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Preface 

This report comprises the final report for a study 

entitled, "Transform Processing and Coding of Images, " performed 

by the Electronic Sciences Laboratory of the University of Southern 

California for the Jet Propulsion Laboratory under JPL Contract 

952312. Mr. Thomas Rindfleis4h of JPL served as project director 

for the study. This report supplants the interim report USCEE No. 

341 entitled 'Transform Processing and Coding of Images, 

published in March, 1969. Pertinent introductory material from 

that report is included in the present report for completeness. 
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1. Introduction 

The basic goal of digital image coding is the development 

of a coding technique that permits the representation, and 

subsequent recovery, of an image by a minimal number of code 

bits [1-31. In some applications virtually no image distortion is 

permitted in the coding process, while in other applications a 

controlled amount of distortion is allowable in the achievement of 

a substantial bit reduction. In general, when redundancy is 

removed from a data source, the compressed data is more 

sensitive to the effect of channel errors. One of the restrictions 

in selecting a coding method, therefore, is that the compressed 

data must not be overly sensitive to channel errors. 

In 1967 a new technique of image coding, called Fourier 

transform coding, was developed at the University of Southern 

California [4-63. Another related method, called Hadamard transform 

coding,was discovered at USC in 1968 [7-8]. Since then investigations 

have been made into the applications of other mathematical 

transforms for image coding. Out of these studies has emerged 

the generalized technique of transform image coding [9-111. 
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1. 1 Image Transform Coding 

Figure 1-1 contains a block diagram of the image 

transform coding system. In operation a two-dimensional 

transform is taken of the brightness samples of an image, or 

subsection of an image, on a line by line basis. The resultant 

transform samples are then operated upon by a sample selector 

that selects which samples are to be transmitted on the basis 

of magnitude or position in the plane. Those samples that are 

to be transmitted are quantized and coded. At the receiver, the 

data is decoded to reconstruct the transform domain, and an 

inverse transform is taken to reconstruct the original image. 

A bandwidth reduction is achieved simply by not trans­

mitting all of the traisform domain samples. Those samples 

that are not transmitted are generally of such low magnitude that 

they contribute little in the image reconstruction. 

There are two basic forms of sample selection--zonal 

sampling and threshold sampling--that can be employed. In 

zonal sampling, only those transform samples that lie within 

certain geometric region in the'transform domain are selected 

for transmission. The basic problem with zonal sampling is that 

in certain pictures many large magnitude samples may lie without 

the zonal region and will, therefore, not be transmitted. In order 
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INVERSE 
TRSEDECODERCHANNEL TRANSFORMER 

ERRORS RECONSTRUCTED IMAGE 

Figure 1-1. Generalized Transform Coding of Images 



to avoid such errors it is possible to establish a threshold level 

on the magnitude of transform domain samples such that if the 

transform sample magnitude is greater than the threshold it 

will be selected, and the sample will be deleted if it falls below 

the threshold. With threshold coding it is necessary to code the 

location in the transform domain of a selected sample as well 

as its value. 

The major advantage of image transform coding other than 

its potential for bandwidth compressidn is the tolerance to channel 

errors that transform coding affords. An intuitive justification 

for transmitting the transform of an image rather than the spatial 

representation of the image is that for many transforms the 

channel noise introduced in the image transform tends to be 

distributed evenly over the entire reconstructed image. Consequently, 

the channel noise is manifested as a low spatial frequency error 

in reconstruction. Experimental evidence indicates that the eye 

is more sensitive to the high frequency discrete errors caused 

by channel errors in the spatial domain than it is to the same 

number of errors in the transform domain. 
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1. 2 Original Images 

Figure 1-2 contains photographs of the five original 

images that have been used as test images for the evaluation 

of image transform coding. These images contain 256 by Z56 

elements quantized to 64 grey levels. The images were read 

from magnetic tape, displayed on a Hewlett-Packard Model 1300 

cathode ray tube display, and photographed with Polaroid Type 

47 film. 
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a. Surveyor footpad b. Moonscape 

c. Surveyor experimental box d. Surveyor boom 

e. Girl 

Figure 1-2 Original Test Images 
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Z. Image Transformation 

In this section consideration is given to the mathematical 

formulation of image transforms. The characteristics and 

properties of the Fourier, Hadamard, Haar, Karhunen-Loeve, and 

a class of transitional transforms are briefly developed. Experi­

mental results are presented. 

2. 1 Formulation 

An image may be represented by an array of intensity 

components or samples over the image surface by two dimensional 

sampling. For the present discussion an image array will be 

considered to be a square array of N intensity samples described 

by the function f(x, y) over the image coordinates (x, y). 

Conceptually, there are two major types of image transforms 

which shall be called transforms of the first and second kind. A 

transform of the first kind maps a two dimensional image array 

of dimension N X N into a one dimensional vector of dimension 

1 X NZ according to the relation 

N-1 N-I 
F(w) = Z S f(x, y) a(x, y, w) (2-1)x=O y=O 

forw=0,1,2,'-., N -1 
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where a(x,y,w) is the forward transform kernel of the first 

kind. A reverse transform of the first kind is defined as 

Nz_ 1 
f(x,y) = Z F(w) b(xy,w) (2-2) 

w= 0 

for x,y =0,,Z,-.., N-I 

where b(x.y.w) is the reverse transform kernel of the first 

kind. A transform of the second kind maps an image array of 

dimension N X N into a two dimensional array of the same 

dimension as defined by 

N-I N-1 

F(uv) = L Z f(xy) a(x,y,u,v) (2-3) 
x=0 y=0 

foru,v=0,1,2,.-., N-i 

where a(x, y, u, v) is the forward transform of the second kind. 

The corresponding reverse transformation is given by 

N-I N-I 
f(x,y) = Z; Z; F(u,v) b(xy,u,v) (2-4) 

u=0 v=0 

for x,y = 0, 1, 2 
,..., N-i 

where b(x, y, u, v) is the reverse transform kernel of the second 

kind. For transforms of the first and second kind, when the 

function f (x, y) resulting from the reverse transform operation is 

equivalent to the original image, f(x, y), the reverse transform is 
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called an inverse transform. Transforms of the first and second 

kind are said to be orthogonal if the following conditions 

are met* 

Transforms of the first dnd: 

Zj a(x,y,w) a (U, B,w) = 8(x-CI , y-B) (2-5a) 
w 

. b(x,y,w) b (ot, B,w) = 8(x-Cr, y-B) (2-5b) 
w 

E Ea(x, y,w) a (x,y, ) = 8.(w-8) (2-Sc)
Xy 

2 Fblx, y, w) b*(x, y. 6) = 6(w- 6 (2-5d) 
xy
 

Transforms of the second kind: 

E F a(x,y,u,v) a*(Ci, B,u,v) = 8(x-a ,y-B) (2-6a) 
u v
 

E b(x, y, u, v) b*(a, B, u, v) = 6 (x-Cf, y-B) (2-6b) 
u V
 

E a(x, y, u, v) a*(x, y, e, p) = 8(u-0, v-cp) (2- 6c) 
xy 

EE b(x. y,u.v) b*(x, y, ,ep) =6(u-0,v-cp) (2-6d) 
xy 

The limits of summation are eliminated in subsequent
 
equations unless required for clarity.
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A forward transform kernel of the second kind is said 

to be separable if it can be written as 

a(x, y, u, v) = aI(x, u) az(y, v) 	 (2-7) 

A separable two dimensional transform can be computed in two 

steps. First, a one dimensional transform is taken along each 

row of the image, f(x, y), yielding 

N-1
 

F(uy) = 	 F f(x,y) aI(xU) (2-8) 
x=O 

Next, a second one dimensional transform is taken along each 

column of F(u, y) giving 

N-1
 

F(u,v) = F(u,y) a (y,v) (2-9) 
y=O 

The transformation kernel is called separable symmetric if 

a(x, y, u, v) = al(x, u) a1 (Y, v) 	 (2-10) 

For ease of implementation, the separable symmetric property is 

desirable. 

