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CRITICAL LEVITATION LOCII FOR SPHERES ON CRYOGENIC FLUIDS
by R. C. Hendricks and S. A. Ohm

~ Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT

The forces and governing equations for spheres floating on a fluid of
lower specific gravity are examined. Three similarity paramefers, Bond
number (Bo = (pl - pv>gRg/ g.); component density ratio of the sphere to
the fluid (o pv/pz - py), wetting angle (@) and the critical levitation
locii, established herein, are sufficient to determine whether or not the
sphere will float. Data appear in good agreement with the analysis for a
limited range of Bond numbers and a wetting angle of 7. These data and
the theoretical curve for o« =7 may be approximated by

Ps "Pv _ 1 05 . 165
P, = Py Bo

£

0.1 <Bo <30

Those spheres with density ratios less than this criteria will float, others
will sink. More data are needed to verify the analysis over 4 larger range
of Bond numbers and wetting angles.

INTRODUCTION

Floating a waxed steel pin on water has long been a source of amuse-
ment and an apparent paradox to Archemedes principle. However, a
closer examination reveals that one simply has not accounted for all the
forces acting to float the pin. A large contribution comes from the effects
of surface tension which acts in two ways: first, the free liquid-vapor
interface is curved above the solid-liquid-vapor contact line; as such it
acts much like a retaining wall, and holds back a fluid head; second. the
solid-liguid interfacial tension forces acting on the body are transmirted
to the solid-liquid-vapor contact line and held in equilibrium by the free
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liquid-vapor interface. An analogy for the latter forces is that of a thin
shell tank being supported at the bolting flange.

Beside the usual curiosity of the phenomenon, floating of a noncry-
ogenic fluid on a cryogenic fluid (and vice-versa) is of significant impor-
tance in fuel spills (ref. 1). Floatation phenomena are also of interest in
studies on controlling hypergolic fires (ref. 2); in the preservation (or
destruction) of biological specimens, such as in blood preservation and
in enzyme preparation (ref. 3). Floatation phenomena could be of signif-
icance in the production of monolayer films, pollution control, and as
fundamental tools for the determination of surface wetting characteristics.

The shapes of axisymmetric interfaces have been calculated by Huh
and Scriven (ref. 4) and Hendricks and Baumeister (ref. 5).

Huh and Scriven (ref. 4) numerically solved the Laplace capilliary
equation, analyzed the errors involved, and presented solution charts and
tables for the interface configurations. Hendricks and Baumeister (ref. 5)
determined the heat transfer characteristics of a water-sphere floating on
a sea of liquid nitrogen in Leidenfrost film boiling. Nutt (ref. 6) examined
the forces required to float an isothermal sphere. However, to approxi-
mate the submergence depth, Nutt (ref. 6) neglected the curvature along
the line of contact and used the closed form solution for a cylinder. Huh
and Scriven (ref. 4) found curvature along the line of contact to be impor-
tant for axisymmetric surfaces at low values of Bond number. While ref-
erences 4, 5, and 6 deal with the problem of floating spheres and calcu-
lating interfaces, only reference 6 gives an approximate criterion for
determining if a given isothermal sphere will float on a specified fluid.
Such a criterion has not been established for nonisothermal floating
spheres and a more accurate solution needs to be established for the iso-
thermal floating spheres. In the ensuing sections we will formulate the
governing equations, determine the similarity parameters involved,
numerically determine the optimum levitation locii (i.e., a float or no-
float criteria) and examine the asymptotic behavior of the solution for
both the nonisothermal and isothermal floating spheres. Some experi-
mental data are presented to check the analysis.
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THEORETICAL ANALYSIS

In this section we wish to determine the conditions permitting a fluid
to support a sphere having a higher specific gravity than its own. The fol-
lowing analysis will produce three basic parameters which together define
the maximum floating conditions: Bond number (Bo), that is, the ratio of
buoyancy to surface tension forces; the wetting angle of the interface (a)%;
and the ratio of solid-liquid specific gravities (ps - pv/pl - py)-

