that can be handled. The mass used in the laboratory experiments was
about 1000 kg; in a satellite, it might be about 1 kg. Therefore, the corre-
sponding limits of the mass attraction are about 0. 05 pug in the laboratory and
0. 001 pug in the satellite.

The disturbances in the laboratory are the unknown tilt angle of the
accelerometer in the earth field, tilting of the foundation, bending of the fixture,
and changing of the temperature; the disturbances in a satellite are mass
attraction of some other parts of the satellite, changing of the temperature, and
acceleration by gravity gradient of the orbited planet. Because generally
these disturbances cannot be eliminated, they are separated by filtering as
discussed in this paper. The input acceleration is changed with a certain
frequency, which should not correspond with the frequency of any other
acceleration. The input frequency of the mass attraction can be very low. The
variation of the mass attraction is either a change in the distance between the
accelerometer and the attracting mass or a change in the angle between the
sensitive accelerometer axis and the vector of the mass attraction.

The response of the accelerometer to the mass attraction force can be
obtained by a conventional data analysis utilizing a computer.

MASS ATTRACTION OF A RIGID BODY

The accelerometer to be calibrated is a single-axis device; therefore,
only the acceleration component along the input axis is of interest. The proof
mass of the accelerometer is m and the calibrating large mass is M. The
Cartesian coordinate system X, Y, Z has its origin at the center of m and its
X-axis along the sensitive axis of the accelerometer (Fig. 1).

If m and M are two mass points with the positions (0,0,0) and
(X,Y,7), the attraction force F in the X direction would be [4]
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M = attracting mass;
Figure 1, Attraction of two
mass points. v is the universal gravitational con-
stant in CGS units, and R is the distance
between the mass points. The acceleration A of the proof mass along the
input (X) axis is

A:yM R (2)

This equation is also correct if the calibrating mass M is an extended
homogeneous sphere. Then R is a sum of the radius r of the sphere and
the distance d between the center of the proof mass and the surface of the
sphere; r changes with the mass M. The acceleration of a lead sphere on

the X-axis with a density of p =11, 34% in a distance of d = 10, 2 cm from

the proof mass is shown in Table 1. For an acceleration of 107 g the mass
would weigh 4700 kg. This is already too much to handle easily in a laboratory.

TABLE i, ACCELERATION BY A LEAD SPHERE

Mass (kg) Acceleration (g earth) Radius of the Sphere (cm)
0.15 10-10 1.5
4 10~9 4,4
68 10-8 11. 25
4700 10~7 46.3
1. 4x10°® 10~ 307
1. 4x10% { 3. 07x108




The mass attraction of a rigid body with an irregular shape is given by
a triple integral and has no general analytical solution; but if the distance
between the proof mass and the rigid body is large in relation to the size of
the body, then the attraction is the same asg that of a sphere or a mass point with

the mass M [5].

Therefore, the mass M was considered to be cut into

small cubes of the dimension k with an imaginary point mass Mi in the center

of each cube (Fig. 2).

The mass attraction is computed for every cube and the

sum of all cubes is the attraction of the whole body.
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Figure 2. Aftraction of a large body.
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Figure 3. Error for the approxi-
mation of a cube by a mass point.
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The quality of this approximation
is shown in Figure 3. The error E is
a function of the ratio of the distance
R to the length k of the cube,

E=i. A (cube)
A (point)
(dimensionless) (3)

For a 103 accuracy of the approximation
of a cube by a mass point, the cube
length k should be less than one-
half the smallest distance. In the
experiment, the distance between the
center of the nearest cube and the
center of the proof mass was 10. 2 cm,
The length of the cube was 5.1 cm,

In the computation of the mass
attraction, the cylindrical proof mass
of the MESA was also considered as a
masgs point. The error of this approx-
imation is less than 1073 for all cubes.

The attracting mass was limited
to less than 1500 kg by the available
suspension capability. Therefore, an
optimization was made by changing the
shape of the mass. The mass attraction
for every possible cube in a space of
20k by 20k by 10k was calculated. The
first 900 most attracting cube locations
were chosen for the attracting mass of
the experiment, Figure 4 shows the
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relation between a sphere and an optimized body during assembly. The dis-
tance d between the proof mass center and the surface of the attracting body
was 10. 2 em in this graph.

The input acceleration is varied by changing the distance d between
the proof mass and the surface of the attracting body (Table 2). The body
that was used is a compound of 100 lead cubes with 10. 2-cm lengths each and
100 lead cubes with 5. 1-cm lengths each. To get a change in the attraction
of 70 ng, the mass must be moved about 76. 2-cm along the input axis of the
accelerometer,

TABLE 2. ATTRACTION OF THE PROOF MASS BY THE LEAD BODY

Distance d (cm) Mass Attraction (ng)

5.1 81. 8
10. 2 67. 2
12,7 60. 8
25.4 38. 1
38.1 25, 3
50, 8 17.7
63.5 13.0
76, 2 10.0

CALIBRATION IN THE LABORATORY

Experiment Setup

The maximum acceleration produced by a mass less than 1500 kg is
not more than 75 ng for a nearest distance of 7. 6 cm between the center of the
accelerometer proof mass and the surface of the attracting mass. The same
amount of acceleration would appear by an input axis tilt of 0. 015 arc sec into
the gravity vector. The uncontrolled movement in the laboratory of people
stepping on the test pad causes disturbances much larger than 0. 1 pg; there-
fore, almost every experiment was made after working time when the test
room was locked. But even then, the tilting of the test pad was measured
with an accurate tilt meter during the experiments.

