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FOREWORD

This report was prepared for the National Aeronautics and Space
Administration by the Research Triangle Inétitutg under contract NASW-1909.
J. D. Rosenberg, Director of the Geodetic Satellite Program, acted as NASA
coordinator. J. T, McGoogan and H. R. Stanley, of NASA Wallops Station,
also contributed to the study.

The study was performed in the Engineering and Environmental Sciences
Division of the Institute., L. S. Miller served as project director with
assistance from Messrs. E. W. Page and W. H. Ruedger. Professors W. A. Flood
and N. H., Huang of the North Carolina Sta£e University at Raleigh served as

consultants and contributed te this report.
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ABSTRACT

This report presents the results of an eight~month study of signal
processing techniques applicable to the Geodetic Satellite Altimeter program,
The first subject treated is the anszlysis of random errors in the altitude
measurement process which arise from signal fluctuations and recelver noise.
Results are presented based on both theoretical analyses and computer simulation
of the altimeter concept. Characteristics of the electromagnetic energy scattered
from the ocean-surface are then discussed from the standpoint of identifying
statistical properties of the altimeter signal and for identifying measurement
biases that may arise in the scattering process, The report concludes with

a discussion of the presently known oceanographic factors pertaining to the

scattering problem.
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SECTION 1

INTRODUCTION AND SUMMARY OF RESULTS

1.1 INTRODUCTION

This report presents the results of a study of radar signal processing
methods for a geodetic satellite altimeter, The two altimeter precision
requirements considered are: 1) maximum radar system errors of one to two
meters as required for the GEOS-C program and 2) errors limited to a fraction
of a meter as required for Sea-Sat A program. Although the emphasis of this work
is on signal processing, it has been necessary to devote a considerable portion
of the study effort to. oceanographic and electromagnetic scattering éonsiderations.

Section 2 deals with the analysis of errors which arise from measurement
noise and signal fluctuations in the radar implementation. Since these error
sources are unavoidable in the system, signal processing conditions are discussed
which reduce these errors to acceptable values. Results are presented based on
a theoretical analysis and on computer simulations of the altimeter -system.

Section 3 presents a detailed description of the mathematical techniques
used to simulate radar scattering from £he gea surface and to model the radar
altimeter functiomns.

Section 4 summarizes the electromagnetic scattering work performed during
the study. This subject is of central concern for two reasons: 1) the analysis
of radar system errors requires accurate characterization of the scattered
signal, and 2} the identification and compensation of any measurement bias
arising in the scattering process requires a thorough understanding of the
underlying physical mechanisms, The two outstanding problems in these categories
are the modeling of wave height effects in the transient region of the altimeter
signal and the sensitivity of backscattered power to ocean surface conditions.
For an idealized ocean surface, e.g. isotropic, Gaussian height distributions,
the problem has been solved. Section 3 of this report considers the effect of
more realistic assumptions.

The mathematical results in the previous section require a nunber of
assumptions regarding the ocean surface features. The work reported in
Section 5 represents a survey of oceanographic literature pertinent to the

electromagnetic scattering problem., The principal topics considered in this
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Section are the relationship between mean-square slope of the ocean wave

structure and surface wind, and the spectral features of the ocean.

1.2 CONCLUSTONS AND RECOMMENDATIONS

The system analyses conducted during the course of this study indicate
that the random errors due to signal fluctuation and receiver noise will result
in an altimeter precision on the order of one-half meter for a system within the

following characteristics:

Single pulse signal-to-noise ratio 10 to 20 db
Pulse length 50 to 100 ns
Sampling rate 1000 per second

These characteristics are well within the state-of-the-art in radar design,
An altimeter can be designed to meet accuracy objectives of the GEOS-C program
but particular attention must be given to long-term drift problems.

There are a number of unknowns in the design of an altimeter with an
accuracy of a fraction of a meter. One of the most important questions aside
from "sea state" bias is the pulse-to-pulse correlation of the altimeter signal.
This 1imits the attainable altimeter accuracy per unit time. Radar reflections
from the sea have never been accurately measured under satellite conditions and
the GEOS-C satellite is probably the best approach to obtaining this information.

Altrhough the GE0S-C performance can be realized with a conventional pulsed,
split-gate, or threshold signal processor, the Sea-Sat A equipment will require
more scphistication, The theoretically computed random erroxr for a 50 ns pulse
length and for 1000 samples per second is 20 cm. This error can in theory be
further reduced through use of shorter pulses, faster pulse rise~time, or more
elaborate transmitter waveforms, even if the pessimistic assumption of a one-
millisecond signal correlation time is found to apply to satellite data. The
results given in this report indicate that systematic errors and egquipmental
biases will constitute the largest instrumentation error in the Sea~Sat A
concept. These non-random errors can arise from effects such as: 1) mean-value
shifts in the altitude data as a function of signal statistics or signal-to-noise
ratio, 2) environmental or temporal drift characteristics of .the satellite
equipment, or 3) unrecognized processor non-linearities. Because of the severity
of these problems it is recommended that a wide range of radar techniques be
investigated for Sea-Sat A. It is further recommended that future radar altimeter

research emphasize the Sea-Sat A requirements, since added knowledge of probiem



areas and techniques required fqr the Sea~-Sat A system may lead to a more
evolutionary concept for GE0S-C. Until the first satellite altimeter is in
operation, many elements of the altimeter function will remain speculative,

In regard to electromagnetic scattering, it is found that the radar
cross—section o, can be related to mean squared slopes of an isotropic sea
surface. For non-isotropic ocean surface conditions the relationship is more
complex. Derivation of the functional relationships through a theoretical
electromagnetic approach appears unrealizable at this time because of the
extreme difficulty in obtaining accurate high frequency ocean-wave data.
Equivalently, the ocean surface autocorrelation function cannot be measured
with the required accuracy using existing methods. An émpirical approach is
thérefore recommended for obtaining normal ineidence data in which actual radar
data is correlated with ground truth information under varying sea surface and
meteorological conditions. Because of the normal incidence geometry problems
and altitude limitation associated with conventional aircraft measurements,
extraction of such data from the GE0S5-C experiment is strongly recommended,

For the investigation of "sea state" effects on the altimeter signal,
acquisition of near-surface {(short pulse) radar and laser profilometer data is
recomnended, Such data would constitute a basis from which to assess the effects
of the approximations and assumptions in the electromagnetic models of sea-sgtate
bias.

The principal conclusion of the oceanographic study is that mathematical
arguments require the two-dimengional power spectrum to exhibit 180° symmetry.
At present, there is no single technique which will provide a two-dimensional

spectrum of the accuracy and spatial resolution needed for electromagnetic

scattering investigations.

1-3



"SECTION 2

RADAR SYSTEM STUDY

2.1 BACKGROUND

This section presents the results of the study pertaining to radar signal
processing. A number of important error sources have been investigated during
the course of the program., These include: errors arising from the signal
fluctuations inherent in planetary or ocean scattering®, errors resulting from
the limited number of samples available per unit time, and errors caused by
thermal noise and processor non-linearities., The importance of these errors is
assessed relative to the two altimeter precision categories and to techniques
for minimizing and/or compensating for these errors.

This section is organized as follows: As a means of establishing concepts
and nomenclature, a general description of the altimeter techniques under
consideration is given. Computed waveforms are shown to clarify the concepts.
Ihis discussion is followed by a presentation of the principal results of the
radar altimeter study. Error sources and parametric effects are investigated
using theoretical results and computer simulations. The section concludes with
a consideration of general system characteristics and a review of potential
alterations to the radar system. Computational aspects of the simulation and
radar characteristics which are heavily influenced by either electromagnetic

or oceanographic considerations are considered in later sectiomns.

2,2 DESCRIPTION OF THE PRESENT ALTIMETER CONCEPT

A number of organizations have considered the problems of measurement of
satellite altitudes to the precision required in the geodetic investigation1—7.
The more conventional system characteristics such as transmitted waveform, power
level, sensitivity, bandwidth, and antenna gain have been covered in the cited
references and will not be discussed here. As presently envisioned, the first
generation altimeter will consist of an X-band pulsed radar with provisions

for measurement of time-cf-arrival of the received signal. The development of

* The term '"self noise" is commonly used in radar astronomy to describe
this effect, -
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such a system differs in several important areas from the design of conventional
radar systems. Attainment of the desired accuracies will require optimum signal
processing and timing techniques, and knowledge of the effects of oceanographic
features on the scattered signal.

Some of the technical problems that must be considered in developing
satellite equipment are: 1) the limited space, power, and weight available,

2) the nature of ocean backscattered signal, and 3) satellite dynamics. As
discussed more fully in Section 4, return from the ocean surface arises from

many discrete regions. The signal is dispersed in both time and frequency. For
the assumed satellite conditions, a 50 nanosecond (ns) transmitted pulse will

give rise to a received signal with a time spread of 2.6 microseconds for a

3 degree antenna beamwidth. The signal will fluctuate in amplitude with
characteristics similar to signals received over a rapidly fading channel.

These signal characteristics can be seen by an examination of the receiver wave-
forms, shown in Fig. 2.1, which were obtained as a by-product of the simulation
study. Figure 2.1 shows ten typical received waveforms corresponding to the trans-
mission of a 50 ns rectangular pulse scattered from the ocean's surface and
received by a very wideband receiver., Waveforms with the vertical scale labeled

E represent the output of a linear envelope detector and those labeled E2
represent the output of a square-law detector. The horizontal scale shows
relative time in nanoseconds, with 25 ns corresponding to the imstant at which
one-half the pulse envelope arrives on the sea surface. These computed waveforms
correspond to independent samples., For a simulated radar inter-pulse period

less than the correlation time, the waveforms would show evolutionary changes.
Referring to Fig. 2.1, except for the transient region in which the entire

pulse is not incident on the surface, the sea return signals are much like
samples of receiver ncise.

Simulated waveforms are shown in Fig. 2.2 corresponding to a Gaussian
shaped pulse that is 50 ns wide at the e—l points. The horizontal scale shown
in this case is based upon the center of the pulse arriving at the ocean surface
at 51 ns. The same distribution of reflecting area was assumed in the computa—
tions used in Figs. 2.1 and 2.2; the Gaussian returns therefore appear as
smoothed versions of the rectangular data., The Gaussian envelope is considered
indicative of matched filter IF characteristics., Note that the Gaussian results

demonstrate that filtered waveforms need not be sampled rapidly for good
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reconstruction of the waveform. Also, it is noted that for a system containing an
AGC response—~time on the order of one gecond, some of the received waveforms

will contain very little average energy over a 200 ns time interval., Case 5 of
Fig., 2.2 demonstrates the fact that the instantaneous altitude error can be
several times the pulse length for a matched filter IF regardless of the measure-~
ment scheme used. Some of the waveforms shown in Fig. 2.1 exhibit a saturation
effect. This is not a result of the simulation program; is is simply due to the
scale size used in the figure.

Figure 2,3 shows the effect of receiver noise on the altimeter waveforms.

The same signal characteristics were used as in Fig. 2.2, and a comparison of
Figs. 2.2 and 2.3 shows the effectg of a 10 db signal-to-noise ratio (SNR) on
the waveforms. The fine structure in the noise ig due to the finite slope

of the noise spectrum with frequency. .

The double~delay differencing type of altitude processor consists of two-stage
signal differencing with a delayed and inverted replica of the original signall.
The sample waveforms involved in the double-delay differencing operation are shown
in Fig. 2.4 (the signal waveform previously shown as Case 1, Fig. 2.3 was used).
Figure 2.5 shows typical waveforms at the output of the double-delay differencer
for ten individual cases (for the noise free Gaussian sigmal). A comparison of
Figs. 2.4 and 2.5 shows that individual cases depart drastically from the results
that would be obtained by using an idealized ramp signal., The most significant
feature in Figs. 2.4 and 2.5 is that multiple zero-crossings are present.

Because of these ambiguities, the double-delay technique would not be suitable
in the altimeter without the addition of a threshold circuit or a closed-loop
implementation.

Additional examples of simulated waveforms are contained in Appendix A.

The quantitative results of the radar system study are discussed in the next

section.,.

2,3 DISCUSSION OF ERRORS IN THE ALTITUDE MEASUREMENT PROCESS

The two principal methods of altitude extraction examined in this report are:
1) double-delay differencing and 2) thresholding. The investigation was limited
to these techniques, because the General Electric Company had concurrently

investigated the split-gate technique4. The results given below apply to both
open and closed-lcop systems.
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Histograms of the individunal altitude errors at the output of a double-
delay differencer were obtained through digital simulation for fifty independent
cases. A 50 ns Gaussian shaped pplse was uSed; the delay interval for the
double~delay difference was 50 ns. Figures 2.6 and 2,7 show the histogram data
for signal-to-noise levels of «, 30, 20, and 10 db. The standard deviation o
and mean crossings ﬁ derived from the histogram data are shown in Table I.

The altitude error 85 to be expected for a 1000 sample average also was

obtained from the histogram standard deviation O through the equation

A

g = 1.62-55— a
s 2v/n

where n is the number of samples, c is the propagation wvelocity, t is the unit
of time of Oy and the factor of 1.62 is the conversion of pulse length used in

the simulation (e_l points)} to half-power pulse length.

Table Z2-1

Standard Deviation and Mean of Histogram Data

Std. Dev. 85 in Mean
SNR . (6g) in ns meters (1) in ne
50 cases 1000 cases "
W 18 14 94.6
30 db 18 14 96
20 db 17.2 .13 &9
10 db ~ 18.4 W14 68

Table I shows the altitude variance to be largely independent of receiver
noise. The indicated altitude uncertainty 35 converts to a (two-way) altitude
error of approximately 0.14 meters for 1000 samples.

A theoretical analysis of the altitude error characteristic is given in
Appendix B. This analysis assumes that correlation exists within the detected
altimeter signal (i.e. matched filter IF) and that a double-delay differencer

type of altitude measurement is used. The altitude error o, in meters is found

to be
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o, = éﬁl‘/ja +9.5 )T + 7,9 (svm)
n
where T is the pulse -length in.nagosecbnds (at..the .half-power point) and n is
the number of independent samples. A comparison of theoretically computed and
gimulated altimeter errors (arising from signal fluctuations and receiver noise)
is shown in Fig. 2.8, The two resdlts are in good agreement.

The mean-value figures given in Table I show considerable change with
noise level. This fluctuation may be caused by two effects: 1) variatién due
to the limited sample size present and 2) wvariations caused by any differences
in the spectral characteristics of the signal and receiver noise, To determine
which effect was dominant, a series of computer runs were made under varying
conditions, Figure 2.9A shows the histogram results obtained for a 20 db SNR
and for new sets of random numbers used in the signal and noise simulatilons,
Figure 2,9B shows histogram results for 20 db SNR using a narrower noise bandwidth.

These results are summarized in Table II.

Table 2-2
Effect of Simulation Conditions on the Values Shown in Table I
(SNR = 20 db)
Std. Dev. Sa in Mean
Computation (0g) in ns meters G 1
50 cases 1000 cases W) in ns
Original 17.2 .13 89
New random numbers 22,8 .18 96
Reduced noise bandwidth 17.9 .14 91

The mean and variance are both seen to be more dependent on initial conditions
than on noise bandwidth. A much larger sample size (~1000) is therefore required
to provide acceptable accuracy in the histogram data. Computations of such
magnitude were outside the scope of this contract and can be performed more
efficiently using analog techniques.

