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FIRST ORDER PERTURBATIONS OF AN ORBIT BY

A MASS ANOMALY
Devid E. Smith

ABSTRACT
The first order short period perturbations of a
satellites position and the first order long period per-
turbations of the orbital elements by a mass anomaly

(mascon) are developed.
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FIRST ORDER PERTURBATIONS OF AN ORBIT BY

A MASS ANOMALY

INTRODUCTION

Mass concentrations on the moon have been discovered {ron: the analysis of
the orbits of lunar satellites (see, for example, references 1, 2, 3) and these
mascons, as they are usually called, have made the determination of orbits of
lunar satellites difficult and their prediction rather unreliable.

The effect of 2 mass concentration is, in certain respects, similar to that
of a third body except that the mass concentration is entirely inside the orbit of
the spacecraft and is in a fixed relationship with respect to the primary body.
This similarity, however, enables the perturbing effects of a mascon to be calcu-
lated from a very restricted three body approach as might be em ployed, for
example, in computing the first order effect of the moon on a near Earth satellite.

This is the approach that has been followed here. The disturbing function of
a mascon has been obtained and used to develop the first order short and long

period perturbations of the orbit of a spacecraft.

DISTURBING POTENTIAL OF A MASCON

Let us consider the potential at the point P (x, y, z) due to amascon, m, at
(X, Y, Z) and another mass (M - m) at (xppy;02,). Let the origin of the co-
ordinate system be at the center of gravity of the two masses (see Figure 1) and
let the distances of P from m, the origin and (M - m) be ¢. r. £;, respectively

The potential (V) at P can therefore be written.



GM-m) +Gm

\ (1)

1 e

Further, because the two masses m and (M - m) are in a fixed relationship, the
disturbing potential is the difference between the potential at P and the potential

of the central force term alone at P. Now the potential of the central force term
is

aM
r

and hence the disturbing potential (A V ) can be written as

av-v_SY4
r
=G(M-m) +Gm -GM @)
£ £~ r

From the evaluation so far undertaken the size of a mascon is of the order
of 10 "° of the moon's mass so we can justifiably neglect terms of order (m/M)2.

In addition, because the origin of the coordinate system is at the center of gravity,

we have
--r—l =f—l=ﬁ D 4+ terms of order —m— ’ 3)
R X Y ~w’ "



and

Hom @)
r M

where r, is the distance of (M - m) from the origin. Therefore, neglecting terms

of order (mM)? we have from Figure 1

1 I
1 == (1 -—cos o) 6)
pl r r
and equation 2 can be written
szcm[l_l_w:t] (6)
o T 2

In addition, from Figure 1, we have

xX + yY + zZ (N

COS ¢ =
rR

and therefore the disturbing potential of a mascon can be writtea
p T 3

szcm[l_l_@_w_uz_a]
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From the disturbing potential we can obtain the disturbing acceleration, of

which the x~component is

1

3 1
-S-x (AV) =-Gnm ("‘3 - ’_3> (X - X) __3_)(‘ (xX + yY + ZZ) (9)
e r 3

with similar expressions for the y and z components. In order to develop the
perturbations to the elements we reguire the components of the disturbing
acceleration with respect to the orbit. Let the component acting along the radius
vector be R, the component acting perpendicularly to the orbit plane S and the

component in the orbit plane actirg perpendicularly toR be Q, then

R-4 2 2 2 10
R=4, = (V) +my > AV + 0y~ (AV) (10)
S-4 9 ] 2 11)
S =4, (&) +m, oy BV +m2 5 (D)
3 3 9 A 12
Q- £3§x (AV) 4+ my %, (AV) +n, =, (AV) (12)
where
(£,. my, n;) ., (f,. my.n,) and (45 my ny)
are the direction cosines of R ,6 and S.
From Figure 2 we have, following the method of Cook (reference 4),
"ﬂ :.i, m :_y_, n _:E.
177 1 N 1 N (13)

4, =cos O sinu - sinQ cosucos i



m, =~ sin{lsinu + cos{l cosucos 1

3 . (14)
112 = COSUusini

{3 = sin Qsin i

m; = - cOs sin 1 (15)

ﬂ3 = COSs 1

where

Q1 is the right ascension of the node
u is the argument of latitude

1 is the orbital inclination

If the position of the mascon is right ascension a and declination  , then we

also have

X=Rcos § cosa
Y =Rcos 3 sina
Z =R sin §

The distance p of the satellite from the mascon can be obtained in terms

of r, R and ¢ using the cosine rule which, upon expansion, can be written as



—1-3 :-1-3 [1 +3%cos¢>-‘2‘ (-15') (1 - 5 cos? <Z>) - --]

