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insulation specific heat, Btu/1b-°F
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hydrogen heat of transformation, Btu/ft3
defined by equation (44), °F-ft

defined by equation (45), ft
diffusivity, ft?/hr

insulation conductivity, Btu/hr-ft-°F

1/hr

insulation thickness, ft

tank thickness, ft
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heat transfer, Btu/ft?

steady-state heat transfer, Btu/ft?2
time, hr

temperature-time function
temperature-time function associated with
maximum structural temperature, °F
insulation properties temperature, °F
cruise time, hr

liquid hydrogen fuel temperature, °F
initial exterior surface temperature, °F

cruise exterior surface temperature, °F
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PH
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temperature distribution, °F
steady-state temperature distribution, °F
transformed temperature distribution, °F
wet tank weight function, 1b/ft2
steady-state weight, 1b/ft2

distance, ft

separation constant, 1/ft2

eigenvalues, 1/ft?

temperature-distance function
eigenfunctions

insulation density, 1b/ft3

tank density, 1b/ft3

hydrogen fuel density, 1b/ft3

dummy time variable, hr



SOLUTIONS OF TWO HEAT-TRANSFER PROBLEMS WITH APPLICATION
TO HYPERSONIC CRUISE AIRCRAFT
Mark D. Ardema

Office of Advanced Research and Technology
Mission Analysis Division
Moffett Field, Calif. 94035

SUMMARY

Solutions are obtained for two initial-boundary value problems of one-
dimensional heat conduction. The problems concern insulation systems for
liquid-hydrogen-fueled hypersonic aircraft. The solutions are obtained by
standard analytical techniques and are used to develop procedures for estimat-
ing the weight of insulation systems for such aircraft. Numerical results are
presented and compared with results of a finite difference analysis, and
agreement is found to be excellent. Finally, the solutions are compared with
steady-state approximations, and it is concluded that these approximations
provide convenient weight estimating formulas.

INTRODUCTION

Studies of loads and weights of liquid-hydrogen-fueled hypersonic air-
craft are required as part of comparative mission performance analyses. This
report presents solutions of two heat-transfer problems encountered in esti-
mating insulation weight of fuselage: thermal protection systems. The analysis,
however, is general and may be applied to other cases, such as insulated wings
and fins.

Previous studies (refs. 1-6) have indicated that hypersonic cruise air-
craft are likely to be liquid-hydrogen (LH,) fueled and will probably carry a
major fraction of the fuel in the fuselage. Since the exterior surfaces of
such aircraft are at high temperatures and their interior structure is at the
cryogenic temperature of the fuel, their fuselages will require thermal pro-
tection systems that will significantly increase the gross weight of the
vehicles. These systems will be required both to prevent excessive boiloff
of fuel (called the '"wet tank' problem in this report) and to limit structural
temperatures (''dry tank" problem).

In the past, the weights of thermal protection systems have been deter-

mined either from steady-state heat conduction analyses or, in more detailed
studies, from numerical solution of the transient heat conduction equation.
It appears that analytical solutions of the heat equation with application to
hypersonic aircraft thermal protection systems are not available in the liter-
ature. This report presents such analytic solutions for the wet tank and dry
tank problems.

To illustrate the solutions of the two problems, a representative numeri-
cal example is presented. The results are compared with results obtained with
a finite difference heat-transfer computer program. The transient solutions
obtained in the present analysis are also used to investigate the validity of



steady-state approximations. These approximations are useful for preliminary
weight estimates because they may be solved for the insulation thicknesses in
closed form. Both the magnitudes and the sensitivities of these
approximations are compared with the transient results.

