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r MIE SCATTERING CALCULATIONS OF THE CONTRIBUTION 1
OF ATMOSPHERIC AEROSOLS T THE
MARTIAN OPFOSITION EFFECT*
by

Jaylee Montague Mead

ABSTRACT

The Mie theory is used to compute the integrated scattering
intensities for spherical submicron serosol particles with various
indices of refraction and several size distributions in an effort to
determine if the presence of atmospheric azerosols can account for the
Martian opposition effect, as observed by O'Leary and by Koval' in
1967, This nonlinear surge in brightness, as the planet approaches a
phase angle of 0°, 1s reported to I;e ruch more pronounced in the
ultraviolet than in the infrared.

The caleunlations show that neither substances having a refractave
index n between 1,20 and 1,50, which inelnde ice, water, and solid
COZ’ nor highly absorbing meterials, such as limonite, can produce the
oppo;ition effect, On the other hand, serosols having n > 1.50 with
little or no absorption, such as meteoric particles or suspended
surface dust composed of semitransparent minerals, do exhibit a

definite increase in reflectivity at small phase angles. °

*A summary of this work appears in Jearus 13, No. 1 (1970).
L —



r By introducing an assumed surface function, which is added to
the contribution by a layer of submicron-size aerosols with n = 1.65,
a model is obtained which comparss reasonably well with the obser-
vations., In this model an atmospheric columnar density of 0.8 x 106
aerosols/cm?‘with average particle radius of 0.4 u gives the reqﬁir@d
aerosol contribution to the total reflectivity. Assuming a .particle
density of 2.5 gm/cmj, this corresponds to a mass ratio of aerosols
to gaseous atmosphere (for a Martian surface pressure of 7 mb) of
3x 10-8. Similar fits were obtained for n = 1,55 and 1.75 and
could probably be obtained for any real index between 1.55 and 1.75.
This range includes most semitransparent minerals, tius making them
good candidates for producing the opposition effact.

This study demonstrates that the presence of a small smount
of atmospheric aerosols, with the proper index of refraction, could
provide the observed inereased opposition eff6c% for Mars in the
ultraviolet, where the albedo is very low and a2 smali- brightness
contribution by aerosols will -have a comparatively large effect,

but at the same time meke 2 negligible contribution in the infrared,

vhere the surface albedo is high,

433
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CHAPTER I
INTRODUCTION: STATAMENT OF PROBLEM

Observations of Mars made by O'Leaz:y (1967a, b) and by Koval'
(1968) during the 1967 opposition show an "opposition effect”, 1.6.,
a8 nonlinear surge in brightness as the planet approaches o° phase
angle (the angle o( at the planet between the darections to the Sun
and to the observer). The effect is reported to be much more pro=
nounced in the blue and wltraviolet than in the infrared, A strong
opposition effeet for the Moon had been well established earlier
(e.g., Gehrels gt 2l., 1964).

This inersased opposition effect for Mars at shorter wavelengths
could be primarily a surface effect in that the surface may have a
much greater increase in reflectivity at these wavelengths; alterna-
tively, it could be primarily due to light scattering in the atmo-
sphere, as suggested by O'leary (19672),

Rayleigh scattering by molecules and by particles small compared
to the wavelength of observation does not provide a sudden increase c;i‘
brightness near 0° phase angle, Therefors, if the effect is primarily
atmospheric, particles of larger size must be responsible,

The most convineing evidence for the presence of aerosols an the
Martian atmosphere comes from the Mariner 7 television pictures

(Leighton et al., 1969), A sharp haze or scattering layer can be seen

fdjacent to the 1imb of Mars in several frames, The seattering is N



'deseribed as distinetly stratified in horizontal layers, similar to L

scattering from aerosc;l layers in the Earth's atmosphere.

Mars has a very low albedo in the ultraviolet, where the observed
opposition effect is greatest; ‘therefore, 2 small brightness contribu-
tion by atmospheric 2eroscls at these wavelengths—wi'tl have a comparas=
tively large effect, In the infrared, where the surface is much
braghter, a small brightness contribution by aerosols will cause little
or no change in the total brighiness,

The purpose of this study is to investigate the contribution which
atmospherie serosols might make to the Martian opposition ef'fect, under
the assumption that the increased enhancement at shorter wavelengths,
vhere the albedo is very low, is primarily an atmospheric effect rather

than 2 surface effect. Here wé define the term atwospheric aerosecl as

the particulate matiter suspended in the planet's atmosphere,
The study is divided into four parts:
(1) Caleulations of scattering intensity near 0% phase angle
(180° sc’at‘bering angle) by single sphericel particles, using Mie

scattering theory.

- (2) Calculations of integrated intensities obtained by swming
. over particle~size distributions,
(3) Development of a model which incorporates an assumed surface
rhotometric function plus an aerosol contribution, which is
then compared with-the observati?ns.

-

L (4) Exemination of possible sources of Martian atmospheric aerosols,



CHAPTER IT
ORSERVATIONAT DATA O THE MARTTAN OPPOSTTION EFFECT

Although there has been much photographic and photoelectrie
vhotometry of Mars, few of these measurements were made at small phase
angles, Sinece the orbital plané of Mars is inclined at an angle of
1, 850 to the ecliptic plane, the pha.se‘a.ngle does not become very small
for 211 oppositions, For example, C{nﬁn.was only 4.5° during the
opposition of 1939, 4,3° 4in 1956: and 3.0° in 195%, The situation was
more favoreble for obtaining data at small vhase angles in 1952, 1958,
and 1957 when c<min was 0.7°, 0.4°, and 1.2°, respectively, Unless a
set of observations contains data for small phase angle;, the "oppo-
sition effect” may go unhoticed.

The first indication of a possible brightening of HYars near oppo-
sition was reported by de Vaucouleurs (1959), based on his photoelectric
photometry near the opposition of 1958, He found that the V magnitude
of Mars at phase angles 6.8° and 10,2° was 0,05 to 0.1 mzg braghter (at
the sane central longitude) than the values extrapolated from phase
angle 21,4° with a linear phase law, A similar effect could be seen in
the photoelectric photometry of Johnson and Gardiner (2955) durding the
1954 opposition and in the photographic spectral photometry of licolley
(1953) and Woolley et al. (1955) dn;ing the 1952 and 195% oppositions,

as pointed out by de Vaucouleurs (1968) and Koval' (1968),

L |



r Addition2l evidenee of the Martian opposition effect is given by L

Harris (1961), wh; states that the 1952 opposition observations from
both the Mount Stromlo and McDonald Observatories showed Mers to be
both brighter and bluer than normal on the night of May 3«4, 1952, when
the phase angle was 2.5°; the wltraviolet magnitude was 073 brighter,
the blue magnitude about 032 brighter, and the visual magnitude about
0% brighter than expected by linear extrapolation,

Petween 1952 and 1955 the Harvard College Observatory conducted an
extensive program of multicolor phbtosiectric vhotometry of the brighter
Plenets at its Boyden Observetory in South Africa and at the Le Houga
Ohservatory in southern France (Irvine et al., 1982, b). No a2nomalous
brightening at opposition was found for the Martian opposition in 1965
(Irvine et 21,, 1968b), However, it has been reported that a subseguent
re~examination of this data suggests that & small opposition effect may
be evident (Irvine and Hipdon, 1969).