It is often useful to express two dimensional transforms in 

matrix notation. For example, with a forward transform kernel of 

the second kind that is separable symmetric let: 
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Ef) = image matrix, f(x,y) 

[F] = transformed image matrix, F(u, v)
 

[A) = transform matrix, A(a, 8)
 

Then by matrix multiplication 

F) =[[A] [f [A) (2-11) 

Now pre- and post-multiplication of each side of [F] by a 

reverse transform matrix, [B), gives 

[3 [B] [F] [B] = [B) [A][f][A] [B) (2-12) 

where f1 is, in general, an approximation of [fK. If the reverse 

transform matrix is the inverse matrix [A)- 1 
of [A], then 

" [i I [A] - l [A)[f] [A)[A] (2-13) 

But 

[A] [A] = [A] [A) - = [I] (2-14) 

where [I] is the identify matrix. Hence 

Ifi= [fU = [A] [F)[A) (2-15) 

Thus, f(x, y) and F(u, v) can be expressed as two dimensional 

transform pairs if [A) has an inverse. If [A) is a unitary matrix, 

then by definition 
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[B] -[A]- [A]*T unitary matrix (2-16) 

where [AT' is the complex conjugate matrix of [A] and [A]T 

is the matrix transpose of [A]. If in addition [A] is symmetric 

[B] - [A] 1*= [A]* symmetric unitary matrix (2-17) 

A real, unitary matrix is called an orthogonal matrix. For 

such a matrix 

[B] = [A]- I = [A]T orthogonal matrix (2-18) 

Finally, if [A] is a symmetric orthogonal matrix, then 

- 1[B] - [A] = [A] symmetric orthogonal matrix (2-19) 

If the forward transformation matrix is constrained to be 

unitary, then the transformation can be interpreted as a decomposition 

of the image data into a generalized two dimensional spectrum. 

Each spectral component in the transform domain corresponds to 

the amount of energy of the spectral function within the original 

image. In this context the concept of frequency may now be 

generalized to include transformations of functions other than sine 

and cosine waveforms. This type of generalized spectral analysis 

is useful in the investigation of specific decompositions which are 

best suited for particular classes of images. 
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The following paragraphs contain an analysis of the Fourier, 

Hadamard, Haar, transitional, and Karhunen-Loeve transformations 

with particular emphasis on their applicability to image processing. 

Z. 2 Fourier Transform 

The discrete Fourier transform with and without efficient 

computational algorithms, has long been used for signal 

analysis [12). Only recently have Fourier transform methods 

been utilized for image coding [4-61. 

The two dimensional Fourier transform of an image field, 

f(x, y), may be expressed as 

1 N-
Flu. v) 1 1 Z f(x, y) exp 2 i (-+v.y) (2-20) 

N x=O y=O N 

The inverse Fourier transform which reconstructs the original 

image is given by 

1N-1 N-1 fZn.i 

f(xy) = I E F(u,v) exp f ux + % (2-21)
Nu=O y=O N (ux +vy)-

Since the transform kernels are separable and symmetric the two 

dimensional transform can be computed as two sequential one 

dimensional transforms. 
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The terms u and v are called the spatial frequencies 

of the image in analogy with time series analysis. When the 

Fourier transform relationship is expressed in the form given 

by Equation (2-Z0) the origin, or zero spatial frequency term appears 

in the corner of the transform plane. For display purposes it is 

convenient to shift the origin to the center of the transform 

domain. This is easily accomplished by multiplying the image by 

the function (- 1 )x+y before the transformation [13]. 

Even though f(x, y) is a real positive function, its transform, 

F(u,v), is in general complex. Thus, while the image contains 

2Z 
ZNZN components, the transform contains components, the real 

and imaginary, or magnitude and phase components of each 

spatial frequency. However, since f(x, y) is a real positive function, 

F(u,v) exhibits a property of conjugate symmetry [13]. Specifically, 

F(uv) = F*(-u, -v) (2-2Z2) 

As a result of the conjugate symmetry property of the Fourier trans­

form it is only necessary to transmit the samples of one half of the 

transform plane; the other half can be reconstructed from the half plane 

samples transmitted Hence, the Fourier transform of an image 

A reconstruction of the original can be obtained from the half
 
plane transform samples directly by a Hilbert filtering technique [13].
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can be described by N data components. 

The two dimensional Fourier transform of an image is 

essentially a Fourier series representation of a two dimensional 

field. For the Fourier series representation to be valid the field 

must be periodic. Thus, the original image must be considered to 

be periodic horizontally and vertically. The right side of the image 

therefore abuts the left side and the top and bottom of the image are 

adjacent. Spatial frequencies along the coordinate axes of the 

transform plane arise from these transitions. Although these are 

false spatial frequencies from the standpoint of being necessary for 

representing the image within the image boundary, they do not impair 

reconstruction. On the contrary, these spatial frequencies are 

required to reconstruct the sharp boundaries of the image. 

Figure 2-1 presents displays of the Fourier transforms 

in shifted form of two of the original test scenes. The logarithm 

of the magnitude of each transform is displayed rather than the 

magnitude itself in order to reduce the dynamic range of the display. 

In addition, a threshold display is presented in which all the absolute 

values above the threshold are set to white and all others are made 

black. Such a display gives a graphic illustration of the heavy 

concentration of energy around the origin (center of photograph) of 

the Fourier transform. 
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a. 	 Logarithm of the magnitude of the b. Threshold display of the Surveyor 
Surveyor box transform box transform 

c. 	 Logarithm of the magnitude of d. Threshold display of the moon­
tne moonscape transform scape transform 

Figure 2-1 Fourier Transforms 
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2. 3 Hadamard Transform 

The Hadamard transform, also known as the Walsh 

transform, is based upon the Hadamard matrix which is a square 

array of plus and minus ones whose rows and columns are orthogonal 

to one another [14-16) . If [HI is an N by NHadamard matrix, 

then the product of N and its transpose is 

T
[H] EHI = N[I] (2-23) 

If [H]is a symmetric Hadamard matrix, then Equation (2-23) 

reduces to 

[HI [H) = N[I] (2-24) 

A Hadamard matrix multiplied by the normalization factor 

is an orthonormal matrix. 

