NASA TECHNICAL NOTE 'NASA TN D-5786

— =
b =g
m _=
N =-
: S=73
= TOAN ol ve thee S
= etk f CJ;I’,, D—g)
ol U=
g KIRTD & s
—
=

TASK SCHEDULING FOR
A REAL TIME MULTIPROCESSOR

by Jobn W. Jordan

Electronics Research Center
Cambridge, Mass. 02139

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION e WASHINGTON, D. C. o MAY 1970

NASA TN D-5786

4. Title and Subtitle

Task Scheduling for a
Real Time Multiprocessor

7. Author(s)
John W. Jordan

9. Performing Organization Nome and Address

Electronics Research Center
Cambridge, Mass.

12. Sponsoring Agency Name and Address

National Aeronautics and
Space Administration

15. Supplementary Notes

16. Abstract

be met.

priority tasks will be scheduled.

17. Key Words

*Real-Time Tasks Scheduling
*Multiprocessor System
*Algorithm

*Hardware Implementation

Unclassified

1. Report No, 2, Government Accession No.

| May 1970

113. Type of Report a.nd Period Covered

This report describes an algorithm for scheduling
real-time tasks in a multiprocessor system.
guarantees that the deadlines of all scheduled tasks will
If the number of active tasks exceeds the capa-
bility of the multiprocessor, then only the highest
The algorithm is sub-
optimal in that it may fail to schedule one or more
low-priority tasks which could be accommodated.
ware implementation of the algorithm is discussed.

18. Distribution Stotement

Unclassified — Unlimited

19. SCI:Ur.ify élussii. {of this report) 20. Security Classif. {of this page)
Unclassified

TECH LIBRARY KAFB, NM

LT

— 0132502

3 Recipient's Catalog No.

5. Report Date

6. Performing Organization Code

8. Performing Organization Report No.
Cc-111

10. Work Unit No.
125-23-07-06

11. Contract or Grant No.

Technical Note

14. Sponsoring Agency Code

The algorithm

A hard-

21. No. of Pages 22. Price ®

24 $3.00

*For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151

TASK SCHEDULING FOR A REAL TIME MULTIPROCESSOR

By John W. Jordan
Electronics Research Center
Cambridge, Massachusetts

SUMMARY

This note presents an algorithm for scheduling real time
tasks in a multiprocessor. The algorithm guarantees that the
deadlines of all scheduled tasks will be met. If the number of
active tasks exceeds the capability of the multiprocessor, then
only the highest priority tasks will be scheduled.

First, a simple scheduling algorithm is developed which
guarantees real time deadlines for periodic tasks. A second
algorithm is then derived from the first which also guarantees
task deadlines but requires fewer processor interruptions. A
system load parameter is defined and used to divide the tasks
into two categories -- high priority tasks which can be sched-
uled with guaranteed deadlines and low priority tasks for which
current resources are insufficient to allow execution. At this
point, the division of the total system load among the individual
processors is considered. This is an optimization problem, but
at the present time a sub-optimal solution seems sufficient. The
allocation of the total system load among the individual pro-
cessors is in terms of a "task load" parameter and does not
necessitate a consideration of real time task deadlines, thus
considerably simplifying the scheduling problem.

Non-period tasks, interrupts and a hardware implementation
of the scheduling algorithm are discussed. An appendix considers
memory access conflicts.

INTRODUCTION

A multi-processor is a computer system consisting of a
number of processors which can communicate through a common memory
bank. Since the organization of these units may influence the
choice of scheduling algorithms the structure of Figure 1 will
be assumed. The most important characteristic of this system is
that it is "fully distributed" in that each processor can access
any memory module.

The number of memory units and processors is not important,
and the system may be modular with a variable number of units.
The procedures (programs) which are executed by the multi-processor
are divided into tasks. When a processor completes a task it

executes a special procedure called the executive which deter-
mines which task will be processed next. This note is concerned
with the algorithm used by the executive to select the next task.

