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DAISY - AN EFFICIENT PROGRAM FOR PRODUCTION OF NEUTRON 

PSEUDO RESONANCE PARAMETER CHAINS IN THE 

UNRESOLVED ENERGY REGION 

by Thor T. Semler 

Lewis Research Center 

SUMMARY 

The code DAISY provides a fast technique for generating pseudo resonance param­
e ters  in the unresolved resonance region. The code makes use of the Central Limit 
Theorem in order to  select chains of resonance parameters whose average values a r e  
inside a predetermined limit of accuracy. The Kolmogorov- Smirnov test  for goodness 
of f i t  is used on chains of 5 through 100 resonances to determine the chain that best fits 
the Porter-Thomas and Wigner distribution functions. The x2 test  for  goodness of fit 
is used on chains of more than 100 resonances to determine that chain which best fits 
these distribution functions. 

The code DAISY is found to  be at least an order of magnitude faster than PSEUDO, 
a comparable code. 

A s  an example, the code DAISY is used to compute s- and p-wave resonance param­
e te r s  for  U23a near 20 keV. From these parameters continuous c ros s  sections are 

238computed and used to calculate the Doppler effect in a 0.0155-centimeter-thick U 
foil and in a 2-centimeter-diameter U23a sphere, at 20 keV. 

It is found that using the set  of pseudo resonance parameters chosen by DAISY, one 
may preserve the measured value of the total c ross  section, and the Doppler effects so 
computed, a r e  compatible with other theoretical computations of the Doppler effect. It 
is also found that, while the average s-wave capture c ross  section at 20 keV is about 
one-third that of the p-wave, the s-wave contribution t o  the Doppler effect is about 
60 percent. The effect of neglecting resonance se r i e s  overlap is to  overestimate the 
Doppler effect. 
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INTRODUCTION 

Continuous neutron c ross  sections in the unresolved energy region a r e  needed to 
calculate fast neutron Doppler effects, to analyze fast neutron transmission experiments, 
and to  estimate stellar reaction rates. The unresolved resonance region generally spans 
an energy region from about 1 keV to about 1 MeV. In figure 1 the neutron capture c ros s  

600 700 800 900 1oM3 1100 1200 1300 1400 
Neutron energy, eV 

Figure 1. - Port ion of experimental capture data f rom f i r s t  U238 sample in neut ron  beam from Petrel event. Small arrows indicate loca­
t ions  of weak resonances wh ich  are  assigned Z = l. Data from more sensitive detectors and th ick  sample were used in conf i rmat ion 
and measurement of these resonances. 

section of uranium-238 (U238) is shown in a par t  of the resolved resonance region 
(ref. 1). In figure 2'the neutron capture c ros s  section of U238 is shown for the unre­
solved resonance region (ref. 2). Figure 2 depicts the results of 16 different experi­
ments that differ by as much as 40 percent. The resul ts  of figure 2 a r e  averages over 
several  resonances. 

Various analytic approaches have been adopted to  calculate average c ross  sections 
in the unresolved region. In an attempt to evaluate fission product reactivity effects, in 
intermediate reactors,  a method using strength function data was  developed (refs. 3 
to 5). However, this statistical averaging method does not provide the detailed energy 
dependent c ros s  sections necessary for the calculation of a fast  reactor Doppler effect. 

If it is assumed that the statistical distributions of resonance parameters found a t  
low neutron energies a r e  obeyed at  the higher unresolved energies, it is possible to 
sample from these distributions and generate "pseudo" or "mock1' resonance param ­
eters .  These pseudo resonance parameters have been used to compute energy dependent 
c ross  sections with correct average properties (refs.  6 to 10). Brissenden and 
Durston have used sampling techniques to generate se t s  of mock cross  sections for U238 

(ref. 6). 
In a se r i e s  of experiments designed to measure the Doppler effect in U238, Perkin 
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Encrgy of neutron, EN, MeV 

Figure 2. - Port ion of unresolveci resonance region for captures. 

and Fieldhouse used a modification of the method of Brissenden and Durston to compute 
the Doppler effect theoretically (refs.  11and 12). However, the computer time neces­
sa ry  to  generate these mock c ross  sections is prohibitively large, -2.5 hours per iso­
tope per temperature on an TBM-STRETCH computer. 

The code DAISY described herein is one to  two orders  of magnitude faster in the 
generation of resonance parameters  than the code PSEUDO (ref .  9) which has  a timing 
of about 139 resonances per second on the UNIVAC 1108. DAISY also allows substantial 
flexibility, in that, short resonance chains, as few as five resonances in a chain, can 
be generated. 

In order to illustrate the versatility of the code DAISY, it is used with the code 
GAROL (ref. 13) to analyze the effect of s- and p-wave resonance series overlap. The 
method is applied to compute the Doppler effect for  a 0.0155-centimeter slab of U238 

and a 2.0-centimeter sphere of U238 at 20 keV (refs.  12 and 14). 

STOCHASTIC GENERATION OF RESONANCE PARAMETERS 

In order to  generate neutron resonance c ross  sections, one needs the resonance pa­
rameters  associated with the Breit-Wigner single-level formula. These a r e  the energy 
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of the resonance Eo, the scattering width of the resonance rn,and the capture width 
of the resonance l?

Y'
These measured parameters  allow one to compute accurate values of the continuous 

neutron c ross  sections from resonance to  resonance (ref. 13). 
It has been asser ted on the basis of theoretical considerations that these resonance 

parameters have definite analytic probability distributions (refs. 15 to  17). The level 
spacing distribution of Wigner and level width distribution of Porter  and Thomas have 
been checked experimentally in the resolved resonance region for many isotopes, and 
they have been found to adequately describe the distributions of parameters measured 
experimentally (refs. 18 to  20). 

