
NASA TECHNICAL NOTE

*o
00
h
L n
I

n
z
+
4 w

4

TASK SCHEDULING FOR

NASA TN D-5786-

c-,\

0
!+
w

F ! n
cp

z

A REAL TIME MULTIPROCESSOR

by John W,Jordan

Electronics Research Center
Cambridge, Mass, 02139

N A T I O N A L AERONAUTICS A N D SPACE A D M I N I S T R A T I O N W A S H I N G T O N , D. C. MAY 1970

L

--

1. Report No. 2. Government Accession No.

NASA TN D-5786
- ._ i

4. T i t l e and Subtitle

Task Scheduling for a

Real Time Multiprocessor

7. Author(.)

John W . Jordan

9. Performing Organization Name and Address

Electronics Research Center

Cambridge, Mass.

12. Sponsoring Agency Name and Address

National Aeronautics and
Space Administration
I ~.

15. Supplementary Notes

TECH LIBRARY KAFB, NM

IllIll
0332502

1-3. Recipient's Cotalog No. I
- 4 '

5. Report DateL* May2274I 6. Performing Organization Code

c-111

10. Work Unit No.

125-23-07-06

Technical Note

14. Sponsoring Agency CodeI
1
 1

This report describes an algorithm for scheduling

real-time tasks in a multiprocessor system. The algorithm

guarantees that the deadlines of all scheduled tasks will

be met. If the number of active tasks exceeds the capa­

bility of the multiprocessor, then only the highest

priority tasks will be scheduled. The algorithm is sub­

optimal in that it may fail to schedule one or more

low-priority tasks which could be accommodated. A hard­

ware implementation of the algorithm is discussed.

- -. .~

17. 	 Key Words 18. Distribution Statement
*Real-Time Tasks Scheduling
*Multiprocessor System Unclassified - Unlimited
-Algorithm

=Hardware Implementation

-

19. Security Classif. (of this report) 20. Security Classif. (of this poge)

Unclassified Unclassified

--

TASK SCHEDULING FOR A REAL TIME MULTIPROCESSOR

By John W . Jordan
E l e c t r o n i c s Research Center

Cambridge, Massachuset ts

SUMMARY

This no te p r e s e n t s an a lgor i thm f o r schedul ing rea l t i m e
t a s k s i n a mul t ip rocesso r . The a lgor i thm gua ran tees t h a t t h e
d e a d l i n e s of all scheduled t a s k s w i l l be m e t . I f t h e number of
a c t i v e t a s k s exceeds t h e c a p a b i l i t y of t h e mul t ip rocesso r , then
on ly t h e h i g h e s t p r i o r i t y t a s k s w i l l be scheduled.

F i r s t , a s imple schedul ing a lgor i thm i s developed which
gua ran tees r e a l t i m e d e a d l i n e s f o r p e r i o d i c t a s k s . A second
a lgor i thm i s then de r ived from t h e f i r s t which a l s o gua ran tees
t a s k dead l ines b u t r e q u i r e s fewer processor i n t e r r u p t i o n s . A
system load parameter i s de f ined and used t o d i v i d e t h e t a s k s
i n t o two c a t e g o r i e s high p r i o r i t y t a s k s which can be sched­
u led wi th guaranteed d e a d l i n e s and low p r i o r i t y t a s k s f o r which
c u r r e n t r e sources a r e i n s u f f i c i e n t t o a l low execut ion . A t t h i s
p o i n t , t h e d i v i s i o n of t h e t o t a l system load among t h e i n d i v i d u a l
p rocesso r s i s cons idered . This i s an o p t i m i z a t i o n problem, b u t
a t t h e p r e s e n t t i m e a sub-optimal s o l u t i o n s e e m s s u f f i c i e n t . The
a l l o c a t i o n of t h e t o t a l system load among t h e i n d i v i d u a l pro­
c e s s o r s i s i n terms of a " t a s k load" parameter and does no t
n e c e s s i t a t e a c o n s i d e r a t i o n of r ea l t i m e t a s k d e a d l i n e s , t h u s
cons iderably s impl i fy ing t h e schedul ing problem.

Non-period t a s k s , i n t e r r u p t s and a hardware implementation
of t h e schedul ing a lgor i thm a r e d i scussed . An appendix c o n s i d e r s
memory access c o n f l i c t s .

INTRODUCTION

A mul t i -processor i s a computer system c o n s i s t i n g of a
number of p rocesso r s which can communicate through a common memory
bank. S ince t h e o r g a n i z a t i o n of t h e s e u n i t s may i n f l u e n c e t h e
cho ice of schedul ing a lgor i thms t h e s t r u c t u r e of F igure 1 w i l l
be assumed. The most impor tan t c h a r a c t e r i s t i c of t h i s system i s
t h a t it i s " f u l l y d i s t r i b u t e d " i n t h a t each processor can access
any memory module.

The number of memory u n i t s and p rocesso r s i s no t impor tan t ,
and t h e system may be modular w i th a v a r i a b l e number of u n i t s .
The procedures (programs) which are executed by t h e mul t i -processor
are d iv ided i n t o t a s k s . When a processor completes a t a s k it

--

executes a s p e c i a l procedure c a l l e d t h e execu t ive which d e t e r ­
mines which t a s k w i l l be processed nex t . Th i s n o t e i s concerned
wi th t h e a lgo r i thm used by t h e e x e c u t i v e t o select t h e next t a s k .