The fact that the mean crossing point is sensitive to receiver noise
characteristics inay be seen from exaniming the theoretical relationship for the

probability of a zero-crossing p(t). For Gaussian processes which start at T = 0,
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.

p(t) is given by8,

_ 1 _f2[R{0) = R(1)]
p(t) = WJ oy

in which R(t) is the correlation coefficient., For additive (uncorrelated)

signal and noise this expression becomes

. RS(T) + Rh(T)
Rs(o) + Rn(o)

o(r) = 242

where the subscripts s and n refer to signal and noise. Assuming exponential

correlation functions of the form

-g t -g &
s n -
for o > G the numerator of the square root term e + e decays faster

than for a = o and the zero crogsing probability occurs earlier in time.

Any shift in the mean value of the altitude indication constitutes an
important source of error in the altimeter. The above results, although
qualitative because of the sample-size limitations, indicate that a bias will
exist that is a function of SNR. A similar effect has been noted in the split-
gate tracker when a dc restore clrcuit is not used4.

Neglecting wave-height effects, the integration of a large number of radar
returns from the gea-surface should produce a "ramp-like" signal since the area
exposed during the early portions of the pulse illumination will increase linearly.
A presentation that is proportional to signal power (i.e. a square-law detector)
will thergfore exhibit this linear dependency. These computed waveforms fér both
linear and square-law detectors are shown in Figs, 2.10-2,12, Figure 2.10 shows
the waveform obtained by averaging thé 50 rectangular pulse cases (see Fig. 2.1).
Confidence bounds may be estimated for these data by noting that for a Rayleigh
distribution (linear detector case) the variance is equal to (1 - %9 tiﬁes the

mean value u, and for an exponential distribution (square~law detector) the

2-15


http:2.10-2.12

CASE 51
20G. U

1500 U — Square-Law Detector

o] TR

L
S0. 00 A
I I l i
0 iy 80 1 120 160 200
CASE 21
2C. 00 —
15.00 A Linear Detector

I T —7 T |
0 40 90 T 120 160 200

Fig. 2.10. Averaged Waveform for Rectangular Pulse, 50 Cases
2-16



CASE. 51
200.0 -

Square-Law Detector

150.0 4

160.0-

50 .00 ~

i
0 49 80 T 120 160 200
CASE 51

i

20.00 ~

Linear Detector

15.00 -

10.00 -

5.000 4

T ! T T 1
0 %D 80 T 120 160 200
Fig. 2,11. Averaged Waveform for Gaussian Pulse (Original Computation)r 50 Cases
2-17 i



CASE S1
200.0 -

Square-Law Detector

150.0 -

100.0 -

50.00

T T

H
0 49 80. T 120 160 200
CASE 51

-l

20.00
Linear Detector

15.00 +
16.00 ~

5.000 -

R J -t T T -1

0 40 80 1 120 160 200

Fig. 2.12, Averaged Waveform for Gaussian Pulse (Second Computation), 30 Cases
’ 2-18




variance is twice the square of the mean value., Therefore, standard deviation

for the 50 sample waveform is

1 T .
G —J &0l {1 - T Y Rayleigh
g =1 2 Exponential
50 *

These one-sigma bounds are shown as dotted lines in Fig, 2,10, Figures 2,11
and 2,12 show the average ﬁaveforms for two simulation cases of 50 samples each,
using Gaussian shaped pulses.

Estimates of the errors to be encounterd in altimeter operation have been
made using mean value waveforms as im Fig. 2.12, One may argue that the averaging
process can be performed prior to double-delay differencing and certainly the
mathematical and conceptual simplifications are appealing, The result of double;
delay differencing of an average of 50 waveforms is shown in Fig. 2.13. The
zero crossing for this average waveform occurs at 99 nanoseconds, The results
of averaging single pulse errors (Table I) indicate that the mean zero crossing
occurred at 94.6 nanoseconds. Significant differences can therefore exist

between the two computations, and analyses based upon an equivalence between the

two should be treatred with caution.

2.4 EVALUATION OF THRESHOLD TECHNIQUES

Simulation results are shown in Figs. 2,14 and 2.15 for a threshold type of
altitude measurement. The threshold levels used in Figs. 2.14 and 2.15 were,
respectively, 50 percent and 33 perceént of the maximum value of the average
signal. These results contain several interesting features. The 33 percent
threshold level (Fig. 2.15) results in an altitude standard deviétion of 18 ns
(50 cases), which is exactly the result obtained using a double-delay differencer
(c.f. Fig. 2.6A). The 50 percent threshold was found to produce a larger standard
deviation (25 ns) because of occasional values with large time deviation (the
tail showvm in the histogram). The fact that some of the threshold crossings occur
long after the leading edge can be seen by examination of the waveform data in

Case 5 of Fig. 2.2. This particular waveform crosses about 140 ns late. The -data
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suggest that the 50 percent threshold performance could be improved by either
receiver AGC action or by digcarding or limiting the very late crossings. This
last technique is somewhat akin to the limiting behavior of the time-discriminator
used in split-gate systems. Use of AGC would require a sufficiently high prf so
that AGC action could be derived on one pulse and applied to the next (correlated)
pulse.

The simulation results show that both the 33 percent and 50 percent thresholds
result in mean-values that are very close to the i priori values (levels selected
from average waveforms such as Fig. 2.12}. In view of the dependence upon SNR
of the mean value encountered with the double-delay circuit, the threshold data
suggest that a threshold technique may be less susceptible to this type of bias.
In the future, threshold simulations will be conducted to determine the effect
of SNR upon the mean value of the output.

Before leaving the threshold technique, mention should be made of the false~
alarm problem and the open~-loop altitude measurements. In order to reduce the
false alarm rate, the threshold technique would require a much higher single pulse
SNR than would the split-gate technique, Possible solutions to this problem,
within the power constraint of a TWT transmitter, are: 1) use of pulse compression
or 2) wuse of surface wave transversal filtersg. Taking into account pulse
stretching due to the antenna pattern, the transversal filter method could be
implemented by transmitting several pulses spaced three microseconds apart. The
threshold circuit is inherently suited to open—-loop filtering, whereas the split-

gate and double-delay circuits are basically closed-loop sensors.

2.5 EFFECT OF VIDEO NON-LINEARITY

In order to test the effect of non-linearity on a double-delay differencing

form of altitude measurement, a video transfer function of the type

_ L01 2
Eout - Ein 25 Ein

was simulated. Such non-linearity was assumed to be unknown {(e.g., due to drift)
in the altimeter. This function represents a quadratic non-linearity in the
Processor. %gsults of this simulation are given in Fig. 2.16. The variance dis

seen to be unchanged and the point of mean zero crossing shifted 1.4 ns compared
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to the data given in Fig. 2.6A. The assumed non-linearity represents a one
percent departure at the 50 percent point on the mean waveform. The resultant
shift is therefore somewhat larger than mean-value estimates would predict.
For altimeter accuracies of 1 - 2 meters, non-linearities of this magnitude are

not highly significant. For the Sea-Sat A, such non-linearities will be important.

2,6 PRF AND MISCELLANFOUS CONSIDERATIONS

Correlation properties of the altimeter signal may be estimated through
computation of the Doppler spread of the scattered signal. Previously published
estimates indicate that the Doppler spectrum will be in the neighborhood of
1600 Hzl. These figures are based on the signal characteristics at the break
between the ramp and the plateau of the mean waveform, for a 50 ms pulse.

For the proposed GE0S-C orbit, a maximum vertical velocity component of
about 700 ft./sec. will be present and will result in a (maximum)} Doppler shift
of approximately 10 Kiz. Estimates+ of the signal correlation properties derived
from the Van Cittert-Zernike Theoremlo,,place a value of up to 10 KHz on the
signal fluctuation., For the purpose of this study, a conservative value of 1000 Hz
was used.

Measurement of the vertical Doppler component would facilitate altitude
extraction with elliptical orbits, .since rate prediction could be used in the
signal processor. Altermatively, it might be possible to difference the smoothed
(e.g. one second) estimates of altitude to obtain prediction information. The
third alternative would use a ground command and control funection for this purpose.
These techniques could minimize the problems associated with bandwidth and aquisi-
tion in a closed-loop tracker4. The ground control techmique appears preferable
from the standpoint of minimizing satellite equipment complexity.

Appendix C presents the results of a brief survey of ﬁrior work in optimal
processing. The optimal video processor requires an impulse response that is
related to the time-inverse of the sea-surface scattering function. From an
engineering standpoint, it should be preferable to utilize only that part of
the scattering function in the neighborhood of the ramp region. Accordingly, the
optimum processor closely resembles an integrate-and-dump circuit, such as ig in-

volved in the split-gate tracker, It is therefore doubtful that any significant

* Suggested by G. Bush of Johns Hopkins University, Applied Physics Lab,
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advantages would accrue from synthesizing the .theoretically optimum processor

encountered in the survey. Adaptive filtering.should .be investigated.

2.7 SUMMARY

A comparison of the altitude uncertainty for three sensing techniques is

shown in Table TII.

Table 2-3
Comparison of Altitude Errors
50 ns Pulse 1000 Samples

Sensor Alt, Error
{meters)
Double—delay (20 db SNR)™ .155
Split-gate (20 db SNR)* .22
Threshold 50% (« SNR) +25
Threshoeld 33%Z (20 db SNR) 14
Theoretical {20 db SNR) ’ .20

* Average of first two entries shown in Table II

* Scaled from data for a 100 ns pulse system with dc restorer, givemn in
Ref, 4.

The results summarized in Table III indicate that any of the three sensing
techniques considered are usable for the GEOS-C altimeter. (The data for the
split—-gate technique, shown in Table III, was not derived from the simulatdion
and the figures showm are not directly comparable,) Because of the more extensive
hardware experience and greater mean-value stability of the split-gate technique,
it is recommended for closed-loop implementations. The threshold technique merits
further work, especially if studies 6f Sea-Sat A requirements show non-analog
techniques to bF useful. From the processor standpoint, the main problems with
Sea-8at A are due to the mean-value shifts (e.g., non-linearity, systematic
changes with SNR, environmental effects, and temporal variations). More informa-
tion is needed regarding altimeter signal correlation properties (pulse-by-pulse)
to determine the best solution to the signal fluctuation error problem with Sea-Sat A.

The theoretical analysis in this report shows that self-noise is a larger
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arror ‘source than receiver noise, for a SHR greater than 10 db (see Fig. 2.8),
This analysis correponds to the use of matched (non-adaptive) IF bandwidths and
should be e;tended to treat pulse rise~time as a variable. A wider bandwidth
per se will reduce self-noise errors. Aititude variances for a threshold
system using rectangular pulse data (given in Appendix B) have been found to
result in one-half the variance obtained for Gaussian shaped pulses.

In summary; the altimeter accuracy requirements for GEOS-C are within the
state—of-the~art in radar performance. It is recommended that future studies
smphasize Sea-Sat A problems and the development of sampling techniques for use
with GEOS-C. The availability of information such as coherence time from the

SE0S-C experiment would be of great value to the Sea-Sat A program,
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SECTION 3

ALTIMETER SIMULATION MODEL

3.1 GENERAL DISCUSSTION

The preceding section of this report presented results of theoretical

analyses and computer simulation studies of the altimeter radar concept.

The Monte Carlo technique used to genmerate the simulation results is described

in detail in this section. The simulation approach was indispemnsable in several
areas of the altimeter study because: 1) the mathematical complexity of the
phenomena under investigation did not permit closed—form solutdion, ox 2) the
assumptions and approximations contained in available theoretical results led to
limited confidence in the solutions so obtained, The statistical level-crossing
problem and the analysis of time-varying $ignal statistics are examples of radar
system functions that have not beem rigorously solved., For non-Gaussian
statistics there is a paucity of even approximate relationships in the literature,.

The overall simulation program is shown in block-diagram form in Fig. 3.1.

It consists of the computation of the ocean-scattered pulsed signal characteristics
and the modifications resulting from the receiver bandpass characteristics,
additive thermal noise, detector and other non-linear characteristics, and the
altitude measurement process, Waveforms and statistical compilations are then
obtained from the output data., The salient operations shown in Fig. 3.1 are
described in detail below.

The electromagnetic scattering process for the ocean's surface may be
visualized zs due to specular regilons superimposed on the gross wave structure,
These specular regions consist of areas with proper orientations and curvature
relative to the wavelength of the illuminating radiation. The scattering process
is governed by the high frequency region of the ocean-wave spectrum. As discussed
in Section 4, backscattered energy at normal incidence is a function of the mean-
square slope of the ocean’s surface., Since the backscattered signal from the
ocean's surface is due to contributions from many individual scattering elements

within the radar beamwidth, the well-known Rayleigh distribution of amplitudes
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resultsl. The principal reasons for the wide acceptance of this distribution
are: 1) thg fact that observed .returns provide a reasonably gpod fit to Rayleigh
statistics, and 2) the plausibility of the physical model (i.e. the specular
model).

The simulation of ocean scattering is based upon the characteristics for
backscattered power at normal incidence. For plane wave illumination at normal
incidence, the average backscattered power Ei at a distance Rb from the scattering

. 2
surface is

2.2 2]-1
P |%| E{ l;;ho

= (AREA). (D
8 2 2
41?R0 L Y

where
K is the Fresnel reflection coefficient
El is the incident electric field intensity

2, R
hO is the variance of surface displacement about mean-sea-level, and

Y is related to the sea~surface correlation length.

This equation indicates that for a given radar wavelength and a time-invariant
sea, the backscattered power is proportional to the illuminated area. Since
the area illuminated by a finite antemna beamwidth impinging upon a spherical
earth is a function of time, the backscattered power is also proportional to time,
The area illuminated by a satellite~borne radar pointed toward the nadir is

given by2

A(t) 2w ac t for t i_tp

where
a is the satellite altitude
¢ is the velocity of light, and

tp is the transmitted pulse length,

is given by

For t > Fp’ the radius of the leading edge 2

r. = {ac t)l/2

L (2



and the radius of the trailing edge is given by
rs fa el - £ )12 ©)
t P

The projected illuminated area then is

2,

A(t) = TL s Mact for t f-tp (4)
and
A(t) = nrz - ﬂrz ~ntact fort>t. (5
. L t~ P P

Thus, the projected area increases linearly for the length of a transmitted

pulse, after which it remains relatively constant until other effects dominate.

3.2 MATHEMATICAL DESCRIPTION

In order to utilize the abqvé model of radar return, macroscopic conditions
must prevail since the existence of specularly reflecting points is a random
occurrence, For the geodetic saéeflite geometry, examination of the scattered_
signal in one nanosecond increments corresponds to area increments of one square
kilometer. An area of this size éhogld contain at least five independent scatters
and the Rayleigh distribution will matech the expected signal statistics,

The Rayleigh amplitudes are simuiated for each one-kilometer area by generating
numbers X, and vy from independent normal distributions with zero mean and unit
variance. The Rayleigh signals e(n)j at the output of a linear detector for

rectangular pulse illumination are

) [ o 2 n 211/2
e(n); = (}: xij) + (12-:% yij) n <ty (6)

i=1

where the n subscript indicates the time index in one-nanosecond steps for the

jth sample function. ¥For a rectangular pulse, of length n = 50, the partial sums

3-4



(n < 50) of e(n), .represent the transient region of the scattered pulse. For

example, the pariial sum for .the f?rst interval e(l)j corresponds to the aggregate

return from the reflecting areas exposed during the first one nanosecond,

(The term "time interval"” and one nanosecond increment will be used interchange-

ably in the following discussion, although time can be scaled to an arbitrarily

larger interval, Smaller time intervals correspond to areaé for which the

ocean surface statistics may not be independent.) For n = 2, e(2)j corresponds

to the vectorial magnitude of returns from both area increments. Since the

scattering areas are assumed uncorrelated, signal power will be additive and

e(2)j will increase linearly (in the mean) up to the assumed pulse length (n = 50).
|- - -+ -The simulated waveforms obtained for a rectangular pulse are mainly of

theoretical interest because of the large receiver bandwidth implied. Figure 2.1

showed such waveforms for both the linear and square-law detecteor outputs, In

order to simulate more realistic conditions, a Gaussian shaped pulse was used in

the study of radar parameters. This waveform was chosen because the output of

real networks with near-ractangular input signals resembles a Gaussian waveformB.

