
GEODETIC SATELLITE ALTIMETER STUDY 

FINAL ENGINEERING REPORT 

0 0 

( 

00 

00 

A Study of the Capabilities of the Geodetic 

Satellite Altimeter to Measure 

Ocean-Surface Characteristics 

iZ 
00 

10 

April 1970 

Prepared Under 

NASA CONTRACT NO. NASW 1909 

For 

Thd Geodetic Satellite Program Off 
Office of Space Science and Apple 

Washington, D. C. 
ni-c­

>C0 

-RESEARCH tR IANGLE 

EGO 

PARK, NORTH 

I 

CAROLINA 27709 



VAGS BLANKPR'ECED14G 

FOREWORD
 

This report was prepared for the National Aeronautics and Space
 

Administration by the Research Triangle Institute under contract NASW-1909.
 

J. D. Rosenberg, Director of the Geodetic Satellite Program, acted as NASA
 

coordinator. J. T. McGoogan and H. R. Stanley, of NASA Wallops Station,
 

also contributed to the study.
 

The study was performed in the Engineering and Environmental Sciences
 

Division of the Institute. L. S. Miller served as project director with
 

assistance from Messrs. E. 1W.Page and W. H. Ruedger. Professors W. A. Flood
 

and N. H. Huang of the North Carolina State University at Raleigh served as
 

consultants and contributed to this report.
 

ii
 



ABSTRACT
 

This report presents the results of an eight-month study of signal
 

processing techniques applicable to the Geodetic Satellite Altimeter program.
 

The first subject treated is the analysis of random errors in the altitude
 

measurement process which arise from signal fluctuations and receiver noise.
 

Results are presented based on both theoretical analyses and computer simulation
 

of the altimeter concept. Characteristics of the electromagnetic energy scattered
 

from the ocean-surface are then discussed from the standpoint of identifying
 

statistical properties of the altimeter signal and for identifying measurement
 

biases that may arise in the scattering process. The report concludes with
 

a discussion of the presently known oceanographic factors pertaining to the
 

scattering problem.
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SECTION 1 

INTRODUCTION AND SUMMARY OF RESULTS
 

1.1 INTRODUCTION 

This report presents the results of a study of radar signal processing
 

methods for a geodetic satellite altimeter. The two altimeter precision
 

requirements considered are: 1) maximum radar system errors of one to two
 

meters as required for the GEOS-C program and 2) errors limited to a fraction
 

of a meter as required for Sea-Sat A program. Although the emphasis of this work
 

is on signal processing, it has been necessary to devote a considerable portion
 

of the study effort to. oceanographic and electromagnetic scattering considerations.
 

Section 2 deals with the analysis of errors which arise from measurement
 

noise and signal fluctuations in the radar implementation. Since these error
 

sources are unavoidable in the system, signal processing conditions are discussed
 

which reduce these errors'to acceptable values. Results are presented based on
 

a theoretical analysis and on computer simulations of the altimeter -system.
 

Section 3 presents a detailed description of the mathematical techniques
 

used to simulate radar scattering from the sea surface and to model the radar
 

altimeter functions.
 

Section 4 summarizes the electromagnetic scattering work performed during
 

the study. This subject is of central concern for two reasons: 1) the analysis
 

of radar system errors requires accurate characterization of the scattered
 

signal, and 2) the identification and compensation of any measurement bias
 

arising in the scattering process requires a thorough understanding of the
 

underlying physical mechanisms. The two outstanding problems in these categories
 

are the modeling of wave height effects in the transient region of the altimeter
 

signal and the sensitivity of backscattered power to ocean surface conditions.
 

For an idealized ocean surface, e.g. isotropic, Gaussian height distributions,
 

the problem has been solved. Section 3 of this report considers the effect of
 

more realistic assumptions.
 

The mathematical results in the previous section require a number of
 

assumptions regarding the ocean surface features. The work reported'in
 

Section 5 represents a survey of oceanographic literature pertinent to the
 

electromagnetic scattering problem. The principal topics considered in this
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Section are the relationship between mean-square slope of the ocean wave
 

structure and surface wind, and the spectral features of the ocean.
 

1.2 CONCLUSIONS AND RECOMMENDATIONS
 

The system analyses conducted during the course of this study indicate
 

that the random errors due to signal fluctuation and receiver noise will result
 

in an altimeter precision on the order of one-half meter for a system within the
 

following characteristics:
 

Single pulse signal-to-noise ratio 10 to 20 db 

Pulse length 50 to 100 ns 

Sampling rate 1000 per second 

These characteristics are well within the state-of-the-art in radar design.
 

An altimeter can be designed to meet accuracy objectives of the GEOS-C program
 

but particular attention must be given to long-term drift problems.
 

There are a number of unknowns in the design of an altimeter with an
 

accuracy of a fraction of a meter. One of the most important questions aside
 

from "sea state" bias is the pulse-to-pulse correlation of the altimeter signal.
 

This limits the attainable altimeter accuracy per unit time. Radar reflections
 

from the sea have never been accurately measured under satellite conditions and
 

the GEOS-C satellite is probably the best approach to obtaining this information.
 

Although the GEOS-C performance can be realized with a conventional pulsed,
 

split-gate, or threshold signal processor, the Sea-Sat A equipment will require
 

more sophistication. The theoretically computed random error for a 50 ns pulse
 

length and for 1000 samples per second is 20 cm. This error can in theory be
 

further reduced through use of shorter pulses, faster pulse rise-time, or more
 

elaborate transmitter waveforms, even if the pessimistic assumption of a one­

millisecond signal correlation time is found to apply to satellite data. The
 

results given in this report indicate that systematic errors and equipmental
 

biases will constitute the largest instrumentation error in the Sea-Sat A
 

concept. These non-random errors can arise from effects such as: 1) mean-value
 

shifts in the altitude data as a function of signal statistics or signal-to-noise
 

ratio, 2) environmental or temporal drift characteristics of-the satellite
 

equipment, or 3) unrecognized processor non-linearities. Because of the severity
 

of these problems it is recommended that a wide range of radar techniques be
 

investigated for Sea-Sat A. It is further recommended that future radar altimeter
 

research emphasize the Sea-Sat A requirements, since added knowledge of problem
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areas and techniques required for the Sea-Sat A system may lead to a more
 

evolutionary concept for GEOS-C. Until the first satellite altimeter is in
 

operation, many elements of the altimeter function will remain speculative.
 

In regard to electromagnetic scattering, it is found that the radar
 

cross-section a can be related to mean squared slopes of an isotropic sea
 o 

surface. For non-isotropic ocean surface conditions the relationship is more
 

complex. Derivation of the functional relationships through a theoretical
 

electromagnetic approach appears unrealizable at this time because of the
 

extreme difficulty in obtaining accurate high frequency ocean-wave data.
 

Equivalently, the ocean surface autocorrelation function cannot be measured
 

with the required accuracy using existing methods. An empirical approach is
 

therefore recommended for obtaining normal incidence data in which actual radar
 

data is correlated with ground truth information under varying sea surface and
 

meteorological conditions. Because of the normal incidence geometry problems
 

and altitude limitation associated with conventional aircraft measurements,
 

extraction of such data from the GEOS-C experiment is strongly recommended.
 

For the investigation of "sea state" effects on the altimeter signal,
 

acquisition of near-surface (short pulse) radar and laser profilometer data is
 

recommended. Such data would constitute a basis from which to assess the effects
 

of the approximations and assumptions in the electromagnetic models of sea-state
 

bias.
 

The principal conclusion of the oceanographic study is that mathematical
 

arguments require the two-dimensional power spectrum to exhibit 1800 symmetry.
 

At present, there is no single technique which will provide a two-dimensional
 

spectrum of the accuracy and spatial resolution needed for electromagnetic
 

scattering investigations.
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SECTION 2
 

RADAR SYSTEM STUDY
 

2.1 BACKGROUND 

This section presents the results of the study pertaining to radar signal
 

processing. A number of important error sources have been investigated during
 

the course of the program. These include: errors arising from the signal
 

fluctuations inherent in planetary or ocean scattering*, errors resulting from
 

the limited number of samples available per unit time, and errors caused by
 

thermal noise and processor non-linearities. The importance of these errors is
 

assessed relative to the two altimeter precision categories and to techniques
 

for minimizing and/or compensating for these errors.
 

This section is organized as follows: As a means of establishing concepts
 

and nomenclature, a general description of the altimeter techniques under
 

consideration is given. Computed waveforms are shown to clarify the concepts.
 

This discussion is followed by a presentation of the principal results of the
 

radar altimeter study. Error sources and parametric effects are investigated
 

using theoretical results and computer simulations. The section concludes with
 

a consideration of general system characteristics and a review of potential
 

alterations to the radar system. Computational aspects of the simulation and
 

radar characteristics which are heavily influenced by either electromagnetic
 

or oceanographic considerations are considered in later sections.
 

2.2 DESCRIPTION OF THE -PRESENT ALTIMETER CONCEPT
 

A number of organizations have considered the problems of measurement of
 

satellite altitudes to the precision required in the geodetic investigation1-7.
 

The more conventional system characteristics such as transmitted waveform, power
 

level, sensitivity, bandwidth, and antenna gain have been covered in the cited
 

references and will not be discussed here. As presently envisioned, the first
 

generation altimeter will consist of an X-band pulsed radar with provisions
 

for measurement of time-of-arrival of the received signal. The development of
 

* The term "self noise" is commonly used in radar astronomy to describe 
this effect.­
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such a system differs in several important areas from the design of conventional
 

radar systems. Attainment of the desired accuracies will require optimum signal
 

processing and timing techniques, and knowledge of the effects of oceanographic
 

features on the scattered signal.
 

Some of the technical problems that must be considered in developing
 

satellite equipment are: 1) the limited space, power, and weight available,
 

2) the nature of ocean backscattered signal, and 3) satellite dynamics. As
 

discussed more fully in Section 4, return from the ocean surface arises from
 

many discrete regions. The signal is dispersed in both time and frequency. For
 

the assumed satellite conditions, a 50 nanosecond (ns) transmitted pulse will
 

give rise to a received signal with a time spread of 2.6 microseconds for a
 

3 degree antenna beamwidth. The signal will fluctuate in amplitude with
 

characteristics similar to signals received over a rapidly fading channel.
 

These signal characteristics can be seen by an examination of the receiver wave­

forms, shown in Fig. 2.1, which were obtained as a by-product of the simulation
 

study. Figure 2.1 shows ten typical received waveforms corresponding to the trans­

mission of a 50 us rectangular pulse scattered from the ocean's surface and
 

received by a very wideband receiver. Waveforms with the vertical scale labeled
 

E represent the output of a linear envelope detector and those labeled 
E2
 

represent the output of a square-law detector. The horizontal scale shows
 

relative time in nanoseconds, with 25 ns corresponding to the instant at which
 

one-half the pulse envelope arrives on the sea surface. These computed waveforms
 

correspond to independent samples. For a simulated radar inter-pulse period
 

less than the correlation time, the waveforms would show evolutionary changes.
 

Referring to Fig. 2.1, except for the transient region in which the entire
 

pulse is not incident on the surface, the sea return signals are much like
 

samples of receiver noise.
 

Simulated waveforms are shown in Fig. 2.2 corresponding to a Gaussian
 
-I 

shaped pulse that is 50 ns wide at the e points. The horizontal scale shown
 

in this case is based upon the center of the pulse arriving at the ocean surface
 

at 51 ns. The same distribution of reflecting area was assumed in the computa­

tions used in Figs. 2.1 and 2.2; the Gaussian returns therefore appear as
 

smoothed versions of the rectangular data. The Gaussian envelope is considered
 

indicative of matched filter IF characteristics. Note that the Gaussian results
 

demonstrate that filtered waveforms need not be sampled rapidly for good
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reconstruction of the waveform. Also, it is noted that for a system containing an
 

AGC response-time on the order of one second, some of the received waveforms
 

will contain very little average energy over a 200 ns time interval. Case 5 of
 

Fig. 2.2 demonstrates the fact that the instantaneous altitude error can be
 

several times the pulse length for a matched filter IF regardless of the measure­

ment scheme used. Some of the waveforms shown in Fig. 2.1 exhibit a saturation
 

effect. This is not a result of the simulation program; is is simply due to the
 

scale size used in the figure.
 

Figure 2.3 shows the effect of receiver noise on the altimeter waveforms.
 

The same signal characteristics were used as in Fig. 2.2, and a comparison of
 

Figs. 2.2 and 2.3 shows the effects of a 10 db signal-to-noise ratio (SNR) on
 

the waveforms. The fine structure in the noise is due to the finite slope
 

of the noise spectrum with frequency.
 

The double-delay differencing type of altitude processor consists of two-stage
 
.
 

signal differencing with a delayed and inverted replica of the original signal1
 

The sample waveforms involved in the double-delay differencing operation are shown
 

in Fig. 2.4 (the signal waveform previously shown as Case 1, Fig. 2.3 was used).
 

Figure 2.5 shows typical waveforms at the output of the double-delay differencer
 

for ten individual cases (for the noise free Gaussian signal). A comparison of
 

Figs. 2.4 and 2.5 shows that individual cases depart drastically from the results
 

that would be obtained by using an idealized ramp signal. The most significant
 

feature in Figs. 2.4 and 2.5 is that multiple zero-crossings are present.
 

Because of these ambiguities, the double-delay technique would not be suitable
 

in the altimeter without the addition of a threshold circuit or a closed-loop
 

implementation.
 

Additional examples of simulated waveforms are contained in Appendix A.
 

The quantitative results of the radar system study are discussed in the next
 

section.
 

2.3 DISCUSSION OF ERRORS IN THE ALTITUDE MEASUREMENT PROCESS
 

The two principal methods of altitude extraction examined in this report are:
 

1) double-delay differencing and 2) thresholding. The investigation was limited
 

to these techniques, because the General Electric Company had concurrently
4 
investigated the split-gate technique . The results given below apply to both
 

open and closed-loop systems.
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Histograms of the individual altitude errors at the output of a double­

delay differencer were obtained through digital simulation for fifty independent
 

cases. A 50 ns Gaussian shaped pulse was used; the delay interval for the
 

double-delay difference was 50 ns. Figures 2.6 and 2.7 show the histogram data
 

for signal-to-noise levels of c, 30, 20, and 10 db. The standard deviation a
 

and mean crossings p derived from the histogram data are shown in Table I.
 

The altitude error a to be expected for a 1000 sample average also was
s 

obtained from the histogram standard deviation a5 through the equation
 

a =1.62 -a
s 2rn s 

where n is the number of samples, c is the propagation velocity, t is the unit
 

of time of as, and the factor of 1.62 is the conversion of pulse length used in
 

the simulation (e points) to half-power pulse length.
 

Table 2-1
 

Standard Deviation and Mean of Histogram Data
 

Std. Dev. as in Mean 
SNR (as) in ns meters () in ns 

50 cases 1000 cases 

18 .14 94.6
 

30 db 18 .14 96
 

20 db 17.2 .13 89
 

10 db 18.4 .14 68
 

Table I shows the altitude variance to be largely independent of receiver
 

noise. The indicated altitude uncertainty a converts to a (two-way) altitude
 s 

error of approximately 0.14 meters for 1000 samples.
 

A theoretical analysis of the altitude error characteristic is given in
 

Appendix B. This analysis assumes that correlation exists within the detected
 

altimeter signal (i.e. matched filter IF) and that a double-delay differencer
 

type of altitude measurement is used. The altitude error a in meters is found
 

to be
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-1 ±21S V.6 + 9.5 (SNR) + 7.9 (SNR) -2 
a 

where T is the pulse-length in.nanoseconds (at-the-half-power point) and n is
 

the number of independent samples. A comparison of theoretically computed and
 

simulated altimeter errors (arising from signal fluctuations and receiver noise)
 

is shown in Fig. 2.8. The two results are in good agreement.
 

The mean-value figures given in Table I show considerable change with
 

noise level. This fluctuation may be caused by two effects: 1) variation due
 

to the limited sample size present and 2) variations caused by any differences
 

in the spectral characteristics of the signal and receiver noise. To determine
 

which effect was dominant, a series of computer runs were made under varying
 

conditions. Figure 2.9A shows the histogram results obtained for a 20 db SNR
 

and for new sets of random numbers used in the signal and noise simulations.
 

