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F MIE SCATTERING CALCUIATIONS OF THE CONTRIBUTION 
OF A24OSPHERIC AEROSOLS TO THE 

MARTIAN OPPOSITION EFFECT* 

by 

Jaylee Montague Mead
 

ABSTRACT 

The Mie theory is used to compute the integrated scattering
 

intensities for spherical submicron aerosol particles with various
 

indices of refraction and several size distributions in an effort to 

determine if the presence of atmospheric aerosols can account for the 

Martian opposition effect, as observed by O'Learj and by Koval' in 

1967. This nonlinear surge in brightness, as the planet approaches a 

phase angle of 00, is reported to be much more pronounced in the 

ultraviolet than in the infrared. 

The calculations show that neither substances having a refractive 

index n between 1.20 and 1.50, which include ice, water, and solid 

C02 , nor highly absorbing materials, such as limonite, can produce the 

opposition effect, On the other hand, aerosols having n > 1,50 with 

little or no absorption, such as meteoric particles or suspended
 

surface dust composed of semitransparent minerals, do exhibit a
 

definite increase in reflectivity at small phase angles.
 

#A summary of this work appears in Icarus 12, No. 1 (1970). 
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F By introducing an assumed surface function, which is added to 

the contribution by a layer of submicron-size aerosols with n = 1.65, 

a mbdel is obtained which compares reasonably' well with the obser­

vations. In this mddel an atmospheric columnar density of 0.8 x 106 

aerosols/cm2with average particle radius of 0.4# gives the required 

aerosol contribution to the total refledtivity. Assuming a-particle 

density of 2.5 gm/cm3 , this corresponds to a mass ratio of aerosols 

to gaseous atmosphere (for a Martian surface pressure of 7 robI) 
of 

3 x 10-8. Similar fits were obtained for n = 1.55 and 1.75 and 

could probably be obtained for any real index between 1.5-5 and 1.75. 

This range includes most semitransparent minerals, thus making them 

good candidates for producing the opposition effect.
 

This study demonstrates that the presence of a small amount
 

of atmospheric aerosols, with the proper index of refraction, could
 

provide the observed increased opposition effect for Mars in the 

ultraviolet, where the albedo is very low and a small-brightness 

contribution by aerosols will -have a comparatively large effect, 

but at the same time make a negligible contribution in the infrared, 

where the surface albedo is high. 
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CHAPTER I 

INTRODUCTION: STATm2CENT OF PROBLRI 

Observations of Mars made by O'Leary (1967a, b) and by Koval'
 

(1968) during the 1%7 opposition show an "opposition effect", i.e., 

a nonlinear surge in brightness as the planet approaches 00 phase
 

angle (the angle c< at the -planet'between the directions to the Sun 

and to the observer). The effect is reported to be much more pro­

nounced in the blue and ultraviolet than in the infrared. A strong 

opposition effect for the Moon had been well established earlier
 

(e.g., Gehrels et al., 1964).
 

This increased opposition effect for Mars at shorter wavelengths 

could be primarily a surface effect in that the surface may have a 

much greater increase in reflectivity at these wavelengths; alterna­

tively, it could be primarily due to light scattering in the atmo­

sphere, as suggested by O'Leary (1967a). 

Rayleigh scattering by molecules and by particles small compared 

to the wavelength of observation does not provide a sudden increase of 

brightness near 00 phase angle. Therefore, if the effect is primarily 

atmospheric, particles of larger size must be responsible. 

The most convincing evidence for the presence of aerosols in the 

Martian atmosphere comes from the Mariner 7 television pictures 

(Leighton et al., 1969). A sharp haze or scattering layer can be seen 

Ldjacent to the limb of Mars in several frames. The scattering is
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described as distinctly stratified in horizontal layers, similar to. 

scattering from aerosol layers in the Earth's atmosphere. 

Mars has a very low albedo in the ultraviolet, where the observed 

opposition effect is greatest; therefore, a small brightness contribu­

tion 	by atmospheric aerosols at these wavelengths will have a compara­

tively large effect. In the infrared, where the surface is much 

brighter, a small brightness contribution by aerosols will cause little 

or no change in the total brightness. 

The 	purpose of this study is to investigate the contribution which 

atmospheric aerosols might make to the Martian opposition effect, under 

the 	assuption that the increased enhancement at shorter wavelengths, 

where the a4bedo is very low, is primarily an atmospheric effect rather 

than 	a surface effect. Here w6 define the term atmospheric aerosol as 

the 	particulate matter suspended in the planet's atmosphere. 

The 	 study is divided into four parts: 

(1) 	 Calculations of scattering intensity near OoN phase angle 

(1800 scattering angle) by single spherical particles, using Mie 

scattering theor. 

- (2) Calculations of integrated intensities obtained by summing 

over particle-size distributions.
 

(3) Development of a model which incorporates an assumed surface 

photometric function plus an aerosol contribution, which is 

then compared iththe observations. 

(4) 	Examination of possible sources of Martian atmospheric aerosolp L 



r 	 CHAPTER II 

OBSERVATIONAL DATA ON THE 14RTTAN OPPOSITION EFFECT 

Although there has been much photographic and photoelectric
 

photometry of Mars, few of these measurements were made at small phase
 

angles. Since the orbital pland of lars is inclined at an angle of
 

1.850 to the ecliptic plane, the phase'angle does not become very small 

for all oppositions. For example, Omin Pas only 4.50 during the 

opposition of 1939, 4.30 in 1956, and 3.00 in 199i. The situation vas 

more favorable for obtaining data at small-phase angles in 1952, 1958, 

and 1967 when X was 0.40, and 1.20, respectively. Unless a0. 0.70, 


set of observatmons contains data for small phase angles, the "oppo­

sition effect" may go unnoticed.
 

The first indication of a possible brightening of Mars near oppo­

sition was reported by de Vaucouleurs (1959), based on his pIotoelectrtc 

photometry near the opposition of 1958. He found that the V magnitude 

of Mars at phase angles 6.80 and 10.20 was 0.05 to 0.1 mag brighter (at 

the same central longitude) than the values extrapolated from phase 

angle 21.40 with a linear phase law, A similar effect could be seen in 

-	 the photoelectric photometry of Johnson and Gardiner (1955) during the 

1954 opposition and in the photographic spectral photometry of Woolley 

(1953) and Woolley et al. (1955) during the 1952 and 1954 oppositions, 

as pointed out by de Vaucouleurs (1968) and Koval' (1968). 

L 	 J 
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F Additional evidence of the Nartian opposition effect is given by 

Harris (1961), who states that the 1952 opposition observations from 

both the Moumt Stromlo and McDonald Observatories showed Mars to be 

both brighter and bluer than normal on the night of May 3-4, 1952, when 

the phase angle was 2.50; the ultraviolet magnitude was 07 brighter, 

the blue magnitude about O.m2 brighter, and the visual magnitude about 

oNl brighter than expected by linear extrapolatLon. 

Between 1962 and 1965 the Harvard College Observatory conducted an 

extensive program of multicolor phbtoelectric photometry of the brighter
 

planets at its Boyden Observatory in South Africa and at the Le Houga 

Observatory in southern France (Irvine et al., 1968a, b). No anomalous 

brightening at opposition was found for the Martian opposition in 1965 

(Irvine et al., 1968b). However, it has been reported that a subsequent 

re-examination of this data suggests that a small opposition effect may 

be evident (Irnne and Higdon, 1969). 