A Gaussian envelope £(t) of width W measured at the e'_1 points is given by

£(t) = exp [— 'ﬁ}:-f] 2

and the width of the spectrum A{f) at the eﬂl points for this envelope is

©o

A(E) %?— J exp [— ﬁ§§i]2 exp (i2rft) dt

I

1 TWE2
e o[- (]

The detected waveform for a Gaussian shaped pulse can be generated by the

expression

200 ' 200 2
_ 2 24 2 2
o), = i§=:1 x; exp{—[-ﬁ (k - :L)] f + i’z:,l y, exp {—- [ﬁ (& - i)] }

|

(8)
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in which the time inde% X begins at k = =50 and terminates at k = 150. The
peak of the pulse in this case corresponds to k = 1. '

Equation (8) assumes that the effect of a Gaussian shaped transmitted
pulse can be combined with the effect of a.recelver containing a Caussian
shaped impulse response., This assumption is based on the linear model for sea
return and the fact that convolution of two Gaussian functions yields a

third Gaussian function. The convelution of the form

2
x, (t) = exp E_.}
P
and (9)
t2

can be shown to result in the Gaussian function

xg(t) = exp {—5—5 | . am

2
Tl + T2

Assuming post detection or video filtering can be described by an RC type filter

with corner frequency fl given by

f = —.l—.—
1 27RG (11

then the inpulse response h(t) for the filter is

=L SR S G -
h(t) = =5 exp { R } = 2nf, exp { walt }. (12)

if fl is equated to a multiple m af the one-sided bandwidth of the detected pulsge

given by equation (7), i.e.

= 2111
i ‘W
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then h{t) is

h() = B exp {_ = t} . (13)

Combining the above results, the signal at the output of an ideal

envelope detector En is

150

- i
E(n)j =5 2;;0 e(k)j exp

4m
--—ﬁ(n-k)}. (14)

S8imilarly, the output from a square-law detector Ez(n) is given by

150
2 _ bm 2 4m _
E (n)j = 5 ;_50 ej (k) exp g - (n - k) ‘ . (15)

For the simulation results given in this report, k varied from -50 to +150
and W = 50. This corresponds to a 50 ns pulse, the peak of which arrives on .the
sea—surface at k = 1, Receiver time delays are not included in the formulation.

Receiver noise is added to the calculations through the equation

2 2
200 .
e(k), = (Z x, e}{p{—.[g.g%f__}.)_]} +ck)
] i=1
200 20 - ]2 2 '%"
+(Z;Lyi exp{—[————w_l]} +sk)
1=

in which S and S, Trepresent in-phase and quadrature noise voltages selected

from independent distributions., These distributions are correlated in time to

(16)

simulate the effects of receiver predetection bandwidth characteristics.

Before considering the details of receiver noige generation, the remaining
aspects of the simulation will be discussed. The satellite altitude information
is obtained by processing the video signal to extract an estimate of the time

between signal transmission and receptions. The principal schemes for extracting
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this estimate are: 1) early gate, late gate, 2) double-delay differencing, and
3) threshold detection. The double-~delay differencing and threshold techniques
have been implemented thus far in the simulation.

The threshold function is accomplished by level filtering in the digital
program. The double-delay differencing operation is implemented through the

discrete~time equivalent of the impulse response
h(t) = g(t) - 2§(t ~ 1) + 8(t - 27)

where t is the time lag and & is a delta function. In programming this equationm,
the delayed replicas of the signal are combined with the original input through
computer storage.

The remaining operations performed in the simulation program consist of
non-linear transformations and the compilation of statistical descriptions
(such as histogram data). The former is used to study the effect of system
non~linearities on the altimeter data. To date, saturation forms of non-linearities

of the type

n n an

have been used, in which k is a parameter.
In order to establish signal-to-noise ratios (SNR) in the simulation, the
variance of the signal process 62 must be known. For a Gaussian shaped signal,

the autocorrelation function (ACF) of the signal RSS(T) is

o«

Rss(T) = ks J exp {—Bz(t - 1)2} exp {nthz} dt (18)

0

in which ks is the spectral density function for a shaping filter realization

and B = 2/W. This function integrates as

..RS o
Ryglo) = 5= ‘/“?;

[ o
m N
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and for B = 2/50 .the signal variance is seen to be

C‘i = k_ (25) Q/—g— ) (20)

Two techniques have been developed for the digital noise computations. The
simulation results given in this report are based on the technique to be discussed
first. The second method, which has not been programmed, was developed to assess
the sensitivity of the zero crossing probability distributions to the noise process.

The first technique generates a correlated noise sequence through a recursive
first-order difference equation which is driven with random noise. The ¢, and s

k k
terms in (16) are generated through separate difference equations of the form

ey = Aty g F W (21)

in which W) is an uncorrelated sequence (zero mean). The quantity Ak is obtained

by forming the expectation E of Cy i.e,

B [e 10 = B [ @yepr + 0] = 88 [ g0 4] (22)

gince E[ck_lwk] is zero. Assuming that iy is a zero mean process, this last result

can be expressed as an ACF, i.e.

T 23)

or, in general

R
. .Jk d
Ay R,  Fik (24)
which is the normalized ACF, The sequence S has a Gaussian realization with an
ACF

- colkil g ~alT | (25)



The variance of the ¢, process can be found through the development

E(c,c,) = E[(A_kck_l +w) (Aey o+ Wk)]

i

E (Aici_l) + E(Wi)

(26)
2 2 2
= B[4y 1o p ¥ igg) ]+ EGY)
If A is time-invariant, this becomes for a unity variance Wy
B(c,c) = 1+ A% + A% + (27)
k k - L] *
which can be summed as
E(c,e) =1 + A4 02 A<l (28)
[ 1 - AZ N

This equation is used to specify the steady state variance of the ¢, sequence.
Notice that the recursion must be initialized from a random number with the
proper variance if the computations are re-started.

The correlation factor o in the ACF was obtained through a shaping filter
analogy. If a shaping filter H(jw) driven by white noise produces an exponential

ACF, then the output spectrum ¢(w) must be

o . 2
¢(w) = f R(T) e-.JdeT = -"2-0:_2 . (29)
—co w t+o

The transfer function of the shaping filter is readily seen to be

H(jw) = —51—-- ) (1)

2+ 1
JCI
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Note that o is the 3 db bandwidth in radian measure. The equivalent rectangular
bandwidth is

o 1+ —)
o

Thus the H(jw) transfer function has a bandwidth equivalent to an idealized
rectangular bandpass of (w/2)f.

For a corner frequency of 20 MHz, the ACF is

=125 x 106 T

p(t) = e (32)

where T is in nanoseconds,

. . 2
Analogous to (18), the signal-to-noise ratio is obtained by defining ¢, as

2 i J ms uz ko

n 27 02 + w2 dw -7 (33)

Therefore, the signal-to-noise ratio for the simulation is

m
U2 Vs By B N (38
o o 12 fo ¥ar °

2

SNR =

ESQNIMQN

The second method of noise generation was designed to provide noise correla-
tion properties that are matched to the signal characteristics., It assumes that
the IF bandpass characteristics are Gaussian to first-order. If a Gaussian band-
pass to an Nth order approximation were used, then the normalized ACF (p(T))
could be computed for all time lags 1. Noise would thus be generated by considering
not just the last value, but all previously known values in a joint probability
distribution of N variables. For a first-order approximation, it was assumed that
p(t) is known for only a fixed increment T.

For the bilvariate Gaussian distribution

2 2
1 L ZIllzpﬂI)

exp {- (35)
210 [1 - pz(T)]

P(I,,I.) =
1772 26711 = p2()]
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where the o variances are equal, letting 12 = I1 + AT and integrating over Il

gives

2
P(AI,T) = 1 exp {— (A1) } (36)

204/7C = 5CO) b’ 11 - p(0)]

in which P(AI,T) is the probability of a change in I in a tlme T. This distribu-
tion is Gaussian with variance 262 (L - p(1)].

The numerical values of the correlation parameter can be established as

follows. For a Gaussian waveform

& 2
y(t) = exp - ("f) (37)

in which T is one~half the pulse duration at the e—l points, the spectral width

(one sided) is f0 = 1/(Tw), Using a transfer function with a squared magnitude
of

2
|G(f)|2 = oxp (-2 EE-! (38)
f

the normalized ACF p(7) is found to be

(1) = J . 26" {-2mift} df = A 39
plt) = “2xp - ;5—- exp t-21ifTs df = exp ¢- > . (39
8]

Therefore, for 2T = 50 nanoseconds, the correlation parameter is

2
o(t) = exp |- ('—;-.;.-) (40)

in nanoseconds.
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SECTION 4

REVIEW OF ELECTROMAGNETIC SCATTERING FROM ROUGH SURFACES
AS RELATED TO THE GEODETIC ALTIMETER

4.1 GENERAL DISCUSSTON

Satellite altimetry, as presently proposed for the GEOS satellite,
is heavily dependent on characteristics of the backscattered signal
from the ocean surface. The altimeter techniques under consideration use
a beamwidth sufficiently broad (2-3 degrees) that with reasonable satellite
attitude control, strong radar returns will always be reflected from the
sub-satellite point. The use of pulses in the range of 50-100 nanoseconds
ensures that at satellite altitudes of 1000 km, the transient portion of
the return will indeed be backscattered normally from the sea surface,

At satellite altitudes of 1000 km, the footprint of the initial
100 nanoseconds of the reflected pulse has a radius of 5.5 km which
constitutes a half angle of five milliradians. Consequently, the angle of
incidence is very nearly zero during this portion of the pulse, with a
total variation of + 5 milliradians. With the possible exception of a
completely flat sea surface, this variation of incidence angle can be
neglected and the analysis can be confined to the case of normal incidence.
The significance of this simplification is apparent when one considers the
complexity of an analysis which attempts to predict angular dependence of
scattered power over the range of angles from 0-90 degrees, Barrickl has
demonstrated that the usual approximations made in evaluating the vector
Kirchoff integrals for rough surfaces generally lead to results which may be
in error at angles of incidence greater than 20 degrees. There is, however,
excellent unanimity for the theory mnear normal incidence; Barfickl, Hagforsz,
and Fung and=Moofe3 have shown that models employing geometrical and physical
optics can lead to identical answers near normal incidence,

The details of radar backscattering from the sea surface are presented
in paragraph 4.3, where allowance is made for the fact that the energy
spectrum of a sea is in general anisotropic. The present knowledge of
the sea surface energy spectrum is not suffieint to allow calculation of

these effects. At normal incidence the radar cross—section is known to be
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a function of the mean-square slope of the sea surface. A few measurements
of the mean-square slope and the mean-square height of ocean waves have been
made. Munk§ observed that when wave numbers corresponding to spatial
wavelengths of less than one foot were removed from the ocean spectrum by
means of artificial slicks, the mean-square height of the waves (proportiomal
to the integral of S(k)) was essentially unaffected but that the measured
mean-square slope (proportional to the integral of kzs(k)) was reduced by a
factor of three, This means that although the scattered power at normal
incidence is heavily influenced by sea slopes, it is rather insensitive to
the mean-square height of the waves, the latter being a commonly observed

océanographic variable,
4.2  SUMMARY

With X-band satellite altimetry, for waves with rms heights greater than

cne-half foot,

1, The backscatter cross—section at normal incidence will in
general be inversely proportional to the mean-square slope
and the degree of aniscotropy of the sea surface;

2. assuming a Gaussian shaped autocorrelation function, the
incremental signals, sampled at nanosecond intervals for
times up to 150 nanoseconds (after the leading edge of the
pulse hits the sea), will be independent; and

3. the incremental areas uncovered at nanosecond intervals are
large enocugh to expect that the distribution of the amplitudes

of the incremental signals will be Rayleigh-like.

The significance of these results to the simulation of sea returns was
discussed in Section 3., In regard to the geodetic altimeter program,
this study has led to the following conclusionse: Backscattered power
can be related to mean-square slope of the sea surface. Experimental
programs using radar scatterometers have indicated that empirical
relationships can be used to relate the scattered power (slope dependent)
to ocean surface winds., A considerable extension of the presently
available oceanographic information (e.g., two-dimensional slope spectra)

would be needed to place these empirical relationships on a theoretical
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basis. Assuming that the empirical results can be used reliably to infer
surface winds, the wind information may be used to infer rms wave height

forecast programs and other uses. As discussed in Section 5, the oceano-
graphic relationships between mean-square slope and wind velocity are not
known to the extent required to permit am electromagnetic solution to the

problem. The ocean measurement problems are immense,

4.3 RADAR BACKSCATTERING FROM THE SEA

The design of a satellite~borne radar altimeter will be dependent
upon knowledge of the characteristics of the radar backscattering from the
sea surface. Backscattering at all incidence angles from a rough surface
has received a’'great deal of attention by numerous authors., The subject
is most complex and there is no uniform agreement except near normal
incidence for a very rough surface.

At near normal incidence, Barrickl has shown that the radar back-

scattering cross—section is given by
R 2.2 ' 1 ot
g = Kk exp {-4k ho[l - p(x,x', v, y") 1} dxdy dx'dy (1)

where: the limits on the integrals are defined by the area illuminated by
the radar pulse;

K is a function of sea surface conditions (mean-squared slope} and
of the Fresnel reflection coefficient (near normal incidence K is
relatively insensitive to sea surface slope);

hi is mean-squared height of the waves;

p (x, x', y, y') is the normalized surface spatial correlation
coefficient;

k is the Fourier wave number = E% in which A is r—f wavelength; and

(x,y) and (x',y') are positions on the mean sea surface.

The derivation of this equation is based upon physical optics
approximations to the Stratton-Chu integral equation. The major assumption
is the use of the tangent plane approximation to the surface which requires

that the radius of curvature of the surface be large in comparison to the
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wavelength of the incident radiatién. At a wavelength of three centimeters
(X-band) it is not clear that the tangent plane approximation is appropriate
for a sea surface with capillary waves. On the other hand, the capillary
waves are only millimeters high and, at normal incidence, the effect of
millimeter scale irregularities on three centimeter eﬂergy is not expected
to be large, It is recognized, however, that there may be some error
involved in the use of the tangent plane approximation.

A second approximation has been introduced by assuming that the joint
probability density distribution of the wave heights at positions (x,y) and
(x',v') is a normal (Gaussian) distribution with zero mean value and variance
hz. Kinsman4, among others, presents experimental evidence which indicates
that the height of the sea surface is, only to a first order, a normally
distributed variable, Since the surface statistics were assumed to be
homogeneous, the correlation of the height fluctuations at any two points
is a function only of the difference of the coordinates of the points and
not of the absolute value of the positions of the two points.