PROBLEM FORMULATION

A typical hypersonic aircraft configuration is shown in figure 1 and
the principal elements of the fuselage of such an aircraft are shown schemati-
cally in figure 2. The fuselage bend-
l ing loads may be carried either by the
4—~<<:] exterior structure (nonintegral tankage)
or by the tank structure (integral tank-
age). Because fuel is used, not all of
:: ] the tank circumference will be in con-
5;?;; - tact with the LH, for the entire flight.
— Consequently, there are two extreme or
Figure 1.- Hypersonic aircraft configuration. limiting cases to be considered:

EXTERIOR STRUCTURE (1) The wet tank case. The tem-

perature at the wall is held to that of
the LH, throughout the flight. (This

STRUCTURE case corresponds to the bottom of the
last tank to be emptied.)

(2) The dry tank case. The heat
transferred through the insulation is
absorbed by the tank structure and the
tank wall temperature is allowed to
rise accordingly. (This case corre-
sponds to the top of the first tank to
Figure 2.- Fuselage cross section. be emptied.)

The insulation thicknesses for each case are given by the solution to the two
heat-transfer problems associated with these two cases. Vehicle geometry and
tank sequencing are then considered in estimating the fraction of vehicle
surface area over which the individual thicknesses apply in the weight
calculation.

The major assumptions of the analysis are as follows: (1) heat transfer
is by conduction only; (2) circumferential heat transfer is negligible com-
pared with radial; (3) thickness of insulation is small compared with fuselage
radius; (4) conductivity of all structural elements is infinitely large com-
pared with conductivity of insulation; (5) insulation is continuous and homo-
geneous; (6) thermal constants (e.g., conductivity of insulation, specific
heat of insulation, specific heat of structure) are independent of position,
time, and temperature; (7) exterior is exposed to a square temperature pulse
(or, equivalently, a step pulse). These assumptions imply that initial-
boundary value problems of the one-dimensional heat equation are to be solved.
These solutions are obtained by the standard analytical techniques of separa-
tion of variables and eigenfunction expansions (cf. ref. 7).



For application to hypersonic cruise aircraft, all of the above assump-
tions are reasonably well satisfied. Since both radiative and convective heat
transfer at the inner tank surface are relatively small for the tank tempera-
tures of interest, their effects may be included in the conductivity; thus
assumption (1) is appropriate. Assumptions (2) and (3) are valid since for
such vehicles the fuselage diameter is much larger than the structural and the
insulation thicknesses. For materials usually considered for hypersonic vehi-
cles, namely metals (cover panels, tank, load bearing structure)} and quartz
J0- T fiber type insulations, assumption (4) is
reasonable. Thus the exterior structure, and
08 - T in the wet tank case, the tank structure, may
be neglected in the heat-transfer analysis.
De;/////; Assumption (5) will be violated in actual

insulation systems because of heat leaks
Cm‘ﬁl&;"Q;Ysg*:n?;f':“;‘?ggﬂftf/}% caused by cover pangl supports-and edge
o2 - 1 oensitv. oata From reFerence 2. effects of finite-dimensional insulation
blankets. However, these effects may be
accounted for by using an overall insulation

04 - +

CONDUCTIVITY, Btu/hr-fi-°F
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-400 -200 o] 200 400 600 800 1000 (200

TEMPERATURE, °F conductivity. Although insulation properties
will typically be a function of temperature

Figure 3.- Variation of conductivity with (fig. 3 shows conductivity data for a repre-
temperature.

sentative insulation material), representa-

tive values may be used in order to comply

with assumption (6). Later in this paper a

numerical example shows that solutions

obtained using a representative value of con-
ductivity agree reasonably with a variable

conductivity calculation. Assumption (7)

requires that the ascent and descent phases

of the flight take negligible time compared
with the cruise time. Although this is not
strictly true, the actual temperature history

may be approximated reasonably well by a

square pulse as shown in figure 4. The

4 8 12 16 20 "actual" pulse shown on this figure was

TIME, hr . . .

Figure 4.- Typical exterior optalned from a dgtalled trajectory computa-
tion. The "idealized" pulse is determined
by equating the actual pulse area to the

idealized pulse area. Finally, it should be remarked that the solutions may

only be used for single-layer insulations.
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temperature pulse.