One may assume that the statistical distributions found to obtain a t  low neutron 
energies a r e  a lso valid for  higher neutron energies. Thus one may employ these dis­
tributions of resonance parameters to generate a set  of pseudo resonance parameters 
in the unresolved resonance region. The code DAISY described below allows one to gen­
erate  chains of pseudo resonance parameters,  in the unresolved resonance region, 
which preserve the correct average values, as well as, an accurate representation of 
the correct distribution functions. 

Wigner Level Spacing Distribution 

It is found that the level spacing between two neutron resonarlces, of like J and I ,  
follows a probability distribution of the form 

P(X) = -
77 x exp x 2 0  
2 

p(x) = 0 x < 0 (1) 

where J is the spin quantum number of the compound nucleus formed by the target and 
the neutron, I is the angular momentum of the neutron with respect to the target nu­
cleus, and x is a normalized dimensionless level spacing or 

Sx = --
DJ 

where S is the nearest neighbor level spacing in eV and DJ is the J state average 
level spacing in eV.  Equation (1)is then the Wigner level spacing distribution (refs. 
16 and 17). 
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Level Width Distribution of Porter-Thomas 

The variation of the reduced scattering widths r: is found to follow a x2 distri­
bution function (ref. 18) with one degree of freedom for  s-wave (1 = 0) resonances while 
two degrees of freedom have been suggested for p-wave ( I  = 1) resonances (ref. 15); 
that is, 

0 -1/2 - 1  rn= V I  r, (3) 

where Eo is the resonance energy in eV, u1 is the penetrability factor, and rn is the 
scattering width associated with the Breit-Wigner formula. The distribution of 

is found to  be of the form 

where the number of degrees of freedom u is equal to 1 for s-wave resonances and 
equal to  2 for p-wave resonances. This is the distribution of Porter  and Thomas for 
scattering widths. 

The capture width rY is found to  vary little from resonance to resonance. This, 
in fact, is consistent with the theory of Porter  and Thomas which indicates I? Y should 
be distributed as x2 with a large number of degrees of freedom (ref. 21). Since the 
mean square deviation about the mean for a normalized x2 distribution is two over the 
number of degrees of freedom, rY should remain relatively constant from resonance to 
resonance. However, some recent experiments tend to  cast  doubt on the assumption of 
a constant rY (refs. 1and 22). 

If these distributions a r e  assumed to be valid for higher neutron energies, one may 
sample from the Wigner level spacing distribution to obtain a ser ies  of Eo's and then 
sample from a x2 distribution (Porter-Thomas) for the corresponding m's. This 
technique may be used t o  generate continuous c ross  sections in  the energy region be­
tween the highest measured resonance and the energy region where the Doppler width 
becomes larger  than the level spacing. 
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Sampling From the  Normalized Wigner Distr ibution 

When the Wigner level spacing distribution is written as equation (l),the DJ mul­
tiplier has  been normalized out. The expectation value of x, or the mean of x, is l. 
It is adequate, for the present, to discuss the sampling from this normalized probabil­
ity function. In order  to  sample X, a level spacing, from the normalized Wigner dis­
tribution (eq. (l)),one forms the functional mapping (eq. (6)) 

where % is a random number uniformly distributed on the interval (0, 1) 

Rn = lxx exp (- x2)dx (7) 

Solving the previous equation for X gives 

or since 1 - is distributed as Rn 

One may now easily gain the correct J state level spacing by multiplying X by DJ, 
the J state average level spacing. 

Sampling From the  x2 o r  Porter-Thomas Distribution 

The Porter-Thomas o r  neutron width distributions can likewise be written in a 
normalized form 
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P(Y7 2) = [2r(1)1 -1 2-le-y/2 (p- wave) 

where y is given by equation (4). It can be shown (see appendix A) that the problem of 
sampling a member from a x2 distribution with v degrees of freedom can be reduced 
t o  the problem of sampling v random values selected from a normal distribution of 
mean 0 and variance 1. That is, if the sequence 

y 1 7  y 2 7  y37 . - 7  yn7 * 

is composed of values selected from a normal distribution of unit variance and mean 0, 
the sequence of transformed random variables 

2 2 2 2 
y 1 7  y27 y37 . * ' 7  yn7 . * ' 

has a x2 distribution with one degree of freedom and the sequence 

has a x2 distribution with two degrees of freedom. However, each element of the sec­
ond sequence must be divided by two in order to preserve normalized property. There 
a r e  available many techniques for  sampling from the normal distribution. A fast algo­
rithm with a correct  treatment of the wings of the normal distribution has been chosen 
(ref. 23). It is described in appendix B. 

Once a ser ies  of Eo's or  resonance energies have been generated, one can sample 

from the appropriate x2 distribution; the value of rn associated with an Eo is then 

rn= 
1/2 v O r n-oy2 (s-wave) 

o r  

-
I?, = EA/2vlI'z + Yin)2-' (p-wave) 

where vo and v1 are the penetrability factors, 

v0 = 1 (s-wave) 
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"1 = k2R2 (p- wav e)
2 2l + k R  

R is the nuclear radius and k is 271 t imes the wave number of the incident neutron 
(ref. 24). 

Although it is possible to  produce such resonance chains at will, a question arises 
as to  how one might compare one such chain to  another. Of course, given the same set 
of initial average resonance parameters,  one wil l  generate a somewhat different chain 
each time a chain is generated, depending upon the sampling method. For example, 
given a different random number generator for sampling purposes, one might use the 
same technique twice and obtain different results.  Stated more  accurately, given n 
such generated chains of m resonances, which of the n chains should be chosen as a 
representation of the actual resonance structure in this energy region? This difficulty 
has  sometimes been rejected, by asserting, that since one w a s  sampling correctly from 
the distributions, one chain of resonance parameters,  so  generated, was as good as any 
other such chain (ref. 6, pp. 75-76). Alternatively, an integral approach has been 
taken (ref. 9). In one such integral approach, several  resonance chains a r e  calculated, 
the (dilute resonance) integral of each chain is computed, and a chain with a resonance 
integral near the mean of these values is chosen as the best chain. 