We proceed with analysis of the forces at the sphere-liquid interface
in order to determine the optimum levitation loci; that is, the conditions
permitting floatation of a maximum density sphere. We consider first the
force balance on the nonisothermal floating sphere in film boiling {fig. 1(a)),
then the force balance on an isothermal sphere (fig. 1(b)), incorporating the
work of references 4 and 6. Both cases are subject to the constraint of min-
imum energy conditions at the interface. A consideration of the limiting

cases then defines the asymptotic solutions of the desired loci.
Basic Force Balance for Nonisothermal Sphere

As shown in figure 1{a), the basic model for the nonisothermal floating
sphere in film boiling includes a vapor envelope separating the floating sphere
and the supporting liquid. This situation occurs, for example, when a water
sphere at room temperature (295 K) is placed on saturated liquid nitrogen
(77.4 K), and floats on a cushioning layer of nitrogen vapor.

The balance of forces acting to support the sphere, see figure 1(a), may
be expressed as:

TThe value of wetting angle for an advancing interface and that of a re-
ceding interface is herein referred to as «, i.e., no distinction is made in
the analysis. Thus when using the results, one must use the proper wetting
angle; namely, advancing or receding. Also, no allowance for the variation
in wetting angle with time is made, although experiments with time dependent
values of a (or surface tension o, or both) could still use the results pre-
sented herein by considering time increments.
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where
dA; = cos w R;‘?)‘ sin w dw d® )
2 .
dAg = cos 6 R sin 6 d6 d® ) (2)
dAg4 = sin 6 R%sm 6 40 dd

The pressure in the vapor gap at the sphere surface, Po’ may be expressed

in terms of the pressure drop across the vapor gap, AP6 , the pressure

drop across the interface, APO, and the liquid pressure acting on the inter-

face PZ9 see figure Z(a,)TQ
P, = PZ + AP - AP (3)
Using figure 2, the expressions for PZ and P, become
P, = E—Il +2, - RO((cos w + cos 6%) P8 4)
PZ = Hyp g + [?0 + (RO +6){(cos 6 - cos 6%) P, 8 (5)

and because the interface is nearly spherical, the pressure drop across the
interface becomes

AP, = _20 (6)
(RO +6)

The pressure drop across the vapor gap AP6 is determined from equa-
tions of reference 5, and equation (4).

tThe difference in vapor head is quite small and was omitted in ref. 5.




R (p, - p,)gW
APy :RO(,OZ - pv)g(pczm - pC:I) ( C 1) o] "vi®'s

Ve= <P TwH(0*)
- o? 2
X p + KHI +2Z, - R, cos 6% - R, cos ]pvg(go -1) (M
where
@ = 1+56 (8)
R,

The shear T.p Can be evaluated using the velocity profiles and non-
dimensional form of reference 5.

JENT TS )

Substituting equations (5), (6), and (7) into equation (3) and then sub-
stituting equations (2), (3), (4), and (9) into equation (1) gives

-g* . :
0= (pWS + 2%\/07’ BHI + ZO - Ro cos 9%); - RO COS W pVgRo cos w sin w dw

* -
- 27 Hlpvg+R20 +EZO-(RO+6) cos H*ng
0
R (p -p gW ~ 2 ‘
4 -(Hy + 2 - R, cos 6%)p g(q) 1)
TW*(6%) @
+ [ROPV(CPQ -+ (R + 6)p;’]g cos 0) Rg cos 6 sin 0 df (10)

If the parameters 7 o and 6* were known, then equation (10) could be
integrated in a straight forward manner, (see appendix B) and the force
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balance would be complete. However, these parameters must be deter-
mined by a simultaneous solution of this force balance and the interface
equations, to be found in the theoretical section - Structure of the Interface.