Since the variables of interest (the insulation thicknesses) cannot be
obtained explicitly, it is necessary to solve for the thicknesses by iteration.
The thicknesses (weights) are optimized in the sense that the weight of insula-
tion plus LH, boiloff is minimized. The entire analysis is programmed for a
digital computer. To obtain vehicle thermal protection system weight, items
such as cover panels, attachments, and '"nonoptimum' weight must be added to
the insulation weight.

Although application to hypersonic cruise aircraft fuselages is
exclusively considered in this paper, other possible applications should be
mentioned. The dry tank solution is directly applicable to insulated struc-
tures such as wings and fins on cruise vehicles. Its application to vehicles
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other than cruise vehicles may be limited by assumption (7) above. For
example, launch vehicles, which have no cruise time, may have exterior temper-
ature pulses that cannot be approximated by a square pulse. Application to
reentry vehicles is discussed in reference 8.

ANALYSIS

Wet Tank

The partial differential equation to be solved is

subject to boundary conditions

and the initial condition

EXTERIOR

Figure 5.- Wet tank.

v(0,t)

v(L,t)

v(x, 0)

u _ 3%
at : ax2 W
u(0,t) = Tg (2)
u(L,t) = Ty (3)

_'———‘E-—X"'TO (4)

K
k=t (5)

‘This problem is depicted in figure 5.

Introducing the transformation

Ty - Tg
u = "—-]:— X + TS (6)
into equations (1) - (4) results in the
o<t<ls following homogeneous version of the
problem:
2
Bx?
¢ (8)
0 (9)
TH - To Ty - T
) PR S - L 10
T X + Ty T X TS (10)



Setting

v(x,t) = T{t)e(x) (1D

in equation (7) results in the separated equations

%%-+ AKT = 0 (12)
2

é~§-+ xe = 0 (13)

dx

Solving equation (13) subject to boundary conditions (8) and (9) gives for the
eigenvalues and eigenfunctions

2
nn
Ap = (7?) 5 n=1, 2, . .. (14)
o, = sin (x /an ); n=1, 2, (15)
respectively. Since the solution of equation (12) is
-A Kt
T, = e 3 n=1, 2, . . . (16)

v(x,t) may now be written as

= -1kt
v{x,t) = Zane T sin (x /)I) 17
n=1

Since the eigenfunctions are orthogonal for this problem, equations (10) and
(17) imply

Ly, - T T, - T
2 H o H S .
an_f/(__L_____x+TO———L———x—TS>51n(x‘/>\n)dx

2
L /i

(TO - Ts) H n = 1, 2, (18)

The temperature distribution is then obtained from equations (6), (14), (17),
and (18) ' '



= —4—x + Tg + 2(T, - Tg) — e sin X (19)

n=1i

Since this function is a "strict'" solution of the problem it may easily be
shown that it is also a unique solution.

The heat transferred through the tank wall to the LH, fuel is

t
q - _f £ 3ul,T) 4
9 X

(e}

2.2
"n'lTktf

("l)n 1 Lz

Kt .(Te - Tiy) 2KL(Te - T.)
H S
= £5 + ° - e (20)

Q= L

ﬂzk n?

n=1

An analytical verification of equation (20) is provided by reference 8 which
gives the solution for the special case of T, = Ty (applicable for re-entry
vehicles). Setting T, = Ty in equation (20) gives

Q|T0=TH
t
pK °f
t n -(nm)? =
= ok £ 2z L:lg__ - C L2p2
L™p 2 [ f n
C .22
/ L =1
(21)
which is equation (2) of reference 8. The heat absorbed by the fuel is
Q = heglpo (22)
where L is the "boiloff thickness" or volume of LH, boiled off during
flight per unit surface area. Hence, combining equations (20) and (22) gives
i —nzﬂzktf
i Kt (Tg - Ty)  2KL(Tg - T,) 1" —
LBO = i + 5 "-"—2— 1 --¢e (23)
fg 1 kh n
fg

n=1

The insulation weight for the wet tank case can now be computed. The
weight per unit area is