F igu re 1.- A Mul t iprocessor

The most i n t e r e s t i n g a s p e c t of t h e mul t ip rocesso r configu­
r a t i o n i s t h e p o s s i b i l i t y of " f a i l s o f t " o p e r a t i o n t h a t i s ,
t h e f a i l u r e of a memory module o r processor w i l l r e s u l t i n loss
o r deg rada t ion of some f u n c t i o n s w h i l e s t i l l main ta in ing o t h e r ,
more impor tan t , f u n c t i o n s . Achieving t h i s " f a i l s o f t " o p e r a t i o n
i s complicated by t h e p o s s i b i l i t y t h a t t h e f a i l u r e of a p r o c e s s o r ,
f o r example, w i l l no t on ly reduce t h e computat ional r e sources of
t h e system b u t may a l s o impose an a d d i t i o n a l load on t h e system
s i n c e s p e c i a l d i a g n o s t i c r o u t i n e s must be executed t o i s o l a t e
t h e f a u l t y u n i t and one o r more t a s k s executed by t h e f a u l t y
processor may have t o be " r o l l e d back" o r c o r r e c t e d f o r p o s s i b l e
e r r o r s . For t h i s reason it i s d e s i r a b l e t o des ign an a lgor i thm
which r e q u i r e s a minimum of r e -conf igu ra t ion o f t h e t a s k s t r u c ­
t u r e i n t h e even t of a hardware f a i l u r e . I d e a l l y , t h e a lgor i thm
would i n s u r e t h e cont inued execut ion of t h e most important t a s k s
and forego execut ion of less impor tan t t a s k s . I t i s then p o s s i b l e
t o in t roduce a degraded mode of o p e r a t i o n w i t h a modified t a s k
s t r u c t u r e .

PROBLEM DEFINITION

Each rea l t i m e t a s k m u s t - b e completed w i t h i n a s p e c i f i e d
t i m e frame as shown i n F igure 2 .

2

t

0

'S t e

I t d to+

Figure 2.- Real Time Task

The times involved are - ta the activation time after which
the task can be executed. It is often dependent upon some system
event such as an external interrupt, 1/0 completion or a pro­

cessor timer. td is the task deadline. t is the task period

if the task is periodic. t is the time wRen the task execution

starts and te is the time wgen it ends. For the time being, only

independent periodic tasks will be considered. These are charac­

teristic of a real time sampled data system. For simplicity the

time frame tf during which the task must be processed will be

taken as equal to the task period as shown in Figure 3 . The
activation time ta is controlled by a processor timer and is pre­
cisely known.

Figure 3 . - Simplified Periodic Task

A solution of the scheduling problem requires

(1) the development of an algorithm such that those tasks

chosen for execution are completed within the specified time

frame and

3

(2) since the current number of operative processors may be
incapable of processing all the active tasks, the algorithm must
also select which of the active tasks are to be executed.

Since the "importance" of a task is only meaningful in the

context of the task's function, it is up to the application pro­

gramer to assign to each task an integer variable called its

priority index. Since mission conditions may change, the priority

index may also change. Normally, however, it can be expected to

be a relatively constant value.

It is important to note that this assignment of priority is

not a determination of which task is to be executed next: it

simply represents the relative value (at the present time) of

eventually executing task A rather than task B provided that the

multiprocessor is unable to execute both within their specified

time frames.

It is easy to show an example (Appendix A) where executing

tasks in order of their priority will result in missed deadlines

when the multiprocessor is actually capable of executing all

tasks satisfactorily. Conversely, an algorithm which considers

only task deadlines will inevitably result in the execution of

tasks of low priority while tasks of higher priority miss their

deadline when the multiprocessor is operating under an overload

condition. Actually, the constraints imposed by real time dead­

lines may require that tasks of low priority be scheduled before

tasks of higher priority; but the algorithm must also consider

priority so that if all the deadlines cannot be met the tasks of

highest priority will be successful. The resolution of this

potential conflict between task deadlines and task priorities

is the fundamental design problem.

It should be noted that priority is considered to be a

variable independent of other task parameters such as length,

period, etc. Correlations between task parameters may permit

the use of simpler scheduling algorithms.

IDEAL MULTIPROCESSOR

In order to simplify the discussion of scheduling algorithms,

it is helpful to define an ideal (but unrealizable) multiprocessor.

An ideal multiprocessor behaves like a single processor and

memory unit. The addition of more processors is equivalent to

increasing the speed of the ideal processor by a unit amount.

The scheduling of an ideal multiprocessor is then similar to

multiprogramming with a single processor. In a later section the

restriction of an ideal multiprocessor will be removed.

4

EXECUTIVE IMPLEMENTATION

The executive has at least two lists -- a timer list and the
Active Task List (ATL). The timer list is controlled by a real
time clock in each processor as described in Ref. 1. When the
processor clock reaches a specified time the processor moves any
tasks on the timer list which are due to be activated at that
time to the ATL. The processor clock is then reset. As the
processors become idle, they take the topmost task from the ATL.
The scheduling algorithm is responsible for ordering the ATL.

