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Vibro-Rotational Excitations of H2+ by e+ Impact

A Semi-Classical Approach

F. H. M. Faisal

Abstract

Analogies between Coulomb excitations of nuclei and ionic molecules

by charged projectiles is utilized to calculate vibro-rotational

excitations of Hz's molecular ions by e+ impact by a semi-classical method

developed in the nuclear case.
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1. Introduction

Recently there has been a considerable upsurge of interest in the study

of rotational and vibrational energy loss processes in diatomic molecules

by electron impact. They are of much importance not only for understanding

the fundamental energy exchange processes involved, but also for their

applications in such allied fields as Astrophysics and Atmospheric Physics.

In the present work we shall investigate the coupled excitation of

vibro-rotational states of hydrogen molecular ions, $2+, by collision with

positrons, a+ . The study of such excitations with e + is not only important

for its intrinsic significance but also for the.mathematical simplicity

it introduces in the formulation of the complex excitation process itself.

This is due to the fact that the Pauli exchange does not enter directly

into the problem.

In this work we shall adopt a semi-classical view and make use of the

analogy of Coulomb excitations of nuclei, which has been studied extensively

in the past (Alder eo al., 1965). The present method is semi-classical

in that we shall treat the target system quantum mechanically while the motion

of the projectile would be assumed to be along a classical Coulomb trajectory.

In the end, however, we shall attempt to modify the classical nature of the

projectile motion, which does not distinguish between the initial and final

states, by demanding that the principle of mrdt^v^*be satisfied by the

cross-sectional expressions and invoking the Correspondence Principle to be

applied to such cuantities as the classical velocity of the projectile.

I
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2. Theory

Let N, n and ,j denote, respectively, the electric, the vibrational and

the rotational quantum numbers of the target molecule. In this paper we

shall confine ourselves to the ground electronic state of the target and

mostly disregard the quantum number N. One of the basic assumptions of

our semiclassical approximation is that in the first approximation the

incident positron moves essentially along a Rutherford trajectory around

the effective positive charge of H2+, situated at therm. of the molecule.

Thus, while the positron moves along its trajectory it is allowed to induce

transitions in the molecular motion through the electric coupling with the

various molecular charges. The transition probability, b if, for the initial

state i going to the final state f may then be given by the first order

time dependent scattering theory of Dirac (1926). Thus we write

" iwl
^f

where w - Ei - E f is the energy difference between the states i and f and

Vint (t) is the interaction potential between the incident,positron and the

H2+ target. It can eaeily be seen (Fig. 1) that

f

(1)



where r = r(t) is the trajectory of the positron and r l is the position

vector of the target electron, measured from the c.m. of the molecule. The

vector R stands for the separation between the two nuclei of the target.

We shall describe the target molecule in terms of simple product of

normalized wave-functions 
^N 

(r l ), Xn (R) and Y  J (R
A
) corresponding to the

electronic, the vibrational and the rotational motions. Thus the total

target wave function becomes

Nn,i > = 
N̂ ( ^)'xh (R) Yarn CP,	 (3)

In view of the fact that the incident positron repels itself from the

positvely charged target, we may for sufficiently low energies, simplify

the potential interaction (2) by expanding it for essentially non-penetrating

projectile orbits. Thus we find
T X

Vi nk N-	 41T	 k^	 *I" k	
9'

-	 2_A+,	 h^ t , Y, C ,) Y^ C

A= 2j+,	
h- > k^

/& = - X	 `

Taking the matrix elements between the initial state JN i pi j  > and

the final state IN  of if > we find from (3) and (4),

I

li = +^
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X < n4 ^ `X n;^< Yet; ( R) ^ Y;^ ( R )^ x Yr (sC)
+1

2a t, ^N{N01 k^) 	 x^l lC^i2^ ( ^h` , X

(5),A = -A	

Y	 k^x <Y;"4(a) I Yr CR} I Y^"	 T
t	 /c I

We find that in the present approximation, the above equation(5) controlls-

the entire process of transitions among the various states and the various

modes of motion of the target molecule. It can easily be seen that the

perturbaticn of the electronic motion, represented by the first sum in (5)

is independent of the nuclear perturbation, represented by the second sum

in (5). This is, of course, a consequence of the Born4Oppenheimer separation

already assumed in the product wave function.(3). We note however that the

transitions among any two vibrational states In  > and n? (ni i In ) or

any two rotational states 
Iji> 

and Ij
f> (ji # jf ) or both lead to a vanishing

of the first sum in (5). Thus the vibrational-rotational transition probab-

ilities in the ground electronic state is found to be given by

1Att a

/t% - >.