M M M M

Figure 1.~ A Multiprocessor

The most interesting aspect of the multiprocessor configu-
ration is the possibility of "fail soft" operation -~ that is,
the failure of a memory module or processor will result in loss
or degradation of some functions while still maintaining other,
more important, functions. Achieving this "fail soft" operation
is complicated by the possibility that the failure of a processor,
for example, will not only reduce the computational resources of
the system but may also impose an additional load on the system
since special diagnostic routines must be executed to isolate
the faulty unit and one or more tasks executed by the faulty
processor may have to be "rolled back" or corrected for possible
errors. For this reason it is desirable to design an algorithm
which requires a minimum of re-configuration of the task struc-
ture in the event of a hardware failure. Ideally, the algorithm
would insure the continued execution of the most important tasks
and forego execution of less important tasks. It is then possible
to introduce a degraded mode of operation with a modified task
structure.

PROBLEM DEFINITION

Each real time task must-be completed within a specified
time frame as shown in Figure 2.

A
!

ts te "
ta td ta

Figure 2.- Real Time Task

The times involved are — t5 the activation time after which
the task can be executed. It is often dependent upon some system
event such as an external interrupt, I/0 completion Oor a pro-
cessor timer. tg is the task deadline. is the task period
if the task is periodic. is the time wﬁen the task execution
starts and t_, is the time wﬁen it ends. For the time being, only
independent periodic tasks will be considered. These are charac-
teristic of a real time sampled data system. For simplicity the
time frame tg during which the task must be processed will be
taken as equal to the task period as shown in Figure 3. The
activation time t; is controlled by a processor timer and is pre-
cisely known.

ta td
ta*
Figure 3.- Simplified Periodic Task

A solution of the scheduling problem requires

(1) the development of an algorithm such that those tasks
chosen for execution are completed within the specified time
frame and

(2) since the current number of operative processors may be
incapable of processing all the active tasks, the algorithm must
also select which of the active tasks are to be executed.

Since the "importance" of a task is only meaningful in the
context of the task's function, it is up to the application pro-
grammer to assign to each task an integer variable called its
priority index. Since mission conditions may change, the priority
index may also change. Normally, however, it can be expected to
be a relatively constant value.

It is important to note that this assignment of priority is
not a determination of which task is to be executed next; it
simply represents the relative value (at the present time) of
eventually executing task A rather than task B provided that the
multiprocessor is unable to execute both within their specified
time frames.

It is easy to show an example (Appendix A) where executing
tasks in order of their priority will result in missed deadlines
when the multiprocessor is actually capable of executing all
tasks satisfactorily. Conversely, an algorithm which considers
only task deadlines will inevitably result in the execution of
tasks of low priority while tasks of higher priority miss their
deadline when the multiprocessor is operating under an overload
condition. Actually, the constraints imposed by real time dead-
lines may require that tasks of low priority be scheduled before
tasks of higher priority; but the algorithm must also consider
priority so that if all the deadlines cannot be met the tasks of
highest priority will be successful. The resolution of this
potential conflict between task deadlines and task priorities
is the fundamental design problem.

It should be noted that priority is considered to be a
variable independent of other task parameters such as length,
period, etc. Correlations between task parameters may permit
the use of simpler scheduling algorithms.

IDEAL MULTIPROCESSOR

In order to simplify the discussion of scheduling algorithms,
it is helpful to define an ideal (but unrealizable) multiprocessor.
An ideal multiprocessor behaves like a single processor and
memory unit. The addition of more processors is equivalent to
increasing the speed of the ideal processor by a unit amount.

The scheduling of an ideal multiprocessor is then similar to
multiprogramming with a single processor. 1In a later section the
restriction of an ideal multiprocessor will be removed.