Not all the tasks in the system will have real time require­

ments. These "background" tasks may be kept in a separate list

ordered by priority. They are executed after the real time tasks

have been processed.

SCHEDULING ALGORITHM ONE

Associate with each task a number tm which is the maximum

time required to execute that task. Consider the following group

of tasks:

TABLE I

1 Period I tm

T I T/3

7-+l-
I
I . 3T

With one processor the following schedule will meet the periodic

deadlines. The reader will note that it is not a unique solution.

I

A 	 A A
8 C

Figure 4 . - Task Schedule

5

The le t te rs below t h e l i n e s i n d i c a t e t h e t a s k d e a d l i n e s . The
minimum t a s k p e r i o d T i s a fundamental parameter and w i l l be
c a l l e d a "cyc le . " The schedul ing a lgo r i thm i s

(1) Since A must be executed eve ry c y c l e schedule A

(2) 	 Since B must be completed i n t w o c y c l e s , do one-half
of B each c y c l e

(3) 	 Since C must be completed i n t h r e e c y c l e s , do one-
t h i r d of C each c y c l e .

I n g e n e r a l , if i s t h e maximum run t i m e f o r t a s k k and i t s
per iod i s tp then

i s t h e amount of t i m e which mus t be devoted t o t h a t t a s k dur ing
eacy c y c l e i n o r d e r t o m e e t i t s d e a d l i n e . For N

P
p rocesso r s

and NT t a s k s

A mul t ip rocesso r l oad ing parameter may be de f ined by

L = -2 a (k)1
T N (3)

k l

Computer loading i s a b a s i c parameter s i n c e i t r e p r e s e n t s t h e
f r a c t i o n a l p a r t of t h e computer 's p rocess ing c a p a b i l i t y necessary
t o p rocess t h e NT t a s k s . A va lue of g r e a t e r t han one means t h a t
a l l t h e t a s k s cannot be processed. The v a l u e 1 0 0 x L i s t h e
percentage of t h e mul t ip rocesso r t i m e r e q u i r e d t o process t h e
t a s k s .

Each c y c l e a (k) microseconds a r e s p e n t execut ing t h e k t h
t a s k . Each c y c l e i s e x a c t l y l i k e a l l o t h e r c y c l e s . This means
t h a t t h e p rocesso r s must s w i t c h from t a s k t o t a s k dur ing a c y c l e
wi thout completing t h e t a s k s . For example, i f t h e r e w e r e 20
a c t i v e t a s k s and two p rocesso r s , each p rocesso r would make about
n ine t a s k changes p e r c y c l e . Although a (k) would be d i f f e r e n t

6

--
--

f o r each t a s k , if t h e b a s i c c y c l e t i m e T w e r e 20 m s an average
t i m e of about 2 m s would be s p e n t on each t a s k pe r c y c l e . The
t a s k swi tch ing can be accomplished by a hardware i n t e r r u p t o r by
subdiv id ing t h e t a s k s i n t o segments r e q u i r i n g ak seconds o r less
t o execute . A s p e c i a l swi tch ing i n s t r u c t i o n would bound each
segment.

A s u i t a b l e o r g a n i z a t i o n of t h e ATL i s shown i n F igu re 5.

TOP

NEXT

Figure 5.- Act ive Task L i s t (ATL)

The t a s k s form a c i r c u l a r c h a i n . There i s a f i x e d p o i n t e r
(TOP) which d e s i g n a t e s one t a s k as t h e t o p of t h e cha in . Another
p o i n t e r (N E X T) p o i n t s t o t h e nex t t a s k t o be executed. An i d l e
processor w i l l p i ck up t h e NEXT t a s k and advance t h e NEXT p o i n t e r .
The processor t i m e r w i l l be se t t o cause an i n t e r r u p t a f t e r ak
microseconds a t which t i m e t h e NEXT t a s k w i l l be executed. Every
T microseconds t h e NEXT p o i n t e r w i l l be reset t o t h e TOP p o i n t e r
and a new c y c l e i n i t i a t e d . S ince each ak i s based upon maximum
t a s k run t i m e and t h e a c t u a l run t i m e s w i l l be somewhat less ,
t h e NEXT p o i n t e r w i l l , i n a l l l i k e l i h o o d complete more than one
f u l l c i r c l e p e r c y c l e . However, t h i s a d d i t i o n a l t i m e can a l s o
be used t o p rocess background (nonrea l t i m e) t a s k s .

S ince t h e o r d e r i n which t h e t a s k s are executed does no t
e f f e c t t h e d e a d l i n e requi rements they can be a r ranged i n o r d e r
of p r i o r i t y wi th t h e TOP p o i n t e r p o i n t i n g t o t h e t a s k of h i g h e s t
p r i o r i t y . If one o r m o r e p rocesso r s f a i l , t h e NEXT p o i n t e r w i l l
complete less than one f u l l c i r c l e pe r c y c l e . However, t h o s e
t a s k s wi th t h e g r e a t e s t p r i o r i t y w i l l be executed. I t i s in ­
t e r e s t i n g t o n o t e t h a t t h i s a lgor i thm does n o t need any e x p l i c i t
in format ion about t h e number of o p e r a t i n g p rocesso r s t h a t i s ,
Eq. (3) does not have t o be eva lua ted s i n c e t h e a lgo r i thm
au tomat i ca l ly a d j u s t s t o t h e number of o p e r a t i n g p rocesso r s . On

7

t h e o t h e r hand by observ ing t h e p o s i t i o n of t h e NEXT p o i n t e r a t
t h e c y c l e i n t e r r u p t every T microsecond some informat ion about
t h e number of o p e r a t i n g processor can be ob ta ined .