A different approach has been adopted herein, which gives not only the correct  reso­
nance integral value but a lso provides a much faster  running time - comparable with 
single chain times. The present method for the choice of the best chain depends upon 
the use of the Central Limit Theorem, and on two statistical techniques for goodness of 
f i t  that a r e  discussed separately. One technique has been devised for very short chains 
of resonances, 5 to 100 spacings. The other technique is applied to  longer chains of 
101 to 5000 spacings. 

Central L imi t  Theorem 

The expectation value of a sum is the sum of the expectation values, that is, if 
gl, g2, . . ., gn a r e  -any random variables which have expectation values, then 

If each of gi a r e  independently sampled frQm the same distribution, then the following 
relation results: 

E(gl + g2 + . . . + gn) = nE(gl) = nE(g2) = . . . = nE(gn) 
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Also if gl, g2, . . ., gn are independent random variables, the variance of the sum is 
equal to  the sum of the variances. That is, 

Again, if each of the gi are independently sampled from the same distribution, 

The Central Limit Theorem (refs. 27 and 30) states that, if gl, g2, . . . , gn a r e  
random variables independently chosen from the same distribution each with expectation 
,u and variance (J 

2, then the probability distribution of the sum 

S n = g 1 + g 2 + .  . . + gn (20) 

is asymptotically normal as n - - or 

It is found empirically that this limiting distribution, the standard normal distribution is 
assumed very rapidly for Xi's chosen from the Wigner distribution. In fact, for n as 
small  as 5, the distribution of the sums of Xi's chosen from the Wigner distribution 
provide a good approximation to the standardized normal distribution. Thus one can 
compute both the probability, that the sum of n samplings from the Wigner distribution 
wi l l  be below a value S- as well as the probability that the sum of n samplings wil l  be 
above some value S+. This calculation allows one to  select a probability level, say 
85 percent, and to  reject  a chain immediately if it does not approximate the average 
level spacing better than 85 percent of such chains. At this point, it is useful to work 
through an example of such limits. The initial conditions a r e  that 

Einitial = 4500 eV 

Efinal = 5000 eV 

-
DJ = 5 eV 
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Since 

Efinal - 'initial=-
DJ 


the distribution function of the sum of 100 samplings and its variance from the normal­
ized Wigner distribution is evaluated. It is well known that the variance is the expecta­
tion of the square of the difference between the mean and the random variable or  

u2 = E[(X - P ) ~ ]  

u2 = E(X2) - p2 

Thus for the normalized Wigner distribution 

xu2 =$ f f 1 2p(x)dx - l2 
0 

= - ­4- 1 = 0.273239 . . . 
a 

u = 0.5227232 (28) 

One can now generate the standard normal distribution, which very closely approximates 
the distribution of the sum of 100 random variables Sloo sampled from the Wigner dis­
tribution after the form of equation (21); that is, 

100 x 1 

.eloo ­0. 5227 a5 v) N(w) 
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One can now answer such questions as what is the probability that the sum Sloo is be­
tween 99 and 101; that is, 

= N(-0. 19) = 0.4247 
5.227 

'( lo' - loo, 0. = N(0. 19) = 0.5753 
5.227 

P(99 5 SI00 5 101) = 0.5753 - 0.4247 = 0.1506 

If, for  example, a probability level of 85 percent had been chosen for a chain of 100 
levels, any chain adding up to  less than 99 or  more  than 101 could be ignored. More de­
tailed calculations could then be used to  choose the best chain from the 15 percent ac­
cepted by this technique. Also, since t h e  normal distribution is a symmetric function 
about the expected value of the sum, no bias has  been introduced. 

Since the level widths are 
distributed as x2 , and as x2 does not approximate a normal distribution until many 

A similar technique is used for  the scattering widths. 

degrees of freedom are introduced, the sampling limits are chosen from the appropriate 
y, distribution. Again the expectation of the sum is equal t o  the sum of the expectations. 
The sampling limits are adjusted such that no bias is introduced; (i. e. , equal probability 
about the expected value). 
value of the sum of 100 values of s=lis 100 and the 85 percent limits - 15 percent 

For an example similar to the aforementioned, the expected 

acceptance - a r e  97.375 and 102.715. The unequal spacing about 100 of the limits is 
such that no bias is introduced into the accepted values (ref. 26). 

The aforementioned technique allows one to  generate many resonance chains, all 
drawn from the correct  sampling distributions, and to  immediately reject  those chains 
which are found to  vary from the average by more than the l imits set. No extensive- -
calculations are wasted on these rejected chains. The values of both DJ and r: are 
preserved to  within se t  limits. In the next section two techniques will be outlined which 
allow one to choose from the accepted chains, that chain, which best  f i ts  the distribution 
functions for  D and I?,. 

FINAL SELECTION OF BEST RESONANCE CHAIN 

In the preceding section it was shown how one can reject  resonance chains prior to  
any involved or detailed considerations on strictly statistical grounds. Two methods 
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which allow one to choose, from chains found acceptable by the above test, the "best" 
chain, in the sense of goodness of fit,  a r e  now described. The method found applicable 
t o  short chains (where n, the number of resonances, is less than or equal to 100 but 
greater than or  equal to  5) w a s  the Kolmogorov-Smirnov statistic for  goodness of fit. 