EXECUTIVE IMPLEMENTATION

The executive has at least two lists -- a timer list and the
Active Task List (ATL). The timer list is controlled by a real
time clock in each processor as described in Ref. 1. When the
processor clock reaches a specified time the processor moves any
tasks on the timer list which are due to be activated at that
time to the ATL. The processor clock is then reset. As the
processors become idle, they take the topmost task from the ATL.
The scheduling algorithm is responsible for ordering the ATL.

Not all the tasks in the system will have real time require-
ments. These "background" tasks may be kept in a separate list

ordered by priority. They are executed after the real time tasks
have been processed.

SCHEDULING ALGORITHM ONE

Associate with each task a number tp which is the maximum

time required to execute that task. Consider the following group
of tasks:

TABLE I
Task Period tm
A T T/3
B 2T 2T/3
C 3T T

With one processor the following schedule will meet the periodic
deadlines. The reader will note that it is not a unique solution.

] ———

A |B/2]|C/3 | A |B/2|C/3 | A |B/2]|C/3

A A A
B
Figure 4.- Task Schedule

o

The letters below the lines indicate the task deadlines. The
minimum task period T is a fundamental parameter and will be
called a "cycle." The scheduling algorithm is

(1) Since A must be executed every cycle schedule A

(2) Since B must be completed in two cycles, do one-half
of B each cycle

(3) Since C must be completed in three cycles, do one-
third of C each cycle.

In general, if t; is the maximum run time for task k and its
period is tp then

a(k) = Ttm(k)/tp(k) (1)

is the amount of time which must be devoted to that task during
eacy cycle in order to meet its deadline. For Np processors
and Np tasks

oo R Z o (k) (2)
A multiprocessor loading parameter may be defined by

N
1 £
L=T—N_Z o (k) (3)
P xi1

Computer loading is a basic parameter since it represents the
fractional part of the computer's processing capability necessary
to process the Np tasks. A value of greater than one means that
all the tasks cannot be processed. The value 100 x L is the
percentage of the multiprocessor time required to process the

tasks.

Each cycle o (k) microseconds are spent executing the kth
task. Each cycle is exactly like all other cycles. This means
that the processors must switch from task to task during a cycle
without completing the tasks. For example, if there were 20
active tasks and two processors, each processor would make about
nine task changes per cycle. Although o (k) would be different

for each task, if the basic cycle time T were 20 ms an average
time of about 2 ms would be spent on each task per cycle. The
task switching can be accomplished by a hardware interrupt or by
subdividing the tasks into segments requiring ax seconds or less
to execute. A special switching instruction would bound each
segment.

A suitable organization of the ATL is shown in Figure 5.

S

-

Figure 5.~ Active Task List (ATL)

The tasks form a circular chain. There is a fixed pointer
(TOP) which designates one task as the top of the chain. Another
pointer (NEXT) points to the next task to be executed. An idle
processor will pick up the NEXT task and advance the NEXT pointer.
The processor timer will be set to cause an interrupt after o
microseconds at which time the NEXT task will be executed. Every
T microseconds the NEXT pointer will be reset to the TOP pointer
and a new cycle initiated. Since each ap is based upon maximum
task run time and the actual run times will be somewhat less,
the NEXT pointer will, in all likelihood complete more than one
full circle per cycle. However, this additional time can also
be used to process background (nonreal time) tasks.

Since the order in which the tasks are executed does not
effect the deadline requirements they can be arranged in order
of priority with the TOP pointer pointing to the task of highest
priority. If one or more processors fail, the NEXT pointer will
complete less than one full circle per cycle. However, those
tasks with the greatest priority will be executed. It is in-
teresting to note that this algorithm does not need any explicit
information about the number of operating processors —-- that is,
Eg. (3) does not have to be evaluated -- since the algorithm
automatically adjusts to the number of operating processors. On

the other hand by observing the position of the NEXT pointer at
the cycle interrupt every T microsecond some information about
the number of operating processor can be obtained.

A disadvantage of this algorithm is that if the number of
active tasks is large there will be a corresponding increase in
the number of interruptions per cycle. The overhead involved
in changing the processor state may become excessive if there
are a large number of active registers to be stored. In the
next section, another scheduling algorithm which circumvents
this difficulty will be presented.