During the opposition of 1967 Koval' (1968) made photoelectric 

observations of Mars in eight spectral regions ranging from 0.355/w to 

0.6191 at the Kiev Observatory. He concluded that the brightness of 

Mars increased markedly with approach to o( = 00 in all the wavelength 

regions investigated. He also compared his data -rith that of Woolley 

et al. (1955) and Johnson and Gardiner (1955) and found good agreement 

with respect to the opposition effect. We have replotted the tabular 

data of the observed integrated albedo of Mars as a function of phase 

L 



5
 

angle from Koval' (1968, Table 1); the results are shown in Figure 1. 

On the right side of the figure, reflectivity P, or albedo, is shown
 

on a logarithmic scale; its equivalent magnitude, given by
 

m = -2.5 log1oP (1) 

is shown on the left. To avoid prejudicing the reader, we have showm
 

only the data points as given by Koval' in tabular form and refrained 

from drawing in a curve. For sinplicity, we have included only four of 

the eight wavelengths at which observations were obtained. There is a
 

definite increase in brightness at smaller phase angles (note in
 

partioular the observed values at 1.30), and the effect appears to be
 

more pronounced at shorter wavelengths than at longer ones. ­

O'Lery and Rea (1968) (see also O'Leary, 1967b) have also 

reported observations of Mars during the 1967 opposition, taken from
 

Kitt Peak and Cerro Tololo, Chile. They, too, describe a definite
 

opposition effect and note a more pronouncedincrease in reflectivity 

near opposition for shorter wavelengths than for longer ones.
 

Of the many programs which have been carried out for making photo­

metric measurements of Mars, only the last three above have had
 

sufficient coverage at small phase angles to permit a study of the
 

opposition effect: O'Leary (1967b), Koval' (1968), and Irvine et al.
 

(1968a, b) (the "Harvard program"). We shall now compare these three
 

studies in order to point out the-differences between them and to select
 

Lthe one most suitable for comparison with our theoretical calculations,
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Figure 1 	 The-observed integrated albedo of Mars, based on Koval'. (1968, Table 1). 
Reflectivity, or albedo, is shown on a logarithmic scale on the right and 
on an equivalent magnitude scale on the left. 
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All of these observations were made with photoelectric multicolor 

photometers; however, the Koval' and Harvard programs used eight to ten
 

narrow-band filters, averaging less than 0.015/t in bandwidth, whereas 

all of O'Leary's measurements were made with six or less broad-band 

filters, having bandwidths approximately 0.04/ . 

The range in wavelengths covered in all three studies was approxi­

mately 0.36JL to 1A with two exceptions: the filter of longest wave­

length used by Koval' was centered at 0. 619g, while the Harvard, 

program included a narrow-band filter at 0.3147a. 

The -largest number of observations were reported in the Harvard 

study: 193 on 105 nights. Of these, only four points on two nights were 

obtained near the 1963 opposition and will, therefore, not be considered
 

here. Forty-one observations at phase angles less than 130 were
 

obtained durifig 16 nights near the 1965 opposition. The minimum phase 

angle observed in this series was 2.410. and the maximum was 37.670.
 

There were eleven data points, covering five nights, which had phase
 

angles less than 5°%
 

Koval' reported 23 mean-observations for 22 nights, with eight 

nights having phase angles less than 130. His range in phase angle was
 

from 1.30 to 36.20; however, only two (mean) data points were for phase
 

°
 angles less than 5 .
 

O'Leary listed 13'mean data points for 13 nights and stated that
 

about 14 observations of Mars in each color were obtained on most of
 

L 



'these nights; however, no measurements were made for phase angles
 

.
greater than 7.5O He reported observations for nine nights when the
 

phase angle ias less than 50; these means were presumably based on 

approximately 100 points. 

The reflectivity of the Martian disk varies with longitude, 

depending on the predominance of bright or dark areas along the central
 

meridian of observation. O'Leary (1967b) described how he corrected 

his data for this rotation effect. The other two studies do not 

mention any attempt to correct for this problem. 

Because of the differences in techniques of reducing to absolute 

photometry, it is difficult to compare quantitatively these three 

studies or to merge all the data which covers a given opposition. It 

is unfortunate that O'Leary did not obtain more than 13 nights of 

observations.,, especially at phase angles greater than 7.50 "since this 

Nould have reduced the need for such a large extrapolation of his phase 

curve to that of other observers at larger phase angles. Despite this 

drawback, because his study has so many more data points at very small 

phase angles than do either Koval' or Irvine et al., O'Leary'a observa­

tional data appears to be the better source to use for comparison with 

our theoretical calculations. We shall now review in greater detail 

the data obtained by-O'Leary. 

,Figure 2 is taken from 0 'Leary and Rea (1968) and shows the Martian 

opposition effect in six colors: U, B, V, R, I, and I'. The observa­

°
 tions, made at phase angles of 1.20 to 7 ,5 , are indicated by solid
 L 
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lines. Each curve was determined by deriving the best curve through the 

observed data points and fitting this curve between C<= 120 and 160
 

(depending upon the wavelength) to the known linear phase function
 

reported for o(j 100 (de Vaucouleurs, 1964). Note that the magnitude 

scals for the U and B curves at the top of Figure 2 are compressed by
 

a factor of two compared to the other colors shown; the opposition
 

effect for U and B as therefore greater than a first glance at these 

plots suggests.
 

In Figure 3 we plot the reflectivities from Figure 2, as adjusted 

for the color of the Sun, on a single continuous scale. On the right
 

side of the figure, reflectivity P is shown on a logarithmic scale; its
 

equivalent magnitude (see Equation 1) appears on the left. The reflec­

tivity scale has a range of 2.5 magnitudes, or a factor of 10. As
 
A 

O'Leary and Rea pointed out, the opposition effect is much more
 

pronounced at shorter wavelengths than at longer wavelengths, as
 

evidenced by the fact that the U and B observations depart much more
 

from the linear extrapolation than do the curves at R and I. -The 

,
reflectivityl or albedo, on-the other hand, is much greater at longer
 

wavelengths than at shorter ones.
 

Table 1 expresses these concepts quantitatively. Note that the 

Bond albedo o'f Mars is only 5% in U, whereas it is 44 in I; yet the
 

brightness increases by 72% from 16' to 0' phase angle in the U, but
 

only 30% in the I*
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TABLE 1 

FOND ALPECD AND OPPOSITION EFFECT 
(after 0 'Leary, 196T) 

FOR MARS 

Bond 
Albedo 

Am 
(00-160) 

Poy/ 
1160 

U 

B 

0,05 

0.08 

0W59 

o.56 

1.72 

1.68 

V 0.17 0.45 1.52 

R 

I 

0.38 

0.42 

0.3Z 

0.29 

1.34 

1.30 
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F CHAPTER LII 

OBSERVATIONAL EVIDENCE FOR AEROSOLS IN THE MARTIAN ATD4OSPHERE 

There is considerable evidence, based primarily on observations 

of a variety of atmospheric formations, which suggests that aerosols 

are present in the Martian atmosphere. -The clouds, veils, mists and 

hazes which have been reported on Mars are described by many authors 

(e.g., de Vaucouleurs, 19541 Dollfus,-196Lj Hess, 1961; Kellogg and 

Sagan, 1961; 6pik, 1962; Slipher, 1962; Michaux, 1967; Glasstone, 

1968). We shall first review the descriptions of the various atmo­

spheric formations which have been reported from visual, photographic, 

photometric and polarimetric Earth-based observations. We shall then 

examine the Mariner 6 and 7 reports to see if similar phenomena are 

confirmed by the television pictures obtained from these missions. In 

each case we shall include only the descriptions of the observations, 

omitting the numerous theories which have been advanced to explain each 

phenomenon.
 

