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ABSTRACT

First order semi-classical scattering theory is used to estimate

the rotational excitation cross-sections of N2 by Ne impact. Results are

compared with available	 quantal calculations. Linear trajectories

are assumed for the heavy ato*uic projectiles. The solution is obtained

analytically .
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1. Introduction

Investigations of heavy-particle collisions at thFrmal energies are

recently being carried out with considerable interest. They are important

for an understanding of the various collisional processes leading to

relaxations, heat conductions and eventually chemical reactions involving

simple gases. Complete quantum mechanical calculations of such processes

(including the elementary but fundamental process of energy transfer by

collisional excitations of simplest molecules by atomic projectiles) are

extremely involved. This is mainly due to the presence of large (indeed

infinite) degrees of freedom in the form of vibrational-rotational states

of the system. Nevertheless, attempts have already been made and very

interesting results obtained in some cases by elaborate quantum mechanical

calculations (Bernstein et al., 1963; Burke et al., 1969)•

For certain purposes, however, it may be sufficient to obtain an approximate

estimate of such cross-sections and their trends only if it could be achieved

by a simple and rapid method of calculation. To this effect, we investigate

here the collisional excitations of rotational states of a diatomic molecule

by atomic projectiles, using the first order time-dependent scattering

theory within a semi-quantal framework. 'This method was first used in

atomic excitation problems by Seaton (1962) and subsequently by many others.

In the semi-quantal method the target system is treated quantum mechanically

while the motion of the projectiL.- is considered along a classical trajectory.

In the end, however, we attempt to incorporate the quantum nature of the

projectile motion bf demanding the cross-sectional expression to satisfy

rigorous quantum mechanical symmetry properties.

,Y
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2. Theory

The first order transition amplitude between the states i and f can

be given, within the time-dependent scattering-.theory (Dirac, 1926, 1927) by

	

V (t) dt I v>
	

(1)

M

where V(t) is the time-dependent interaction (responsible for the transition)

Uetween the projectile atom at p and the target molecule AB (Fig. 1).

In general the interaction may be written down as a multiple expansion

of the form

V	 V. (Irl.	 + V= N? to) p ^s 144)) + .. .	 (2)

where V(*) .-V (t) is given by the projectile-trajectory equations. In Fig. 1

we choose our laboratory coordinate system with the z'-axis along direction

of the incoming beam (as in the usual experimental setup). Let the molecular

axis be along the z-direction of a set of coordinates fixed to the target

body. The angle So is between the axis z, and the position vector Tp of the

projectile, measured from the center of mass of the molecule. The c.m. is

chosen as the common origin of the two-sets of reference axes.

We consider that the molecule is rotating around the laboratory-axis

and hence the rotational wave-functions may be written down as

(3)

11`	 mi i kl

+ I YL Y	 QKIPIT
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Using the usual symmetry properties and the integral of three D matrices

(Edmonds, 1960) we find

(5)

where D's are the well -known Wigner rotation matrices (Edmonds, 1960) with

the Ruler angles er, 0, y as arguments, which specify the orientation of the

molecular axis with respect to the laboratory axes. The indices J, m, k

are respectively the rotational quantum number and its protections on theP	 s

laboratory-axis z4 and the body-fixed axis z . We note that if the target

is in the state E, then k  = 0. We further note that for transitions between

states Ji and 
-f (

ji ^ h) the spherical part Vo (rp ) of (1) does not contribute

to the cross-section, due to the orthogonatily between different rotational

states. Thus for the process

ji4 tm
' kj^ 

-+ jjf m4 k}>

using (3) in (1), we find for the transition amplitude

`	 ^ tlx:+l){^1; t 1 ^! xs
.^ s

IX.o

where
x

PX

and p,pa became the polar coordinates of the molecule referred to the laboratory

frame.

}
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(6)

(8)

a

where

M

S^►tA 	 Vx (To it) ) Y^;,.  (90to) fr o ,

Taking the modulL%3 square of the,amplitude (5) and summing of over the

final m  states and averaging over the initial m  states, we obtain for the

differential cross-section

4a-	 z
art = ^^s,t^^^^

	

^^sj}t^^ ^^ r 
i^ z ^ I	 ^

where the differential solid-angle dA can be written for straight line

trajectories as 2rrbdb where b is the usual impact parameter.

Integrating over the impact parameter b one obtains for the total

cross-section

where

Tr

(9)

The quantity bo is a cutoff parameter of the order of atcmic dimensions

(Seaton, 1962), introduced in place of the lower limit o in the integral (8),

which otherwise yields infinite cross-sections (for straight line trajectories)

with 	 = 0.
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3. Numerical Calculations

To obtain numerical results for Ne -riz collisionawe use the potential

erergy curve adopted by Burke et al. (1969) for the same system. The

effective interaction obtained by semi-emperi,cal considerations by the above

authors is given explicitly in atomic units to be

V(A ' ct^) 1 t '
172224+ 731 CIO 4 R,(CPStO)	

(12)

(
to	 37 . 7147 + 4- Is1v7PsC''v}t^^)^

^ f
The corresponding reduced mass and the moment of inertia of the target

are respectively

mo = 2.1387 x 104	a.u.)