A d i sadvantage of t h i s a lgor i thm i s t h a t i f t h e number of
a c t i v e t a s k s i s l a r g e t h e r e w i l l be a corresponding i n c r e a s e i n
t h e number of i n t e r r u p t i o n s pe r c y c l e . The overhead involved
i n changing t h e p rocesso r s t a t e may become excess ive i f t h e r e
are a l a r g e number of a c t i v e r e g i s t e r s t o be s t o r e d . I n t h e
nex t s e c t i o n , ano the r schedul ing a lgo r i thm which circumvents
t h i s d i f f i c u l t y w i l l be p re sen ted .

SCHEDULING ALGORITHM TWO

For schedul ing a lgor i thm one a t y p i c a l schedule might
appear a s i n F i g u r e 6 . I n t h i s example L = 1 and t a s k p r i o r i t y
has been ignored .

“ A “B Q c “A “ 8 ‘C

A A A
B B

C

Figure 6 . - R e a l T i m e Schedule

Once a g a i n , t h e l e t t e r s under t h e graph i n d i c a t e task dead­
l i n e s . S ince t a s k A i s due every c y c l e it must be executed each
c y c l e . However, t a s k B i s due every two c y c l e s and it makes
l i t t l e d i f f e r e n c e whether it i s executed du r ing c y c l e one o r two.
S ince aC i s g r e a t e r t han ag it i s p o s s i b l e t o move aB from c y c l e
two t o c y c l e one and r e p l a c e it wi th an e q u i v a l e n t amount of c1
from c y c l e one. Even i f aB w e r e g r e a t e r t han a c i t would s t i lE
be p o s s i b l e t o move p a r t of ag i n t o c y c l e one. C l e a r l y , i t is
p o s s i b l e t o r e a r r a n g e t h e t i m e of execu t ion of a t a s k as long as
t h e execut ion i s n o t delayed p a s t t h e t a s k dead l ine . One such
rearrangement (n o t t h e only one) i s t o c o n s o l i d a t e t h e t a s k s

8

such t h a t t h o s e t a s k s wi th t h e ea r l i e s t d e a d l i n e s are executed
f i r s t . Th i s i s schedul ing a lgor i thm t w o . S ince i n s o f a r a s dead­
l i n e s are concerned, t h e r e i s no e s s e n t i a l d i f f e r e n c e between
a lgor i thm one and a lgo r i thm t w o it fo l lows t h a t a lgor i thm t w o
(ear l ies t d e a d l i n e) a l so gua ran tees t h a t a l l t h e r e a l t i m e dead­
l i n e s w i l l be m e t . However, t h e number of t a s k i n t e r r u p t i o n s
necessary w i l l be reduced t o one every T microseconds and on ly
t h e c y c l e i n t e r r u p t w i l l be r e q u i r e d . During t h e c y c l e t h e pro­
c e s s o r s p rocess t h e t a s k s t o completion i n o r d e r of t h e i r dead-

I l i n e s .
I

However, it i s clear t h a t as i t p r e s e n t l y s t a n d s a lgo r i thm
t w o i s s e n s i t i v e t o r e s o u r c e v a r i a t i o n s . For example, i f a
processor w e r e t o f a i l t h e t a s k s would con t inue t o be executed
according t o t h e i r d e a d l i n e s and wi thou t r e g a r d t o t h e i r p r i o r i t y .
T o c o r r e c t t h i s c o n d i t i o n , t h e implementation of F igure 7 can be
used.

AT L TIMER

Figure 7 . - Implementation of Algorithm Two

A t h i r d l i s t c a l l e d t h e p r i o r i t y l i s t (PL) i s added. A l l
a c t i v e t a s k s appear on t h e PL, o rdered by p r i o r i t y . Only a
c e r t a i n number of t h e t a s k s on PL a l s o appear on t h e ATL where
they are ordered by d e a d l i n e . I n o r d e r t o determine how many of
t h e PL t a s k s may a l so appear on t h e ATL, t h e computer load para­
m e t e r of Eq. (3) i s c a l c u l a t e d f o r t h e t a s k s on t h e PL s t a r t i n g
w i t h t h e h i g h e s t p r i o r i t y t a s k . When t h e l o a d parameter e q u a l s
o r exceeds one, no f u r t h e r t a s k s may appear on t h e ATL. Thus
modif ied, a lgo r i thm t w o gua ran tees t h a t t h e real t i m e d e a d l i n e s
of scheduled t a s k s w i l l be m e t , and i f t h e mul t ip rocesso r cannot
do a l l t a s k s on ly t h o s e of t h e h i g h e s t p r i o r i t y w i l l be done. I t
has an advantage over a lgo r i thm one i n t h a t t h e p rocesso r s must
be i n t e r r u p t e d on ly a t t h e end of every c y c l e no m a t t e r how many
t a s k s are a c t i v e .