As early as 1858, A. Secchi reported observing white spots on the 

disk of Mars. W. R, Dawes noted a similar observation in 1864. It was 

not until 1877, however, that N. Green identified these spots as 

clouds.' Since the spots appeared only on the limb of Mars and did not 

rotate with the planet, he concluded that they were not a surface 

feature, but must be atmospheric. 

13
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F Yellowish clouds and veils were also reported by the early visual-, 

observers of Mars. Such observations were made with refracting tele­

scopes, color-corrected for visual observing. Although color descrip­

tions are quite subjective under such conditions, the differences in
 

appearance between the yellow and white clouds were real enough to 

enable observers to definitely distinguish between the two kinds of ­

clouds.
 

Three principal types of clouds are reported on Mars: "yellow" 

clouds, "white" clouds, and "blue" (or "violet") clouds, so named for 

the color of light which they predominantly reflect. In addition to 

the clouds, there is the so-called "blue haze", which is found on 

photographs taken in blue or ultraviolet light, but not detected at 

visual or longer wavelengths. We shall now sumarize briefly the 

descriptions which observers ,have reported for these clouds and hazes. 

(1) The yellow clouds are readily photographed in yellow or red 

light but are not seen in blue light. They may start out as an exten­

sive obscuration and grow larger untl they become a yellow "storm" 

covering most of the planet and lasting a month or more. Such was the
 

case in 1924 and 1956. Or, they may appear as small, dense, orange or 

yellow formations lasting from one to four days. Occasional variations 

in photometric intensities or irregular polarization changes suggest
 

that faint yellow veils may sometimes be present. 

(2) The white clouds show wide variations in size and behavior. 

L 
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ISome are small bright formations which generally remain fixed in a 

given lacation. They may be surrounded by a large fainter cloud 

structure. The "polar hood" or "polar,haze", which covers the polar 

cap during most of the local autumn and winter, is said to be composed 

of such small bright clouds. 

During the Martian local spring and summer, when the polar cap in
 

a given hemisphere is receding, white clouds or hazes are often seen
 

at the sunrise edge of the planet. This morning haze remains stationary
 

and extends for only a short distance across the planet. It usually
 

occurs at low latitudes at'about the same local time, but varies in
 

size and intensity. In some regions the haze may appear several days
 

in succession; in others, it is seen only occasionally. Such hazes are
 

also observed to form near the evening terminator.
 

The largest white clouds have a tendency to occur above certain
 

regions. Occasionally they show as, bright prominences at the limb of
 

the planet. They may remain visible for days or weeks. Large bright
 

white clouds also appear at times over particular localities at low and
 

medium latitudes in the late afternoon.
 

(3) The blue clouds are identified with the use of a blue filter,
 

but they are less well defined as a definite class than the yellow and
 

white clouds. Some observers believe that the blue and white clouds
 

are the same phenomenon seen at different wavelengths, but others point
 

to polarization and behavioral differences which they feel distinguish 
-
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the two types. Another classificatLon associates the blue clouds with
 

brighter areas in the blue haze.
 

(4) The blue haze is thought to be a tenuous atmospheric layer 

which contributes sufficiently to the atmospheric opacity so as to 

lower the surface contrast below the level where detail can be discerned 

in wavelengths of light shorter than about 0.455 . Not-afl investi­

gatbrs are convinced that such a haze layer really exists; some 

attribute the lack of surface detail in blue light to decreased surface 

contrast in the blue and to 'poor seeing. Although most photographs of 

Mars in blue and ultraviolet light show littb or no detail, at times 

one can obtain photographs at these wavelengths which reveal the 

surface'features as clearly as in red light. Such a condition has been 

called a "'olue-clearing". If this latter phenomenon is real, it is 

very hard to explain. 

We now turn to the information on the Martian atmosphere obtained
 
I 

from the television experiments aboard the Mariner 6 and 7 spacecraft.
 

The television cameras employed blue, green and red filters having
 

effective wavelengths of 0.46 9/,u ,O0.526, , and 0.571/. , respectively. 

The phot6graphs obtained show surface features to be visible in all
 

wavelengths, including the blue; therefore, the experimenters conclude
 

that there is no obscuring "blue haze" (Leighton et al., 1969). 

Hess (1970), Boyce- (1970) and Opik (1969) have questioned this
 

interpretation and conclusion. All of these authors state that the
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effective wavelength of the Mariner blue filters is too long to reveal 

the blue haze phenomenon. Furthermore, Hess claims that the features 

recorded by Earth-based telescopes are large compared with those 

recorded by the Mariner spacecraft. Therefore, since the telescopic 

features represent an average over the discrete elements photographed 

by the Mariners, they will be lower\ in contrast than those seen by the 

Mariners. Hence, a thin "blue haze" could exist which would obscure 

the large telescopic features while permitting the high-contrast small 

features to be recorded. Boyce describes-his spectrophotometric 

measurements of Martian surface features, which show changes in 

contrast at short wavelengths. He interprets this as the variable 

opacity of a "violet" haze which is observed shortward of 0,43/ . 

Opik points out that the computerized technique of eliminating back­

ground and noise)and the arbitrary enhancement of contrast could cause 

craters to remain visible on the televised phqtographs even as far 

into the blue as 0.410p , He recommends that future space photography 

of Mars include a filter at 0.365p before the "blue haze" hypothesis 

is rejected. Thus the question of an obscuring haze at shorter wave­

lengths remains open. 

The other atmospheric observationsby the Mariners are less
 

controversial, but in some cases just as perplexing. For instance,
 

several variable bright features, which may be indicative of atmospheric
 

processes, appeared in widely separated areas. The brightness of these
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Fregions was observed to develop during the forenoon and to increase 

during the Martian afternooni A similar phenomenon of local diurnal 

brightening had been noted earlier in descriptions of Earth-based 

observations of the white clouds observed on Mars. No fully satis­

factory explanation for the effect is yet known. 

The Mariners 6 and 7 flew by Mars slightly less than a week apart, 

yet marked changes in the brightness of some areas in the high northern 

latitude regions seem to have occurred during this period (Leighton 

et al., 1969, see Figure 7), which could be atmospheric effects. In 

addition, a diffuse brightening was observed to cover much of the north 

polar cap region. This presumably corresponds to the "polar hood", 

which has been observed from the, Earth at this Martian season (northern 

early autumn). . 

Another possible indication of atmospheric haze is the observed 

darkening of the south polar cap near both the limab and terminator on 

the far-encounter pictures of Mariner 7. The experimenters point out 

that this darkening is definitely not due to cloud or thick haze since, 

during near-encounter, surface features were clearly visible everywhere 

over the polar cap. They suggest that the darkening may be due to 

optically thin aerosol scattering over the polar cap, or possibly to 

unusual photometric behavior of the cap itself. 

The most clear-cut evidence for scattering layers in the Martian 

atmosphere is seen in a number of the Mariner 7 photographs which show 
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F 
a sharp haze layer adjacent to the limb at several latitudes (Leighton 

at al., 1969, see especially Figure 4). Preliminary analysis of these 

pictures reveals stratified horizontal scattering layers similar to 

the aerosol layers in the Earth's atmosphere. A substantial variation 

in the scattering intensity over distances of a few hundred kilometers 

has been noted, with a greater intensity toward the west, i.e., toward 

earlier local times of day. The thickness of the layer was estimated 

to be about 10 km with heights between 15 and 40 kim. The layer was 

reported to be about 50% brighter in the blue-filter pictures than in 

the red or green. An apparent limb haze was also observed near the 

south polar cap and in some nearby regions, but it was not as bright 

as the haze just described. A faint limb haze is thought to be 

present in the Mariner 6 limb pictures, also. 

