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ABSTRACT
First order semi-classical scattering theory is used to estimate

the rotational excitation cross~sections of Ny by Ne impact. Results are

compared with availsble quantal calculations. Linear trajectories
are assumed for the heavy atouic projectiles. The solution is obtained

analyticslly .
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1. Introduction

Investigations of heavy-particle collisions at thermal energies are
recently being carried out with considerable interest. They are important
for an understanding of the various collisional processes leading to
relaxations, heat conductions and eventualily chemical reactions involving
simple gases. Complete quantum mechanical calculations of such processes
(including the elementary but fundamental process of energy transfer by
collisional excitations of simplest molecules by atomic projectiles) are
extremely involved. This is mainly due to the presence of large (indeed
infinite) degrees of freedom in the form of vibrational-rotational states
of the system. Nevertheless, attempts have already been made and very
interesting results obtained in some cases by elsborate quantum mechanicel
calculations (Bernstein et al., 1963; Burke et al., 1969).

For certain purposes, however, it may be sufficlent to thain an approximate
estimate of such cross-sections and their trends only 1if it could be achieved
by a simple and rapid method of calculation. To this effect, we investigate
here the collisional excitations of rotational states of a dAiatomic molecule
by atomic projJectiles, using the first order time-dependent scattering
theory within a semi~-quantal framework. ‘This method was first used in
atomic excitation problems by Seaton (1962) and subsequently by many others.,
In the semi-quantal method the target system is treated qua.ntum.mecha.nically
while the motion of the projectil: is considered along a classical tralectory.
In the end, however, we attempt to incorporate the quantum nature of the
projectile motion by demanding the cross-sectional expression to satisfy

rigorous quantum mechanical symmetry properties.
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2. Theory
The first order transition amplitude between the states i and f can

be given, within the time-dependent scattering.theory (Dirac, 1926, 1927) by
L ~ (1)
¢ = =<l v dt sy
~ed

where V(t) is the time-dependent interaction (responsible for the transition)
vetween the projectile atom at p and the target molecule AB (Fig. 1).
In general the interaction may be written down as a multiple expansion

of the form

V(W)= V(W) + V, (rw) PG a®) +-- (2)

vwhere V@.)):V (t) is given by the proJectile-trajectory equations. In Pig. 1
we choose our laboratory coordinate system with the z'-axis along direction
of the incoming beam (as in the usual experimental setup). Let the molecular
axis be along the z-direction of a set of coordinates fixed to the target
body. The angle Opis between the axis z, and the position vector ';'p of the
projectile, measured from the center of mass of the molecule. The c.m. is
chosen as the common origin of the two-sets of reference axes.

We consider that the molecule is rotating around the laboratory-axis

and hence the rotational wave-functions may be written down as

= {dm; k> (
3)
- 2j; +1 L W) ¥ v
s m&,k;’ (“IP’ )
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where D's are the well-known Wigner rotation matrices (Edmonds, 1960) with

the Buler angles o, B, Yy as arguments, which specify the orientation of the

molecular axis with respect to the laboratory axes. The indices J, m, k

are, respectively, the rotational quantum number and its projJections on the

laboratory-axis z’/ and the body-fixed axis z . We note that if the target

3 is in the state I, then ky = 0. We further note that for transitions between
£ states J, and Jf (3 # Jg ) the spherical part Vo(vb) of (1) does not contribute

to the cross-section, due to the orthogonatily between different rotational
states. Thus for the process

emked —> i m, k5
using (3) in (1), we find for the transition amplitude

¢ g i
L“ o @i (e 0y N

¥wr

X Z <:D(m 1 S V, (n) P, (('ne,)dl-l ‘z; (b)

where
B s T Y2 (969) Y2 (8%,

and By become the polar coordinates of the molecule referred to the laboratory
frame.

Using the usual symmetry properties and the integral of three D matrices
(Bdmonde, 1960) we find

L
Lt{ = ;{‘:‘Lt Lti;-u)(ziw)}‘ g)m‘

(5)




il RNk iy T

a5 gt

! .
[P R I

N
4
LY
"3
:

:‘&A 3 Aldy M3
g (ku‘"“)gﬂ) ..,/t—n;) " IA,«- >
vhere
™
Ton = S‘ Va () Y2 (000, qm) dt (6)

Taking the modulw: square of the amplitude (5) and summing of over the
final me states and averaging over the initial m, states, we obtain for the

differential cross-section

dg- _ ! 1
= i L:.S‘:-n).‘z‘.'m‘\L“"