-~




The maximum change of 75 ng could not be obtained in the laboratory
because the necessary movement of the lead mass was impossible. The
movement of the lead mass on the floor would cause some additional tilting of
the test pad. Therefore, a suspension of the mass on an I-beam of the ceiling
was considered best. But in this case, the colinear movement of the mass
along the horizontally aligned accelerometer input axis would require too large
a force pulling horizontally. The chosen change of the mass attraction along
the accelerometer input axis was a movement along the vertical,

The vertical movement changed the acceleration component along the
input axis because the angle between the input axis and the mass attraction
vector was varied. The lead mass was lowered and raised with an electrical
hoist. The acceleration of the accelerometer proof mass caused by the mass
attraction of the lead body is shown in Table 3 for different vertical positions.
The distance between the center of the accelerometer float and the surface of
the attracting lead body, in the zero position, is 7.6 cm. Figure 5 is a drawing
of the experimental setup for the calibration of the accelerometer using this
mass attraction scheme.

TABLE 3, ACCELERATION OF THE ACCELEROMETER FLOAT BY THE
LEAD BODY FOR DIFFERENT VERTICAL POSITIONS

Vertical Position Acceleration | Vertical Position Acceleration
(cm) (ng) (cm) (ng)
0 74. 017 27,9 45, 979
2.5 73. 469 30.5 41,127
5.1 72, 559 33.1 36, 372
7.6 71, 280 35.6 31, 954
10, 2 69. 623 38.1 28.003
12.7 67.571 40.7 24, 548
15. 2 65. 103 43, 2 21, 562
17.8 62,196 45.7 18, 904
20. 3 58. 823 48, 2 16,788
22.9 54. 970 50.7 14, 890
25.4 50. 658 53.3 13, 254

The experimental setup allowed a total vertical travel of just 30.5 cm,
To get the maximum change in the mass attraction, an optimization study was
made. It showed that if the mass is moved vertically between 12.7 cm and
43, 2 cm below the zero position, the change in acceleration is maximized.
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Figure 5. Test setup for the calibration of the miniature electrostatic
accelerometer in the laboratory.

For the harmonic determination, the input acceleration for as few as four

points of a sine wave of vertical position were recorded: middle, maximum,

middle, minimum. The maximum position was at a vertical distance of




12.7 ecm below the zero position, the minimum position was 43. 2 cm below
and the middle position was 28. 6 cm below. The middle position was chosen
so that the input acceleration at that position is the average of that occurring
at maximum and minimum positions. The succeeding run through these
positions produces a sine-wave input A (I) with an amplitude NA

NA = (23,0 = 0,2) 107% A(I) = NA sin (—"'25— I) )

With a movement larger than 100 cm, the input amplitude could be as high as
0. 037 pg with the same mass and the same components.

To demonstrate low g accelerometer calibration, the MESA, manufac-
tured by Bell Aerosystems, was used [6]. The MESA is a single-degree-of-
freedom accelerometer with an electrostatically suspended proof mass. This
proof mass is a thin-walled beryllium cylinder with a flange for pickoff and
restraint. The cylinder length is 2. 915 cm and the inner diameter is 1. 268 cm.
The distance between the center of the float and the mounting surface of the
accelerometer is 3. 134 to 3. 190 cm.

The proof mass suspension force is adjustable to correspond to different
accelerations of the environment. A pulsed force rebalance technique is ‘
used to constrain the proof mass along its sensitive axis. The pulse rate is
proportional to the acceleration along the cylinder axis (input axis). The
MESA that was used had two ranges: low g range with 10, 21 pps/ug and
high g range with 1,024 pps/ug. For the whole experiment, the MESA was
used in the low g range. The technical data in the acceptance test of the
MESA in the low g range are

null stability = 0. 163 X 10~% ¢ (4-hour period)

scale factor stability = +0, 01758% (0. 1% - 4 hours)

The mounting of the MESA is a clamp type around the case to get a
small distance between the MESA and the lead surface.

A tilt meter made by Ideal Aerosmith was set on the same test pad to
measure tilts of the foundation [7]. The surfaces of two interconnected ’
mercury pools 1 m apart serve together with two rigidly mounted plates as
two capacitors. Any tilting will change the capacities, which can be expressed
in tilt angles. The tilt meter was used in the high range. The output of the
null meter was calibrated so that a tilt of 0. 0067 arc sec produced a voltage

i0




ova. 1V. This voltage was fed to an integrating digital voltmeter. Both the
accelerometer data and the tilt meter data were automatically punched on a
paper tape for computer use,

The attracting mass, 100 lead cubes of 10. 2 cm lengths and 100 lead
cubes of 5. 1-cm lengths, was assembled in the optimized shape (Fig. 6). The
free spaces in the basket were filled with the same size of wooden cubes.

The time for every measurement was H=100 seconds. This large
measuring time was necessary to get a minimum number of impulses required
for statistical data handling. During the measurement, the mass remained in
position. At the end of one measurement, the mass was raised or lowered
to the next position. The time between the measurements was always 20
seconds. In every series, at least 100 measurements corresponding to 25
cycles of a sine wave were made;

A(D = (23.0%0.2) sin (-~ 1) ng

I = measurement number

The input acceleration is given in ng = 0. 981 X 1078 —%Iv?— . The experiment

had to show the response of the: accelerometer to this small input acceleration,

The constant acceleration (or bias) input to the accelerometer, perhaps
caused by tilt, was about 17 pg. The setup is very sensitive to temperature
changes; therefore, the temperature was controlled in case II (Fig. 5) and
was constant to less than 0. 01° C for experiment number 1 (less than 0.1°C
for other runs).

Results and Discussion

The experiment had to show how to measure the small acceleration caused
by mass attraction and how to define the scale factor of the accelerometer for
low acceleration. Because the acceleration input was a relative change, the
constant part of the data was removed from the accelerometer data AX(I) and
the tilt meter data AY(I). The accelerometer data X(I) and the tilt meter
Y (I) have zero mean value. These data are used for the computer analysis.

The random noise is much higher during work time than after work
time, Figure 7 shows the random noise during work time. There was no
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Figure 6. Attracting mass assembly.

movement of the lead mass in this experiment (run number 6). The data were
collected during work time every 2 minutes with a 100-second measurement
time as in the later runs with mass movement. Run number 5 is the same as
run number 6 just after work time (Fig. 8). The standard deviation from an

(8]
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Figure 7. Accelerometer and tilt meter data without mass attraction (during work time).
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Figure 8. Accelerometer and tilt meter data without mass attraction (after work time).




adjusted curve for the run during work time is twice as much as for the run
taken after work time (all the experiments were made after work time except
run number 4).