Basic Force Balance for the Isothermal Sphere

As is shown in figure 1(b), the forces in the isothermal sphere-liquid
system act directly on the floating sphere. The force balance, equating
the weight of the sphere with the buovancy and surface tension forces, is
given by a static force balance analogous to equation (1):

Ws'FB‘Fo:O (11)
Again, the weight of the sphere is,
_4r 53
Wy =—R ps8g (12)

However, the surface tension forces acting on the sphere are considered to
act along the contact circle giving use to the surface tension force, see

appendix B,

sin 6% sin (6* + @) (13)

i
1

i

—ZWROO'ZV
where dl = RO sin 6* d® over the contact circle.. A similar argument is
given by Nutt, reference 6.

Appendix C includes a discussion and definition of this surface tension
force in terms of adhesive surface tension. The buoyancy force of equa-
tion (11) is given by the difference between the supporting liquid force on
the liquid-sphere area A2 and the downward vapor pressure on the vapor-
sphere area Alo
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PZ cos 6 dA, - { P cos wdA, (14)
2 1

where P, and PZ are defined by equations (4) and (5), see figure 2(b).
Again, the buoyancy contribution of equation (14) to the force balance of
equation (11) is a matter of simple integration, given the parameters Z o
and 6*. We now investigate the interface equations in order to solve for
these parameters and simplify the force balance in the theoretical section -
Force Balance for Both Isothermal and Nonisothermal Levitated Spheres.

Structure of the Interface

In determining the minimum energy configuration of the liquid-vapor
interface in both the isothermal and nonisothermal cases, we investigate
the forces at the interface, which is considered to be a thin shell as seen
in the surface element of figure 3, enlarged in detail AA.T For values of
6 greater than 6%, the interface seeks a minimum energy configuration
subject to two constraints: (a) the balance of forces on the sphere at the
load circle, and (b) the boundary conditions at «. Referring to figure 3,
the balance of forces in the Xg2 -direction becomes:

8R3NT

dr d& - (Rll\T,g dé dt) cos (m - T) + Yo drdé=0 (15)
oT

and in the X3—direction:

-RgN_df dr + (RlNg dr d&) sin (7 - 7) + (PZ - PV)R3R1 dédr =0 (16)

where NT and Ng are surface forces per unit length inthe £ and 7
directions, respectively. It can be shown that these equations, (15) and
(16), represent the governing equations of the liquid interface if

In ref. 4, Huh and Scriven consider various forms of the interface equa-

tions and provide an excellent review of previous works.




N£:N = @ (17a)

and

¥y =l (17b)

See references (5) and (8). These governing equations may be written as
two first-order, nonlinear, ordinary differential equations, subject to
equation (17), and reduced to: T

Du=-2-z (18)

Y __ _—tanT (19)

where

u=sinrTt

Now, equations (18) and (19) are subject to the boundary:conditions:

Sphere load circle. -

X=X = A\/Bo sin 6* (20)
zZ = Z0 (21)

TSee refs. 4, 5, and 8.
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T, =1 - 0% + (1 - a) (22)

Interface at ©. - As X — = (i.e., x =M >>0)

z -0 (23)
T =7 (24)
where
R
Bo = — = Bond number - (25)
L2

The (-) sign in equation (19) is used when 7 <7/2 and (+) sign used
when 7 > 7/2. As the conditions at 7 =7/2 represents a singularity, this
region was handled by changing the independent variable from x to 7.

When 0.93 <u =1, equations (18) and (19) were rewritten as

Dﬁz_iﬁﬁu; (18a)
XZ +8in 7

Dz=- X sin 7 (19a)
X2 +8in 7

Details of a more sophisticated and accurate technique are found in refer-
ence 4. In either case, a fourth-order Runga-Kutta technique forms the
basis of the numerical solution.

Force Balance for Both Isothermal and Nonisothermal Levitated Spheres

For a given Bo and «, the interface equations (18), (19), (18a), and
(19a) yield solutions for z, and 6%, which can then be used to evaluate
either equation (10) or equation (14), thus completing the solutions of equa-
tions (1) and (11).

