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doors and secondary flaps. The flaps and doors were stable at a l l  power settings and 
free-stream Mach numbers. Nozzle efficiencies of 0.98 were obtained at takeoff with 

a nozzle pressure ratio near 3.0, and 0.971 a t  Mach 2 .0  with a nozzle pressure ratio 
near the design value of 29.0. At subsonic cruise both the nozzle performance and the 
floating flap position was sensitive to nozzle pressure ratio. For  example, a t  Mach 0.9 

increasing pressure ratio from 3.27 to 4.20 increased nozzle efficiency from 0.868 to 
0.888 and reduced the nozzle a rea  ratio from 2.93 to 2.38. 
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PERFORMANCE OF AN AERODYNAMICALLY POSITIONED AUXILIARY 

INLET EJECTOR NOZZLE AT MACH NUMBERS FROM 0 TO 2.0 

by Donald L. Bresnahan 

Lewis Research Center 

SUMMARY 

An experimental investigation was conducted in the Lewis Research Center's 8- by 
6-Foot Supersonic Wind Tunnel to determine the performance characteristics of a cold 
flow 8.5-inch (21.59-cm) diameter auxiliary inlet ejector with aerodynamically posi- 
tioned tertiary inlet doors and secondary flaps. The design pressure ratio of the nozzle 
was 29.0. Two primary nozzles were tested: a small nozzle with a throat to nacelle 
a r e a  ratio of 0.185 to simulate operation a t  subsonic and supersonic cruise and nonafter- 
burning acceleration, and a large nozzle with an a rea  ratio of 0.261 to simulate after- 
burning takeoff and acceleration and also idle descent. 

The flaps (which could reduce the exit a rea  by 38 percent) and the inlet doors were 
stable at all power settings and free-stream Mach numbers. For  a typical trajectory, 
the flaps were closed at takeoff and during subsonic acceleration. The flaps began to 
open a t  Mach 1 . 0  and were fully open a t  Mach numbers of 1.47 and above. The auxiliary 
inlets were full open at takeoff and partially open at subsonic cruise. During accelera- 

tion the inlets were closed at speeds above Mach 0.8. 
Nozzle efficiencies of 0.98 were obtained a t  takeoff with a nozzle pressure ratio 

near 3.0 and 0.971 at Mach 2.0 with a nozzle pressure ratio of 27.6. At subsonic cruise 
both nozzle performance and floating flap position were sensitive to nozzle pressure  ra- 
tio. For example, at Mach 0.90 increasing pressure ratio from 3.27 to 4.20 increased 
nozzle efficiency about 2 percent to 0.888 and reduced the nozzle a r e a  ratio from 2.93 
to 2.38. 

INTRODUCTION 

The Lewis Research Center is evaluating various nozzle concepts appropriate for 
supersonic cruise applications. These nozzles must operate efficiently over a wide 



range of flight conditions and engine power settings, necessitating extensive geometric 

variations. The performance of a low-angle plug nozzle and a variable-flap ejector noz- 

zle designed for  a supersonic cruise aircraft  a r e  reported in  references 1 and 2, r e -  

spectively. Another nozzle type of interest is the auxiliary inlet ejector. At the super- 

sonic cruise point, this nozzle is similar to the variable-flap ejector. However, at 
takeoff and subsonic flight conditioiis, auxiliary inlets open to admit tertiary a i r  to mini= 

mize primary flow overexpansion. This tertiary air fills part  of the shroud, reducing 

the amount of exit-area variatioii required with an associated reduction in boattail area.  

Internal performance for an auxiliary inlet ejector nozzle with fixed geometry has been 

reported in reference 3 .  An ejector nozzle with free-floating doors and fixed shroud 

exit areas is reported in reference 4. However, experimental results on auxiliary inlet 

ejector nozzles with fully floating components a r e  not generally available. The present 

investigation, therefore, was conducted to determine the performance of an aerodynam- 

ically positioned auxiliary inlet ejector nozzle over a range of free-stream Mach nurn- 

bers  from 0 to 2.0.  Two primary nozzles were tested: a small  nozzle to simulate a con- 
figuration for  nonafterburning acceleration and for subsonic and supersonic cruise, and 
a large nozzle to simulate a configuration for afterburning takeoff and acceleration and 

for  idle descent. 

SYMBOLS 

F 
i P 

Fis 
F - D  

Fip 

F - D  

F.  -I- Fis 
1P 

a rea  

nozzle flow coefficient 

drag 

diameter 

thrust 

ideal primary thrust based on measured primary flow 

ideal secondary thrust based on measured secondary flow 

nozzle gross thrust coefficient 

nozzle efficiency 

Mach number 

total pressure  

static pressure 



F radius 

T total temperature 

W weight flow rate 

V 
A axial distance 

Y radial distance in plane of primary total-pressure rake 

a external primary nozzle angle 

6 boattail angle 

T temperature ratio, Ts/T P 
o weight flow ratio, Ws/W 

P 
Subscripts : 

i ideal 

max maximum 

P primary 

s secondary 

0 free-stream 

7 nozzle inlet 

8 nozzle throat 

9 nozzle exit 

APPARATUS A N D  INSTRUMENTATION 

Installation in 8- by 6-Foot Supersonic Wind Tunnel 

A schematic drawing of the model support system in the 8- by 6-Foot Supersonic 
Wind Tunnel showing the internal geometry and thrust-measuring system is shown in 
figure 1 with a photograph of the model installation in figure 2. The grounded portion of 
the model was supported from the tunnel ceiling by a vertical strut.  The floating portion 
was supported by the primary and secondary air bottles cantilevered by flow tubes from 
external supply manifolds. The primary air bottle was guided by front and rea r  bear- 
ings. The secondary air passed through hollow crossover struts  at station 100.66 to the 
annulus formed between the primary nozzle and the shroud. Since the primary and sec- 

ondary flows enter the floating portion of the model support system normal to the force 
measurement axis, the entry momentum of the internal flows can be neglected in the cal- 



culation of thrust.  Therefore the load cell measured only the internal nozzle forces,  the 

external pressure and viscou.s forces downstream of the skin break, and a t a r e  force. 