(7

where the differential solid-angle dQ can be written for straight line
trajectories as 2rnbdb where b is the usual impact parameter.
Integrating over the impact parameter b one obtains for the total

cross=section

g = i 23,41 (3,)\5\‘ ) - W ‘
%Q’\ﬂ)‘ K, o-Ke ‘J"*() C (8)

vwhere
(9)

The quantity bo is a cutoff parameter of the order of atomic dimensions
(Seaton, 1962), introduced in place of the lower limit o in the integral (8),

which otherwise yields infinite cross-sections (for straight line trajectories)

with bo = 0.
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3. Numerical Calculations

To obtain numerical results for Ne-Njg collisiongwe use the potential
erergy curve adopted by Burke et al. (1969) for the same system. The
effective interaction cobtained by semi-emperical considerations by the above

authors is given explicitly in atomic units to be

12
VK W)= (}t‘i,,) (1972220 + 731534 PG o) )
¢
- * . c‘,' b’
('v%.'m) (37:7147 + 645197 B (oop®))
The corresponding reduced mass and the moment of inertia of the target

are respectively

m, = 2.1387 x 10% ( &eu.)

I

5.442 x 10* (a.u.)
For transitions between unequal rotational quantum states, the spherical
part of (12) does not comtribute to the cross-section and thus the interaction

responsible for such transitlions essentially becomes

= [ i C
w0s (5 - & ) e
Hw o

where Ci1» = 739584 (a.u.) and Cg = 6.65187 (a.u.).
We have assumed the trajectory of the projectile to be linear along
the beam direction z' and hence we can write the trajectory equations to be

RWenty = bra gt

vt (1%)
Gno,m = =

*l
? ‘Lt) =20
From equation(B8)we notice that the cross-section depends on the integrals

D

defined in (6).
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Substituting {14) and (13) in (6 and performing Lhe integration over t

vwe Tind that iho gountity

Z;“l/c (b) = l(s‘)c“ (xv)" '"( ) ‘(zs)‘?}‘r ‘%

¢ L
%. K ) @.b)‘i (')C‘ )}
* %f.ﬁf(;— JTZ)} (15)

- SE R, A

v bt (%4
where ' a, ~ 1.5215 x 10°  (a.u.)
a; - = 2.149 @.u.)

Restricting ourselves to the dominant quadrupole term, A = 2, we find from

(15) and (9),

I,(by= I Sl. (LI )Hl

v LY .
- Wi ."/z.e Adi /7 a,‘ls“{ (16
ol T
Thus the total crouss-section given by (8) becomes
T = gr- g, G,’z 3\')" T, (b (
s 060 o/ ~3 17

In (17) we have set k, = ko = 0 for the ground state of the target Np is
a L state. The transition cross-section between any two states Ji and ‘jf
is thus seen to be governed essentially through the 3-J symbol appearing
in (171!,
We immediately conclude that for finite probability of transitione
the rotational quanta must change at least by two units of angular momenta.

The cross-section as given by (17) is found to depend inverscly as the square

of the velocity of the projectile.
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Before computing numerical results we shell, however, proceed further
and apply the quantum mechanical symmetry properties to be satisfied by the

cross~-sectional ex')hcssicns in general and modify equation (17) accordingly.
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g 4. The Symmetrisation of Cross-Sections
From the principle of detalled balance we require that the cross-section
of a process, Oipr and its inverse, 011’ must be related by the relation
-
W 9 Ory = Wy w05
: vwher: w, and w, are the statistical weights and “ and ‘% are the velocity
in a.u. for the initial stete i and the final state f, respectively. For
.
the rotational states w, = 2314- 1l and w, = 23, + ljve therefore find that §
3
0 cit must be of the form
* o - & ’_ﬂ'_‘ % (cross-sectional expression
H ‘¥ v 2501 symmetric in 1 and §) (18)
: We shall furthermore require that the projectile velocity be symmetried
Q; for the initial and final motions which are in general different in energy.
5 This is best achieved by invoking the correspondence principle as beautifully
§ discussed in Biederharn and Brusssard (1965) and replacing \9 by the relation
v %+ 1§
—> (o, 2 ) (19)
Substituting (19) apd the cross-sectional expression (17) in equation (28)

ve finally obtain for the symmetrised cross-sectica

- On = ar- M [ 2d) 21‘ 20

o i, ’-.':_ N- .
Wlmﬂﬂﬂﬂrﬁnm;wl-r-wf [

i
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Results and Discussions

In Table I we have presented results for the transitions J =~ J' = 0= 2;
2 = 4; and 4 = 6; and in Table Il for J =~ J' =1~ 3; and 3 =~ 5, for incident
energies between 1 x 10 > to 5 x 10 2 a.u. ‘

In the present calculation we $ye essentially interested in the order
of magnitude estimates of the cross-sections and shall not attempt to
choose the 'best value' of the parameter boo One wvay of doing this would
be to normalize the results at higher energies with that obtained from
gquantal calculations or from experimental values i available.