I = 5.442 x 104 	( a.u.)

For transitions between unequal rotational quantum states, the spherical

part of (12) does not contribute to the cross-section and thus the interaction

responsible for such transitions essentially becomes

V (t) _ 	 _	
C4 ) P1 (67 61,	 {13)

rr c•^	 P ^ t^^r

where C 12 = 739584 (a.u.) and C6 = 6.65187 (a.u.).

We have assumed the trajectory of the projectile to be linear along

the beam direction z' and hence we can write the trajectory equations to be

ro t" 	
L

4n e^ ts^ s r
t

(14)

M
C? [ t) . c

From equation(8)we notice that the cross-section depends on the integrals

I	 defined in (6).
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T

3ubotituti W. (74) and (13) in (6) ana p-nrformIng t,hr ntx,grution over t

we rind t hai: tli, c} 1utit,it.y

CO,  	
N	

Y-(ib) n  	 i 	 (i6}^ ^ n v

6 6 Fir- ( I	 j-;
L

1 1F	 di
b;

where	 a 
c^ 

= 1.5215 x 10	 a. u.)

al - - 2.1492 (a.u.)

Restricting ourselves to the dominant quadrupole term, A = 2, we find from

(15) and (9),

ai-	 7

Thus the total crc,00-^;ection given by (8) becomes

• ZT 2t
LS	 p o n
	 (,17)

In (17) we, have set k i = kf = 0. for the grr;und state of the target N2 is

a E state. The transition cross-section between any two states J  and ,jf

L; thus seen t.o b_ governed essentially through the 3-,j symbol appearing

in (17).

We immediately conclude that for finite probability of trwisitions

the rotational quanta must change at least by two units of angular momenta.

The cress-section as given by (17) is found to depend inversely as the square

of the velocity of the projectile.

(15)

(16)

V7
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Before computing numerical results we shell, however, proceed further

and apply the quantum mechanical symmetry properties to be satisfied by the

cross-sectional ex r Pisssions in general and modify equation (17) accordingly.



k. The Symnetrisation of Cross -Sections

From the principle of detailed balance we require that the cross-section

of a process, cif, and its inverse, a . must be related by the relation

ai tit M# : W; ^ 04;,

wher e W  
and w  are the statistical weights and Vi and Vj are the velocity

in a.u. for the initial state i and the final state f, respectively. For

the rotational states wi = 2j  t 1 and w  = 23f t lfwe therefore find that

cif must be of the form

01'a ^ X {cross-sectional expression^^ a

*,	 s j^ t ^	 symmetric in i and J)	 (18)

We shall furthermore require that the projectile velocity be symmetried

for the initial and final motions which are in general different in energy.

This is best achieved by invoking the correspondence principle as beautifully

discussed in Biederharn and Brussaard (1965) and replacing V by the relation

b --^1 tie dj.	 } i	 (19 )

Substituting (19) avid the cross-sectional. expression (17) in equation (28)

we finally obtain for the symmetrised cross-section

e

W^ = 9W s.	 ^f1^^ s	 g,^ v Y(20)
ss (8 00	 V; ^ z	 x Is (6) 

'0(V%)
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In Table I we have presented results for the transitions 3 3' = 0 -+ 2;

2 4; and 4 -y 6; and in Table II for j	 1 ♦ 3; and 3 " 5, for incident

energies between 1 x 16-3 to " x 16-3 s.u.

In the present calculation we are essentially interested in the order

of magnitude estimates of the cross-sections and shall not attempt to

zhoose the 'best value' of the parameter b o• One way of doing this would

be to normalize the results at higher energies with that obtained from

quantal calculations or from experimental values if available.

Instead we have made here the simple choice of the cut-off parameter (Fig. 2)

bo 5.r (a.0 * equal to the approximate 'hard core' radius of the Ne-NZ

potential, wai-.^ determines the distance of closest approach of the colliding

system.

The resulta for the 0 - 2 transition in the above energy range is foun%:

to be comparable with that obtained by the detailed quantal calcv ILation of

Burke et al. (1969). In Fig. 3 we also find that log 477(81 ) vs. E

behaves numerically as an approximate straight line as observed in the above

reference. In general the Tables show that at a given energy the cross-

sections for transitions between higher angular momenta are smaller than

those between the lower ones. We shall point out that in the present

approximation although the cross-sections vanish at the thredholds as they

should, it tends to give	 too lame cross-sections at rather low energies.