9

IllIllll1l1l11l1lIll I l l I l l

--

MULTIPROCESSOR ANOMALIES

The r e s t r i c t i o n of an " i d e a l " m u l t i p r o c e s s o r w i l l now be
removed. The occurance of so c a l l e d "anomalies" i n a r e a l i s t i c
mul t ip rocesso r p r e s e n t s a s e r i o u s d i f f i c u l t y i n schedul ing rea l
t i m e t a s k s . The l i t e r a t u r e (Ref. 2 , 3 , 4) c o n t a i n s numerous
examples where s h o r t e n i n g t h e execu t ion t i m e of one o r more t a s k s
r e s u l t s i n an i n c r e a s e i n t h e o v e r a l l execu t ion t i m e of a s t r i n g
of t a s k s . T h i s c o u n t e r i n t u i t i v e response can r e s u l t when t h e
shor tened run t i m e of a t a s k a l te rs t h e sequence i n which sub­
sequent t a s k s are executed , t h u s producing a complex r e -o rde r ing
of t h e execu t ion t i m e h i s t o r y of t h e e n t i r e t a s k s t r i n g . R e f .
2 g i v e s examples where dec reas ing t h e a c t u a l t a s k r u n t i m e ,
r e l a x i n g precedence r e l a t i o n s between t a s k s and adding more
p rocesso r s can a c t u a l l y i n c r e a s e t h e o v e r a l l t i m e r e q u i r e d t o
process a t a s k s t r i n g . I n t e r m s of t h e a lgo r i thms of t h i s n o t e
t h e problem i s i l l u s t r a t e d by F igu re 8.

YT-I

F i g u r e 8.- Mul t iprocessor Anomality

F igu re 8a r e p r e s e n t s a mul t ip rocesso r w i th one process ing
u n i t . I f a second p rocesso r w e r e added t o an " i d e a l " mul t i ­
p rocesso r , t h e t a s k l i s t would be processed i n ha l f t h e t i m e .
However, f o r an a c t u a l m u l t i p r o c e s s o r , F i g u r e s 8b and 8c c l e a r l y
show t h a t t h e t i m e r e q u i r e d i s a f u n c t i o n of t h e o r d e r i n which
t h e t a s k s are processed . What i s r e q u i r e d i s t o t a k e t h e s i n g l e
t a s k s t r i n g of F igu re 8a of l e n g t h T and sub-divide it i n t o N
s e p a r a t e t a s k s t r i n g s of l e n g t h T / N . I n g e n e r a l , t h e r e i s no
procedure f o r doing t h i s op t ima l o r o the rwise . For some t a sk
s t r i n g s it may n o t be p o s s i b l e ; f o r example, i f F igu re 8a con­
s i s t e d of one s i n g l e t a s k which could n o t be executed i n p a r a l l e l .
H o w e v e r , F igu re 8b and 8 c r e p r e s e n t two a t t e m p t s a t a s u b d i v i s i o n

10

--

of Figure 8a -- one of which is successful; the other which is
not. Quite possible there is an algorithm which is optimal in
the sense that it subdivides a string of length T into N strings
of length N/T in such a way that a minimum number of the original
tasks must be discarded. Graham (Ref. 2) points out that the
optimal solution (for an equivalent problem) can be found by
trying all possible combinations but that this is practical for
only a limited number of tasks. He suggests ordering the single
task list by task length. This procedure cannot be applied to
the algorithms of this note since algorithm one orders the tasks
by priority and algorithm two by their deadline. Graham also
provides a number of bounds for multiprocessor anomalities. For
the case where T is the time required to process the single task
list and T* is the time required to process the multiple lists

T* = T

which simply says that the addition of more processors may pro­

vide no improvement which is indeed the case if the system

contains one long task. Although this bound is of little help

in this situation it indicates that processor anomalities must

be considered in any multiprocessor scheduling philosophy.

The problem of converting an ideal multiprocessor schedule

into an actual multiprocessor schedule can be considered from

another viewpoint. Define a task load parameter by

B(k) = tm/tF (4)

so that B(k) is the fractional processor capacity required to
process task k. From Eq. (3)

where N is the number of processors and NT is the number of
tasks wgich can be processed by an ideal multiprocessor. The
scheduling problem is now transformed from the time domain to a
''computer loading" domain. The ideal multiprocessor can accom­
modate a load of N but each real processor can accommodate a
maximum load of onay 1. Figure 9 illustrates this for NP = 2.

The scheduling problem becomes one of allocating the total

computational load of NP into N separate lists, none of which

can exceed unity. Of course, &is is exactly the problem con­

sidered by Graham, only now in terms of computer load rather

than task run times. Since the B(k)'s are discrete, it may not

11

be p o s s i b l e t o decompose t h e l i s t e x a c t l y and s o m e f 3 (k) ' s may
be l e f t over . However, an a d d i t i o n a l degree o f freedom has been
in t roduced s i n c e t h e a c t u a l d i v i s i o n i n t o t h e s e p a r a t e l i s ts can
be done i n any f a s h i o n inc lud ing Graham's method of a s s i g n i n g
t h e l o n g e s t B (k) ' s f i r s t . There i s a c o n s t r a i n t , however, i n
t h a t i f some f3 (k) ' s (and t h e i r corresponding t a s k s) are d i s ­
carded they should n o t have a p r i o r i t y h ighe r t han any t a s k l e f t .
The " b e s t " s o l u t i o n can be found by t r y i n g a l l p o s s i b i l i t i e s
a l though t h i s soon becomes i m p r a c t i c a l i f t h e number of a c t i v e
t a sks i s l a r g e . The s i m p l e s t sub-optimal s o l u t i o n i s t o a s s i g n
t h e B (k) ' s t o t h e p r o c e s s o r s i n a round-robin f a sh ion s t a r t i n g
a t t h e t o p of t h e p r i o r i t y l i s t . Appendix B d i s c u s s e s ano the r
a l l o c a t i o n s t r a t e g y .