A static calibration of the thrust-measuring system was obtained by applying known 

forces to the nozzle and measuring the output of the load cell. A water-cooled jacket 

szrrounded the load cell  and maintained a constant temperature of 90' F (305.6 K) to  

eliminate e r r o r s  in the calibration due to variations in temperature from aerodynamic 

heating. 

The ter t iary door and secondary flap positions were determined by measuring the 

angles from movies taken during the test runs. 

Nozzle Configurations 

Two basic variable nozzle configurations were tested, differing only in primary noz- 

zle area.  The smal l  nozzle provided a throat to nacelle a r e a  ratio of 0.185 and simu- 

lated nonafterburning operation for subsonic acceleration and subsonic and supersonic 

cruise. The large nozzle had an a rea  ratio of 0.261 and simulated afterburner-on oper- 

ation for takeoff and transonic and supersonic acceleration and simulated low power 

operation for idle descent. 

Each primary nozzle had 16 ta.bs that a r e  used during reverse thrust operation. In 
practice the primary nozzle translates downstream to sea l  against the secondary nozzle 

and the primary leaves and tabs close to block the primary flow thereby directing it up- 

s t ream through the ter t iary doors. During forward thrust operation the tabs a r e  in a 
position to provide some guidance to the flow expansion. An a i r  guide is provided in the 

secondary annulus to direct some of the cooling flow over the leaves of the primary noz- 

zle. 

The ejector shroud had 16 single hinge auxiliary inlet doors on the 3' 23-minute 

fixed boattail portion of the model and 16 floating secondary flaps. The three doors at 
the 2, 6, and 10 o'clock locations were fixed in the closed position to simulate an in- 

stalled condition within a wing structure, and the remaining 13 unsynchronized doors 

were f ree  to float to admit tertiary a i r .  The secondary flaps could reduce the exit a r e a  

by 38 percent and were made up of leaves and seals  which were f ree  to float for  the 

aerodynamic adjustment of exit a r e a  with pressure ratio. The juncture radius of the 

flaps was approximately 0.029 of the maximum model diameter. In figure 3 the flaps 

a r e  shown in the open and closed positions. Figure 4 shows the auxiliary inlet a r e a  

variation as a function of the tertiary door angle. With the 13 doors fully open, the 

aturiliary inlet a r e a  to small  primary throat a r e a  ratio was 0.935. 

Between the tertiary doors a r e  hollow support beams which duct a portion of the 

secondary flow into the secondary flap cavity. This flow simulated that required f o r  



film cooLing of the shroud and e ~ t e d  through h7o internal annular slots on the flaps with 

exit a reas  that were  I. 94 and 0.86 percent of the maxivhaum model. a rea ,  At low pres-  

s u r e  ratios it was anticipated that this flow would pressurize this cavity to aid in closing 

the flaps, Basis. nozzle dimemions, contour eoor&nates and static pressure instrumen- 

tation a r e  hourn in figures 5(a) to (la) and the variation of nozzle a rea  ratio with boattail 

angle for the two primary throat a reas  is shown in figure 5(i). 

In an effort to improve subsonic cruise performance, the small  primary c o d i ~ r a -  

tion was modified and retested a t  increased secondary flow ra tes  in a2 attempt to force 

the flaps closed, thereby reducing the overex~ansion losses. These modifications a r e  

shown in the following sketch. 

(1) Plugged actuator l ink  slots 
(2) Plugged air  guide holes previously open for door movement 
(3) Door stops now on a i r  guide 
(4) Capability of fixing doors maximum open 
(5) Capability of plugging a i r  guide slot (all secondary flow through 

beams and secondary nozzle) 

Configuration Modifications 

Nonafterburning 1 1,2 and 3 

Nonafterburning 3 1,2,3, and 5 



Configuration 1 had the actuator link slots and the air guide holes plugged to prevent 
leakage and to direct more of the secondary flow through the beams into the secondary 
flap cavity where it could only exit through the annular cooling slots. If this higher flow 
rate increased the cavity pressure, it  would tend to close the flaps. Configuration 2 
was the same as configuration 1 but also had the tertiary doors fixed in the maximum 

open position. Configuration 3 was the same as configuration 1, but the air guide annu- 
lus was also plugged to force all the secondary flow through the beams and into the sec- 

ondary flap cavity. 

Nozzle Instrumentation 

The model instrumentation is shown in parts of figure 5 and in figure 6(a). The pri- 
mary and secondary total pressures were obtained by the use of total pressure probes as  
shown. The average primary total pressure was calculated from the integrated average 
pressure of each rake. Typical profiles a r e  shown in figures 6(b) and (c). 

Procedure 

Nozzle performance was obtained over a range of pressure ratios and Mach numbers. 
The schedule shown in figure 7 was used as a guide for setting pressure ratio over the 
range of Mach numbers from 0 to 2.0 for each power setting. At each Mach number, 
data were taken at several nozzle pressure ratios near the values shown on the schedule. 
Since tunnel static pressure was fixed at a given Mach number, the nozzle pressure ratio 
was varied by changing the nozzle-inlet pressure. The maximum pressure ratio at each 
Mach number was restricted due to the limitations of the primary a i r  supply. At each 
pressure ratio, corrected secondary weight flow ratio was varied up to a maximum of 
0.06 of the primary flow for all power settings with the exception of idle descent where 
the corrected secondary weight flow ratio was se t  at approximately 0.14. 