U J
 



F-


CHAPTER IV 

LIGHT SATTERING BY SINGLE PARTICLES (MIE THEORY) 

The scattered light which is observed from a clear sky is due to 

two sources: (I) scattering by the air molecules and (2) scattering by 

atmospheric aerosols (haze and dust).
 

The molecular scattering can be treated by the Rayleigh scatteting
 

law (van de Hulst, 1957, p. 65). When unpolarized light of intensity10 

is incident upon a particle (molecule) whose radius is very small
 

compared to 'thewavelength of observation, the intensity -1 of the 

radiation scattered in the direction 8 and at a distance X from the 

particle is given by 

Jr 011-L(2) 

where A is the wavelength of incident light in the surrounding medium 

and W is the polarizability of the particle. The scattering angle 

is the angle between the direction of propagation of the incident wave 

and the scattered wave, and for single scattering is equal to 1809- C<, 

where q is the phase angle.
 

This Rayleigh scattering formula is valid for moleules and
 

aerosols with radii less than about 0.1 times the wavelength of light. 

The entire phase tangle dependenbe is contained in the (l + os ) 

term. This term has zero slope at 00 phase angle ( 6 = 1800), and is 
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reduced by only 3%, or 0.O4, at 150 phase angle; therefore, molecular
 

acattering alone cannot account for the observed Martian opposition
 

effect;
 

We next consider the second source of atmospheric scattering:
 

aerosols. Very small aerosols, as mentioned above, follow-Raylegh's
 

scattering law; particles of sizes greater than about 0.03/ radius
 

must, however, be treated according to the exact diffraction theory.
 

The complete problem of diffraction of a plane wave by a homo­

geneous sphere of any composition has been treated rigorously by Gustav 

Mie (1908), according to~the methods of classical electromagnetic 

theory. As a first approximation, most aerosols can be considered as 

spheres; thus Mie's formulae should give reasonably accurate results 

for such particles. 

According to the Mie theory, if unpolarized light of intensityl 0 

is incident upon a spherical aerosol particle of radius CU , the 

intensity I of the radiation scattered in the direction 8 and at a 

distance J2, from the particle is given by 

Itn, (3)
A'~t r-v+ o0]o 

where A= 17a0Wl/A is the size parameter; nn - 1k is the complex 

index of refraction of the scattering particle (k = 0, if non-absorbing; 

kO> , if absorbing); and iiand Lz are dimensionless intensity 

functions which refer, respectively, to the intensity of light vibrating 
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the plane through the directions ofperpendicularly and parallel to 

Note that the particle
propagation of the incident and scattered beams. 


radius CL, and the wavelength A enter these itensity functions only
 

through the size parameter A/. (For a comprehensive treatment of the
 

Mie theory, see van de Hulst (1957, especially pp. 35, 119-126).)
 

The intensity functions L, and were derived by Mie in terms
 

of the: complex amplitude functions S, and
 

13± (4) 

Z= b Z6 (5) 

where 

~ 'A) 04, v+ a& 7:F ,n ,, 

54-)n4[utAf (tt-8 4)1)+a 

The phase functions, IT and , depend only on the scattering angle e: 

IM_ M2 (8) 

(9)_gL__he_th 0 

the Legendre polynomials.LwherhljceO are 
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The complex functions 6L and are the so-called Mie
 

th 
coefficients, which can be interpreted physically as the ;p electrical 

th
 

(/) 

where
 

YJ (12)
 

(13) 

and a prime denotes differentiation with respect to the given argument.
 

These are the Riccati-Bessel functions, derived either from the
 
aLZ) 

spherical Bessel functions of first and second kind, 4, and ,or 

from the half-integral Bessel functions, U- and 14
1A +3- M+-t 

Equations(3)-(13)have been used to make light scattering calcula­

tions for substances including ice, water, and solid CO29 which have
 

no significant absorption in the wavelength range under consideration,
 

Land for highly absorbing materials, such as limonite. 
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The refractive indices covered by the calculations ranged from 

1.20 to 2.40 in steps of 0.05. Indices with no absorption (k = 0),
 

small absorption (k= 0,01 and 0.03) and large absorption (k ! 0.1)
 

were considered. Of special interest for studies of Mars are the
 

results obtained for the following refractive indices: 1.31 (ice),
 

1.33 (wmter), 1.35 (solid Co2 : Egan and Spagnolo, 1969), and
 

2.23 - 0.6691 (lionite at A= 0.365/t : Egan and Becker, 1969). The 

maximum size parameter examined was C= 83; however, the current study 

has been restricted to submioron particles. Phase angles as large as
 

600 have been considered, although the maximum phase angle at which'
 

0
Mars is observable from earth is "-47
 

Figure 4 shows the computer printout of the sum of the intensity
 

functions, Q1 + -L, for a sphere of refractive index 1.35 with no 

absorption.- All quantities were calculated and stored in floating 

point, but to conserve space on the printout the values were rounded 

to the nearest integer. The first column lists the size parameter / 

in increments of 0.4. The radii scales which correspond to the wave­

lengths 0.36/. (U), 0.55kX (V), and, 0.83u (I) are given in the next 

three columns. The remaining columns give the total intensity as a 

function of phase angle. Note that these values do not include the At 

factor of Equation (3).
 

We wish to examine the printout of Figure 4 to determine which 

particle radii, if any, show an increased enhancement in intensity at 
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Figure 4. 	 Scattering intensity, (11 + 12 ), for Mie aerosols of refractive index 1.35. The first column gives the 
Mie size parameter, x = 27r q/X, where a = particle radius as given in the next three columns for the 
specified wavelengths. 
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small phase angles relative to the intensity at larger phase angles. 

Large amounts of numerical output such as this are very tedious to 

analyze by visual scanning, however. We, therefore, sought a method 

of presentation which would aid us in discriminating thode refractive 

indices for which the total intensity at small phase angles exceeded 

that computed for larger phase angles. 

Since the 0 'Leary-Rea observations begin to depart from linearity 

in the U and B at around 150 phase angle (see Figure 2), it would be 

useful to know which size parameters show a significant intensity 

increase at c(< 250, but at the same time display a decrease in 

intensity at 0( > 150 . To make this comparison more apparent, we 

normalized the data shown' in Figure 4 by dividing the calculated scats­

taring intensity for a particular size parameter /P at each phase angle 

by the mean intensity, averaged over phase angles from 120 through 180, 

for that size parameter. These normalized scattering intensities, 

multiplied by l03, are shown for refractive index 1.35 in Figure 5. 

The column headings are the same as those for Figure 4. 

With Figure -5 it is much easier to see imnediately which inten­

sities exceed the intensities around phase angle 150 and which are 

less. At * = 0.4, where the scattering follows Rayleigh's law, there 

is only a 3% increase in intensity from 150 to 00 phase angle, as would 

be expected from Equation (2). It is only when the size parameter /P 

increases to 3.2 that one sees any significant intensity enhancement at 
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NORMALIZED (I1MI2 FOR PARTICLE RAOIJS VS. PHASE ANGLE
 

INDEX OF REFRACTION = 1.35
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Figure 5. Scattering intensity, (i1 + 12 ), for Mie aerosols of refractive index 1.35, normalized to the average 

intensity for 12*- a 180 dnd multiplied by 1000. 
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small phase angles. Between 3.2 5 4. : 4.8, there is evidence of a 

small opposition effect, without an increase at larger phase angles, 

as can be confirmed from Figure 4, but this is only for a very limited 

particle size range (e.g., this would correspond to -particle radii 

between 0.181, and 0o28/, in U). From 5.2 < S 7.6, the largest 

intensities are at the larger phase angles instead of the smaller ones,
 

Beyond this point, no definite pattern of enhancement is apparent. 