The homogeneous assumption allows (1) to be expressed as follows:

2,2
o = Kk2 JIJJ exp {- EEEEE— [1 - plx-x',y-y")]} dxdy dx'dy"
A

with x-x' Ax

y-y' = Ay

and integrating oven an Lx’ LY square area gives
L L x+HL v+L

2(5(5( 5[ % 22
= Kk J J 2 J 2 J exp 1- AEEEE— [1 - p(ax,Ay) ]} daxday dzdy. (2a)
A

lmty



Y
Note that since I—GJE%— >>1, if p (Ax, Ay) departs from one, 1.e,,

for Ax and Ay differ%ng much from zero, the exponent in the integrand

would become quite large. The majoxr contribution to the relative coordinate
integral ( in 2a) occurs for Ax,Ay=0. The e%act limits of the relative
integral are not important {so lqng as Lx and Ly are large in comparison

to the regions of Ax and Ay which contribute to the integral) and we can
extend the limits of the relative coordinate integral to infinity without

incurring appreciable error,

L L
S 2.2
i 167 h
5 = K2 [ ] e - 25 nopenenn
-L -L —» - A (2b)
2L dAxdAy dxdy
2 72
o 2.2
c = Kk2 Area IJ exp {- léﬁzh—-[l~ ( %, y)]} daxdAy.
A {(2c)

—_C

Before proceeding,. it should be noted that a sea surface composed of
infinitely long-crested waves of a single frequency will cause
the above arguments to fail. Suppose the waves were traveling
in the x direction. The correlation function in the X direction
will be periodic and the relative coordinates in the x direction cannot
be replaced with infinite limits. In the y dikection, the correlation
funetion will be unity for all y. The relative limits for y camnot be
replaced with infinite limits either. While it is true that on a real
ocean the likelihood of a single frequency, infinitely long-crested
wave is zero (the ocean is of finite gize), with a sufficiently small
antenna footprint (corresponding to an extremely short pulse length) a
moderately long-crested narrow band swell could seriously invalidate
eqﬁations (2b) and (2c).

If the correlation function is assumed differentiable at the origin,

then a Taylor series expansion about the point (0,0) is



W2
= 2 . °p Ax
p (hx,Ay) p(0,0) + Ax SA%. + Ay Bhy + 3*31—

Ax =Ay=0 AxgAy=0

2 2 2
+O0 28 | g 28 ] P
Ay - 4
&x= Ay=0 Ax=Ay=0

In the following development we shall show that

IR B -] =0
9Ax Ay :
Ax=Ay=0 Ax=Ay=0

consequently,
; 5 -
p(Ax,Ay) = 1-a (ijz—bz(dy)z—cz(ﬂx)(Ay).
where
2
a®= ~1/2 -?—-9-2 I
I e ny=0
2 5%
bé= -1/2 —-%
Y px=by=0
2
2 ¥ ,
dAx Ay
Ax=Ay=0
Thus,

1plax,by) 2 a? 0?2 + 5?7 (a2 + o2 axay

2%
3Ax2
Ax=py=0

(3a)

(3b)

(4



Equation (4). shows that the isocorrelation contours for small values of
x and y are elliptical. For larger values of X and y more terms

of the Tayloxr series e%pansion would be required and the contours need
not be elliptical. However, for very high frequency backscattering, the
elliptical approximation appears reasonable. The proof of the preceeding

disecussion follows.
Let z(x,y,t) represent the height of the sea surface at the positicn

X,¥ and the time t

Zz (X 3}7) = [f s (kx,ky) exp {i [kXX-}.kyy]} dkxdky

-—C
From transform theory, since z(x,y,t) is a real variable, S(kx’ky)=
S* (-k_,-k ). If the height fluctuations are averaged at two points x,y and
X" ¥

x', y' we obtain

2]

p:A (X,‘y) Z (Xt sY‘ )= J'JII g (kx,ky) Sfier ,ky,)

O

&)
exp { i[kxx—k;x'+kyy—k;y']}

dk_dk_dk'dk'
x ¥y x 7

For homogeneous, stationary sea surface statistics, z(x,y) z{(x'y") should

be independent of time t and a function only of x'-x and y'-y. This can

only be true if

2
1 - k! - Tt 6
S(kx’ky) S*(kx,k;) |S(kx,ky)| G(RX kk) 6(ky ky) (6)

where

2 — = — —
IS(-kx,ky)[ = Pk ,k) = F(-k,, k)

-

2
|5 Ceysk )|



since

z(x,y) z(x',y") = R(Ax,Ay)

=]

”” Pl k) 8C - KD 8k - kD)

—C0

5 - t - 1 - 1 T |
exp ‘[1[(kx kx) X kxAx + (ky ky) v ky!_\y]}

dk dk dk'dk'
x y X ¥

- ) LT
R(Ax,Ay) = JJF(kx,ky) exp {-illk Ax + kyAy]} die dic_ dkidk!

-0

JJF(k ,k ) cos [k Ax + k_Ay] dk dk
X'y X y X ¥
p(Ax,Ay) = ROx, ¥) _ 2
2 8Y R(0,0) »

F(k ,k ) dk dk
'y Ky

Therefore <
J{ k F{k .k ) sin [k Ax + k aAy] dk dk
x Xy X ' Xy

o

IAX = w
JJ F(kx’ky) c11<,xd.k.y
0

- Jf kxF(kx’ky) sin [kxAx + kyAy] dkxdky

9p  _ _©
Ay o
([ ron s,
0
-II kk F(k k) cos (k Ax + k Ay) dk _dk
L Xy Xy X ¥y X ¥
3 p - o
dAx0IAY

JJ P,k ) di dic
Q

4~8

(7)

(8)

(9)

(10)

(11)


http:kxF(k.ky

T 5 (12)
- J( k. F(kk ) cos (k Axtk Ay) dk_dk
5 X xy X ¥y Xy
sz - o
3a%° =
” POk ) dk
Q
- 2 . : (13)
[i ky F(%Kky) coslkxﬂx+kyAy] dk_Xdky
2
5P -
BAyz

Jf F(k k) dk dk
0

Evaluating (8), (9), (10), (11), (12),(13) for Ax = Ay=0 gives:

&) (030) =1
EE.l = 3 | - 0
9Ax dAy
Ax=Ay Ax=Ay=0
172 || % Pk k) dk_dk
2 X Xy X v
-1/2 3% - o - (14)
2 ix?
* Ax=Ay =
J J F(kxky) dkxdky
0
(=]
1/2 “ 12 B@e k) dk_dk
2 Sy Txy TUFEY )
-1/2 3%p ’ _ =b (15)
3ay> ©
Y Ax=4y=0
JJ F(k k) dk_dk
xy Tx ¥y
o [o
, IJ fe e F(kxky) dic dke
__3p_ ! __o = o2 (16)
BAxBAyAX

=Ay=0 >
JI F(kxky) ke dke_
o]
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It is noted that in view of (8), the correlation function can be
considered to result from waves travelling in the kx’ky directions.
Since F(kx’ky) = F(_kx’_ky)’ the correlation function could equally well
arise from waves travelling in the —kx, —ky directions. There is an inherent
180° ambiguity in the direction of travel of the waves which make up the

spectrum.

4.4 CALCULATION OF THE NORMAL INCIDENCE RADAR BACKSCATTERING CROSS-SECTION

The physical optics approximation to the normal incidence backscattering

cross~section per unit area of illuminated rough sea leads to

4

" 2
¢ farea = Kk? [f ex‘p{—('é%Il ) [aZ(AX)2 + b2 (AY)z + Cz(AX)(AY)]
o an
dAxdAy

It may not prove feasible to use oceanographic spectra to evaluate
the constants az, b2 and c2 since oceanographic spectra do not usually
have sufficient detail ( at the high wave number end of the spectrum) to
permit an accurate evaluation through (11}, (12}, or (13). Nonetheless,
it is possible to relate the cross—section to an oceanographic variable
(even though there may be some doubt as to the pertinence of the oceanographic
measurement) .

The maximum slope of the sea surface at the point z(x,v) is given by

3z ” iz

Va(r,y) =50 E2E s ¥

The mean square slope of the surface is

|Vz (x,y)l2 -

It can be shown that if z(x,y) has a power spectrum F(k ,k } then

2z | az|? _ 2
ax ¥

ay

rgg'z and I-—Jz have power spectral densities k Flk, k ) and k F(k_ ,k )
X
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respectively. The mean squared values of 3z and 3z are given by

9x 3y
2 lex2 [f .2 23 2 2 2
s = |22 =”k F(k k) dk_dk_ = -h” 2~£ |= 2p%a ¢18)
x Ix x X'y X v BAXZ
—e Ax=Ay=0
2 | az]? ff 2 2 3% 2.2
= 4 Y = b
sY l“ﬁgﬁ“ H ky F(kxky) dkxdky h aAyZ 2h (19
Ax=hpy=0

Substituting (18) and (19) dinto (20) gives
] 2

2 s s
g farea = Kk2 ” expl :,]—_@J}_T\,i_ [ -?2-{- (Ax)2 + —g— (Ay)z + h

225 x8y 1 (20)

dAxdAy

2 . .
The term ¢ can be related to the slope covariance, i.e.

2 2 oz 3|
@ © |ex y |

In general then, the normal incidence radar backscattering is an inverse

function of the mean square slope of the sea. It should also be observed

that the cross-section is also a function of the degree of anisotropy

of the sea surface as is evidenced by the term hi c2 (ax) (Ay).
One-~dimensional ocean wave gpectra have heen obtained from measurements

of wave height versus time at a single point. These measurements are

first processed to yield a frequency spectrum which, through the application

of the wave dispersion relation, is then interpreted as one-dimensional

spatial spectrum. This type of analysis is net without its difficulties

because of the averaging of the high frequency components by the transducer

as well as the neglect of nonlinearities in the wave equation.
Two-dimensional spectra can be obtained directly from sterec photographs

of the sea as demonstrated by Cote, Pierson, et a1.7. For a variety

of reasons, not the least of which is the sheer magnitude of the task, the

spectra so derived do not represent the components whose spatial periodicity
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is less than 30 feet. Consequently the high wave number end of the
ocean wave spectrum is not well known. It should be noted that the very
high wave number end of the spectrum is far less important to the
oceanographer than it is to the radar user.

For these reasons the importance of the slope covariance on radar
cross section has not as yet been evaluated. Frequently, in the absence
of knowledge about the detailed behavior of the spectral demsity function
F(kx,ky) at high frequencies, the radar backscattering cross-section is

specialized to the case of an isotropic sea surface. Under these circumstances

Sz Bz is zero. TFor an isotropic

s2 iz equal to 52 and c2, the covariance
X b4 5
X oy

surface

2
¢ farea Kk2 ff exp { —8#2 -[Si (ﬁx)z + S; (AY)zl}

X
) 21
dAxdAy (21)
Kr
o farea = )
s

Equation (21) is particularly simple and clearly shows the inverse
dependence of radar cross-seciion upon the mean-square slope.

In order to make clear the physical basis for some of the arguments
which follow, (2c¢) will be re-examined for the case of an isotropic sea
surface. In this case

2 ~167°h°
o= Kk" area [J exp {———E-—E [1 - p(Ax,Ay)]} daxdAy
. -} A‘
(22)
* 2.2
o farea= 2 %6 [expt ZERL (160001 rar
A

0
where p(r)2 = (Ax)z + (Ay)z

and o (r) = p‘/(mz +ont. ..

which is seen to be the isotropic case.
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161r2h2

2
to (22) will occur for smallAvalues of o(r) such that p(r) = 1-§

It is clear that if is a large number, the major comntribution

whered is a very small number. A two term Taylor series expansion for p(¥)

is given by

r2 a2
p(r) =1 — e I
z ar2
r=0
2 167°h° 3% | )r%) rd
o farea = Kk“ 27 fexp { 5 (12~ £ t r
A 3r r=o
2
o farea = 21rKk2 - 52
16n°n°(1/2) , 2
=0
2
Comparison of (21) with (24) will show that 9 p | must
9 2
equal §Zu Direct calculation will verify that U/area = EE- Therefore the

radar cross-section for an isotropic rough surface is inversely proportional
to the mean squared slope. ‘

The significant feature of this last derivation, which will be used
in certain following sections, is that for a rough isotropic surface

the major contribution to the integral in (22) occurs for relatively

small values of r such that the p(x) = 1.

4,5 COHERENCE OF BACKSCATTERED SIGNAL

If the entire illuminated surface of the sea were to act as a flat
coherent reflector, the returned power should be proporticnal to the
square of the area illuminated. However, the arguments following equation (
indicate that when the illuminated area exceeds a critical size, the return
is proportional to the first power of the illuminated area. Just what
are the dimensions over which the sea acts as a coherent reflector? The
linear dimensions can never exceed (at high frequencies) the surface

correlation length L, and in fact will be shown to be considerably smaller.
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Consider, for illustrative purpeses only, that the normalized correlation

function of the sea surface 1s Gaussian:

2 2
p(r) = exp {- EE} = 1- EE' for small r, (25)

L

g

At x-band, with an rms wave height of ome-half foot, the analysis
shows that the main contribution to theintegral in (2) occured for small

values of rjxl where r; is defined by

HIR 92 [ 1o o(ep] = 4 (26)
Therefore,
r, 2
p(rl) = ,999 =1- Ciﬂ
and

2

r _ -—
I~ = 3x10

This value of r, which is less than 3 percent of the correlation length,

is a measure of the distance over which fields are correlated on the sea

surface. Since the contribution to the integral is quite small outside

of rys Tp is considered to be a conservative estimate of the linear size

of a coherent scattering element. Taking ri to be 3 percent of the surface

correlation length, for L as large as 500 meters, ry is still only 15 meters.
The number of independent scattering areas can be estimated as follows:

The radar footprint on the sea-surface expands radially with time. During

each one nanosecond time increment that the radius of the. footprint

increases by 15 meters, the scattering from the incremental areas shall

be considered to be independent (uncorrelated) of the previously uncovered

area. The radius of the radar footprint as a function of time, €, after

the leading edge of the pulse has reached the sea~surface is given by

/

= fact] 1/2 for t< tp 27)

L

where r is the footprint
a is the satellite altitude

tP is the pulse length,
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If a is taken to be 1000 kilometers, then for tP = 100 nanoseconds

the increment of the radius uncovered between (t = 99—to 100 nanoseconds)

ArlOO = Ti00 ~ Ygg T 25 meters
for ArlOO > rl
In a similar fashion, ArlSO = rl50 - r149 is approximately 20 meters.

Therefore, incremental signals at nanosecond intervals are incoherent
for times as long ag 150 nanoseconds after the leading edge of the pulse

reaches the sea and the footprint radius is approximately 550 meters.

4.6 TFREQUENCY DEPENDENCY

The results obtained in this section can be related to the geodetic
altimeter as follows: An operating wavelength of the satellite altimeter
at X¥~-band (3 cm wavelength) is currently being considered. Kinsman4 estimates
that 80 percent of ocean waves have heights greater than three feet. It
therefore seems reasonable to assume that h, the rms wave height, is
greater than one-half foot for an appreciable fraction of the time. At
X~band the quantity 16ﬂ2h2/l2 has an approximate value of 4 x 103. Most
of the contribution to the integral of equation (22) will occur over a

range of r from zero te ry, where r; 1s defined by equation (26). Thus

1
p(r) is found to have a value of 0.999, Over this range it zppears reason-
able to approximate p{r) by equation (25) since the change in p{(r) is small
from r = 0 to ry- On the other hand, if the operating wavelength were

75 em (400 MHz) the term in equation (26)

47h

2
( A

234 - 6.4

with thé result that the correlation function for the same range of r
would decay to a much smaller value (p(rl) = ,375).