6



W= DL + QHLBO (24)

where Lpg as a function of L 1is given by equation (23). The necessary
condition for minimum weight is dW/dL = 0 which leads to

dL

BO -0
P *PH AL "
z -n?n?kt
. - - Rty
hfgp ) th(TS Ty) i 2K(TS TO) 1, (—1)n 1, 2ktf . 2 .
oy 12 k 12 022 L2
- n=1 (25)
(-l)n m2 .
where :E: g = -y was used. Equation (25) must be solved iteratively
n=1 I

for L. After this has been done, other quantities such as Lpg, Q, and the
temperature distribution wu(x,t) may easily be computed. Computationally it
was found that all of the infinite series involved converge very rapidly.
Thus only the first five terms of each series were retained. It is of inter-
est to note that for fixed materials and temperatures, equation (25) implies
that for optimum insulation thickness the ratio tf/L2 is fixed (i.e., the
optimum insulation thickness is proportional to the square root of cruise
time).

The commonly used steady-state equation may be readily obtained from
equation (25) by setting T, = Tg (from eqs. (1), (2), (3), and (4) this gives
a linear steady-state temperature distribution) with the result

h Kt (T, - T

gg® KUl - Ty
PH

> = 0 (26)
Lss

This may be solved for Lgg in closed form. From equations (20) and (23) the
steady-state heat transfer and boiloff thicknesses are:

Kt (Tg - Ty)
£9s ~ 'H
= (27
Qss Iss )
Kt (T, - T,)
Lpogg = f i ! (28)
58 Ss"fg

Equation (26) may be deduced from the transient solution in two other ways.

First, setting the insulation heat capacity, C, equal to zero (i.e., letting
k > «) in equation (25) leads directly to equation (26). Secondly, letting

tg > * in equation (23) leads to equation (28) which, by virtue of

equation (24), leads to equation (26).



Dry Tank

As shown in figure 6, the initial-boundary value problem to be solved is

ST};rl?g‘ll'(URE du 32u
=k S (29)

: ot 2

EXTERIOR} x
. u(0,t) = Tg (30)

uiL,t)
TH

L : ftKMdT=_ch[u(Lt)-T]
:L_TFLB_. 3% BB B ’ H
t=0 0<1<'f (31)

T. - T

; - k.

Figure 6 Dry tan : u(X,O) = _I-l_L__C_)_ X + TO (32)

The second boundary condition, equation (31), is a statement that heat trans-
ferred through the insulation at x = L 1is equal to the heat absorbed by the
tank structure. To write this condition in differential form we differentiate
equation (31) with respect to time and use equation (29) to obtain

su(L,t) 3%u(L,t) _

LKB TR k > 0 (33)
3X
where
K

K, = +4+—r

B CBLBpBL
Making the transformation

u=v+ Tg (34)

in equations (29), (30), (32), and (33) yields a problem with homogeneous
boundary conditions

oV _ 32v
ERRNE) =)
ax
v(0,t) = 0 (36)
av(L,t) 32v(L,t) _
LK, =L + k T 0 (37)



TH - T

v(x,0) = T

Sx Ty - T (38)

S

We proceed as in the wet tank solution by substituting equation (11) into
equation (35) to get equations (12) and (13). Applying boundary conditions
(36) and (37) to equation (13) gives expressions for the eigenvalues and the
eigenfunctions

LK

__k_B_cos(L/X;)+ /i;‘sin(L/I;)=o; n=1,2, ... (39)

@n = sin(x /An ); n=1, 2, . .. (40)

In this case the eigenvalues cannot be solved for explicitly. Each eigenvalue
An may be shown to lie in the interval

Tr(n-l)<L/5\_r:<ﬂ(n—%—) (41)