Kolmogorov-Smirnov Test 

The cumulative distribution function F(x) (eq. (29)) equals the probability that the 
random variable has some value less  than or  equal to x; that is, 

F(x) = f p(x)dx 
-03 

If one also forms the discrete cumulative distribution function Fn(x) for n samples 
from the distribution function, one can compute the Kolmogorov- Smirnov statistic A 
(ref. 27) as 

A = least upper bound of I Fn(x) - F(x) I -03 5 x 5 00 (30) 

The meaning of this statistic is illustrated in figure 3. Once one has computed A for  
each acceptable chain, that chain with A a minimum is chosen as the "best" chain. It 
can be seen that the minimum Kolmogorov-Smirnov statistic corresponds to the best 

I 
2.5 
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fitting of the continuum distribution function by a discrete function. Thus by the intro­
duction of the Central Limit Theorem the measured mean values of the level spacing and 
the scattering width are conserved, and by use of the minimum Kolmogorov-Smirnov 
statistic a very good f i t  t o  the distribution function is obtained. Hence, all the informa­
tion available to the construction of the "best" chain has  been applied. This method is 
quite fast for chains of n resonances where 5 5 n 5 100. 

For chains containing more than 100 resonances, a different technique has been em­
ployed in order to  facilitate the choice of the "best" chain. The method which w a s  
adopted for  the longer chains is the x2 test  for  goodness of fi t .  

xL Test for Goodness of Fit 

Due to the necessity of sorting individual values to compute FAX)for the aforemen­
tioned Kolmogorov-Smirnov test, it is not particularly we l l  suited to the production of 
long resonance chains. Again, however, w e  should like to  maintain the correct distri­
bution function. The technique best  suited to such a requirement for  large samples is 
the x2 test for goodness of f i t .  For  this particular application, i t  has been imple­
mented in the following manner. The probability distribution has been divided into 20 
equally probable portions. Twenty were chosen in order to maintain an expected. value 
in each portion, or bin, of more  than five (ref. 28) Once a chain has been accepted by 
the Central Limit Theorem, the random variables used to generate it are placed in the 
appropriate bin corresponding to the 20 equally probable ones. Finally, when all the 
random variables have been tallied, the expected value for each bin is subtracted from 
the number actually found. The twenty values s o  generated are squared and summed. 
This sum i s  then divided by twenty and multiplied by the number of resonances. The 
resultant number is called the x2 of the fit and is a measure of the goodness of fit. If 
x2 is large, the fi t  to the distribution is poor; likewise, if x2 is small, the fit is good. 
Hence, the chain with minimum x2 is chosen as the best  fit to the distribution function. 
This x2 is a number and is not to  be confused with the distribution function of x2 which 

w a s  discussed ear l ier  in this report. The connection of this number and the distribution 
function is discussed in most books on statistical methods (refs. 29, 30, 25, and 28). 
Hence, the DAISY program by the use of rather simple and fast techniques has chosen 
the resonance chain which has  an average level spacing and average reduced scattering 
width which are inside predetermined limits. DAISY has also chosen that chain whose 
elements best  fit the two distribution functions associated with level width and level 
spacing. 

Figure 4 shows the mechanics of the code DAISY in block diagram form. 
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bounds on  level spacing 

Generate and store 
random number which 
starts chain, RN 

I 
Generate chain of N 
resonance spacings 
and sum in S 

Compute upper and lower Generate and store Yes 
bounds on reduced level = random number which Been generatedwidths, G, and G- starts chain, NR 

Generate chain of N9 samples and 
sum in G 

A 


stored random number 

goodness of f i t  us ing 
stored random number 

Compute Kolmogorov-Smirnov 
statistic A of t h i s  chain us ing 
stored random number 

RN (best f it) = RN (stored) 

Figure 4. - DAISY flowchart. 

Timing 

In summary, the code DAISY provides a technique for the simultaneous production 
of correct average quantities and accurate statistical distributions in a short period of 
computing time. 

As an example, 1000 chains of 58 p-wave resonances with a rejection probability 
of 95 percent were generated by the code DAISY and the best chain chosen in a total 
computer t ime of 0 .71 minute on an IBM 7094-11. This gives a speed of 1362 resonances 
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per  second on the IBM 7094-11. This may be compared with the timing of the PSEUDO 
code (ref. 9) which generates 1248 resonances in 9 seconds on the UNIVAC 1108 or about 
138.7 resonances per second. Since the UNIVAC 1108 has a cycle time of about 0 .75  
microsecond and the 7094-11 has a cycle time of about 1.4 microsecond, one may make 
a rather crude comparison of the two machines by the ratio of cycle times. If this is 
done for the PSEUDO code, one obtains a value of about 74.2 resonances per second on 
the IBM 7094-II. On the basis of this admittedly crude comparison, the DAISY technique 
is at least, since p-wave calculations a r e  longer, 18.4 times faster than the technique 
of PSEUDO. 

In comparing problem size limitations the maximum number of chains for DAISY is 
9999, and the maximum number of ladders for PSEUDO is 500. The maximum number 
of resonances per chain in DAISY is 5000, and the maximum number of resonances per 
ladder for PSEUDO is 4000. 

CALCULATION OF U238 RESONANCE PARAMETERS NEAR 20 keV 

The use  of the DAISY code for the generation of resonance parameters is illustrated 
for  U238. U238 has both zero spin and relatively well measured s- and p-wave strength 
functions (refs .  1, 20, 31 to 34). The zero spin property allows one to  sample from a 
single Wigner level spacing distribution for s-wave resonances. The neutron energy 
region about 20 keV w a s  chosen since the contribution of the p-wave component to the 
U238 (n, Y) U239 cross  section is near its maximum and should allow a convenient check 
on both the s- and p-wave components of the c ros s  section averages. 

To provide a set  of resonance parameters suitable for further calculations, the fol­
lowing procedure is used: 

(1) Using the strength functions and the average level spacing, r: (s-wave) and Fz 
(p-wave) a r e  determined. 