SCHEDULING ALGORITHM TWO

For scheduling algorithm one a typical schedule might
appear as in Figure 6. In this example L = 1 and task priority
has been ignored.

anpa C.‘B Q¢ QA QB QC aA QB QC

Figure 6.- Real Time Schedule

Once again, the letters under the graph indicate task dead-
lines. Since task A is due every cycle it must be executed each
cycle. However, task B is due every two cycles and it makes
little difference whether it is executed during cycle one or two.
Since o¢ is greater than ap it is possible to move ap from cycle
two to cycle one and replace it with an equivalent amount of a
from cycle one. Even if ap were greater than og it would stili
be possible to move part of og into cycle one. Clearly, it is
possible to rearrange the time of execution of a task as long as
the execution is not delayed past the task deadline. One such
rearrangement (not the only one) is to consolidate the tasks

such that those tasks with the earliest deadlines are executed
first. This is scheduling algorithm two. Since insofar as dead-
lines are concerned, there is no essential difference between
algorithm one and algorithm two it follows that algorithm two
(earliest deadline) also guarantees that all the real time dead-
lines will be met. However, the number of task interruptions
necessary will be reduced to one every T microseconds and only
the cycle interrupt will be required. During the cycle the pro-
cessors process the tasks to completion in order of their dead-
lines.

However, it is clear that as it presently stands algorithm
two is sensitive to resource variations. For example, if a
processor were to fail the tasks would continue to be executed
according to their deadlines and without regard to their priority.
To correct this condition, the implementation of Figure 7 can be
used.

AN A N

ATL PL TIMER

Figure 7.- Implementation of Algorithm Two

A third list called the priority list (PL) is added. All
active tasks appear on the PL, ordered by priority. Only a
certain number of the tasks on PL also appear on the ATL where
they are ordered by deadline. In order to determine how many of
the PL tasks may also appear on the ATL, the computer load para-
meter of Eq. (3) is calculated for the tasks on the PL starting
with the highest priority task. When the load parameter equals
or exceeds one, no further tasks may appear on the ATL. Thus
modified, algorithm two guarantees that the real time deadlines
of scheduled tasks will be met, and if the multiprocessor cannot
do all tasks only those of the highest priority will be done. It
has an advantage over algorithm one in that the processors must
be interrupted only at the end of every cycle no matter how many
tasks are active.

EwI

MULTIPROCESSOR ANOMALIES

The restriction of an "ideal” multiprocessor will now be
removed. The occurance of so called "anomalies" in a realistic
multiprocessor presents a serious difficulty in scheduling real
time tasks. The literature (Ref. 2, 3, 4) contains numerous
examples where shortening the execution time of one or more tasks
results in an increase in the overall execution time of a string
of tasks. This counterintuitive response can result when the
shortened run time of a task alters the sequence in which sub-
sequent tasks are executed, thus producing a complex re-ordering
of the execution time history of the entire task string. Ref.

2 gives examples where decreasing the actual task run time,
relaxing precedence relations between tasks and adding more
processors can actually increase the overall time required to
process a task string. In terms of the algorithms of this note
the problem is illustrated by Figure 8.

ot

¢}

Figure 8.- Multiprocessor Anomality

Figure 8a represents a multiprocessor with one processing
unit. If a second processor were added to an "ideal" multi-
processor, the task list would be processed in half the time.
However, for an actual multiprocessor, Figures 8b and 8c clearly
show that the time required is a function of the order in which
the tasks are processed. What is required is to take the single
task string of Figure 8a of length T and sub-divide it into N
separate task strings of length T/N. In general, there is no
procedure for doing this -- optimal or otherwise. For some task
strings it may not be possible; for example, if Figure 8a con-
sisted of one single task which could not be executed in parallel.
However, Figure 8b and 8c represent two attempts at a subdivision