Data Reduction 

Both primary and secondary flow rates were measured by means of standard ASME 
flowmetering orifices located in the external supply lines and the primary orifice was 
calibrated with an ASME nozzle of known discharge coefficient. Thrust-minus-drag 
measurements were obtained from a load cell readout of the axial forces acting on the 
floating portion of the model. Internal tare  forces, determined by internal areas and 
measured pressures located a s  shown in figure 1, were accounted for in the thrust 



calculation. 
The only external friction drag charged to the nozzle was that downstream of station 

136.90 shown in figure 1. That force acting on the portion of the nozzle between station 
93.65 and 136.90 was also measured on the load cell, but was not considered to be part 
of the nozzle drag. Its magnitude was estimated using the semi-empirical flat-plate 
mean skin friction coefficient given in figure 6 of reference 5 as a function of free- 
stream Mach number and Reynolds number. The coefficient accounts for variations in 
boundary-layer thickness and profile with Reynolds number. Previous measurements of 
the boundary-layer characteristics at the aft end of this jet exit model in the 8- by 6-Foot 
Supersonic Wind Tunnel (fig. 5 in ref. 6), indicated that the profile and thickness were 
essentially the same as that computed for a flat plate of equal length. It also showed that 
the average momentum thickness to model diameter ratio was 0.019 for the range of 
Mach numbers investigated. The strut  wake appeared to affect only a localized region 
near the top of the model and resulted in a slightly lower local free-stream velocity than 
measured on the side and bottom of the model. Therefore, the results of reference 5 
were used without correction for three-dimensional flow effects or strut interference ef- 
fects. The resulting correction was applied to the load-cell force. 

The ideal gross thrust for  each of the primary and secondary flows was calculated 

from the measured mass flow rate expanded from their measured total pressures to po 
Provision was made to equate the ideal thrust of the secondary flow to zero if the total 
pressure was less than po. Nozzle efficiency is defined then as the ratio of the gross 
thrust-minus-drag to the ideal gross thrust of both primary and secondary flows: 

Nozzle efficiency = F - D  
F. + Fis 

1P 

In addition, nozzle gross thrust coefficients, ( F  - D)/Fip, a r e  also presented. 

RESULTS AND DISCUSSION 

Nozzle Per formance f o r  Typical F l igh t  Pressure  Ratio Schedule 

The auxiliary inlet ejector nozzle was tested with two primary nozzles to simulate 
afterburning and nonafterburning operation. Each configuration was tested over a range 
of nozzle pressure ratios and Mach numbers corresponding to a typical schedule for a 
supersonic turbojet engine (fig. 7). A summary of the performance characteristics over 
a range of free-stream Mach numbers at several simulated power settings is shown in 
figure 8. The corrected secondary weight flow ratio of 0.04 was selected a s  a basis for 



comparison a t  a l l  %fight Mach numbers except at supersonic cruise where a flow ratio of 
0.02 was selected. 

The band of tunnel interference shown in the figures was a result of the terminal 

shock movement over the model, In f r ee  flight the flow field near the front of an o@ve 
cyEnder creates a terminal shock t h a m o v e s  aft rapidly with increasing flight speed and 

disappears downstream at speeds slightly above Mach 1. In a tunnei installation, how- 

ever, large models retard the aft movement of the terminal shock. Therefore, the re-  

sultant boattail pressure drag can b e  influenced by tunnel installation effects particularly 

at speeds where the terminal shock is near the boattail. A more detailed discussion of 

this phenomenon is covered in reference 7. 

At takeoff conditions it can be seen in figure 8(a) that high efficiencies of 0.980 and 

0.982 were obtained with the large and small  primary nozzles, respectively. In figures 

8(b) and (c) it can be seen that the flaps were fully closed at this condition and the doors 

were fully open. As indicated in figure 8(d) secondary flow pumping was marginal a t  

dterburning conditions since a secondary pressure equal "c free-stream pressure was 

needed for a corrected secondary flow ratio of 0.04. Eater figures show that corrected 

secondary flow ratios of 0.02 and 0 a r e  obtained with secondary total pressures equal to 

96.5 and 95 percent of the ambient pressure.  For  the nondterburning condition a cor- 

rected secondary flow ratio of 0.04 was obtained with a secondary total pressure equal 

to 96.7 percent of the ambient pressure.  
For afterburning acceleration, figure .8(c) shows that the doors were closed at speeds 

above Mach number 0.85, and figure 8(b) shows that the flaps were fully open a t  speeds 

above Mach 1.5.  This permitted the nozzle to operate near the fully expanded condition, 

and figure 8(a) shows that the nozzle efficiency was  high throughout the acceleration 

speed range. The efficiency was lowest in the transonic range where the flaps were still 

partially closed and the boattail drag was  high. 
For the smal l  primary configuration, figure %(a) indicates that performance was 

very sensitive to nozzle pressure ratio a s  it was reduced from the acceleration value to 

typical subsonic cruise values. For  example a t  Mach 0.85 o r  8.90, reducing the pres-  

s u r e  ratio from 5 o r  more, typical of acceleration, to about 4.2  caused about a 3-percent 

loss in efficiency. A further drop in pressure ratio to about 3 ,2  reduced the efficiency 

by an additional 2 to 3 percent to a value of about 87 percent. Figure 8(b) shows that the 

flaps tended to float further open at lower pressure ratios. As the pressure ratio was 

reduced from 4.20 to 3.27, the nozzle a r e a  ratio increased from 2.3% to 2.93. This in- 

creased the internal expansion and probably contributed to the reduction in efficiency. 