The lowest order Hadamard matrix is the Hadamard matrix 

[H 2 )= (2-25)[1 
It is known that if a Hadamard matrix of order N exists (N >Z), then 

N - 0 (mod 4). The existence of a Hadamard matrix for every 

value of N satisfying this requirement has not been shown, but 

constructions are available for nearly all permissible values of N 

up to 200. The simplest construction is for a Hadamard matrix 
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of order N= Zn where nis an integer. In this case if [H N 

is a Hadamard matrix of order N, the matrix 

HN HN

[ N[HZN N] (Z-26) 
H
N H N
 

is a Hadamard matrix of order ZN. 

A frequency interpretation can be given to the Hadamard 

matrix generated from the core matrix of Equation (2-25). Along 

each row of the Hadamard matrix the frequency is called the number 

of changes in sign. Harmuth has coined the word "sequency" to 

designate the number of sign changes [17] . It is possible to 

Znconstruct a Hadamard matrix of order N = that has frequency 

components at every integer from 0 to N-1. 

This frequency interpretation of the rows of a Hadamard 

matrix leads one to consider the rows to be equivalent to 

rectangular waves ranging between ± 1 with a sub-period of 
N 

units. Such functions are called Walsh functions [18-22] and are 

further related to the Rademacher functions [23]. Thus, in 

this context the Hadamard matrix merely performs the decomposition 

of a function by a set of rectangular waveforms rather than the 

sine-cosine waveforms associated with the Fourier transform. 

For symmetric Hadamard matrices of order N = 2n , the 

two dimensional Hadamard transform may be written in series 
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form as 

SN -1 N-1 p X=F~u~) f(x,y)(.l)P(x~yuv),u
F~u,1; A- )Y)(Z-Z7)r,

x=O y=O
 

n-I 
where p(x.yuv) a E (u.x. + viyi). The terms u., v., x., and Y. 

i= 0 3. 1 1 1 1 
are the binary representations of u, v, , x, and y respectively. 

For example, 

(U)DECIMAL = (Un-I u ... u0INARYu I 

where u. e (0, I. 

Another series representation exists for a Hadamard matrix 

in "ordered" form in which the sequency of each row is larger 

than the preceding row. By this representation 

N-1 N-1 

F(u, v) - FN x _q yu 
N x=O y=O
 

where
 

n-I
 
q(xyu,v) = [g.(u) xi + gi(v) yi] 

i=0
 

and
 

90(u) Un 
I 

gl(u)- n-2un 1 


92(u) Un-2 n- 3 

'n- 1( u) = +U u0 
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The two dimensional Hadamard transform may be computed 

in either natural or ordered form with an algorithm analogous 

to the fast Fourier transform computer algorithm. 

Figure 2-2 presents the ordered Hadamard transforms 

of two test scenes. The origin of the transform domain is now in 

the lower left corner and the axes are now spatial sequencies as 

opposed to spatial frequencies. Notice that as in the Fourier 

case, the image energy tends to concentrate itself heavily in the 

lowest spatial sequency areas providing the potential for large 

bandwidth reductions. Again both a logarithmic and threshold 

display are provided for dynamic range purposes. 

2. 4 Transitional Transforms 

In related work [24-27] it has been shown that a class of 

rapidly implementable orthogonal transformations exists for matrices 

composed of Kronecker products of smaller core matrices. In 

fact, both the Hadamard and Fourier transforms have been shown 

to be subsets of this much larger class of Kronecker transform 

matrices. A class of transformations exists for which the Hadamard 

transform is a limiting case, and these transforms will now be 

investigated as to their image processing potential. 

The transformation resulting from performing the Kronecker 

operation of the core matrix 
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a. 	 Logarithm of the magnitude of the b. Threshold display of the Surveyor 
Surveyor box transform box transform 

c. 	 Logarithm of the magnitude of d. Threshold display of the moon­
the moonscape transform scape transform 

Figure 2-2 Hadamard Transforms 
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[H cos e sine 1 (2-29) 
= sine -cose 

with itself n times results in a matrix whose row and column 

entries, indexed by x and u respectively, can be described 

by the following equation 

n-i 
n 

n-I 
EUXru x 

) sin8 jr=0 r r r=0 r r 

The u r and x r variables are the bits in the binary representation 

of the column and row indexes respectively. It is evident that 

while the Hadamard transform has received considerable attention 

(often under the name of the discrete Walsh transform) it is 

important to note that this transform is the limiting case of the 

powers of two Kronecker transforms presented above. As e 

varies between 00 and 450 the transforms vary from a diagonal 

matrix to the Hadamard matrix at 450 
. In the process of varying e 

over this interval, the transformations have ranged from having 

all of their energy on the diagonal at 00 to uniform energy spread 

at 450 (Hadamard case). Figure 2-3 presents examples of the 

transitional transforms of the Surveyor box test scene for four 

different values of 0. Notice that functions of the magnitude are 

displayed in all cases because even for the e = 00 diagonal case, 

negative signs on the diagonal are possible. It is evident from 
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a. 9 00, diagonal transform, b. 9 150, threshold display 
magnitude display, max. max. value = 1,200 

= value 63 

c. 9 = 300, threshold display 	 d. 9 = 450, Hadamard transform, 
max. 	 value = 6,611 threshold display, max. 

value = 11,486 

[H] cos 9 sin[sin 9 -cos e1 
Figure 2-3 Transitional Transforms 
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this figure that the transform which computes the image into 

the fewest significant coefficients is the Hadamard transform. 

2. 5 Haar Transform 

The Haar transform [Z81 is another transformation that, 

like the Hadamard or Walsh transform, requires no multiplications. 

The Haar matrix consists of plus and minus ones as well as zeros 

and is non-symmetric, orthogonal but not orthonormal (unless 

multiplied by the proper diagonal matrix). The Haar matrix can be 

likened to a sampling system in which various rows sample the 

input with finer and finer resolution increasing in powers of two. 

An 8 X 8 orthonormal Haar matrix is shown below: 

1 1 1 1 1 1 1 1 

1 1 1 1 -1 -1 -I -1 

1 -2 -Z o o 0 0 
o 
2 

0 
-2 

0 
0 

0 
0 

V 
0 

v 
0 

/-
0 

Z 
0(2-31) 

0 0 2 -z 0 0 0 0 

0 0 0 0 2 -2 0 0 

0 0 0 0 0 0 2 -Z 

The Haar transform is defined for data of resolution equal 

to a power of two, and the matrix is factorable into a product of 

matrices with a large number of zero entries [25]. Consequently, 
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a fast algorithm also exists for this transform. The number of
 

computer operations required for a 
 vector matrix multiplication 

is given by 2V -I) as compared to the ZN log2 N requirement 

of Fourier or Hadamard, which itself is a considerable savings 

over the normal vector-matrix multiplication requirement of NZ 

operations. As with the Walsh functions, the Haar functions 

can be generalized to contain entries of roots of unity other 

than ± 1. Watari EZ93 has described the generalized Haar system 

and has shown that it is possible to preserve some of the original 

Haar convergence properties. The extension to matrix factorization 

is straightforward and will not be pursued further. However, the 

number of operations necessary to implement a pth order generalized 

Haar transform is given by a- geometric progression resulting in 

p(N-1)/(p-l). In image processing applications, the Haar transform 

provides a transform domain in which a type of differential energy 

is concentrated in localized regions. Thus there is an area in 

which adjacent picture element differential energy is concentrated, 

(the upper right quarter of the transform plane), an area in which 

differential energy of adjacent picture elements taken two at a 

time is concentrated, and in general an area in which difference 

energy of adjacent picture elements taken a power of two at a time 

is concentrated. 
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Figure 2-4 presents the Haar transform of the test 

scenes. The logarithmic results vividly display the derivative 

energy effect especially in the upper right quarter of the plane. 