TT/ =
	 e	 I 

IL ct) 
- r-t VA C h^k>>

I n J> = I x„ (R) Yj' (9)>

We note that all informations regarding the trajectory of the incident

positron is contained in the orbit integrals JXP• Evaluation of these

I

(6)
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integrals is extensively discussed in the literature (e.g. Alder et al., 1965)

and we shall note here that the Coulomb trajectory of e* can most conveniently
4

be given by the parametric equations

r (t) = r0 (E cosh T + )

x(t) = r0 ( cosh T + E)

Y(t) = r  V - 1)1 sinh T

Z(t) = 0

t=	 (EsinhT +T)
O

where E is the eccentricity, T is the eccentric anomaly, r 0 is half the

distance of closest approach, u'0 is the projectile velocity and t is the

time parameter. Substituting (7) In (6) and choosing the quantization

axis along the angular momentum of the molecular rotation, it can be

shown (Alder et al., 1965)

r h.-A-1	 -I Y'14l

I	 N 8) = S 2 ` (z * (i+ f ` )i soh l+ t 	
(8)

+ (bsht t ^ Cat t)^ i^i^ ^^
"	 dt

i -+- CC-3 1 1 -E

^o
(9)

ko ,

e	
2- r°
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We have defined E  to be the incident energy in a.u. and 8 as the

scattering angle. To calculate the cross-sections we need the number of incident

particles in a plane wave of unit flux with impact parameters between b

and b + db. This is given by

1
^n6^i6 = ke	 x

where do is an elementary6/14	
solid angle

6 = h e ^t viz .

The differential cross-section for the 
Xth 

multipole transition averaged

over the initial substates m  and summed over the final substates mf, may

therefore be written as

L—	 1 ^o+ I1

^ A	 t

The total cross-section is obtained by integrating (11) over all scattering

angles. Thus

i; • t 2-	 Pr t^
A — v: ho
	

.4	 n^^c -^n4J3^T^.^s^

`	 (13)

r

(11)

(12)
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with
 

Cos

,A - -	 (^;^ Qk)	
(14)

In (11) and (13) the quantity B  is the reduced transition probability which

we have defined to be

gx(n, j^ N jf) -	 ! r4 f 	 n, J;^ I 1
mi

z	 (15)

where

A

n4	 ^I (RA)

2 ^` Ax(Inc	 < `4 11 YT 11 S^^	
(16)

with the vibrational matrix elements

e

and the reduced matrix element

<^fil Yall ^^^ = (-^)	 1 IW- (2J^^^)(zjf^^)^Q`c o;1 :	
(l8)

I

(de-Shalit and Talmi, 1963) -



•^^	 xFJ^ tl (Cr::se-sectional expression
symmetric in i and f) (21)
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3. The Symmetrization of Classical Cross-Sections

In the present approach, the projectile orbit has been described

classically and consequently the cross-sectional expressions X11) and (13)

do not distinguish between the initial and final states of the trajectories.

One of the most successful ways of iat roducing the initial and final parameters

for the orbits is to impose the principle of reciprocity on the cross-

sectional expressions and replace various classical parameter.^ by their

corresponding quantal analogues via the correspondence principle. To satisfy

the reciprocity relation between the cross-section (7if for the direct process

and ofi 
for its inverse, we must have

G) 14^ 
(T - W ^ l3f UT
	

(19)

where wi, 
U  

and w  and of are respectively the statistical weights and

velocities (in a.u.) for the initial and final states of the system. For the

present problem we have

W t = ^-j^tl	 and	
(20)

'	 From (19) and (20) we conclude that aif must hsve the form
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Extending Kramers type prescriptions for the principal quantum number

n — n + 1 to the positive energy continuum where n is replaced by il,

Fiedenharn and Brussard (1965) obtain the correspondence

(22)

f'os the so-called Sommerfeld number 11 where

	

X 1 72 1 e m
	

(23)

0

is given in terms of half the distance of closest approach r o, or the

incident velocity V0 . In (23) 11 and z l are the mass and charge of the projectile

and z2 stands for the effective charge of the target. From the fundamental

correspondence between the quantum mechanical matrix elements and the classical

Fourier components.and from the relation (22), it can be shown (for a concise

derivation and an elegent discussion see, Biedenharn and Brussard, 1965)

that the classical 1 yields the final correspondence

	

2-(9< ti)N t 0	 1
R—^(24 )

1'^	
`
/	 (/n	

L

\ Intl " 1 -hW+1)a

We note that in terms of the initial and final parameter J i and If the quantity

C defined in (10) reduces Lo

	