The response of the accelerometer and the tilt meter to the mass
attraction is overlapped by stochastic and other periodic acceleration. But
already in the raw data, the movement of the mass is clear (Fig. 9). The

data X (I) and Y(I) are shown in Figure 9 for run number 1 after subtracting
the mean value. The time scale includes the necessary 20 seconds for moving
the mass. The tilt meter data were multiplied by a scale factor to get radians
that correspond to acceleration in g. The dimensions for the accelerometer
data were originally impulses per second. But to give a better impression

in all the graphs, the scale factor of the accelerometer data sheet is used to
express the data in pg. For every experiment the first position of the lead
mass was the middle position followed by the upper position.

The tilt meter data also show a very small modulation with the frequency
of the mass movement. However, it is much less than the corresponding
response of the accelerometer, If the accelerometer data were the result of
some tilting corresponding to the mass movement, the tilt meter data would
show this. The small modulation of the tilt meter data is caused by the mass
attraction and is computed in Appendix C. The tilt meter is considered as a
supporting device and the analysis is shown only for the accelerometer data.
The accelerometer data are digital, and the analysis is made with a digital
computer, A statistical analysis (autocorrelation function and power spectral
density) is used together with a Fourier analysis to compute the response of
the accelerometer to the small mass attraction input. The detailed analysis
and data reduction techniques are given in Appendix £, and a computer program
is given in Appendix B.

The acceleration input is a sine wave with a frequency of 0. 0025 Hz,
This input frequency corresponds for 100 measurements to a harmonic humber
of K=25, The unforced response evaluated for a sine wave with a frequency
of 0. 0025 Hz is the Fourier coefficient B(25). For a sample of 100 data X (I)

100 .
B(25) =0.02 £ X(I) sin (Tx 1) R
I=1

where X (I) is the accelerometer data with zero mean value and I is the sample
number. The accelerometer data X(I) in Figure 9 show the shape of a saw
tooth with the frequency of 0.0025 Hz. Therefore, the Fourier analysis of the
data without a data reduction has large amplitudes with low frequencies

(Fig. 10). The Fourier coefficient B (25) is not just the response to the input
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Figure 9. Accelerometer and tilt meter data of experiment number 1.
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Figure 10. Fourier analysis of the accelerometer data before data reduction.




sine wave because a certain part of the 25th harmonic is produced by the saw-
toothed shape of the overall data. Therefore, several types of data reduction
were tried (Appendix A); two of which were used for the calculation of the
following scale factor:

1. Subtraction of XSM(I) from every X(I). XSM(I) is the mean value
of the data X (I) between I-JA and I+JA, For JA=3, the summation was made
over 7 points plus two edge points with a weight factor of 0. 5.

2, For the error calculation, the standard deviation was computed after
subtraction of the 20 highest and 20 lowest harmonics. The accelerometer
data X (I) are shown in Figure 11 after the subtraction of the adjusted curve
XSM(I) from X(I) with JA=3, The amplitude of the input acceleration was
23 ng at a frequency of 0. 0025 Hz,

The Fourier analysis CK(K) gives the amplitude as a function of the
frequency. In Figure 12, the amplitudes of two Fourier analyses are shown,
The one amplitude distribution is from a run without 2 mass movement. This
experiment is run number 5 in Table 4. The amplitude at 0. 0025 Hz is almost
the same as the mean value of the amplitudes at the frequencies from 0. 0020
to 0. 0030 Hz. The other curve in Figure 12 is the amplitude distribution of
a run with a mass attraction input at a frequency of 0. 0025 Hz. This run is
number 1 in Table 4. The Fourier coefficient B(K) is 27. 80x 1072 pps with

a frequency of 0. 0025 Hz, The mean value of the amplitudes of the harmonics
from K=21 to 24 and K=26 to 29 is as low as 2. 17x10~%pps. The amplitude at
K=25 in run number 1 is supposed to be a summation of the response to the
sine-wave input and of some additional random noise. Because the bandwidth
is limited, the subtraction of the mean random noise level from the amplitude
at K=25 is justified. Therefore, the response of the accelerometer to the sine-
wave input at 0., 0025-Hz frequency is 25. 63 % 10-2pps. This value is very
close to the computed one with the scale factor for higher acceleration,
23x10-%pps.

The statistical analysis shows almost the same results as the Fourier
analysis. The autocorrelation function RX (L) of the accelerometer data
X (I) shows the periodic response to the input acceleration (Fig. 13). From
the autocorrelation function, the power spectral density is computed, The
amplitude G(K) of a periodic function is given by

G(K) =NGX(K)xB

k3

where GX(K) is the power spectral density function and B is the bandwidth.
The distribution of the amplitude G (K) of a smoothed power spectral density
is shown as a function of the frequency in Figure 14 for run number 1. The
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TABLE 4, RESULTS OF THE EXPERIMENTS

Experi- NA Accelerometer Response Random Noise Part Signal Response Standard
ment Input Deviation
No. Accel G(25) B(25) GR(25) | CR(25) GO BO 1072 pps
(ng) 1072 pps 1072 pps 1072 pps| 1072 pps 10™%pps| 107 %pps
1 23 28, 07 27. 80 4,70 2. 17 23. 27 25.63 5. 59
2 23 26. 56 26. 80 3. 87 3. 41 22.69 23. 39 6. 77
3 23 29,72 29, 64 5.02 5. 57 24,70 24, 07 11. 90
Mean value for No. 1, 2, 3 24 + 2
4 23 24,78 25.62 5, 85 5. 30 18.93 20. 32 14, 06
5 0 2,02 1,12 2. 14 2. 01 -1.2 -0. 89 4, 90
6 0 3.14 - 2,08 3. 94 4,13 -0. 80 -2.05 10,12
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Figure 12. Fourier analysis of the accelerometer data after data reduction.