Equation (10) is evaluated in appendix B in a more precise manner
than reference 5. For the nonisothermal floater, ZS/RO <<'1 which can be
demonstrated using the results of reference 5. This implies that




and equation (B10) reduces to an expression in terms of p, Bo, and 6*

Pg = Py Z,, 3
2(s v :sin2 6* —Lﬁ'- hd +-1-~53§_9—*-lcos 6 sin:'3 6*  (26)
3 P, = Py Bo 2,Bo, 3 3 2

Integration of equation (14), gives for the buoyancy force on the iso-
thermally floating sphere:
p;, +p * 39x 2
3 l v_cos9+0039+= 0(1_0082

0 6%)
3o, - py) 2 6 2R

FB = 27[(91 = PV)gR
(0]

(27)

Substituting equation (13) for surface tension force and equation (27)
for buoyancy force into equation (11) gives the force balance on the iso-
thermal sphere, expressed in terms of p, Bo, 6*, and oz:T

. 2
Eps—p":l-}.cos 9"‘+lcos36)’*“+Z i 9*_sin8*sin(a+9*)
3 p,-p, 3 2 6 2 A/Bo Bo

(28)

Note that equation (26) for the nonisothermal floating sphere is iden-
tical to equation (28) for isothermal floater, for « =7, assuming of
course that 5/ R, <<'1. Thus for the nonisothermal case (film boiling),
we can validly employ the maximum floating criteria derived for the iso-
thermal case, with o = 7.

TThe form of eq. (28) can be altered to agree with that of Huh and Scriven,
ref. 4, and is similar to the results of Nutt, ref. 6, within the framework of

his assumptions.
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Critical Levitation Loci and Asymptotic Limits

In order to obtain graphs of levitation loci as a function of density ratio
(ps +pv/pz - pv) over a range of Bond numbers (Bo) for given values of wet-
ting angle (o), we solve equations (18), (19), (i8a), and (i9a) subject to the
boundary conditions, equations (20) through (24) and the constraint equation
(28). The solution is obtained by specifying the Bond number, wetting angle,
and the 6* and z o parameters. Once a fourth order Runga-Kutta solution
is attained, the above procedure is repeated for a range of values of 6* and
z., until the ratio (ps +pV/pZ - pv) of equation (28) reaches maximum value.
Figure 4(a) presents resulting maximum density ratio loci over Bond number,
Bo, values for a =%, 7/2, and 37/5 (37/5 is for Teflon floating on water);
figure 4(b) gives corresponding submergence angles 0%*, and figure 4(c) the
corresponding submergence depths Z, a8 functions of Bo. For a given
Bo and «, spheres with density ratios less than specified by this locus will
float; however, spheres with density ratios greater than specified by the
locus will not float.

Investigation of the characteristic trends of an equation is both instruc-
tive and expedient in determining the desired results. We now investigate
the two limiting cases of very large and very small Bond number limits.

As Bond number becomes very large (Bo — «) equation (28) is approxi-
mated by:

Pg +P0
2028 T\l 1og 0% 41 cogd g (29)
3 2 6

As Bond number becomes quite small, (Bo - € = 0), (i.e., surface tension
forces dominate), equation (28) becomes

2w
2 Pg *Py ~ Zy 810 o _ sin 6* sin (6* + o) (30)
0, = Py 2 A/Bo Bo

3
2 (Ps +pv> ., _Ssin 0* sin (6* + o) (31)
3 Py = Py Bo
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The expected asymptotic behavior of the critical Levitation Locii as
determined from equations (29) and (31) is summarized in table I.

The asymptotic limits established in this section.are in good agree-
ment with the computed locii, and establish the trends for the limitsi of low
and high Bond numbers (see fig: 4). .

RESULTS AND DISCUSSION

A number of solid and liquid spheres have been floated on water and
liguid nitrogen, respectively, to test the Optimum Levitation Locii of
figure 4. The solid teflon spheres and fluid containers were carefully
cleaned prior to attempting to float a given sphere in the isothermal state.
The spheres were then placed on the supporting fluid with tweezers.