From equations (11), (16), (34), and (40) the solution may be written as

[se]

Akt
u(x,t) = Tg +Z ae " s’in(x /x:) (42)

n=1

and it remains only to find the Fourier coefficients, a,-

The computation of the Fourier coefficients is not straightforward in
this problem because the eigenfunctions are not orthogonal. This may be
shown by application of Green's theorem which, in addition, gives a formula
for the nonorthogonal values:

L " ) 1" ' ' L . . . . .
[(-@J.)@K - ®j(—®k>]dx = -[cpjcpk B} <I>j<1>k:| s i#§; i, =1, 2,
o ; ° (43)
\\
In view of equations (37), (38), and (40), eqaution (43) reduces to

L
~ k ) ., .
f q’j@k dx = - X, q>j(L)<1>k(L) R i#3 3 i, j=1,2, ... (44)
(o]



The nonorthogonality of the eigenfunctions means that the temperature distri-
bution cannot be obtained in explicit form. This situation, however, does
not inhibit numerical solution since the problem can be reduced to one of
matrix algebra. Next introduce the quantities

il
[umy
-
e}
-

L
I, =f V0,08 (dx 5 i (45)

o

L
I.. =f Qi(x)‘i’j(x)dx R i, j=1,2, ... (46)

ij
(o]

where Ii and I.lj are an infinite-dimensional vector and an infinite-

dimensional matrix, respectively. Using equations (38), (40), and (44) allows
equations (45) and (46) to be expressed as

K . —
v (Tg - Ty)sin (L /s )

—
1

1 . L
+—L—>;(TH-T0)51n(L/‘E)+ ST s i=1,2, ... (47)

= l - —— .2 ( )\ ) . 1 =
Iii =3 [L LKB sin L / i | 3 1 1, 2,

__k.(fx—>.(>\)_.....=
Iij = EE;—Sln L /%, )sin (L / i) i3 1,3=1, 2,

Now evaluate the v(x,t) portion of equation (42) at t = 0, multiply both
sides by @m(x), and integrate from x = 0 to x = L to get

(o]

L L
f v(x,O)@m(x)dx = Z anf @n(x)tbm(x)dx
Y n=1 fo)
In = Z 3 nm (49)

n=1

where equations (45) and (46) were used. Equation (49) gives the Fourier
coefficients for equation (42).

Taking the design point of view for the dry tank weight calculation, it
is desired to compute the insulation thickness (weight) which limits the

10



structural temperature u(L,t) to a specified value Tpg. Since the maximum
u(L,t) occurs at tg, equation (42) implies ’

o«

A Kt
Ty = Tg + E a_e sin (L /An) (50)

n=1

which is to be iteratively solved for L. The numerical procedure for solving
the dry tank problem is as follows: (1) Guess an L. (2) Solve for the Aj
from equation (39) with the aid of equation (41). (3) Solve for the aj from
equation (49) with the aid of equations (47) and (48). (4) Test to see if
equation (50) is satisfied; if not, repeat the procedure. Although it was
found that the infinite series involved in the solution converged relatively
slowly, convergence was entirely satisfactory when the solutions obtained by
using the first four and the first five terms of these series were averaged.
This is not surprising since all of the series involved are alternating. Com-
putationally, the averaging was accomplished by dividing the fifth rows and
columns of 1TIj and Ijj by two.