Figure 8(c) indicates that the ter t iary doors were only slightly more than half open at a 

pressure ratio of 4.2. When the pressure  ratio was reduced to 3 . 2  they opened further 

a t  a Mach number of 0.85, but remained at the same position a t  Ma.ch 0.90. At these 

same conditions the secondary total pressure was a little less  than ambient pressure 



indicating th"ciahGernal drag forces existed. T M s  also would provide easy pumping of 

the secondary flow, 
The small  primary was also operated at Mach 2.0, the mairnurn. wind tunnel speed, 

and near the des im pressure ratio of 29.0 to obtain an approximate indica"con of super- 
sonic cruise operation, With the difference in external flow effects b e b e e n  Mach 2.0 
and 2 . 7  being relatively minor, the data a r e  shown in the summary figure a t  Mach 2 . 7  
the supersonic cruise Mach n u d e r .  A nozzle efficiency of 0.979 was obtained at this 
condition with a pressure ratio of 27.6. 

Floating Flap Position 

The variation of boattail angle with nozzle pressure ratio over a range of Mach num- 
bers  is shown in figure 9. For  the nonafterburning configuration (fig. 9(a)) the boattail 
angle was sensitive to free-stream Mach number and nozzle pressure ratio. At pressure  
ratios below 4.5,  the flaps showed a stronger tendency to open a s  the free-stream Mach 
number increased from 0 to 0.9. This was probably responsible for the performance 
degradation a t  subsonic cruise conditions. With the doors and flaps closed the fully ex- 
panded nozzle pressure ratio is about 13.0. At subsonic Mach numbers, the boattail was 
closed a t  pressure  ratios from 4.5 up to the mmimum value tested of 7.0. However, a t  
the supersonic Mach numbers, the flaps began opening between pressure ratios of 6 and7 
and were fully open a t  pressure ratios greater  than 20.0. Supersonic flow over the boat- 
tai l  apparently seduced boattail pressures which resulted in an opening moment in spite of 
the internal overexpansion of the flow. 

With the aflerburning corafimration (fig. 9(b)), the design pressure ratio with the 
flaps closed was about 5.0. The flaps began opening a t  pressure ratios near  6 .0  for  the 
supersonic Mach numbers and were fully open a t  nozzle pressure ratios greater than 
10.5. At the subsonic Mach numbers the flaps opened a t  pressure ratios less  than 2.5 
and remained closed to the masrimum pressure ratio tested (6.5). In ad&tion to being 
sensitive to free-stream Mach number and nozzle pressure ratio, this configuration was 
also affected by the variations in corrected secondary flow rates up to 0.06 a s  indicated 
by the data band a t  a given Mach number and pressure ratio. In general, this occurred 
only a t  the transonic Mach numbers where the flaps were between the stops. Increases 
in secondary flow tended to close the flaps by pressurizing the cavity between the inter- 
nal and external surfaces. 

The flaps were stable a t  all s i m l a t e d  power settings and free-stream Mach num- 
bers .  The flaps had no friction built into their design other than that inherent in the link- 

age, and it was quite small. 



Tertiary Door Position 

The variation of tertiary door position with pressure ratio and Mach number is 
shown in figure 10. For  the nonafterburning configuration (fig. 10(a)) the doors were 
generally closed at pressure ratios greater than 6.0. For  the afterburning configuration 

(fig. 10(b)), they were closed at  pressure ratios greater than 4.0. As will be seen in 
later figures, these pressure ratios correspond to the nozzle pumping characteristics 
providing secondary total pressures about equal to f ree-stream static pressure. 

Small Primary Nozzle Performance 

Nozzle efficiency and pumping characteristics at various Mach numbers from 0 to  
1.97 and for  a range of pressure ratios a r e  shown in figure 11 for the nonafterburning 
configuration. Also presented on the figure is the boattail angle (when available) and 

whether the tertiary doors were full open (open symbols), in-travel (half-solid symbols) 
o r  closed (solid symbols). Tails on the performance points indicate that the secondary 
total pressure was less than free-stream static pressure (Ps < po) and, therefore, the 
secondary stream ideal thrust was set  to zero. At conditions where the nozzle was 
charged with the ideal thrust of the secondary flow (Ps > po), peak efficiency generally 
occurred at a corrected secondary weight flow ratio of about 0.04; otherwise, the effi- 
ciency increased with secondary flow until Ps became larger than po, and the nozzle 
was then charged with the ideal secondary thrust. 

At takeoff (fig. ll(a)) the nozzle operated with the doors full open and the flaps fully 
closed and obtained a relatively high efficiency at all pressure ratios. However, with 
subsonic external flow (figs. l l (b )  to (f)) the performance was reduced below these high 
values. Typical nozzle operation with external flow can be seen in figure l l ( e )  at Mach 
0.85. The tertiary doors never fully opened, even at a pressure ratio of 2.14. By com- 
paring the solid symbols (doors closed) with the tailed symbols (Ps < po) it can be seen 

that the doors closed whenever the secondary total pressure became slightly larger than 
free-stream static pressure. Thus the doors closed at a pressure ratio of 6 to 7 which 
was about 1/2 the fully expanded pressure ratio with the boattail closed. At pressure 
ratios appropriate for  subsonic cruise (3.20 and 4.25), secondary total pressure was 
less than the free-stream static value a s  indicated by the tailed symbols, and this caused 
low pressures in the region of the primary nozzle base. 

These low internal pressures can be seen in table I which presents listings of the 
static pressures at various conditions from Mach 0 to 0.9. At Mach numbers 0.85 and 
0.9, and with subsonic cruise pressure ratios, the internal nozzle static pressures in 
the primary base region averaged about 5 percent less than free-stream static pressure, 



indicating relatively high drag forces. Pressures on the 3' fixed boattail indicated that 
little drag existed in this region, but static pressures on the floating boattail indicated 
drag on the outer portion of it. However, the 3' boattail pressures may be somewhat 
misleading since the orifice was located directly downstream of a tertiary door and may 
not be representative of the average boattail pressure. At a higher pressure ratio (7.29) 
when the doors a r e  closed (table I(c)) the 3' boattail statics indicated a lower pressure 
and thus a higher drag. These lower pressures could also exist in between doors when 
the doors a r e  open. At this same nozzle pressure ratio, table I(c) also shows internal 
pressures in the primary nozzle base region which were above free-stream static pres- 
sure  indicating internal thrust a t  this condition. 