Note that in the Haar transform there is also a concentration of 

image energy in the lower left corner or origin of the transform 

plane. The data point at the origin in the Fourier, Hadamard, and 

Haar transforms all are equal to the average energy in the original 

image and correspond to the row of all "ones" in the transform 

matrices. 

2. 6 Karhunen- Loeve Transform 

The Karhunen-Loeve transform is a special case of an 

eigenvector matrix transformation [30-37] . Consider a real 

symmetric matrix [C] of order n. The eigenvectors of [C] 

are column vectors [Ki]. i = 1, ,, n satisfying the relationship 

[ C] [KI = Xi [K. (2-32) 

where the scalars X . are the eigenvalues of [C]. Let a square 

matrix [K], called the modal matrix of [C], be constructed 

from the eigenvector columns in the following manner: 

[K] = [[K i ] [K 2 ]-.. [Kn]] (2-33) 

Also let the eigenvalues be located along the diagonal of a matrix 
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a. 	 Logarithm of the magnitude of the b. Threshold display of the Surveyor 
Surveyor box transform box transform 

c. 	 Logarithm of the magnitude of d. Threshold display of the moon­
the moonscape transform scape transform 

Figure 2-4 Haar Transforms 
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X 0 

[E] = 

0 
n 

Then by equation (2-32) 

[C][K] = [K][E (2-34) 

Now, premultiplication of equation (2-34) by [K- gives 

[K-1 [C] [K) = [K] - [K I[E ] = [E] (2-35) 

Taking the transpose of both sides of equation (Z-35) yields 

[K T[c]
T 
[[K]-I]

T 
= [E]T (2-36) 

But, since [C] is a symmetric matrix and [El is diagonal, 

correspondence between equation (Z-35) and (2-36) 

by 

[K]-I = [K]T (2-37) 

Thus, if they existthe eigenvectors of a matrix are orthogonal. 

It can be easily shown [38) that when [C] is symmetric, its 

eigenvalues are all real quantities. 

Consider now a data column vector [f] of length m. The 

eigenvector transform [F] of [f] is then 
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[F] = [E] If) (2-38) 

and the inverse eigenvector transform Ef) of [F) is 

T[1] = [K IF] = [KIT [KIf 3 = Ef (2-39) 

Thus If] and IF] are transform pairs of an orthogonal matrix 

transformation. The vector [F] represents a matrix 

decomposition of [f ] into a set of orthogonal waveforms defined 

by [K) . Generally, the exact form of the orthogonal functions 

cannot be easily described. 

If only the first q of the m columns of [KI are employed in 

the forward and reverse transform, then the mean square error 

between the original and the reconstructed data vector is [30, 311 

m 
Z X (2-40) 

k=q+l k 

Since the Xk are monotonically decreasing in value, the error 

will be minimum for any q. 

When the eigenvector matrix [K] is composed of 

eigenvectors of the covariance matrix 

[ C a [f(j)-f-(j)]} (Z-41)E {[f(i)-.fjWI 
for i, j = 1, 2, . . ., n, of the data vectors, the resulting
 

eigenvector matrix [K] is called the Karhunen-Loeve (K-L) transform.
 

-28­



For a two dimensional image transform of the first kind, the 

forward transform kernel a(x, y, w) of Equation (Z-1) satisfies 

the equation 

N-1 N-1 
(w) a(x,y,w) E 

x'= 0 
ED 
y'=0 

C[x,x',y.y'] a(x',y',w) (2-42) 

for w = 0,1, Z,..., N -1, where X(w) are the eigenvalues of 

the covariance function C(x,x', y,y') of the image. The corres­

ponding K-L transform of the second kind described by the kernel 

a(x, y, u, v) of Equation (2-3) is found from 

N-I N-I 
X(u,v) a(x,y,u,v) = E Z C[x,x',yy'1 a(x',y',u,v) (2-43) 

x'=O y'=0 

for u,v = 0,1, Z,.-., N-I, where X (uv) are a two dimensional 

ordering of the eigenvalues X(w). If the covariance function in 

Equation (2-43) can be written as 

Cfx,x',y,y']= CIfx,x'] Czyy'1 (2-44) 

then the transform kernel a(x, y, u, v) can be separated. The 

resulting two dimensional transform can then be computed sequentially 

along each row and column of the image. 

Figure Z-5 contains photographs of an image that has been 

Karhunen-Loeve transformed in 4 X 4 element blocks. The 16 x 16 
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a. 	 Logarithm of the b. Inverse transform of 
magnitude of the transform of Surveyor box 

Surveyor box transform 

c. 	 Logarithm of the d. Inverse transform 
magnitude of the of transform of girl 
girl transform 

A=1. 
B = .8 
C=.6 

D=E=F=0 

Figure 2-5 Karhunen-Loeve Transforms in 4 x 4 Element Blocks 
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component correlation matrix from which the K-L transform 

matrix was derived is shown in Figure 2-6. 

2. 7 Summary 

For image coding the desirable properties of a mathematical 

transform are that the transform redistribute the image energy 

to as few transform domain samples as possible, and furthermore 

that the transform be easily computable. The Fourier and 

Hadamard transforms fulfill both requirements, and will be 

analyzed in greater detail in subsequence sections. 

None of the transitional transforms, other than the 

Hadamard transform, provide a compact distribution of energy. 

These transforms will not be considered further for image coding, 

but it should be noted that the transitional transforms may be 

useful for dimensionality reduction for pattern recognition 

applications. 

The Haar transform possesses an extremely fast 

computational algorithm. However, the peculiar spatial sampling 

procedure- -sampling in pairs of elements--does not appear 

to be particularly useful for image coding, and therefore the Haar 

transform will not be considered further. The Haar transform 

may find some usefulness, however, for digital edge 

enhancement since the transform domain is a mapping of the spatial 
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1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

a. Element Array 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

I A B C D B C D E C D F D E F G 

2 B A B C C B C D D O D E E D E F 

30C B A B D C B C E D 0 D F E D E 

4 D C B A E D C B F E D C G F E D 

5 ;B C D E A B C D B C D E C D E F 

6 C B D B A B C C B C D D C D El 

7 D C B C C B A B D C B C E D C D, 

8 E D C B D C B A E D C B F E D CI 

90C D E F B C D E A B C D B C D El 

10 D C D E C B C D B A B C C B C D 

11 E D C D D C B C C B A B D C B C1 

12 F E D C E D C B D C B A E D C B 

13 D E F G C D E F B C D E A B C DI 

14 E D E F D C D E C B C D B A B C! 

15 F E D F E D O D D C B C C B A B 

16 G F F D F F D C E D C B D C B A; 

b. Correlation Matrix 

Figure 2-6 Correlation Matrix Model for 4 x 4 Element
 
Karhunen-Loeve Transform
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differential energy of the original image. 