Figure 2.9B shows histogram results for 20 db SNR using a narrower noise bandwidth.
 

These results are summarized in Table II.
 

Table 2-2
 

Effect of Simulation Conditions on the Values Shown in Table I
 

(SNR = 20 db)
 

Std. Dev. 0a in Mean 
Computation (as) in ns meters W in ns 

50 cases 1000 cases 

Original 17.2 .13 89
 

New random numbers 22.8 .18 96
 

Reduced noise bandwidth 17.9 .14 91
 

The mean and variance are both seen to be more dependent on initial conditions
 

than on noise bandwidth. A much larger sample size (1000) is therefore required
 

to provide acceptable accuracy in the histogram data. Computations of such
 

magnitude were outside the scope of this contract and can be performed more
 

efficiently using analog techniques.
 

The fact that the mean crossing point is sensitive to receiver noise 

characteristics may be seen from exaniming the theoretical relationship for the 

probability of a zero-crossing p(T). For Gaussian processes which start at T = 0, 
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p(T) is given by ,
 

p(t) = 2R(o) - R(-)] 

'R(o) 

in which R(T) is the correlation coefficient. For additive (uncorrelated)
 

signal and noise this expression becomes
 

) = 2[1 Rs(O ) + Rn(O ) 

where the subscripts s and n refer to signal and noise. Assuming exponential
 

correlation functions of the form
 

-at -at
 
nand
e 

-at -at
 
forfoan > as , the numerator of the square root term e s + e n decays faster
 

than for a = a and the zero crossing probability occurs earlier in time. 
n s 

Any shift in the mean value of the altitude indication constitutes an
 

important source of error in the altimeter. The above results, although
 

qualitative because of the sample-size limitations, indicate that a bias will
 

exist that is a function of SNR. A similar effect has been noted in the split­

4gate tracker when a dc restore circuit is not used
 

Neglecting wave-height effects, the integration of a large number of radar
 

returns from the sea-surface should produce a "ramp-like" signal since the area
 

exposed during the early portions of the pulse illumination will increase linearly.
 

A presentation that is proportional to signal power (i.e. a square-law detector)
 

will therefore exhibit this linear dependency. These computed waveforms for both
 

linear and square-law detectors are shown in Figs. 2.10-2.12. Figure 2.10 shows
 

the waveform obtained by averaging the 50 rectangular pulse cases (see Fig. 2.1).
 

Confidence bounds may be estimated for these data by noting that for a Rayleigh
 

distribution (linear detector case) the variance is equal to (1 - ties the
 

mean value U, and for an exponential distribution (square-law detector) the
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variance is twice the square of the mean value. Therefore, standatd deviation
 

for the 50 sample waveform is
 

a = 1 i ) P Rayleigh 

o = Exponential. 

These one-sigma bounds are shown as dotted lines in Fig. 2.10. Figures 2.11
 

and 2.12 show the average waveforms for two simulation cases of 50 samples each,
 

using Gaussian shaped pulses.
 

Estimates of the errors to be encounterd in altimeter operation have been
 

made using mean value waveforms as in Fig. 2.12. One may argue that the averaging
 

process can be performed prior to double-delay differencing and certainly the
 

mathematical and conceptual simplifications are appealing. The result of double­

delay differencing of an average of 50 waveforms is shown in Fig. 2.13. The
 

zero crossing for this average waveform occurs at 99 nanoseconds. The results
 

of averaging single pulse errors (Table I) indicate that the mean zero crossing
 

occurred at 94.6 nanoseconds. Significant differences can therefore exist
 

between the two computations, and analyses based upon an equivalence between the
 

two should be treated with caution.
 

2.4 EVALUATION OF THRESHOLD TECHNIQUES
 

Simulation results are shown in Figs. 2.14 and 2.15 for a threshold type of
 

altitude measurement. The threshold levels used in Figs. 2.14 and 2.15 were,
 

respectively, 50 percent and 33 percent of the maximum value of the average
 

signal. These results contain several interesting features. The 33 percent
 

threshold level (Fig. 2.15) results in an altitude standard deviation of 18 ns
 

(50 cases), which is exactly the result obtained using a double-delay differencer
 

(c.f. Fig. 2.6A). The 50 percent threshold was found to produce a larger standard
 

deviation (25 ns) because of occasional values with large time deviation (the
 

tail shown in the histogram). The fact that some of the threshold crossings occur
 

long after the leading edge can be seen by examination of the waveform data in
 

Case 5 of Fig. 2.2. This particular waveform crosses about 140 ns late. The data
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suggest that the 50 percent threshold performance could be improved by either
 

receiver AGC action or by discarding or limiting the very late crossings. This
 

last technique is somewhat akin to the limiting behavior of the time-discriminator
 

used in split-gate systems. Use of AGC would require a sufficiently high prf so
 

that AGC action could be derived on one pulse and applied to the next (correlated) 

pulse. 

The simulation results show that both the 33 percent and 50 percent thresholds 

result in mean-values that are very close to the a priori values (levels selected 

from average waveforms such as Fig. 2.12). In view of the dependence upon SNR
 

of the mean value encountered with the double-delay circuit, the threshold data
 

suggest that a threshold technique may be less susceptible to this type of bias.
 

In the future, threshold simulations will be conducted to determine the effect
 

of SNR upon the mean value of the output.
 

Before leaving the threshold technique, mention should be made of the false­

alarm problem and the open-loop altitude measurements. In order to reduce the
 

false alarm rate, the threshold technique would require a much higher single pulse
 

SNR than would the split-gate technique. Possible solutions to this problem,
 

within the power constraint of a TWT transmitter, are: 1) use of pulse compression
 

or 2) use of surface wave transversal filters9 . Taking into account pulse
 

stretching due to the antenna pattern, the transversal filter method could be
 

implemented by transmitting several pulses spaced three microseconds apart. The
 

threshold circuit is inherently suited to open-loop filtering, whereas the split­

gate and double-delay circuits are basically closed-loop sensors.
 

2.5 EFFECT OF VIDEO NON-LINEARITY
 

In order to test the effect of non-linearity on a double-delay differencing
 

form of altitude measurement, a video transfer function of the type
 

- .01 E2E =E 

out in 25 in
 

was simulated. Such non-linearity was assumed to be unknown (e.g., due to drift)
 

in the altimeter. This function represents a quadratic non-linearity in the
 

processor. Results of this simulation are given in Fig. 2.16. The variance is
 

seen to be unchanged and the point of mean zero crossing shifted 1.4 ns compared
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to the data given in Fig. 2.6A. The assumed non-linearity represents a one
 

percent departure at the 50 percent point on the mean waveform. The resultant
 

shift is therefore somewhat larger than mean-value estimates would predict.
 

For altimeter accuracies of 1 - 2 meters, non-linearities of this magnitude are
 

not highly significant. For the Sea-Sat A, such non-linearities will be important.
 

2.6 PRF AND MISCELLANEOUS CONSIDERATIONS
 

Correlation properties of the altimeter signal may be estimated through
 

computation of the Doppler spread of the scattered signal. Previously published
 

estimates indicate that the Doppler spectrum will be in the neighborhood of
 

1600 Hz . These figures are based on the signal characteristics at the break
 

between the ramp and the plateau of the mean waveform, for a 50 ns pulse.
 

For the proposed GEOS-C orbit, a maximum vertical velocity component of 

about 700 ft./sec. will be present and will result in a (maximum) Doppler shift 

of approximately 10 KHz. Estimates+ of the signal correlation properties derived 
10from the Van Cittert-Zernike Theorem , place a value of up to 10 Klz on the 

signal fluctuation. For the purpose of this study, a conservative value of 1000 Hz
 

was used.
 

Measurement of the vertical Doppler component would facilitate altitude
 

extraction with elliptical orbits, since rate prediction could be used in the
 

signal processor. Alternatively, it might be possible to difference the smoothed
 

(e.g. one second) estimates of altitude to obtain prediction information. The
 

third alternative would use a ground command and control function for this purpose.
 

These techniques could minimize the problems associated with bandwidth and aquisi­

tion in a closed-loop tracker4 . The ground control technique appears preferable
 

from the standpoint of minimizing satellite equipment complexity.
 

Appendix C presents the results of a brief survey of prior work in optimal
 

processing. The optimal video processor requires an impulse response that is
 

related to the time-inverse of the sea-surface scattering function. From an
 

engineering standpoint, it should be preferable to utilize only that part of
 

the scattering function in the neighborhood of the ramp region. Accordingly, the
 

optimum processor closely resembles an integrate-and-dump circuit, such as is in­

volved in the split-gate tracker. It is therefore doubtful that any significant
 

+ Suggested by G. Bush of Johns Hopkins University, Applied Physics Lab.
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advantages would accrue from synthesizing the .theoretically optimum processor
 

encountered in the survey. Adaptive filtering.should.be investigated.
 

2.7 SUMMARY
 

A comparison of the altitude uncertainty for three sensing techniques is
 

shown in Table III.
 

Table 2-3 

Comparison of Altitude Errors 

50 ns Pulse 1000 Samples 

Sensor 
Alt. Error 
(meters) 

Double-delay (20 db SNR)+ .155
 

Split-gate (20 db SNR)* .22
 

Threshold 50% (- SNR) .25
 

Threshold 33% (20 db SNR) .14
 

Theoretical (20 db SNR) .20
 

+ 	Average of first two entries shown in Table II
 

* 	 Scaled from data for a 100 ns pulse system with dc restorer, given in 

Ref. 4. 

The results summarized in Table III indicate that any of the three sensing
 

techniques considered are usable for the GEOS-C altimeter. (The data fox the
 

split-gate technique, shown in Table III, was not derived from the simulation
 

and the figures shown are not directly comparable.) Because of the more extensive
 

hardware experience and greater mean-value stability of the split-gate technique,
 

it is recommended for closed-loop implementations. The threshold technique merits
 

further work, especially if studies bf Sea-Sat A requirements show non-analog
 

techniques to be useful. From the processor standpoint, the main problems with
 

Sea-Sat A are due to the mean-value shifts (e.g., non-linearity,, systematic
 

changes with SNR, environmental effects, and temporal variations). More informa­

tion is needed regarding altimeter signal correlation properties (pulse-by-pulse)
 

to determine the best solution to the signal fluctuation error problem with Sea-Sat A.
 

The theoretical analysis in this report shows that self-noise is a larger
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arror source than receiver noise, for a SNR greater than 10 db (see Fig. 2.8).
 

this analysis correponds to the use of matched (non-adaptive) IF bandwidths and
 

should be extended to treat pulse rise-time as a variable. A wider bandwidth
 

per se will reduce self-noise errors. Altitude variances for a threshold
 

system using rectangular pulse data (given in Appendix B) have been found to
 

result in one-half the variance obtained for Gaussian shaped pulses.
 

In summary, the altimeter accuracy requirements for GEOS-C are within the
 

state-of-the-art in radar performance. It is recommended that future studies
 

smphasize Sea-Sat A problems and the development of sampling techniques for use
 

with GEOS-C. The availability of information such as coherence time from the
 

,EOS-C experiment would be of great value to the Sea-Sat A program.
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SECTION 3
 

ALTIMETER SIMULATION MODEL
 

3.1 GENERAL -DISCUSSION
 

The preceding section of this report presented results of theoretical
 

analyses and computer simulation studies of the altimeter radar concept.
 

The Monte Carlo technique used to generate the simulation results is described
 

in detail in this section. The simulation approach was indispensable in several
 

areas of the altimeter study because: 1) the mathematical complexity of the
 

phenomena under investigation did not permit closed-form solution, or 2) the
 

assumptions and approximations contained in available theoretical results led to
 

limited confidence in the solutions so obtained. The statistical level-crossing
 

problem and the analysis of time-varying signal statistics are examples of radar
 

system functions that have not been rigorously solved. For non-Gaussian
 

statistics there is a paucity of even approximate relationships in the literature.
 

The overall simulation program is shown in block-diagram form in Fig. 3.1.
 

It consists of the computation of the ocean-scattered pulsed signal characteristics
 

and the modifications resulting from the receiver bandpass characteristics,
 

additive thermal noise, detector and other non-linear characteristics, and the
 

altitude measurement process. Waveforms and statistical compilations are then
 

obtained from the output data. The salient operations shown in Fig. 3.1 are
 

described in detail below.
 

The electromagnetic scattering process for the ocean's surface may be
 

visualized as due to specular regions superimposed on the gross wave structure.
 

These specular regions consist of areas with proper orientations and curvature
 

relative to the wavelength of the illuminating radiation. The scattering process
 

is governed by the high frequency region of the ocean-wave spectrum. As discussed
 

in Section 4, backscattered energy at normal incidence is a function of the mean­

square slope of the ocean's surface. Since the backscattered signal from the
 

ocean's surface is due to contributions from many individual scattering elements
 

within the radar beamwidth, the well-known Rayleigh distribution of amplitudes
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results . The principal reasons for the wide acceptance of this distribution
 

are: 1) the fact that observed returns provide a reasonably good fit to Rayleigh
 

statistics, and 2) the plausibility of the physical model (i.e. the specular
 

model).
 

The simulation of ocean scattering is based upon the characteristics for
 

backscattered power at normal incidence. For plane wave illumination at normal
 

incidence, the average backscattered power E2 at a distance R from the scattering
 

surface is
2
 

F -1
 
-2 =xIK4 

2E2iH (AREA). (1)
 

where
 

K is the Fresnel reflection coefficient
 

E1 is the incident electric field intensity
 

h2 
is the variance of surface displacement about mean-sea-level, and
0 
y is related to the sea-surface correlation length.
 

This equation indicates that for a given radar wavelength and a time-invariant
 

sea, the backscattered power is proportional to the illuminated area. Since
 

the area illuminated by a finite antenna beamwidth impinging upon a spherical
 

earth is a function of time, the backscattered power is also proportional to time.
 

The area illuminated by a satellite-borne radar pointed toward the nadir is
 
2
 

given by


A(t) = w a c t for t < t
 -p
 

where
 

a is the satellite altitude
 

c is the velocity of light, and
 

t is the transmitted pulse length.
P 

For t > tp, the radius of the leading edge rL is given by
 

(a t) 1/2 (2) 
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and the radius of the trailing edge is given by
 

1/2

r a c(t - t)] (3)
 

The projected illuminated area then is
 

A(t) a c t for t < t (4) 
A1t 

-rr 
 p 

and
 

2 2 

A(t) TrL rr2z w a c t for t > t . (5)P 

Thus, the projected area increases linearly for the length of a transmitted
 

pulse, after which it remains relatively constant until other effects dominate.
 

3.2 MATHEMATICAL DESCRIPTION 

In order to utilize the above model of radar return, macroscopic conditions
 

must prevail since the existence of specularly reflecting points is a random
 

occurrence. For the geodetic satellite geometry, examination of the scattered
 

signal in one nanosecond increments corresponds to area increments of one square
 

kilometer. An area of this size should contain at least five independent scatters
 

and the Rayleigh distribution will match the expected signal statistics.
 

The Rayleigh amplitudes are simulated for each one-kilometer area by generating 

numbers x i and yi from independent normal distributions with zero mean and unit 

variance. The Rayleigh signals e(n) at the output of a linear detector for 

rectangular pulse illumination are 

e(n) n <t (6)[j + (A 

where the n subscript indicates the time Index in one-nanosecond steps for the
 

jth sample function. For a rectangular pulse, of length n = 50, the partial sums
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(n < 50) of e(n)jrepresent the transient region of the scattered pulse. For
 

example, the partial sum for the first interval e(i). corresponds to the aggregate
 

return from the reflecting areas exposed during the first one nanosecond.
 

(The term "time interval" and one nanosecond increment will be used interchange­

ably in the following discussion, although time can be scaled to an arbitrarily
 

larger interval. Smaller time intervals correspond to areas for which the
 

ocean surface statistics may not be independent.) For n = 2, e(2)j corresponds
 

to the vectorial magnitude of returns from both area increments. Since the
 

scattering areas are assumed uncorrelated, signal power will be additive and
 

e(2) will increase linearly (in the mean) up to the assumed pulse length (n = 50).
 