A limited amount of data were taken for the nonafterburning configuration a t  Mach 
numbers 1.20 and 1.47, These efficiencies a r e  shown in figure 12 as a function of noz- 
zle pressure ratio for a corrected secondary weight flow ratio of 0.06. A summary of 

the effect of nozzle pressure ratio on nozzle efficiency for a constant corrected secon- 
dary weight flow ratio of 0.04 is shown in figure 13 for various Mach numbers. The noz- 
zle gross thrust coefficients for various Mach numbers and nozzle pressure ratios a r e  
shown in figure 14. 

Large Primary Nozzle Performance 

The nozzle efficiency and pumping characteristics a t  various Mach numbers and 
pressure ratios a re  given in figure 15 for the afterburning primary nozzle. The nozzle 

efficiency generally peaked between 0.04 and 0.06 corrected secondary weight flow ratio. 
The nozzle efficiency was generally 3 percent better than the nonafterburning configura- 
tion due to a reduction in overexpansion losses. In addition the primary thrust was 
larger thereby reducing the relative effect of boattail drag on performance. 

Because of the small number of data points taken at the idle descent power setting 
and because of the random variations in secondary flow at this power setting, the idle 
descent performance is listed separately in table 11. 

The effect of nozzle pressure ratio on nozzle efficiency for a constant corrected 
secondary weight flow ratio of 0.04 is shown in figure 16 for various Mach numbers. 
The nozzle gross thrust coefficients for various Mach numbers and nozzle pressure 
ratios a r e  shown in figure 17. 

Nozzle Pumping Characteristics 

The pressure recovery requirements for the secondary system a re  shown in fig- 
u r e  18. At subsonic cruise power settings (fig. 18(a)), the secondary total pressure 



required. f o r  a cor rec ted  secondary weight flow rat io  of 0. ($4 was only 0.55 of the f ree-  

s h e a m  total p re s su re  at Mach 0.9,  Ad subsonic speeds with higher power settings the  

p re s su re  recovery became a little more  crit ical.  F o r  example, with the nonafterburning 

acceleration power setting at Mach 0,4E (fig. 18(b)), a secondary total  p re s su re  of Q ,  88 

of free-strea-m total p re s su re  was required for  a corrected secondary weight flow rat io  

of 0.64. These pumping curves were  relatively flat and reduced secondary flow r a t e s  

would not affect the p re s su re  recovery requirements appreciably. F o r  the afterburning 

acceleration power setting at Mach 0 .9  (fig. 18(c)), a secondary total p ressure  of 6 .  '70 

of f r e e - s k e a m  total p re s su re  was regtiired for  a corrected secondary weight flow rat io  

of 0.04. At takeoff, secondary flow pumping was marginal. A secondary p re s su re  equal 

to free-stream p res su re  was needed to  pump a secondary flow rat io  of 0.04. Corrected 

secondary weight flow rat ios  of 0.02 and 6 were  obtained with secondary total  p re s su re s  

equal to  96.5 and 95 percent of the ambient pressure .  Results obtained at Mach I. 99 

a r e  shown in figure I8(d), 

Nozzle Modification 

As discussed ea r l i e r  the nonafterbusning configuration was modified and tested a t  

h e r e a s e d  corrected secondary flow ra t e s  of up to 0.16 in a n  attempt to force the f laps 

closed a t  subsonic cruise  conditions, thereby reducing the overexpansion losses .  

The resulting boattail angles a s  a function of nozzle pressure  ratio a r e  presented in  

figure 19. Comparing the solid and open symbols in figure 19, it can be seen  that the 

configuration changes did not significantly affect the boattail angle. At the subsonic 

cruise  Mach numbers  the f laps were s t i l l  partially open at pressure  rat ios  below ap- 

proxima-tely 4.5. 

The nozzle efficiency and pumping character is t ics  for  the three modified conf iwra-  
t i om a r e  shown in f igures  20 to  22 for  the Mach numbers investigated. Saa general, con- 

figurations f and 2 performed in a s imi l a r  manner. At Mach 0 .4  nozzle efficiency was  

improved f rom 1 to 2 percent,  At the subsonic c ru ise  Mach numbers the efficie~acy was  

the s a m e  o r  l e s s  than the unmodified nonafterburning codiguration. Config.uration 3 had 

much lower nozzle efficiency at all three  Mach nurnbers. This configuration, with the 

annular air guide s lot  plugged, was tested pr imari ly  to determine whether directing all 

of the secondary flow into the secondary flap cavity would pressur ize  the cavity enough 

to close the flaps at subsonic cruise .  However, there  was no appreciable change in  the 

flap position. 



SUMMARY OF RESULTS 

h experimental investigation was conducted to determine the performance charac- 
ter is t ics  of an auxiliary inlet ejector with aerodynamically positioned tertiary doors and 
secondary flaps a t  Mach numbers from 0 to 2.0. Two primary nozzles were tested: a 
smal l  nozzle with a throat to nacelle a r e a  ratio of 0. 185 to simulate a configuration for  
subsonic and supersonic cruise and nonafterburning acceleration, and a large nozzle 
with a throat to nacelle a r e a  ratio of 0.26% to simulate a configuration for afterburning 
takeoff and acceleration and for  idle descent. The following general trends were indi- 

cated: 
1. At takeoff nozzle efficiencies of 0.980 and 0.982 were  obtained with the large sad 

smal l  primary nozzles a t  pressure ratios near 3.0. The flaps were fully closed and the 
doors fully open. Secondary flow pumping was marginal for  the large primary since a 
secondary pressure equal to free-stream pressure was needed to pump a corrected sec- 
ondary weight flow ratio of 0.04. 