The iarhunen-Loeve transform provides the best 

compaction of image energy for natural images. The major 

difficulty associated with the use of the Karhunen-Loeve 

transform for image coding is the great amount of computation 

involved. First, the image correlation matrix must be 

estimated or modeled. Next, the correlation matrix must be diagonalized 

to determine its eigenvalues and eigenvectors. Finally, the transform 

itself must be taken. In general , there is no fast computational 

algorithm for the transform. In those applications in which the 

amount of computation is not of principal concern, the Karhunen-Loeve 

transform may find practical application. Furthermore, since the 

K-L transform is the optimum image transform in a mean square 

error sense, when sample deletion is employed, it is worthwhile 

to consider its performance as a standard for other image 

transforms. 

The next two sections contain a general analysis of the 

Fourier, Hadamard, and Karhunen-Loeve image transforms. 
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3. Statistical Analysis of Image Transforms 

The development of efficient quantization and coding methods 

for image transform samples requires an understanding of the 

statistical properties of the transform domain. This section 

presents a derivation of the first and second moments of transform 

samples, and also contains the development of a stochastic model 

for the probability density of transform samples. 

The statistical analysis of image transforms is predicated 

on the representation of an original image as two dimensionala 

stochastic process, f(x, y). The spatial mean 

E f(x,y)} - f(x, y) (3-1) 

and the covariance 

E {[f(Xll, Y)-fUxlyl)] [f(x, y)-f(xZ, y?) I} -= xlyl, yzl 

(3-2) 

are assumed known or at least estimateable. Appendix A 

describes measurements of the covariance function of an 

image. 

3. 	1 Moments 

For a generalized forward transform given by 
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N-i N-I 
F(u,v) = Z 'Z f(x,y) a(x,y,u,v) 

X=O Y=O 

the mean of the transform samples is simply the forward 

transform of the mean of the image samples. Thus, 

(3-3) 

N-i N-i 
EfF(u,v)] = 

F(u,v) = Z f(x,y) a(x,y,u,v) 
x=O y=O 

For an ordered, orthonormal transform with an average value 

term 

(3-4a) 

F(u, v) = N f(x,y) 6 (u, v) (3-4b) 

is 

The covariance function of the transform domain samples 

by definition 

Substitution of equations (3-3) and (3-4) yields 

(3-5) 

C[u I u z v l v z ] = E E tf(xl, yl )-f(xl, I)] a(xiY 1 .u 1 . v1)] 

t (f*(xyfyx a) vz)]} (3-6) 

or 
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C[u U 	 v V= -Z Z) E F, E I<f(xlYl)-f(xl,Yl
Xl Yl Z 

1 1 

"[f*(x, Yz)-f(xz, Yz)*]} a(x,lyl,uV I ) a* (x , yZuZ, v Z ) (3-7) 

2

The expected value of the bracketed term-in the. summation of 

Equation (3-7) is by definition the spatial domain covariance function, 

CtxI' Xz yI, yzl. Hence,2 

C[u 1,U 	 l,Vv 2Z I = F, E 1) E C[xlxzYl ,y z 
Xl X 2 yl YZ 

- a(xl, Y1 Ul, Vl) a*(X,' y 2Uz' vz) 	 (3-8) 

The variance of the transform domain samples is 

a (uv) = G[u,uv,v] (3-9) 

Therefore, the general expression for the variance of transform 

domain samples becomes 

ao(uv) = 	 E F, E E x xcf.I yyjz

XlI Xz 
 Yl YZ 

•a(xl'y 1 'u, v) a*(xz,YZu,v) 	 (3-10) 

There are two special cases, of interest. For an image that is 

statistically stationary in the spatial domain 
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c x 1' ry z -- Cfx1 -xz, Y1 -Y 2 ] (3-11)2

If the original image is uncorrelated in the horizontal and 

vertical directions 

Ctx1 ',X2 ,Yi ] = C x 1x, 2 I Cy Y1,)z2 (3-12) 

and the transform domain variance can be computed as CZ(u, v) = 

o (u) 0r (v) provided that the transform kernel is separable. 

Further investigation of the variance of transform domain samples 

requires specification of the transform. 

Fourier Transform 

For the Fourier transform the variance function of Equation 

(3-10) can be written as 

a2(u v=V) I F, C x I exp [u 1 -Yx 

22 1'x'lY N2 1 -x 
N x 1 x2 Ye -y 

+ v(Y1 Y2 )J} (3-13)-

Consider the case for which the original image is stationary 

and orthogonally uncorrelated. The variance function reduces to 

2

aZ(u,v) =0 (u) 0r(v) (3-14)
 

where 
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2 aZp=- E F1ND Cz-l-Zexp --- p(zI- Z1) (3-15) 

with p = u or v and z= x i or Y.. 

function may then be rewritten as 

The coordinate variance 

Iy2() = I 2 5 xp 1P{ z} Csz 2 exp{ n P z} (3-16) 

The second summation is the one dimensional discrete Fourier 

transform of the covariance function shifted by z 2 . By the 

Fourier transform translation theorem 

(Y(p) = N L exp { P z exp{- N Pz} G(p) (3-17a) 

or 

C (p) = G(p) (3-17b) 

where G(p) and C'zI I are one dimensional discrete Fourier 

transform pairs. If the transform is over a complete image 

dimension, G(p) is the discrete version of the power spectral 

density, Sz(p), of the image function along one coordinate minus 

the average image power, Sz(0), along the coordinate. Hence, 

a (p) = Sz(p)-Sz(O) (3-18) 
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Thus, the transform domain sample variance along a coordinate 

direction is directly proportional to the power spectral density 

of the image along the corresponding orthogonal coordinate. 

If the original image function can be considered to be a Gauss-

Markov process, the covariance function is [39] 

Cz(Z -Z 2 ) = Cz(0) exp{ -Y Iz 1 -Zz} (3-19) 

where Cz(0) is a scaling constant and Y is a shape constant. 

Then 

Sz(p)-Sz(0) = Cz(0) [ 2 ZY2 (3-20)
Y + P 

For the Markov process example, the transform domain variance 

becomes 

C (u,v) = Cx(0) C (0) ( 
(3-21)x y (a2 2 2 2( (3-21)
 

where C (0) and C y(0) are the magnitude scaling constants 

and the shape constants of the spatial domain covariance function, 

respectively. 

Hadamar d transform 

From Equations (3-10) and (2-20) the variance function 

of transform domain samples for the ordered Hadamard transform is 
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2 (u, v) = z Z Cxl Xz,Yyz-- ; r, ] 

N XlI xz Yl YZ 

n-I 

iEo0[i(u)(xln + x2) + gi(v)(li+ y 2A(32|
 
(-1)
 

Since the Hadamard transform does not possess, a sequency shifting 

property it is not possible to reduce Equation (3-22) to closed' 

form. 

Karhunen- Loeve Transform 

The general expression for the variance of the variance 

of transform samples given by Equation (3-10) can be rewritten as 

z(u, v) = ZFZ a*(xz,yz,U,v) 7 Z Cfx 1z, Yl'YZI a(xx'Yluv) 
X2 Y2 Ylx 1 

(3-23) 

For the Karhunen-Loeve transform from Equation (Z-43) the second 

set of summations defines the transform kernel. Thus, 

X(e,P) a(x,,y,, 0,cP) = Z Z Ctxl,xZ,yl,yzl a(xl,Yl,e,c) (3-24) 
X1 Yl
 

where X(e.,cp) are the eigenvalues of the covariance matrix. By 

this equivalence 
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Y2 (u,v) = Z F X(e,CP) a(xZ,yz,G,T) a*(xZ,yZ,u,v) (3-Z5) 
x2Y 

Since the Karhunen-Loeve transform is an orthogonal 

transformation, from Equation (2-6c) 

SZ(u,v) = ?(u,v) (3-26) 

and the variance of each transform sample is equal to its 

corresponding eigenvalue. 