S-The simulated waveforms obtained for a rectangular pulse are mainly of
 

theoretical interest because of the large receiver bandwidth implied. Figure 2.1
 

showed such waveforms for both the linear and square-law detector outputs. In
 

order to simulate more realistic conditions, a Gaussian shaped pulse was used in
 

the study of radar parameters. This waveform was chosen because the output of
 

real networks with near-rectangular input signals resembles a Gaussian waveform
3
 

-l
 
A Gaussian envelope f(t) of width W measured at the e points is given by
 

[t 12 

f(t) = exp W/2 

-1
 
and the width of the spectrum A(f) at the e points for this envelope is
 

A(f) jexp[ t ]2 exp (i2Trft) dt 

S=1 exp [ Wf2 (7)
 

(2irW)1/2
 

The detected waveform for a Gaussian shaped pulse can be generated by the
 

expression
 

20 2 )2 1 

=~) xpR (kt-i1 2 + (20y. exp 2 (k - i)12 ) 2 

(8) 
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in which the time index k begins at k = -50 and terminates at k = 150. The 

peak of the pulse in this case corresponds to k = 1. 

Equation (8) assumes that the effect of a Gaussian shaped transmitted
 

pulse can be combined with the effect of a-ieceiver containing a Gaussian
 

shaped impulse response. This assumption is based on the linear model for sea
 

return and ,the fact that convolution of two Gaussian functions yields a
 

third Gaussian function. The convolution of the form
 

x (t) = exp{} 

and (9)
 

x(t) = exp{ } 

can be shown to result in the Gaussian function


2?
 
x3(t) = exp 2 2 (10)


T + T2 

Assuming post detection or video filtering can be described by an RC type filter
 

with corner frequency f, given by
 

f
 
1 2nRC (11)
 

then the inpulse response h(t) for the filter is
 

h(t) = exp - I = 27f, exp -2rflt . (12)
 

if f1 is equated to a multiple m 4f the one-sided bandwidth of the detected pulse
 
given by equation (7), i.e.
 

2m
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then h(t) is
 

h(t) =-4 exp - At , (13) 

Combining the above results, the signal at the output of an ideal
 

envelope detector E is
n 

E(n) = - e(k) exp - (n - k) (14)SWk=-50 i I 

Similarly, the output from a square-law detector E2(n) is given by
 

B (n). AM 150 e 2 k) exp -Lm( - k) (15) 
k=-50w 

For the simulation results given in this report, k varied from -50 to +150
 

and W = 50. This corresponds to a 50 ns pulse, the peak of which arrives on the
 

sea-surface at k = 1. Receiver time delays are not included in the formulation.
 

Receiver noise is added to the calculations through the equation
 

)
]+ )x

2k i)
exp
[( 220e(k) 


21 (16)
 

i Yexpy -+s{[2(k i) 2 } +200~+(

in which ck and sk represent in-phase and quadrature noise voltages selected
 

from independent distributions. These distributions are correlated in time to
 

simulate the effects of receiver predetection bandwidth characteristics.
 

Before considering the details of receiver noise generation, the remaining
 

aspects of the simulation will be discussed. The satellite altitude information
 

is obtained by processing the video signal to extract an estimate of the time
 

between signal transmission and receptions. The principal schemes for extracting
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this estimate are: 1) early gate, late gate, 2) double-delay differencing, and
 

3) threshold detection. The double-delay differencing and threshold techniques
 

have been implemented thus far in the simulation.
 

The threshold function is accomplished by level filtering in the digital
 

program. The double-delay differencing operation is implemented through the
 

discrete-time equivalent of the impulse response
 

h(t) = 6(t) - 26(t - -r)+ 6(t - 2c)
 

where T is the time lag and & is a delta function. In programming this equation, 

the delayed replicas of the signal are combined with the original input through 

computer storage. 

The remaining operations performed in the simulation program consist of
 

non-linear transformations and the compilation of statistical descriptions
 

(such as histogram data). The former is used to study the effect of system
 

non-linearities on the altimeter data. To date, saturation forms of non-linearities
 

of the type
 

2

KE
E -
E' = 

n n n (17)
 

have been used, in which K is a parameter.
 

In order to establish signal-to-noise ratios (SNR) in the simulation, the.
 
2
 

variance of the signal process a must be known. For a Gaussian shaped signal,

5 

the autocorrelation function (ACF) Qf the signal R (T) is 
55 

) }
R() = k exp {-B2 (t - exp {-B 2 t 2 } dt (18) 

in which ks is the spectral density function for a shaping filter realization 

and B = 2/W. This function integrates as 

R C(o) = BE -.s (19) 
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and for B = 2/50 the signal variance is seen to be
 

2 i(25) (20)
T 
= 
s ks (
 

Two techniques have been developed for the digital noise computations. The
 

simulation results given in this report are based on the technique to be discussed
 

first. The second method, which has not been programmed, was developed to assess
 

the sensitivity of the zero crossing probability distributions to the noise process.
 

The first technique generates a correlated noise sequence through a recursive
 

first-order difference equation which is driven with random noise. The ck and sk
 
terms in (16) are generated through separate difference equations of the form
 

c k = Akckl I + wk (21) 

in which wk is an uncorrelated sequence (zero mean). The quantity A k is obtained
 

by forming the expectation E of ek' i.e.
 

E [ck_lck] = E [ek_,(ck_1 + wk) ] = AkE [ck_lck_l] (22) 

since E[ck-lwk] is zero. Assuming that wk is a zero mean process, this last result
 

can be expressed as an ACF, i.e.
 

Rkkk-i = Kk-l,k-i (23) 

or, in general
 

R k d 
Ak = ik d (24) 

which is the normalized ACF. The sequence ck has a Gaussian realization with an
 

ACF
 

(25)
= e-=k-l d e-aITo 
3jk9
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The variance of the ck process can be found through the development
 

E(ckck) = E[(kck I + wk ) ( Cki + Wk)] 

2) 2 2 E 
= E (4Ack_-) + EG{) 

(26) 

= E [2k_ lk 2 + wk 1)
2 ] + ,w 

If A is time-invariant, this becomes for a unity variance Wk'
 

E(ckck) = 1+A + A + . . (27) 

which can be summed as
 

A 2
E(Ckck) = i A- d= 2 A < 1 (28)=1+3 I~kk N 

This equation is used to specify the steady state variance of the ck sequence.
 

Notice that the recursion must be initialized from a random number with the
 

proper variance if the computations are re-started.
 

The correlation factor a in the ACF was obtained through a shaping filter
 

analogy. If a shaping filter H(jw) driven by white noise produces an exponential
 

ACF, then the output spectrum 4(w) must be
 

2
4(W) = J (T) e-JTdT = 2 +a (29) 

The transfer function of the shaping filter is readily seen to be
 

H(jQw) = 1 (31)
3+ 1 
a 
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Note that a is the 3 db bandwidth in radian measure. The equivalent rectangular
 

bandwidth is
 

o a (31)
 

Thus the I(jo) transfer function has a bandwidth equivalent to an idealized
 

rectangular bandpass of ( /2)f.
 

For a corner frequency of 20 MHz, the ACF is
 

p(T) e-125 x 106 T (32)
 

where T is in nanoseconds.
 2 
Analogous to (18), the signal-to-noise ratio is obtained by defining an as
 

n
 

2= 2 ka
 
C2 f a 2 =-. (33)

n =2T a2 + w2 2 

Therefore, the signal-to-noise ratio for the simulation is
 

2 
 25~ 

_ 5 

SNR =-= - 50 1 (34) 
a2 a 

The second method of noise generation was designed to provide noise correla­

tion properties that are matched to the signal characteristics. It assumes that
 

the IF bandpass characteristics are Gaussian to first-order. If a Gaussian band­

pass to an Nth order approximation were used, then the normalized ACY (p(T))
 

could be computed for all time lags z. Noise would thus be generated by considering
 

not just the last value, but all previously known values in a joint probability
 

distribution of N variables. For a first-order approximation, it was assumed that
 

p(T) is known for only a fixed increment T. 

For the bivariate Gaussian distribution
 

1 
 +i22(-e2p
P(1l'12) 2Z[ 2() (35)
2 2()
 
2ra [1 - p (-c) 2a 11 - p (r)JL 
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where the a variances are equal, letting -I2= I1 + Al and integrating over I 
gives 

P(I,) 2a/ ( - p(M) 4a2[i1- 2p(W)P(AIT) exp (Al (36) 

in which P(AT,T) is the probability of a change in I in a time T. This distribu­

tion is Gaussian with variance 2o2 11 - p().
 

The numerical values of the correlation parameter can be established as
 

follows. For a Gaussian waveform
 

y(t) = exp { (t) (37) 
-T 

in which T is one-half the pulse duration at the e points, the spectral width
 

(one sided) is fo = l/(Tu). Using a transfer function with a squared magnitude
 

of
 

2
IG(f)1 2 = exp -2 f (38)
 

the normalized ACF p(T) is found to be
 

p(T) = exp [ 2 exp {-2nifT} df = exp - (39) 

Therefore, for 2T = 50 nanoseconds, the correlation parameter is 

p(x) = exp - (40)
 

in nanoseconds.
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SECTION 4
 

REVIEW OF ELECTROMAGNETIC SCATTERING FROM ROUGH SURFACES
 
AS RELATED TO THE GEODETIC ALTIMETER
 

4.1 GENERAL DISCUSSION
 

Satellite altimetry, as presently proposed for the GEOS satellite,
 

is heavily dependent on characteristics of the backscattered signal
 

from the ocean surface. The altimeter techniques under consideration use
 

a beamwidth sufficiently broad (2-3 degrees) that with reasonable satellite
 

attitude control, strong iadar returns will always be reflected from the
 

sub-satellite point. The use of pulses in the range of 50-100 nanoseconds
 

ensures that at satellite altitudes of 1000 km, the transient portion of
 

the return will indeed be backscattered normally from the sea surface.
 

At satellite altitudes of 1000 km, the footprint of the initial
 

100 nanoseconds of the reflected pulse has a radius of 5.5 km which
 

constitutes a half angle of five milliradians. Consequently, the angle of
 

incidence is very nearly zero during this portion of the pulse, with a
 

total variation of + 5 milliradians. With the possible exception of a
 

completely flat sea surface, this variation of incidence angle can be
 

neglected and the analysis can be confined to the case of normal incidence.
 

The significance of this simplification is apparent when one considers the
 

complexity of an analysis which attempts to predict angular dependence of
 

scattered power over the range of angles from 0-90 degrees. Barrick has
 

demonstrated that the usual approximations made in evaluating the vector
 

Kirchoff integrals for rough surfaces generally lead to results which may be
 

in error at angles of incidence greater than 20 degrees. There is, however,
 

excellent unanimity for the theory near normal incidence; Bartick , Hagfors
2
 

and Fung and Moore3 have shown that models employing geometrical and physical
 

optics can lead to identical answers near normal incidence.
 

The details of radar backscattering from the sea surface are presented
 

in paragraph 4.3, where allowance is made for the fact that the energy
 

spectrum of a sea is in general anisotropic. The present knowledge of
 

the sea surface energy spectrum is not sufficint to allow calculation of
 

these effects. At normal incidence the radar cross-section is known to be
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a function of the mean-square slope of the sea surface. A few measurements
 

of the mean-square slope and the mean-square height of ocean waves have been
 

made. Munk5 observed that when wave numbers corresponding to spatial
 

wavelengths of less than one foot were removed from the ocean spectrum by
 

means of artificial slicks, the mean-square height of the waves (proportional
 

to the integral of S(k)) was essentially unaffected but that the measured
 

mean-square slope (proportional to the integral of k2S(k)) was reduced by a
 

factor of three. This means that although the scattered power at normal
 

incidence is heavily influenced by sea slopes, it is rather insensitive to
 

the 	mean-square height of the waves, the latter being a commonly observed
 

odanographic variable.
 

4.2 SUNMARY 

With X-band satellite altimetry, for waves with rms heights greater than
 

one-half foot,
 

1. 	The backscatter cross-section at normal incidence will in
 

general be inversely proportional to the mean-square slope
 

and the degree of anisotropy of the sea surface;
 

2. 	assuming a Gaussian shaped autocorrelation function, the
 

incremental signals, sampled at nanosecond intervals for
 

times up to 150 nanoseconds (after the leading edge of the
 

pulse hits the sea), will be independent; and
 

3. 	the incremental areas uncovered at nanosecond intervals are
 

large enough to expect that the distribution of the amplitudes
 

of the incremental signals will be Rayleigh-like.
 

The significance of these results to the simulation of sea returns was
 

discussed in Section 3. In regard to the geodetic altimeter program,
 

this study has led to the following conclusions6: Backscattered power
 

can be related to mean-square slope of the sea surface. Experimental
 

programs using radar scatterometers have indicated that empirical
 

relationships can be used to relate the scattered power (slope dependent)
 

to ocean surface winds. A considerable extension of the presently
 

available oceanographic information (e.g., two-dimensional slope spectra)
 

would be needed to place these empirical relationships on a theoretical
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basis. Assuming that the empirical results can be used reliably to infer
 

surface winds, the wind information may be used to infer rms wave height
 

forecast programs and other uses. As discussed in Section 5, the oceano­

graphic relationships between mean-square slope and wind velocity are not
 

known to the extent required to permit an electromagnetic solution to the
 

problem. The ocean measurement problems are immense.
 

4.3 RADAR BACKSCATTERING FROM THE SEA
 

The design of a satellite-borne radar altimeter will be dependent
 

upon knowledge of the characteristics of the radar backscattering from the
 

sea surface. Backscattering at all incidence angles from a rough surface
 

has received a'great deal of attention by numerous authors. The subject
 

is most complex and there is no uniform agreement except near normal
 

incidence for a very rough surface.
 

At near normal incidence, Barrick has shown that the radar back­

scattering cross-section is given by
 

f~fexp 1-4k2h2[l
a = Kit2 - p(x,xt, y, f')]} dxdy dx'dy' (1) 

where: the limits on the integrals are defined by the area illuminated by
 

the radar pulse;
 

K is a function of sea surface conditions (mean-squared slope) and
 

of the Fresnel reflection coefficient (near normal incidence K is
 

relatively insensitive to sea surface slope);
 

h2 
is mean-squared height of the waves;

0 

p (x, x', y, y') is the normalized surface spatial correlation
 

coefficient;
 

k is the Fourier wave number =-m in which X is r-f wavelength; and 

(x,y) and (x',y') are positions on the mean sea surface. 

The derivation of this equation is based upon physical optics
 

approximations to the Stratton-Chu integral equation. The major assumption
 

is the use of the tangent plane approximation to the surface which requires
 

that the radius of curvature of the surface be large in comparison to the
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wavelength of the incident radiation. At a wavelength of three centimeters
 

(X-band) it is not clear that the tangent plane approximation is appropriate
 

for a sea surface with capillary waves. On the other hand, the capillary
 

waves are only millimeters high and, at normal incidence, the effect of
 

millimeter scale irregularities on three centimeter energy is not expected
 

to be large. It is recognized, however, that there may be some error
 

involved in the use of the tangent plane approximation.
 

A second approximation has been introduced by assuming that the joint
 

probability density distribution of the wave heights at positions (x,y) and
 

(x',y') is a normal (Gaussian) distribution with zero mean value and variance
 
2 4h
0 
. Kinsman , among others, presents experimental evidence which indicates 

that the height of the sea surface is, only to a first order, a normally 

distributed variable. Since the surface statistics were assumed to be
 

homogeneous, the correlation of the height fluctuations at any two points
 

is a function only of the difference of the coordinates of the points and
 

not of the absolute value of the positions of the two points.
 