During the opposition of 1967 Koval' (1.9%8) made photoelectric
observations of Mars in eight spectral regions ranging from 0,355u to
0.619//, at the Kiev Observatory., He concluded tha'!f. the brightness of
Mars inereased markedly with approach to o= 0° in all the wavelength
regions investigated. He also compared his data with that of Weolley
et 2l. (1955) and Johnson and Gerdiner (1955) and found good agreement
with respect to the opposition effect. We have replotted the tabular

data of the observed integrated albedo of Mars as a funetion of phase

L -



r . -
angle from Koval' (1968, Table 1):; the results are shown in Figurse 1,

On the raght side of the fagure, reflectivity F, or albedo, 1s shown

on a logaraithmic secale; its egquivalent magnitude, given by

m = =2,5 log; P (1)

-

is shown on the left. To avoid pregud101ng the reader, we have showmn
only the data points as given by Koval' in tabular form and refrained
from drawing in a curve. For samplicaity, we have included only four of
the eight wavelengths at which observations were obtained, There is a
definite inerease in brightness a2t smeller phase angles (note in
particula; the observed values at 1,3°), and the effect appeers to be
nore pronouncéd at shorter wavelengths than at longer ones, -
0'Ledry and Rea (1968) (see also 0'Leary, 1957b) have also
reported observations of MagF during the 1967 opposation, taken from
Katt Peak and Cerro Tololo, Chile. They, too, describe a definite
opposition effect and noté a more pronocunced increase in reflectivity

near opposition for shorter wavelengths than for longer ones,

Of the many proérams vhich have been carried out for making photo-
metric measurements of Mars, only the last three zbove have had
sufficient coverage at small phase angles to permit a study of the
opposition effect: O'Leary (1987h), Koval'(1968), and Irvine ot al,
(19582, b) (the "Harvard program"), We shall now compare these three
studies in order to point out the-differences between them and to select

| the one most suitable for comparison with our theoretical calculation§:J
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Figure 1. The-observed integrated albedo of Mars, based on Koval' (1968, Table 1).
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on an equivalent magnitude scale on the left. .



£11 of these observations were made with pixotoelectric mlticolor

-

photometers; however, the Koval®’ and Harvard programs used eight to ten

+

narrow-band filters, averaging less than 0,0154 in bandwidth, whereas
all of O'Leaxy's measurements were made with sixior less broad-band
filters, having ban&widths approximately O.OQ;L.

The range in wavelengths covered in 2ll three studies was approxi-
mately 0.3§ﬁt to %ﬁb with two exceptions: the filter 'of longest wave-
length used by Koval' was centered at 0.61?}1, while the Harvard,
program inecluded a narrow-band filter at O.31ﬂzﬁb.

The largest n&mbar of observations were reported in the Harvard
study: 193 on 105 nights. Of these, only four points on two nights were
obtained near the 1953 opposition and will, therefore, not be consadered
here, Forty~one observations at phase angles less thaﬂ‘13° werse
obtained durifg 16 nights near the 1965 opposition. The minimum phase
angle observed in this series was 2.41°, and the maxamm was 37.67°.
There were eleven data points, covering five nights, whaeh had phass
angles less than 5%

Koval® reported 23 mean observations for 22 nights, with eight
nights ha§1ng phase angles less than 13°, His r;;ge in phase angle was
from 1.30 to 36.20; howesver, only two (mean) data points were for phase
angles less than 5°.

O'Leary listed 13'mean-data points for 13 nights and stated that

aboyut 14 cbservations of Mars in each color were obtained on most of

L L
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r;.hese nights; however, no measurements were made for phase angles
greater than ?.50. He reported observationé for nine nights when the
phase angle tras less than 50; these means were presumably based on
approximztely 100 points, -

The reflectivity of the Martian disk varies with longitude,
depending on the predominance of bright or dark areas along the central
meridian of observation., O'Leary (1967b) described how he corrected
his data for this rotation effect. The other two studies do not
mention any attempt to correct for this problem.

Because of the differences in technigques of reduc;ng to absolute
photometry, it is difficult to compare guantitatively these three
studies or to merge all the data which covers a given opposition, It
is unfortunate that O'leary did not obtain more than 13 nights of
observations, especially at phase angles grealer than ?.50; since this
would have reduced the need for such a large extrapolation of his phase
curve t& that of other observers at larger phase angles. Despite this
drawback,; beecause his study has so many ;ore data points at very small
phase angles than do either Xoval' or Irvine et al., O'Lsary's observa-
tional date appears to be the better source to use for comparison with
our theoretical caleulations, We shall now review in greater detaal
the data obtained by-0'Leary,

Figure 2 is taken from O'Leary and Rea (1968) and shows the Martian
opposition effect in six colors: U, B, V, R, I, and I'., The observa-

tions, made at phase angles of 1.2° to ?.50, are indieated by solid

L .|
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magnitude are the ordinateson the left sides of the figures, and reflectivities nor~
malized to geometric albedos are the ordinates on the right sides of the figures.
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Eines. Bach curve was determined by deriving the best curve through t}Tel
observed data points and fi:t*;ing this curve between o¢= 12° and 16°
(depending upon the wavelength) to t~he known linear phase function

- reported for (> 10° {de T;’aucouleurs, 1964), Note that the magmitude
scalés for the U and B curves at the t;p of Figure 2 are compressed by
a factor of two compared to the other colors shown: the opposition
effect for U and B 1s therefore greater than a first glance a_t. these
plots suggestis,

In Figure 3 we plot the reflectivities from Flgu?e 2, as adjusted
for the ecolor of the Sun, on 2 single contimuous scale., On the right
side of the figux:e, reflectivity P is showm on 2 logarithmiec secale; its
equivalent magnitude (see Equation 1) appears on the left, The reflec~
tivity scale has a range of 2.5 magnitudes, or 2 factor of 10, Ais
O'Leary and Rea poanted out, the oppositiog effect is mich more
prono;nced at shorter wavelengths than at lonper wavelengths, as
evidenced by the fact that the U and B observations depart much more
from theflinea.r extrapolation than do the curves at R and I, - The
reflectivity; or 2lbedo, on the other hand, is much greater at longer
wavelengths than at shorter omes,

Table 1 expresses these concepts quantitatively. Note that the
Bond albedo of Mars is only 5% in U, whereas it is 2% in I; yot the

brightness increases by 72% from 16° to 0° phase angle in the U, but

only 30% in the I,

L —
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TABLE 1

BOND ATLREEDO AND OPFOSITION EFFECT FOR MARS
{after O'Leary, 1967b)

>

Bond 4m Pgo
Albedo (0° -16%) //;160

] 0,05 oms9 1.72
B 0,08 0456 1.68
v 0.17 0.45 1.52
R 0.38 0.32 1.34
T 0.42 0.29 1.30




r CHAPTEZER TII 1
OBSERVATIONAL EVIDENCE FOR ABROSOLS IN THE MARTIAN ATNOSPHERE

There is considerable evidence, based primarily on observations
of a‘vari@ty of atmospheric formations, which suggests that aerosols
are present in the Martian atmosphere. - The clouds, veils, mists and
hazes which have been reported on Mars ars deseribed by many authors
(e4gs, de Vauconleurs, 195%; Dollfus,-195Y}; Hess, 1961; Kellogg and
Sagan, 1961; 5éik, 1962; Siipher, 1962; Michaux, 1967; Glasstons,

-+ 1968). We shall first review the descriptions of the various atmo~
spheric formations which have been reported from vasual, photographic,
vhotometric and polarimetrie Zarth-based observations, We shall then
examine the Mariner 6 and ? repor;s to see if similar phenomena are
confirmed byﬂthe television pictures obtained from these missions. In
sach case we shall include only the descriptions of the observations,
omitting the numerous theories which have been advanced to explain each
phenomenon. i

ks early as 1858, &, Secchi reported observing white spots on the
disk of Mars, W. R, Dawes noted 2 similar observation in 1864, It was
noé until 1877, however, that N, Green identified these spots as
clouds, * Since the spots appeared only on the limb of Mars and did not
rotate with the planet, he concluded tﬁaé they were not a surface

o+

feature, but must be atmospheric.