Although the normalized intensities of Figure 5 are a definite aid 

in analyzing the light scattering calculations, we still have to 

examine each entry to determine the amplitude, or degree, of the effect. 

Furthermore, it is not easy to see major trends or groupings. 

Our next step was, therefore, to convert the Figure 5 calculations 

to a schematic representation in terms of relative magnitudes. This 

was done according to the code given in Table 2. The resulting 

schematic representation of the scattering intensities for refractive 

index 1.35 is shown in Figure 6. Adjacent bars of the same-kind,, 

either vertical or horizontal, have been connected. Thus, in regions 

of continuous solid vertical bars (such as 60 < a( < 12° and 17 < 4b 

< 20), the scattering intensity is at least Im25 brighter than the 

average scattering intpnsity from 12 to 180 phase angle for that size 

parameter, A dot indicates that the scattering intensity is within 

*rO"125 of the 12 to 180 average. A region of solid horizontal bars
 

(such as for 0 c<O< 8 and 7 < 1Y < i0) shows that the scattering
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TABLE 2 

CODE USED FOR SCHEMATIC SCATTERING INTENSITY DIAGRAMS
 
S1-WN IN FIGURES 6, 8, 10, 12, AND 14
 

Normalized
 
Scattering Equivalent 

Code Intensity MagnLtudes. 

( 11 + m(o( ) - m(120 -18 0 ) 

IIIII 	 >2818 

II 	 2240 - 2818 -1.00 

I 	 1779 - 2239 -0.?5 

II 	 1414 - 1778 -0.50 

I 	 f123 - 1413 -0.25 

1892 - 3122 0.00 

709 - 891 +0.25' 

563 - 708 +0.50 

448 - 562 +0.75 

- 355- 447 +1.00 

- < 355 _>+1.25 

intensity is at least 	P2,25 or more fainter than the average scattering
 

intensity from 12e to 	18° . 

The usefulness 6f this 	display lies in allowing us to observe how
 

the scattering intensity for a given particle radius and wavelength 

varies with phase angle, and thus to see quickly and easily which 
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Figure 6. Schematic diagramof thescattering intensity for Mie aerosols of refractive index 1 35, 
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eter, _x= 21 ar/ , where a = particle radius as given in the next three columns for wavelengths
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particle sizes show an increase in intensity, or brightness, near small 

phase angles, and which do not. As noted earlier, the Martian oppo­

sition effect is observed to depart from linearity around 150 phase 

angle in the U and B; therefore, we are looking for particle sizes which 

give an enhancement at small angles---that is, lots of-vertcal lines 

near 00 phase angle. 

The same conclusions which me reached earlier based on the numeri­

cal output are even more readily apparent in Figure 6. There is a
 

slight opposition effect around /L= 4, but the intensity h6re is only 

about * magnitude brighter than the average intensity around 150, as 

indicated by the low density of vertical lines (see Table 2). 1 For 

8 _5 <_512, there is an anti-opposition effect, as evidenced by the 

large number of horizontal lines at small phase angles. Further down 

the diagram, at larger radii, where there is a spotty positive effect,
 

the solid-line enhancement occurs for phase angles of 60 to 120, which
 

is not what the Mars observations show. It does not, therefore, appear 

that submicron spherical particles with refractive index 1.35 are good
 

candidates for producing the opposition effect. Similar displays for
 

refractive indices from 1.20 to 1.50 all produce only small variations
 

of the basic picture seen in Figure 6. 

As mentioned earlier, the refractive index of 1.35, for which the 

Figures L - 6 computations were made, is of particular interest-for 

studies of Mars since it is the only measurement found in the literature
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for solid CO2 in the ultraviolet. 'These measurementsi, which were madel 

by Egan and Spagnolo (1969) for bulk CO., cover the wavelength range 

0.35 to 1. and show little or no wavelength dependence. The 

absorption coefficient k reported by these authors is very small in
 

this wavelength range and can be neglected in our calculations, Thin­

film measurements of the refractive index for CO2 oryodeposits by 

Tempelmeyer and Mills (1968) show slightly higher values for the real 

part of the refractive index and a variation with wavelength. They 

obtained a value of n = 1.455 at A - 0.6= , the shortest wavelength 

at which their measurements were reported; however, the slope of their 

curve at this point suggests that the index might be increasing toward 

shorter wavelengths. Egan and Spagnolo (1969) have suggested that the 

discrepancy in these measurements may be due to the difference in 

temperature (and therefore density) of' the samples (7°K for Tempelmeyer 

and Mills vs. 1950K for Egan and Spagnolo); alternatively, surface or 

body scattering could reduce the observed Brewster angle, thus resulting 

in a slightly lower real portion of the index of refraction. Additional 

measurementi of the refractive index of solid C02 over this range of 

temperature are desirable. 

Figure 7 gives the computer output (not normalized) of scattering 

intensities for a highly absorbing material, linonite, using the comple* 

refractive index in the ultraviolet as measured by Egan and Becker (1969). 

Here there is almost no change in scattering intensity with phase angle 
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Ffor a given particle radius, The schematic diagram for these oalcula- 7 

tions is shown in Figure 8, The almost total absence of enhancement 

ar rwhere is striking. Thus aerosols of limonite, or of any other 

highly absorbing substance, could not produce an opposition effect. 

Similar results were found for all absorbing refractive indices where 

k> 0.1. 

Figure 9 shows the scattering intensities for n = 1.55. The 

enhancement at small phase angles is imiediately obvious, The schematic 

diagram for n = 1.55, Figure 10, looks considerably different from 

either of the previous schematic displays (see Figures 6 and 8). There 

is a strong continuous enhancement from 00 to 100 phase angle, with very 

small contributions at lrger phase angles, for 3 44 3U, This size 

parameter corresponds to particle radii in the U ranging from arodnd 

0.2 to 0.*/ . We can see that this same particle radii range would
 

show a smaller enhancement in the V and much less in the I.
 

Indications of an even more significant opposition effect are 

exhibited by calculations for aerosols having refractive indices of 1.65 

and 1,75, as shown in Figures fl - 14. In the case of n = 1.65, 

Figure 12 shows that the opposition effect is evident for size parameter 

6 = 4 and greater. This intensity enhancement begins to be noticeable 

at around 120 phase angle and gradually increases in magnitude until 

around c(= 40, where it becomes much more pronounced and continues on 

through 00 phase angle. If we compare the scattering intensities from 
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submicron particles at each of the three wavelengths shown, we see that 

the opposition effect is most pronounced in the U, less significant in 

the V, and much reduced in the I for spheres of refractive index 1.65--­

which is' just what the photometric observations of Mars show (see
 

Figure 3). 

The opposition effect for n = 1.75 is even more pronounced than 

for n = 1.65. A comparison of Figures U1 and 13 shows that the inten­

sities at small phase angles for n = 1.75 are much greater than those 

computed for n = 1.65. At the same time, the intensities at larger 

phase angles are about the same for both.- Therefore, it is not 

surprising that the schematic diagram for n = 1.75 (Figure 14) has 

almost continuous vertical lines between 60 and 0° phase angle, 

indicating an opposition effect of 1m25 or greater (see Table 2). 