Unlike the wet tank solution, there is no readily apparent steady-state
approximation to the transient solution, since the boundary condition at x=L
makes the problem inherently unsteady. However, a quasi-steady state relation
may be obtained if it is assumed that the temperature distribution is a linear
function of x at any time t, that is,

USS(X,t) = f1(t) + £,(t)x (51)

This is equivalent to setting C = 0 (k = ©} in equation (29}. Since Ugg(x,t)
must satisfy the boundary and initial conditions (egs. (30), (31), (32)) with
T, =T

o S

oK
C,Lp,L
X B "B B"SS
Uss(x,t) = TS ST (TS - TH)e' (52)
SS
Since USS(LSS,tf) = Tg, equation (52) leads to
c LthL = In is ‘ IH (53)
B-BPB™SS S~ 'B

which gives Lgg in closed form. The heat transferred to the structure is
given by

Qgg = Cplpep(Tp - Ty) (54)
To conclude this section, mention should be made of the relation of these

two solutions to existing solutions. The solution given in this paper of the
relatively straightforward wet tank case may also be obtained from the analysis
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given in section 3.4 of reference 9. This reference also discusses problems
with the boundary condition of equation (33), but does not give the solution
of the dry tank case. However, section 3.13 may be used to obtain the solu-
tion for the special case Ty = T,. For this case, transformation of equa-
tion 3.13(9) of reference 9 gives the temperature distribution

t

o kA,
[k + (LZKBZ/kzﬂe ~ sin (/q_.x)
ulx,t) = Tg + 2(Ty - Tg) n = (55)
n=1 {

I AL+ WPKG/RP)] + (LKp/k) }

Since it is desired to limit the structural temperature to TB, this equation
gives

~kapte

//1 + (L%Kg?/rjk?)e :

Tg - Ty + 2(To - Tg) =0 (56)
— {L[(Ank/LKB) + (LKg/K)] + 1}

where A, are the roots of equation (39). Equation (56), which is to be
solved iteratively for L, has application to the insulated structure of
nonfueled portions of hypersonic cruise vehicles.

RESULTS

Comparison With a Finite Difference Solution

In this section an example is presented to illustrate the solutions
obtained in the previous section and to provide a comparison with a finite
difference method. The data for the example was chosen to be representative
of a hypersonic cruise aircraft travelling at Mach 6 with a cruise time of
about 1-1/2 hours. The insulation is taken to be quartz fiber, and the tank
structure, which carries the vehicle loads, is aluminum alloy, weighs about
3 1b/ft?, and is limited to 200° F. The temperature distributions for this
example for the wet and dry tank cases are shown in figures 7 and 8, respec-
tively. The flight profile for this case yields: T, = 70° F, TSWET = 952° F,

TSDRY = 632° F, and Ty = -424° F. Note that because of angle of attack

effects, (which corresponds to the underside of the vehicle) is greater

Tsygr
than TSDRY' Average insulation thermal properties are those at the following

temperatures H _

Tory

% (Tg + To + Tg + Ty) (58)

12
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Figure 7.- Wet-tank temperature distributions. Figure 8.- Dry-tank temperature distributions.

Here Ty 1is used for TWET since the quantity of importance is heat transfer
to the LH, fuel, and this heat transfer is proportional to the conductivity at
temperature Ty. For the wet tank case, the optimum insulation thickness L
was 4.89 in.; the boiloff thickness Lpg was 3.10 in.; the unit weight of
insulation W; was 1.48 1b/ft2; the unit weight of boiloff Wpg was

1.15 1b/ft2; and the heat transferred to the fuel was 222 Btu/ft2. For the
dry tank case, the insulation thickness required to limit the tank temperature
to 200° F, L, was 2.34 in.; the unit weight of insulation Wy was 0.88 1b/ft?;
and the heat transferred to the structure was 249 Btu/ft2. These values are
summarized in table 1. Qualitatively, as can be seen from figures 7 and 8§ the
temperature distributions are much as would be expected. As mentioned earlier,
total vehicle insulation weight may be estimated from a weighted average of
the weights of the wet and dry tank cases.