While this technique is satisfactory for these experiments, more precisely
controlled experiments will require a sting or comparable type support in
conjuﬁcﬁ;ion with an analytical balance. In the experiments of Nutt (ref. 6)
a centrifuge was employed to vary the local acceleration and give first
order results; however while the technique is a good one, a larger con-
tainer should be employed to minimize the effects of curvature at the con-
tainer wall. The liquid spheres were formed using a hypodermic needle,
squeezed out and carefully dripped onto the liquid nitrogen surface (the
nonisothermal state). While this technique is adequate for our case, more
accurate data will require a technique which can minimize the surface
impact. The size of the frozen spheres were measured by comparison to
teflon spheres and checked using a scale.

To determine if a given material would float on a specific fluid, vari-
ous diameter spheres were tried. Sphere diameter was increased until
the surface could no longer support the sphere and it sank. In most cases,

. the graduations in sphere diameter were too coarse to permit the determin-

ation of the critical size. These ""largest size™ levitated sphere data are
presented in table II and figure 4(a).

The data for o =7 (i.e., those spheres floating on liquid nitrogen)
are in good agreement with the theoretical line for a limited range of Bond
number. The teflon sphere data, o ~ 37/5, also appear to be in good
agreement with the analysis.
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To illustrate the sensitivity of the data, @ 0.31 centimeter diameter
carbon tetrachloride sphere would float momentarily on liquid nitrogen and
sink to the bottom while a 0.28 centimeter sphere floated. Carbon tetra-
chloride spheres 0.31 centimeter diameter and above are classified as non-
floaters on liquid nitrogen. A 0.635 centimeter diameter teflon sphere
would not float on water while other teflon spheres (0.318; 6.397, and 0,476
cm diam. ) would float on water.

From these results it appears that the parameters of Bond number
(Bo = E(pz - pv)gRg] ogc)s density ratio (ps - pv/,oZ - pv), and the wetting
angle (a) used in conjunction with figure 4 are sufficient to predict whether
or not a given sphere will float on a specified fluid. A decrease in the wet-
ting angle (increased wetting which effects the surface tension support)
while holding Bond number constant will affect a decrease in the density
ratio Qos - pv/pl - pv); this means that a less dense sphere can be sup-
ported. It is apparent from figure 4 and the data that the effects of «
become more significant at low Bond numbers, and a contaminated surface
will greatly alter the results. As a more specific example, teflon spheres
of diameter greater than 0. 318 centimeter would not float as received from
the manufacturer. However, degreasing and cleaning the surface resulted
in good agreement with the optimum levitation locus for teflon on water.

The effects of advancing and receding wetting angle, «, have been in-
corporated in the analysis because the a-parametric curves of figures 4(a)
and (b) represent either value of «. The time dependency of « has not
been incorporated; however, if the values of a are known as a function
of time, figures 4(a) and (b) should give good results. The solutions should

alsobe valid for temperature variations in surface tension ¢ of the sup-

porting fluid provided the heating rates are not large or the fil;fid near its
thermodynamic critical point (i.e., the sphere and the liquid remain close
to isothermal and heat transfer is very small). If this premise iz violated
then the governing equations must include heat transfer.

Bond number appears to be the most easily controlied parameter and,
as it characterizes the supporting liquid interface, becomes the fundamental

independent variable in the experiments.(e.g., the size of the sphere was
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changed in our experiments and acceleration was the variable in the experi-
ments of Nutt (ref. 6)); the value of oy could be changed by heating the
fluid. Where the Bond number is changed by changing sphere size, the
values of 6* and z, can be estimated by the technique presented in appen-
dix D. Other fluids and solids need to be examined to determine the range
of validity of the analysis,