The homogeneous assumption allows (1) to be expressed as follows:
 

= Kk12 JJJJ exp 1 (1 - p(x-x',y-y')]I dxdy dx'dy'
2 [
 

with x-x' = Ax 

y-y' = Ay 

and integrating oven an L , Ly square area gives
 

L L x+L Y+L7
 
2 2 2 i 
 f 2 h 2p{ 

- Kk J j j 2 exp - 16 2 [I - p(Ax,Ay)]} dAxdAy dxdy. (2a) 

-L2 -L X-Lx y-L A 

2 2 2 2 
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Note that since 12 >l if p (Ax, 4y) departs from one, ie.,
 

for Ax and Ay differnng much from zero, the exponent in the integrand
 

would become quite large. The major contribution to the relative coordinate
 

integral ( in 2a) occurs for AxAy;O. The exact limits of the relative
 

integral are hot important (so long as L and L are large in comparison
IC y
 

to the regions of Ax and Ay which contribute to the integral) and we can
 

extend the limits of the relative coordinate integral to infinity without
 

incurring appreciable error,
 

LI L
 

S 2 f 2f exp { 16r2h2 [l-p(Ax,Ay)]} 

-L -L- - A(2b)
x LJ.dAxdAy dxdy
 
22
 

2
U Kk2 Area exp f [1- ( x, y)]}dAxdAy.ff2 (2c)
 

Before proceeding,. it should be noted that a sea surface composed of
 

infinitely long-crested waves of a single frequency will cause
 

the above arguments to fail. Suppose the waves were traveling
 

in the x direction. The correlation function in the x direction
 

will be periodic and the relative coordinates in the x direction cannot
 

be replaced with infinite limits. In the y direction, the correlation
 

function will be unity for all y. The relative limits for y cannot be
 

replaced with infinite limits either. While it is true that on a real
 

ocean the likelihood of a single frequency, infinitely long-crested
 

wave is zero (the ocean is of finite size), with a sufficiently small
 

antenna footprint (corresponding to an extremely short pulse length) a
 

moderately long-crested narrow band swell could seriously invalidate
 

equations (2b) and (2c).
 

If the correlation function is assumed differentiable at the origin,
 

then a Taylor series expansion about the point (0,0) is
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p(AxAy) = p(0,O) + Ax aPx +tAy + P 2
aA y I 2 21 

Az -4y=O AxAyO Ax=Ay=0 

(3a)
 

2 2 
24L I (Ay) ~~*!%-Ax) 

3Ax3AYI +.
 

Ax=-Ay=O Ax=Ay=O
 
my-


In the following development we shall show that
 

12ai = p j =0, 
Ax-Ay=O Ax=Ay=O 

consequently,
 

p(Ax,Ay) l-a 2 (Ax)2_b2(Ay)2c(Ax) (Ay). (3b) 

where
 

a -112 a 22 = 
SAx 2 ­

Ax=Ay=0
 

- DAY2 .=L = b= 1/2 2p
 
2 Ax=Ay=O2y 

aAx DAy 

Az'Ay=O 

Thus, 

i-p (Ax,Ay) 
 a2 (Ax)2 + b2 (Ay)2 + c2 AxAy (4)
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Equation (4) shows that the isocorrelation contours for small values of
 

x and y are elliptical. For larger values of x and y more terms
 

of the Taylor series expansion would be required and the contours need
 

not be elliptical. However, for very high frequency backscattering, the
 

elliptical approximation appears reasonable. The proof of the preceeding
 

discussion follows.
 

Let z(x,y,t) represent the height of the sea surface at the position
 

x,y and the time t
 

Z(x'Y) f S(kxky) exp {i[kxX+kyYJ dkxdky{ 
From transform theory, since z(x,y,t) is a real variable, S(kx,k)= 

S (-kx -ky). If the height fluctuations are averaged at two points x,y and 

xt , y' 'we obtain 

Z(x,y) z xy')= f S(kx ky) S(k,,k )
 

ef i[k x-kx+k y-k'(5)
 

dk dk dk'dk'
 xyxy
 

For homogeneous, stationary sea surface statistics, z(x,y) z(x'y') should
 

be independent of time t and a function only of x'-x and y'-y. This can
 

only be true if
 

2
s(k ,k) s*(k',Ic') = IS(k ~k )I 6(kx - k') 6(k - k') (6) 
xYxK x x y y 

where
 

IS(kxky ) 12 = IS(-kx,ky)[ 2 = F(kx,k) = F(-kx,_ky) 
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since 

z(x,y) z(x',y') = R(Ax,Ay)
 

((Vf 
x 3'
 

= F(k k ) 6(k - kt) 6(k - k') 
x~~ 'C y 

-k')
exp {i[(k - k1) x - ktAx + (k y - k'Ay]1 

dk dk dk'dk'
 
x y x y
 
o
 

R(Ax,Ay) = F(kky) exp {-i[k Ax + k Ay]l dk dk dk'dk' (7) 

R((x,R( s y)= k ) cos [kAx + (8) 
p(Ax,Ay) = R(0,0)
 

ff F(kxky) dkxdk
 

0
Coo
 

Therefore 
T- if kxF(k.ky) sin [kAx + k Ay] dk dk 

(9
(9)p._ o 
aAx 


ff ydkxdky
~kx 

0
 

r7- k F(k ,k ) sin [kyAx + k Ay] dk dk 

0ap 
(10)

3A; 
)Jf F(kxkY dk dk 

0 

-f kkF(kk ) cos (kxAx + k yAy) dk dk 

AxaAy (11) 

ff F(kxky) dkxdky 
0
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http:kxF(k.ky


cc (12) 
k 2-f( TF(kxky) cos (k Ax--k Ay) dk dkyx 

2p
 

3Ax 2 

ff {kky) dk dk-xy
 

0 

co 

k2-fT F( c) cosik Ax+k Ayj dk 6k (13) 
2y x y X y 

2p 
Ay2o ­

ff F(kxky) dk dk 

0 

Evaluating (8), (9), (10), (11), (12),(13) for Ax = Ay=0 gives: 

p (0,0) = 1 

3Ax 3Ay
 
Ax=Ay Ax=Ay=O
 

112 k2F'k k) dk dk 
x
2 x Y 

-1/23 p o 2 (14) 

Ax=Ay if F(kxky) dkxdky 

0 

y 

k2 y
1/2 TI F(kxky) dkdk 2 

-1/2 3p = b (15) 

AxAy=0 
 fj F(k xky)dk dk
 

0 

2 f~~f kxkyF(kxky)dk 6k 
__ a 0 c 2 (16) 

3Ax =AYO If F(k k ) 6kdk
 

0 

4-9
 



It is noted that in view of (8), the correlation function can be 

considered to result from waves travelling in the kx,ky directions.
 

Since F(kx,ky) = F(-kx,-k ), the correlation function could equally well
 

arise from waves travelling in the -kx, -ky directions. There is an inherent
 

1800 ambiguity in the direction of travel of the waves which make up the
 

spectrum.
 

4.4 CALCULATION OF THE NORMAL INCIDENCE RADAR BACKSCATTERING CROSS-SECTION 

The physical optics approximation to the normal incidence backscattering
 

cross-section per unit area of illuminated rough sea leads to
 

22 ri - 4Th 2 2 2 2 2
a/area = Kk jjexp{-- 7 [a (Ax) + b (Ay) + C (Ax)(Ay)] 

- (17) 

dAxdAy
 

It may not prove feasible to use oceanographic spectra to evaluate
 
2 2 2


the constants a , b and c since oceanographic spectra do not usually
 

have sufficient detail ( at the high wave number end of the spectrum) to
 

permit an accurate evaluation through (11), (12), or (13). Nonetheless,
 

it is possible to relate the cross-section to an oceanographic variable
 

(even though there may be some doubt as to the pertinence of the oceanographic
 

measurement).
 

The maximum slope of the sea surface at the point z(x,y) is given by
 

Vz(x,y) = ax x + y Y 

The mean square slope of the surface is
 

Vz (x,y) 2=[ t s2r 
It can be shown that if z(x,y) has a power spectrum F(k x,ky) then 

T f and 2 have power spectral densities k F(k ky) and F(k ,k) 

y 
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respectively. The mean squared values of 9iz and 3z are given by
 

2=1 122 p2 2
2 -j- 2kz =J -h 2 = 2ha2 (18)Sx = ix x Fkk)dxdky -hA2.=h
 

-C Ax=Ay=O 

2-Lz 2 2h2b2(9
 

2 = Lik4 F(kk) dkdk =-h ~--2 2b (9 
y y - y y y DAy 

Ax=Ay=O
 

Substituting (18) and (19) into (20) gives
 

x{-62 2 2
X/ra=K2I2SA 

a /area =k 2 J exp{ -167r 2 [ (Ax)2 + 2 (Ay)2 + h2e2xAy ]} (20) 

dAxdAy

2 

The term c can be related to the slope covariance, i.e.
 

h2 c2 = 13z -z 

hc aix yI 

In general then, the normal incidence radar backscattering is an inverse
 

function of the mean square slope of the sea. It should also be observed
 

that the cross-section is also a function of the degree of anisotropy
 

2
of the sea surface as is evidenced by the term h2 c (Ax) (Ay).

0 

One-dimensional ocean wave spectra have been obtained from measurements
 

of wave height versus time at a single point. These measurements are
 

first processed to yield a frequency spectrum which, through the application
 

of the wave dispersion relation, is then interpreted as one-dimensional
 

spatial spectrum. This type of analysis is not without its difficulties
 

because of the averaging of the high frequency components by the transducer
 

as well as the neglect of nonlinearities in the wave equation.
 

Two-dimensional spectra can be obtained directly from stereo photographs
 

of the sea as demonstrated by Cote, Pierson, et al.7 . For a variety
 

of reasons, not the least of which is the sheer magnitude of the task, the
 

spectra so derived do not represent the components whose spatial periodicity
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is less than 30 feet. Consequently the high wave number end of the
 

ocean wave spectrum is not well known. It should be noted that the very
 

high wave number end of the spectrum is far less important to the
 

oceanographer than it is to the radar user.
 

For these reasons the importance of the slope covariance on radar
 

cross section has not as yet been evaluated. Frequently, in the absenee
 

of knowledge about the detailed behavior of the spectral density function
 

F(kx,ky) at high frequencies, the radar backscattering cross-section is
 

specialized to the case of an isotropic sea surface. Under these circumstances
 
2 22 is equal to s2 and c2,, the covariance Sz azT is zero. For an isotropic 

surface 

y /area = Kk2 -f exp { , [s2 (Ax)2 + s (Ay)2]J 

(21)

dAxdAy 


Kt
o/area = -/ 

s 

Equation (21) is particularly simple and clearly shows the inverse
 

dependence of radar cross-section upon the mean-square slope.
 

In order to make clear the physical basis for some of the arguments
 

which follow, (2c) will be re-examined for the case of an isotropic sea
 

surface. In this case
 

CF= Kk2area ff exp ~-~th 1-p(Ax,Ay)]1 dAxdAy

2
 

(22)
 

a/area=- 2 Kk2 fep~ -1692h2rZ!{

a/a ea 22 [1-p(r)]} rdr 

0 

where p(r)2 = (Ax)
2 + (Ay)2
 

and p(r) = p (Ax) + Ay) 2 . 

which is seen to be the isotropic case.
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It is clear that if 1 27Tis a large number, the major contribution
 

to (22) will occur for small values of p(r) such that p(r) = 1-6
 

whered is a very small number. A two term Taylor series expansion for p(r)
 

is given by
 

p(r) = 1 -_-_ +L. . 
orr=O
 

2 2
a/area = Kk2 2w exp 22 2 (1/ )r(


jexP x2 44~ (23)Dr r--o 

a /area = 27rKk 2 -20--22 (24) 

16T2h2 (1/2)- 2
 

2 h2 
 2
 

Comparison of (21) with (24) will show that f2 o0 P) must
 

2 kk2x2 ar2/
 
equal--4. Direct calculation will verify that a/area = . Therefore the
 

s 

radar cross-section for an isotropic rough surface is inversely proportional
 

to the mean squared slope.
 

The significant feature of this last derivation, which will be used
 

in certain following sections, is that for a rough isotropic surface
 

the major contribution to the integral in Z22) occurs for relatively
 

small values of r such that the p(r) = 1.
 

4.5 COHERENCE OF BACKSCATTERED SIGNAL
 

If the entire illuminated surface of the sea were to act as a flat
 

coherent reflector, the returned power should be proportional to the
 

square of the area illuminated. However, the arguments following equation (2)
 

indicate that when the illuminated area exceeds a critical size, the return
 

is proportional to the first power of the illuminated area. Just what
 

are the dimensions over which the sea acts as a coherent reflector? The
 

linear dimensions can never exceed (at high frequencies) the surface
 

correlation length L, and in fact will be shown to he considerably smaller.
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Consider, for illustrative purposes only, that the normalized correlation
 

function of the sea surface is Gaussian:
 

2 2
 
= 1- 1- for small r. (25)
p(t) = exp {-

L2 L2 

At x-band, with an rms wave height of one-half foot, the analysis
 

shows that the main contribution to the integral in (2) occured for small
 

values of r _rI where r. is defined by
 

[4nh ]2 [ I- =(T4 (26)
 

Therefore, 

p(rl) = *999 =- ) 

and
 

r 3 x 10-2
 
L
 

This value of r, which is less than 3 percent of the correlation length,
 

is a measure of the distance over which fields are correlated on the sea
 

surface. Since the contribution to the integral is quite small outside
 

of rl, rI is considered to be a conservative estimate of the 
linear size
 

of a coherent scattering element. Taking r1 to be 3 percent of the surface
 

is still only 15 meters.
correlation length, for L as large as 500 meters, rI 


The number of independent scattering areas can be estimated as follows:
 

The radar footprint on the sea-surface expands radially with time. During
 

each one nanosecond time increment that the radius of the. footprint
 

increases by 15 meters, the scattering from the incremental areas shall
 

be considered to be independent (uncorrelated) of the previously uncovered
 

The radius of the radar footprint as a function of time, t, after
 

the leading edge of the pulse has reached the sea-surface is given by
 

area. 


rL= [act] 1/2 for t< tp (27)
 

where r is the footprint
 

a is the satellite altitude
 

t is the pulse length.
 

p
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If a is taken to be 1000 kilometers, then for t= 100 nanoseconds
P
 
the increment of the radius uncovered between (t = 99 to 100 nanoseconds)
 

Ar1 0 0 = r1 0 0 - r9 9 = 25 meters 

for Ar100 > rI
 

In a similar fashion, Ar1 5 0 = - r is approximately 20 meters.r1 50 1 49 


Therefore, incremental signals at nanosecond intervals are incoherent
 

for times as long as 150 nanoseconds after the leading edge of the pulse
 

reaches the sea and the footprint radius is approximately 550 meters.
 

4.6 FREQUENCY DEPENDENCY
 

The results obtained in this section can be related to the geodetic
 

altimeter as follows: An operating wavelength of the satellite altimeter
 
/4
 

at X-band (3 cm wavelength) is currently being considered. Kinsman estimates
 

that 80 percent of ocean waves have heights greater than three feet. It
 

therefore seems reasonable to assume that h, the rms wave height, is
 

greater than one-half foot for an appreciable fraction of the time. At
 
2 2 2 3
X-band the quantity 16R h2A has an approximate value of 4 x 10 . Most
 

of the contribution to the integral of equation (22) will occur over a
 
range of r from zero to rl, where rl is defined by equation (26). Thus
 

p(r) is fouhd to have a value of 0.999. Over this range it appears reason­

able to approximate p(r) by equation (25) since the change in p(r) is small
 

from r = 0 to rI. On the other hand, if the operating wavelength were
 

75 cm (400 MHz) the term in equation (26)
 

4Th

( ... 2 )2 = 

0 6.4 

with the result that the correlation function for the same range of r
 

would decay to a much smaller value (p(r1 ) = .375).
 

Therefore, at 400 MHz one would not expect that p(r) could be well
 

represented by a simple quadratic. It is concluded that the backscattered
 

power would not exhibit a simple slope dependence at 400 MHz if the wave
 

heights were only one-half foot rms. At X-band, however, for the same
 

wave, the backscattering cross-section at normal incidence can be accurately
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related to inverse mean-square slope..
 

4.7 ANALYSIS OF WAVE HEIGHT EFFECTS ON THE ALTIMETER WAVEFORM
 

The extent to which mean-sea-level measurements derived from an
 

electromagnetic signal depart from true mean-sea-level is presently
 

unknown. If this type of bias is not a significant error source in the
 

altimeter data, then estimation of sea state characteristics can be
 

considered as an elective requirement in the altimeter program. Other­

wise, wave height estimation is essential in the satellite. The problem
 

of bias in the mean-sea-level measurement is discussed below.
 

An extension of the work of Rice and Longuet-Higgins has been formulated.
 

In the one-dimensional case, the distribution of reflecting points F(z)
 

on a rough surface of height variable z is
 

F(z)dz = n f 
P(Z,Z',Z")Iz"ldzdz"J 


where p is the joint probability of the density of the function z'and its
 

derivatives (primed) and n is the normalization term. In order to specify
 

that a point on a rough surface constitutes a normal incidence reflection
 

zone, the first derivative of the height variable z' must $e equal to
 

zero (e.g. a critical point) and the second derivative z" must be within
 

the required curvature range.
 