(2) Within the energy limits, Einitial to Efinal, the se t s  of resonance parameters 
rn(s-wave) and E0 (s-wave) a r e  generated by DAISY for the best chain (I = 0) or 
chains (I $: 0). 

(3) The measured value of aPot and the values of F i  (p-wave) and DJ (p-wave) 
are used to  generate the se t s  of resonance parameters rn(p-wave) and Eo (p-wave) in 
this energy region for the best chain (unseparated spin statistics) or chains (separated 
p- wave spin statistics). 

(4) Using the resonance parameters just generated and (TPot(measured), average 
partial  c ros s  sections a r e  computed for the range Einitial to Efinal. 
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(5) The sum of the average partial c ros s  sections 

utot(computed) = u + uC + u + us + uPot(measured) 
cS P sS P 

is compared with otot(measured) in  this energy region. 
(6) If necessary, the measured value of uPot is adjusted such that otot(measured) 

equals atot(computed). 
(7) The final set of resonance parameters (p-wave parameters must be changed due 

t o  eq. (15)) wil l  match the average total c ross  section and wi l l  have the specified aver­
age parameter values within the set  limits. 

RES ULTS 

Average Cross Section Calculations 

As a test of the technique used in DAISY, the average partial c ross  section of U238 

a r e  calculated by the code GAROL (ref. 13). The GAROL code assumes a lattice of 
absorber lumps embedded in a moderating medium. It solves two coupled integral 
equations for the fluxes in each region. It a lso allows one to compute Doppler broadened 
cross  sections directly from the Breit- Wigner resonance parameters provided by DAISY. 
A hydrogen-like (A = 1.0) pure scat terer  has been chosen for the moderating material. 
A narrow energy region, 19.5 to 20.5 keV, has been chosen. 

DAISY is used to generate s- and p-wave resonance parameters from 19.5 to 20. 5 
keV. The information used by DAISY is shown in table I. The p-wave parameters have 
been generated in this energy region using a measured value of u

Pot 
equal to 10.8 barns 

(ref. 35). The p-wave parameters have been chosen as merged, no J dependence, as 
there is no measured data on separated spin statist ics for the p-wave resonances of 
A 3 8u . 


TABLE I. - PARAMETERS USED IN DAISY FOR U238 
~ 

Parameters  s-Wave p-Wave 

Angular momentum of neutron with respect to  target nucleus, 1 0 1 
Capture width, rY’ meV 23.8 23.8 
Average reduced scattering width, ro meV 1. 83 3. 7n’ 
Average level spacing, E, e V  20.8 7.0 
Potential scattering c ross  section, opot’ 10.8 

-. ­
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Figure 5. - S-wave capture cross section. 
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Figure 6. - S-wave total and potential cross section. 

The s-wave capture component and the s-wave total c ros s  section showing the scat­
tering interference with the potential c ross  section about 20 keV a r e  shown in figures 
5 and 6. A portion of the p-wave capture c ross  section and the p-wave total c ross  sec­
tion a r e  shown in figures 7 and 8. The total c ross  section and the total capture c ros s  
section a r e  shown in figures 9 and 10. These figures (figs. 5 to  10) show c ross  sections 
which have been Doppler broadened to 300 K and have been computed at  0. 5-eV inter­
vals. 

Table 11 shows the average values of the c ros s  section components of the average 
total c ros s  section a t  20 keV for  an initially selected value of 10.8 barns for the poten­
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Figure 10. -Total capture cross section. 


tial c ros s  section. In column 3 of table I1 the results of an analytic computation of these 
averages is shown (ref. 36). This analytic method, that of Lane and Lynn, allows one 
to  accurately compute average c ros s  sections, both s- and p-wave. The resul ts  of the 
DAISY-GAROL computation a r e  in quite good agreement with these analytic results. 
This agreement indicates the sampling techniques used in DAISY have been implemented 
correctly. However, according to  steps (5) and (6) in the previous section, it is neces­
sary  to choose a value of cr

Pot so as to maintain the measured value of ztot. The c ross  
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TABLE II. - COMPONENTS OF AVERAGE TOTAL CROSS SECTION FOR U238 AT 

20 keV BY THE METHOD O F  DAISY AND THAT OF LANE AND LYNN (REF. 36) 

Component DAISY Lane and Lynn DAISY 
(ref. 36) (FINAL) 

Potential scattering c r o s s  section, upot, b 10.800 10.800 9.647 
Average s-wave scattering c ros s  section, a , b 2.378 2.381 2.380 

sS 
Average s-wave capture c ross  section, , b .165 .163 .165 

S 
Average p-wave scattering c ross  section, Zs , b 1.226 1.223 1.074 

- P
Average p-wave capture c ross  section, uc , b .536 . 527 .514 

P
Average total capture c r o s s  section, ac, b .701  .690 .679 

Average total c ross  section, Etot, b 15.105 15.094 13.780 

sections so  generated are shown in the last column labeled DAISY (FINAL). 
Table III shows three values of the measured average total c ross  section a t  20 keV 

and three values of the potential c ros s  section inferred as necessary to maintain these 
three total c ross  sections (see step (6) in previous section). A s  it would be extremely 
difficult to assign any one of these measurements a higher precision than the two others, 
the average value of u

Pot
(inferred) equal to 9.647 barns  is used for all further calcula-

TABLE III. - VALUES O F  u OBTAINED FROM
Pot 

-
utot CONSERVATION FROM DIFFERENT 

SOURCES OF MEASURED CROSS SECTION 
-

Source utot (20 keV), u
Pot 

(inferred), 
b 

KFK- 120a 13. 6 9.500 
LA- 3527b 14. 158 9.986 
BNL-325' 13. 55 9.456 

Average inferred potential scattering c ross  section 
upot = 9.647 

aRef. 42. 
bRef. 43. 
'Ref. 2. 
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tions (refs. 37, 38, and 39). The p-wave rntshave been recomputed using this value 
of crPot and equation (15) to obtain the appropriate vl's. The resulting c ros s  section 
averages from GAROL are shown in table I1 under the heading DAISY (FINAL). 