With the aid of equations 9 through 17 we can write the major terms in the

components of the disturbing acceleration as follows:

— 2
R :Q_n_1<3_l}_> [:1 _3 (A2 +B2)- 3ABsin2u 3 (A2—B2)cos 2 u] (18)
3 2r 2 2
=  Gm [3R? 1 /.2 2\ .
Q—r—s(-T)[ABcos 2u -5 (A —B)sm2u (19)
— 2
S:@(?&)C[Acosu+33imu] (20)
AT
where
A =cos § cos (a - ) (21)
B=sini sin § 4 cos i cos § sin (a - Q) (22)
C=cos i sin § - sin i cos & sin (a - Q) (23)

The notation used above is the same as that used by Cook in reference 4 where
details of the method employed here may be found. The terms neglected in

3
equations 18, 19 and 20 correspond to terms of order(R/r)and above in equation 17.



PERTURBATION EQUATIONS

The perturbations to the elliptic elements as a result of the disturbing ac-

celeration are given by Lagrange's Planetary Equations. One form of these

equations (reierences 4 and 5) accurate to order (m/M), is

2 _ —
(E :.?.r_-[Re sin & +-I:— Q:I

dég n2ap
2 [ _
_d_e.: r [Rsin6+Q(cost9+cosE)}
dé n?ad
dQ_grssinu
d6 n?a’ psini
di_§racosu
do n2a3p
L2 — —
fi_“‘_:r [.Rcos@+(l+-£)Qsin@i]~iQCosi
d6 n?ade p dé
do 23R

(24)

(25)

(26)

(27)

(28)

(29)



where

U:M—Indt

a

o

and

1s the semi-major axis

is the eccentricity

is the argument of perigee

is the mean anomaly

is the eccentric anomaly

is the true anomaly

is the mean motion

p=a(l -e?)

In addition to the Keplerian elements it is of interest to know the perturba-

tions to radial distance (r), position in the orbit and direction of travel. The

&

latter is effectively given by the short-period perturbations of i for mascons

near the equator but the perturbation equations for r and position in the orbit

need to be derived.

The radial distance is given by

P
1l iecosd

(30)



and hence

dr er? . . r da r ., de 31)
— e w— O = e em— 2 —
o " Sin s (2ae + r cos ) qc

Substituting for da/dc and de/d ¢ from equations 24 and 25 and simplifying leads

to
dr _erzsi“§: rf [sinGcos 6.§+(2 s LCos E_pcos :)Q] 32)
d- s nza3p ae re
for the instantaneous perturbations of radial distance.
The mean anomaly M has been defined as
M=o +jndt (33)
and hence

dM do dn

=== Eade

dé ~ dé *J- dé

= :—g + S J‘rz -g% dé
233 (1—82 )1/2
(34)

2\1/2 —_ _
—d"-f’il:_‘il_.“'r" (Resing +2 Q)do
r

dé6 n?adp?



Substituting for do/d ¢ from equation 29 leads to

dM de . dQ
um 1 - e)1/2 | C& ai
d‘9+( e’) [d6+cosxde]

. 2.3 (1_eHy2 .3 3(1- e®H)V2 |1 (§esint?+26)d5 (35)
- n2adp - -t -nzaspz r

where the left hand side is effectively the perturbation to the along track

position.

SHORT PERIOD PERTURBATIONS

Substituting forR and Q in equation (32) for the perturbations to the radial

distance and integrating leads to

{1 YO TR

- {ABsin’lu + % (A? - B?) c0s2u}

; 1 3 1 4 4e
+{AB sin 2 w +— (A? - B? 2}(— = == 26 - 5‘)
{ a,+2( ) cos 2« 4+16cos 40 + 3 cos” 6 - cos” ¢
+{ABC0$2w-l(A2-Bz) Sin2w}(—7-9+—1 sin 46‘+2—e sin39—i? sin59)
2 4 16 3 5

+ terms of order e2] (36)
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where > r is the radial perturbation of r.