In order to proceed with the mathematical development, it is necessary
 

to assume Gaussian statistics. The approach is discussed in Appendix D.
 

The degree to which the Gaussian assumption holds is unknown. Figure 4.1
 

shows measured probability distributions of the ocean surface for the
 

height variable and its slope z'. Note that the slope distribution departs
 

much more from a Gaussian statistic than does the height variable. It is
 

in fact possible for the height distribution to be symmetrical and for the
 

slope and curvature distributions to be skewed. In this case, the radar­

measured mean-sea-level would certainly depart from its true value.
 

It is difficult to pursue this theory because of the above-mentioned
 

lack of oceanographic data. The principal oceanographic unknowns involve
 

the high frequency behavior of the slope and curvature spectra. With data
 

presently available, convergence of the spectrum interval is not even
 

assured.
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Because of the assumptions required in a mathematical formulation,
 

it is desirable to examine the bias problem using actual ocean height
 

profiles in a numerical evaluation of the integration. Any errors that
 

may be introduced by the simpler models and assumptions could then be
 

evaluated. Such data can apparently be obtained from laser profilometer
 

measurements and this information would permit completion of the wave
 

model task. Studies could then be conducted to determine (1) feasibility
 

of wave height extractions in the leading portion of the altimeter signal
 

and (2) importance of "sea-state bias".
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SECTION 5
 

OCEANOGRAPHIC STUDY
 

5.1 SUMMARY AND CONCLUSIONS
 

In the course of investigating the effects of mean wave-height and
 

spectral anisotropy on the scattering of electromagnetic waves, a number
 

of oceanographic information deficiencies were encountered. The work
 

reported in this section was undertaken as a means of providing statistical
 

characteristics of the ocean surface for use in the work reported in the
 

previous section. This section, therefore, contains a review of prior
 

oceanographic investigations in regard to the dependency of surface
 

characteristics on oceanographic and meteorological parameters.
 

.The general conclusions reached in this section are as follows:
 

(1) The ocean wind waves are probably generated by the
 

resonance mechanism proposed by Phillips, but their subsequent
 

growth is supported by Miles' shear flow model. In addition
 

to the wind, there are other modification mechanisms, such as
 

wave-wave, and wave-turbulence interactions, etc., that will
 

change the form and pattern of the wind waves.
 

(2) Because of the favored direction and the modification
 

mechanisms in the wave motion, the statistical distribution of
 

the surface displacement and surface slope are significantly
 

skewed.
 

(3) By the predominant wind force on waves, the main
 

energy containing part in the two-dimensional wave spectrum is
 

also skewed. In other words, the wave field itself might very
 

well be homogeneous but definitely anisotropic. The
 

anisotropy might be gradually smoothed by the modification
 

mechanisms, especially at high frequencies, and become small
 

but it would never be completely eliminated.
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Conclusions specifically relating to the integrated one-dimensional
 

spectrum are as follows:
 

(1) For a well-developed sea, the spectral form of the
 

high frequency range changes inversely as the fifth power of
 

frequency, or inversely as the fourth power of wave number.
 

(2) The spectral maximum occurs at a frequency n0
 

which is equal to the gravity term divided by wind velocity.
 

For most practical purposes, no could be used as the cutoff
 

frequency at the lower end of the equilibrium range.
 

(3) The variance of surface slope, (V)2 is logarithmically
 

related to surface wind speed. The dependence of (V)2 on fetch
 

and duration is critical only for a short distance or time
 

period respectively.
 

(4) With moderate to strong winds (< 40 knots), the
 

relation between - )2 and wind speed offers a good method of
 

determining one if the other is known. For wind speeds of
 

40 knots or less, their relationship is reasonably well
 

established. At higher wind speeds the relationship has not
 

been verified.
 

5.2 BACKGROUND
 

The relationship between wind and waves has been obvious, even to
 

casual observers, since time immemorial. Early field and laboratory
 

studies provided generally unrelated information and hypotheses. The
 

fact that the randomness and irregularity of ocean wind waves defied
 

description by the earlier investigators led Rayleigh to write: "The
 

basic law of the Seaway is the apparent lack of any law." With the
 

turning of the century, and especially within the last thirty years,
 

statistical theory began to find its way into applicationsI . The
 

publications of Longuet-Higgins2 and Pierson3 began a new era in ocean
 

wind wave study.
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From the statistical theory, oceanographers learned that in the study
 

of random wind waves only the various statistical measures of the motion
 

can be regarded as significant observationally, or as predictable
 

theoretically. The fundamental measure of an unknown random wave field
 

is, of course, the joint probability density of the variables. .The
 

second moment of this probability density is of central importance
 

because the Fourier transform of it gives the wave energy spectrum which
 

measures the energy contained in a particular wave field. The wave energy
 

spectrum is of prime importance since it is readily measurable. Naturally,
 

the study of the wave energy spectra has become one of the central
 

problems of oceanography.
 

In the ocean, most, if not all, of the energy of the waves comes from
 

wind. However, the detailed physics involving the energy transfer between
 

wind and waves is still not completely known, in spite of the important
 

Phlis4-6 7-10 .
works of Phillips and Miles Numerous observations and theoretical
 

studies have revealed some definite statistical properties which represent
 

at least part of the whole story, and valuable working relationships between
 

some of the salient parameters involved. In order to serve the immediate
 

purpose, the properties of the high frequency end of the spectrum will be
 

examined first. Although the high frequency waves contain a very limited
 

amount of energy, sea surface slope is strongly dependent upon them.
 

Knowledge of the surface slope-wind relationship could provide the basis
 
- 1 4
 

for new measurement techniques (Hulburt, Schooley,1 2 Cox and Munk
1 3


Cox,1 5 and Stilwell 6).
 

The following is a review of what is known about the statistical
 

properties at the high frequency end of the wave spectrum (known as the
 

equilibrium range), and one aspect of their application.
 

5.3 THE EQUILIBRIUM RANGE OF THE SPECTRUM
 

The notion of an equilibrium range of a spectrum was first advanced
 

- 1 8 
by Kolmogoroff 1 7 in the study of turbulence. A similar idea was applied
 
19


in an ocean wave study by Phillips . The basic concept of an equilibrium 

range is the same both in turbulence and ocean waves, although the physical
 

processes involved are quite different.
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It is observed that as a turbulent wind blows across an ocean surface,
 

energy is continuously transferred to the sea, resulting in wave development,.
 

If the duration of the wind is sufficient, some components of the waves
 

presumably will continue to grow, while others, especially the high
 

frequency ones, will reach a state of saturation--limited by instability
 

in the form of breaking. The limiting configuration of a progressive wave
 
20
 

was studied by Stokes . He found that when the crest angle reached 1200, 

the acceleration of a fluid particle at the crest was equal to one halt
 

the acceleration of gravity, and at this point the crest, or top of the
 

wave, would break off. Subsequent observations by Gaillard21 confirmed
 

Stokes' calculation. Ocean waves, however, are irregular with components
 

in many directions and of different frequencies and wave lengths. Breaking
 

may occur: 1) under the same conditions as described by Stokes; 2) when
 

two crests of the wave pattern run together; 3) when a wave moves into
 

a region of high energy density; or 4) when short waves riding over the
 

crest of longer ones have an energy excess as a result of the radiation
 
22-23 

stress . At any rate, it might be reasonably asserted that the wave 

breaks at some locality when the fluid particles have an acceleration 

comparable to the acceleration of gravity (g). Energy is dissipated during 

breaking and at the same time supplied continuously from the wind. At 

some point, the amount of energy supplied just equals the amount dissipated

19
 

Under this assumption, Phillips ,
and the equilibrium state is reached. 


using dimensional analysis, defined the functional form of the frequency
 

spectrum for the equilibrium range:
 

@(n) = $g2n-5 nyo>> n >> n ()
 

where @(n) is the frequency spectrum, S is a constant, n is frequency in
 

cps, n is the frequency at the spectral maximum in cps, and n =(4g)i/4

0 Y Y 

is the typical frequency for capillary waves.
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Similarly, the wave number spectrum V(k) is given as:
 

0(k) = (-) ; k >> k >> k (2)
T y 0 

where B is a constant containing the angular dependency, k is the wave 

number at the spectral maximum, and k - (_S_1 is the typical wave number 

of capillary waves. 

Various observational results suggest that there is indeed a certain
 

range similar to Phillips equilibrium range. Empirical functions fitted
 

to the observation indicate a dependence of the -5 power of n or -4 power
 

of k. A summary of the dependence of the spectrum on frequency and the
 

values of the constant, 0, are given in Table 5-1.
 

Table 5-1. Observed Values of Equilibrium Range Constants.
 

Observers Spectrum g 2n-S Fetch
 

$S
 

Barnett and Wilkerson (1968)27 4.95 0-400 km
 

- 2
Burling (1959) 28  1.48xl0 5.5, 500-100 m
 

Hicks (1960)29 1.21xl0- 2 4.9 16-300 m
 

- 2
Kinsman (1960)3 0  1.04x10 4.5 1,700-3,000 m
 

Kitaigorodskii (1962) 0.65x10 - 2 5.5 

Pierson (1962)32 1.33x10 - 2 -5 300 km 

Longuet-Higgins, et al. (1963)3 3  .80xl0 ­ 2 -5 500 km 

For frequencies or wave numbers greater than n or k respectively,

y Y
 

the capillary force would become dominant rather than gravitational force.
 
24 25
 

The breaking of capillary waves was studied by Crapper and Schooley
 

In spite of the different physics involved, the same similarity theory
 
26
 

still applies. Phillips obtained
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*(n) = 'y2/3 n-7/3; n << n << n (3)
y()
 

i(k) =(k)B' ; << k<< k (4) 

where ' and B' are constants, n and k are the cut-off frequency and wave
 

number, respectively, at which viscous forces become important. Observa­

tions in the capillary wave range are scarce, but Cox 5, Hidy and 
Plate3 4
 

and Volkov's3 5 observations give some evidence of the'validity of the
 

relationship.
 

A few words of caution must be added here regarding the use of
 

the equilibrium range concept. First, the proposed spectrum function
 

represents the magnitude of wave spectrum only for a well-developed sea when
 

energy becomes saturated over a wide range of wave numbers, or frequencies,
 

manifested by the occurrence of fairly -sharp wave crests and intermittent
 

white caps. The sea under this condition is, presumably, statistically
 

stationary. During active development or decay, the above relationships
 

are not valid. The proposed spectrum, then, can be regarded as representing
 

the upper limit of the magnitude of the wave spectrum in these transient
 

states. Fortunately, the transient period (or distance) is not very long
 

and a quasi-stationary state can be realized within hours with wind
 

speeds of 30 to 40 knots or less, or a fetch of approximately 200 km.
 

Secondly, the cutoff frequencies of the spectrum are dictated at the
 

higher end by capillary forces (in the case of gravity wave spectrum)
 

and viscous forces (in case of capillary wave spectrum). At the lower
 

end the cutoff frequency is less definite. However, by considering the
 

3 6
development of the wind wave spectrum (Phillips6 , ' 3 7), the spectrum can be
 

taken for most practical purposes as the frequency (or wave number) of the
 

spectral maximum. The spectral maximum should occur, according to Phillips'
 

6
resonance theory4 '5 '2 6 , at the frequency or wave number having the
 

following relation
 

n ck . u (5) 
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where n and k are at spectral maximum, and U is the wind velocity.
0 -o . -2 
Using the relationship between n and k; i.e. n = gk, then 

U2
gk =n 	 k . (6)
0 0 

Hence
 

k
 o U2
 

or
 
n (7)

0 U
 

This theoretical result was subsequently confirmed by the observations
 
38 39 40 35 ,40
of Kitaigorodskii , Moskowitz3 , Pierson , and Volkov . Pierson's
 

results are 	summarized in Table 5-2.
 

Table 5-2. Some Characteristicd of Pierson's
 
(1959) Spectrum.
 

U cm/sec t hrs. f max. U fmax/g
 

1 110 10.5 0.11 0.012
 

2 106 13.5 0.11 0.012
 

3 148 10.5 0.08 0.012
 

4 148 13.5 0.08 0.012
 

5 143 16.5 0.07 0.011
 

6 175 14.5 0.07 0.012
 

7 171 17.5 0.06 0.011
 

NOTES: 1. 	U is the frictional velocity; it could be related
 
to U, the wind speed, directly. See for example
 
Pierson and Moskowitz41 .
 

2. t = duration of wind action.
 

Besides these observations, there are other attempts to develop an
 

empirical expression for the wave spectrum function. Among the better
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42

known earlier ones was that due to Neuman , who proposed the following
 

expression using wind velocity as a parameter:
 

2
 
4(n) = cn exp{ -2 2 (8)
 

Aside from other objections, the inconsistency of the dimensionality
 

makes it unlikely that it is representative of a genuine physical law.
 
43,44 28


Numerous other attempts have been made by Bretschneider4 , Burling 
45,46

and Darbyshire , to cite a few. But at that time the inclusion of
 

such a parameter as wind velocity by curve-fitting based on limited data
 

seems premature at best.
 

No major breakthrough was reported until Kitaigorodskii and
 
Kitaigorodskii3 8
 Kitaigorodskii and Strekalov

3 8'4 7 published their findings. 


assumed that the energy containing part of the wave spectrum is a function
 

of only four variables; i.e.
 

4(n) = F(n,g,U.,X) (9) 

where U. = frictional velocity = ($)I2 and X = fetch.
 

Then by dimensional analysis, Kitaigorodskii obtained the expression
 

(n) = g2 n-5 F1 (_ _, 2 (10)

9 U,
 

When the expression F1(-nIg
5 1 g U42) is normalized it does indicate that
 

Later, Pierson and Moskowitz
4 1
 

l(n) n approaches a constant value. 


2
 
g
 

made a slight modification of Kitaigorodskii's expression by simply
 

changing frictional velocity, U, to wind velocity,.U, and arrived at
 

the expression:
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n4
 
(n) 	 = a -

2 e 
5 
n
 

where a , $ are dimensionless constants, n is the frequency at spectralo dg2 -5
 

maximum and is equal to -. In both cases, 4(n) dg2 n as n >> no.

U0
 

This conclusion gives considerable support to the Phillips equilibrium
 

range theory.
 

5.4 SLOPE SPECTRUM
 

Similar to the energy spectrum discussed in the last section, other
 

spectral functions may also exhibit an equilibrium range. Considering
 

the frequency spectrum of the surface slope [Sa5(n)] at a fixed point, as
 
50
 

an example, Phillips obtains
 

2 a(x.t') 3 (x.tt + t) 

S(n) =- J cos nt dt (12) 
O8
 

0 

where xa, x8 are the horizontal vector components and C is the surface
 

elevation. In the equilibrium range, by dimensional analysis,
 

Sa(n) = 	ca$ n - nY >> n >> n (13)
 

where ca8 is a constant tensor. Under the assumption of statistical symmetry
 

with respect to the wind direction, c was determined to be
3 3
 

aa
 

2
c a = c1 1 + c 2 2 = 0.8xlO
-	 (14)
 

In the capillary range,
 

-i
 

Sa(n) = 	c'n , n << n <<n (15) 
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is not necessarily equal to C . An experimental study by Cox
1 5
 

and 0 


gives some support to the prediction.
 

Since the slope spectrum is derived from the product of derivatives
 

of the surface elevation, the relationship between them can be shown
 

schematically as in Fig. 5.1. Accordingly, the variance of surface slope is
 

given by
 

(fk)2 = 2 (kj dk 

k 

(16)
 

I 4J n 2 (n)dn 
gn 


n2
 

Equation (16) shows that the contribution to (V )2 is heavily weighed
 

4
by the factor k2 or n in the integrand. Thus a major contribution comes
 

from the high frequency (or wave number) end where a negligible amount of
 

energy is contained. However, due to the results of recent research in
 
1213,14 4 15 16


optical methods by Schooley1 2 , Cox and Munk ' , Cox , Stilwell and in
 

radar devices by Barnett and Wilkerson27 , both using the surface reflections,
 

the importance of the study of surface slopes has markedly increased. In
 

the following section an important application is presented.
 