Therefore, at 400 MHz one would not expect that p(r) could be well
represented by a simple quadratic. It is concluded that the backscattered
powér would not exhibit a simple slope dependence at 400 MHz if the wave
heights were only one-half foot rmg. At X-band, however, for- the same

wave, the backsecattering cross—gection at normal incidence can be accurately
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related to inverse mean-square slope.

4,7 ANALYSIS OF WAVE HEIGHT EFFECTS ON THE ALTIMETER WAVEFORM

The extent to which mean-sea-level measurements derived from an
electromagnetic signal depart from true mean-sea—level is presently
unknown. If this type of bias is not a significant error source in the
altimeter data, then estimation of sea state characteristics can be
considerad as an elective requirement in the altimeter program. Other-
wise, wave height estimatlion is essential in the satellite. The problem
of biaB in the mean-sea-level measurement is discussed below,

An extension of the work of Rice and Longuet-Higgins has been formulated.
In the one-dimensional case, the distribution of reflecting points F(z)

on a rough surface of height variable z is

F(z)dz = %-J p(z,z',z")|z“[dzdz"

vhere p is the joint probability of the density of the function z and its
derivatives (primed) and n is the normalization term. In order to specify
that a point on a rough surface constitutes a normal incidence reflection
zone, the first derivative of the height variable z' must be equal to

zero (e.g. a critical point) and the second derivative z" must be within
the required curvature range.

In order to proceed with the mathematical development, it is necessary
to assume Gaussian statistics. The approach is discussed in Appenddix D.
The degree to which the Gaussian assumption holds is unknown. Figure 4.1
shows measured probability distributions of the ocean surface for the
height variable and its slope z'. WNote that the slope distribution departs
much more from a Gaussian statistic than does the height variable, It is
in fact possible for the height distribution to be symmetrical and for the
slope and curvature distributions to be skewed., In this case, the radar-
measured mean-sea-level would certainly depart from its true value,

It is difficult to pursue this theory because of the above-mentioned
lack of oceanographic data. The principal oceanographic unknowns involve
the high frequeney behavior of the slope and curvature spectra. With data
Presently available, convergence of the spectrum interval is not even

assured.
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Because of the assumptions required In a mathematical formulation,
it is degirable to eiamine the bias problem using actual ocean height
profiles in a numerical evaluation of the integration. Any errors that
may be introduced by the simpler medels and assumptions could then be
evaluated, Such data can apparently be obtained from laser profilometer
measurements and this information would permit completion of the wave
model task. Studies could then be conducted to determine (1) feasibility
of wave height extractions in the leading portion of the altimeter signal

and (2) importance of "sea-state bias",
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SECTION 5

OCEANOGRAPHIC STUDY

5.1 SUMMARY AND CONCLUSIONS

In the course of investigating the effects of mean wave-height and
spectral anisotropy on the scattering of electromagnetic waves, a number
of oceanographic information deficiencies were encountered. The work
reported in this section was undertaken as a means of providing statistical
characteristics of the ocean surface for use in the work reported in the
previous section., This section, therefore, contains a review of prior
oceanographic investigations in regard to the dependency of surface
characteristics om oceanographic and meteorclogical parameters.

.The general conclusions reached in this section are as follows:

(1) The ocean wind waves are probably generated by the
resonance mechanism proposed by Phillips, but their subsequent
growth is supported by Miles' shear flow model. In addition
to the wind, there are other mcdification mechanisms, such as
wave-wave, and wave-turbulence interactions, etec., that will

change the form and pattern of the wind waves.

(2) Because of the favored direction and the modification
mechanisms in the wave motion, the statistical distribution of
the surface displacement and surface slope are significantly

skewed.

(3} By the predominant wind forece on waves, the main
energy containing part in the two-dimensionzl wave spectrum is
also skewed. In other words, the wave field itself might very
well be homogeneous but definitely anisotropic. The
anisotropy might be gradually smoothed by the modification
mechanisms, especially at high frequencies, and become small

but it would never be completely eliminated.
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Conclusions specifically relating to the integrated one-dimensional

spectrum are as follows:

(1) For a well-developed sea, the spectral form of the
high frequency range changes inversely as the fifth power of

frequency, or inversely as the fourth power of wave number.

(2) The spectral maximum occurs at a frequency n
which is equal to the gravity term divided by wind velocity.
For most practical purposes, n could be used as the cutoff

frequency at the lower end of the equilibrium range.

(3) The variance of surface slope, (55)2 is logarithmicaily
related to surface wind speed. The dependence of (52)2 on fetch
and duration is critical only for a short distance or time

period respectively.

(4) With moderate to strong winds (< 40 knots), the
relation between 635)2 and wind speed offers a good method of
determining one if the other is known. For wind speeds of
40 knots or less, their relationship is reasonably well
established. At higher wind speeds the relationship has not

been verified.
5.2 BACKGROUND

The relationship between wind and waves has been obvious, even to
casual observers, since time immemorial. Early field and laboratory
studies provided generally unrelated information and hypotheses. The
fact that the randomness and irregularity of ocean wind waves defied
description by the earlier investigators led Rayleigh to write: 'The
basic law of the Seaway is the apparent lack of any law." With the
turning of the century, and especially within the last thirty years,
statistical theory began to find its way into applicationsl. The
publications of Longuet—Higgin52 and Pierson3 began a new era in ocean

wind wave study.



From the statistical theory, oceanographers learmed that in the study
of random wind waves only the various statistical measures of the motion
can be regarded as significant observationally, or as predictable
theoretically. The fundamental measure of an unknown random wave field
is, of course, the joint probability density of the variables. .The
second moment of this probability density is of central importance
because the Fourier transform of it gives the wave energy spectrum which
measures the energy contained in a particular wave field. The wave energy
spectrum is of prime importance since it is readily measurable. Waturally,
the study of the wave energy spectra has become one of the central
problems of oceanography.

In the ocean, most, if not all, of the emergy of the waves comes from
wind, However, the detailed physics involving the energy transfer between
wind and waves is still not completely known, in spite of the important
works of Phillips4_6 and Miles7_10. Numerous observations and theoretical
studies have revealed some definite statistical properties which represent
at least part of the whole story, and valuable working relationships between
some of the saljent parameters involved. In order to serve the immediate
purpose, the properties of the high frequency end of the spectrum will be
examined first. Although the high frequency waves contain a very limited
amount of energy, sea surface slope is strongly dependent upon them.
Knowledge of the surface slope-wind relatiomnship could provide the basis
for new measurement techniques (Hulburt,11 Schooley,12 Cox and Munkls"l4
Cox,l5 and StilwelllG). .

The following is a review of what is known about the statistical
properties at the high frequency end of the wave spectrum (known as the

equilibrium range), and one aspect of their application.

5.3 THE EQUILIBRIUM RANGE OF THE SPECTRUM

The notion of an equilibrium range of a spectrum was first advanced
by KolmOgoroffl7—18 in the study of turbulence, A similar idea was applied
in an ocean wave study by Phillipslg. The basic concept of an equilibrium
range is the same both in turbulence and ocean waves, although the physical

processes involved are quite different.
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It is observed that as a turbulent wind blows across an ocean surface,
energy is continuously transferred to the sea, resulting in wave development.
If the duration of the wind is sufficient, some components of the waves
presumably will continue to grow, while others, especially the high
frequency ones, will reach a state of saturation——limited by instability
in the form of breaking. The limiting c0nfigura£ion of a progressive wave
was studied by Stokeszo. Be found that when the crest angle reached 120°,
the acceleration of a fluid particle at the crest was equal to one half
the acceleration of gravity, and at this point the crest, or top of the
wave, would break off. Subsequent observations by Gaillarle confirmed
Stokes' calculation. Ocean waves, however, are irregular with components
in many directions and of different frequencies and wave lengths. Breaking
may occur: 1) under the same conditions as described by Stokes; 2) when
two crests of the wave pattern run together; 3) when a wave moves into
a region of high energy density; or 4) when short waves riding over the
crest of longer ones have an energy excess as a result of the radiation
stresszdeS. At any rate, it might be reasonably agserted that the wave
breaks at some locality when the fluid particles have an acceleration
comparable to the acceleration of gravity (g). Energy is dissipated during
breaking and at the same time supplied continuously from the wind. At
some point, the amount of energy supplied just equals the amount dissipated
and the equilibrium state is reached. Under this assumption, Phillipslg,
using dimensional analysis, defined the functicnal form of the frequency

spectrum for the equilibrium range:

$(n) = Bgzn_s; n >>n>n (1)
Y o]
where ¢(n) is the frequency spectrum, R is a constant, n is frequency in

cps, is the frequency at the spectral maximum in cps, and nY =(&$"01/4

is the typical frequency for capillary waves.
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Similarly, the wave number spectrum P(k) is given as:

b = SF

e

k > Lk »>> k
Y o

where B is a constant containing the angular dependency, k is the wave

number at the spectral maximum, and k = 65)1/2 i

of capillary waves,

Various observational results suggest that there is indeed a certain
range similar to Phillips equilibrium range.

to the observation indicate a dependence of the -5 power of n or -4 power

(2)

the tyglcal wave nupmber

of k. A summary of the dependence of the spectrum on frequency and the

values of the constant, g, are given in Table 5-1.

Table 5-1.

Observers

Barnett and Wilkerson (1968)%7
Burling (1959)28
Hicks (1960)%°

Kinsman (1960)30
Kitaigorodskii (1962)31
Pierson (1962)32
Longuet-Higgins, et al. (1963)33

For frequencies or wave numbers greater thanm n

Observed Values c¢f Equilibrium Range Constants.

Empirical functions fitted

Spectrum Bg?n_s - Fetch
] S
4,95  0-400 km
1.48x1072 5.5 500-100 m
1.21x1072 4.9 16-300 m
1.04x10™2 4.5 1,700-3,000 m
0.65x10 2 5.5
1.33x102 -5 300 km
.80x10™ -5 500 km

or k.Y respectively,

the capillary force would become dominant rather than gravitational force.

2
The breaking of capillary waves was studied by Crapper24 and Schooley >

In spite of the different physics involved, the same similarity theory

still applies.

Phillip526

obtained



,Y2/3 n—7/3;

$(n) = B << n << (3
B' o
?(k) = Gf;D H kY << k << kv (4)

where B' and B' are constants, n, and kv are the cut-off frequency and wave
number, respectively, at which viscous forces become important. Observa-
tions in the capillary wave range are scarce, but Coxls,,Hidy and Plate34,
and Volkov's35 observations give some evidence of the validity of the
relationship.

A few words of caution must be added here regarding the use of
the equilibrium range concept. First, the proposed spectrum fuanction
represents the magnitude of wave spectrum only for a well-developed sea when
energy becomes saturated over a wide range of wave numbers, or frequencies,
manifested by the occurrence of fairly -sharp wave crests and intermittent
white caps. The sea under this condition is, presumably, statistically
stationary. During active development or decay, the above relationships
are not valid. The proposed spectrum, then, can be regarded as representing
the upper limit of the magnitude of the wave spectrum in these transient
states. Fortunately, the transient period (or distance) is not very long
and a quasi-stationary state can be realized within hours with wind
speeds of 30 to 40 knots or less, or a fetch of approximately 200 km.

Secondly, the cutoff frequencies of the spectrum are dictated at the
higher end by capillary forces (in the case of gravity wave spectrum)
and viscous forces (in case of capillary wave spectrum). At the lower
end the cutoff frequency is less definite. However, by considering the

development of the wind wave spectrum (Phillips6,36,37

)s the spectrum can be
taken for most practical purposes as the frequency (or wave number) of the
spectral maximum., The spectral maximum should occur, according toc Phillips'

4,5,26,6

resonance theory at the frequency or wave number having the

following relation

n <k , U (5)



where n_ and 50 are at spectral maximum, and U is the wind wvelocity.

Using the relationéhip between n and k; i.e. n2 = gk, then

_ 2 2 _2
gko =n ko U, (6)
Hence
kK o« -B
0 U2
or £
n0 * U 7

This theoretical result was subsequently confirmed by the observations
of KitaigorodskiiBS, Moskowitz39, Pierson40, and Volkov35. Pierson‘540

results are summarized in Table 5-2.

Table 5-2. Some Characteristics of Pierson's
(1959) Spectrum.

U*-cm/sec t hrs. f max. U*fmax/g
1 110 10.5 0.11 0.012
2 106 13.5 0.11 0.012
3 148 10.5 0.08 0.012
4 148 13.5 0.08 0.012
5 143 16.5 0.07 0.011
6 175 14,5 0.07 0.012
7 171 17.5 0.06 0.011

NOTES: 1, U* is the frictional velocity; it could be related
to U, the wind speed, directly. See for example
Pierson and Moskowitz#l,
2. t = duration of wind action.

Besides these observations, there are other attempts to develop an

empirical expression for the wave spectrum function. Among the better
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known earlier ones was that due to Neuman42, who proposed the following

expression using wind velocity as a parameter:

2
$(n) = cn_6 exp { '%?iji } (8)
n U

Agide from other objections, the inconsistency of the dimensionality

makes it unlikely that it is representative of a genuine physical law.

43,44

2
Numerous other attempts have been made by Bretschnedider » Burling 8,

and Darbyshire45’46, to cite a2 few. But at that time the inclusion of
such a parameter as wind velocity by curve~fitting based on limited data
seems premature at best.

No major breakthrough was reported until Kitaigorodskii amnd

38,47 published their findings. Kitaigorodski138

Kitaigorodskii and Strekalov
assumed that the energy containing part of the wave spectrum is a function

of only four variables; i.e.

$(n) = F(n,g,U,,X) (9)

T 1/2

where U, = frictiomal velocity = (—) and X = fetch.
P

Then by dimensional analysis, Kitaigorodskii obtained the expression

U.n
2 -5 * X
b)) =g 0 F (—, E5). (10)
g
Uy
u,n X
When the expression Fl G—g— , EE) is normalized it does indicate that
U
¢ (n) n5 approaches a constant value, Later, Pierson and Moskowitz4l
2 B
g

made a slight modification of Kitaigorodskii's expression by simply
changing frictional velocity, U, to wind velocity, U, and arrived at

the expression:



2 s 4
p(n) = a-gg e B - L
n

where o , B are dimensionless constants, n is the frequency at spectral
maximum and is equal to-%. In both cases, ¢{n) + dg2 1:1m5 as n >> 1 _.
This conclusion gives considerable support to the Phillips equilibrium

range theory.