L |
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N
r Yellowish clouds and veils were also reported by the early visual_[
observers of Mars: . Such observations were made with refracting tele-
scopes, color-correctedz for visual observing.- Although color descrap~
tions are quite subjective under such conditions, the differences in
appearance between the yellow and white clouds were real emough to
enable observers to definitely distinguish between the two kinds of -
clongds,

Three prineipsl types of elouds are reported on Mars: "yellow"
clouds, "white" clouds, and "blue® (or "violet") clouds, ;o named. for
the color of light which they predominantly reflect. In addition to
the clouds, there is the so-called "blue haze", which is found on
photographs taken in blue or ultraviolet light, but not detected at
visual or 101;1ger wavelengths, We shal]: now summarize briefly the .
descriptions which observers.have reported for these clouds and hazes.

(1) The yeliow clouds are readily photographed in yellow or red
light but are not seen in blue light., They may start out as an exten-
gs1ve obscuration and grow larger untal they become a yellow “storm”
covering most of the planet and 1a:stizag a month or more. Such was the
case in £92# and 1955, Or, they may appear as small, dense, orange or _
yellow formations lasting from one to four days. Oceasional variataons
in photometric intemsities or irregular polarization changes suggest

that faint yellow velils may sometimes be present.

(2) The white clouds show wide variations in size and behavior.

L _
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Some are small bright formations which generally remain fixed in a
given location, They may be surrcunded by a large fainter cloud
structure., The "polar hood"” or "polar haze", which covers the polar
cap during most of the loecal auturm and winter, is said to be composed
of such smslil bright clouds,

Durlng the Martian local spring and summer, when the po;l:ar cap in
a2 given hemisphere is receding, white clouds or hazes are often seen
at the sunrise edge of the planet, This morning haze remains stationary
and extends i‘c;r only a short distance across the planet, It usually
occeurs at low latitudes at zbout the same local time, but varies in
size and intenmty.l In some regions the haze may appear several days
1n succession; in others, it is seen only occasionally. Such hazes are
also observed to form near the evening terminstor.

The largest whate clouds have a tenc?ency +o occur above, certain
regions, Occasionally they show as bright prominences at the limb of
the planet. They may remain visible for days or weeks. large bright
white clouds also appsar at tames over particular localities at low and
medaum latitudes in the late afternoon.

(3) The blue clouds are adentified with the use of 2 blue filter,
but they are less well defined as a definite elass than the yellow and
white elouds, Some observers believe that the blue and white clouds

ars the same phenomenon seen at different wavelengths, but others poant

to polarization and behavioral differences which they feol distinguish _

L _
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the two types. Another classification associates the blue clouds with
braghter arsas in the blue haz*e.

(4) The blue haze is thought to be 2 temuious atmospheric layer
which contributes suffieciently to the atmospheric opacity so as to
lower the surface contrast bslow the level W].;ere detail can be discerned
in wavelengths of light shorter than about 04554 . Not all investi-
gatdrs are convinced that such a haze layer really exists; some
attribute the lack of surface detail in blue light to decreased surface
contrast in the blue and to‘ ipoor seeing., Although most photographs of
Mars in blue and uwltraviolet light show little or no detail, at times
one cen obtain photographs at these wavelengths which reveal the
surface” features as clearly as in red light. Such a condition has been
called a "blue-clearing", If this latter phenomenon ’is real, it is
very hard to explain,

We now turn to the information on tlhe Martian atmosphere obtained
from the télevision experiments aboard the Mariner 6 and 7 spacecraft.
The television cameras employed blus, green and red filters having
effective wavelengths of 0.1-1’69/;. ,/O. 526)4,(. , and 0, 573/1, , respectively.
The phetographs obtained show surface features to be visible in all
wavslengths, ineluding the bilue; therefore, the experfi-.men'ters conelude
that thete is no obscuring "blue haze" (Leighton st 2l., 1969).

Hess (1970), Boyce (1970) and Opik (1969) have questioned this

interpretation and conclusion, All of these guthors state that the
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effective wavelength of the Mariner blue filters is too long to reveal
the blue haze phenomenon, Furthermore, Hess claims that the features
record?d by Earth~based telescopes are large compared with those
recorded by the Mariner spacecrafi. Therefore, since the telsscopic
features represent an average over the discrete elemen:bs photographed
by the Mariners, they will be J.owe\r\ in contrast than those seen by the
Mariners, Hence, a thin "blue haze" could exist which would obscure
the large telescopic features while permitting the high-contrast small
features to be recorded, Boyce deseribes-his spectrophotoﬁetric -
neasurements of Martian surface features, which show changes in
contrast at short wavelengths, He interprets this as the variable
opacity of a "violet" haze which is observed shortward of 0.43}1. .
5pik points out that the computerized technique of eliminating back-
ground and noise, and the arbitrary enhancement of contrast,could cause
craters to remain visible on the televised photographs even as far
into the blue as 0,410 , He recommends that future space photography
of Mars inelude a filter at 0.365/.1 before the "blue haze" hypothesis
is rejected., Thus the question of an obscuring haze at shorter wave-
lengths remains open,

The other atmospherie observations by the Mariners are less
controversial, but in some cases just as perplexing. For instance,

several variable bright features, which may be indicative of atmospheric

procaesses, appearsd in widely separated areas. The brightness of these

L _



18

O

r:_-egions was observed to develop during the forenoon and to increasg
during the Martian afterncon: A similar phenomenon of local diurnsl
brightening had been noted earlier in descriptions of Earth-based -
observations of the white clouds observed on Mars, No fully satis-
factory explenation for the effect is yet knowm. )

The Mariners 6 and 7 flew by Mars slightly less than a week apart,
yet marked changes in the brightness of some areas in the high northern
latitude regions seem to have occurred during this pericd (Leighton
- et al., 1969, see Figure 7), which could be atmospheric effects. In
addition, a diffuse brightening was observed to cover much of the north
polar cap region., This presumsbly corresponds to the "polar hood",
which has been observed from thesBarth at this Martian season (northern
early autumn), .

Another possible indication of atmospheric hg.ze is the observed
daz:kening of the south polar cap near both the 1limb and terminator on
the .far—encounter pictures of Mariner 7. The experimenters point out
that this darkening is definitely not due to cloud or thick haze since,
during near-sncounter, surface features were clearly visible everywhere
over the polar cap., They suggest that the darkening may be due to
optically thin aerosol scattering over the polar cap, or possibly to
urmsual photomstric behavior of the eap itself,

The most clear-cut evidence for scattering leyers in the Martian

atmosphere is seen in-2 mumber of the Mariner 7 photographs which show

L __}
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i;_ sharp haze layer adjacent to the limb at several latitudes (Leighton
et al., 1969, see especially Figure 4), Preliminary analysis of these
pictures reveals stratified horizontal scattering layers similar to
the aerosol layers in the Earth's atmosphere. A substantial variation
in the scattering intensity over distances of a few hundred kilometers
has been noted, with a greater intensity toward the west, i.e., toward
earlier local times of day. 'The thickness of the layer was estimated
to be about 10 lqn—with heights between 15 and 40 km, The layer was
reported to be about 50% brighter in the blue-filter pictures than in
the red or green. An apparent limb haze was also observed near the
south polar cap and in some nearby regions, but it was not as bright
as the haze just deseribed. A faint 1limb heze is thought to be

present in the Mariner 6 limb piretures, also.



CHAPTER IV
TIGHT STATTERING BY SINGLE PARTICIES (MIE THEQRY)

The scattered light which is observed from a clear sky is due to
two sourees: (1) seattering by the air molecules and (2) scattering by
atmospheric aerosols (haze and dust).