TABLE 1.- COMPARISON OF RESULTS OF PRESENT ANALYSIS
WITH FINITE DIFFERENCE SOLUTION

Wet tank Dry tank
L, LBO’ WI: WBO: Q, L, WI, Q, TB:
in. | in. |{1b/ft?|1b/ft? |Btu/ft2| in. 1b/ft? |Btu/ft2| °F
Present analysis |4.89 [3.10| 1.84 1.15 222 2.3410.88 249 {200*

Finite difference,

* *i
constant K 4.89%(3.17| 1.84 | 1.18 | 227 |2.34% 0.88 | 248 |198

Finite difference,

) 4.89%|3.38| 1.84 1.25 242 2.34% 0.88 240 178
variable K

*Input values

A finite-difference heat-conduction program was also applied to the above
problem. This program solves one-dimensional heat conduction problems by
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finite difference methods. The insulation thicknesses computed by the ana-
lytic solutions of the present paper were entered into the finite difference
program and the resulting temperature distributions were compared with the
analytically derived ones. The temperature distributions at t = tg for con-
stant conductivity are indicated by the diamonds on figures 7 and 8. It may
be seen that these distributions are in excellent agreement with the transient
ones. Since there is no theoretical difference between these two solutions,
this agreement indicates a high degree of numerical accuracy. The finite dif-
ference method gave 227 Btu/ft? for heat transferred to the fuel in the wet
tank case (2.0 percent difference as compared with the analytic solution),
198° F for the final wall temperature of the dry tank case (as compared with
200° F), and 248 Btu/ft? for heat transfer to the structure in the dry tank
case (0.2 percent difference) as shown in table 1.

Since the finite difference method is capable of solving variable prop-
erty problems, it may be used to test the validity of using constant conduc-
tivity. If K is input as a function of temperature (using data from ref. 10),
the resulting temperature distributions at t = tg are denoted by the squares
on figures 7 and 8. As shown in table 1, the finite-difference, variable-
conductivity solution gave 242 Btu/ft? for heat transferred to the fuel in the
wet tank case (9.0 percent difference as compared with the analytical solu-
tion), 178° F for the final wall temperature of the dry tank case (as compared
with 200° F), and 240 Btu/ft? for heat transfer to the structure in the dry
tank case (3.5 percent difference). Although the wet tank constant-
conductivity calculation using TWET given by equation (57) underestimates
the heat transfer by 9 percent, it only underestimates insulation plus boiloff
weight by about 4 percent. The constant-conductivity dry tank calculation
with Tpry selected from equation (58) gives slightly conservative results.

Comparison With Steady-State Approximations

From equations (24), (26), and (28), the steady-state approximation of
the insulation weight (including boiloff) for the wet tank case is

Wgg - = 2 H (59)
W fg
and using equation (53) the dry tank insulation weight is
(60)
pth

W =

Since, as mentioned earlier, these equations may be viewed as ignoring the

heat capacity of the insulation, they will give conservative weights. Equa-
tions (59) and (60) are convenient for weight estimation because they give the
weight in closed form. In order to assess the validity of these equations both
the magnitude of the steady-state weights and the sensitivities of the weights
to the independent parameters were compared with the weights and sensitivities
obtained from the transient solutions. Table 2 shows the results of applying
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TABLE 2.- COMPARISON OF RESULTS OF PRESENT ANALYSIS
WITH STEADY-STATE APPROXIMATIONS

Wet tank Dry tank
L, LBO: WI; WBO’ Q: L, WI: Q’ TB,
in.| in.|1b/ft?|1b/ft?|Btu/ft?| in. |1b/ft2|Btu/ft2| °F
Present 4.893.10| 1.84 | 1.15 222 |2.64] 0.99 205 |200*
analysis

Steady-state

. . 4.4614.51| 1.67 1.67 323 3.56| 1.34 205 200*
approximation

*Input values

both the transient analyses of the present paper and the steady-state approxi-
mations to an example case. This example uses a different tank material from
that used in the example of the previous section. For the wet tank case, the
steady-state approximation implies that the weight of insulation will equal the
weight of boiled-off fuel for minimum total weight; whereas the transient solu-
tion indicates that the insulation weight will be greater than the boiloff
weight. Since the transient solution gives 2.99 1b/ft? for the weight of
insulation plus boiloff and the steady-state approximation gives 3.34 1b/ft?,
the steady-state approximation overestimates the weight by 11.7 percent. The

steady-state approximation overestimates the dry tank insulation weéight by
35.7 percent.