F i g u r e 9 . - Processor Loading

The assignment problem a c t u a l l y c o n s i s t s of decomposing
t h e o v e r a l l t a s k l i s t i n t o s e p a r a t e l i s t s f o r each processor .
Eventua l ly , of cour se , t h i s assignment must be made. The in ­
e f f i c i e n c y r e s u l t s from t h e d i s c r e t e n a t u r e of t h e t a s k s and
hence t h e B (k) ' s . I t i s easy t o f i n d an upper bound t o t h e
i n e f f i c i e n c y which r e s u l t s . From Eq. (3) t h e loading of t h e
" i d e a l " mul t ip rocesso r i s

Nrn

For t h e i n d i v i d u a l p rocesso r s t h e loading i s

R

where R i s t h e l a s t t a s k on t h e k t h p r o c e s s o r ' s l i s t . The per­
c e n t i n e f f i c i e n c y can be de f ined as

7 = 100 -L* L

12

where

I t i s reasonab le t o e s t a b l i s h a l i m i t on t h e r a t i o of a t a s k ' s
maximum run t i m e t o i t s execu t ion t i m e frame

or

A = max { B (k))

From Eq. (6) and Eq. (7) it fo l lows t h a t

r) 5 l O O A

I f A i s . 5 , t h e maximum i n e f f i c i e n c y i s 5 0 p e r c e n t ; and i f A i s
. 2 , t h e maximum i n e f f i c i e n c y i s 2 0 p e r c e n t . Th i s shows t h e
va lue of d i v i d i n g t h e t o t a l system load i n t o many sma l l e r t a s k s .
However, t h e d i v i s i o n c r i t e r i a i s no t t h e l e n g t h of t h e t a s k
b u t r a t h e r t h e r a t i o of t h e t a s k l e n g t h t o t h e t i m e frame i n
which t h e t a s k must be executed.

I n summary, schedul ing a r e a l i s t i c mul t ip rocesso r r e q u i r e s
t h e a l l o c a t i o n of t h e . t o t a 1 mul t ip rocesso r l oad among t h e
i n d i v i d u a l p rocesso r s . Th i s a l l o c a t i o n can be regarded as an
op t imiza t ion problem; however, a s imple sub-optimal s o l u t i o n
would s e e m t o be adequate . When a l l t h e r ea l t i m e t a s k s can be
scheduled, any s o l u t i o n can be regarded a s "opt imal . " By
a l l o c a t i n g t h e t a s k load ing it i s no longer necessary t o cons ide r
t h e rea l t i m e c o n s t r a i n t s on t h e i n d i v i d u a l t a s k s , t h u s con­
s i d e r a b l y s impl i fy ing t h e schedul ing problem.

Up t o now, it has been assumed t h a t a l l t h e t a s k s w e r e
p e r i o d i c and independent . When t h e problem of schedul ing t h e s e
t a s k s i s t ransformed f r o m t h e t i m e domain t o t h e computer loading
domain, i t becomes a s t a t i c problem of decomposing one long
l i s t i n t o Np s h o r t e r l i s ts . However, t h e t a s k s a r e being
p e r i o d i c a l l y a c t i v a t e d , r u n , and te rmina ted so t h e computer
loading i s a c t u a l l y a dynamic r a t h e r than s t a t i c parameter . But
i t i s much s impler t o cons ide r i t as a s t a t i c q u a n t i t y . One
method of accomplishing t h i s i s as fo l lows: when each p e r i o d i c
t a s k i s a s s igned t o a p rocesso r it i s tagged wi th t h a t pro­
cessors number. When t h e e x e c u t i v e t i m e r a c t i v a t e s t h e t a s k it
p u t s it d i r e c t l y o n t o an Ac t ive Task L i s t (ATL) f o r t h e proper

1 3

processor. The task load is always assigned to that processor,

thus assuring the capacity to meet the task deadlines. If the

number of available processors changes, the task lists must be

rescheduled.

NONPERIODIC TASKS

As mentioned before, the total multiprocessor load is

divided into real-time tasks which have associated deadlines and

background tasks without deadlines. The real-time tasks are

processed first. However, it is to be expected that in an

actual system there would be additional real time tasks which

do not meet the restrictions which have been assumed up to this

point. Some examples are real-time tasks which are activated

after the completion of other tasks and tasks controlled by

external interrupts. If the tasks are activated after the pre­

requisite conditions have been met, then all active tasks can

still be considered independent tasks.

If new, nonperiodic tasks are activated, then the computer

loading and task scheduling must become dynamic since no prior

allowance for the task's additional loading has been made. If

the multiprocessor is processing a mixture of real-time and

background tasks, this may be quite simple, since the multipro­

cessor has additional capacity beyond that necessary to handle

the real time tasks. The new task can simply be added to any

processor list which will accommodate it with less time re­

maining for background work. It is implicity assumed that the

background tasks have lower priorities than the real-time tasks.