44

101
0.5
0 e
>
>
(P
0.5
10
] i | ] 1
0 10 20 30 40 50

Log Number

Figure 13. Autocorrelation function of the accelerometer data.




003
0.02 |~
Cl
2
<
:
E
<
0.01—
| ] ] |
0 1 2 3 4

-3
Frequency (Hzx10")

© Figure 14. Smoothed power spectral density function of the accelerometer.




amplitude at the frequency 0. 0025 Hz is G(25)=28, 07x 10 %pps. The mean
value of the random noise for the frequency FO is GR(25)=4, 70x 10“2pps and
the response to the sine wave at the frequency of 0. 0025 Hz is therefore

28, 27x10-2pps.

For the error calculation, the 20 higher and 20 lower harmonics of the
Fourier analysis are subtracted. This does not change the amplitude of the
25th harmonic. After this filtering, the standard deviation from the ideal
response sine wave with the amplitude B(25) is calculated. This is
XSD = 5, 59% 10 2pps for run number 1, which was made after work time with
a very low noise level. Runs 2 and 3 were made under almost the same con-
ditions, except that the noise level was higher because of the air-conditioning
equipment. Run number 4 was made during working hours; because of the
high noise level, the data could not be used for scale factor calculations.

The mean value of the response to the mass attraction input is for the
first three numbers,

AM = (24 + 2) x 10" %pps .

This gives a scale factor SC=({1, 04+0, 09)x10"pps/g for the input amplitude
of 23. 0 ng. This result is very close to the scale factor of the data sheet in
the higher acceleration with 1. 02x10%ps/g,

The size of the error for the scale factor could be reduced by an improved
setup incorporating better noise isolation and automatic and larger movement
of the attracting lead mass. For larger movement of the mass, the amplitude
of the input sine wave could be twice as high, and the calibration would be more
accurate. The experimental setup was more or less improvised. The aim of
the experiments was to prove that the calibration with a mass attraction in the
low g range of 1078 g is possible with good confidence and repeatability., The
application of these experiments to the calibration of an accelerometer in a
satellite for the measurement of the gravity gradient anomalies of the moon is
proposed.

CALIBRATION IN ORBIT

The accelerometer gets a large acceleration during the boosting phase
of the rocket. Therefore, the state of the art of the accelerometer requires
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a switching to the highly sensitive mode after the start of free flight. After
this point, there are no large accelerations and the mass center of the sat-
ellite is almost under 0-g conditions. The threshold of the accelerometer can
be set very low, but there is no way to calibrate the accelerometer in this high
sensitive range with the generally used terrestrial means. There are many
different unknown acceleration inputs to the accelerometer in a satellite; that
is, gravity gradient acceleration of the orbited planet, mass attraction by the
satellite, low thrust impulses, etc. This paper proposes the calibration of

the accelerometer in the satellite by using a well known but variable mass
attraction scheme. A reasonable size of the mass for the calibration in a
satellite might be 4 kg, which sets the upper limit of the acceleration to 10~°g
(Table 1). The required threshold of an accelerometer in the lunar gravity
gradient anomalies measurement is lower than 10710 g, The acceleration

inpit caused by mass attraction can be varied by changing the distance or the
component of mass attraction along the accelerometer input axis. The changing
of the component has some advantages. The accelerometer is fixed in relation
to the satellite. The mass can be turned around the accelerometer continuously
with a small angular velocity. The input acceleration is a cosine function for
the arrangement in Figure 15. The argument of the cosine is the angle between
the input axis and the line from the center of the proof mass to the center of

the calibrating mass. For easy data handling, the rotation axis of the cali-
brating mass should go through the center of the accelerometer proof mass.

If there is no other time variable input, the response of the accelerometer is

a cosine function with an additional constant caused by the constant mass
attraction input of the satellite. With a small computation, the scale factor,
nonlinearity, and constant bias of the accelerometer can be calculated. The

movement of the mass around the

accelerometer can be a continuous
/ one or in steps to facilitate digital
Lead Mass analysis. The calibration does not

interfere with the experiment and can
continue through the whole measure-
ment.

MESA p
7
¥ CONCLUSIONS
Accelerometer

nput Axis The calibration of an acceler-
Center of the Fioat ometer in the laboratory by the mass
attraction method may be of interest

Figure 15. Calibration of a single- in the future, when the low acceler-
axis accelerometer in a satellite by ometer thresholds are required. In
mass attraction. orbit, the mass attraction scheme is

the only presently known practical
calibration scheme for accelerations below 107 g.
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APPENDIX A

DATA HANDLING FOR THE LABORATORY
CALIBRATION OF AN ACCELEROMETER USING THE
MASS ATTRACTION PRINCIPLE

The measurements of every experiment are numbered from I=1 to N.
The input acceleration A was a sine wave with KO=4 positions per wave length
(cycle)

L2m
A(I) = NA sin Z0 (I-1)

NA =23.0x107%¢g

N = 100 = number of measurements

KO = 4 = number of measurements per cycle.
There are two equal sets of N data; the MESA data, AX(I) (an integer number
of impulses per H=100-second measurement time) and the tilt meter data AY(I)

(an integer number from the integrating digital volt meter). The mean values
of the original data are

{ N
XM =-—=— X AX(I)
N
=1
{ N
YM == X AY(I)
N
I=1
forI=1,2,.. ., N
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The data are transformed to data with zero mean value

X(I) = AX(I) - XM

Y(I) = AY(I) - YM
These data, X(I) and Y(I), are used for the analysis of the MESA data, AX(I).

Data Analysis

The highest frequency in the data should be lower than the Nyquist

frequency (FN), which is half the sampling rate. Thus FN = and

2H

H = sampling time. The sampling time H was for every measurement 100
seconds, giving a Nyquist frequency of FN = 0. 005 Hz. The input frequency
of the mass movement is FO = 0. 0025 Hz.