Graphical Comparisons with Theoretical Distr ibutions 

Figures 11to 16 allow one to  compare the individual resonance parameters  chosen 
by DAISY to the theoretical distribution functions. These figures should indicate the 
detailed resonance structure generated by DAISY in a manner more easily grasped than 
a table of resonance parameters.  The cumulative probability distributions of rn/Fn 
for the s- and p-wave resonance parameters  generated by DAISY are shown in figures 
11and 12 along with the theoretical cumulative probability distributions. The cumula­
tive probability distributions of D/D for the s- and p-wave resonance energies gener­
ated by DAISY are shown in figures 13 and 14 along with cumulative Wigner distribution. 
It can be seen that the sampled values are in good agreement with the theoretical distri­
butions over their range. 

While they are not comparisons of theoretical to sampled data, plots of N(E), the 
number of levels at or below the energy E, against E are shown for the s- and p-wave 
chains in figures 15 and 16. These plots serve to indicate the amount of local variation 
in level spacings. 

ANALYSIS OF DOPPLER EFFECT EXPERIMENTS: CALCULATION OF HOT TO 

COLD CAPTURE RATIOS OF THE U238 (n,y) U239 REACTION AT 20 keV 

The DAISY (FINAL) chain illustrated previously is used solely throughout the re­
mainder of this report .  These parameters  generated by DAISY allow one to  compute a 
representative shape of the c ros s  section against energy rather than averages alone. 
In this section the parameters  generated by DAISY and the code GAROL (ref. 13) will 
be used to evaluate the Doppler effect in U238 a t  20 keV. By the use  of the DAISY 
(FINAL) parameters  and GAROL it is possible not only to  investigate the effects of reso­
nance se r i e s  overlap but it is also possible to determine separately the Doppler effect 
of the s-wave series and p-wave resonance series.  

Thin  Foil Problem 

As a part  of a study of the energy and temperature dependence of neutron capture 
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Figure 1L - Cumulative probability distribution of rnfncompared to that of a 9 distribution with one degree of freedom for w a v e  DAISY (FINAL) chain 



Figure 12 - Cumulative probability distribution of rn / rn  compared to that of a 9 distribution with hdegrees d freedom for PwaveDAISY (FINAL) 
chain. 
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Figure 14 - Cumulative probability distribution of DlE compared to the Wigner level spacingdistribution for pwave DAISY (FINAL)chain. 
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Figure 15. - Number of levels at or below E as a function of energy of levels for s-wave DAISY FINAL) chain. 

measurements in the unresolved region, Seufert and Stegemann (ref. 14) measured the 
hot and cold neutron capture reaction ra tes  of a U238 foil, 0.0155 centimeter thick, in 
a lead block slowing-down-time neutron energy spectrometer. The temperatures chosen 
in this experiment were 300 K for the cold sample and 750 K for  the hot sample. A 
theoretical ratio of hot to cold captures is also plotted by Seufert and Stegemann as a 
function of energy from 300 eV to 30 keV. Their theoretical value of the ratio at 20 keV 
is 1.0023. No resonance overlap corrections have been applied in their computation of 
the theoretical hot to  cold capture ratio. Unfortunately, the measured ratios in this 
energy region are subject to  rather large e r r o r  margins. The measured ratio at about 
16.5 keV is 1.030kO. 024, and a t  about 31. 5 keV it  is 1.019*0.045. Although experi­
ments are very difficult t o  perform and experimental resul ts  are rather  imprecise, it 

26 




Figure 16. - Number of levels at or below E as a function of energy of levels for pwave DAISY FINAL) chain. 

is possible to compute the hot to  cold reaction ratio, with some precision, in this unre­
solved resonance region. 

The calculation of the hot (750 K) to cold (300 K) ratio for a 0.0155-centimeter­
thick slab of U238 w a s  made over the interval 19 600 to 20 400 eV by 0.5-eV increments. 
It is assumed that the slab absorber, the U238 foil, is embedded in a purely scattering 
medium. The resul ts  of these calculations a r e  shown in table IV where the hot to cold 
capture ratios both with and without the overlap effect a r e  displayed. 

It can be seen that the DAISY-GAROL calculation of the hot to cold capture ratio 
without overlap is in substantial agreement with the Seufert and Stegemann calculation 
which assumes no overlap. The value of the hot to  cold capture ratio is reduced from 
1.0030 to 1.0023 when resonance series overlap is included. Due to the rather large 
uncertainty in  the experimental results, a direct comparison between theoretical resul ts  
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- - 

Measured at 16. 5 keVa 

Measured at  31. 5 ke? 

TABLE IV. - HOT TO COLD NEUTRON CAPTURE RATIOS 

(750 K/300 K) FOR A U238 FOIL AT 20-keV 

With overlap 1.0023 0.0014 0.0009 
+O. 00 16 _----- ___- ­-

Without overlap 1.0030 
*o* 0010 

Seufert and Stegemann theory 1.0028 
without overlapa ___- - ­

1 Measured at 16. 5 keVa 
I 

Measured at  31. 5 ke?L! I*o. 045 

aRef, 14. 