5.4 SLOPE SPECTRUM

Similar to the energy spectrum discussed in the last section, other
spectral functions may also exhibit an equilibrium range. Considering
the frequency spectrum of the surface slope [Saﬁ(n)] at a fixed point, as

an example, Phillips50 obtains

J’ 3r(x.t')  BT(x.t' + t)

dx X
o

cos nt dt (12)

ERS)

Sus(“) = ]

o}

where X, Xg are the horizontal vector components and ¢ is the surface

elevation. In the equilibrium range, by dimensional analysis,

-1
SuB(n) = caB n -, nY >> 1 >> n {13)

where caB is a constant tensor. Under the assumption of statistical symmetry

. ; . . . 3
with respect to the wind direction, Cyq WS determined to be 3

-2
€ = C11 + Coy = 0.8x10 (14)
In the capillary range,
8§ (n) =c¢' n-l n << n <<n {15)
af el 7y v

5-9



and c' is not necessarily equal to Cu An experimental study by Cox15

of
gives some support to the predictiom.

g’

Since the slope spectrum is derived from the product of derivatives
of the surface elevation, the relationship between them can be shown

schematically as in Fig. 5.1. Accordingly, the variance of surface slope is

given by

il

ve)° f K% 9y dk

k

(16)

fl

né
J = ¢() dn

an &

Equation (16) shows that the contribution to (Vi;)2 is heavily weighed
by the factor k2 or n4 in the integrand. Thus a major contribution comes
from the high frequency (or wave number) end where a negligible amount of
energy is contained. However, due to the results of recent research in

. 12 13,14 15 " 16 .
optical methods by Schooley™ ™, Cox and Munk » Cox™, Stilwell™ and in
radar devices by Barnett and Wilkerson27, both using the surface reflections,
the importance of the study of surface slopes has markedly increased. 1In

the following section an important application is presented.

5.5 THE RELATIONSHIP BETWEEN MEAN SQUARED SLOPE AND SURFACE WIND SPEED

In the first attempt to optically study ocean surface slopes, Hulburt48,

using sun glitter, concluded that the reflecting facets of the sea surface
occured most frequently at about 15°. No direct relationship between the
wind vector and (VE;)2 were found, but it was stated clearly that the wind
was the major cause of the change of (V;)z.

13,14,48 12 15

Twenty years elapsed before Cox and Munk Schooley =, and Cox

conducted another series of experiments. The principle used in all the
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optical measurements of the surface slope was the same, but the importance
of the latter studies lay in a propased relationship between (V;)z
and the surface wind.

Schooleyl2 used flash photography taken from a bridge. He made no
serious attempt to find an empirical formula to describe the observations.

At about the same time perioed, Cox and Munk13’14’18

studied sun glitter
photos taken from an airplane. The cases of a clean surface and a surface
covered with artificially induced oil slicks were both studied. Their
extensive measurements led them to claim that (VZ;)2 varied linearly with
wind velocity. In an attempt to lend more support to their curve f£itting
result, Neuman's spectrum was used to calculate the relationship approximately.
From the calculation, a linear relationship between (V;)2 and U was indeed
obtained. However, since Neuman erroneously used ¢(n)¢n_6 for high
frequency, the value of the calculation and the result are questionable.

Later Cox15 made a laboratory study and concluded that the relationship
was not a simple linear omne. Furthermore, the value becomes independent
of fetch after a short critical distance. These findings are in general
agreement with Phillips' equilibrium range theory,

Since Phillips' equilibrium range theory is consistent with numerous
independent observations it was used to derive a relationship between (Vg)2
and U. As discussed in Section 4.3, the cutoff wave number could be taken

as k and k¥ = 5—-. Then
c o

U2
k
— e k
2 2 3 [
vg) = k (E) dk = k(k) dk = B log (E—) (17)
- . 2
k o]
. . . . _ (g l/2
If kc is much less than the capillary wave range; i.e. kc <<k = (Y) R
then
2 koz
(Vg)™ =B log (g—). (18)
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However, if kc is within or greater than the capillary wave range

then
2 kc k
(ve)” = B' log () + B log G (19)
Y o

When these calculations are plotted together with data from Coxl5 and
Cox and Munkl3’14’48 for the case of an oll slick which filtered ocut
almost completely waves with length less than 30 em. the Phillips
calculation shows remarkable agreement. For the case with capillary
components, the agreement becomes less as wind velocity increases. This
could be due to the difficulty in measurement of (V;)2 as reported by
Cox and Munk.

Using Pierson?s41 spectrum and integrating from n, = B +o some

u
frequency n, with the help of the dispersive relationship, gk = n, “then

il
n 24 -8("
(Vz;)z = J "J%?TZ e dw
I1 (ﬂg
° ) (20)
2 k
- Uk _B8_ 8 0
=5 [In g 2+2k2]

This is of the same function form as (18). Since Pierson's formula
applies only to gravity waves, its usefulness is limited,

The relation between TVETQ and U seems to be well defined both
experimentally and theoretically; however, the application of this
relationship is not without difficulty, especially when the wind
velocity becomes very high (40 knots or higher). The difficulties are
twofold. First, as the wind increases, the stability of the wave is
controlled not only by breaking but also by blow-off from the crest. The
validity of Phillips' equilibrium range theory ufder this condition has
not been carefully studied. Secondly, with increased breaking of the
energy-saturated waves, optical observation becomes more and more

difficult. White—~caps tend to result in an over—estimation of the surface
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slopelB. This, however, could be overcome by improying measuring

techniques. (Clearly, the radar technique is a promising one.)

5.6 DIRECTIONAL CHARACTERISTICS OF OCEAN WAVE SPECTRA

Based upon the statistical approach to ocean wave study, the free
surface is represented as a sum of independent components of sinusoidal
waves of different amplitudes, phases, and directions of propagation.

The mathematical ideas involved in this representation are simple enough,
vet the inverse of the problem; i.e., to find those components which
accurately represent the random wave field, poses an extremely difficult
task for oceanographers. This, in essence, is the problem of finding a
two—~dimensional wave spectrum for a random wave field.

The difficulties encountered in the measurement techniques necessary
to obtain good two-dimensional spectra remain almost insurmountable.
However, the practical need for this information has forced researchers

to seek a modus vivendi; i.e.,, to seek a limited goal of determining a

one~dimensional spectrum to represent an integrated effect of the actual
two-dimensional phenomencn. This one-dimensional spectrum could be
obtained by means of a Fourier analysis of a measurement record at a
single point. Even a oné—point meagurement was difficult to obtain in
the deep water a decade or so ago, because of the lack of a working platform.

The information contained in a one-dimensional spectrum is, indeed,
valuable as far as the total energy of a given sea state is concerned.
However, this information is far from complete. The directionality is
necessary not only from the practical aspects of wave prediction, mass
transport, impact of waves on coastal structures, etc., but also in the
basic study of the detailed physical processes involved in wave genera—
tion. The skewness of the surface distribution has important bearings
on radar and optical gtudies of the ocean surface itself.

A reasonably accurate cliaracterization of these parameters has
evolved during the last decade through the persistent effort of many
researchers. These field studies have gradually revealed the statistical
properties of the ocean waves. The purpose of this discussion is to review
these efforts, and some of the salient results of the directional statis-
tical properties. These properties can be divided conveniently into two
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categories: 1) the probability structure of the ocean surface and 2) the
directional distribution of the energy im a two-dimensional spectrum.
The first deals with the geometrical shape of individual waves; the second
deals with the combined effects of the individual waves upon the wave
spectrum,

In order to understand these results, the processes of generation and
the mechanisms of modifying the waves will be discussed first. The process

of generation of waves on the ocean surface are summarized in the next

section.

5.7 THEQRY OF WAVE GENERATION BY WIND

The interactions between the atmosphere and the ocean appear in
various forms. From the oceanic viewpoint and with the atmosphere as the
primary energy source, motion ranging from global circulations to micro-
scale turbulence are found. The progress in the study of ocean circulation
has been summarized by Stommel49 and in the study of waves, by Phillipsso.
Only a few years ago, UrsellSl, in a review paper on the theory of wave
generation by the wind, stated that all of the three basic elements for
determining the mechanism of wave generation were still wanting; namely,

a correct theory, a well-documented experimental study, and a demonsgtra-
tion of a good agreement between the two. This pronouncement served as

a great stimulation for the study of this problem. Within a year, two
independent theories by Phillips52 and Mi13553 were advanced. Since then,
both theoretical and experimental works have resulted in tremendous progress.
A brief outline of the theoretical aspect is given below.

Phillipssz’s4 postulated the resonance mechanism of atmospheric
turbulent pressure and the surface waves. The air flow is always turbulent,
the pressure fluectuation in the air is, therefore, random. However, as
the turbulent air flows over a random ocean surface, interaction occurs.

The fluctuation of the pressure can be separated into two groups. The first
consists of the purely turbulent pressure fluctuations whose pattern is
everchanging as the eddies in the turbulence grow, interact and decay.

The second consists of a spatial pattern of pressure variation that travels

over the surface at a pressure pattern convective velocity. The existence
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of this latter pattern was confirmed by observatiocns of Wilimarth and
WboldridgeSS. To this gemi-rigid convecting pressure fluctuation, Phillips
assigned a relationship of the same wave number k as the surface waves.

The total pressure field thus could be expressed in Fourier-Stielijes

representation as
&b (e,t) = (v + 1) puctkdh (k,t) + dolk,t) (21)

where the pressure p(x,t) in the physical space is

p(x,t) = f abl,t) oFE (22)
! , _

~

and the surface elevation C(g-t) is

r(xet) = J Ak + ©) &% (23)

R

and dA(k*t) is the purely random part uncorrelated to surface waves,

v,u are the coupling coefficients, ¢ is the phase velocity of the surface

-

wave with wave number k, pwis water density, and k is |g
Through the linearized equations of motion, Phillips was able to

relate the surface wave spectrum, ¢(o,0) to the pressure spectrum w(k,T) as

-]

kzot Uc cos O
$(c,0) = —5 J 7(k,t) cos [(——=—"— - 1)ot] dr (24)
2(gp )" ¢

where 1T = time variable, t = duration of wind action, Uc = convective

velocity of pressure pattern approximately equal to the mean wind velocity.
There is sufficient evidence to support this theory. TFirst, if there

is a rigidly convecting pressure pattern, and if the response mechanism is

indeed responsible for the wave generation, then waves of frequency n

would be expected to appear in a bimodal distribution in the two-dimensional

wave spectrum at angles +o dictated by the resonance condition. The

resonance condition is

= Egc cos e (25)



or

o = cos 1 =) = cos 1 Q_E_gllz (26)
m U 2
—c ku
=

Field observation by S'WOP57 indicated that there was indeed a bimodal
distribution. Secondly, if resonance did occur, the components of waves
grow and the fastest should travel at approximately the same speed as
the mean wind, and the initial growth rate should be lipear, Thig is
also supported by field observations of Barnett and Wilkerson27.
Complementary to Phillips' resonance theory, but physically quite
different, is the model suggested by Miles7 and augmented by Brooke
Benjaminsa, Lighthilng and Phillip526. Miles considered shear flow over
existing waves. The mechanism involved is the momentum transfer from
the perturbed shear flow of the wind to the perturbing waves; therefore,
this model depends crucially upen the wind profile over the waves.
Based on this physical picture, Miles calculated the flux of momentum from
the wind te the waves through a "matched layer", (where U(z) = c with
U(2) = mean wind velocity, ¢ = phase velocity of the existing waves) as

w> U
T ™y e Rl @n

where Py = air density, U{z) = mean wind velocity profile, and we = mean
square vertical induced fluctuation of the air,

Since the energy density E of the wave is related to its momentum M by
E = Mc
the energy flux formula is
2 1"
[ U
E = Twc = TI'DOLC‘. ["];" (- U')]|Z=Zm - (28)

Subsequent works of Miles60 and Phillips26 uncovered a link betwzen
the two different theories. From Miles' model one can calculate the

coupling coefficients between air pressure fluctuation and wave as
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v o= -2 I (U cos ¢ ~ c) “kz4, 29
pmc 0
AN Y
u= —
p c2k2a2

Since v is definitely negative, the surface pressure should be
exactly out of phase with the surface elevation. Confirmation by observa-
tions were reported by Longuet-Higgins et al 3, and Shemdin and Hsu61.

From the experimental results, it is believed that both Phillips’
and Miles' theories are correct to some extent, Phillips' resonance
theory was successful in initiating the wave motion, but it is not an
effective mechanism to feed in energy to support the continuous growth.
Miles' model, on the other hand, depends upon the pre-existing waves to
perturb the shear flow; therefore the trigger mechanism is missing.

These short-comings were partly taken care of by subsequent works, Yet,
another difficulty of the inability to 1ncorporate the fully turbulent

air flow in the theory is still unsolved (see, for example, Phillips )

In spite of this, Phillips' and Miles' theories have successfully explained

many details in wind wave generation.

5.8 OTHER MECHANISMS OF WAVE GENERATION AND MODIFICATIONS

0f all the factors having dynamical influence on waves, the primary
cone is, of course, the wind, which is responsible for generation, growth,
and even under special condition, decaying of the waves. However, the
wind is by no means the only mechanism that hés dynamical consequence.,
Once the energy is fed into the ocean, other processes become dominant
such as turbulence resonance and shear flow instability. These processes
cannot create energy, but they certainly transfer energy from one form
to another. Their results may be shown by a gimple change of form of
waves, and ultimately change the probability structure. BSome of these
mechanisms are discussed below.

(a) Wave-Wdve Interaction (non-resonant)

This involves the interaction of waves with their own higher

harmonics; or in other words, the higher order solutions of the classic
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62 . 63 .
wave equation such as Lamb Plerson41 and De . The higher order
contributions temnd to modify the geometry of the wave structures.

(b) Wave-Wave Tnteraction (non-linear resonant)

While the bounded interaction discussed above only results
in the change of waveform, the non-linear resonant interaction
changes the wave pattern. It transfers emergy from an existing
frequency to previously non~-existing ones. The mechanism was

discovered by Phillips37 for gravity waves, and then simplified

64,65 67

and augmented by Phillips , Longuet-Higginsﬁa, Benny ,

68,69

70 o
Hasselmann and Bretherton ~. A similar resonance phenomenon

in capillary waves was discovered by McGoldrick7l. The mathematical

principle of this resonance is simple. Assume systems of interacting

waves expressed as

g = a e ;3 ¥ =k *+x-nt
T r ~“r *
v=%1
+m grz ixr
= 2, be e = +¢ 0zt
y=%1

where ¢l is the product of the interaction, ¢ is free surface eleva-
tion, and ¢ is the velocity potential. Using these expressions in
the first and second order equation, we can only get similarly
bounded resonance as in part (a). However, when the third ovder

equation is used; i.e. -

2 2 2 .2
3% 86 3 5% 3e. 1 .2 9% 3% 34
N Lot
NE T 52 5.2 w2 252 3z
3 2 32 2 1 2
—ap U - bggpy —ec V(Gu)atz=0

the interaction of three primary waves of r = 1,2,3 will produce
a fourth wave of wave number and frequency K4 and N4 respectively

provide the resonance condition
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Quantitative measurements of resonance interacting waves were
conducted by McGoldrick et a172 and Longuet-Higgins and Smith73.
Their results confirmed Phillips' -theory.

In the case of a random ocean where there are infinitely many
chances to form the resonant quartets, the interaction mechanism
will produce wave components of all wave numbers of small energy
density, including, of course, those traveling against the wind.

(c) Scattering of Gravity Waves by Turbulence

Scattering of waves by turbulence has been studied by many
authors. Some of the previous works were summarized by Batchelor74.
The true application to oceanic enviromment was advanced by Phillips75.
Physically, it should be fully expected that the presence of
random velocity fluctuations in the water of a velocity scale
comparable with particle velocity associated with wave motion and a
length scale comparable with the wavelength of existing waves will
result in the convective distortion of the wavefronts, and so the
establishment of a scattered wave field. In the ocean, it is well
known that because of wind-induced currents, waves, and wave
breakings, turbulence is always present in the surface layer. But
the lack of information on the turbulence on the ocean surface
layer seriously hampered detailed analysis of the interaction
between turbulence and waves. As a result, Phillips was forced to

consider only the weakly turbulent case when

Ut << e(k) {32)

where Ut is the r.m.s. turbulent velocity and c(k) is the phase of the wave
of wave number k. Under this restriction, Phillips found that the

spectrum of the scattered waves s(k*6). will be
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s+ 8) T enl? v (33)
where E is the scattered wave number, k is the incident wave number, w(ED
is the wave number spectrum of turbulence and.ii is the wave number of i
turbulence, i

Furthermore, the scattering is most effective for a given 9 when
the scattered wave will have the magnitude of wave number equal to
the incident wave.