Similarly, substituting for R and Q in equation 35 and integrating twice,

where necessary, leads to
SM+ (1 -2 [Sw+cosi SQ]

2
- 3(%) (g) (1= )12 {1 _%(A2 +B2)} (8 ——;-e sin 6)

+%‘{A B cos 2u ——;-(A2- B?) sin 2 u}

—e {AB sin 2« +Zl)-(A2-B2) cos2w}(§ sin 6 —?li-sin3 49)

+e{ABcos 2@-%(A2_B2) sian}é cos@+§cos3 9) 37)

The change in direction of travel of a spacecraft can be represented by the

change in orbital inclination. Substituting for S in equation 27 and integrating

gives

. _ 3 RrR\2 1
§i==(0 V(2 A6 +— in2u-B.os 2
2(M>(P> CI: +2(Asm u-Bceos2u)
. 2 .5 .
+esm9(1——3—sm 8y (Acos 2« +Bsin 2 o)

+—g'ec:os3 6(A sin 2 « - B cos 2@)] (38)
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Equations 36, 37 and 38 give the first order perturbations of the radial and
along track positions and the direction of travel of a satellite. The maximum
numerical size of the short periodic terms (those containing u or ) for a near
lunar satellite can be seen to be of the following order for a mascon of 10°° of

the moon's mass:

1) (5)
d3F ~ = =[—=|{—] ~15 meters
4( P

. . s 9/m\/R\?
oM + dw + cos i §Q A, z(ﬁ)(-p-) ~ 4 arc seconds

. 3 (m\ [R\?
Sdi~=[=}[—) ~0.7
i 3 (M) (p) arc seconds

LONG PERIOD AND SECULAR PERTURBATIONS

Substituting for R, S and Q in equations 24, 25, 26 and 28 and integrating from

0 to 27 with respect to 6 , leads to

Ha =0 (39)

Ne =0 (40)

A0 = 377(}%)(%)2 B C/sin i (1)

D 4+ cos 1 A = - 37 (E})(_ﬁ_)z [1 __;_ (A 4 BQ):l 2
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where the A quantities represent the change in the parameters per revolution of

the satellite.
1he long period perturbation of the inclination can be obtained from equation

38 by neglecting terms in sine and cosine ¢ and replacing ¢ by 27. We there-

fore have

Bi =3 () (E)z AC (43)

Similarly, the long period and secular perturbations of the along track

position can be obtained from equation 37. Hence

M (1 .. eHV2 izﬁcu +cos i AQ]

- - cf)(ﬁ)z (1 - e2)1/2 [1 Sz, Bz)] (44)
Miip 2

Because there are no long period or secular perturbations of the semi-

major axis (equation 39) we have

AO’ = L'\JM
and hence equation 44 could have been obtained from equation 29 directly.

For a close lunar satellite and (m/M) = 10°° the maximum magnitude of

the first order long period and secular perturbations are

13



A~ 8/sin 1 arc seconds’/revolution

Ae + cos 1 A0~ 16 arc seconds’revolution

Al ~ 8 arc seconds’revolution

AM + Aw + cos i A~ 32 arc seconds/revolution

CONCLUSIONS

The first order perturbations of an orbit by a mass concentration have been
developed and it has been shown that the maximum values of the secular and long
period perturbations are about 300 and 80 meters in the along track and across
track directions (1 arc second on the moon's surface is about 10 meters) per
revolution for a mascon of 10 -® of the moon's mass. In addition, short period
perturbations have been found with maximum amplitudes of about 15 meters in
height, 40 meters in along track position and 7 meters in the across track
direction.

The major assumptions that were made in the analysis were that the position
of the mascon and the orbit of the spacecraft remained fixed in space over the
integration period (one revolution). The former approximation can be justified
because the moon rotates very slowly (about 0.5 degrees) per hour) and the
second approximation is valid if the perturbations by all other forces are small,

which is usually the case.

14



The main restriction on the whole theory is that it is only of first order.
Neglecting higher powers of (R/r) in the expansion of the disturbing acceleration
limits the region of applicability of the theory. For example, if the mascon is
near the surface of the body (R comparable to the radius of the body) then the
errors in the acceleration are of order 10% for r~ 10R. However, if the mascon
is near the center of the main body, the theory is valid for even very close
orbits and should indicate the true changes in the orbit. (ne further restriction
is that the theory cannot be applied to circular orbits. The integrations performed
were with respect to the true anomaly thus implying that a nerigee could be
defined and therefore the orbit was non-circular.

In addition to the application of the equations that have been derived to
certain orbital computation problems, the analysis enables the approximate
magnitude and character of mascon perturbations to be easily assessed, which

could be useful in preliminary studies of orbit problems.
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M-m ¥ (x,y,2)

Figure 1. Coordinate System for Point Mass
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MASCON

Figure 2. Satellite Orbit, Mascon and Components of Disturbing Acceleration
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