3. 2 Probability Densities 

It would be desirable to know the probability density of 

transform samples for an arbitrary image transform. Unfortunately, 

this result is not easily obtained since the original image probability 

density is not usually well defined, and also, the transform 

operation is quite often mathematically complex. However, the 

transforms considered for image processing applications form a 

weighted sum over all of the elements in the original image. 

Therefore, one can evoke qualitative arguments based upon the 

Central Limit-Theorem of statistics that the probability density of 

transform samples tends to be Gaussian with moments as calculated 

in the previous section. For the subsequent analysis,. a Gaussian 

model is developed for the probability density of the Fourier, 

Hadamard, and Karhunen-Loeve transform domain samples. 
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Fourier transform samples are complex numbers which 

may be represented in real and imaginary, or magnitude and phase, 

form. In either case there are two components per transform 

sample that must be quantized. The real, Fp(u, v) and imaginary, 

FI(u,v), components of the Fourier transform samples may be 

assumed to follow the same Gaus sian distribution whose variance, 

02(u, v), is proportional to the power spectral density of"the original 

image. Hence, 

p F V)v)a(UV]- R (u, xp - 2(-7
-£ 'p Fl(u,V) [Z a (u,v)] exp (3-27)~ 420 (u, v)J 

2
P F(l) 2ra uvY e -p (3-28) 

i 
 e 2.a(u, v) 

If the real and imaginary components are Gaussian, the magnitude 

of the Fourier transform sample, F M(u, v), is Rayleigh distributed 

F (u, v)2 Mj
pF(,V Mu')2 exp ~Fp~) F (u'v)>O 
Mu ) = (u,v) 2a (u,v) FM 

(3-29) 

and its phase, Fp(u,v), is uniformly distributed 
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=(uv}-- -Tr< Fp <+TT (3-30) 

Hadamard transform samples are real, bipolar numbers which can 

be represented by a single component per sample. The statistical 

distribution of Hadamard sample- components, FH(u v), may be , 

considered to follow a Gaussian distribution of the form 

p{FH(UV) = [ Z u) I e FE(u,v) (3-31) 

Karhunen-Loeve transform samples are also real bipolar numbers. 

The probability density of the samples may be modeled as 

2 ­p FK(uV ) =2r Co (u,v)I ' exp 2 (3-32){20,(u,v) 

When the variance function, y2 (u, v), is not known for a 

particular image, or class of images,, to be transformed, the 

function can usually be modeled without seriously affecting the 

quantization process. From examination of the Fourier, Hadamard, 

and Karhunen-Loeve transforms of a typical image, it can be 

deduced that the variance function should be a maximum at thE 

origin in the transform domain, be circularly symmetric, and 

decrease in magnitude monotonically toward the higher spatial 

frequencies. A two dimensional function processing these 
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characteristics is the Gaussian shaped curve described by 

a2(u,V) = SZ exp {Upz v (3-33) 

where S is an amplitude scaling constant and p is a spread 

control constant. Another useful function-for modeling of the 

variance function is 

(u, V) = -
+ 

s (-4
(u z 

2 (3 - 34) 

where S is an amplitude scaling constant and a and 0 are 

spread control constants. This model holds exactly for the 

Fourier transform if the original image can be considered as a 

Gauss-Markov process source.
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4. Generalized Transform Coding 

The basic premise of image transform coding is that the
 

two dimensional transform 
of an image has an energy distribution
 

more amenable to coding than the spatial domain representation.
 

As a result of the inherent element-to-element correlation of
 

natural images, for many image transforms, the energy in the
 

transform domain tends to be clustered in a relatively few number
 

of transform samples. This property can be exploited to achieve 

a sample reduction compared to conventional spatial domain coding. 

There are two methods of obtaining a sample reduction by 

transform coding--zonal sampling and threshold sampling. In 

zonal sampling the image reconstruction is made with a subset, 

usually the lowest spatial coefficients, of the- transform domain 

samples. Those samples which are employed in the reconstruction 

are chosen before the transformation on the basis of expected energy. 

With threshold sampling the reconstruction is made with a subset 

of the largest magnitude transform domain samples. 

This section presents a discussion of the performance of 

the Karhunen-Loeve, Fourier, and Hadamard transforms for zonal 

and threshold sampling in the transform domain. The three transforms 

are compared on the basis of minimum mean square error. Experi­

mental results are presented for a subjectre comparison. 
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4. 1 Generalized Zonal Sampling 

Optimum Zonal Sampling 

Consider an image transform of the first kind. With 

zonal sampling the image is reconstructed with the first M of 

the N transform samples. Thus, the reconstructed image becomes 

M-1
 
f(x,y) = F, F(w) b(x,y,w) (4-1) 

w=O 

The mean square error is then given by 

as=s - E{ Z[f(xY)-(x'Y)32) (4-2) 

or 

1s 2~?x y) Eff(x, y)fi(x, y)3
 

N 2 11 y NZ
 

+ -)~ Eff(X, y) (4-3) 
N x y
 

The first term above is the spatialdomain autocorrelation 

function R(O, 0, 0, 0). The other terms may be evaluated by 

substitution of the reverse transforms yielding 
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R(o,0, 0,0)- N E r -F()b(x, ]sN2xy 0= 

Z F(w') b(x, y,wl (4-4) 
w'=0
 

Expanding the series and changing the order of summation gives 

Z' NZ-1 M-1 

= 0 00- z E E F(w)F(w) r b(x,y,w) b(x,y,w) 
s N W= x y 

1 MI M-1 ' + E = ,=0 F(w) F(w')Z b(x, y, w) b(xy,w (4-5)0
 

By the orthogonality of the kernel b(x, y, w) 

N Z - 1 

M-1
Z
dsR(O 0,0,o0)o- i0 (w)F(w,, o(W-, ,
 

+ -E [w=O F(w) F(w') (w-w') (4-6) 
N tW=Ow'=O 

Thus, 

M-1 2 
S=R(0,0,0,0) - 1 EfF (w)) (4-7a) 

N 2 w=0 

or 
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= CO,,O,) ~ M-12
N0a 2(w) (4-7b)

s ( - N w=O 

For a given number, M, of samples to be-included in the transformation, 

the mean square error will be small if the variance of each of 

the transform samples is large. The transform which minimizes 

the mean square error is the Karhunen-Loeve transform of the 

first kind in which the eigenvectors are arranged in correspondence 

with the eigenvalues in descending order [30, 31] . 