Instead we have made here the simple choice of the cut-off parameter (Fig. 2)
b, = J.75 (.u), equal to the approximate 'hard core' radius of the Ne-Np
potential, wni:: determines the distance of closest approach of the colliding
system.

The results for the O = 2 transition in the above energy range is founu
to be comparable with that obtained by the detailed quantal calci'iation of

i
behaves numerically as an approximate straight line as observed in the above

Burke et al. (1969). In Fig. 3 ve also find that log a'oa(Ei) vs. B i

reference. In general the Tables show that at a given energy the cross-
sections for transitions between higher angular momenta are smaller than

those between the lower ones. We shall point out that in the present
approximation although the cross-sections vanish at the thresholds as they
should, it tends to give too large cross-sections at rather low energies.

This may be expected of the strai,ght line approximation vhich is less

appropriate for lower energies. One possible way of improving the situation




i

BaE: would be to replace the straight line motion by trajectories calculated

S |

numerically in the central part of the Lennard-Jones 12-6 potential for the

- system.

This, however, would cost us in terms of loosing the extreme simplicity

of the present analytic calculation.
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E,
0.10000D-02
0.11000D- 02
0.12000D-02
0.13000D-02
0.14000D-02
0.15000D-02
0.16000D-02
0.17000D-02
0.18000D-02
0.19000D~02
0.20000D-02
0.21000D-02
0.22000D-02
0.23000D-0@
0.24000D-02
0.25000D-02
0.26000D-02
0.27000D-02
0.28000D-02
0.29000D- 02
0.30000D-02
0.31000D-02
0.32000D-02
0.33000D-02
0.34000D-02
0.35000D-02
0.36000D-02
0.37000D-C2
0.38000D-02
0.39000D-02
0.40000D-02
0.41000D-02
0.42000D-02
0.43000D-02
0.44000D-02
0.45000D-02

Total Cross=-Sections o AE ) in na°2

%0 (E1)

0.48318p o1

0.43926D 01

0.40266D O1L
0.37169D O1L
0.34514D 01
0.32213D 01
0.30200D 01
0.28424D 01
0.26845D 01
0.25432D 01
0.24160D 01
0.23010D O1
0.21964D 01
0.21009D 01
0.20134D 01
0.19328D 01
0.18585p O1L
0.17897D O1
0.17258D O1L
0.16662D 01
0.16107D 01
0.15587D O1
0.15100D 01
0.14643D OL
0.14212D 01
0.13806D 01
0.13423D O1
0.13060D 01
0.12716D O1
0.12390D O1
0.12080Dp O1
0.11786D 01
0.11505D O1
o.13)2932n o1
0.10982p 01
0.10738D 01

Table I

31
o24(E1)

0.24841D 01
0.22585D 01
0.20704D O1
0.19112D 01
0.17747D 01
0.16565D 01
0.15530D 01
0.16816D O1
0.13805D 01
0.13078D O1
0.12424D 01
0.11833D 01
0.11265D 01
0.10804D O1
0.10354D 01
0.99398D 00
0.95576D 00
0.92036D 00
0.88750D 00
0.85790D 00
0.82834D 00
0.80162D 00
0.77657D 00
0.75304D 00
0.73089D 00
0.71001D 00
0.69029D 00
0.67163D 00
0.65396D 00
0.63719D 00
0.62126D 00
0.60611D 00
0.59168D 00
0.57792D 00
0.56479D 00
0.55224D 00

O4elEL)

0.21941D 01
0.19950D 01
0.18291D 01
0.16886D 01
0.15681D 01
0.14636D 01
0.13722D OL
0.12916D 01
0.12199D OL
0.11557D OL
0.10980D O1L
0.10457D O1L
0.99818D 01
0.95480D 00
0.91503D 00
0.87844D 00
0.84467D 00
0.81339D 00
0.78435D 00
0.75731D .00
0.73207D 00
U T0B4D 00
0.68632D 00
0.66553D 00
0.64596D 00
0.62751D 00
0.61008D 00
0.59359D 00
0.57797D 00
0.56315D 00
0.54908D 00
0.53569D 00
0.52293D 00
0.51077D 00
0.49917D 00
0.48807D 00