The statistical analysis uses the autocorrelation function and the power
spectral density function. The autocorrelation function of X(I) is given by

N-L
> OX(I) x X(I+L) ,
=1 -

1
N-L

RX(L) =
I

when L = lag number 1 to N/2 and N = number of samples = 100. The normal-
ized autocorrelation function RXO(L) is obtained by dividing RX (L) by RX(0).

The cross-correlation function of the MESA data, X(I), with the tilt
meter data, Y(I), is '

{ N-L

RXY(L) =¥L T X(I) x Y(I+L)
I=1

for L=1,2, .. .,—1\21—




A raw estimate of the power spectral density is [8,9],

MIL-1 T 1K K
GX(K) = 2HX [RX(O)+2>< > RX{(L)xcos ( L )+ (~1) xRX(ML):| ,
L+1

where
K = harmonic number
H = sampling interval
ML = maximum lag number

L = lag number.

The frequency for the PSD is

_K
2XMLxH ?

F(K) =
and the bandwidth is

1
MIxH

B =

2
GX(K) is given in units /B.

The amplitude versus frequency is, for a periodic function,

e

G(K) =N GX(K)xB
For the analysis, the nonsmoothed PSD is used.

The Fourier analysis is also used to calculate the amplitude of peri-
odic functions. The Fourier coefficients for the MESA data, X(I), are
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N
2 J
AK) == = X(I) cos< 28 ) K=1,2, ...~
N N 2

I=1

N
2 2 N
B(K) =— = X(I) sin( LES I) K=1,2, ...,—
N N 2

I=1

A(0)y=0

where
N = number of data (even)

K = harmonic number,

The frequency of the Fourier components is

=Kx10™% Hz

F(K) = T,

Because the maximum lag number in the statistical analysis was chosen to be
ML =—12i , the frequency of the Fourier analysis agrees with the frequency

of the PSD for the same K,

Data Reduction

The amplitudes of the lower harmonics in the data analysis are larger
than the observed amplitude at the frequency FO of the acceleration input. To
unmask the amplitude at frequency FO, four types of data reduction are
available in the computer program (Appendix B). First, the trace of the tilt
meter is subtracted from the MESA data after the adjustment by a factor P.
The factor P is calculated with the least mean square fit method [10]

N

21 I:X(I)—PXY(I) ]2 = Min
1=

29




_ ZX(I)XY(I)

P=3 Y (I)xY (1)

The reduced data are

XR(I) = X(I)-PxY (1)

forI=1,2, ...,N.
The second type of reduction is a filtering by subtraction of the lower and
higher harmonics

10

2
XR(I) =X(I) - = [A (K) cos 2BL | B(K) sin2"n] ]
N
K=1
50
")) [ A(K) cos 27r§1 + B(K) sin 27;];{1 :]
K=40 :

A (K) and B(K) are the Fourier coefficients computed in the previous data
analysis.

The third reduction is the most effective one to filter out the sine wave
with the wavelength KOXH, From every data point X(I), a mean value of the
S closest points is subtracted to get the reduced data XR(I).

{ I+S-1
XR(I) = X(I)——-Z‘é— 0. 5xX(I-8)+ X X(J)+0. 5xXX (1+8) |};
J=I-S+1

2S must be a multiple of the sample number KO per wavelength to avoid
changing the amplitude at the frequency FO.

In several experiments, the data X(I) build almost a straight line
that is modulated by a sine wave with the frequency FO. Therefore, the sub-
traction of the adjusted straight line would reduce the data, but it is not
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sufficient in every case. After reduction the data again go through the analysis.
The standard deviation XSD of the reduced and filtered data XR(I) from the
idle or unforced response to the sine wave contains the random noise and is
congidered as a good approximation of the error,

!
XSD = "11\1” Z[XR(I) - B(25) sin (%11 1)] e\ /2

RX(I) = reduced and filtered data
B(25) = Fourier coefficient of the 25th harmonic.

The XSD with the amplitude G(25) of the power spectral density gives the
same value as with the Fourier coefficient B(25).
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APPENDIX B

COMPUTER PROGRAM FOR
DATA ANALYSIS AND REDUCTION

This program is written in FORTRAN II for the GE235 digital computer.
The arrangement of the program and the data follows.

1. SLEM (computer control cards)
2. Main program

3. Subroutine plot

4, Data card 1/2
5. For data input 0 Format (14)
For program test 1 Format (I4)

6. Experiment card N, NH, ML, NA, MN, MAXL,

MAXK, KO, MON, MD Format (10(14))
7. MESA data AX(I) Format (5(3X16,1X))
8. Tilt meter data AY(I) Format (5(2XI8,1X))
9. Sample number with KM (1) Format (I4)
wrong data
10. Data reduction IC Format (I4)
MA or JA Format (14)
11, End -1 Format (I4)

The subroutine plot is for plotting the data on the initial printout.
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PROGRAM LISTING FOR DATA ANALYSIS & REDUCTION

C CALIRRATION OF THE MESA

KOMMNN YU100),XSMI10G1-RYY(501,Q[501],
IRX ST T RY TS TIaRXY IS LI, RYXISTI5GYISTTS =
2RXYO[50),AX[600),KM[201,AY(600], GXD[SOJ.F[SO]:
T - SKLT6D01,6XXT501,AR[AGI,BKTACT T T
DIMENSION thnnJ.RxX[iﬂﬂlo:X[100];CK[100],GXA[1001