Unfortunately, due to the difficulty of measurement, no
well-documented evidence of any sort could be found either to
support or to dispute this result. However, since the physical
model used in this analysis is resonable, the analysis is rigorous
and there is no reason why the result should fail or change
drastically from that predicted even in a strongly turbulent case.
Here again a mechanism is present which will produce wgak waves
traveling against the predominant direction of wind force,
(d) Others

Aside from the mechanisms discussed, other processes such as
generation of parasite capillary waves (Longuet—Higgins76), short
waves on current or riding on long waves (Longuet-Higgins and Stewart77),
attenuation of waves by breaking (Phillips78), second—order resonant,
interaction between capillary waves (McGoldrick7l) all contribute
to the change of waveform. But since their influence on the
directional distribution of energy, or on anisotropic properties
of the surface, is much smaller than the others, a detailed summary

is omitted.

5.9 PROBABILITY STRUCTURE OF THE OCEAN SURFACE ~

The ocean surface can be regarded as the sum of a large number of
independent wave components of different wave numbers, phases and
amplitudes. TIf the area under comnsideration is small compared to the
generating storm area, its statistical properties could be taken as
stationary. Furthermore, by the central limit theorem, the probability

distribution of the surface displacement should be Gaussian. Then
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p(8) = ———F5—75 exp {-(1/2)77/C7 1. (34)
(chz)llz

Field chservations invariably indicate that te a first-order
approximation, the probability distribution is indeed Gaussian as
reported by Longuet-Higgins79’80. However, because of the favored
direction of the wind force, and linear and non-linear wave-wave inter—
action, skewness is always introduced., Therefore, there are some higher
order modifications of the surface. For example, the third-order
correction to the Stokes irrotational wave indicates pointedness of the
crests. Careful field observation by KinsmanBU indeed substantiated this
prediction, Longuet—HigginsBl calculated the correction of the distribu-
tion from a Gaussian expression and found that the surface elevation
could be better aprroximated by the successive terms of a Gram~Charlier
series as

p(2) = ——— exp ((1/2) 2H1 + (1/6) TH, + . . .} (35)

(2 C2)1/2 3

whege
2

,2__
t” = %/Z” and By = 2 - 3¢,
On the other hand, the non-linear interaction and the favored direction
of wind force also changes the surface slope. Although the non-linear
effect studied by Phillips37 and Longuet—Higgins81 showed that the

—2)3/2

change in skewness mg = Es/(c was of the same order as the fourth

power of surface slope, the wind effect has never been accurately caleculated.
Detailed field measurements reported by Cox and Munkl3’48 showed the
skewness much higher than could be accounted for by non-linear effects
alone.

Considering the random wave field as a whole, the cumulative effects
of the wind are manifested clearly in the directional energy distribution.
Inspection of the two-dimensional energy contours indicates that the

direction of wave energy distribution is skewed toward the wind direc-

tion, Even at high wave numbers where there is a considerable amount of
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scattering and smoothing, the skewness is still obvious.

5.10 METHODS OF MEASURING DIRECTIONAL SPECTRA AND SOME RESULTS

Since oceanographers first adopted a statistical approach to ocean
wave study, the effort to actually describe a given random ocean by a
complete spectrum has continmued. TUnfortunately, the task has never been
carriad out with total success. The difficulty is twofold. Firstly, the
difficulty arises from the basic statistical and mathematical tools,
borrowed in whole or in part from other fields. Ideally, by the oceano-
grapher's definition, a complete wave spectrum of a given sea state will
describe not only the total energy and the directional distribution of
energy but, more precisely, the sense of the directional distribution,
Secondly, by rigorous spectral analysis, under the assumption of
homogeneity, the sense of the directional distribution of energy cannot
be determined uniquely. This can be explained as follows. Take the
surface elevation at position j, and time t as g(x * t), then at position
X+ r, and time t + 1, we have (x + r, t + ). Their correlation function

R(x,t; r,T) is

R(x, t5 7,T) = C(X,t) c(x + 1, t + T) (36}

Under the homogeneity assumption, the correlation function R(x,t} E,%)
should be independent of the origin of the coordinate system, therefore
R(g,t; E,T) reduces to R(E,T). By a simple translation of coordinates

in space and time,
R(r,7) = R(-x, ™) = R(g,~7) = R(~,~T) (3N

i.e. R(x,7) is an even function with respect to both r and T.

Now' since the spectrum function ¢(k,n) is defined as

V) = I [R(zn) HEEDD gy g (38)

It

5~23



note that Y(k,n) has to be an even function with respect to k and n.

In other words, there is no difference between
¥(k,n) and $(-k,-n) or ¥(-k,n).

Therefore, strictly speaking, we can get only directional information which
does not include the sense of the direction from traditional spectral
analysis., Of course, it must be understocd that the ambiguity occurs only
when the homogeneity assumption is used, but whether this assumption really
holds is not known exactly. However, without this assumption, or if the
condition of homogeneity does not exist, then the data collected would be
representative of that particular place and time., At any rate, the infor-
mation comntained in this conventional spectral analysis is not complete. -
In order to resolve this dilemma of the 7 ambiguity under the homogeneity
assumption, additional physical information has to be added independently
to the spectral analysis to specify the exact direction and sense which is
essential to the oceanographer's definition of a complete directional
gspectrum., In simple cases such as in the study of swell or of waves with
well-defined crest lines, this additional physical information is easy to
obtain. However, in complicated random wave fields, where individual
waves are difficult to follow, the true direction of the wave propagation
can be known only if a complete time history of the whole wave field is
known. ©None of the measurement techniques developed to date will provide
the required information.

In spite of this difficult problem, some observations have been made,
limited, of course, by practicality and loaded with assumptions and
approximations, The following is & summary of the methods used and results
obtained,

(a) Stereo Photography

A photographic record of the instantaneous state of the sea
will undoubtedly contain the necessary information needed for deter-
mining the directional spectrum. This idea was first used by Barber82
to obtain a qualitative estimation of the directional spectrum,

Later the New York University group embarked on an extensive stereo

5-24



wave observation projects7 and produced a series of complete
evaluations of directional spectra (reported by Cote et al83 and
U'beroigé). Despite the considerable trouble taken, the results
obtained were not the real directional spectrum, but instead

[¢(v,8) + ¢(0,0 + m)], because of the built-in ambiguity of 7 in
the spectrum analysis. This forced the investigators to assume that
the energy distribution was confined between (n/2,-1/2), This
assumption easily solved the directional ambiguity, and-could be
accepted as a first approximation for the energy containing range.
Unfortunately, in the light of the wave modification mechanisms
previously discussed, a fraction of waves with smalli albeit non-zero
amounts of energy at high wave number can propégate against the mean
wind., In addition, there eveﬂ exists the possibility of residual
low wave number swells coming from other possible directioms
including the one against the wind. Though their omission might

not be crucial in energy considerations, the high wave number part
is important in determining the slope and curvature spectrum of the
sea; therefore, the result obtained by limiting the energy contained
between (w/2,-1/2) is of questionable quality.

(b) Directional Array of Probes

The idea of using a linear array of probes for directional wave

measurement was suggested by Barber85’86

s but the only example of
measurement was for a single band of frequencies. The same idea was
later picked up by Konyayev and Dreyer87 and Dreyer and Konyayevgs,
but the results so far are still qualitative,

A slight alteration of this linear array of probes was to arrange
the probes at the vertex of a triangle. This was tried by Munk et a189
in observing long swells, and by Tsyplukhin90 in observiné near shore
shallow water waves. In both cases, the waves were relatively simple
with the fixed direction of propagation; therefore, the results were
not representative of a truly random wave.

Krylov et al91 uged the same setup of Tsyplukhin in relatively
deep water to obtain information on the angular emergy spectrum which

is defined as

5-25



$(0) = j w(o;e) do _(39)
[0}

where ¢{c,08) is the two-dimensional spectrum, They found that the

best fit directional angular spectrum is a cosine power law such as

$(8) o c052 {8 -~ a)

(40)
where o is the principal direction of the spectrum., Later, Drylov
et al92 proposed an empirical formula for the directional spectrum;
—2
$(0,8) = 2 {0532 (cog 0y LB o (- 0:B)3 (41)
’ w6 o PTG

where T is the average pgriod. Comparison with observation is
favorable, but compared to Phiilips' equilibrium range theory19 the
dependence of l/To coupled with the inconsistency of dimensionality
in. the expression itself would undoubtedly limit its usefulness.

The idea of using the probe array method is theoretically sound
but impractical unless stable working platforms and large numbers
of densely deployed probes become easily accessible in deep water;
this severely limits its usefulness.

(e} Buoy Techniques

This idea was also first suggested by Barbersz, but subsequently
developed by Longuet—Higgin52 and put in practice by am NIO group. The
instrumentation, measuring process and results were reported by
Longuet—HigginsBO, Longuet-Higgins et a193, Cartwright and S;nith94
and Erwinggs. The principle involved using the freely floating buoy
to measure 7, 37/9x and 3¢/dy by gyroscopes, then relate these quantities
to the first five Fourier components of the spectrum function, In
this conversion, different combinations of cecefficients will preduce
slightly different results, with the same effect as using different
weighting functions in averaging, but comparisons with the data

suggested that cosine power laws gave the best fit, The results so

obtained are the most detailed and complete to date. Some of them are
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rendered in contour diagrams In Figs. 5.2, 5.3, and 5:4.

Several points should be brought up here. Fixst, an interesting
comparison with theoretical prediction om resomance angle could be
made here. Consider the integral
-0 6=0

1 .2 72 "
5= sin” —~= ¥(0,0) do (42)

with 81,92 = arbitrary fixed angles. We can find a set of 61,62 for

each given V¥(0,8) to minimize I, It camn be shown that
8 = 1/2(91 + 92)
is approximately ﬁhe main direction of the spectrum, while

= -8
b= 1/2(8) - 8,)
is approximately the r.m.s. angular width of the energy distribution.
Comparison of ¥ with Phillips' resonance angle shows the experimental
points are low but not inconsistent with the theoretical result.
Secondly, there is no clear bimodal distribution of energy, instead

the best approximation is a cosine power law as
2s
$(0,8) = (cos 1/28) . (43)

where s varies with frequency. 7This power law dependency was
reported both by Longuet-Higgins et a193 and by Krylov et algl’92
through different methods of measurements, From the form of Longuet-
Higgins' expression, it can seem that as s decreases so does the
dependence of ¢ on 8. For a special case of s = 0, the distribution

of energy will be isotrople. At high frequencies the value of s is
indeed very small, Therefore, the angular range of energy distribution
could be expected to be fairly wide. A word of caution should be added.

Although both Longuet-Higgins and Krylov suggested the cosine power
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law, and both their power indices decrease with increasing frequency,
there is a cruicial difference. In Krylov's expression, energy distribu-
tion is confirmed in a half plane bounded by Q%—,—%), as implied by the
dependence of cos (B-a); while in the Longuet-Higgins expression the
dependency is on cos %1 thus energy could be coming from the other side
of the half plane at high frequencies. Considering the modification
mechanism the Longuet-Higgins form seems more realistic.

Thirdly, the energy spectra contour diagram shows that skewness toward
the wind directions is apparent, but that energy of small intemsity is propa-
gating against the wind. This upwind propagation of energy could easily be
accounted for by one or more of the meéhanisms discussed earlier. The
skewness could be attributed to the direction from which the wind is blowing
and also to the attenuation effect under adverse winds.

Fourthly, the integrated spectrum over all angular contributions shows
the existence of an eqﬁilibrium range.

(d) . Measurements of Orbital Velocity of Waves and Pressure
and Their Use in Determining the Directional Spectrum

This idea was first suggested by Nagat396 and later developed by
Bowden and White97 and Simpson98 for measurements in England. The method
of deriving the directional spectral information from velocity and
pressure measurements is very similar to the buoy technique. Assuming

there is a potential function ¢ for the wave motion,

us~-——,v=--—-— and p ==

= . 93¢ - _ 99 1 3¢
2y e 3r (44)

then applying Fourier analysis to the record data of u, v, and p, the first

five Fourler components of the directional spectrum can be obtained.

e. Other Methods

Other methods, such as use of sun glitter as reported by Stilwell99

have not been fully evaluated. The 180° ambiguity is inherent.
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APPENDIX A

This Appendix contains a number of waveforms which resulted from the
computer simulation study of the altimeter. Fach series of figures is

preceeded by a short description of the simulation parameters.



Figures A-1 through A-4 illustrate typical simulated results of
squaré-law (Ez) and linear (E) detector waveforms for a 50 ns rectangular
pulse. These data correspond to the backscattered signal for the limiting
case of a fast rise-time transmitter pulse, wide-band receiver, and

infinite signal-to-noise ratio.
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Figures A-5 through A-9 illustrate typical simulated results of
square-law (Ez) and linear (E) detector waveforms for a 50 ns pulse of
Gaussian shape and for noise-free reception. These data are representative

of the waveforms for a matched-filter receiver.
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Figures A-9 and A-10 are comparable to the data shown in Figure 2~3 of the
text, except that new random numbers were used for both signal and

noise in Figure A-10.
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This section contains several double-delay differencing results. Figures A-ll
and A-12 show the effect of receiver noise bandwidth and comparison of

Figures A-11 and A-13 demonstrates the effect of new random numbers (for

both signal and noise) on the waveforms involved in double-delay
differencing. Additional double-delay differencer output waveforms are

shown in Figures A-14 through A-16., Figures A-17 and A-18 show the
double-delay differencer output for a Gaussian -shaped pulse, when the

input is a 50 case average for SNR=» and 30 db, respectively.
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Figures A-19 through A-26 show the results obtained by averaging 50

individual waveforms, for wvarious signal and noise conditions.
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APPENDIX B
THEORETICAL ALTITUDE MEASUREMENT AMALYSIS

This appendix contains the results of a theoretical analysis of
altitude errors for a double-delay processor type of altimeter. The

transient region of the sea-return signal is modeled by the technique

showvn in Fig. B-1.

White noise _XL‘:_L-’. Gating H IF Filter Y_ﬂ.l

Function

Fig. B-1l. Signal generation model.

This signal is then combined with thermal noise, fed into a square
law detector, and finally processed by a double-delay differencer and
zero—crossing extractor. Exponential type autocorrelations were used in the
analysis because of the difficulty in obtaining closed-form expressions
with other functions such as the Gaussian. The purpose of the signal model
(Fig. B-1) is to account for pre-detection filtering characteristics in
the return signal., These details will be given first.