.0014 .0016 
----_ 

_ -- - -- -­

_ _ _ _ _  _ _ _ _ _  

and experiments is precluded. Yet one can determine from the detailed GAROL results 
the Doppler effects for the separate series.  If one assumes  that the cold capture rate 
for the s-wave resonance ser ies  is n,, then the hot capture ra te  for the s-wave series 
can be represented by ns + 6n,. If the cold and hot capture ra tes  for the p-wave series 
are represented in the same fashion as n

P 
and n

P 
+ 6n

P' 
one can form the hot to cold 

capture ratio as 

ns + n + 6ns + 6n 6n 
p ___---, P = 1+ ___6nS + p 
ns + n n s + n  n s + n

P P P 

6nS = Rs 
ns + n

P 

6n 
= R p  

ns -t n
P 

The Rs and R
P 

values a r e  shown for the two cases  computed. It should be noted that, 
while the p-wave average capture cross  section is about three t imes the size of the,s­
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wave average capture c ros s  section, it (the p-wave resonance series captures) accounts 
for only about 40 percent of the Doppler effect. Assuming no overlap overestimates the 
Doppler effect for  the p-wave series by about 80 percent. The reason for the rather  
small  p-wave Doppler effect is that the Doppler width, for U238 at 300 K and 20 000 eV 
is -3.0 eV. This is over 40 percent of the average p-wave level spacing, 7 .0  eV. 
Thus, the p-wave c ross  sections are much more nearly smooth than the s-wave c ross  
sections. 

The e r r o r  estimates shown are formed by breaking up the region from 19.6 to 
20.4 keV into two regions, one from 19.6 to 20.0 keV and the other from 20.0 to  20.4 
keV, computing a capture ratio for each region and then the standard deviation of these 
two capture ratios is shown below the total capture ratio. 

Thick Sphere Problem 

Another experiment utilizing a larger temperature variation and thick spheres, 
2 centimeters in diameter, has been conducted by Fieldhouse et al. (ref. 12). 

The experimental arrangement used the Li7(p, n) reaction as a source of neutrons. 
The angle between the proton beam, the target, and the sample to  be irradiated as wel l  
as the proton beam energy were chosen to obtain the required range of neutron energies 
on the sample. Two samples of U238 were irradiated simultaneously, one sample a t  
room temperature the other at 770 K. At the end of the irradiation, the hot sample w a s  

TABLE V. - HOT TO COLD NEUTRON CAPTURE 

RATIOS (770 K/290 K) FOR A U238 SPHERE 

AT 20-keV NEUTRON ENERGIES 

rota1 cap­
.ure ratio 

With overlap 

Without overlap 

Theory of Fieldhouse et al. 
with overlapa 

Fieldhouse et al. measured 
between 10 and 33 keV 
plotted at 21. 5 keVa 

aRef. 12. 

1.023 
-to. 001 

1.030 
-to. 001 

1.027 
__- - ­

1.034 
+O. 023 
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cooled and counted for  p activity along with the room temperature sample. Experi­
mental e r r o r s  were reduced by alternating the temperature in the same furnaces - the 
770 K furnace is subsequently run at room temperature (290 K) and the room temper­
ature  furnace is subsequently run at 770 K. The resul ts  of these experiments are 
shown in table V. The measured value of the average Doppler effect in the energy re­
gion, 10 to  33 keV, plotted at 21. 5 keV was 1.034*0.023 (ref. 12). 

The Fieldhouse theoretical resul ts  used a statist ical  sampling of resonance param­
e te r s  and a slowing down code. Therefore, this  theoretical result  should include s­
wave, p-wave series overlap effects explicitly. However, ra ther  different strength 
functions were used and a potential c ros s  section of 10.636 barns  was used in their cal­
culations (refs. 11 and 12). Hence, the DAISY-GAROL resul ts  could differ from the 
theoretical result  of Fieldhouse et al . ,  a Doppler effect of 1.027. 

The DAISY-GAROL result  for the region, 19.6 to  20. 4 keV, is 1.023hO. 001 includ­
ing overlap and 1.030~tO.001assuming no s-wave, p-wave series overlap. Thus, there 
is reasonable agreement between the DAISY-GAROL resul ts  and the theoretical result  
of Fieldhouse et al. Again the p-wave se r i e s  contribution to the Doppler effect is less 
than the s-wave, p-wave c ross  section ratio. There is also an overestimation of the 
p-wave Doppler effect when resonance series overlap is neglected. 

The DAISY-GAROL calculations are done along the same lines as the calculations 
of reference 12; that is, the U238 spheres are assumed to  be covered by a thin scatter­

ing source of neutrons. For these computations, the source is assumed to  be a 0.1­
centimeter-thick shell around the 2-centimeter-diameter spheres. The results are not 
strongly dependent upon the thickness of this shell. When these calculations are re­
peated for a shell with an optical thickness of 100 000.0 centimeters, the Doppler effect, 
including overlap, is raised to only 1.046. 

SUMMARY OF RESULTS 

Using only -one se t  of resonance parameters,  determined by the code DAISY, one 
can not only match total c ros s  sections in the unresolved energy region but one can also 
compute Doppler effects, compatible with other theoretical calculations, over a wide 
range of sample thicknesses (0.0155 to  2 cm). 

The results obtained are as follows: 
1. The techniques used in the code DAISY allow one to efficiently choose a pseudo 

resonance parameter chain consistent with the Porter-Thomas and Wigner distribution 
functions. 

2. The c ross  section averages computed by the DAISY-GAROL combination are in 
very good agreement with averages computed by analytic techniques. 
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3. A value of about 9.6*0.3 barns  is necessary for  the potential c r o s s  section in 
these calculations to  preserve the measured value of the total c r o s s  section of U238 at 
20 keV. 

4. By the use of -one set of parameters,  DAISY (FINAL), and the code GAROL, one 
may compute the Doppler effect at 20 keV. 

5. The Doppler effects computed by the DAISY-GAROL combination are compatible 
with other theoretical computations of the Doppler effect over a wide range of thick­
nesses  (0.0155 to  2 cm). 

6. The effect of neglecting resonance series overlap is to  overestimate the Doppler 
effect. 

7. The s-wave contribution to  the Doppler effect is from 50 to 60 percent, but the 
average s-wave capture c ros s  section is about one-third that of the p-wave capture 
c r o s s  section. 