The moleculsyr scattering can be treated by the Rayleigh scattering
law (van de Hulst, 1957, p. 65). When unpolarized ligl’ft of intensityI;
is inecident upon_ a particle (molecule) whose radius is very small
comparsd to the wavelength of observation, the intensity I of the
radiation scattered in the diresction 8 and at a distance /. from the

particle is given by

‘T
= 2
1= 30 2 Joff (1ren?0) @
A
where A is the wavelength of incident light in the surrounding medium

and w is the polarizability of the particle, The scatt;aring angle 6
is tl_ae angle between the direction of propagation of the ineident ;ra.ve
and the scattered wave, and for single scattering is equal to 180°%- o¢ ,
where & is the phase angle.

_ Thas Rayleigh scattering forrmla is valid for molecules and
aerosols with radil:i. less than about 0.1 times the wavelength of 1ight.
The entire phase angle dependerice is contained in the @+ c052 g )

term, This term has zero slope at 0° phase angle ( O = 180%), and is
L |
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reduced by only 3%, or 0.0%, at 15 phase angle ; therefore, molscular
acattering alone cannot account for the observed Martisn opposition
effects

We next consider the second source of atmospheric scattering:
aerosols, Very small aerosols, as mentioned: above, follow-Rayleigh's
scattering laws particles of sizes greater than about 0.03/4 radins
must, however, be treated according to the exact diffraction theory.

The complete problem of diffraction of a plane wave by a homo-
geneous sphere of any composition has been treated rigorously by Gustav
Mie (1908), according to.the methods of classical elsctromagnetic
theory. As a first approximation, most aerosols can be considered as
spheres; thus Mie's formulae ghould give reasénably acourate results
for such partiecles.

Lecording to the Mie theory, 1f unpolarized light of intensity ‘Io
is aneident upon a2 spherical serosol partiele of radius Q& , the
intensity 1 of the radiation scattersd in the direction & and at a

distance S from the parti?:le is gaven by .
I Bz . A . ‘ -
- TI- 807? — [ (5,7, 8) + &, (3, &, 6) ] (3)

where /A= 4T a,/a is the size parameter; [ = n - ik is the complex
index of refraction of the scattering particle (k = O, if non-absorbing;
k>0, if absorbing)}; and i’i and iz are dimensionless intensity

functions which refer, respectively, to the intensity of light vibrating

L. _
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perperdicularly and parallel to the plane through the directions of 1

propagation of the incadent and scattered beams. Note that the partaecle
radius @ and the wavelength A enter these mtensi’t:y functions only
through the size parameter 4. (For a comprehensive trestment of the
Mie theory, see van de Hulst (1957, especially pp. 35, 119~126).)

The intensity functions ';"1 anrd ""2; were derived by Mie in terms

of the complex amplitude functions 51 and 92 :

15, (x, 3, 0)" "
‘:52 (&, 7, 8) ‘L (5)

where

aD
8..
=]

n:?alf(m*‘i[ AT (e 8)+ 4 r (7 )T (m@) 6)

85, deeed [ (u)g (ndes (M5, ] 0

The phase functions, 1T'mand: 'TW depend only on the seatterang angle 6.

T = &P (o 6)

(8)
dcod B
A7 (eov 8)
T = Cou8 - (cowd)-ainfe 2
c T (cowd) oy (9)

Lwhere Pm(m 9) are the Legendre polynomials, N
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The complex functions G, and aﬂﬂ;b are the so-called Mie
coeffiexents, whieh ecan be interpreted vthysically as the mth electriecal

partial wave and /m:c' h magnetic partial wave, respectively:

o B, @) - g, R Y, @)

, - (10)
YV, (#EB) @) -my, @5 W
5 - BY GO UW-Y EDY®
Y @) [(w) -y, @) §,, )
where Ji-
Y (=24 @=(F) Ls® o

L@ - 24, - (?1%)’2 1 @ )

and a2 prime denotes diffe:&entiation with respect to the given srgument.
These are the Riceati-Bessel functions, derived either from the
L?-)
spherical Bessel functions of first and second kind, ?JL and ,gd or
from the half-integral Bessel functions, U, ., and [ 0
m alf-integral Bessel functions, ek nd e

Equations (3)~(13)have been used to make light scattering calcula-
tions for substances ineluding ice, water, and solid 002, whieh have
no significant absorption in the wavelength range under consideration,

| and for highly absorbing materials, such as limonite. N
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The refractive indices eovered by the ealeunlations ranged from
1,20 to 2,40 in steps of 0.05. Indices with no absorption (k = 0},
small absorption (k = 0,01 and 0.03) and large absorption (k 2 0.1)
were considered. Of special interest for studies of Mars are the
rosults obtained for the following refractive indices: 1,31 (ice),
1,33 (water), 1,35 (solid CO,: Egan and Spagnolo, 1969), and
2.23 - 0,6691 (limonite at A= 0.365u : Egan and Becker, 1969), The
maximum size para:me’ter examined was X = 83; howsver, the current study
has been restrieted to submieron partieles, FPhase angles as lawge as
60° have been considered, although the maximum phase angle at which
Mars 1s observable from earth is f\aﬁlf?o.

Figure 4 shows the computer prantout of the sum of the intensity
fu;zctions, L g+ L 2z » for a sphere of refractive index 1.35 with no
absorption, All quantities were calculated and stored in floating
point, but to conserve space on the printout the values were rounded
to the nearest integer. The first column lists the size parameter 4
in inerements of 0,4, The radil scales which correspond to the wave-
‘lengths 0.36/.L (u), 0.55/.( (v}, and 0.83//, {(I) are given in the next
three columns, The remaining columns give the total intensity as a
function of phase angle, Note that these values do not include the ;\2.
factor of Eguation (3). -

We wish to examine the printout of Figure & to determine which

particle radii, if any, show an increased enhancement in intensity at

L _I
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Figure 4. Scattering intensity, (i; +15), for Mie aerosols of refractive index 1.35. The first column gives the
Mie size parameter, x = 2 a/A, where g = particle radius as given in the next three columns for the
specified wavelengths.
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];ﬁall phase angles velative to the intensity at larger phase angles, L
Large amounts of numerieal output sueh zs this are very tediouns to
analyze by visual scanning, however. We, therefore, sought 2 method
of presentation which would 2id us in diseriminating those refractive
indices for which the total intensity at small phase angles exceeded
that computed for larger phase angles,

Since the O'Leary=-Rea observations begin to depart from linearity
in the U and B at around 15° phase angle (see Figure 2), it would be
useful to know which size paramgters show a significant intensity
increase at o< 15°, but at the same time dispiay a decrease in
intensity at & > 150. To make this comparison more apparent, we
normalized the data shown in Figure 4 by dividing the ealculated scabe
tering intensity for a particular size parameter /0 at each phase angle
by the mean intensity, averaged over phase angles from 12° through 18°,
for that size parameter, These normalized seatiering intemsities,
rmaltiplied by_103, are shown for refractive index 1.35 in Figure 5,

The column headings are the sams‘as those for Figure 4.

With Figure -5 it is ruch easier to see immediately which inten~
sities exceed the intensities around phase angle 159 and which are
less. At 70 = 0.4, where the scattering follows Rayleigh's law, there
is only a 3% dinerease in intensity from.15° to 0° phase angle, as would
be expected from Equation (2)., It is only when the size parameter /P

increases to 3.2 that one sees any significant intensity enhancement at
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Figure 5. Scattering intensity, (i; +ia ), for Mie cerosols of refractive index 1.35, normalized to the average
intensity for 12°< o < 18° dnd multiplied by 1000,
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J;111&3.1 vhase angles, Between 3.2 < 4 < 4,8, there is evidence of a 1
small opposition effect, without an increase at larger phase angles,

as can be confirmed from Figure 4, but this is only for a very limited
particle size range (e.g., this would correspond to -particle radii
between 0.184¢ and 0,28 in U)., From 5.2 < A < 7.6, the largest
intensities are at the larger phase anglesr instsad of the smaller ones.
Beyond this point, no definite patiern of enhancement is apparent,

Although the normelized intensities of Figure 5 are a definite aid
in analyzing the light scattering caleulations, we still have to
examine each entry wi:c: determine the amplitude, or degree, of the effect.
Furthermore, it is not easy to see major trends or groupings.