T T TPI=3,14159268538 ’ Tt T T T T

P12=6,283185308
13 RE‘A’U*"ZU'I'} KT o T
201 FORMAT (1I4)
T IR IRTY 217,210,207 0 T T T T T T T e

C TEST OF THE PROGRAM

202 READ 203,NsNH,MAXL ,MAXK,LXS,KXS, LXC.FXC LY.KY KO

T T T 203 FORMAT T4TI4)3118,147,14) T o

KMI1)=sN+2

e 1 Y 2 —_ e e 28

NA=s 100

MN=T1
ZLXS=LXS .
T T TUTZRXSERXS T o -
: ZLXC=LXC
T T T UTZRXCERY e T T T
ZLY=sLY :
T TTTUZRYERY o T
PRINT 6,LXS,KXS,LXCsKXC
6 FORMATIZ2IHTI — "TEST ~XTIT = I8,15H SIN [2*PT*ZL7
164 1 + 18,15H COS[2#PI%ZL/ 14,3H 1 ]
T 7 TPRINT 18,LY,KY T T T i :
18 FORMATI(22H YlIl = 18,
1I5H "COSTZ2*PT*ZL7 14,3H T 1
DO 204 L=1,ML
o T ZL=L-1
KL(LJ‘ZLXS*SINF[PI*ZL/ZKXS]*ZLXC*LOSF[PI*ZL/ZKXC’
204 AXTLIsKLILY
DO 205 L=1,ML
ZL=sl-1
KLILL)=ZLY*COSF[PI#7L/2ZKY]
205 AYTLY=sKLTL]
GO To 206

T READING AND ARRANGING OF THE DATA

210 READ 1,N,NH,ML,NA,MN,MAXL,MAXK, K0, MON,MD
1 FORMAT (10(141))
READ 102, (KLIL),L=9,ML
102 FORMAT (5[ 3XI16,1X))
00 71 L=1,ML
71 AXtLY=sKLI[L)
READ 103, IKLILT,C=s1, M7
103 FORMAT [5( 2X18,1X))
DO 73 L=1,ML
73 AY([L1=KLIL]

14,
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PROGRAM LISTING (Continued)

c CAL1BRATION OF THEI'MESA ~

READ 2015 (KMI11sFadsMN)
206 ZNSN
< HasNH

IRUERU
ZMLEML,

LNAENA
ZMNsMN

ICET
PRINT 26

26 FURMAT [THI] ,
PRINT 106, [AXILY LalsML)

106 FORMAT [STFIZ2,17T
PRINT 106, [AYIL),Le1sML)

PRINT 201, IRMTL T, eI BN]

DO 11 T=1,MN
KaKM[1)

MEML =1
DO 11 L=k,M

AXTLTEAXTIL*TT
11 AYILI=AY[L+1]

MesMAXL

ZHeH
IMAXK=MAXK

LMARLSHMAXT,
A=0

B=g
DO 17 I=1,N

D S R R T Y A D
AsA+AXT1]

. - £1° £ % 4 () R—
XMz A/ZIN

e e RN e T = ——
D04 1=1,N

AXTIT=AXTIT=XM 7 7~
4 Y[I)=AY[T1]-YH

g g e S S

216 READ 20n4,1IC

- © 60 TO 116,119,179, 139519951375 1T

DATA ANALYSIS

TR E AR REKE R R A AR R T T T TTT T e e e

da

- T 16710217+ ’ e

IBz100+*[D«IC
Asn
BHsn

T o o 20 TE1L,N T

X[11=X (1)-x
ASA+Y[TT*XI1]
20 8=3ev(1]*Y[])
RXD=A/74
RYO=R/ZN




PROGRAM LISTING (Continued)

C CALIRRATION OF THE MESA

XSD=S3FTHIABSFIRXQ)]
YSD=SJRTF [ARSF[RYD]]

PRINT &, JH,MIN,MD

8 PORMAT (4%H1 CALIBRATION OF "THE MESA 7

19XT4,18/12/7])

PRINT 74, IX{11sYI11,1=1,N]

74 FORMAT [Z[E12.411]
CALL PLOTIX,NT ~

c 4UTOCORRELATION OF XI1]
Do 24

Cx=n
Kanw],
ZK=K"
DO 21 J=1,K
ILET+L

21 ARA+X (T 1+X(1L)

| =1,M

T TTURRTURXTLYEA/ZR 0 T T
24 RXX[L}=RX({Ll/RXO

TCTTTTTUTRUTOCURRELATIONTOF YUTY 7 T

KaNe|

T B4 LUEI,M T T T

ZREK —— 7 7
AZ(

YT 31 rEdG R
ILsl+L

I RER+YITTFYITLY
32 RY[L)=A/ZK

J4&RYYTUT=RYILI/RYO
BzRXO¥*x 5

CERYO®+,5
DeB*C

T CRUSSCURRELATION OF XTIT AN YTT]

D044 1=1,M
alLl=L

K=N=~L
A=0

ZK=K
DO 41 I=1,K

[L=T=L
49 AsA+x[I1wyY{IL]

RXYILT=A/ZK
44 RXYO[L)=RXY[L1/D

PRINT 8, 18,MON,MD
PRINT 81

BL FORMAY [8O0H L RX

1 RXY RXYO

RY
/71

RXY

RRX
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PROGRAM LISTING (Continued)

C CALIBRATION OF THE MESA
RC=0
D0 33 1=1,N
33 RO=RC«X[11*Y[]]
T T RCOERG/D T
A=D
=1 -
PRINT 30,A4,RX0,RY0,RC,R,B,RCO
ST FORMAT (FATIZITELZ V4T, 2XITFT0.5TT
DO 84 L=1,M R
e g PRINT 30y At s RXTU S RY T RAYICT RXX I T RYY L T RXYOTE]
PRINT 112
12 FORMAT 1771
PRINT 2,XH,YM