However, it is also possible for the executive to maintain a

balance between real-time and background tasks, based upon their

priorities. A problem arises when a real-time task cannot fit

on any processor list but its priority is greater than that of a

currently scheduled task. In this case, the tasks must be re­

scheduled so that lower priority tasks are removed.

TASK ACTIVATION TIMES

The computer loading of any task, periodic or not, is

given by

where

tm = Maximum task run time
tD = Task deadline

t = Time the task is assigned to a processor

1 4

However, if a task can be assigned to a processor when it is

activated, then

tD = t + tF

and tF can be considered to be the "response time" required

from the task.

A HARDWARE EXECUTIVE

The task schedule must be recalculated when: (1) a real-
time task is added but cannot be accommodated by any processor
and tasks of lower priority are scheduled. A partial recon­
figuration involving the tasks of lower priority is necessary,
and (2) when a processor fails. Since it is desirable to
accomplish the reconfiguration in a minimum amount of time,
especially in the event of a processor failure, it is reasonable
to seek a hardware solution even if this may present an addi­
tional reliability problem.

The hardware executive functions like an associative memory

and a 16-bit adder, although it may be built using a small,

conventional, high-speed memory. A typical memory word appears

as in Figure 10.

I F L A G I PROC I T A S K 1 P R T Y P I T D

Figure 10.- Task word

It would contain its own microprogram control (perhaps in the

same memory). When a task is activated, its first Flag bit is

set at 1. The hardware executive searches all active tasks

which have the highest priority index. Assume that the micro­

program control is such that the executive will divide the total

system load among the processors by a simply round-robin sequence.

In this case, all tasks having the highest priority index will be

assigned to the processors in sequence and the load parameters

for each processor will be incremented by the field of the task

word. The priority index is then incremented and the search re­

peated. The PRO field of the task word is set equal to the

number of the processor to which the task is assigned. A second

flag bit indicates that the task is assigned. When a processor

requests a task, it is given the task with the nearest due time

(TD).

1 5

I

INTERRUPTS

Interrupts may be handled by the hardware executive in a

manner similar to that suggested in references 1 and 6. The

executive can compare the next due time of the task currently

being processed to the due time of the task at the head of the

corresponding processors ATL and generate a processor interrupt,

if necessary. Note that this involves a comparison between

a processor and its ATL and, unlike reference 6, it is not

necessary to make a comparison between processors, or to select

a processor to be interrupted. In this way, it would not be

necessary to interrupt each processor every T microsecond and

the cycle interrupt is no longer required.

Reference 1 points out that external interrupts can be

handled by simply activating their corresponding task. All that

is necessary is to provide a mechanism in the hardware executive

for setting the active bit of the correct task word. The opera­

tion of this interrupt system would be quite different from con­

ventional systems, since an external interrupt which activates

a task of the highest priority may not cause a processor interrupt

even if all processors are working on tasks of lesser priority.

Instead, the executive treats the interrupt task exactly like

any other task. If it has the resources to guarantee the tasks

execution with the required time frame, it may defer execution

of the task. If its resources are insufficient, then the task

is added to a system-wide queue with the winners selected by

priority.

Another flag bit is used to indicate that a task is a

member of the "timer" list. In this case, the TD field contains

the time at which the task should be activated. The nearest

activation time can be placed in a hardware register (labeled

timer in Figure 11). When the nearest time arrives, the associa­

tive processor is interrupted and all tasks with their timer

bits on and a TD field corresponding to the interrupt time are

activated.

CONCLUSION

Algorithm two of this note, modified for a realistic multi­

processor is proposed as a reasonable solution to the real-time

multiprocessor scheduling problem.

On a system basis, the algorithm does not insist that the

active task of greatest priority or even the nearest deadline

be processed first. It simply allocates the total task load

among the individual processors in such a way that the deadlines

of all allocated tasks are guaranteed. If the system resources

are insufficient to allow all of the real time tasks to be

executed, then those of highest priority will be scheduled.

1 6

-

TD

I I I-

I<
-

ASSOC IAT1VE

PROCESSOR

EXTERNAL
INTERRUPTS

L

INTERRUPT

TIMER

b CONTROL

4 I

INTERRUPT

Figure 11.- Hardware executive

The algorithm is sub-optimal in that the allocation of the

total workload to the individual processors may not be the "best"

possible. However, the allocation strategy is independent of

the overall scheduling algorithm and, therefore, subject to

further improvement.

The algorithm is also sub-optimal in that it considers only

the currently active tasks and does not attempt a global optimi­

zation using knowledge of future task loads. However, it is

assumed that there is a class of tasks activated by interrupts

for which the information required for the global optimization

is incomplete and not available. If the executive does have

information on the future activity of a task (for example,

periodic tasks), it can use this to do static rather than dynamic

scheduling, thus decreasing executive overhead and improving

response time.

18

APPENDIX A

SCHEDULING BY PRIORITIES

Consider the following four periodic tasks:

TASK
 4E

A T T/4

C 3T 3T/4

D 4T T

Assume task priorities are assigned as follows:

> pD

A successful task schedule is shown in Figure A-1. The tasks

are scheduled by deadlines. Note that this requires scheduling

C before D during cycle 2 and D before C during cycle 4.