5.5 THE RELATIONSHIP BETWEEN MEAN SQUARED SLOPE AND SURFACE WIND SPEED
 

48

In the first attempt to optically study ocean surface slopes, Hulburt
 

using sun glitter, concluded that the reflecting facets of the sea surface
 

occured most freuently at about 15*. No direct relationship between the
 

wind vector and (V )2 were found, but it was stated clearly that the wind
 

was the major cause of the change of (Vt) 2 .
 

13,14,484 12 15

Twenty years elapsed before Cox and Munk 3 ' ' Schooley , and Cox
 

conducted another series of experiments. The principle used in all the
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optical measurements of the surface slope was the same, but the importance
 

of the latter studies lay in a proposed relationship between (V )2
 

and the surface wind.
 

Schooley1 2 used flash photography taken from a bridge. He made no
 

serious attempt to find an empirical formula to describe the observations.
 

1 4 1 8 
At about the same time period, Cox and Munk1 3 , , studied sun glitter
 

photos taken from an airplane. The cases of a clean surface and a surface
 

covered with artificially induced oil slicks were both studied. Their
 

extensive measurements led them to claim that (Va) 2 varied linearly with
 

wind velocity. In an attempt to lend more support to their curve fitting
 

result, Neuman's spectrum was used to calculate the relationship approximately.
 

From the calculation, a linear relationship between (V )2 and U was indeed
 

obtained. However, since Neuman erroneously used 4(n)=n- 6 for high
 

frequency, the value of the calculation and the result are questionable.
 

Later Cox 1 5 made a laboratory study and concluded that the relationship
 

was not a simple linear one. Furthermore, the value becomes independent
 

of fetch after a short critical distance. These findings are in general
 

agreement with Phillips' equilibrium range theory.
 

Since Phillips' equilibrium range theory is consistent with numerous
 

independent observations it was used to derive a relationship between (V )
2
 

and U. As discussed in Section 4.3, the cutoff wave number could be taken
 

as k and k - . Then 
c o U2
 

k
 
2 c kc
 

S fk (k) dk=B log (17)
 

o 
k 

If k is much less than the capillary wave range; i.e. kc < Ic = (kl12
c c y Y 

then
 

k u2 

2
(V = B log C (18) 
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However, if kc is within or greater than the capillary wave range
 

then
 

2 k k
 
(V) B' log k + B log ( k)(19)
 

0Y 
When these calculations are plotted together with data from Cox 1 5 and
 

'1 4'48
Cox and Munk1 3 for the case of an oil slick which filtered out
 

almost completely waves with length less than 30 cm. the Phillips
 

calculation shows remarkable agreement. For the case with capillary
 

components, the agreement becomes less as wind velocity increases. This
 

could be due to the difficulty in measurement of (V )
2 as reported by
 

Cox and Munk.
 

Using Pierson!s4 1 spectrum and integrating from no =-& to some
 
- U 

frequency n, with the help of the dispersive relationship, gk = n, then
 

2- e_ e W dt
 

n 
2 2 (20)
 

k
 

This is of the same function form as (18). Since Pierson's formula
 

applies only to gravity waves, its usefulness is limited.
 

The relation between (V ) and U seems to be well defined both
 

experimentally and theoretically; however, the application of this
 

relationship is not without difficulty, especially when the wind
 

velocity becomes very high (40 knots or higher). The difficulties are
 

twofold. First, as the wind increases, the stability of the wave is
 

controlled not only by breaking but also by blow-off from the crest. The
 

validity of Phillips' equilibrium range theory under this &ondition has
 

not been carefully studied. Secondly, with increased breaking of the
 

energy-saturated waves, optical observation becomes more and more
 

difficult. White-caps tend to result in an over-estimation of the surface
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13 
slope . This, however, could be overcome by improving measuring 

techniques. (Clearly, the radar technique is a promising one.)
 

5.6 DIRECTIONAL CHARACTERISTICS OF OCEAN WAVE SPECTRA
 

Based upon the statistical approach to ocean wave study, the free
 

surface is represented as a sum of independent components of sinusoidal
 

waves of different amplitudes, phases, and directions of propagation.
 

The mathematical ideas involved in this representation are simple enough,
 

yet the inverse of the problem; i.e., to find those components which
 

accurately represent the random wave field, poses an extremely difficult
 

task for oceanographers. This, in essence, is the problem of finding a
 

two-dimensional wave spectrum for a random wave field.
 

The difficulties encountered in the measurement techniques necessary
 

to obtain good two-dimensional spectra remain almost insurmountable.
 

However, the practical need for this information has forced researchers
 

to seek a modus vivendi; i.e., to seek a limited goal of determining a
 

one-dimensional spectrum to represent an integrated effect of the actual
 

two-dimensional phenomenon. This one-dimensional spectrum could be 

obtained by means of a Fourier analysis of a measurement record at a 

single point. Even a one-point measurement was difficult to obtain in
 

the deep water a decade or so ago, because of the lack of a working platform.
 

The information contained in a one-dimensional spectrum is, indeed,
 

valuable as far as the total energy of a given sea state is concerned.
 

However, this information is far from complete. The directionality is
 

necessary not only from the practical aspects of wave prediction, mass
 

transport, impact of waves on coastal structures, etc., but also in the
 

basic study of the detailed physical processes involved in wave genera­

tion. The skewness of the surface distribution has important bearings
 

on radar and optical studies of the ocean surface itself.
 

A reasonably accurate characterization of these parameters has
 

evolved during the last decade through the persistent effort of many
 

researchers. These field studies have gradually revealed the statistical
 

properties of the ocean waves. The purpose of this discussion is to review
 

these efforts, and some of the salient results of the directional statis­

tical properties. These properties can be divided conveniently into two
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categories: 1) the probability structure of the ocean surface and 2) the
 

directional distribution of the energy in a two-dimensional spectrum.
 

The first deals with the geometrical shape of individual waves; the second
 

deals with the combined effects of the individual waves upon the wave
 

spectrum.
 

In order to understand these results, the processes of generation and
 

the mechanisms of modifying the waves will be discussed first. The process
 

of generation of waves on the ocean surface are summarized in the next 

section.
 

5.7 THEORY OF WAVE GENERATION BY WIND
 

The interactions between the atmosphere and the ocean appear in 

various forms. From the oceanic viewpoint and with the atmosphere as the
 

primary energy source, motion ranging from global circulations to micro­

scale turbulence are found. The progress in the study of ocean circulation
 
49 50


has been summarized by Stommel and in the study of waves, by Phillips
 

Only a few years ago, Ursell51, in a review paper on the theory of wave
 

generation by the wind, stated that all of the three basic elements for
 

determining the mechanism of wave generation were still wanting; namely,
 

a correct theory, a well-documented experimental study, and a demonstra­

tion of a good agreement between the two. This pronouncement served as
 

a great stimulation for the study of this problem. Within a year, two
 

independent theories by Phillips5 2 and Miles5 3 were advanced. Since then,
 

both theoretical and experimental works have resulted in tremendous progress.
 

A brief outline of the theoretical aspect is given below.
 

Phillips5 2 ,5 4 postulated the resonance mechanism of atmospheric
 

turbulent pressure and the surface waves. The air flow is always turbulent,
 

the pressure fluctuation in the air is, therefore, random. However, as
 

the turbulent air flows over a random ocean surface, interaction occurs.
 

The fluctuation of the pressure can be separated into two groups. The first
 

consists of the purely turbulent pressure fluctuations whose pattern is
 

everchauging as the eddies in the turbulence grow, interact and decay.
 

The second consists of a spatial pattern of pressure variation that travels
 

over the surface at a pressure pattern convective velocity. The existence
 

5-15
 



of this latter pattern was confirmed by observations of Willmarth and
 
55 

Wooldridge . To this semi-rigid convecting pressure fluctuation, Phillips 

assigned a relationship of the same wave number k as the surface waves.
 

The total pressure field thus could be expressed in Fourier-Stieltjes
 

representation as
 

d (k,t) = (v + iI) p e2kdA (k,t) + dw(k,t) (21)
 

where the pressure p(x,t) in the physical space is
 

I ik-x 

p(x,t) = dC(k,t) e }$~ (22) 

k 

and the surface elevation 4(xt) is
 

(Xt) J dA(k. t) e' (23)
 

k 

and dA(k't) is the purely random part uncorrelated to surface waves,
 

v,. are the coupling coefficients, c is the phase velocity of the surface
 

wave with wave number k, p is water density, and k is I.
 
W 
 -4
Through the linearized equations of motion, Phillips was able to
 

relate the surface wave spectrum, 4(a,) to the pressure spectrum i(k,T) as
 

'(aO) ~ k2 t f Tr(k,rT) cos [(c o l)cT] dT (24)-2(gp )o ' 

where T = time variable, t = duration of wind action, U = convective
 c 

velocity of pressure pattern approximately equal to the mean wind velocity.
 

There is sufficient evidence to support this theory. First, if there
 

is a rigidly convecting pressure pattern, and if the response mechanism is
 

indeed responsible for the wave generation, then waves of frequency n
 

would be expected to appear in a bimodal distribution in the two-dimensional
 

wave spectrum at angles +a dictated by the resonance condition. The
 

resonance condition is
 

n = k • kU=Wcosa (25)
 
-c -c 
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or
 

a = cos (-) = Cos ku2 (26) 
-­c 

-c 

Field observation by SWOP5 7 indicated that there was indeed a bimodal
 

distribution. Secondly, it resonance did occur, the components of waves
 

grow and the fastest should travel at approximately the same speed as
 

the mean wind, and the initial growth rate should be linear. This is
 
27
also supported by field observations of Barnett and Wilkerson
 

Complementary to Phillips' resonance theory, but physically quite
 

different, is the model suggested by Miles7 and augmented by Brooke
 

Benjamin5 8 , Lighthill59 and Phillips2 6 . Miles considered shear flow over
 

existing waves. The mechanism involved is the momentum transfer from
 

the perturbed shear flow of the wind to the perturbing waves; therefore,
 

this model depends crucially upon the wind profile over the waves. 

Based on this physical picture, Miles calculated the flux of momentum from 

the wind to the waves through a "matched layer", (where U(z.) = c with 

U(z) = mean wind velocity, c = phase velocity of the existing waves) as 

-T = P)]Izza [- ( (27) 

where pa = air density, U.(z) = mean wind velocity profile, and 3-= mean 
square vertical induced fluctuation of the air. 

Since the energy density E of the wave is related to its momentum M by 

E = Mc
 

the energy flux formula is
 

E '=Tc = k (28)wpac W! 

m 

60 26Subsequent works of Miles and Phillips uncovered a link between
 

the two different theories. From Miles' model one can calculate the
 

coupling coefficients between air pressure fluctuation and wave as
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pak f-2 -kz (9
22 3 (U cos a - c) e dz (29) 
Pc 0 

2{ (6) 
P p c2k2a2
 

Since V is definitely negative, the surface pressure should be 

exactly out of phase with the surface elevation. Confirmation by observa­
33- 61
tions were reported by Longuet-Higgins et al , and Shemdin and Hsu 

From the experimental results, it is believed that both Phillips'
 

and Miles' theories are correct to some extent. Phillips' resonance
 

theory was successful in initiating the wave motion, but it is not an
 

effective mechanism to feed in energy to support the continuous growth.
 

Miles' model, on the other hand, depends upon the pre-existing waves to
 

perturb the shear flow; therefore the trigger mechanism is missing.
 

These short-comings were partly taken care of by subsequent works. Yet,
 

another difficulty of the inability to incorporate the fully turbulent
 
6air flow in the theory is still unsolved (see, for example, Phillips6).
 

In spite of this, Phillips' and Miles' theories have successfully explained
 

many details in wind wave generation.
 

5.8 OTHER MECHANISMS OF WAVE GENERATION AND MODIFICATIONS
 

Of all the factors having dynamical influence on waves, the primary
 

one is, of course, the wind, which is responsible for generation, growth,
 

and even under special condition, decaying of the waves. However, the
 

wind is by no means the only mechanism that has dynamical consequence.
 

Once the energy is fed into the ocean, other processes become dominant
 

such as turbulence resonance and shear flow instability. These processes
 

cannot create energy, but they certainly transfer energy from one form
 

to another. Their results may be shown by a simple change of form of
 

waves, and ultimately change the probability structure. Some of these
 

mechanisms are discussed below.
 

(a) Wave-WAve'Interaction (non-resonant)
 

This involves the interaction of waves with their own higher
 

harmonies; or in other words, the higher order solutions of the classic
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wave equation such as Lamb , Pierson and De The higher order
 

contributions tend to modify the geometry of the wave structures.
 

(b) Wave-Wave Interaction (non-linear resonant)
 

While the bounded interaction discussed above only results
 

in the change of waveform, the non-linear resonant interaction
 

changes the wave pattern. It transfers energy from an existing
 

frequency to previously non-existing ones. The mechanism was
 

discovered by Phillips 3 7 for gravity waves, and then simplified
 
64,65 67
6 .66


and augmented by Phillips ' , Longuet-Higgins , Benny 

Hasselmann 68 '6 9 and Bretherton 70 . A similar resonance phenomenon
 
71


in capillary waves was discovered by McGoldrick . The mathematical
 

principle of this resonance is simple. Assume systems of interacting
 

waves expressed as
 

±n ir 
F2 are xr k • x - n tr=! r - r 

(30)
 
±m k z iXr
 
E brbe-r e +1(-z't )
y=±l 

where l is the product of the interaction, l is free surface eleva­

tion, and is the velocity potential. Using these expressions in
 

the first and second order equation, we can only get similarly
 

bounded resonance as in part (a). However, when the third order
 

equation is used; i.e.
 

a +9 a D24 3 12 a 2 D2 + 9
 

)z)t 2 + g @-Z-2 - g"at 
(31)
 

a 2 _2 2 V 1) )
j at z =
 u
9t u ­

the interaction of three primary waves of r = 1,2,3 will produce 

a fourth wave of wave number and frequency K4 and N4 respectively 

provide the resonance condition
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N, +N + N + N=1 

- 3 - 4- 2 

Quantitative measurements of resonance interacting waves were
 
72 73


conducted by McGoldrick et al and Longuet-iggins and Smith
 

Their results confirmed Phillips' theory.
 

In the case of a random ocean where there are infinitely many
 

chances to form the resonant quartets, the interaction mechanism
 

will produce wave components of all wave numbers of small energy
 

density, including, of course, those traveling against the wind.
 

(c) Scattering of Gravity Waves by Turbulence
 

Scattering of waves by turbulence has been studied by many
 
74authors. Some of the previous works were summarized by Batchelor
 

75
 
The true application to oceanic environment was advanced by Phillips
 

Physically, it should be fully expected that the presence of
 

random velocity fluctuations in the water of a velocity scale
 

comparable with particle velocity associated with wave motion and a
 

length scale comparable with the wavelength of existing waves will
 

result in the convective distortion of the wavefronts, and so the
 

establishment of a scattered wave field. In the ocean, it is well
 

known that because of wind-induced currents, waves, and wave
 

breakings, turbulence is always present in the surface layer. But
 

the lack of information on the turbulence on the ocean surface
 

layer seriously hampered detailed analysis of the interaction
 

between turbulence and waves. As a result, Phillips was forced to
 

consider only the weakly turbulent case when
 

Ut << c(k) (32)
 

where Ut is the r.m.s. turbulent velocity and c(k) is the Phase of the wave
 

of wave number k. Under this restriction, Phillips found that the
 

spectrum of the scattered waves s(k'8).will be
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(gk)i/2
 

where k is the scattered wave number, k is the incident wave number, 4(K)
 

is the wave number spectrum of turbulence and K is the wave number of
 

turbulence.
 

Furthermore, the scattering is most effective for a given S when
 

the scattered wave will have the magnitude of wave number equal to
 

the 	incident wave.
 

Unfortunately, due to the difficulty of measurement, no
 

well-documented evidence of any sort could be found either to
 

support or to dispute this result. However, since the physical
 

model used in this analysis is resonable, the analysis is rigorous
 

and 	there is no reason why the result should fail or change
 

drastically from that predicted even in a strongly turbulent case.
 

Here again a mechanism is present which will produce weak waves
 

traveling against the predominant direction of wind force.
 