2 FORMRT TR XN "2 L1247 6 Y =EIZ.4 1
PRINT 12,XSD.YSD
1o FORMATIGH XSDE ET1Z,4, 6H YSUT E1Z2.4/771
CALL PLOTIRXX,M]

C POWERSFECUTRUFM UF X111

PRINT 87 IR, MON, MDD~
PRINT 91 .
G FORMAT ISR K FREDUENTY RAWPSD AMPLTIT SHOUTH PSD
1 AMPLIT /7]
MEMAYK
MK = M-1
LMEM T
BF=1,0/1ZM*H)
DU 94REL .1
QAlK1=K
7K=K
FIK)=0.5%2K/ [ ZM=H)
R=U -
B=0
DO 53 LMK
ZL=L
53 KEAFRXITI¥COSFIPT#ZLFZR7ZM])
GX(K)=2,Oth[RXO*z.O*A+RX[M]*[-1.0]**K]A
54 GXATRTETRFFARSFIGYXIKITI¥#® (S
AB=(
BX=0
DO 109 L=1,MK
109 ABEAR+RXILT
BX=0,5«[AR «+ Gx[1}]
ABEZ, U*H* [RX0%2, T#ABFRYTMT]
AXOs[ABSFIBX%BF#2,0]11%x0.5
AED .
S=SQRTF[ABSF[AB=BF)]
PRINT 19,A,A,AB,5,BX,» AX0
19 FORMAT [F6.1:,51E12,41)
GXXTiJs D,5=xGX[17+0,.25«[AB+GX([2]]
D0 311 K=2,MK
RKR=K=1
KP=K+1




PROGRAM LISTING (Continued)

€ - CALIBRATION OF THE MESA

311

GXXTK] = 0e25%GXIKRI*L.5*CX K I1+5.25%GX[KF)

GXXITP = S X IR S¥GExTms
DO 312 K=1,M

3le

GXOTRTEIABSF IGXX TR T TR EF* 2, 0 THag 8 o s e
DO 93 K=1,M

93

PRINT 19 QIR FIR T EXIR T SXATK G GXX TR T GXOTKY

PRINT 112

FRINT &,HF

FORMAT (13H BANDWIDTH = E12,4, B5H HZ //]

CALL PLOTIGXA, ]

¥ FOURIER ANALYSIS

DO 403 K=1,50

IREK
FIKI=ZK/ [H*ZN)

A=0
B=p

DUT402 T71-N
Zlsl-1

- 402

RER*XTIT#COSF[PI2#Z 1%/ LN]
BeBeX[I1#SINFIPI2%#21*ZK/ZIN]

ARTKY=Z,U%A/7IN
BK{K1=22,0%B/ZN

303

CRTRKT=TARTR Y %2, D+BKIFT#* 2. 07%%0,5

PRINT 8, IB,MON,MD

404

PRINT 404

FORMATE52H K FREQUENCY AK BK

405

U0 405 K=1,570 B . .
PRINT 406,00 [K},FIK)},AKIK]},BKIK),CKIK)

406

FORMATIFG,1,4TE12, 471
PRINT 112

23

PRINT23

FORMAT [ B5H N H ML

iINR OF ERRORS

Max L MAX K1
PRINT 105,ZN, H,ZML,ZNA,ZMN, ZMAXL - THAXK

105

FORMAT (71F12,11]
CALL PLOT([CK,50]

C ~STANDARD DEVIATION OF X{1J 70 XINP

Ael
XINP=zZNA®10,0%%[~9 0]

SKL=BK{2517/XINP
DO 127 1=1.N

Zls8le1
U =X{1)1=BK{25)%SINF[1,570796327¢21]

127

AeA+wl
SDi=8QRTFIA/ZIN}

ESKI=5D1«S5K1/BK[25)

_MS=M/2

SK2sGXA[MST/XINP
As(

INPUT aCC
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PROGRAM LISTING (Continued)

C CALIBRATION OF THE MESA
DO12R 1=1,N
- Z1=1-1 o
U =x(1)=GXAIMSI«SINF (1.576796327%L1)
T 2R AR AR .

SD2=SQRTF LA/ ZN]
TUTTTTTTTTT T ESKZ2=8NPRSKZ/GXATMS )
PRINT &, i, MO, MD
CTTTTTTTTTUUTPRIINT 121, X0NP
121 FORMATI25H INPUT ACCELFRATION A = E12.4,
T T 122H SINM{P2xPIx{1=117 4) G /771
PRINT 127,BK{2%1,8n1
T T2 FUORMATIZ2HH OUTPUT [FOGRIFR] B =[E12.4,3H + F12,4,
128RISIN{I#*PI*>[1=11/ 41 IMP/SEC /7] .
T PRINT 123, 6GXAIMS),8D2

123 FORMATLI25H OUTPUT [PSP] C =[EI12.4,3H + E12,4,
T T T TAZEHTSINIAPTR(1=1)/ 8] TMP/SEC //)
PRINT 124

T g FURMAT T34 SCALEFACTOR FOR VEKY LCW G-INPUT //)

T 125 FORMATIZ1H SUTFOUR])
114H IMP/SEG/G e

T o PRINT 126,5K2,E8K?

" E12.4.3H + F12,4,

n

126 FORMAT[21H SCIPSDY = E1Z2.4:31 + F12,4,
o f4H o [MP/SEC/G /7)) o
G0 Tn 216
TG T DATA REDUCTION
C L2 X2 E TR S B R

~C T TLEAST WEANWSOUARE FIT WITH TILT DATA

TTTTTTTTTTTTT119 CAST
Bz
T T D09 I=1.N
B=R+AY[T}wvAYI]]
T T T T T T UARAFAXTIIRAY (T )
AzA/R
R —
BO 1n I=1,N
T XTI TEAXITYEARAY LY
10 BsB+X([1]
XH=B/IN
GOTO 16

€ SUBTACTION OF A STRATGHT LINE

129 A=0
DO 400 1=1.,9
0y AEAFAXTT]
XA12A/9,0
NLEN=B
ABQ




PROGRAM LISTING (Continued)

c: CALIBRATION OF: THE! MESA

DO 401 I=NL.N
UYL AWASAXT]]

XA22A/9,0

R=U

DO 443 I=1,N

al=2}

x [11=AXI1)-XAL-[xXAR-XALI¥ (2] +5.01/91.0
FTS ATASXTT]