For an image transform of the second kind, with zonal filtering, 

the reconstructed image is given by 

N-I N-1 
f(x,y) D FD F(u,v) b(x,y,u,v) (4-8)

U V 

u, v e M(u, v) 

where the transform domain indices are members of a set 

determined by a mask function M(u, v). By an analysis similar 

to that for an image transform of the first kind, it is found that 

the mean square error is of the form 

N-I N-i 
= c(o --


N 2 u=O V=O
 

u, v e M(u, v) 

CS(OO ,) ro Fo GZ(u'v) (4-9) 

-48­



The transform which minimizes the meand square error is 

the Karhunen-Loeve transform of the second kind for which the 

mask function corresponds. to the index pairs u,v that have the 

largest eigenvalues. 

Karhunen-Loeve Transform 

For the Karhunen-Loeve transform of the first kind, the 

minimum mean square error becomes 

M-1 
= (O0,0, 0) - _ Z X(w) (4-10) 

where X (w) represents the eigenvalues of the covariance matrix 

of the image. The operational procedure for performing zonal 

sampling with the Karhunen-Loeve transform of the first kind is 

simply to compute and code only the first M components of the-transform 

which are subsequently to be used in the inverse transform.. 

The minimum mean square reconstruction error for zonal 

sampling of the Karhunen-Loeve transform of the second kind is 

5s = c(oooo) -
1 

-

N 

N-1 N-1 
Z FD X(u,v) (4-11) 

u, v e M(u, v) 
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It should be noted that the mask function is generally not a 

simple rectangle in the transform domain. Exhibit 4-1 shows 

the ordering of the eigenvalues for a Karhunen-Loeve transform 

of the second kind. In this example, the image covariance-function 

is separable, and the vertical and horizontal element correlation 

is the'same. Therefore, the eigenvalues corresponding to each 

line and column of the image are identical. The eigenvalue products 

give the same eigenvalues that would be obtained for a Karhunen-

Loeve transform of the first kind. However, there is no simple 

and general ordering between X (u, v) and X(w). Thus, the eigenvalue 

ordering must be determined experimentally for a given Karhunen-

Loeve transform. Figure 4-1 shows 16 by 16 element sampling 

masks for a 4:1 sample reduction for two values of the image 

covariance function. 

If a rectangular mask function 

U,v e M(u,v) if u < u ; v < vc rectangular mask (4-12) 

is employed for ease of implementation, the performance of the 

operation will not be optimum, but the degradation will usually not 

be too serious. Two other simple mask functions that could be 

employed are listed below: 
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3.103, .559 .209 .129 	 X(u)
 

u
3 4
1 2 


3.103 1 9.630 1.735 .648 .400 

.559 2 1.735 .313 	 .117 .072
 

.209 3 .648 .117 .044 .027
 

.129 4 .400 .072 .027 .017
 

A(v v 

a. Eigelvalue produicts A(uv) = A(u) A(v) 

w 1 2 3 4 5 6 7 8 

(u,v) 1,1 1,2 2,1 1,3 3,1 1,4 4,1 2,2 

)(w) 9.630 1.735 1.735 .648 .648 .400 .400 .313 

w 9 10 11 12 13 14 15 16 

(u,v) 3,2 . 2,3, .4,2 2,4 3;3 4,3 3,4 -4,4 

.117 .117 .072 .072 .044 .027 .027 .0i7 

b. Ordering of eigenvalue products 

Exhibit 4-1. Karhunen-Loeve Transform Zonal Sampling Mask Generation 
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a. 	 XC=0.9 b. XC=0.95 

YC = 0.9 YC = 0.90 

Ix l Iy l 
Image covariance function -- C x 22 Y' Y21 ( - x 2 1 - Y21 

S0, (XC) (YC) 

Figure 4-1 Karhunen-Loeve Zonal Sampling Masks 



u,v e M(u,v) 

u,v e M(u,v) 

if 

if 

Z 
U 
2U 
c 

uv < K 

+ 
2 

< 1 elliptical mask 
2 

v 
C 

hyperbolic mask 

(4-13) 

(4-14) 

The hyperbolic mask most closely resembles 

mask determined by ordering the eigenvalues 

covariance function. 

the optimum 

of the image 

Fourier Transform 

Zonal sampling with the Fourier transform consists of 

sampling the lowest spatial frequencies in the transform domain. 

For the Fourier transform defined by Equation (2-20), the lowest 

spatial frequencies lie in the four zones shown below: 

v 0 

u -

R N-R-l- N-i 

R R 

N-R-1 N-R-1 

R N-R-I N-I 
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Hadamar d Transform 

With an ordered Hadamard transform, zonal sampling 

consists of sampling the transform domain samples with the 

low sequencies. These samples lie within a circular quadrant 

about the origin in the transform domain. 

4. Z Generalized Threshold Sampling 

Zonal sampling in the transform domain will provide small 

mean square error reconstructions of good subjective quality 

if the actual magnitude of a transform domain sample does not 

differ greatly from the standard deviation C0(w) or 0(u, v). , The 

difficulty with zonal sampling is that in most natural images there 

are many high spatial frequency samples lying outside the sampling 

zone that are of significant magnitude. In threshold sampling 

rather than determining a priori which transform domain samples 

are to be coded, the selection is made after the transform has been 

taken on a particular image. A threshold level is established 

a priori, or perhaps adaptively, and only those samples whose 

magnitudes are greater than the threshold are coded. If the 

threshold level is chosen a priori, based upon the probability density 

of the transform samples, the actual sample reduction factor for 

a particular image will be variable. As an alternative procedure 

the threshold level could be chosen so that a given number of 
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transform domain samples would be coded for a particular 

image. 

If transform domain threshold coding is.to be employed, 

the major question of interest is: What is the optimum image 

transform? In general the best transform is the transform which 

maps the image energy into the fewest transform domain samples. 

For a checkerboard image of half black and half white elements 

in each direction, the Hadamard transform is a very efficient 

transform since the image can be represented by only two 

transform domain samples. For natural images, the image can 

only be defined statistically, not deterministically. In such 

instances the optimum (minimum mean square error) tra.nsform 

is the transform for which the smallest number of samples have 

the largest variances. As stated previously, for a given class of 

images,- this transform is the Karhunen-Loeve transform. Thus, 

it is expected that the Karhunen-Loeve transform would exhibit 

the best minimum mean square-error performance for threshold 

coding for a give'n class of images. However, for a particular 

image of the class, another transform could provide better 

performance. 
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4. 3 Image Block Size Considerations 

For either zonal or threshold sampling in the transform 

domain, consideration must be given to the size of the image 

block. From the standpoint of image energy it is best to make the 

image block size as large as possible in order to derite behefit 

from all element-to-element correlations within the image. 

For natural images, however, the correlation between elements 

separated by over 10 to 20 elements is usually relatively small, 

(see Appendix A). Therefore, little is lost in taking the image 

transform over smaller size blocks. This point is illustrated 

by Figure 4-Z which contains a plot of the percentage of transform 

domain energy contained in the lowest one-fourth of the transform 

domain samples for a one dimensional Karhunen-Loeve transform 

as a function of block size. In this example the image covariance 

function is modeled as a Gauss-Markov process dependent only 

upon the adjacent element correlation factor, XC. As indicated 

in Figure 4-2 about 90% of the image energy is contained in the 

lowest one-fourth of the Karhunen-Loeve transform coefficients 

for a block size of 16 by 16 elements. The percentage of energy 

contained in the low pass zone increases rather slowly for larger 

size blocks and decreases much more rapidly for smaller size 

blocks. It appears that a block size of about 16 by 16 elements 
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N/4
 
Y = E N(u)
 

Nu=l 

C ixlx 2} lxI - x21 
0t0,01 = (XC) .... normalized image covariance function 

100 

N 87.5 

0 

; 75 

0 62.5 

a 

50 

4 8 16 32 64 

Figure 4-2 Effect of Image Block Size for Karhunen-Loeve Transform 
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is a good compromise between maximizing the amount of image 

compression possible and simplifying the implementation of the 

transform coder. 