The displays for n = 1.65 and 1.75 are typical for real indices 

of refraction from 1.60 to 2.00. From n = 2.00 to 2.40, the effect 

gradually decreases. 
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CHAPTER V 

INTEGRATED INTENSITIES FOR PARTICLE-SIZE DISTRIBUTIONS 

Having investigated the light scattering behavior of single 
) 

spherical particles of various sizes-and refractive indices, our next
 

step was to compute the intensity of the light scattered by groups of 

such particles. To do this we used several particle-size distributions 

based on the general function given by Deirnendjian (1964) as typical 

of terrestrial clouds and hazes: 

itr 
(14) 

where K(&) dg., is the number density of aerosol particles with radii 

between a, and O*,,dtV; Lk, , &, and Z are positive constants. 

Two forms of Equation (14) are obtained. When Jd O, the constant 

Ar was chosen so as to make a maximum at particle radius 01. 

The normalized form of Eauation (14) is then 

-' (15) 

with the normalizing factor
 

IC=___ D (16)
L9 a 
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4 and are parameters determining the width of the distriLbution 

function, and P(ly) is the gamma function. The normalization was 

chosen so that 

V(17) 

where D is the total aerosol number density.
 

When S = 0, Equation (14) is a negative exponential:
 

r(-r (ia)> 

where 4a, and -6determine the width of the distribution function. 

Figure 15 shows five particle size distributions (0), 'which are 

typical of those used in the Mie calculations to obtain integrated 

scattering intensities. Although calculations were made for distribu­

tons over particle radii rangaLig up to 4 A , for this study we have 

considered-only submicron particles. The two types of normalized 

distributions which have been used are illustrated in Figure 15: 

negative exponentials and skewed gaussian-type distributions. Table 3 

gives the values of the parameters used to produce these distributions. 

Distribution El emphasizes very small particles by including primarily 

radii less than 0.4L . EZ is much broader, thus including larger 

particles. -The three skewed gaussian-type distributions shown in 

Figure 15 peak at 0.2, 0.4 and 0.6)2.

L 9j1 
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Figure 15. Typical particle size distributions used in calculations of 
integrated scattering intensities. 
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TABLE 3 

PAMRETES USED IN PARTICLE-SIE DISTRIBUT)DNS 

Distribution 6 0 

El 0 1.5 0.2p 

E2 0 2.0 0.5 

G.2 2 2.0 0.2
 

G.4 4 2.0 0.4
 

G.6 6 3.0 0.6 

Equation (3)gives the intensity I of the light scattered by a
 

single particle of radius a,. For a particle-size distribution CO),
 

the integrated intensity I is
 

I" A, (19) 

This expression has been evaluated for various indices of refrac­

tion and various submicron particle-size distributions, with particle 

radius increments of 0 . 0 1 A . These integrated intensities were plotted 

in terms of magnitudes and are shown in Figures 16 - 19. The Z2 factor 

of Equation (19) has been included in the calculations, since each curve 

L 
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is for a specific wavelength. The normalization which-was made for the 

single particle schematic displays in Figures 6, 8, 10, 12, and 14 has 

not been used in these calculations of integrated intensities, however, 

Figure 16 shows the integrated intensities for n = 1.35. Calcula­

tions are displayed for five wavelengths and two particle-size distri­

butions as a function of phase angle. From Figure 6, the single­

particle display for n = 1.35, we recall that only a few very small 

particles showed a slight opposition enhancement, whereas particles of 

a little larger side showed an 4nhanqement at larger phase angles. 

This behavior is reflected in the results obtained with Distribution El 

of Figure 15. When larger particles are weighted more heavily, as with 

Distribution G.6, the brightness curves peak at phase angles greater
 

than 100, as could be expected from examining the contributions from 

single particles. 

Thus it appears that aerosols of refractive index 1.35 cannot 

produce the required opposition effect. Other distributions of larger­

size particles were also incapable of simulating the observations. The 

same was generally true for all real refractive indices from 1.20 to 

1.50.
 

Figure 17 shows the integrated intensities for n = 1.55. The same 

negative exponential and skewed gaussian-type distributions have been 

used here as in Figure 16. As suggested by the single-particle display 

for n = 1.55 (Figure 8), there is a definite, increase in the integrated 

[intensity for both distributions from around 100 phase angle. _j 
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r Even more impressive examples of an opposition effect are seen 

Figures 18 - 19, where n = 1.65 and 1.75, respectively. The increase 

in intensity from 150 to 0 in the ultraviolet for Distribution G.4 is 

approximately 2'R0, or about a factor of 6, for both of these refractive 

andices. 
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I- CHAPTER VI 

MODEIS OF SURFACE PLUS AE-RSOIS AND OMPARISON WITH OBSERVATIONS 

Faving found that refractive indices of 1,55 or greater could 

produce a significant enhancement in intensity at small phase angles,
 

we next generated a model consisting of a surface brightness function
 

plus a brightness contribution by atmospheric aerosols. At longer
 

wavelengths, where the Martian albedo is higher and where surface
 

markings are more clearly visible, it is reasonable to assume that the 

observed brightness comes almost entirely from the surface and that
 

the brightness contribution by aerosols is negligible. As suggested
 

by de Vaucouleurs (1968), we took the lunar photometric function 

devel6jed by Hapke (1963) and modified it to fit the observed Martian 

brightness-phase curve at these longer wavelengths.
 

The scattering law as given by Hapke (1963) for the integrated 

brightness T1 (()of the whole Moon as a function of phaseangle 0< is 

as follows.
 

-T
 

3c)f) iswhere B the retrodirective function which expresse the 

opposition effect: " 
-B--=-I 
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The parameter T determines the sharpness of the opposition effect. In 

Hapke's theory., a is closely related to the degree of compaction of 

the surface. 

Equation (20) wds modified to fit the observed Martian phase
 

curves at longer wavelengths by replacing B P. by its cube root 

and setting the compaction parameter = 052. We then assumed that 

the phase curve for the surface would have the same shape (when plotted 

on a magnitude scale) in all colors; that is, the surface phase curves 

would be wavelength-independent; only the albedo would change, in 

accordance with the >avelerhgth-dependence of the Hartian albedo observa­

tions. This meant that in-the model, the surface brightness would 

increase by 30% from 160 to 00 phase angle at all wavelengths.
 

Any attempt to separate the brightness contributions of the atmo­

sphere and the surface of Mars based on our present knowledge must 

necessarily involve certain assumptions. In this connection, it is 

useful to see what conclusions can be drawn from laboratory measure­

ments of the angular scactering of various materials. O'Leary and 

Rea (1968) have measured the phase functions of several sample 

substances of interest in connection wLth the Martian surface. fine 

limonite, fine and coarse goethite,- fne and coarse hematite# fine and 

coarse siderite, and four synthetic mixtures containing varying amounts 

of magnetite, goethite, silica, hematite and hornblende. The fine 

particle radii of the samples were less than 1 9 A, the coarse goethite 
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particle radii ranged from 125 to 250 4 , and the coarse siderite and 

hematite radii were between 250 and 500p... The measurements were 

made at wmvelerigths of 0.43, 0.56, and 0.68L. 

We replotted the O'Leary-Rea data on semi-logarithmic paper and 

compared the three phase curves for each sample at phase angles of 150 

and less in order to determine the relative wavelength-dependence of 

these substances. The percentage increase in reflectivity from phase 

angles of 15 to I is greater at the shorter wavelength for eight of 

the eleven samples- however, the coarse hematite and the coarse goe­

thite exhibit a greater increase in reflectivity at the longer wave­

length than at the shorter one. (The coarse siderite shows the
 

greatest percentage increase in reflectivity for the wavelength of
 

0.56L.) 