N.B. HNumbers following D are powers of 10 to be multiplied with.
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Ei

0.10000D-%2
0.11000D-02
0.12000D-02
0.13000D-02
0.14000D-02
0.15000D-02
0.16000D-02
0.17000D-02
0.18000D-02
0.19000D-02
0.20000D- 02
0.21000D-0e
0.22000D-02
0.23000D-02
0.24000D-02
0.25000D-02
0.26000D-02
0.27000D-02
0.28000D-02
0.29000D-02
0.30000D- 02
0.31000D-02
0.32000D-02
0.33000D-02
0.34000D-0e
0. 35000D-02
0.36000D-02
0.37000D-02
0.38000D- 2
0.39000D- (e
0.40000D-02
0.41000D-02
0.42000D-02
0.43000D-02
0.44000D-02
0.45000D-02

Table II

Total Cross-Sections ¢

01a(E1)

0.28987D 01
0.26353D 01
0.24158D 01
0.22300D 01
0.20707D Ol
0.19327D 01
0.18119D O1L
0.17054D 01
0.16106D 01
0.15259D 01
0.14496D 01
0.13806D 01
0.13178D 01
0.12605D OL
0.12080D 01
0.11597D 01
0.11151D 01
0.10738D 01
0.10354D O1
0.99973D 00
0.96641D 00
0.93524D 00
0.90601D 00
0.87856D 00
0.85272D 00
0.82836D 00
0.80535D 00
0.78358D 00
0.76296D 00
0.74340D 00
0.72481D 00
0.70714D 00
0.69030D 00
0.67425D 00
0.658%D 00
0.64428D 00

Note: Numbers following D are powers of

J

J,(m) in ﬂa.oa

oas(E1)

0.22995D 01
0.20907D 01
0.19166D 01
0.17693D 01
0.16430D 01
0.15336D O1
0.14378D O1
0.13532D 01
0.12781p 01
0.12109D 01
0.11503D O1
0.109%6D 01
0.10458D O1L
0.10003D O1
0.95866D 00
0.92032D 00
0.88493D 00
0.85216D 00
0.82173D 00
0.79340D 00
0.76696D 00
0.74222D 00
0.71903D 00
0.69724D 00
0.676T4D 00
0.65740D 00
0.63914D 00
0.62187D 00
0.60551D 00
0.58998D 00°
0.57523D 00
0.56121D 00
0.54784D 00
0.53510D 00
0.52294D 00
0.51132D 00

10 to be multiplied with.




i
I3
al
F

=
=

References

Bernstein, R. B.; Dalgarno; A., Massey; H. S. W., and Percival, I. C., 1963,
Proc. R. Soc. A 247, k27.

Biedenhdrn, L.C. ; and Brussaard,?.J. ; Coulomb Excitation, 1965, Clarendon
Press, Oxford, Art. 5.

Burke, P. G., Seratton, D., Tait, J. H., Taylor, A. J., 1969, J. Phys. B,
2, 1155-1168.

Dirac, P. A. M., Proc. R. Soc., 1926, A 112, 661; Proc. R. Soc., 1927, A 11&,
243.

Edmonds, A. R., Angular Momentum in Quantum Mechanics, 2nd Edition,
1960, Princeton Univ. Press, pp. 59-62.

Seaston, M. J., Proc. Phys. Soc., 1962, 79, 1105-1116.




B T L ‘

I T T

Figure 1




H

H

x
3
3
EY

by

H

(.,001 .002 .003 .004 .005
E (a@.v.)

Figure 2




LR LR AL A cmme b o emeen e dre . < ememi 3 i

l 1.20 }—

2

’n 0'02(E) x ‘roo




	GeneralDisclaimer.pdf
	0031B02.pdf
	0031B03.pdf
	0031B04.pdf
	0031B05.pdf
	0031B06.pdf
	0031B07.pdf
	0031B08.pdf
	0031B09.pdf
	0031B10.pdf
	0031B11.pdf
	0031B12.pdf
	0031C01.pdf
	0031C02.pdf
	0031C03.pdf
	0031C04.pdf
	0031C05.pdf
	0031C06.pdf
	0031C07.pdf