7 = I i Jf -	 (250

P
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I

or

For the cross-sectional expression to be inserted in equation (21) we shall

adopt the classical expression (13) and symmetrise it through the use of

equations (22), (23) and (24) as follows:

vet . _^ ^ ^'^; ^ 1)t'1 3 -^ i)^ 1
(26)

hoza+^ 	z (^^ +^)(^} ^ 1)

r) :L4 Ili 4 t^}t^^ 1	 (27)

Finally, substituting (26) and (27) in (13) and combining the result with

(21) we obtain -4A

	

 /	

+	
,I	 l	 c} —471

Li
14	 L

X '4BT(nC' C __> n+a^ ) f, -f= 11-nf) .	 (28)

An expression similar to (28) is obtained for the differential cross-section

with f 	̂ replaced by	 4A (1) Q)

We shall emphasize the fact that the symmetrization procedure adopted here

for the classical cross-sections is by no means unique in character.

Nevertheless it has been found that an essentially similar procedure adopted

by Biedenharn and Brussaard (1965) in nuclear excitation problems, produced

excellent agreement with the corresponding quantal calculations. We note,

however, that our symmetrization procedure has the advantage over that of the

previous authors in that it yields the correct threshold law: ^
4

ft 
2 2 ff C14

(aligner, 1968) for the repulsive Coulomb scattering while the other expression yields
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in
G4= =^ 2 f near the threshold. The two procedures, however, differ

ni
little numerically somewhat away from the threshold.

4. Numerical Calculations

The vibrational matrix elements are calculated by using Morse functions

h^^,^orse, 1929) for the target E2 + molecular ions:

Nn Q 2
. Ck-in-1) Fri (7)

n =^	 (29)

^'e	 Ro = R at evA;^ 6^ I % Vn

= x

n	 ^
Y1 i

where xe = 8nD is the spectroscopic parameter, Mo is the 1!#duCad mass,
0

Do is the dissociation energy and Eol is the energy difference of the first-

excited state from the ground state.

For H2 molecular ions we choose

Do - 0.2053 Ryd.

we - 0.0212 Ryd.

M  = 918.33+ a.u.

The energy difference E ol is calculated by Cohen et a1. (1960) and is very

nearly equal to 0.02 Ryd.

I

s-	 _
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Following Heaps and Herzberg (1952) the vibrational matrix elements are

found to be

^ in f ^^) Z '1`n, ( R) dR

04!	 t - `Y%4	Xg^

where
1

= ( {I —1,nz+Oxtjjl-`n^t2)7(^^. -`t1- n;xc^n^i

and H
nfni 

is the polynomial the first few of which are

I.} N o = `n,^ - I) I ,fir► ( I — fin{ -r i) xe ^ + 0. A.;.

c ,- U

4. =0 ,	 OL2 = I	 a3 = 3 , Q 4 = 11 ) A5 = 50,..• .

I
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5. Results and Discussions

We present here both the differential as well as the total cross-sections

for vibro-rotational transitions between the ground state and the first few

excited vibrational-rotational states. In figures 2 and 3 we compare the

difference between different rotational excitations and a fixed vibrational

transition ni 0 of = 1. We find that the cross-sections for

i i = 0 - i f = 2 is by far the largest compared to the rest and those between

J i = 2, 4, 6 ~ if = 4, 6, 8 respectively are comparable with each other.

In figures 4 and 5 we have similar results between the same set of rotational

states but with a different vibrational transition: n i = 0 -y of = 2.

Comparing Fig. 4 and 5 with Fig. 2 and 3 we find that the magnitude of all

the 0 - 2 cross s(.:tions are an order of magnitude or more larger than those

for the 0 1 transitions. Finally in Fig. 6 we compare the total cross-

sections for a fixed rotational excitation J i = 0 if = 2, with various

vibrational excitations: n i = 0 - of = 1, ni - 0 - of = 2, and

ni = 0 - of = 3.

This result again shows that the n i = 0 of = 2 vibrational transition

is much larger than those for n i = 0 - of = 1 and ni - 0 - of = 3; while

the last two cross-sections are comparable in magnitude. Although we have not

plotted the cross sections for ni = 0 -• of = 4, we noted that it was somewhat

smaller than that for n i = 0 - of = 3 in the energy range under consideration.

We believe that the present method is particularly suitable for the

energy range E i = 0.0 to Ei s 0.5 Fqd. for the following reasons.

(i) In this energy range the distance of closest approach is z 2 ao and is

expected to be large enough to allow essentially non-penetrating orbits

for the projectiles.
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(ii) The threshold for positronium formation being at 0.5 ]Ryd., we may neglect

such channels for positron energies below 0.5 $yd.

We conclude by noting that the calculated absolute transition probabilities

are all very small so that the application of a first order theory is generally

satisfactory.
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