Our next step was, -therefore, to convert the Figure 5 caleulations
to 2 schematic representation in terms of relative magnitudes. This
wag done according to the code given :(m Table 2, u The resulting
schematic representation of the scattering intensities for refractive
Jindex 1,35 is shown in Figure 6. Adjacent bars of the same- kind, -
either vertical or horizontal, have been comnected. Thus, in regions
of eontimious solid v;artical bars (such as 6° < of < 12% and 17 < A
< 20), the scattering intemsity is at least 1,25 brighter than the
average scattering intensity from 12° to 18° pha./se angle for that size
parameter, A dot indicates that the scattering intemsity is within
40125 of the 12° to 18° average, A region of so0lid horizontal bars

(such as for 07 < ¢ < 8° ang 7 < M < 10) shows that the scattering

L N
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TABLE 2 R

CODE USED FOR SCHEMATIC SCATTERTNG INTENSITY DIAGRAMS
SHOWN IN FIGURES 6, 8, 10, 12, AND 14

Normalized

Seattoring Equivalent
Code Intensity Magnitudes

( E’i + LZ,) n(o{ ) - mav(l?.o- 18%)
Hin > 2818 < -125
Mt 2200 - 2818 1,00
i 1779 - 2239 ) -0,75
I Wik - 1778 ~=0, 50
| 1123 - 1413 ~0.25
’ | 892 - 1122 " 0.00
- 709 - 891 +0,25"
- 563 -~ 708 +0, 50
- L8 - 562 40,75
_— 355 - b47 41,00
- . <355 2 +1.25

intensity is at least 1?25 or more fainter than the average scattering
intensity from 12° to 18°,

The usefulness of t?lis display lies in allowlng us to observe how
the scattering'intensity for & given particle radius and wavelength

varies with phase angle, and thus to see guickly and easily whach

L -
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eter, x =27a/A , where g = particle radius as given in the next three columns for wavelengths
See Table 2 for code used to construct diagram
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particle sizes show an increase in intensity, or brightness, near smal‘f[
phase angles, and which do not., As noted earlier, the Martian oppo=
sation effect is observed to depart from linearity around 15° phase
angle in the U and B; therefore, we are looking for particle sizes which
give an enhancement at small angles---that is, lots of wertieal lines
near 0° phase angle.

The same conclusions which we reached earlier based on the numeriw
eal output are even more readily apparent in Figure 6. There is a
slight opposition effect around /¥= 4, but the intensity hére is only
abc;u,t & magnitude brighter then the averags intensity around 15°, as
indiecated by the low density of vertical lines (see Table 2). , For
8 < /£ <12, there is an anti-opposition effect, as evidenced by the
arge m:.mbér of horizontal lines at small phase angles, Further down
the diagram, at larger radii, where there is a spotity positive effect,
the solid-line enhancement oceurs for phase angles of 6% to 12°, which
is not what the Mars observations show, It does not, therefo:l-e‘ y appear
that submicron spherical particles with refraective indzex 1.35 as-e good
candidates for producing the opposition effect. Similar dis.plays for .
refractive indices from 1,20 to 1,50 all produce only small variations
of the basic pieture seen in Fipgure 6.

As mentioned earlisr, the refractive index of 1.35, for which the
Figures 4 = 6 comput:ations were made, is of particular interest- for

studies of Mars since it is the oﬁ].y measurenent found in the literature

L 1
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I;‘or solid (‘:0'2 in the ultraviolet. - These measurements, which were made |
by Bgan and Spagnolo (1969) for bulk €0,, cover the wavelength range
0.35 to 1,0 ) b and show 1little or no wavelength dependence. The
absorption goefficient k reported by these authors is very smell in
this wavelength range and can be neglected in our calculations, Thin-
£ilm measurements of the refractive index for 002 cryocdeposits by
Tempelmeyer and Mills (1968) show slightly higher values for the real
part of the refractive index and a wvariation with wavelength, They
obtained a value of n = 1,455 at A= 0.6/4, s the shortest wavelength
at which their measurements were reported; however, the slope of their
curve at this point suggests that the index might be increasing toward
shorter wavelengths, Egan and Spagnolo {1969) have suggested that the
discerepancy in these measurements may be due to the difference in
temperature {and therefore density) of the samples (77°K for Tempelmeyer
and Mills wvs, 195°K for Egan and Spagnolo); alternatively, surface or
body seattering could reduce the observad Browster angle, thus resuiting
in a slightly lower real portion of the index of refraction. Additional

measurements of the refractive index of solid CO, over this range of

2
temperature are desirable.

Figure 7 gives the iomputer output (not normalized) of scattering
intensities for & highly absorbing material, limonite, using the compleX
refractive index in the ultraviolel as measured by Egan and Becker (1969),

Here there is almost no change in scatiering intensity with phase angle

- |
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ri:or a2 given particle radius, The schematie disgram for these caleula-—[
tions is shown in Figure 8, The almost total absence of enhancement
anywhere is striking., Thus aerosols of limonite, or of any other
highly absorbing substance, could not produce &n opposition effect,
Similar resuits wore found for 2ll absorbing refractive indices where
k> 0.1,

Figure 9 shows the scattering intensities for np = 1,55, The
enhancement at small phase angles is immedijately obvious. The schematic
diagram for n = 1.55, Figurs 10, looks considerably different from
either of the previous schematic displays (see Figures 6 and 8), There
is a strong contimous enhancemen’c.. from 0° to 10° phase angle, with very
small contributions at larger vhase angles, ;'or 3 <4< 11, This size
paramster corresponds to partiele radii in the U ranging from a.roti:zbd
0.2 to 0.?# « We can see that this same partiele radii range would
show & smaller enhancement in the V and much less in the I,

Indications of an even more significant opposition effect a;re
exhibited by calculations for asrosols having refractive indiées of 1,65
and 1.75, as shown in Figures 11 = 14, In the case of n = 1.65,

Figure 12 shows that the opposition effset is evident for size paramstor
S =1L and greater. This intemsity enhaneenent bagins to be noticeable ,
at around 12° phase angle and gradually increases in magnitude until
around oA = 40, where it becomes rmuch more pronounced and contimes on

through 0° phase angle, If we compare the scattering intensities from

L .|
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l;\:{t:orﬂ:i.cJ:'cm particles at each of the three wavelengths showm, we see tha?
the opposition effeet is most pronounced in the U, less signifieant in
the V, and much reduced in the I for spheres of refrgc’give index 1,65===
which is® just what the photometric observations of Mars show (see
Figure 3).

The opposition effect for n = 1.75 is even more pronounced than
for n = 1.65. A comparison of Figures 11 and 13 shows that the inten=
sities at small phase angles for n = 1,75 are much greater than those
computed for n = 1,65, At the same time, the intensities at larger
phase angles ars about the same for both.,. Therefore, it is not
surprising that the schematic diagram for n = 1.75 (Figure 14) has
almost contimous vertical lines between 6° and 0° phase angle,
indicating an opposition effect of 1725 or greater (see Table 2).