2. At subsonic cruise both nozzle performance and floating flap position were sensi- 
t ive to nozzle pressure ratio. At Mach 0.9 increasing pressure ratio from 3.27 to 4.20 
increased nozzle efficiency about 2 percent to 0.888 and decreased the nozzle a r e a  ratio 
f rom 2.93 to 2.38. 

3. At Mach 2.0 and with a nozzle pressure ratio of 27.6, the smal l  primary nozzle 
had an efficiency of 0.971 with the flaps fully open and the doors fully closed. 

4. The aerodynamically positioned flaps (which could reduce the exit a rea  by 38 per- 
cent) were stable a t  all simulated power settings and free-stream Mach numbers. The 
flaps were fully open at pressure ratios greater than 20 for  the smal l  primary and at 
pressure  ratios greater  than 10,5 fo r  the large primary. At lower pressure ratios the 
floating position was sensitive to free-stream Mach number and to secondary flow. 
Free-s t ream effects were most prominent a t  subsonic speeds a t  pressure ratios less  
than 4.0. 

5. For a. typical trajectory the flaps would be closed at takeoff and during subsonic 
acceleration. The flaps begin to open at Mach 1 .0  and a r e  fully opened at Mach numbers 
of 1.47 and above. 

6. The amil iary  inlets were  open a t  takeoff and partially open a t  subsonic cruise. 
During acceleration the inlets were closed at speeds above Mach 0.8. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 25, 1 970, 
720-03. 
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TABLE I. - RATIOS O F  LOCAL PRESSURES TO FREE-STREAM STATIC PRESSURE 

FOR NONAFTERBURNING CONFIGURATION 

(a) Free-s t ream Mach number, 0; boattail angle, p = 16.2'; nozzle exit to  
nozzle throat a r e a  ratio,  Ag/A8 = 2.23 

(a- 1) Nozzle pressure  ratio, P7/p0 (a-2) Nozzle pressure  ratio,  P7/p0 
= 3.09; corrected secondary weight = 3.60; corrected secondary weight 
flow ratio,  4 = 0.0406; nozzle ef- flow ratio,  4 = 0.041; nozzle ef- 
ficiency, (F - D)/(F. cFis) = 0.982 

1P 
ficiency, ( F  - D)/(F. c Fis) = 0.980 

IP 

Orifice Local to  Orifice Local to  
free- free- 

s t r eam s t r eam 
static static 

pressure ,  pressure,  

px/po px'po 

1 0.999 25 ----- 
2 .999 26 0.941 
3 .996 27 ,942 
4 .996 
5 1.000 28 .941 
6 .997 29 ,943 
7 .999 30 ----- 
8 1.000 

Orifice 

1 
2 
3 
4 

5 
6 

Local to 
f ree-  

s t r eam 
static 

pressure ,  

p J p 0  

0.999 
,999 
.996 
.997 
.999 
.997 

Orifice 

25 
26 
27 

28 
29 

Local to  
f ree-  

s t r eam 
static 

pressure ,  

px/po 

----- 
0.952 

.953 

,949 
.951 



TABLE I. - Continued. RATIOS OF LOCAL PRESSURES TO FREE-STREAM STATIC 

PRESSURE FOR IiONAFTEEiBUIiSiIIiG CONFIGURATION 

(b) Free-s t ream Mach number, 0.85 

(b-1) Nozzle pressure  ratio, P7/p0 (b-2) Nozzle pressure  ratio, P7/p0 
= 3.20; corrected secondary weight = 4.25; corrected secondary weight 

flow ratio,  = 0.0388; nozzle ef- flow ratio,  w$ = 0.0466; nozzle ef- 

ficiency, (F - D)/(F. +Fis) = 0.878; 
1P 

ficiency, (F  - D)/(F. +Fis) = 0.906; 
1P 

boattail angle, P = 10'; nozzle exit boattail angle, = 15'; nozzle exit 
to*nozzle throat a r e a  ratio, Ag/A8 to  nozzle throat a r e a  ratio,  Ag/A8 

= 2.78 = 2.35 

Orifice 

1 
2 
3 
4 
5 
6 

Local to 
free- 

s t ream 
static 

pressure ,  

px'po 

0.984 
. 9  76 
.962 
,940 

1.015 
.999 

Orifice 

25 
26 
2 7 

2 8 

29 

Local to  
free- 

s t ream 
static 

pressure ,  

px'po 

0.954 
.954 
,956 

.953 

.949 



TABLE I. - Concluded. RATIOS OF LOCAL PRESSURES TO FREE-STREAM STATIC PRESSURE 

FOR PITONAFTERBURNING CONFIGURATION 

(c)  Free-stream Mach number, 0.90 

(c-1) Nozzle pressu1-e rat io ,  P1/pO (c-2) Nozzle p ressure  ratio, P1/pO (c-3) Nozzle pressure rat io ,  P /p 7 0 
= 3.21; corrected secondary weight = 4.20; corrected secondary weight = 7.29; corrected secondary weight 
flow ratio, w f i  = 0.042; nozzle ef- flow ratio, = 0.048; nozzle ef- flow ratio, w$l; = 0.059; nozzle ef- 

ficiency, (F - D)/(F. + Fis) = 0.894; 
1P ficiency, (F - D)/(Fip + Fis) = 0.936; 

boattail angle, j3 = 8.5'; nozzle exit boattail angle, j3 = 14.5'; nozzle exit boattail angle, 6 = 16.250; nozzle 
to nozzle throat a r e a  ratio, AS/A8 to nozzle throat a r e a  ratio, Ag/A8 exit to nozzle throat a r e a  ratio, 
= 2.93 = 2.38 Ag/A8 = 2.24 

Orifice 

25 

2 6 
2 7 

2 8 
29 
30 

3 1 
32 

31a 
32a 

33 
34 
3 5 

36 
3 7 



TABLE 11. - IDLE DESCENT PERFORMANCE 

LARGE PRIMARY 

free-stream total 



rPr imary a i r  metering or i f ice 
I 

Chord length, 50.25 (127.63) 

CD-10716-28 

Figure 1. - Nozzle support model and a i r  supply systems for 8-by-6 supersonic wind tunne l  tests. (Dimensions are 
i n  inches (cm). ) 

Figure 2. - Installation of nozzle i n  8- by 6-Foot Supersonic Wind Tunnel. 