CONCLUSIONS

The forces and associated governing equations for isothermal and non-
isothermal spheres (film boiling) floating on a fluid of lower specific gravity
have been examined. Criteris for floating spheres called the Critical Levi-
tation Locii have been established. Bond number Bo = (,()Z - pv)"gRg 08ss
density ratio, (pS - pV/pZ - Py wetting angle, «; used in conjunction with
figure 4 appear to be sufficient to determine if a given sphere will float on
a specified fluid. For the case of o =7 the Critical Levitation Locus may
be approximated by:

P - P
S _"V_1.05+1:8% 0.1 <Bo<30
pl_pV Bo

Data for glycerine, carbon tetrachloride, and water spheres floating
on a sea of liquid nitrogen appear to be in good agreement with the analysis.
Data for teflon spheres on water also appear to be in agreement with the
analytical results.

More exact and extensive measurements are required to determine the
validity of the Critical Levitation Locii over a range of Bond numbers (Bo)
and wetting angles ().

The effects of wetting angle, surface tension, and their time, temper-
ature dependencies bear further investigation.
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APPENDIX A
SYMBOLS

area, cm®

parametric form defined by eq. (B2)

[RB + (8R3/8’r) dﬂ d¢ @\IT + (BNT/’ST) dﬂ , see fig. 3
parametric form defined by eq. (B3)

Bond number, (pZ - pv)gR%/ch

lift force due to buoyancy, dyne

lift force due to surface tension, dyne

functional form in eqs. (7) and (10), cos? 6% - 2 cos 0% + 1
local acceleration of gravity, cm/ sec2
gravitational conversion constant, 1[(g)(cm) / (dyne)(secz)]

arbitrary reference pressure head, cm

arbitrary reference dimensionless pressure head, Hl/L

reference length, "/UZVgC/(pZ - pv)g cm

a large positive number

surface force per unit length, dyne/ cm
pressure, dimensional; dyne/ cm?
pressure acting on the sphere within the vapor gap, dyne/cm

pressure acting on the interface from within the vapor gap,
dyne/ cm?

pressure drop across the liquid vapor interface, dyne/ cm2
pressure drop across the vapor gap, (.:iyne/cm2
pressure, dimensionless

sphere radius, cm

2
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Gaussian radii of curvature, cm
radius defined in fig. 3(b)

radial coordinate, cm

dependent variable of eq. (18), sin¢ . /.

reference velocity, Z//RO scmi/sec
weight of the sphere, dyne
reference weight, pu*zRg/gC dyne

horizontal coordinate, dimensional; cm
coordinate system, fig. 3(b)

dimensionless horizontal coordinate, X/L
force tangent to the surface, dyne
pressure head, dimensional; cm
dimensionless pressure head, Z/L
wetting angle, radians

vapor gap thickness, cm

a small positive number

dimensionless radial coordinate, r/R0

angular coordinate, rad

angle to which the sphere is submerged, rad

kinematic viscosity, cmz/sec
density, g/ cm®
surface tension, dynes/cm

angular coordinate, radians
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@ dimensionless gap coordinate, 1 + 5/ R,
® aximuthal coordinate, rad
£ angular coordinate, radians
Subscripts:

adh adhesion

cr critical

l liquid

2 \ liquid-vapor

S Sphere

Sl solid-liquid

SV solid-vapor

\ vapor

0 initial

1,2,3 reference conditions

T, in the direction these angular coordinates
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APPENDIX B
SOLUTION OF THE FORCE BALANCE

In this appendix, equation (10) is integrated and reduced to nondimen-

sional form.

Assuming that the parameters 7 o and 6* have been determined else-

where, the antiderivative of equation (10) becomes:

- 0% T-0%
W_o 2 \ |7 3
_ '8 2 (-cos™ w 3 -cos” w
o* 9
_BRZ (08" O)|  _ R +06)p, - p. |{1 +2\ - 1R
o 9 o l v R (o)
0 o
g*
3
X g (—cos 6*>
where
AOEH1 +Z0 - Ro cos 6%
B=H.,p. g+ 20 +[Z - (R +5)cos9ﬂpg
1y R +5 0 o] l
o
_Bo@z 'pv)gws< - ¢° - p.g 1+iz-1 A
TW ¥ (6%) @ v R, 0