10

of Figure 8a -- one of which is successful; the other which is
not. Quite possible there is an algorithm which is optimal in
the sense that it subdivides a string of length T into N strings
of length N/T in such a way that a minimum number of the original
tasks must be discarded. Graham (Ref. 2) points out that the
optimal solution (for an equivalent problem) can be found by
trying all possible combinations but that this is practical for
only a limited number of tasks. He suggests ordering the single
task list by task length. This procedure cannot be applied to
the algorithms of this note since algorithm one orders the tasks
by priority and algorithm two by their deadline. Graham also
provides a number of bounds for multiprocessor anomalities. For
the case where T is the time required to process the single task
list and T* is the time required to process the multiple lists

T* =T

which simply says that the addition of more processors may pro-
vide no improvement -- which is indeed the case if the system
contains one long task. Although this bound is of 1little help
in this situation it indicates that processor anomalities must
be considered in any multiprocessor scheduling philosophy.

The problem of converting an ideal multiprocessor schedule
into an actual multiprocessor schedule can be considered from
another viewpoint. Define a task load parameter by

B(k) = t/te (4)

so that B(k) is the fractional processor capacity required to
process task k. From Eqg. (3)

Np

>
Np z Zl B (k) (5)

where Ny is the number of processors and Nqp is the number of
tasks which can be processed by an ideal multiprocessor. The
scheduling problem is now transformed from the time domain to a
"computer loading" domain. The ideal multiprocessor can accom-
modate a load of N, but each real processor can accommodate a
maximum load of on?y 1. Figure 9 illustrates this for Ny, = 2.
The scheduling problem becomes one of allocating the total
computational load of Np into N, separate lists, none of which
can exceed unity. Of course, tgis is exactly the problem con-
sidered by Graham, only now in terms of computer load rather
than task run times. Since the B(k)'s are discrete, it may not

11

be possible to decompose the list exactly and some B(k)'s may

be left over. However, an additional degree of freedom has been
introduced since the actual division into the separate lists can
be done in any fashion including Graham's method of assigning
the longest B(k)'s first. There is a constraint, however, in
that if some B(k)'s (and their corresponding tasks) are dis-
carded they should not have a priority higher than any task left.
The "best" solution can be found by trying all possibilities
although this soon becomes impractical if the number of active
tasks is large. The simplest sub-optimal solution is to assign
the B(k)'s to the processors in a round-robin fashion starting
at the top of the priority list. Appendix B discusses another
allocation strategy.

IDEAL B, Bo | Bz | Ba |

2

PROC | Bi By

L

PROC 2 B3 Bz |

Figure 9.~ Processor Loading

The assignment problem actually consists of decomposing
the overall task list into separate lists for each processor.
Eventually, of course, this assignment must be made. The in-
efficiency results from the discrete nature of the tasks and
hence the B(k)'s. It is easy to find an upper bound to the
inefficiency which results. From Eg. (3) the loading of the
"ideal" multiprocessor is

N

L= 2, Bik)
1l

For the individual processors the loading is

R

Lp = le B (k)

where R is the last task on the kth processor's list. The per-
cent inefficiency can be defined as

7 = 100 %1 (6)

12

where

N

* =
L i LK

It is reasonable to establish a limit on the ratio of a task's
maximum run time to its execution time frame

>
A2 tm/tF

or

A = max {B(k)} (7)
From Eq. (6) and Eg. (7) it follows that

n < 1004 (8)

If A is .5, the maximum inefficiency is 50 percent; and if A is
.2, the maximum inefficiency is 20 percent. This shows the
value of dividing the total system load into many smaller tasks.
However, the division criteria is not the length of the task
but rather the ratio of the task length to the time frame in
which the task must be executed.

In summary, scheduling a realistic multiprocessor requires
the allocation of the. total multiprocessor load among the
individual processors. This allocation can be regarded as an
optimization problem; however, a simple sub-optimal solution
would seem to be adequate. When all the real time tasks can be
scheduled, any solution can be regarded as "optimal." By
allocating the task loading it is no longer necessary to consider
the real time constraints on the individual tasks, thus con-
siderably simplifying the scheduling problem.