Referring to Fig. B-1l, the input autocorrelation function for the

noise is assumed to be

R (tgaty) = 8 &(E—t,) 0<t,t, 2T, (3-1)
The output of the gating function is nonstationary noise with the
properties

8, 8(ty - t,) Uty U(ty) 02 tpoty £ (B-2)
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where U(*) is the unit step function. For an IF filter impulse response

e ot U(t), the output correlation Ryy(tl’tZ) is given by

o
R (t1sty) = S J §(ty=1-t,) U(t;=1) U(t,) e YU yu(r) dr (B-3)
(tl variable)
-o(t,—-t,)
_ 1727 u(t,-t,)
= SOU(tz) e 172
—a(tl tz)
Ryx(tl,tz) =S e U(tl—tz) u(t,) , (B-4)
te —-g{t. -t +T1)
R _(t,,t,) =8 e 172 U(t,-t,+1t) U(t —T)e—aT U(t) dt
yy 17727~ Yo 1“2 2 R

—Co

(t2 variable)

and

—a(t—t) b )
5 e 172 J e 20T U(ty—ty+t) U(t,~1) U(r) dr (B-5)

Rog(Ety)

where

[}

1l for v > t,~t

U(tl—t2+T) > U(.) 2t

U(tz—r) - U(.) 1 for t < ty

1

u(z) > U{) 1 for « > 0

The Integration of (B-5) gives,

t
a(tl—tz) 2
-20T
Ryy(tl’tZ) - So -20 o
e—atl eatz _e-atz
= So o 2 : tl g t2



and

~a(t;-t,) )
- e -201
Ryy(tl’tz) = SO oy e
ty ty
~aty atl —utl
-g & e -a . £ >t
o o 2 > 2 1-

Further Algebraic substitution yields the result,

-t

- l g . —

Ryy(tl’tZ) = Soe sinh atz, t2 < tl (B-6)

-0t

= Soe sinh atl; tl < t2 .

/TN | souARE Law

() '\{/ 1 DETECTOR [ z(t)
n(t)

Fig. B-~2. Detector model.

Assuming that the signal is a (non~-stationary) narrow-band Gaussian
process to which the thermal noise

_x BlTl _
R () =Ne (B-7)

is added, the output of the square-law detector z(t) (see Fig. B-2) is

derived as follows:
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2(t) = [y(t) + n(t)]>
Rzzctl,tz) = E{z(tl) z(tz)}

2
= Elly(ty) + n(e DT [y(t,) + nle)1)

= By’ (t)) yo(ty) + Zy%Ez;;,nffzg;(tz) + y* e pal(ey)
+ 2n(M(t2) + lm(tl) n(tz)y(tl) y(t2)+2an
+ n2(tl) y2(t2) + ZHZ(EEZ/péfESJ;;tZQ + nz(tl) nz(tz)}

= Bly?(t)} B{ y(e,)) + 287 {y(t) y(t,))

+ E{yZ(tl)} E {nz(tz)} + 2%i/£;;zzfzzz;2)}

+ 4E {n(tl) n(tz)} E {y(tl) y(tz)}

+ E{nz(tl)} E {yz(té) + ZEfEELLiT’;?:;)}

4 E{nz(tl)} E {nz(tz)}+ 2E2{n(tl) n(tz)}

Note :/:;ldicates uncorrelated term.

_ 2
Rzz(tl,tz) = Ryy(tl’tl) Ryy(tz,tz) + 2Ryy (tl,tz)
+ NoRyy(tl,tl) + 4Rhn(tl,t2) Ryy (tl,tz) (3-8)

2 2
+ NoRyy(tZ’tz) + N+ 2 Rnn (tl,tz)
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. Collecting the previous results, the mean square output of Square Law

Detector is

— 2 2 6S N
22 = 3§ {i e at sinh a%] + z 2 e_mt sinh ¢t + 3N02 . (B-9)

The signal-to-noise ratio (SNR) at detector output is,

S 2
(EE) [;-e_at sinh at]
SNR = Mo/ LG . (B-10)

S
2(—2) [é-e ~at sinh aé] + 1
No o

Some of the above results have been given for purposes of documentation.

The autocorrelation at the output of the double-delay differencer is readily
derived, however, the zero-crossing solution has not been obtained.
Approximate results will now be discussed.

Referring to the idealized waveforms shown in Fig. B-3, the variance

at the instant of zero-crossing can be estimated as follows:

-a1 T fqa ,
\ ot

/\ 2
tl \\

I

3d

Figure B—~3. Differencer characteristic,

Only two stages of the differencing operation are necessary for the discussion.

The variance at the point zero crossing t2 is for tz > tl,



E {[2(t,) - 2z(tl)12} - EHz(t,) - 22(¢,))

1

E (z(t,)} - E{z(ty)} - 2E{z(t)) z(t,)}

+4 [Blz"(e)} - B2t} + 2B{z(t)} E {a(t,)}

Rzz(tZ’tZ) - 2Rzz(tl’t2) + 4 Rzz(tl’tl)

{(B-11)
-l - el e + 2 (6w (£)
z' 2 z 1 z 1 z 2
where M, is the mean value, i.e.,
So -ot
uz(t) = 5 ° sinh at + ND . (B-12)
Substituting from (6), (8) and (9) with
= I = 3T
A ERL B
and for the matched conditions,
T=2X
o
the variance at the zero crossing normalized to a unit mean value is
6.2 z 2.7s %+ 383N +3L.6n %, (B~13)
Zc o oo o

This amplitude variance can be scaled to a time variance as

-1



-1
where the mean slope i%%j is from Fig. B-3 approximately %Jvolt

(T = pulse length, in n.s.). Using an altitude uncertainty of

the final altitude error estimate is

¥
o = 23T \/0.68 + 9.5(sNR) Y + 7.9 (sNR) 2 (B-14)
a Y o

where n is the number of samples.
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Appendix C

This appendi£ presents the results of a brief survey of prior work in
estimation theory from the standpoint of the altimeter problem. The objective
of the survey is to compare optinmm# altitude extraction schemes
with the ad hoc threshold, split-gate, and delay differencing techniques.
Since the altimeter signal constitutes return from the sea-surface with
simultaneous range and doppler spreading, the target scattering functien
o (1,f) approach is adopted. The received signal characteristics are
considered prior to discussing optimal processing techniques.

The basis for assuming that the scattered signal fluctuations will
be Rayleigh distributed (at the output of a linear detector) was discussed.
in Section III of this report. Therthysical modeling of the scattering
process relative to a first-crder convolutional model of the altimeter
signal can be established as follows: The signal s(t) reflected from a
small region of the sea-surface, with a two-way time delay T will

be a sample function of the clutter process, i.e.,
=1 — l
sn(t) a st Tn) (1)

wherecjn, is proportional to the scattering magnitude and inversly
proportional to range squared, within the region illuminated. The total

received signal during a time interval T is obtained by summing terms

i.e.,

ﬁ T T
s, (t) =n£1c;n s(t-t) -5 2T, <35 - (2)

Since o
s(t) *# 6(t - 1) = J s(t), 6(t~tl—r) dt1=s(t—f)
this result can be expressed as the convolution (*) of s(t) with an impulse

train G(t—rn),

"optimum" in the sense that some index of performance is minimized

{or maximized).



Therefore

N
s (£) = Ja s() * g(t-1) , (3!
n=1
which can formally be written as
N
s, (£) = s(&) * Elan s(e-t ) . (4)

This last form places in.evidence the impulse response nature of the sea
return. The impulse response -will be non-stationary if the range {or time)
dependence of the(In‘s is taken into account. The stationary assumption
should certainly be wvalid for the altimeter problem. Egquation 4 shows

that the impulse response of the sea surface can be conceptualized as
arising from a collection of discrete reflectors of sizes On and delay L
This is essentially the concept used in the simulation. Use of terms such

as impulse response of spread function to describe sea scattering are not

precise, since these idealizations can be described in the mean only. Also,
the impulse response cannot be rigorously defined in terms of scatter
obtained by illuminating an infinitesimal area containing a normal incidence
diffraction element. Equation 4 is therefore considered to comsist of a
convolution of a signal with a pseudo-impulse response.
For the altimeter problem, the clutter impulse response from (4) is
N
ho(8) =) o 8(t-c ). (5)
n=1
Ocean surface correlation has been neglected thus far in the discussion.
Arguments given in Section IV indicate that the sea return correlation time
at the altimeter can be less than one nanosecond. Therefore, for the
present purposes the delta function concept will be valid for time-increments
of one nanosecond or greater, or signal bandwidths less than about 1000 MHz,
for normal-incidence altimeter geometry. On the above basis, samples of the

sea-surface impulse response can be generated by selecting random numbers.
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Assuming that the clutter is "frozen" during the period of the r-~f pulse

(rectangular of length T,) the scattered signal would be of the form

h (¢ - T) * [U(t) - Ut - T)]

where U(t) is a step function.

The pulse response for a particular sample function of hc thus consists
of a transient period (the integral of the impulse response) followed by a
steady state period dim which the output is a moving average over the time
interval T. The sample functions given in Fig. 2-1 are examples of
detected sea-return for rectangular pulse illumination.

This model of sea-return also leads to the Rayleigh description of

radar return. The scattered signal will be a sum of phasors.

This expression, which consists of a random collection of phasors, leads
to the well known Rayleigh probability distribution. Since the step
response is the integral of the impulse response, the Rayleigh model

can be shown to lead to a time-varying Gaussian envelope distribution of
the form

2
P(v) \/——— {Zyt} £t <T

where vyt is the process variance. P(v) will be a Wiener Levy proce552

in which the variasnce increases linearly with time. TFor the above

model the spectrum (the Fourier transform of hc(t)) will be nearly

constant up to some frequency on the order of the reciprocal of the correlation
time (<1 ns). The bandwidth requirements for a signal which accurately

probes the sea-return impulse response can thus be estimated. Visualizing

the above described spectrum as one corresponding to a linear system, it

is obvious that the exploring signal must contain frequency components
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that extend throughout the transform of hc(t). Therefore a signal that
is designed to make complete measurements of the impulse response
sample functions must contain frequency components in the gigahertz
range. The measurement of this quantity is of concern in the radar
altimeter design. As discussed in Section II, one of the problems in
design of a system which attempts to estimate the mean value of a fluctuating
signal, is the problem of obtaining an adequate number of independent
samples. For a transmitted pulse length in the order of 50 nanoseconds,
errors arising from self noise appear to be comparable to thermal noise errors,
Therefore design of a precision altimeter may greatly benefit from
improved knowledge of the characteristics of the received signal. Conventional .
(non-adaptive) matched filter IF bandwidth criteria may not be appropriate
since, for unequal errors in the two sources, an optimum bandwidth would be
expected to exist.

With these qualitative remarks on signal processing considerations,
the subjects of detection and parameter estimation will be considered. The
parameter estimation problem is simplified by considering signals
existing in the IF, since the statistics are time-varying Gaussian at
this point. Otherwise, non-Gaussian statistics must be comnsidered.

Neglecting, for the time being, the non-deterministic nature of the
scattered signal, the optimum processor for measuring range (time of arrival)
in the presence of additive Gaussian noise will be considered. For a
partially coherent system the processor shown in Fig. C~1 is optimum. This
processor consists of quadrature detectors, matched filters, and a bank
of correlators 3"4.

The limitation of the above theory is that it does not take into account
the random nature of the received signal. The fluctuating altimeter .J
signal is strongly akin to multipath signals encountered in radar
astronomy and scatter communications. The solution to this problem, due to
Kailath5, is diagrammed in Fig. €-2. The estimation filter H shown in

Fig, C-2 is derived from the equation
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H= (1+Anﬁsy)

where !‘s.n is the noise covariance and Asy is the covariance of the channel
output y{t).

The scattering function o {t) approach developed by Price and
Green6 and discussed by Evans and Hagfors7 will be reviewed next. This
approach is based on the likelihood ratioc of the form

T
-8

o

’ ” Wo(t) Wo(t') ¢g (t,t') dt dt'

-T
-8
2

Where T0 is the observation time,
WO is a sample observation of the received signal, and
¢g is the echo correlation function.

This last quantity is related to the scattering function through the
relationship

¢g(t,t') = %—Re [exp [jwo(t - t1)] I (e - ) X¥(t'- 1D Ly(t - &', 1) dT]

in which X(*) ie¢ the complex transmitted envelope and LY is given by

co

Ly(At,T) = jJ(TCW,T) eJWAt dw .

-—C0

The solution to this set of equations provides what is termed the
"practically optimum' processor7. The optimum range estimation technique,
for a target spread in both delay and Doppler, consists of a bank of
pProcessors spaced in range and the receiver chooses the processor exhibiting
the largest output. This filter shown in Fig. C-3 is termed a weighted
radiometer, in contrast to a matched filter envelope detector. The first
filter shown in this figure is one matched to the transmission replica

e(t). This is followed by a squarer (envelope detector) and a filter matched

to the mean target delay characteristics. The impulse response of the latter

is



h(t) = Hz('cn—t)

where Hz(t) is the square of the filter matched to the scattering function
c (mo,t). Thus for fluctuatilons small relative to the spectrum of s(t),
the impulse response is essentilally o(t)., This form of processor is shown
in Ref. 7 to be optimum if 1) a Gaussian pulse is used, 2) o (7,w) is

factorable in vand w, and 3) if the observations extend over all time.

Filter Matched Envelope

w (1) gating : 2 )l
received signal | function| to transmitted Squarer [MH (Tm t)
waveform
Fig. C-3.

The implementation of such a processor in the altimeter does not
appear promising. The only novel feature is the video filter matched to the
target time-profile, Based on our previous discussion, the filter would

have an impulse response of the type shown in Fig. 4-C.

h(t)

t=0

Fig, C-4.

In practice, realizability would require some time delay. However, its
general form appears to be an "integrate and dump” circuit, which is

similar to the split-gate concept studied on the altimeter program.



Thig discussion indicates that the synthesis of the above type of
optimum processors will not yield substantial improvements over the present
ad hoc techniques. The areas of waveform synthesis and adaptive filtering

should be investigated,
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APPENDIX D

Analysis of Ocean Surface Effects on the Received Waveform

In order to account for the rough sea surface, it is necessary to
compute the density of stationary points per unit area as a function
of height above the mean sea surface. Ricel has examined the distribu-
tion of local maxima and minima for a bandlimited signal, which corres-~
ponds to a one—-dimensional sea. Longuet—Higgins2 examined the density
of spécular points with height above the sea surface, Making use of
the latter work and the fact that the demnsity of statiomnary points
(specular points for normal incidence illumination) is four times the
density of the maximum points, the distribution -of statiomary points per
unit area may be establiched ze a function of height above mean sea level
(msl).

Formally, the required probability is given by

_ 4dz -1/2 -1 2
dp = z;;;§7§-|M| I_m I_w Z gy exP{fﬂﬁr {Mllz + M, ozt zyy‘Ml5
+ 2z z M + zz M 2 M ]} dz d=z
®X 45 ple’d 44 55 XX ¥Y

where dp is the probability that a maximum exists between z and z + dz.
z is the height of the surface above msl (a function of x and y), the

position coordinates on the mean surface, and

z =—a--2u-?-
XX ax2
z =-§-——-——
vy 322

and Mij are elements of the correlation matrix for the random wvariables

dz 9z 32z 32z . R .
Zs Ix° 5;3 §§23 Feval 1M] is the determinant of the correlation matrix.

The elements of the correlation matrix can be related to derivatives
of the correlation function of the surface (and hence to the energy

spectrum). TFor example:

Mll = (0) the mean squared height of surface,

2
~ay
M4 72

— - 2 ‘
= —JJ K, S,k ) di dk

D-1



15 > f[ k S(k k ) dk dk

M

il

4
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4
M. = = S k k dk dk.‘
55  3y* X=y= II y ( )
This approach cannct be ﬁursued because the moments involving kz and
&
k" are not known to sufficient accuracy. For presently available oceano-

graphic spectra, the last three integrals are infinite,
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