Evaluating (B1) gives

(B1)

(B2)

(B3)
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W_ o 2 3
_ s 2 (1- cos” 0% 3 cos® 6* + 1
P TR <_“T"“>(A°p v8 = B Ropye {”_—3’*">

o 3 5x
+ ERO +8)p g - ,ovg(go4 - l)RJRg (EM__‘__I> (B4)

3

3

W, R g 3
0= S __Q__Q+_(3_>pVQ+_§_>+pZ +MRgg ]_+_6__ pl
27 3 R, R, 3 R0
- Hypyg - Zpy8 (1 +§">

2 R’ sin
- 2_<l+_6_ pv -__9_____.__.
. RO 2 . 0

+R_ cos 0% . g 1+_6.,2+H;;g%‘1+_5-2_ 20 +Z p,g
0 v R 1Py R R, +0 o1

(o) ¢

2
R,(o, - p)eW (1 - ¢%)
—ROQ+—6—->COS G*Q'Zg— 0" V" S (B5)

Ro TWH(6%)

Regrouping the terms of equation (B5)

3

W ¢ R go 3
__ 8" 70 cos” 0* .3 (9 _ 2
0= o 3 oy +p;) +-—=§-——Rog[plqo @-¢ )pa
2 .. 2
R’ sin” 6%
2 2

- 2 (Hypue(L - 9%) - Zoglo9? - b)) +22
2 R, @

R (0, -p, )W, /1 _ ,2
- COS Q*gERO +6)pz - RO§02P;,J _ 07} A% s[1 4 (B6)
TWH(6%) ©

Collecting terms of (B6) and dividing by (pZ - pv)gRg,
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H 2 Z p -

= (1 B >Sin2 0% 40 [2v7 " P1) 502 os
R, P, - Py 2 | .ZRO p; = Py

o sin? 0% L@ _cos 0% gin 0% (pz - pv¢>
2 2 -
(b, - p)eRGP Pr =Py

2
TwWH(0%) 20

+

Introducing Bond number

2
(e, - p,)gR
Bo = l Vv 0=

o

IFU
po o o

(26)
L

equation (B7) becomes:

2
0 2pg % '£<pl +pv¢>+cos39* p; - 2 -¢%p,

3o, - py) 3\ p; - Py 3 Py - Py

.. 2 )
+ cos 6% Sin2 f* @ pl = PV<P ) ZO sin® 0% pl » pvgp
& Py =By 24/Bo  \ p, - p,

st or | P1P 0 Py N Vs 11-9%) 2 0 (g
¢Bo ABo P, - Py 7w (9%*) 2¢




21
Regrouping, the density ratios of equation (B8)

2
2p49 q,(oz +Pv‘/)>+l_1=2ps¢'91¢“9v9” PPy g
3 3 3

30, - p,) 3\, Py 30, - py)
2
} [:2q0ps -l +e )p‘] +0,(1 - ¢)
3(pz = pV)

-1 (By)
3

And finally substituting equation {B9) 1ir‘1t'é«'(B8)«; ;equation:(B8) reduces:to.

2

3(pl = pV) 3 2 pl = pV
2
_ cos® 0% @ Py = Py? +sin® x| _1_ . Zo [Py~ Py?
3 Py = Py goBo 2 A/Bo Py = Py

h o p \" 2
bl Y Vo8 (1= 07 6552 gx (B10)
A/Bo Py - Py TWH(6%) 20
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APPENDIX C
SURFACE TENSION SUPPORT (ISOTHERMAL-SPHERE)

If a load is placed on an axisymmetric shell or membrane structure,
it is in effect transmitted to a contact circle. In our case this contact cir-
cle is represented by the liquid-vapor-solid, or fluid A-fluid B-solid inter-
face. The surface forces acting at this interface are illustrated in figure 3.

While surface tension, )y and the wetting angle « characterize the
interface, it is useful to think of surface forces in vector terminology.