Up to now, it has been assumed that all the tasks were
periodic and independent. When the problem of scheduling these
tasks is transformed from the time domain to the computer loading
domain, it becomes a static problem of decomposing one long
list into N, shorter lists. However, the tasks are being
periodically activated, run, and terminated so the computer
loading is actually a dynamic rather than static parameter. But
it is much simpler to consider it as a static quantity. One
method of accomplishing this is as follows: when each periodic
task is assigned to a processor it is tagged with that pro-
cessors number. When the executive timer activates the task it
puts it directly onto an Active Task List (ATL) for the proper

13

processor. The task load is always assigned to that processor,
thus assuring the capacity to meet the task deadlines. If the
number of available processors changes, the task lists must be
rescheduled.

NONPERIODIC TASKS

As mentioned before, the total multiprocessor load is
divided into real-time tasks which have associated deadlines and
background tasks without deadlines. The real-time tasks are
processed first. However, it is to be expected that in an
actual system there would be additional real time tasks which
do not meet the restrictions which have been assumed up to this
point. Some examples are real-time tasks which are activated
after the completion of other tasks and tasks controlled by
external interrupts. If the tasks are activated after the pre-
requisite conditions have been met, then all active tasks can
still be considered independent tasks.

If new, nonperiodic tasks are activated, then the computer
loading and task scheduling must become dynamic since no prior
allowance for the task's additional loading has been made. If
the multiprocessor is processing a mixture of real-time and
background tasks, this may be quite simple, since the multipro-
cessor has additional capacity beyond that necessary to handle
the real time tasks. The new task can simply be added to any
processor list which will accommodate it with less time re-
maining for background work. It is implicity assumed that the
background tasks have lower priorities than the real-time tasks.
However, it is also possible for the executive to maintain a
balance between real-time and background tasks, based upon their
priorities. A problem arises when a real-time task cannot fit
on any processor list but its priority is greater than that of a
currently scheduled task. In this case, the tasks must be re-
scheduled so that lower priority tasks are removed.

TASK ACTIVATION TIMES

The computer loading of any task, periodic or not, is
given by

B (k) = tm/(tD = &)
where
b = Maximum task run time
ty = Task deadline
t = Time the task is assigned to a processor

14

However, if a task can be assigned to a processor when it is
activated, then

tD = t + tF

B(k) =t /t,

and tp can be considered to be the "response time" required
from the task.

A HARDWARE EXECUTIVE

The task schedule must be recalculated when: (1) a real-
time task is added but cannot be accommodated by any processor
and tasks of lower priority are scheduled. A partial recon-
figuration involving the tasks of lower priority is necessary,
and (2) when a processor fails. Since it is desirable to
accomplish the reconfiguration in a minimum amount of time,
especially in the event of a processor failure, it is reasonable
to seek a hardware solution even if this may present an addi-
tional reliability problem.

The hardware executive functions like an associative memory
and a 16-bit adder, although it may be built using a small,
conventional, high-speed memory. A typical memory word appears
as in Figure 10.

FLAG PROC TASK PRTY B TD

Figure 10.- Task word

It would contain its own microprogram control (perhaps in the
same memory). When a task is activated, its first Flag bit is
set at 1. The hardware executive searches all active tasks

which have the highest priority index. Assume that the micro-
program control is such that the executive will divide the total
system load among the processors by a simply round-robin sequence.
In this case, all tasks having the highest priority index will be
assigned to the processors in sequence and the load parameters
for each processor will be incremented by the B field of the task
word. The priority index is then incremented and the search re-
peated. The PRO field of the task word is set equal to the
number of the processor to which the task is assigned. A second
flag bit indicates that the task is assigned. When a processor
requests a task, it is given the task with the nearest due time
(TD) .