This may be expected of the straight line approximation which is less

appropriate for lower energies. One possible way of improving the situation
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I ._	 Total Cross-Sections a '(S ) in Traa2

$i a02(Ei) Q24(Ti) a46(Ei)

0.10004D-a2 0.48318D 01 0.24841D of 0.21941D 01
•	 0.110rx)D-02 0.43926D 01 0.22585D 01 0.19950D 01

0.120o0D-02 o.4o266D of 0.20704D of o. 18291D of
0.13000D-02 0.37169D 01 0.19112D 01 0.168%D 01
0.140003-02 0.34514D 01 0.17747D 01 0.15681D 01
0.1500oD-02 0.32213D 01 0.16565D 01 0.14636D 01
0.16000D-02 0.30200D 01 0.15530D 01 0.13722D 01
0.17000D-02 0.28424D of 0.16816D 01 0.12916D of
0.18000D-02 0.26%5D 01 0;13ftD 01 0.12199D 01
0.19000D-02 0.25432D 01 0.13078D 01 0.11557D 01
0.200o0D-02 0.2416oD of 0.12424D of 0.109BOD 01
0.21000D-02 0.23010D of o.11833D 01 0.10457D 01
0.2200oD-02 0.21964D 01 0.11295D 01 0.99818D 01
0.23000®-02 0.21009D 01 0.10804D 01 0.95480D 00
0.24000D-02 0.20134D 01 o.10354D of 0.91503D 00
0.2500oD-02 0.19328D of 0.9Q398D 00 0.87844D 00
0.26000D-a2 0.1&A- D 01 0.95576D 00 0.8W7D 00
0.27ooaD-02 0.17897D 01 0.92036D 00 0.81339D 00
0.2800oD-02 0.17258D of 0.88750D 00 0.78435D 00
0.29000D-02 0.16662D of 0.85790D 00 0.75731D-00
0.30000D-02 0.,16107D 01 o.82834D o0 0.73207D 00
0.3100oD-02 o.15587D of o.8ol62D 00 0 74846D 00
0.32000D-02 0.15100D 01 0.77657D 00 0.68632D 00
0.33000D-02 0.14643D 01 0.753o4D oo 0.66553D 00
0.3400oD-oe 0.14212D 01 0.73089D 00 0.64596D 00
0.35000D-02 0.13MD 01 0.71001D 00 0.62751D 00
o.36000D-o2 0.13423D 0!1 0.69029D 00 0.610o8D oo
0.37000D-02 0.13060D 01 0.67163D 00 0.59359D 00
0.3800CD-02 0.12716D of 0.65396D oo 0.57797D 00
0.39000D-02 0.12390D 01 0.63719D 00 0.56315D 00
0.4000OD-02 0.12080m 01 0.62126D 00 o.549o8D oo
0.41000D-02 0.11786D 01 0.60611D 00 0.53569D 00
0.4200oD-02 0.115a5D of 0.5916ft oo 0.52293D 00
0.4300OD-a2 0.11238D 01 0.57792D 00 0.51077D 00
0.4400oD-02 0.10982D of 0.56479D 00 o.49917D oo
0.4500oD-02 o.lo738D of 0.55224D 00 0.488o7D 00

H.B. Numbers following D are powers of 10 to be multiplied With.



Table II

Total Cross-Sections oji,(Si) in na 

Ei (713 (Ei ) Q35 (Ei )

0.1000OD-02 0.28987D 01 0.22945D 01
0.1100OD-02 0.26353D 01 0.209M 01
0.12000D-02 0.24158D of 0.19166D 01
0.13004D-02 0.22300D 01 0.17693D 01
0.1400OD-02 0.20707D 01 0.16430D 01
0.15000D-02 0.19327D 01 0.15336D 01
0.16000D-02 0.18119D 01 0.14378D 01
0.17000D-02 0.17054D 01 0.13532D 01
0.1800OD-02 0.16106D Ol 0.72781D 01
0.19000D-02 0.15259D 01 0.12109D 01
0.2000OD-02 0.14496D 01 0.11503D 01
0.2100OD-02 0.13WD 01 o.lo956D 01
0.2200OD-02 0.13178D of 0.10458D 01
0.2300011-02 o.12605D 01 0.10003D 01
0.24DOOD-02 0.12080D Ol 0.95866D 00
0.25000D-02 0.11597D of 0.92032D 00
0.26000D-02 0.U151D 01 0.88493D 00
0.27000D-02 0.10738D Ol 0.85216D o0
o.2800w-w 0.10354D 01 o.82173D oo
0.29000D-02 0.99973D 00 0.79340D 00
0.3000OD-02 0.96641D 00 0.76696D 00
0.3100OD-02 0.93524D 00 0.74222D 00
0.32000D-02 0.9%01D 00 0.71903D 00
0.3300OD-a2 o.87856D oo o.69724D oo
0.34000D-02 o.85272D 00 0.67674D 00
0.3500OD-02 o.82836D 00 0:65740D 00
0.36000D-02 0.80535D 00 0:63914D 00
0.3700OD-02 o.78358D 00 0.62187D 00
0.38000D-02 o.76296D oo o.6o551D 00
0.39DOOD-0e o.'74340D 00 0.58998D oo;
0.4000oD-02 o.72481D oo 0.57523D 00
0.41000D-02 0.70714D 00 0.56321D 00
0.4200OD-02 0.69030D 00 0.54784D oo
0.43000D-02 0.67425D 00 0.53510D 00
0.4400OD-02 0.65892D 00 0,52290 00
0.45000D-02 0.64428D 00 0.51132D 00

Note: Numbers following D are powers of 	 10 to be multiplied with.
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