The displays for n = 1.65 and 1,75 are typical for real indices
of refraction from 1,60 to 2.00, From n = 2,00 to 2.40, the effect

gradually decreases,



CHAPTER V

INTEGRATED INTENSITIES FOR PARTICLE-SIZE DISTRIBUTIONS

Having investigated the light seattering behavior of single
spherical particles of various sfzes- and refractive indices, our next
step was to computs the intensity of the light scattered by groups of
such particles, To do this we used several particle-size distrabutions
based on the general function given by Deirmendjian (1964) as typical

of terrestrial clouds and hazes:

g2 w‘b’

N (@)= 4 e (1)

where )( (0.7 da is the muber density of aerosol particles with radii
betwsen @ and aa'*'déb H Cﬁf i J ' .Qr s and S are positive constants,

Two forms of Zquation (14) are obtained. When d 70, the constant
IE' was chosen so as to make‘ N (a.)a maximm at particle radins a; .
The normelized fc'}rm of Equation (14) is then

‘ 5 ran®
s ~Fla
Nay=C-(%) e v ) 5)

with the normalizing factor

= _ D . ;0; (—-—‘—’-(-)—%— (16)
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I'a’ and 7§ are parameters determining the width of the distrabution B
funetion, and || (f}f,) is the gamma function, The normalization was

chosen so that o

S}f(w)dwﬂ D (17)

where :D is the total aerosol mumber density,

When J = 0, Equation {14) is a negative exponential:

(&)
B Dve ' .
N(a,)qa ﬁ%r(—%‘) (18)

where <&, and T determine the width of the distribution funetion.

Figure 15 shows five particle size distributions N (@). ;ahich are
typical of those used in the Mie calculations to obtain integrated
scattering intensities, Although caleulations vwere made for distribu~-
tions over particle radii ranging up to 44 , for this study we have
consideread -only submieron particles. The t;ro types of normalized
distributions which have been used are illustrated in Figure 15:
negative exponentlals and skewed gaussian~type distributions, Table 3
gives the values of the parameters used to produce these distributions,
Distribution Bl emphasizes wvery small particles by including primarily
radii less than 0.4 }.L » B2 is much broader, thus including larger
particles., -The three skewed gaussian~type distributions shown in

LFigure 15 peak at 0.2, 0.4 and 0.6}.1, .
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Figure 15. Typical particle size distributions used in calculations of
integrated scatftering intensities.
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TABLE 3
PARAMETERS USED IN PARTICLE~SIZE DISTRIBUTIONS

Distribution J L] a"a

. EL 0 - 1.5 0.2
E2 0 2,0 0.5
G.2 2 2.0 0.2
Golt 4 2,0 0.
G.6 6 3,0 0.6

Bquation (3) gives the intensity 1 of the light scattered by 2
single particle of radius &, For a particle~size distribution N(w),
’
the integrated intensity I is
&
/ I 19- N' i
I= 2 [ (/p, @)+ b, (2,7 A, N N@de  ag

z.
ST
a=0

This expression has been evaluated for various indicfes of refrac=
tion and various submicron particle-size distriblltions, with particle
radius inersments of 0,01 1 . These integrated intensities were plottéd
in terms of megnitudes and are shown in Figures 16 - 19, The 22 tactor

of Equation (19) has been included in the calculations, since each curve

L _l
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is for ; specific wavelength. The normalization which-was made for th;1
single particle schematic displays in Figures 6, 8, 10, 12, and 14 his
not been used in these caleulations of integrated‘ intensities, however,

Figure 16 shows the integrated intensities for n = 1.35. Calenla-
tions are displsyed for five wavelengths and two particle-size distri-
butions as a2 function of vhase angle, From Figure 6, the singlem
particie display for n = 1.35, we recall that only a few very small
particles showed a slight opposition enhancement, whereas particles of
a little larger size _showe/d an énhancement at larger phase angles,

This behavior is reflected in the resulfs obtained with Distribution E1
of Figure 15. Vhen larger particles are weighted more heavily, as with
Distribution G.6, the brightness curves peak at phase angles greater
than 100, as could be expected from examining the contributicns‘from
single particles,

Thus it appears that aerosols of.refractive index 1,35 cannot
produce the regquired opposition effgct. Other distributions of larger-
size partieles were also aneapable of simulating the observations, The
same was generally true for all real refractive indices from 1.20 to
1.50,

Figure 17 shows the integrated intensities for n = 1,55, The same
negative exponential and skewed gaussian~type distributions have been
used here as in Figure 16, As suggested by the single-particle display
for n = 1,55 (Figure 8), there is a definite, inerease in the integrated

intensity for both distributions from around 10° vhase angle.
(e : _
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Figure 16. integrated scattering intensities for aerosols of refractive index 1.35, as obtained with two particle size
distributions  Infensity in‘magnitudes is plotted versus phase angle for the five wavelengths, 0.36 (U), 0.43 (B),
0 55(V), 0 67 (R), and 0 83 (1) micron.
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Even more impressive examples of an opposition effect are seen in
Figures 18 - 19, where n = 1.65 and 1,75, respectively., The increase
in intensity from 15° to 0° in the ultraviolet for Distribution G.4 is

approximately ZI.RO, or about a factor of 6, for both of these refractive

andices,



! { T | i

DISTRIBUTIGN Ef AN DISTRIBUTION 6.4
R
I
05 MAG
1 ' | | l
Qe 5° 10° 15° 20° Q° 5" 10° 15°

PHASE ANGLE a

Figure 18. Same as Figure 16, except n=1.65
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r CHAPTER VI ]
MODELS OF SURFACS PLUS AEROSOLS AND COMPARISON WITH OBSERVATIONS

Having found that refractive indices of 1,55 or greater could
produce a significant enhzneement in antensity at smell phase angles,
we next generated a model consisting of a surface brightness functien
plus a brightness econtrabution by atmospheric aerosols, At longer
wavelengths, where the Martian albedo is higher and where surface
markings are more clearly visible, it is reasonable to assume that the
observed brightness comss almost entirvely from the surface and that
the brightness contribution by zerosols is negligible, As suggested
by de Vaucouleurs (1968), we took the Iumar photometric function
develoPed by Hapke (1963) and modified it to fit the observed Martian
brightness-phase curve at these longer wavselengths.,

The scattering law as given by Hapke (1963) for the integrated
brightness I(d)oi‘ the whole Moon as a function of phase.angle o uis

as follows:

TE= T [L-sim s do @)

Ainvoi-?-’fr‘rr-"()m‘i . BC"‘)%’)J (20)

where B (0( )?’) is the retrodirective function whach expresses the

opposition effeat:

Bengy= 1- = ("“’:%WD(E‘?VW“) R

L H 3/ ]
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l;?he parameter a/ determines the sharpness of the oppositaon effect, IIT[
Hapke's theory, % is closely related to the degree of compaction of
‘the surface,

" Bquation (20) wds modified to fit the observed Martian phase
curves at longer wavelengths by replacing B ,%)by its cube root
and set’c:ing the compaction paramejcer zd( = 0,2. We then assumed that
the phase curve for the surface would have the same shape (when plotted
on a magnitude seale) in all colors; that is, the surface phase curvés
would be wavelength-aindependent; only the albedo would change, in
accordance with the wavelength~dependence of tl':e lartian albedo observa-
tions., This meant that in the model, the surface brightness would
inerease by 309 from 16° to 0° phase angle at all wavelengths.

Any attempt to separate the brightness contributions of the atmo-
sphere and the surface of Kars based on our present knowledge must
neces_sariiy involve certain assumptions., In this comnection, it is
useful to see what conclusions can be drawm from laboratory measure-
ments of the angular sca%tering of various materials, O'Leary and ..

Rea (19‘68) have measured the phase funetions of several sample
substances of interest in comnection wath the Martian surface: fine
limonite, fine and coarse goethite, -fine and coarse hematite# fine and
coarse siderite, and four éynthet.ic mixtures containing varying amounts
of magnetite, goethite, silica, hematite and hormblende., The fine

kY

particle radil of the samples were less than 19 M the coarse goethite

L N
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r;article radii ranged from 125 to 250 44 , and the coarse siderite and o
hematite radii were between 250 and 500 44 + The measurements wers
made 2t wavelerigths of 0.43, 0,56, and 0,68 1 .