15

INTERRUPTS

Interrupts may be handled by the hardware executive in a
manner similar to that suggested in references 1 and 6. The
executive can compare the next due time of the task currently
being processed to the due time of the task at the head of the
corresponding processors ATL and generate a processor interrupt,
if necessary. Note that this involves a comparison between
a processor and its ATL and, unlike reference 6, it is not
necessary to make a comparison between processors, or to select
a processor to be interrupted. In this way, it would not be
necessary to interrupt each processor every T microsecond and
the cycle interrupt is no longer required.

Reference 1 points out that external interrupts can be
handled by simply activating their corresponding task. All that
is necessary is to provide a mechanism in the hardware executive
for setting the active bit of the correct task word. The opera-
tion of this interrupt system would be quite different from con-
ventional systems, since an external interrupt which activates
a task of the highest priority may not cause a processor interrupt
even if all processors are working on tasks of lesser priority.
Instead, the executive treats the interrupt task exactly like
any other task. If it has the resources to guarantee the tasks
execution with the required time frame, it may defer execution
of the task. If its resources are insufficient, then the task
is added to a system-wide queue with the winners selected by

priority.

Another flag bit is used to indicate that a task is a
member of the "timer" list. In this case, the TD field contains
the time at which the task should be activated. The nearest
activation time can be placed in a hardware register (labeled
timer in Figure 11l). When the nearest time arrives, the associa-
tive processor is interrupted and all tasks with their timer
bits on and a TD field corresponding to the interrupt time are
activated.

CONCLUSION

Algorithm two of this note, modified for a realistic multi-
processor is proposed as a reasonable solution to the real-time
multiprocessor scheduling problem.

On a system basis, the algorithm does not insist that the
active task of greatest priority or even the nearest deadline
be processed first. It simply allocates the total task load
among the individual processors in such a way that the deadlines
of all allocated tasks are guaranteed. If the system resources
are insufficient to allow all of the real time tasks to be
executed, then those of highest priority will be scheduled.

16

LT

PROCESSOR[—{ TD

T1

INTERRUPT

‘_
|
TD K——— ASSOCIATIVE [¢— EXTERNAL
PROCESSOR — INTERRUPTS
2 Wil
<—— —
‘_
3 -
—
Np &—— ﬂ
TIMER
| CONTROL
‘—
INTERRUPT

Figure 1ll1.- Hardware executive

The algorithm is sub-optimal in that the allocation of the
total workload to the individual processors may not be the "best"
possible. However, the allocation strategy is independent of
the overall scheduling algorithm and, therefore, subject to
further improvement.

The algorithm is also sub-optimal in that it considers only
the currently active tasks and does not attempt a global optimi-
zation using knowledge of future task loads. However, it is
assumed that there is a class of tasks activated by interrupts
for which the information required for the global optimization
is incomplete and not available. If the executive does have
information on the future activity of a task (for example,
periodic tasks), it can use this to do static rather than dynamic
scheduling, thus decreasing executive overhead and improving
response time.

18

APPENDIX A

SCHEDULING BY PRIORITIES

Consider the following four periodic tasks:

TASK £ tn
A T T/4

2T T/2
8 3T 3T/4
D AT T

Assume task priorities are assigned as follows:

A successful task schedule is shown in Figure A-1l. The tasks
are scheduled by deadlines. Note that this requires scheduling
C before D during cycle 2 and D before C during cycle 4.
Scheduling by priority would result in task D missing its dead-

line, although the multiprocessor is capable of executing all
tasks successfully.

Figure A-1.- Task schedule

19

L T T b . ————

APPENDIX B

MEMORY CONFLICTS

Another reason for the departure of a realistic multi-
processor from an "ideal" multiprocessor is the presence of
hardware and software conflicts. Software conflicts are due
to exclusive data areas which can be modified by only one pro-
cessor at a time. Hardware conflicts can result during I/O
operations or, more probably, from multiple accesses of a single
memory module. Conflicts complicate scheduling because they may
extend the execution time of a task beyond its "maximum run time"

parameter.