Scheduling by priority would result in task D missing its dead­

line, although the multiprocessor is capable of executing all

tasks successfully.

A B I C A 1 C P I A l O A D

A A A
C B

D

Figure A-1.- Task schedule

19

APPENDIX B

MEMORY CONFLICTS

Another reason for the departure of a realistic multi­

processor from an "ideal" multiprocessor is the presence of

hardware and software conflicts. Software conflicts are due

to exclusive data areas which can be modified by only one pro­

cessor at a time. Hardware conflicts can result during 1/0

operations or, more probably, from multiple accesses of a single

memory module. Conflicts complicate scheduling because they may

extend the execution time of a task beyond its "maximum run time"

parameter.

In order to estimate the effects of memory conflicts, a

simulation was conducted using the multiprocessor configuration

of Figure 1. The number of rriemory modules was assumed to be

equal to the number of processors. The memory conflict depends

on the cycle time of the memory and the processor operating

speed which determines the rate of memory accesses. Processor

timing was assumed to be as in Figure B-1.

tfI time to fetch on instruction from the memory

tD time to decode instruction address

tfO time to fetch an operand

tE time to execute an instruction

Figure B-1. - Processor cycle

The processors competed for each individual memory on a

round-robin basis. A memory was attached to a particular pro­

cessor for a memory cycle time (tmc). If the required memory

was unavailable, the processor cycle of Figure B-1 would be
lengthened accordingly. Values used in the simulation were:

20

tD = 1 microsec (ps)

tE = 1 US (6 0 %) , 9 US (40%)

Both the instructions and data were considered to be

randomly distributed in pages among the memory modules. A total

of 256 accesses was made from each page and then a new page

was chosen at random. The resultant system through-put and

percentage of a processor's time lost to a memory conflict

appear in Figures B-2a and B-2b. For the processors assumed,

the memory conflicts do not appear critical for 1 and 2 micro­

second memories and the task maximum run-time parameter can be

modified to take memory conflicts into account.

Since the scheduling algorithm of this note allows some

measure of freedom in allocating the total system workload

among the individual processors, one possible algorithm is to

assign individual tasks to the processors so as to minimize

potential memory conflicts. In this case, there would be a

complex interaction between the task scheduling and memory

allocation functions of the Executive.

21

1

PROCESSORS

8 7 6 5 4 3 2

6
I X I 0 u) 50

I­o

7
LL z
0 40 o
0
I-

/ / 4 u s I­
u) 30

0
1

W z
-
I- 20
LL
0
I­z I O
W
0.I K

I W
I- I I I I I 1 I 0,

I 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

PROCESSORS PROCESSORS

F i g u r e B-2 . - Memory c o n f l i c t s

REFERENCES

1. 	 Lampson, Butler W.: A scheduling Philosophy for Multi­
processing Systems. Communications of the ACM, vol . 11,
no. 5, May 1968.

2. 	 Graham, R. L.: Bounds on Multiprocessor Timing Anomalies.
SIAM J. Appl. Math., vol . 17, no. 2, March 1969.

3. 	 Manacher, G. K.: Production and Stabilization of Real-
Time Task Schedules. Journal of the Association for
Computing Machinery, vol . 14, no. 3, July 1967.

4. 	 Ochsner, B. P.: Controlling a Multiprocessor System. Bell

Laboratories Record, February 1966.

5. 	 Richards, Paul I.: Parallel Programming. Report under

contract No. AF33(600)-35190 at Tech. Operations, Inc.,

Burlington, Mass.

6. 	 Gountanis, R. J., and Viss, N. L.: A Method of Processor
Selection for Interrupt Handling in a Multiprocessor System.
Proceedings of the IEEE, vo l . 54, no. 12, December 1966.

NASA-Langley, 1970 -8 c-111 23

-

I111111111mII1111I11111

,, A

>c
r@ATIONAL AERONAUTICSAND SPACE ADMINISTRATION
i WASHINGTON,D. C. 20546

OFFICIAL BUSINESS FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AN

SPACE ADMINISTRATION

POSTMASTER: 	 If Undeliverable (Section 158
Posral Manual) Do Not Rerun

~.

“The aqTomwiicn1 nnd spnce nc i i i ’ i t i es of the Uuitecl Stntes shnll be
cdiiducted so ns i o coutribicte ~ . . t o the expnnsion of hiiiiiaiz kfzoivl­
edge ,of p ~ e n o n t e n ni72 the afiiiosphere mid space. The Adiiiiizistrndioiz
shnfl pror8ide for the widest prncticnble r m d npproprinte dissemimtjon
of i~zforiitntioucoizcer~aiizg iis lictiisities n m l the results thereof.”

-NATIONALAERONAUTICS A N D SPACE ACT OF 195s

NASA SCIENT~FICAND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge. ’

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica­
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS : Information on technology
used by NASA that may be of particular
interest i n commercial and other non-aerospace
applications. Publications include Tech Briefs,
l’tchnology Utiliz‘ition Reports and Notes,
and Technology Surveys.

;

Details on the availability of fhese publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADM I N ISTRATI ON
Washington, D.C. 20546