(b )  Flaps open. 

Figure 3. - Aux i l i a ry  i n l e t  ejector nozzle. 

Tert iary door angle, deg 

Figure 4. - A u x i l i a r y  in le t  area as func t ion  o f  ter t iary door angle. 



flaps 

Nozzle flow 
coefficient, 

Cd 

0.944 

,972 

Axial distance, 
x 

(a) Basic model dimensions. 

111" 

Section B-B 

(b) Small primary. 

Figure 5. - Model dimensions and geometric variables. (Dimensions a re  i n  inches (cm) un less  otherwise noted). 

c m  

4.919 

4.604 

in .  c m  in.  
--- 

Nonafterburning conf igurat ion 

A f te rburn ing  conf igurat ion 

3.660 

4.341 

9.264 

11.026 

37 

22 

1.9365 

1.8125 



11' 41' 
(ref) 

1. 159 (0.102) 0.544 
o Static pressure tap 

0.101 
(5.969) (0.256) 

(0.376) 

Section B-B 

(c) Large primary. 

0 Static pressure tap 

(d) Forward secondary. 

Figure 5. - Continued. 



I-(:: ;:;)--+-I Static pressure tap ( 1  flap only) 

(el Inner  flap. 

0 Static pressure tap ( 1  flap only) 

(f) Outer flap. 

Figure 5. -Continued. 



- \  j b i L 5 b  (1.587) O. loo (O. 214) (ref.) 
i 

4.2% 
(10.795) 3.992 (10.317) 

(g) Tertiary door. 

(h) A i r  guide. 

Figure 5. -Cont inued. 



Boattail angle, P 

( i )  Var iat ion of geometric nozzle area rat io w i th  boattail 
angle. 

F igure 5. - Concluded. 



0 Static pressures External static-pressure taps o n  
I centerline of tertiary door 

Secondary rake (beam), I 
I I 

Secondary rakes x, 

/' -Three cavity static pressure taps 

(a) Total and static pressure measurement locations. 

L 

F (b) Typical primary rake pressure profile for small p r i -  - 
m c. 
0 

mary throat area. - 

.. . . - 

Radial distance, ylr 

(c) Typical primary rake pressure profile for large primary 
throat area. 

Figure 6. - Model instrumentation. 



Free-stream Mach number, Mo 

Figure 7. - Schedule of nozzle pressure rat io w i t h  free-stream 
Mach number fo r  simulated p w e r  settings. 



(a) Nozzle efficiency. 

Figure 8. - Performance of auxiliary inlet ejector over flight Mach number range 
at nominal w-&= 0.04. 



Nozzle 

(c) Variation of ter t iary door position w i th  Mach number. 

,- Takeoff 

0 . 4  . 8  1. 2 1.6 2.0 2.4 2.8 
Free-stream Mach number, Mo 

(dl Secondary total pressure recovery requirements. 

Figure 8. - Concluded. 



Free-stream 
Mach number, 

Mo 

0 
.40 
.85 
.90 

;: :: ] Significant tun- 
ne l  disturbance 

1. 20 
1.47 
1.77 
1.97 

- .- 
Fa 
5 
mo 20 
cn 

16 

12 

8 

Arrows indicate increasing 
secondary flow to 0.06 

4 

0 2 4 6 8 10 12 14 16 
Nozzle pressure ratio, P7/p0 

(b) Afterburning configuration. 

Figure 9. -Var iat ion of ba t t a i l  angle with nozzle pressure ratio over range of free-stream 
Mach numbers. 



open Open 

C 0 .- ,- .- 
YI 

8. 
I 
0 

g 
F 
m .- 
r 
E 

Closed Closed 
0 4 8 12 16 20 24 28 

Nozzle pressure ratio, P71p0 

(a) Nonafterburning configuration. (b) Afterburning configuration. 

Figure 10. -Variation of tert iary door position with nozzle pressure ratio over range of free-stream Mach numbers, w&= 0.04. 



Nozzle Boattail 
pressure angle, 

ratio, p, 
P71!J0 de9 

0 1.55 16.3 
2.06 16.3 

A 3.09 16.3 
0 3.60 16.3 

Open symbols denote doors open 
Solid symbols denote doors closed 
Half solid symbols denote doors 

i n  travel 
Tailed symtals denote secondary 

total pressure less than 
ambient Crcssure, FiS = 0 

Nozzle Boattail 
pressure angle, 

ratio, 0, 
P71p0 deg 

0 1.54 10.5 
2.05 11.8 
3.07 15.5 

0 4.08 

Open symbols denote doors open 
Half solid symbols denote doors 

i n  travel 
Tailed symbols denote secondary 

total pressure less than 
ambient pressure, FiS = 0 

Nozzle 
pressure, 

ratio, 

'7'p0 

0 1.51 
2.02 

A 3.02 
0 4.01 
0 5.00 

Open symbols denote doors open 
Half solid symbols denote 

doors i n  travel 
Tailed symb ls  denote secondary 

total pressure less than 
ambient pressure, Fi ,  = 0 

la) Free-stream Mach number, 0. (b) Free-stream Mach number, 0.4. (c) Free-stream Mach number, 0.56. No flap 
position data at t h i s  Mach number. 