XM A/ 2N

GUTU 16

c SUBTRACTION OF THE LOWER AND HIGHER HARMONICS

139 A=0
READ ZU01,MA
MB=50=-MA
00410 T=1,N
Zls]-1
BET
DO 411 K= 1.WA
RKEK ~ T T
411 Bs= B+AK[<J*COSF[Plz»ZI*ZK/ZNJ+BK(K)*SINF[PIZtZI*ZK/ZNJ
T DU 312 K=ME, 50 ~ T
ZK=K
T GI7 BSESARTRIWCOSFIPTIDw ZT#ZK7ZN T+ BKTK IR SINFIPTZ#ZTwZR72ZN1
Xx[{1l= ¥[11-8B
TR AR (T T TUoTT T
XM=A/ZN
T T GOTO e T T e T

P __SUBTRACTION OF AN ADJUSTED CURVE

149 READ 201,JA

T ZJAs[JA+«1T1»2 ST T e e e
JB=JA+?2
T T 160 JAST T T T e e
JD=100-JA
D0 7ot 1=uB,UC T T T T T T e

MA=]=JA
e
MAT=MA=1
MBLzMB+y T T s T T
Az}
T U0 70 0k=MA L MB

700 AspA+AXIK)
C709 XSM{IT=TR0, 5% [AXIMALY+ T TRAYIMBITYI/ZJR T
JA1=)A+1
TUTTTTTDDO703 =3, AT S T e
LK=2+[1=-1]
TLLKELK T
LK1= LK+1
Al
00 702 K=2,LK"
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PROGRAM LISTING (Continued)

CALIBRATION OF TH; HESA g -

702 A= A#AX[K] - * Lo
703 XSMTTT=TA+T, 5*IAR’(1H Akﬂ.ﬁlm
XSM{11=,5wlAXIL)% « AX(21) ., .

XOMT2T=1,0%AXT I eAY ]+ ,52 f\X[S%ﬁY*.?S
DO 7n5 [=4D,98

TRKE2FT=99% P T
ZLk=2wl100-1) oo T
CRISCK=1" v A7
Az ' . e «
- o /04 K=LR,¥9 S
704 A2A+AXIK) TR . "

3 3 ...A
7O XSHTTT=Th+ D*lAXIlBUJ " ,XL?!¥1T177I1F

XSMI9912.5# [AXLI991+,5x[AXI981¥RRI100)])]

xamtluoz—.5*TAX(V91+ AXTTOFF™
A0 » =

- DuU7Us l—l N TR
X(IJ AX{I)- XSMTI‘] s i 3

TTUEAFAFX T T

S XM"UZN T

B

Ul TU 16 T TR

R




PROGRAM LISTING (Concluded)

SUBROUTINE PLOT (1Y, N]

__DIMENSION yt;ool.xtieol.vulwti11
YMINT1Y=Y (1)

YMAX =Y[1)

DO 1 I=si,N
YMINILY=MINIFLYMIN[L1),Y(T)])
YMAX=MAXLFIYMAX,Y(1])

DO 2 I=2,11 S
YMINCI L YMAX=YMINTL)) /20, +YMIN[I=1)
PRINT 3

FORMAT [1H1///)

PRINT4A, (YMIN[I),Is1,21)

FORMAT (7X11[1XE9,2])

PRINTS , ) o )
FORMAT [14X101HI-7 ------ elrecann- DR T PP, Jreveramer|ocrnuna=
jewwcncaa- [mevomemaw [recebbcme [ mrmanm——— [==~=emrew]}

Xs1.n

DO%I=1,x

nNd6lJ=10,120

KIT1J1=199728

DO7L=15,115,10

KILI=105520
NV’[{Y[X3~YMIV[1]]/[YMAX'YMIN[1]]3*100-*1505
KINNI=133344

PRINTB,Xs [K[M),M=10,120]

FORMATILH F7,151X,641,1541,15A1, 1541,15A1,15A1,15A1,15A1)
XsX+1,0

Q*TUPV

EAD




APPENDIX C

MASS ATTRACTION OF THE TILT METER

The level in the mercury pools of the tilt meter changed with the posi-
tions of the attracting mass. Because the distances between the mercury pools
and the attracting lead mass are large, the effect is very small. The mercury
surface of the tilt meter pool is always vertical to the acceleration vector con-
sisting of the earth gravity g and the mass attraction A of the lead assembly.
The tangent to the surface in pool number 1 has an angle oy to the horizontal
plane and the tangent to the surface in pool number 2 has an angle oy (Fig. Cc-1).
The vectors A; and A, have x- and y-components.

Ayx
tanwy = gJFAiy
Ayx
tana2= g+A2y
POOL 2 at POOL |

|
(1Y T ? ////;

Qo ——tof [a— z (B & X -
g
g
Vi _
A, +3 A -
Agy &1 7279 'Vu Al+3
Az Ay

Figure C-1. Mass attraction of the mercury in the tilt meter.




Sinceay, @y, Ayy, and Azy are very small,

Agx
“
and
Ayx
=T

A good approximation of the imaginary equipotential surface is a sphere. The

line connecting the two pools is the secant line of the circle which is the inter-

section curve of the sphere with the x-y plane. The angle @ between the secant
line and the x-axis is the geometrical correlation

o ='12‘(a/1 + oy ) rad.

This angle & is the output value of the tilt meter; o was computed for the three
positions of the attracting mass. '

Position up & y = 0.680x1078 rad
Position middle ¢ m = 0. 595x10~8 rad
Position down aq = 0.496x10-8 rad .

The values also agree with those computed according to the potential theory.
The movement of the mass causes a tilting of the mercury surface. The input
tilting is almost a sine wave with the amplitude of o p = 0.1+0.07x1078 rad.

The data analysis of the tilt meter data AY(I) shows an amplitude at the fre-
quency FO of

BY(25) = (0.3+0.2) 1078 rad.
The value has a large standard deviation and is in the same magnitude as the
computed amplitude for mass attraction. Therefore, no tilting of the test pad

connected with the movement of the attracting mass was large enough to
influence the calibration of the MESA in the laboratory.
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