(d) 	Others
 

Aside from the mechanisms discussed, other processes such as
 

generation of parasite capillary waves (Longuet-Higgins76), short
 

(Longuet-Higgins and Stewart77),
waves on current or riding on long waves 


attenuation of waves by breaking (Phillips 78), second-order resonant,
 

interaction between capillary waves (McGoldrick7 1) all contribute
 

to the change of waveform. But since their influence on the
 

directional distribution of energy, or on anisotropic properties
 

of the surface, is much smaller than the others, a detailed summary
 

is omitted.
 

5.9 	 PROBABILITY STRUCTURE OF THE OCEAN SURFACE
 

The 	ocean surface can be regarded as the sum of a large number of
 

independent wave components of different wave numbers, phases and
 

amplitudes. If the area under consideration is small compared to the
 

generating storm area, its statistical properties could be taken as
 

stationary. Furthermore, by the central limit theorem, the probability
 

distribution of the surface displacement should be Gaussian. Then
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= (2 1/2 e(/c (34) 

Field observations invariably indicate that to a first-order
 

approximation, the probability distribution is indeed Gaussian as
 

'8 0
 reported by Longuet-Higgins7 9 . However, because of the favored
 

direction of the wind force, and linear and non-linear wave-wave inter­

action, skewness is always introduced. Therefore, there are some higher
 

order modifications of the surface. For example, the third-order
 

correction to the Stokes irrotational wave indicates pointedness of the
 

crests. Careful field observation by Kinsman30 indeed substantiated this
 
81
 

prediction. Longuet-Higgins calculated the correction of the distribu­

tion from a Gaussian expression and found that the surface elevation
 

could be better approximated by the successive terms of a Gram-Charlier
 

series as
 

1 2 -3
 
P() = (2 Z 2 )1 /2 exp {(1/2) t 1[1 + (1/6) 3 1+. . .} (35) 

where
 
2 -2- 2 3
t = CA and H3 = t - 3t. 

On the other hand, the non-linear interaction and the favored direction
 

of wind force also changes the surface slope. Although the non-linear
 

effect studied by Phillips3 7 and Longuet-Higgins8 1 showed that the
 
-3 -2 3/2


change in skewness m3 = c3( ) was of the same order as the fourth 

power of surface slope, the wind effect has never been accurately calculated. 

Detailed field measurements reported by Cox and Munk1 3'4 8 showed the 

skewness much higher than could be accounted for by non-linear effects
 

alone.
 

Considering the random wave field as a whole, the cumulative effects
 

of the wind are manifested clearly in the directional energy distribution.
 

Inspection of the two-dimensional energy contours indicates that the
 

direction of wave energy distribution is skewed toward the wind direc­

tion. Even at high wave numbers where there 1s a considerable amount of
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scattering and smoothing, the skewness is still obvious.
 

5.10 METHODS OF MEASURING DIRECTIONAL SPECTRA AND SOME RESULTS
 

Since oceanographers first adopted a statistical approach to ocean
 

wave study, the effort to actually describe a given random ocean by a 

complete spectrum has continued. Unfortunately, the task has never been 

carried out with total success. The difficulty is twofold. Firstly, the 

difficulty arises from the basic statistical and mathematical tools, 

borrowed in whole or in part from other fields. Ideally, by the oceano­

grapher's definition, a complete wave spectrum of a given sea state will 

describe not only the total energy and the directional distribution of 

energy but, more precisely, the sense of the directional distribution. 

Secondly, by rigorous spectral analysis, under the assumption of 

homogeneity, the sense of the directional distribution of energy cannot 

be determined uniquely. This can be explained as follows. Take the 

surface elevation at position 4, and time t as 4(x . t), then at position 

x + r, and time t + T, we have (x + r, t + T). Their correlation function 

R(x,t; r,t) is 

R(x, t; r,T) 4(x,t) (x + r, t + z) (36)
 

Under the homogeneity assumption, the correlation function R(x,t; r,T)
 

should be independent of the origin of the coordinate system, therefore
 

R(x,t; r,T) reduces to R(r,T). By a simple translation of coordinates
 

in space and time,
 

R(rr) = R(-r,t) = R(r,-T) = R(-r,-T) (37) 

i.e. R(r,t) is an even function with respect to both r and T.
 

Now'since the spectrum function i(k,n) is defined as
 

= f(k,n) e dr dT (38)J JR(rT) 
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note 	that 4(k,n) has to be an even function with respect to k and n.
 

In other words, there is no difference between
 

i(k,n) and 4(-k,-n) or '(-k,n). 

Therefore, strictly speaking, we can get only directional information which
 

does not include the sense of the direction from traditional spectral
 

analysis. Of course, it must be understood that the ambiguity occurs only
 

when the homogeneity assumption is used, but whether this assumption really
 

holds is not known exactly. However, without this assumption, or if the
 

condition of homogeneity does not exist, then the data collected would be
 

representative of that particular place and time. At any rate, the infor­

mation contained in this conventional spectral analysis is not complete.
 

In order to resolve this dilemma of the ambiguity under the homogeneity
 

assumption, additional physical information has to be added independently
 

to the spectral analysis to specify the exact direction and sense which is
 

essential to the oceanographer's definition of a complete directional
 

spectrum. In simple cases such as in the study of swell or of waves with
 

well-defined crest lines, this additional physical information is easy to
 

obtain. However, in complicated random wave fields, where individual
 

waves are difficult to follow, the true direction of the wave propagation
 

can be known only if a complete time history of the whole wave field is
 

known. None of the measurement techniques developed to date will provide
 

the required information.
 

In spite of this difficult problem, some observations have been made,
 

limited, of course, by practicality and loaded with assumptions and
 

approximations. The following is a summary of the methods used and results
 

obtained.
 

(a) 	Stereo Photography
 

A photographic record of the instantaneous state of the sea
 

will undoubtedly contain the necessary information needed for deter-


This idea was first used by Barber
8 2
 

mining the directional spectrum. 


to obtain a qualitative estimation of the directional spectrum.
 

Later the New York University group embarked on an extensive stereo
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wave 	observation project 57 and produced a series of complete
 

evaluations of directional spectra (reported by Cote et al83 and
 

U'beroi84). Despite the considerable trouble taken, the results
 

obtained were not the real directional spectrum, but instead
 

[4(o,6) + 4(a,8 + T)], because of the built-in ambiguity of Tr in 

the spectrum analysis. This forced the investigators to assume that
 

the energy distribution was confined between (7/2,-7/2). This
 

assumption easily solved the directional ambiguity, andcould be
 

accepted as a first approximation for the energy containing range.
 

Unfortunately, in the light of the wave modification mechanisms
 

previously discussed, a fraction of waves with small, albeit non-zero
 

amounts of energy at high wave number can propagate against the mean
 

wind. In addition, there even exists the possibility of residual
 

low wave number swells coming from other possible directions
 

including the one against the wind. Though their omission might
 

not be crucial in energy considerations, the high wave number part
 

is important in determining the slope and curvature spectrum of the
 

sea; 	therefore, the result obtained by limiting the energy contained
 

between ( /2,- /2) is of questionable quality.
 

(b) 	Directional Array of Probes
 

The idea of using a linear array of probes for directional wave
 

8 6
 measurement was suggested by Barber 85 , but the only example of
 

measurement was for a single band of frequencies. The same idea was

87 	 88 

and Dreyer and Konyayev ,

later picked up by Konyayev and Dreyer 


but 	the results so far are still qualitative.
 

A slight alteration of this linear array of probes was to arrange
 

the probes at the vertex of a triangle. This was tried by Munk et a1
8 9
 

in observing long swells, and by Tsyplukhin9 0 in observing near shore
 

shallow water waves. In both cases, the waves were relatively simple
 

with 	the fixed direction of propagation; therefore, the results were
 

not 	representative of a truly random wave.
 

Krylov et al91 used the same setup of Tsyplukhin in relatively
 

deep 	water to obtain information on the angular energy spectrum which
 

is defined as
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4(O)e(~) do (39)
 

o 

where 4(o,6) is the two-dimensional spectrum. They found that the
 

best fit directional angular spectrum is a cosine power law such as
 

2 
a cos (0 - (40) 

where a is the principal direction of the spectrum. Later, Drylov
 

et al92 proposed an empirical formula for the directional spectrum;
 

(o,6) = f- -- 032 (coe) 6 exp (- (41)
27r 6 a ex 

a aT
 

where T is the average period. Comparison with observation is
 
0 

favorable, but compared to Phillips' equilibrium range theory1 9 the
 

dependence of 1/T0 coupled with the inconsistency of dimensionality
 

in the expression itself would undoubtedly limit its usefulness.
 

The idea of using the probe array method is theoretically sound
 

but impractical unless stable working platforms and large numbers
 

of densely deployed probes become easily accessible in deep water;
 

this severely limits its usefulness.
 

(c) Buoy Techniques
 

This idea was also first suggested by Barber 8 2 , but subsequently
 

developed by Longuet-Higgins2 and put in practice by an NIO group. The
 

instrumentation, measuring process and results were reported by
 

Longuet-Higgins80 , Longuet-Higgins et al93 , Cartwright and Smith9 4
 
95 

and Erwing . The principle involved using the freely floating buoy 

to measure , 3 /3x and 3r/y by gyroscopes, then relate these quantities 
to the first five Fourier components of the spectrum function. In 

this conversion, different combinations of coefficients will produce
 

slightly different results, with the same effect as using different
 

weighting functions in averaging, but comparisons with the data
 

suggested that cosine power laws gave the best fit. The results so
 

obtained are the most detailed and complete to date. Some of them are
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rendered in contour diagrams in Figs. 5.2, 5.3, and 5.4.
 

Several points should be brought up here. First, an interesting
 

comparison with theoretical prediction on resonance angle could be
 

made here. Consider the integral
 

2 0-0
2 0701 

1= i 16 sin - sin 2--((,O) do (42)
 

with Ol',2 = arbitrary fixed angles. We can find a set of 61,82 for
 

each given i(a,e) to minimize I. It can be shown that
 

0 = 1/2 (e + 02)
 

is approximately the main direction of the spectrum, while
 

12(01 - 02)
/= 


is approximately the r.m.s. angular width of the energy distribution. 

Comparison of i with Phillips' resonance angle shows the experimental 

points are low but not inconsistent with the theoretical result. 

Secondly, there is no clear bimodal distribution of energy, instead 

the best approximation is a cosine power law as 

s
4'(o,0) - (cos 1/20)2 (43)
 

where s varies with frequency. This power law dependency was
 

reported both by Longuet-Higgins et al93 and by Krylov 
et al9 1'92 

through different methods of measurements. From the form of Longuet-

Higgins' expression, it can seem that as s decreases so does the 

dependence of 4 on 0. For a special case of s = 0, the distribution 

of energy will be isotropic. At high frequencies the value of s is
 

indeed very small. Therefore, the angular range of energy distribution
 

could be expected to be fairly wide. A word of caution should be added.
 

Although both Longuet-Higgins and Krylov suggested the cosine power
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law, and both their power indices decrease with increasing frequency, 

there is a cruicial difference. In Krylov's expression, energy distribu­

tion is confirmed in a half plane bounded by (f ,j), as implied by the 

dependence of cos ($-a); while in the Longuet-Higgins expression the 

dependency is on cos -; thus energy could be coming from the other side 

of the half plane at high frequencies. Considering the modification 

mechanism the Longuet-Higgins form seems more realistic. 

Thirdly, the energy spectra contour diagram shows that skewness toward
 

the wind directions is apparent, but that energy of small intensity is propa­

gating against the wind. This upwind propagation of energy could easily be
 

accounted for by one or more of the mechanisms discussed earlier. The
 

skewness could be attributed to the direction from which the wind is blowing
 

and also to the attenuation effect under adverse winds.
 

Fourthly, the integrated spectrum over all angular contributions shows
 

the existence of an equilibrium range.
 

(d). 	Measurements of Orbital Velocity of Waves and Pressure
 
and Their Use in Determining the Directional Spectrum
 

This idea was first suggested by Nagata9 6 and later developed by
 

Bowden and White9 7 and Simpson 9 8 for measurements in England. The method
 

of deriving the directional spectral information from velocity and
 

pressure measurements is very similar to the buoy technique. Assuming
 

there is a potential function for the wave motion,
 

U=- 1 v and p =1 " (44) 
ax 8y g 3T 

then applying Fourier analysis to the record data of u, v, and p, the first
 

five 	Fourier components of the directional spectrum can be obtained.
 

a. 	 Other Methods
 

9 9
 
sun glitter as reported by Stilwell
Other methods, such as use of 


have not been fully evaluated. The 1800 ambiguity is inherent.
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APPENDIX A
 

This Appendix contains a number of waveforms which resulted from the
 

computer simulation study of the altimeter. Each series of figures is
 

preceeded by a short description of the simulation parameters.
 

A-I
 



Figures A-i through A-4 illustrate typical simulated results of 

square-law (E2) and linear (E) detector waveforms for a 50 ns rectangular
 

pulse. These data correspond to the backscattered signal for the limiting 

case of a fast rise-time transmitter pulse, wide-band receiver, and 

infinite signal-to-noise ratio.
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Figures A-5 through A-9 illustrate typical simulated results of
 

square-law (E ) and linear (E) detector waveforms for a 50 ns pulse of 

Gaussian shape and for noise-free reception. These data are representative 

of the waveforms for a matched-filter receiver. 
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Figures A-9 and A-10 are comparable to the data shown in Figure 2-3 of the
 

text, except that new random numbers were used for both signal and
 

noise in Figure A-l0.
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Fig. A-10. Typical Simulated Results of Square-Law and Linear Detector Waveforms
 
For a 50 ns Gaussian Pulse, SNR = 20 db (Second Computation)
 



This section contains several double-delay differencing results. Figures A-l
 

and A-12 show the effect of receiver noise bandwidth and comparison of
 

Figures A-l and A-13 demonstrates the effect of new random numbers (for
 

both signal and noise) on the waveforms involved in double-delay
 

differencing. Additional double-delay differencer output waveforms are
 

shown in Figures A-14 through A-16. Figures A-17 and A-18 show the
 

double-delay differencer output for a Gaussian-shaped pulse, when the
 

input is a 50 case average for SNR=- and 30 db, respectively.
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Figures A-19 through A-26 show the results obtained by averaging 50
 

individual waveforms, for various signal and noise conditions.
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APPENDIX B
 

THEORETICAL ALTITUDE MEASUREMENT ANALYSIS
 

This appendix contains the results of a theoretical analysis of
 

altitude errors for a double-delay processor type of altimeter. The
 

transient region of the sea-return signal is modeled by the technique
 

shown in Fig. B-I.
 

Whtenosenction 
 IF Filter
 

Fig. B-1. Signal generation model.
 

This signal is then combined with thermal noise, fed into a square
 

law detector, and finally processed by a double-delay differencer and
 

zero-crossing extractor. Exponential type autocorrelations were used in the
 

analysis because of the difficulty in obtaining closed-form expressions
 

with other functions such as the Gaussian. The purpose of the signal model
 

(Fig. B-l) is to account for pre-detection filtering characteristics in
 

the return signal. These details will be given first.
 

Referring to Fig. B-l, the input autocorrelation function for the
 

noise is assumed to be
 

Rxx(t 1 ,t 2 ) = Sa6(t 1-t2) 0 < tl,t2 f T (B-i) 

The output of the gating function is nonstationary noise with the
 

properties
 

S06(t1 - t2 ) U(tl) U(t 2 ) 0 < tlt 2 < (B-2) 

B-i
 



where U(') is the unit step function. For an IF filter impulse response
 

-at U(t), the output correlation Ryy(tlt2) is given by
 

+0
 

S f(t U() (B-3)
Ryx(tlt 2) = j 1 -T-t2) U(t1-T) U(t2) e- d-r 

(t1 variable)
 

S(t2) e-a(t1 -t2) U(tl-t2)
= 

-a(tl-t2) 

R(tilt2 ) = Se U(tl-t 2 ) U(t 2 ) (B-4) 

Ryy(tl t2 ) = So e U(tl-t2+T) U(t2 -.)e-aT U(T) dT
 

(t2 variable)
 

and
 

Ryy(t t2) = 0 -t e -2a, U(t1-t2+r) U(t2-T) U(T) dT (B-5)te 2)
1
 

where
 

U(tl-t2 +T) + U(.) = 1 for T > t2-t1 

U(t 2-) ' U(.) = 1 for T < t2 

U(T) + U(.) = 1 for T > 0 

The integration of (B-5) gives,
 

2

-a(tl-t2) -2at 


e ­

Ryy(tl't2) = So -2a e
 

-at1 [eat2 -t 2]
 

o a 1 2
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and 

kt 

yy= 

)e 

So 

-R(t1-t2) e 2
-2ar 

-2a e 
t2-t1 

-t 2a0.el2 
FettlL 

- a t 

; t2 > ti 

Further Algebraic substitution yields the result, 

Ryy(t1 ,t2) = 
-at1 

Soe sinh at2 ; t2 < t1 (B-6) 

= 

-at
2 

S a sinh atl; t1 < t2 

y~t)2/T 

y(L)DETECTOR 

_ SQUARE LAW 

z(t) 

n(t) 

Fig. B-2. Detector model. 