This suggests that although many substances may exhibit a greater 

reflectivity at shorter wavelengths than at longer ones, this is not 

always the case; in particular, the phenomenon may be a function of 

particle size. Because of the uncertainties in the composition and 

mineralogy of the Martian surface, the dominant particle size and 

texture of the material, and, therefore, the photometric properties of 

the surface, we have assumed for this model that the surface phase 

curves are wavelength-independent. Should this not be the case, some 

of the conclusions of this paper could be altered significantly. 

Having modified Equation (20) so that it would give the same shape 
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,(on a magnitude scale) as the observational phase curves for Mars at 

longer wavelengths, we used this same phase curve to represent the 

surface at all other wavelengths by incorporating an overall surface 

albedo constant appropriate to each wavelength. The initial choice of 

these albedo surface constants was based on our knowledge of the wave­

length variation of the albedo of Mars (see Table 1). 

In addition to the five free parameters for the surface albedo at 

the five wavelengths under consideration, there is one other free 

parameter an the model: the aerosol number density. It is obvious that 

this parameter must be the same for all wavelengths; however, the 

brightness, or albedo, of the aerosols, which dependb directly-on the
 

aerosol number density, Will vary with wavelength, due to the wave­

length-dependence of the scattering intensities for a given index of 

refraction. We have already seen this from the light scattering calcu­

lations for single particles (Chapter IV) and for particle-size distri­

butions (Chapter V). 

We next made a number of test calculations'in an effort to find 

the combination of these six parameters---the surface albedo constants 

for the five wavelengths and the aerosol number density---which would 

best fit the observed data for Mars. The results are shown in 

Figure 20 for aerosols of refractive index 1.65. The thin lower curves 

are the final assumed surface functions for I, V, B and U (R has been 

omtted for simplicity). Note that they all have the same shape on a 
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V t = 1.65 
rn DISTRIBUTION GA 
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5-
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Figure 20. 	 Comparison of model with Mars observations. For each wavelength, the 

thin lower curve is the assumed surface reflectivity, the heavy upper 
curve is the calculated brightness from the surface plus aerosols of 
refractive index 1.65, and the broken curve is the Martian 
observational data. 
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I 
magnitude scale and differ only in albedo. The upper heavy solid 

curves in Figure 20 represent the su of the reflectivities of the 

surface plus aerosols for refractive index 1.65, using a skewed
 

gaussian-type particle distribution peaked at 0 .4- (DistributionG.4; 

see Figures 15 and 18). At shorter vavelengths, where the albedo and
 

surface contrast are greatly reduced, the atmospheric aerosols are seen 

to play a significant role. The calculated phase curves are iX. reason­

able agreement with the observations, which are shown as dashed lines. 

In Chapter V we showed that spherical particles with various 

indices of refraction greater than 1.50 could produce an opposition 

effect. To further illustrate this, additional models were developed 

for aerosols of refractive index 1.55 and 1.75. Figure 21 shows the 

results which were obtained for n = 1.75 and Distribution G.4. The fit 

to the observational data does not appear to be quite as close as for 

n = 1.65; however, it might be possible to get a better fit with 

additional variations of the free parameters. No fit could be found,
 

however, for aerosols having refractive index 1.50 or less.
 

Although the calculated phase curves of surface plus atmospheric
 

aerosols shown in Figures 20 and 21 are in reasonable agreement with 

the observations, one should bear in mind that there was a good deal of 

arbitrariness in- obtaining this fit. It is by no means a unique 

solution to the problem. It does show, nonetheless, that the presence
 

of a small amount of atmospheric aerosols, with the proper index of
 

L J 



59
 

I­

4=1.75 
DISTRIBUTION G.4 

m 
10
 

SURFACEm ASSUMED 
15 v 02 

a- 20 

AEROSOLS + SURFACE P 

25 (CALCULATED) 01 
U-
U 

OBSERVED 008 

ASSUMED- SRAE--- 0 06 

30 004 

I A, ASSI I S 

00 40 80 120 160 

PHASE ANGLE a 

Figure 21 . Same as Figure 20, except refractive index of aerosols is 1 .75 
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F- -T
refraction, could provide the observed increased opposition effect for
 

Mars in the ultraviolet, where the albedo is very low, but at the same
 

tine'make a negligible contribution in the infrared, where the surface
 

albedo is high.
 

Tables 4 and 5 show the reflectivities of the surface (Ps) and the 

aerosols (Par) for U, V and I at phase angles 00 and 16O, and the ratio 

of the aerosol brightness to the surface brightness, as obtained from 

the models for n = 1.65 and 1.75, respectively. Note that ParPs 

reaches a maximum of 0.49 in the ultraviolet at opposition for aerosols 

of n = 1.65, but falls off rapidly both with increasing wavelength and 

increasing phase angle. For refractive index 1.75, the maximnu bright­

ness ratio is 0.69. Since Par rarely exceeds 3% in either case, the 

atmosphere is optically thin at all wavelengths, and the assumption of
 

single scattering is justified.
 

The refletivities in Figures 2, 3, 20, and 21 and in Tables 4 and 

5 are ndrmalized so as to be equal at 00 phase angle to the geometric 

albedo, i.e., the ratio of the average intensity of the planet at full 

phase to the intensity ( iZk ) of a perfectly diffusing circular disk 

(Lambert surface) at the same distance from the Sun and normal to the 

incident radiation. Thus 

T(o) (22)
 

L (_) 
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TABLE 4 

REFLECTIVITY OF SURFACE AND AEROSOLS, AS OBTAINED WITH 
MODEL FOR N = 1.65 AND DISTRIBUTION Go.4 

0( 

u 

P 
-s 

0.048 

P 
-ar-s 

o.o4 

(P + ) 
-ar)/s 

0.072 

P-/ 

o.49 

OP v 

I 

o.166 

0.350 

0.021 

0.009 

0.187 

0.359 

0.13 

0.03 

160 

U 

V 

i 

0.036 

0.124 

0.261 

0.004 

0.005 

0.004 

O;040 

0.129 

0.265 

0,12 

0.04 

0.02 

TABLE 5 

SAM AS TABLE 4, EXCEPT N =1.75 

c<__ ____ -s -r (-Ps + r 
p 

_-ai 

0 

U 

V 

I 

0.045 

0,162 

0.344 

0.031 

0.026 

0.015 

0.076 

0.188 

0.359 

o.69 

0,16 

0.04 

L 

160 

U 

V 

I 

0,035 

0.123 

0.260 

0.005 

0.008 

0.008 

0.040 

0.131 

0.268 

O.14 

0.06 

0.03 
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F Since we have assumed an optically thin atmosphere with no 

muhipie scattering or atmospheric absorption of reflected light from
 

the surface, Equation (22) holds for the partial reflectivity of the 

aerosol layer as well as the total reflectivity. One can thereby 

determine the absolute aerosol number densities n the Martian atmo­

sphere needed to give the model aerosol reflectivities in Tables 4 and 5. 

Let b be the columnar density of aerosols (particles/cm2 ) in the 

Martian atmosphere, with a particle-size distribution such that 

f° the columar density of -particles with radiiim,(a.) 44 represents 

between aL ani at+ & ( St& t0I). If the radius of Mars is 

there are a total of 4 iT SMD aerosol particles over the entire surface, 

and exactly half of these are illuminated and visible at opposition. 

Thus, from Equation (19), the total intensity of the light reflected 

from the aerosol layer is given by 

where A, is the distance to the planet. The intensity of a Lambert
 

disk of radius £r (areaA=i t ) at o° phase angle is
 

[ ( V- (24) 

TlnT ar 3DW(s-
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land 4 
a 

(cm-2), (tI. )andmA(Wit dimensionless. 