We replotted the O'Leary~Rea data on semi-logarithmic paper and
compared the three phase curves for each sample at phase angles of 15O
and less in order to determine the relative wavelength-dependence of
these substanees, The percentage i§crease in refiectavity from phase
angles of l5° to 1° is greater at the shorter wavelength for eight of
the eleven samples: however, the coarse hematite znd the coarsébgoe-
thite exhibit a greater inecrease in reflectivity et the longer wave-
length than at the shorter one. (The coarse siderite shows the
greatest percentage inerease in reflectavity for the wavelength of
0.56L.)

This suggests that although many substances may exhibit 2 greater
reflectivity at shorter wavelengths than at longer ones, this is not
always the case; in particular, the phenomenon may be a function of
particle size, Beeause of the uneertainties in the composation and
mineralogy of the Martian surface, the dominant particle size and
texture of the material, and, therefore, the pvhotometric vroverties of
the surface, we have assumed for this model that the surface phase
curves are wavelength-independent. Should this not be the case, some

of the conclusions of this paper could be altered significantly,

" Having modified Bquation (20) so that it would give the same shape

L _J
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!_(on a magnitude scale) 2s the observational phase ecurves for Mars at 1
longer wavelengths, we used this same phase curve to represent the
surface at all other wavelengths by incorporating an overall surface
albedo constant appropriate to each wavelength., The initial chodce of
these albedo surface constants was based on our knowledge of the wave-
length variation of the albedo of Mars (see Table 1).

In addition to the five free parameters for the surface albedo at
the five wavelengths under consideration, there is one other free
paramete; an the model: the aerosol number density., It is obvious that
this parameter must be the same for all wavelengths; however, the ’
brightness, or albsado, of the aerosols, which depends directly-on the
aerosol mumber density, will vary with wavelength, due to the _wa.ve-
length~dependence of the scattering intensities for 3 given index of
refraction, lie have already seen this from the light scattering calcu-
1at:|’.on\s for single particles (Chapter IV) end for particle-size distri-
butions (Chapter V).

We next made a mumber of test calculations in an effort to find
the combination of these six parameters--~the surface albedo constants
for the five wavelengths and the zerosol number density---which would
best fit the observed data for Mars. The results are shown in
Figure 20 for aerosols of refractive index 1,65, The thin lower curves
are the final assumed surface functions for I, V, B and U (R has been

omitted for simplieity), Note that they all have the same shape on 2

L __I
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m DISTRIBUTION 6.4

AERQOSOLS + SURFACE
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Comparison of model with Mars observations. For each wavelength, the
thin lower curve 15 the assumed surface reflectivity, the heavy upper
curve is the calculated brightness from the surface plus aerosols of
refraciive index 1.65, and the broken curve 1s the Martian
observational data.
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rr—a;gnitude scale and daffer only in albedo, The upper heavy solid
curves in Figurs 20 represent the sum of the reflectivities of the
surface plus asrosols for refractive index 1.65, using a skewed
gaussian-type particle distribution peaked at O.4ir (Distribution G.4;
ses Figures 15 and 18), At shorter wavelengths, where the albedo and
surface contrast are greatly reduced, the atmospheric aerosols are seen
to play & significant role, The calculated phase curves are in reason-
able agreement with the observations, which are showm as dashed lines,

In Chapter V we showed that spherical particles with various
indices of refraction greater than 1,50 counld produce an opposition
effects, To further iilustrate this, additional models were developed
for aerosols of refractive index 1.55 and 1.75., Figure 21 shows the
results which were obtained for n = 1.75 2nd Distribution G.4, The fit
to the observational data does not appear to be guite as close as for
n = 1.65; however, it might be possible to get a better fit with
additional variations of the free parameters, No fit could be found,
however, for aerocsols having refractive index 1,50 or less.

£lthough the ca.lculated vhase cuwves of surface plus atmospherie
aerosols showm in Figures 20 and 21 are in reasonable agreement with
't':l,qe observations, one should bear in mind that there was a good deal of
arbitrariness in- obtaining this fit. It is by no means a unigue
solution to the problem, It does show, nonetheless, that the presence

of a small amount of atmospheric asrosols, with the proper index of

L |
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Figure 21. Same as Figure 20, except refractive index of aerosols s 1.75
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refraction, could provide the observed increased opposition effect for
Mars in the ultraviolet, where the albedo is very low, but at the same
time make 2 negligible contribution in the anfrared, where the surface
albedo is high,

Tables 4 and 5 show the reflectivities of the surface (gs) and the
aerosols (P, for U, V and I at phase angles 0° and 16°, and the ratio
of the aeroscl brightness to the surface brightness, as obtained from
the models for n = 1.65 and 1,75, respectively, Note that'garlgs
reaches a maximm of 0.49 in the ultravioclet at opposition for aerosols
of n = 1.65, but falls off rapidly both with inereasing wavelength and
inereasing phase angle, For refractive index 1,75, the maximum bright—'
ness raetio is 0.69., Since Eﬁr rarely sxeceds 3% in either case, the
atmosphere is optieally than at 21l wavelengths, and the asswmption of
single scattering is justafied,

The reflectivities in Figures 2, 3, 20, and 21 and in Tables 4 and
5 ars nérmalized so as to be egual at 0° phase angle to the geometric
aibedo, i.e., the ratioc of the average intensity of the planet at full
phase to the intensity ( :I}‘ ) of a perfectly diffusing circular disk
(Lambert surface) at the same distance from the Sun and normal to the

incident redistion. Thus

NGy 2
PE) T, (@) ”
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TABLE 4

REFIECTIVITY OF SURFACE AND AZROS0LS, AS OBTAINED WLITH

MODEL FOR N = 1,65 AND DISTRIBUTION G.k .
P
-ar
x | n E, B ®, + 20 | Ve
v
6 0.048 0,02k 0,072 0.49
o° v 0,166 0.021 0.187 0,13
T 0,350 0,009 0.359 0,03
U 0.036 0.004 0040 0.12
16° v 0,124 0.005 0.129 0.04
I 0.261 0.004 0.265 0.02
TABLE 5
SAMS AS TABLE 4, ZXCEPT N = 1.75
¢ A P (®.+P.) Ea%v
-3 —ar -s b= b of -
o 0.045 0,031 0,076 0.69
o° v 0,162 0,026 0,188 0,16
T 0,344 0,015 0.359 0,04
] 0,035 0,005 0,040 0,14
16° v 0.123 0,008 0.131 0,06
I 0.260 0,008 0,268 0.03
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I Since we have assumed an optically thin atmosphere with no |
nml%iple scattering or atmospheric absorption of reflected light firom
t}-ie.surface, Equation (22) holds for the partial reflectavity of the
asrosol Fl/ayer as well as the total refleetivity. One ecan -thereby
determine the absolute asrosol mumber densities in the Martian atmo- °
sphere neeéed to give the model a.er:)sol reflectivities in Tebles 4 and 5.
Let D be the colummar density of aerosols (particles/cmz) in the
Martian atmosphere, with 2 partiele~gsize digtribution such that
D m(a) da represents the columnar density of particles with radii
between & and o+ da (SWC“—)A“":[). Tf the radins of Mars is &,
there ave 2 total of 471 18'2_[) serosol particles over the entire surfoce,
and exactly half of these are illuminated and visible at opposition.
Thus, from Equation (19), the total intensaty of the light reflected

from the aerosol layer is given by

2
T 287D Ia:\z - (li+1) m@) da (23)

gn'n

——

where /i is the distance to the planet. The intensity of a Lambert

disk of radius A (area.A:'ﬂg'z) at 0° phase angle is

- I z
IL. (oo = -::.E_".B;— = -—*—giB-—- ’ (21.{.)
™A y.” .