Sensitivities of the weight to four of the independent parameters are
shown in figure 9. In order to compare sensitivities (slopes), the steady-
state weights were multiplied by 0.894 and 0.741 for the wet and dry tank

cases, respectively, to make them
pass through the same nominal
point as the transient weights.

—— STEADY STATE i As indicated in figure 9(a), the
s WET steady-state sensitivities of the
I wer i TTTTUTTT  weight to insulation conductivity

agree quite well with the tran-
sient ones; the wet tank case in

UNIT WEIGHT, Ib/ft2
n
T
T

' Tﬁ/ﬂagr’éé L =’ . fact agrees virtually exactly.
== It is obvious that this parameter
0 " os oi o8 o8 o o35 5 « 1s significant for determining
K, Btu / hr-ft-°F ¢, Btu/Ib-F the weight. Figure 9(b) shows
the sensitivities to a parameter
(a) Insulation conductivity. (b) Insulation heat t}}at appear§ only in Fhe tI‘aI.'l-
capacity. sient solutions, the insulation

heat capacity. The weak influ-
ence of this parameter indicates
Figure 9.- Sensitivity of insulation weight to that the insulation weights will
selected parameters. be relatively insensitive to
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ar T changes in initial conditions.
TTSTEADYSTATE The sensitivity to surface tem-
gﬁ%ﬁf&z/’ T perature, shown in figure 9(c),
shows perhaps the poorest agree-
ment between transient and steady-

///«/"4: 1™ state solutions. This parameter

DRY DRY . . - . .

y is important since it is a func-
; . s ; : . : ; tion of the highly important

[¢] 400 800 1200 (600 -200 o] 200 400 600

w
T

UNIT WEIGHT, 1b/ft2
N
T
~
[
/ T

Tg, °F Tg, °F mission parameter, cruise Mach

number. An important sensitivity,

(¢) Surface temperature. (d) Maximum structural that of_max1mum §trugtural temper-
temperature. ature, is shown in figure 9(d).

Since insulation weight decreases
with increasing structural tem-
Figure 9.- Concluded. perature and structural weight

increases, this parameter is

important for minimization of
vehicle weight. It was mentioned earlier that the sensitivities of a fifth
parameter, cruise time, of the transient and steady-state solutions is
identical for the wet tank case.

It may be concluded from figure 9 that the following equation will give
a first-order estimate of the average insulation weight (including boiloff)
per unit area if the values of the independent parameters are ''reasonably"
close to the values of the nominal case:

o0kt (Tg . - Ty) 0.741pKtg
W = o.goq | H £\ SwEr

SS hfg i 2C,Lgep Zn[(TsDRY - TH)/(TSDRY ) TB)]
(61)

In this equation half the surface area of the vehicle is assumed to be
governed by the wet tank case and half by the dry tank case. As mentioned
earlier, thermal protection system weight is obtained by adding such items as
cover panels, attachments, and '"nonoptimum'" weights to the insulation weight.

CONCLUDING REMARKS

Solutions of two initial-boundary value problems of one-dimensional
conduction heat transfer have been obtained. The application of these solu-
tions to hypersonic cruise vehicle thermal protection systems was discussed.

A numerical example was considered and it was found that the solutions agreed
well with finite difference solutions. The finite difference solution was
also used to investigate the validity of the constant conductivity assumption,
and it was found that this assumption is a reasonable one. Comparison of
weight sensitivities with those of steady-state approximations showed that
such approximations give reasonable estimates of the sensitivities, but that
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these approximations overestimate the weight. An equation for weight
estimation based on steady-state approximations was presented.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Jan. 27, 1970
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