Assuming that the signal is a (non-stationary) narrow-band Gaussian 

process to which the thermal noise 

R n(T) = N e- 1 I1 (B-7) 

is added, the output of the square-law detector z(t) (see Fig. B-2) is 

derived as follows: 
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2
 
= [y(t) + n(t)]
z(t) 


Rzz(t ,t 2 ) = E{z(t1 ) z(t2)}
 

2
zz 
= E{[y(t1 ) + n(t] [y(t 2 ) + n(t2)11
 

= E{y 2 (t1 ) y2 (t2 ) + 2y
2 (t )> 2 )Y(t 2 ) + y

2 (t )n2 (t2 ) 

+ 2n(t) 	 1 y2 (t2) + 4n(t1 ) n(t2)y(t i ) Y(t 2 )+2nt 1 ) 

+ 	 2 (t) y 2 (t2 ) + 2n
2 (t) (t2) + ) 

(t2} 

2(l n (t2 }
)2 


= E{y2(t )} 	E{ y2(t2) + 2E2 {y(t 1 ) y(t2)} 

+ E{y2(t)} 	E {n2(t2) + 2E2 y 1n(t 2)}
 

+ 4E {n(t1 ) n(t 2 )1 E {y(t1 ) Y(t 2 )}
 

+ E{n 2 (t1 )} 	E {y
2 (t2) + 2En (t2 )}
 

+ E{n 2 (t1 )I E {n2 (t2 )}+ 2E
2 {n(t1 ) n(t 2)}
 

Note: indicates uncorrelated term.
 

R (t1,t2 ) =R (t1 ,tl) R (t2 ,t2 ) + 	2Ry
2 (tl,t2)
 

+ N Ryy(t , t) + 4Rn(t 1 ,t 2) Ryy (t 1t2) 	 (B-8) 

NRyy(t2t2 	 2 + 2 yy2
 

2
+ Not 2 t + N (t,t 2)
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-Collecting the previous results, the mean square output 'of Square Law
 

Detector is
 

2 6 S-- i -at . o -at 2(3-9) 

z = 3S e- sinh a 2 + o_____0oe sinh at + 3N 2 

The signal-to-noise ratio (SNR) at detector output is,
 

S(0)o[ ­e
 at sinh at
 
SNR = (B-10)
 

2(to) [I e -at sinh at +1 
0
 

Some of the above results have been given for purposes of documentation.
 

The autocorrelation at the output of the double-delay differencer is readily
 

derived, however, the ,zero-crossing solution has not been obtained.
 

Approximate results will now be discussed.
 

Referring to the idealized waveforms shown in Fig. B-3, the variance
 

at the instant of zero-crossing can be estimated as follows:
 

TT 1,t 2 z 

/ t t
 

3d
 

Figure B-3. Differencer characteristic.
 

Only two stages of the differencing operation are necessary for the discussion.
 

The variance at the point zero crossing t2 is for t2 > t I
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E {[z(t2) - 2z(t1)] } - E2{z(t 2) - 2z(tl)1 

= E {z2 (t2) 1 - E2{z(t2 ) 1 - 2E{z(t 1 ) z(t 2 )} 

+ 4 (E{z 2 (t1 )} - E2{z(tl)} + 2E{z(t1 )} E {z(t 2)}
 

= Rzz (t 2 ,t 2 ) - 2Rzz(t ,t 2 ) + 4 Rzz(tlt 1 ) 

(B-li) 
P22(t2) 4 2 (t) 2 p z (t2)z + t ) 


where jz is the mean value, i.e.,
 

S0 -at 
Cz - e sinh at + N (B-12)(t) 


Substituting from (6), (8) and (9) with
 

T 3T
 
= 2 2 2 

and for the matched conditions,
 

1
T 

a
 

the variance at the zero crossing normalized to a unit mean value is
 

a = 2.7S + 38S N + 31.6N (B13) 

This amplitude variance can be scaled to a time variance as 

at = az 7-v -1 

t Ze \dt/ 
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where the mean slope is from Fig. B-3 approximately Ivolt
 
(T = pulse length, in n.s.). Using an altitude uncertainty of
 

CT 
a =-2
 

the final altitude error estimate is
 

a 0.15T CO.,; + 9.5(SNR) 1 + 7.9 (SNR)-27Ca v n (B-14)
 

where n is the number of samples.
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Appendix C
 

This appendix presents the results of a brief survey of prior work in
 

estimation theory from the standpoint of the altimeter problem. The objective
 

of the survey is to compare optimum altitude extraction schemes
 

with the ad hoc threshold, split-gate, and delay differencing techniques.
 

Since the altimeter signal constitutes return from the sea-surface with
 

simultaneous range and doppler spreading, the target scattering function
 

a (T,f) approach is adopted. The received signal characteristics are
 

considered prior to discussing optimal processing techniques.
 

The basis for assuming that the scattered signal fluctuations will
 

be Rayleigh distributed (at the output of a linear detector) was discussed,
 

in Section III of this report. The~tysical modeling of the scattering
 

process relative to a first-order convolutional model of the altimeter
 

signal can be established as follows: The signal s(t) reflected from a
 

small region of the sea-surface, with a two-way time delay r, will 

be a sample function of the clutter process, i.e.,
 

S (t) =a ns(t- ) (1)n 

where a , is proportional to the scattering magnitude and inversly 

proportional to range squared, within the region illuminated. The total
 

received signal during a time interval T is obtained by summing terms 

i.e.,
 

N T T() 
so(t) = a s(t-) < T < T(2)

n0 n 2n - U 2 

Since
 

s(t) * 6(t - T) = s(t), 6(t-t 1 -T) dt 1=s(t-T){ 
this result can be expressed as the convolution (*) of s(t) with an impulse
 

train 6(t-Tn).
 

•"optimum" in the sense that some index of performance is minimized
 

(or maximized).
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Therefore
 

N 
so(t) 1 s(t) * (t- n) (3:n=ln 

which can formally be written as
 
N 

s (t) = s(t) * 6(t-T) (4)n
n,=, 


This last form places in.evidence the impulse response nature of the sea
 

return. The impulse response-will be non-stationary if the range (or time)
 

dependence of the n 's is taken into account. The stationary assumptionn 
should certainly be valid for the altimeter problem. Equation 4 shows
 

that the impulse response of the sea surface can be conceptualized as
 

arising from a collection of discrete reflectors of sizes a and delay t .
 n n 
This is essentially the concept used in the simulation. Use of terms such
 

as impulse response of spread function to describe sea scattering are not
 

precise, since these idealizations can be described in the mean only. Also,
 

the impulse response cannot be rigorously defined in terms of scatter
 

obtained by illuminating an infinitesimal area containing a normal incidence
 

diffraction element. Equation 4 is therefore considered to consist of a
 

convolution of a signal with a pseudo-impulse response.
 

For the altimeter problem, the clutter impulse response from (4) is
 

N 
hc(t) = aan (t-Tn). (5) 

n=1 

Ocean surface correlation has been neglected thus far in the discussion. 

Arguments given in Section IV indicate that the sea return correlation time
 

at the altimeter can be less than one nanosecond. Therefore, for the
 

present purposes the delta function concept will be valid for time-increments
 

of one nanosecond or greater, or signal bandwidths less than about 1000 MHz,
 

for normal-incidence altimeter geometry. On the above basis, samples of the
 

sea-surface impulse response can be generated by selecting random numbers.
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Assuming that the clutter is "frozen" during the period of the r-f pulse
 

(rectangular of length T,) the scattered signal would be of the form
 

h (t - T) * [U(t) - U(t - T)]
 
c 

where U(t) is a step function.
 

The pulse response for a particular sample function of h thus consists
 

of a transient period (the integral of the impulse response) followed by a
 

steady state period in which the output is a moving average over the time
 

interval T. The sample functions given in Fig. 2-1 are examples of
 

detected sea-return for rectangular pulse illumination.
 

This model of sea-return also leads to the Rayleigh description of
 

radar return. The scattered signal will be a sum of itasors.
 

Je
n
 
U e 

n 

This expression, which consists of a random collection of phasors, leads
 

to the well known Rayleigh probability distribution. Since the step
 

response is the integral of the impulse response, the Rayleigh model
 

can be shown to lead to a time-varying Gaussian envelope distribution of
 

the form P(v) 14 I exp)It(
 

where yt is the process variance. P(v) will be a Wiener Levy process 2
 

in which the variance increases linearly with time. For the above
 

model the spectrum (the Fourier transform of hc(t)) will be nearly
 

constant up to some frequency on the order of the reciprocal of the correlation
 

time (<I ns). The bandwidth requirements for a signal which accurately
 

probes the sea-return impulse response can thus be estimated. Visualizing
 

the above described spectrum as one corresponding to a linear system, it
 

is obvious that the exploring signal must contain frequency components
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that extend throughout the transform of h (t). Therefore a signal that
 

is designed to make complete measurements of the impulse response
 

sample functions must contain frequency components in the gigahertz
 

range. The measurement of this quantity is of concern in the radar
 

altimeter design. As discussed in Section II, one of the problems in
 

design of a system which attempts to estimate the mean value of a fluctuating
 

signal, is the problem of obtaining an adequate number of independent
 

samples. For a transmitted pulse length in the order of 50 nanoseconds,
 

errors arising from self noise appear to be comparable to thermal noise errors.
 

Therefore design of a precision altimeter may greatly benefit from
 

improved knowledge of the characteristics of the received signal. Conventional
 

(non-adaptive) matched filter IF bandwidth criteria may not be appropriate
 

since, for unequal errors in the two sources, an optimum bandwidth would be
 

expected to exist.
 

With these qualitative remarks on signal processing considerations,
 

the subjects of detection and parameter estimation will be considered. The
 

parameter estimation problem is simplified by considering signals
 

existing in the IF, since the statistics are time-varying Gaussian at
 

this point. Otherwise, non-Gaussian statistics must be considered.
 

Neglecting, for the time being, the non-deterministic nature of the
 

scattered signal, the optimum processor for measuring range (time of arrival)
 

in the presence of additive Gaussian noise will be considered. For a
 

partially coherent system the processor shown in Fig. C-i is optimum. This
 

processor consists of quadrature detectors, matched filters, and a bank
 
3-4 

of correlators
 

The limitation of the above theory is that it does not take into account
 

the random nature of the received signal. The fluctuating altimeter
 

signal is strongly akin to multipath signals encountered in radar
 

astronomy and scatter communications. The solution to this problem, due to
 

Kailath5 , is diagrammed in Fig. C-2. The estimation filter H shown in
 

Fig. C-2 is derived from the equation
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Local
Loclator (Envelope) 2 

Oscillator 

phse 

t a che2 
ffefilter 

Fig. C-1. Hatched Filter Processor for Estimating Time Delay
 



H ( )dt 
0 

Fig. C-2., Optimum Filter Due to Kailath,
 



11= (l+AAsy)
 
n sy)
 

where A is the noise covariance and A is the covariance of the channel
 
n sy
 

output y(t).
 

The scattering function C (T) approach developed by Price and
 

Green 6 and discussed by Evans and Hagfors 7 will be reviewed next. This
 

approach is based on the likelihood ratio of the form
 

Ta 

SWOt) WO(t') g (t,t') dt dt'
 

-T 
0
 
2
 

Where T is the observation time,
 
0
 

W°0 is a sample observation of the received signal, and
 

g is the echo correlation function.
 

This last quantity is related to the scattering function through the
 

relationship 

(t,t') = Re [exp [jw (t - tI)3 x(t - T) X*(t'- T) L (t - t', T) dT] 

in which X(') is the complex transmitted envelope and L is given by 
y 

Ly(AtT) = ffr(w T ) eJWAt dw
 

The solution to this set of equations provides what is termed the
 

"practically optimum" processor
'I 7 . The optimum range estimation technique, 

for a target spread in both delay and Doppler, consists of a bank of 

processors spaced in range and the receiver chooses the processor exhibiting 

the largest output. This filter shown in Fig. C-3 is termed a weighted
 

radiometer, in contrast to a matched filter envelope detector. The first
 

filter shown in this figure is one matched to the transmission replica
 

s(t). This is followed by a squarer (envelope detector) and a filter matched
 

to the mean target delay characteristics. The impulse response of the latter
 

is
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h(t) = H2((-t) 

where H2(t) is the square of the filter matched to the scattering function
 

a (Wot). Thus for fluctuations small relative to the spectrum of s(t),
 

the impulse response is essentially C(t). This form of processor is shown
 

in Ref. 7 to be optimum if 1) a Gaussian pulse is used, 2) a(T,w) is
 

factorable in tand w, and 3) if the observations extend over all time.
 

atln [ Filter Matchedl 

m L° x IL H m l
received signal function wavefor i 

Fig. C-3.
 

The implementation of such a processor in the altimeter does not
 

appear promising. The only novel feature is the video filter matched to the
 

target time-profile. Based on our previous discussion, the filter would
 

have an impulse response of the type shown in Fig. 4-C.
 

h(t)
 

t=O
 

Fig. C-4.
 

In practice, realizability would require some time delay. However, its
 

general form appears to be an "integrate and dump" circuit, which is
 

similar to the split-gate concept studied on the altimeter program.
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This discussion indicates that the synthesis of the above type of
 

optimum processors will not yield substantial improvements over the present
 

ad hoc techniques. The areas of waveform synthesis and adaptive filtering
 

should be investigated.
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APPENDIX D
 

Analysis of Ocean Surface Effects on the ReceivedWaveform
 

In order to account for the rough sea surface, it is necessary to
 

compute the density of stationary points per unit area as a function
 
1


of height above the mean sea surface. Rice has examined the distribu­

tion of local maxima and minima for a bandlimited signal, which corres­
.2 

ponds to a one-dimensional sea. Longuet-Higgins examined the density 

of sp'ecular points with height above the sea surface. Making use of
 

the latter work and the fact that the density of stationary points
 

(specular points for normal incidence illumination) is four times the
 

density of the maximum points, the distribution ,of stationary points per
 

unit area may be established as a function of height above mean sea level
 

(msl).
 

Formally, the required probability is given by
 

= -1/2 e + 2l4 z + ZyyM 5(20)5/2 
 x yy 
 xx
 

+ 2z z M4 + N + z2 M 3 dz dz
 
xx yy 4 44 yy 55 xx yy 

where dp is the probability that a maximum exists between z and z + dz.
 

z is the height of the surface above msl (a function of x and y), the
 

position coordinates on the mean surface, and
 

a2z
 
2
xx x


a2z
 

yy 3 

and Mi. are elements of the correlation matrix for the random variables
 

dz 3z 32z 32 z2 z, y ,-' =x- IMI is the determinant of the correlation matrix.- xL 


The elements of the correlation matrix can be related to derivatives
 

of the correlation function of the surface (and hence to the energy
 

spectrum). For example:
 

HI = (0) the mean squared height of surface, 

:M *Iit=j k S(k k >-dk dk
14 22 x=y=O x y x y 
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--.a = -I k2S(k ,k ) dk dk15 
 y x=y= y x y x y
 

44 = -44XY= ° x k4(x k ) dkxdky
 

M = Ix=y=0 = S(kxky) dk dky
3¢ ff k2 k2 


M a'4* kt4 u~c k
f=='f 6~k dk
55= xy0J y x y x y 

2This approach cannot be pursued because the moments involving k and
 

k4 
are not known to sufficient accuracy. For presently available oceano­

graphic spectra, the last three integrals are infinite.
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