Figure 11. -Nozzle efficiency and pumping characteristics as function of corrected secondary weight flow ratio for small primary. 



Nozzle 
pressure 

ratio, 

'7lP0 
0 2.13 

3.19 
a 4.25 
0 4.76 
0 6.33 
0 7.39 

Open symbols denote 
doors open 

Solid symbols denote 
doors closed 

Half solid symbols de- 
note doors i n  travel 

Tailed symbols denote 
secondary total pres- 
sure less than 
ambient pressure, FiS = i~ 

.96 
- 

V) .- 
Y 

+ 
,is .92 - - - 
n 

Y - 
s;. .as 
C w .- 
U .- 
r 

3 .84 
N 
0 Z 

.80 

Nozzle Boattail 
pressure angle, 

ratio, b, 
p71p0 deg 

0 2.14 5.8 
3.20 10 

A 4.25 15 
0 5.30 16.3 
0 6.36 ---- 

7.39 ---- 
Open symbols denote doors open 
Solid symbols denote doors closed 
Half solid symbols denote doors 

i n  travel 
Tailed symbols denote secondary 

total pressure less than 
ambient pressure, FiS = 0 

.94 

.90 

.86 

.82 

.78 
+. 

.6  - 
V) 
a 

0- .- + 
m, 

. 4  
3 '" 
"9 w 

a - 
. 2  

2 
n 
c 0 
w 

0 .02 .04 .06 .08 
Corrected secondary weight flow ratio, w 6  

(dl Free-stream Mach number, 0.8. No flap (el Free-stream Mach number. 0.85. 
position data at th is  Mach number. 

Figure 11. - Continued. 



Nozzle Boattail 
pressure angle, 

ratio, p. 
P71p0 deg 

0 3.28 8.5 
4. M 14.5 
5.21 16.3 

0 6.25 16.3 
0 7. 29 16.3 

Solid symbols denote doors closed 
Half solid symbols denote doors 

i n  travel 
Tailed symbols denote 

secondary total pressure 
less than ambient pressure, Fis = 0 

Nozzle Boattail 
pressure angle, 

ratio, p, 
P71p0 deg 

0 8.75 10.2 
0 12.65 7.3 
A 13.61 6.5 
0 14.63 5.5 
0 15.64 5.0 
V 19.61 3.4 
0 27.60 3.4 

Solid symbols denote doors closed 

Corrected secondary weight flow ratio, w f i  
If) Free-stream Mach number, 0.9. (g) Free-stream Mach number, 1.97 

Figure 11. -Concluded. 



Boattail 
angle, 

P, 
deg 

0 16.3 
0 12.5 

11.25 
'I 9.5 

Boattail 
angle, 

P. 
deg 

0 14.0 
0 10.5 
0 10.0 
n 7.5 

- rn .92 .- 
LL 

+ 
(I .- 

U- 
\ - 
a .88 .94 

U- 

i5 
c 
.2 .84 
U 

.90 
G "- 
a, 
a, - 
N N 

3 .80 .86 
6 8 10 12 14 

Nozzle pressure ratio, P7/p0 

(a) Free-stream Mach number, 1.3. (b) Free-stream Mach number, 1.47. 

Figure 12. -Nozzle efficiency as funct ion of nozzle pressure ratio for small primary with corrected 
secondary weight flow ratio of 0.06. Doors ful ly closed. 



Figure 13. - Nozzle eff iciency of nona f te rburn ing  conf igurat ion as func t ion  of nozzle pres- 
s u r e  rat io for  corrected secondary weight f low ratio of 0.04. 



(a) Free-stream Mach  number,  0. 

a .- 

.02 .04 .06 .08 
Corrected secondary 

(c) Free-stream Mach  number,  0.56. 

F igure  14. - Nozzle gross t h r u s t  coefficient as fun1 
smal l  pr imary.  

.98 

.94 

.90 

.86 

.82 -- 
(b) Free-stream Mach number .  0.4. 

0 .02 .04 .06 .08 
weight flow ratio, w& 

(d l  Free-stream Mach number, 0.8. 

:tion of corrected secondary weight flow ratio for 



Corrected secondary weight flow ratio, w f i  

(f) Free-stream Mach number, 0.9. (g) Free-stream Mach number, 1.97. 

Figure 14. -Concluded. 
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Nozzle pressure ratio, P7/p0 

Figure 16. -Nozzle efficiency of afterburning configuration as funct ion of nozzle pressure 
ratio for corrected secondary weight flow ratio of 0.04. 
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(d) Free-stream Mach number, 0.90. 

(b) Free-stream Mach number, 0.4. 

(e) Free-stream Mach number, 1.0. (Signifi- 
cant tunnel disturbances.) 

l4zEfa 0 .02 .M .06 .08 

Corrected secondary weight flow ratio, w& 

(c) Free-stream Mach number, 0.85. 

(8 Free-stream Mach number,, 1.09. (Signifi- 
cant tunnel disturbances.) 

(g) Free-stream Mach number, 1.20. (h) Free-stream Mach number, 1.47. (i) Free-stream Mach number, 1.77. 

Figure 17. - Nozzle gross thrust coefficient as function of corrected secondary weight flow ratio for large primary. 



Free-stream Nozzle Dres- 
Mach number, sure t-atio, 

P71p0 -4 

P - 
rn (a) Subsonic cruise; small primary. (b) Nonaflerburning acceleration; small primary. 
.+, 
0 - 
E m 

0 .02 .04 .06 .08 0 .02 .04 .06 .08 
Corrected secondary weight flow ratio, w& 

(c) Af ierburning acceleration; large primary. (d) Supersonic cruise; small primary. 

Figure 18. - Secondary flow pressure recovery requirement for various free-stream Mach numbers. 
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