The components of surface tension acting to support the sphere and
those tending to pull the sphere into the liquid are iHustrated in figure 5. If
we define the adhesive tension at the contact circle to bc; 9y dh’ ‘which acts
normal to the surface, then a balance of forces requires that

Opdh = 07y Sin @ (Cy)
As the horizontal forces are balanced because of symmetry, vertical up-
ward force, F o’ balances the vertical downward forces:

0=F_ - 27R sin 9*(—0adh cos 6% +¢_, sin 6* - gy, Sin 6%*) (C2)

sl
where ZWRO sin 6* is the circumference of the contact circle. But the
Young-Dupre equation gives

0,y COS & +0g) =0g, (C3)

and upon substitution of equations (C1) and (C3), equation (C2) becomes

F = -2nR00

.  Sin 6% sin (6* + &) (C4)

l

Equation (C4) also results from assuming that P and o .completely
characterize the interface. Resolving )y the vertical component becomes,

3 .
* - - - *
0, COS (6* + a) > 0,y Sin (6* + a) (C5)

and integrating equation (C5) over the contact circle gives equation (C4).
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APPENDIX D
ESTIMATING 6* FOR NONOPTIMUM FLOATER
Enter figure 4(a) with the density ratio [Eps - pv)/(pl - lOV)]1 and o;
determine the critical Bond number Bo cry’ If we assume that the Bond
number change is effected by a change in Ro’ then estimate a new density

ratio
- - R3
(ps pv> :<ps pv> o,1 (D1)
pl - pV 9 pl - pV 1 "GBocrl 3/2
('Dl - pV)g

e

Re-enter figure 4 with Bps - py)/ o, - PV] ) and o and determine a new

critical Bond number Bo,. . Using Bo find 6*, and z_ from fig-
cry cry,

0
ures 4(b) and (c), respectively. The technique appears to be valid for
small changes in Bond number.
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TABLE I. - SOME EXPECTED ASYMPTOTIC

BEHAVIOR OF THE CRITICAL

LEVITATION LOCII

Bond number

Density ratio and 6*

Bo—~¢e¢=0

a -7

Pg = Py 3

-

pl_pv

o - I

2Bo

2

a—>

=

Pg = Py 3

-

pl _pv

% —

4Bo

Bo-—»oo

Pg = Py

pl —pV

6% -7

-1

For all Bo

a0
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W+ [ Pycoswdhy - fPocos8dh,  Wg+ S Py coswdh) - [P cos B A,

-[Tgsin0dAy = 0 - {0 sin(@* +aidL = 0

(A) FORCES ACTING ON THE NON- (B) FORCES ACTING ON THE 1S0-
ISOTHERMAL FLOATING-SPHERE IN THERMAL FLOATING -SPHERE.
FILM BOILING.

Figure 1. - Free body force balance for levitated spheres.

Hy + Zg * Rofcos 87 + cos w)
‘ N ARBITRARY REFERENCE PLANE

FLUID B

“‘ e
EVAPORATIVE . == FLUID A
FLUID :

VAPOR GAP § © =APg 3 P, TEEEE

(A) THE NONISOTHERMAL FLOATING- (B) THE ISOTHERMAL FLOATING-SPHERE.
SPHERE IN FILM BOILING.

Figure 2. - Detailed force analysis of floating spheres.
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Figure 3. - Forces acting on a '"thin shell"" section of the vapor -liquid interface. |
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Figure 4a). - A comparison of the critical levitation locus
and various floating spheres on liquid nitrogen. (A
Teflon sphere floating on water is included for comparison.)
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Figure 4(b). - Submersion angle ngt for the optimum
density ratio.




Zopt SUBMERSION DEPTH FOR THE

MAXIMUM DENSITY RATIO
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Figure 4(c). - Submersion depth z, for the optimum density
ratio,
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OADH MUST BALANCE
oLy sinlr-a) = oLy sin a

Figure 5. - Surface forcés acting at the contact circle.
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