'This equation was used, together with the computer printouts of the 

'integrated intensities corresponding to Figure 18, to compute that a 

with dimensions of since P, 2 are 

columnar particle density of 0.8 x 106 spherical aerosol particles/cm2
 

(n= 1.65, Distribution G.4) was required to give the reflectivaties of
I 

the aerosol layer shown in Table 4. For aerosols of refractive index
 

1.75, the columnar particle density required to give the reflectivities
 

in Table 5 is 0.9 x 10 aerosol particles/cm. Assuming an average 

particle radius 0 = 0.4/ (see DistrLbution G.4, Figure 15) with a 

dentity of 2.5 gm/cm3 , a value typical of semitransparent minerals (see 

next chapter), we fLnd that the density of aerosols required in the 

above model for aerosols having refractive indices of 1.65 or 1.75 

10- 7 corresponds to a columnar mass of about 6 x gm/cm2 . 

This number can be compared with the columnar mass of the gaseous 

atmosphere on Mars, which is 19 gm/cm2 for a surface pressure of 7 b. 

The mass ratio of aerosols to gaseous atmosphere for our model is there­

fore 3 x 10- 8 , thus demonstrating' that only a very small amount of 

aerosols is needed to produce the observed opposition effect,
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F CHAPTER VII 

SOURCES OF MARTIAN ATMOSPHERIC AEROSOIS 

Several sources can account for the presence of aerosols in a 

planetary atmosphere: (1) in situ particle formation through condensa­

tion, photochemical reactions, and coagulation of the gaseous 

atmospheric constituents; (2) influx of meteoric particles; and 

(3) upsweeping of dust from the surface of the planet. 

(I) A few atmospheric aerosols which might be formed in situ
 

have already been considered in the calculations for water, ice, and
 

solid C0 2 particles, they were found to be incapable of producing
 

the observed opposition effect. However, measurements of Mariner 6
 

taken at 79°N latitude at the beginning of polar night indicate that
 

conditions in the Martian atmosphere are favorable for the conden­

sation of CO2 at almost all altitudes; Mariner 7 measurements taken
 

at 5803 in daytime and 38°N at night also show that CO2 condensation
 

is possible at altitudes above about 25 km (Kliore et al., 1969).
 

Condensation of CO2 is predicted for atmospheric temperatures below
 

1500 K, The only available refractive indices for solid CO2 at
 

A< 0.6,u, as pointed out earlier, were made at T = 1950K (Egan and
 

Spagnolo, 1969). Should the refractive index be significantly
 

higher at T < 1500 K, the above conclusions with regard to solid C02
 

aerosols would need revision. It is highly desirable, therefore,
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--to have additional measurements 5f the refractive index of solid C0
 
- 2
 

at T < 150 0 K, -< 0.6A. Other gases besides C02 are likely to be
 

present on Mars, since current estimates of the concentration of C02 

range as low as 60o (Kliore et al., 1969). Therefore, the role of
 
i* 

minor atmospheric constituents should not be ignored as possible
 

sources of atmospheric aerosols.
 

(2) Since Mars is located near the asteroid belt and also since
 

photographs of its surface by Mariners 4, 6, and 7 show what appears
 

to be evidence of extensive meteoritic bombardment, meteoric particles
 

may be a source of Martian atmospheric aerosols. The minerals which
 

are present in most common meteorites have a refractive index about
 

1.65, a value whieh falls within the range of refractive indices for
 

which the above calculations exhibit an opposition effect.
 

(3) Measurements of the dielectric constant of the Martian
 

surface indicate that the aliundance of limonite in the surface 

material is relatively low (Beck and de Wys, 1969). Comparison with 
6 

terrestrial and lunar abundances indicates that the minerals to be
 

expected in the Martian surface materials are feldspar, pyroxene, 

olivine, amphibole, quartz, magnetite, ilmente, hematite, and 

limonite (goethite) (Beck and de Wys, 1969; P.D. Lowman, Jr., 

private communication). Table 6 lists typical refractive indices 

for these minerals (Wahlstrom, 1947). The last four are highly 

absorbing and could not, therefore, exhibit an opposition effect,
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Fbetween wavelengths of 0.35? and 1.0/. Such a material would 

satisfy the requirements for the dust particles in the Martian atmo­

sphere. Adams (1968) found that the reflectance spectrum of an 

oxidized basalt matched quite well the spectral geometric albedo 

curve for Mars. 

Because the Martian atmospheric density is very lot, one might 

question whether the atmosphere could ;upport aerosols. It is 

interesting to note in this regard that in the Earth's stratosphere, 

where the density is roughly comparable to that near the surface of 

Mars, there exists a worldwide permanent layer of submioron aerosol 

particles, contaxhing sulfur as a major constituent, with traces of 

iron and silicon (Junge 2t al., 1961). Using the average-size-distri­

bution curve reported for these particles for altitudes above 20 km 

(Junge et al., 1961, Figure 23, Curve 1B, having maximum concentra­

tion for particle radii of about 0.1/4) and assuming this density 

distribution to be uniformly spread over an altitude range of 20 kin, 

we compute the columnar particle density of submicron aerosols in 

the Earth's stratosphere to be about 106 particles/cm2 . This is 

comparable to the value calculated earlier from our models for Mars, 

based on the reflectivities of the aerosol layer given in Tables 4
 

and 5, although we assumed particle-size distributions peaked at
 

particle radii of 0.4A .
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F The third step was to generate a model consisting of a surface 

photometric function plus an aerosol brijhtness contribution. The
 

albedo for each surface function was assigned according to the wave­

length-dependence of the Martian albedo observations; however, the 

surface functions were chosen to have the same shape (when plotted on 

a magnitude scale) for all colors; that is, the surface brightness
 

increased by 30% from 160 to 00 phase angle at all wavelengths. 

Should this assumption be incorrect, some bf the conclusions of this 

study could be altered significantly.
 

Calculations for models having atmospheric aerosols with 

n = 1.55, 1.65, and 1.75 fit reasonably well with the observational
 

data; the aerosol brightness contribution provided a significant
 

enhancement at small phase angles in the ultraviolet, where the
 

albedo is low, and yet at the same time made a negligible contribu­

tion in the infrared, where the surface albedo is high. A similar 

fit would probably be obtained with any real index between 1.55 and 

1,75. 

Although the fitting of the model was somewhat arbitrary and by 

no means a unique solution to the problem, it did show that the 

observed opposition effect can be produced by atmospheric aerosols 

with the proper index of refraction. In the model having atmospheric 

aerosols with n = 1,65, a columnar density of 0.8 x 106 aerosols/cm2 

with average particle radius of 0 .4/4 gave the required aerosol 
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FcontrabutLon to the total reflectivity. Assuming a density of 

,2.5 gm/o2 3 , this corresponds to a mass ratio of aerosols to gaseous 

"atmosphere (for a Martian surface pressure of 7 rb) of 3-x 10 8 S 

This indicates that only a very small amount of aerosols is needed 

to produce the observed opposition effect. 

Finally, a number of possible sources of planetary atmospheric 

aerosols were considered: in situ particle formation from gaseous 

atmospheric constituents; influx of meteoric particles; and upsweeping
 

of dust from the surface of the planet. Refractive indices of repre­

sentative substances in each group were discussed. The most promising 

candidates are semitransparent mine Ias, most of which have n between 

1.55 and 1.75. This suggests that meteoric particles from outside the 

planet or dust from the surface of the planet may be present as atmo­

spheric aerosols, thus producing the Martian opposition effect. 
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