Thnis

Bes B - 22 flrtmdde e
i

L _



63

‘and . 7
D = -z 4Tr8r - (26)u
i) m@yda

with dimensions of (cm-z), since P, (v + Ly)and m(Q)da are dimensionless.

‘ This equation was used, together with the computer printouts of the
integrated intensities corresponding to Figure 18, to compute that a
columnay particle den31ty'of 0.8 x 106 spherical aerosol partlcles/cmz
(z = 1.65, Distribution G.4) was required to give the reflectavaties of
the asrosol layer shown in Table 4., TFor aerosols of refractave index
1.'?;, the columnasr particle density required to give the reflectivities
in Table 5 is 0.9 x 106 aerosol particles/cmz. Assuming an average
particle radius & = 0.4 (see Distrlbuéion G.%, Figure 15) with 2
dendity of 2.5 gm/cm?, a value typical of semitransparent minerals (see
next chapter), we fand that the density of aerocsols reguired in the‘
above model for aereosols having refractive indices of 1.65 or 1,75
corresponds to a columnar mass of about 6 x 1077 gm/cmz.

This number can be“compared with the coluwmar mass of the gaseous
atmosphere on Mars, which 1z 19 gm/cmz for a surface pressure of 7 nb,
The mass ratio of aerosols to gaseous'atmosphere for our model is there-
fore 3 x 10-8, thus demonstrating that only a very small amount of

aerosols is needed to produce the observed opposition effect,



CHAPTER VII 1

- SOURCES OF MARTIAN ATMOSPHERIC AEROSOLS

Several sources can account for the presence of aerosols in s
planetary atmosphere: (1) in situ pe.rlticle formation through condensa-
tion, photochemical reactions, and coagulation of the gaseous
atmospheric constituents; (2) influx of meteoric particles; and
(3) upsweeping of dust from the surface of the planet,

(1) A fow atmospheric 2erosols which might be formed in situ
have already been considered in the caleculations for water, ice, end
solid 002 particles; they were found to be incapable of produecing
the observed opposation effect, Howover, measurements of Mariner 6
taken at 79°N latitude at the beginning of polar night indicate that
conditions in the Martisn atmosphere are favorable for the conden-
sation of coz at almost all altitudes; Mariner 7 measursments taken
at 58°S an daytime and BSOH at night also show that 602 condensation
is possible at altitudes above about 25 km (¥liore et al., 1969).
Condensation of COZ is predicted for atmospheric temperatures below
150°K, The only available refractive indices for solad €0, at
A< 0.6/5,4., as pointed out earlier, were made at T = 195°K (Sgan and
Spagnolo, 1960). Should the vefractive index be significantly
higher at T < 150°K, the above conclusions with regard to solid CO

2
aerosols would need revision. It is highly desirable, therefors,

L. 4
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|_to have additional measurements of the refractive index of solid CO2 1

at T < 150°K, AL 0.6/;. Other gases besides CO, are likely to be

2

prasent on Mars, since current estimates of the concentration of CO2

range as low as 60% (Kliore et al., 1969). Therefore, the role o.f
minor a‘cmosphericl: constituents should not be agnored as possible
sources of atmospheric aerosols,

(2) Sinee Mars 1s located near ;he asteroid belt and also since
photographs of its surface by Mariners %, 6, and 7 show what appears
to be evidence of extensive meteoritic bomt‘)ardment, metsoric particles
may be a source of Martian atmospheric asrosols. The wminerals which

- \
are present in most common meteorites have a refractive index about

1.65, a value whi;h“ falls within the range of refractive indices for
vhich the above caleulations exhibit zn opposition effect.

(3) Measurements of the dielectric constant of the Martian
surface indicate that the abBundance of limonite in the surface
material is relatively low (Beck and de Wys, 1969). Comparisen with
terrestrial a:ui Iunar abundances indicates that the minerals to be
expected in the Mariian surfzce meterials are feldspar, pyroxense,
olivine, amphibole, quartz, magnetite, ilmenite, hematite, and
limonite (goethite)} (Beck and de Wys, 1969; P,D. Lot-;man, JIr.,
private commnication). Table 6 lists typical refractive indices

for these minerals (Wahlstrom, 197}, The last four are highly

absorbing and could not, therefore, exhibit an opposition effect,

L A
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r:nerlzﬂz-reer:a wavelengths of 0.35u and 1.0, Such 2 material would
satisfy the requir?ments for the dust particles in the Martian atmo-
sphere, Adams (1968) found that the reflectance spectrum of an
oxidized basalt matched quite well the spectral geometric albedo
curve for Mars,

Bé;ause the Martian atmospheric density is very low, one}mlght
question whether the atmosphere could support aerosols, It is
interesting to note in this regard that in the Barth's stratosphere,
where the density is roughly comparable to that near the surface of
Mars, there exists a worldwide permznent layer of submicron zerosol
particles, containing sulfur as a2 major constituent, with traces of
aron and silicon (Junge et al., 1961). Using the‘ average-size-distri-
bution curve reported for these particles for altitudes above 20 km
(Junge et al., 1961, Figure 23, Curve 1B, having maximun concentras
tion for particle radii of about 0.1/1-) and assuming thas densaty
dastrabution to be uniformly spread over an altitude range of 20 km,
we compute th; columnar particle density of submieron aerosols in
the Barth's stratosphere to be about 106 particles/ enZ, This 1s
compar;ble to the value ecaléulated earlier froﬁ our models for Mars,
based on the reflectivities of the aerosol 1aye; given in Tables 4

ard 5, although we assumed particle=size distributions peaksd at

particle radii of O,h4.,
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r 1

The third step was to generate 2 model eonsisting of a surface
photometrie function plus an aercsol brightness contribution. The
albado for each surface function was assigned aceording to the wave-
length-dependence of the Martian albedo observations; however, the
surface functions were chosen to have the samg shape (when plotted on
a magnitude scale) for all colors; that is, the surface brightness
inereased by 30% from 16° to 0° phase angle at all wavelengths.
Should this assumption be incorreect, some of the conclusions of this
study could be altered significantly.

Caleulations for models having atmospheric aerosols with
n = 1,55, 1,65, and 1,75 fit reasonsbly well with the observational
data; the aerosol brightness contribution provided a significant
enhancement at small phase angles in the ultraviolet, whers the
albedo is low, and yelt at the same ti&e made a negligible contribu~
tion in the infrared, where the surface albedo is high. A& similar
fit would probably be obtained with any real index between 1,55 an&
14750

Although the fitting of the model was somewhat arbitrary and by
no means a.uniqﬁe solution to the problem, it did show that the
observed opposition effect can be produced by aimospherie serosols
with the proper index of refraction, In the model having atmospheric
aerosols with n = 1,65, a columnar density of 0.8 x 106 aerosols/cm2

with average particle radius of O.4u gave the required aerosol

L I
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['contrabution to the total reflectivity. Assuming a density of B
25 gm/cm3, this corresponds to a mass ratio of aerosols to gaseous
atmosphere (for a Martian surface pressure of 7 mb) of 3-x 10°8,

This indicates that only a very small amount of aerosols is needed
to produce the observed opposition effect,

Finally, a number of possible sources of planetary atmospheric
aerosols were considered: in situ particle formation from gaseous
atmospherie constituents; influx of meteoric particles; and upsweseping
of dust from the surfaece of the planet. Refractive indices of rapre-
sentative substances in each group were discussed, The most promising
candidates are semitransparent minerals, most of which have n between
1.55 and 1,75, This suggests that meteoric particles from outside the

planet or dust from the surface of the planei may be present as atmom

spheric aerosols, thus producing the Martian opposition effeet.
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