In conclusion, a technique for  the rapid generation of resonance parameter chains 
in the unresolved resonance region has been described and used in conjunction with a 
standard nuclear code to  evaluate Doppler effects in U238 . 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, April 1, 1970, 
129-02. 
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APPENDIX A 

SAMPLING FROM A x2 DISTRIBUTION 

The purpose of this appendix is to prove that sampling v times from a normal dis­
tribution, squaring the samples and summing provides a x2 sample of v degrees of 
freedom. 

First, Mx(B), the moment generating function of f(x) i s  defined as follows: 

MX(@= LcoeeXf(x)dx 

Also, it can be shown (refs. 29, 30, and 40) that, if two random variables have the same 
moment generating function, they are identical. 

Next, the moment generating function of the x2 distribution with v degrees of 
freedom shall be computed as follows: 

If x2 is replaced by w, the result i s  

E z = ~ ( l- 28)/2 dw = 2 dz/(1 - 20), 

= (1 - 20)- q;)
T-3 
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Mw(0) = (1- 20)-’12 

Now the moment generating function of the sum of the squares of samples chosen 
from the normal distribution function wi l l  be determined. Use wil l  be made of the fol­
lowing theorem (refs. 29, 30, and 40). The moment generating function of the sum of 
n independent random variables is equal to the product of the moment generating func­
tions of the individual variables. Tf x is normally distributed with mean 0 and vari­
ance 1, let a random sample of v values of xi be taken from the distribution. Now 
the moment generating function of q shall be computed. Where 

V 
q =  c x.

1 
2 

i=1 

M 
q

( 0 ) = M  
x . + .  . .+x

2(8) = M ,(e) - M 2(0) . . . M 
X

2(0) = 
1 V x1 x2 V 

Since x is normally distributed, 

Let y = x( l  - 20)l l2;  then 

M 2(0) = (1  - 20)-
1/2 1 -

e-y 
2 
I2d y =  (1 

X 

Recalling the previous result  gives 

which is exactly the same result  as the generating function of x2 with v degrees of 
freedom . 
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Thus, since the moment generating functions are equal, the distribution functions 
a r e  identical. If one wishes to  sample from a x2 distribution with v degrees of free­
dom, one needs only to sample the normal distribution v times, square the results, 
and sum. 
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APPENDIX B 

FAST GENERATOR FOR NORMAL RANDOM VARIABLES 

It has been shown that, if one wishes to  sample from the x2 distribution with v 
degrees of freedom, the problem may be reduced to sampling from the normal distribu­
tion. The purpose of this appendix is to outli,ne in some detail a fast procedure (ref. 23) 
for sampling the normal distribution. 

The procedure is most simply explained as follows. The density function f(x) of 
the positive normal distribution is divided into three portions 

4 2  .-1/2x2 
f(x) = 

J;; 
= 0.9578 fl(x) + 0.0395 f2(x) + 0.0027 f3(x) 

The meaning of this formula is that one generates, with probability 0. 9578 a random 
variable with density f l ,  with probability 0.0395 a random variable with density f2,  
and finally with probability 0.0027 a random variable with density f3.  The exact prob­
abilities can be determined from reference 23. The importance of this splitting of the 
density function is that the procedure which gives f l  is extremely fast, the procedure 
for  f2  is rather short, and the time for f3  rather long. 

The procedure for f depends upon representing much of the a rea  under the den­
sity curve f(x) as a ser ies  of uniformly distributed random variables with differing 
probabilities of being chosen (sketch (a)). A stored ser ies  of values then allows the use 
of the first few digits of a uniformly -distributed random number to choose the correct  
leading digits of the variate f l  and the res t  of the uniform random variable gives the 
res t  of f l .  If the stored values a r e  contained in the vector Ai and if the uniforrnly 
distributed random variable u has digits 0 . ul, u2, u3, . . ., u7. If 00 5 u 1 u 2 -< 79, 
put the normal random variable x = AU 

1 2  
+ 

O U U U U4 5 6 7 '  
If 790 5 u1u2u3 < 940, put x = A, - 7 7 1 + .  Ou . This wi l l  generate the 

1 2 3  4 5 6 7  
variable shown in sketch (a). In order to generate the correct  random variable f(x) in 
the range 0 5 x < 3.0, a sample must also be taken from the density function f2(x) 

0 .5 1.0 1.5 2.0 2.5 3.0 
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shown in sketch (b) with probability 0.0395. This is accomplished by a modified rejec­
tion technique. It can be shown for a nearly linear density function, as is shown in 
sketch (c), that the following technique wi l l  provide a correct  sampling (ref. 41). In 
order  to generate a random variable Y from a nearly linear density function g(x) for 
t < x < t + a, f i rs t  contain g(x) within two parallel  lines. Then choose two independent 
random variables u and v distributed uniformly on the unit interval (0, 1). If the 
larger of u and v is less than 2/h, se t  Y = t + a min(u, v). If the larger of u and v 
is not less than 2 /h, then find out if 

h Iu - v I < g[t + a min(u, v)] 

If true, put Y = t + a min(u, v); otherwise generate a new u and v and s tar t  this en­
t i re  procedure again. 

The two techniques described previously allow one to generate the correct density 
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function for the normal distribution to a value of the random variable of 3.0. Beyond 
3.0 a process which is executed for only 0. 27 percent of the values. It is a modification 
of a technique found in reference 25 and shall not be described inasmuch as it does not 
affect the timing a great  deal. The interested reader  is referred to  references 23 
and 25. 

The aforementioned procedures including the one not described in detail have been 
programm'ed in a FORTRAN IV subroutine. It provides on the order of 5000 normal 
random variables per second on the Lewis 7094-11. 
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