In order to estimate the effects of memory conflicts, a
simulation was conducted using the multiprocessor configuration
of Figure 1. The number of memory modules was assumed to be
equal to the number of processors. The memory conflict depends
on the cycle time of the memory and the processor operating
speed which determines the rate of memory accesses. Processor
timing was assumed to be as in Figure B-1l.

e o e

th time to fetch on instruction from the memory
tD time to decode instruction address

tfo time to fetch an operand

tE time to execute an instruction

Figure B-1l.- Processor cycle

The processors competed for each individual memory on a
round-robin basis. A memory was attached to a particular pro-
cessor for a memory cycle time (tpce). If the required memory
was unavailable, the processor cycle of Figure B-1 would be
lengthened accordingly. Values used in the simulation were:

20

toe = ter = tme’/?
ty = 1 microsec (us)
tgp = 1 us (60%), 9 us (40%)

Both the instructions and data were considered to be

randomly distributed in pages among the memory modules. A total

of 256 accesses was made from each page and then a new page
was chosen at random. The resultant system through-put and
percentage of a processor's time lost to a memory conflict
appear in Figures B-2a and B-2b. For the processors assumed,
the memory conflicts do not appear critical for 1 and 2 micro-
second memories and the task maximum run-time parameter can be
modified to take memory conflicts into account.

Since the scheduling algorithm of this note allows some
measure of freedom in allocating the total system workload
among the individual processors, one possible algorithm is to
assign individual tasks to the processors so as to minimize
potential memory conflicts. In this case, there would be a
complex interaction between the task scheduling and memory
allocation functions of the Executive.

21

A4

Ixﬂf

»n 50
'_
O
o -
L) TR
w =
~ O 40}
22 Q
o @]
=
Q o 30t
5 - -
z =
— 20 -
e -
] (VI
(' (@]
I o
(& Z 10~
3 Ll
O Q
x - (1
T L
o & L \ L 1 1 l 1 i a
| 2 3 4 5 6 7 8
PROCESSORS PROCESSORS

Figure B-2.- Memory conflicts

REFERENCES

1. Lampson, Butler W.: A scheduling Philosophy for Multi-
processing Systems. Communications of the ACM, vol. 11,
no. 5, May 1968.

2. Graham, R, L.: Bounds on Multiprocessor Timing Anomalies.
SIAM J. Appl. Math., vol. 17, no. 2, March 1969,

3. Manacher, G. K.: Production and Stabilization of Real-
Time Task Schedules. Journal of the Association for
Computing Machinery, vol. 14, no. 3, July 1967.

4. Ochsner, B. P.: Controlling a Multiprocessor System. Bell
Laboratories Record, February 1966.

5. Richards, Paul I.: Parallel Programming. Report under
contract No. AF33(600)-35190 at Tech. Operations, Inc.,
Burlington, Mass.

6. Gountanis, R. J., and Viss, N. L.: A Method of Processor

Selection for Interrupt Handling in a Multiprocessor System.
Proceedings of the IEEE, vol. 54, no. 12, December 1966.

NASA-Langley, 1970 — 8 C=111 23

PRSP L

F.pﬂATI‘(iNAi "AERONAUTICS AND SPACE ADMINISTRATION
WasHINGTON, D. C. 20546

OFFICIAL BUSINESS

FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AN
SPACE ADMINISTRATION

. If Undeliverable { Section 158
POSTMASTER: Postal Manual) Do Not Returr

“The agronantical and space activities of the United States shall be

conducted so as to contribute . .

. to the expansion of buman knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,

complete, and a lasting contribution to existing

knowledge.

TECHNICAL NOTES: Information less broad

in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution

because of preliminary data, security classifica-

tion, or other reasons.

CONTRACTOR REPORTS: Scientific and

technical information generated under a NASA

contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English,

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and Notes,
and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