4.4 Comparison of Image Transforms 

A series of experiments has been conducted to determine 

the image coding performance of the Fourier, Hadamard, and 

Karhunen-Loeve transforms for natural images. As a result of 

the computational requirements of the Karhunen-Loeve transform, the 

image block size was limited to 16 by 16 elements. * 

Figure 4-3, 4-4, and 4-5 contain displays of the Fourier, 

Hadamard, and Karhunen-Loeve transforms. It should be noted 

that there is no apparent grid structure in the reconstructed 

image despite the black processing. 

Figures 4-6 to 4-10 illuetrate the effect of zonal low pass 

filtering for the three transforms. In Figures 4-6 and 4-8 the filter 

pass band for the Fourier and Hadamard transforms is a circular 

zone in the transform domain. For sample reduction factors 

greater than 4:1 the 16 by 16 element grid structure becomes 

apparent because many of the transform samples that correspond to 

Examples of Fourier and Hadamard transform coding in larger
 
size blocks are presented in Section 6.
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a. 	 Threshold display of b. Inverse transform of 

Surveyor box transform transform 

c. 	 Threshold display of d. Inverse transform 

Girl transform of transform 

Figure 4-3 Fourier Transforms in 16 x 16 Element Blocks 
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a. Threshold display of 
Surveyor box transform 

tA0 g 

b. Inverse transform of 
transform 

OD~g g ' 

6rr 
c. Threshold display of 

Girl transform 
d. Inverse transform 

of transform 

Figure 4-4 Hadamard Transforms in 16 x 16 Element Blocks 
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a. Threshold display of b. Inverse transform 
Surveyor box transform of transform 

c. 	 Threshold display of d. Inverse transform 
Girl transform of transform 

Figure 4-5 Karhunen-Loeve Transforms in 16 x 16 Element Blocks 
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a. 2:1 sample reduction b. 4:1 sample reduction 

c. 8:1 sample reduction d. 11:1 sample reduction 

Figure 4-6 Fourier Transform Zonal Sampling in 16 x 16 Element Blocks 

-- Circular Zone 

-62­



a. 2:1 sample reduction b. 4:1 sample reduction 

c. 8:1 sample reduction d. 13:1 sample reduction 

Figure 4-7 Fourier Transform Zonal Sampling in 16 x 16 Element Blocks 

-- Hyperbolic Zone 
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a. 2:1 sample reduction b. 4:1 sample reduction 

c. 8:1 sample reduction d. 12:1 sample reduction 

Figure 4-8 Hadamard Transform Zonal Sampling in 16 x 16 Element Blocks 
-- Circular Zone 
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a. 2:1 sample reduction b. 4:1 sample reduction 

c. 8:1 sample reduction d. 12:1 sample reduction 

Figure 4-9 Hadamard Transform Zonal Sampling in 16 x 16 Element Blocks 
-- Hyperbolic Zone 

-65­



a. 2:1 sample reduction b. 4:1 sample reduction 

c. 8:1 sample reduction d. 12:1 sample reduction 

Figure 4-lOKarhunen-Loeve Transform Zonal Sampling in 16 x 16 Element Blocks 
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brightness changes in periods of 16 elements are excluded 

from the circular pass band. To prevent this grid effect a hyper­

bolic shaped zone similar to the sampling mask of Figure 4-la was 

employed. The results shown in Figures 4-7 and 4-9 show a 

definite improvement in the elimination of the grid structure as 

compared to Figures 4-6 and 4-8. In all four images there is an 

expected loss of resolution. Figure 4-10 illustrates zonal low 

pass filtering with the Karhunen-Loeve transform. The filter is 

a mask passing those transform domain samples corresponding 

to the largest eigenvalues of the image covariance function. The 

reconstructed images do not show the 16 by 16 element grid 

structure, but there is some loss in resolution. Summarizing 

these results: for a given sample reduction factor the Karhunen-

Loeve transform results in the smallest mean square error and 

the least image degradation from a subjective viewpoint. With 

a hyperbolic shaped pass band the Fourier transform is somewhat 

better than the Hadamard transform for both measures of image quality. 

Figures 4-11, 4-12, and 4-13 show the effects of threshold 

coding in the transform domain for the three types of image 

transforms. The quality rating of the three transforms from the 

standpoint of subjective quality is: Karhunen-Loeve, first; 

Hadamard, second; and Fourier, third. It should be noted that 

the sample reduction factors obtained for equivalent image quality 
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a. 5:1 sample reduction b. 10:1 sample reduction 

c. 20:1 sample reduction 

Figure 4-11 Fourier Transform Threshold Sampling in 16 x 16 Element Blocks 
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a. 5:1 sample reduction b. 10:1 sample reduction 

c. 20:1 sample reduction 

Figure 4-12 Hadamard Transform Threshold Sampling in 16 x 16 Element Blocks 
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a. 5:1 sample reduction 	 b. 10:1 sample reduction 

c. 20:1 sample reduction 

Figure 4-13 	Karhunen-Loeve Transform Threshold Sampling 
in 16 x 16 Element Blocks 
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are much higher for threshold sampling than zonal sampling. 

For a fair comparison, however, to account for position code 

bits, the sample reduction factors for threshold coding should 

be multiplied by a factor of about 0. 6 to 0. 8 to obtain 

equivalent bandwidth reduction factors. 

In summary the following conclusions can be drawn from 

these experiments: 

a. For both zonal and threshold sampling in the transform domain, 

the best transform is the Karhunen-Loeve transform, followed 

by the Hadamard transform, followed by the Fourier transform. 

b. Threshold sampling provides higher sample and bandwidth 

reduction factors than zonal sampling for all three transforms. 

c. The effect of a limited block size does not appear to be a 

serious problem either from the standpoint of image quality 

or performance. 

While the Karhunen-Loeve transform does appear to provide better 

performance than the Fourier and Hadamard transforms, the 

margin of performance is not too large. In view of the considerably 

greater amount of computation involved with the Karhunen-Loeve 

transform as compared to the Fourier and Hadamard transforms, 

its utilization will probably be limited. The following sections are 

therefore restricted in scope to the Fourier and Hadamard transforms. 

These sections present an analysis of transform domain quantization, 

a further discussion of image coding for bandwidth reduction, and a 

study of the error tolerance properties of image transforms. 
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5. Fourier and Hadamard Image Transform Quantization 

The dynamic range of Fourier and Hadamard transform 

domain samples in integer arithmetic is 1 to N2A where N 

denotes the number of elements per line of the image and A is the 

maximum integer value of the amplitude of an image sample. 

If each transform domain sample were simply coded in a binary 

code, log2 (N ZA) bits would be required for each code word. 

For a 256 X 256 element image of 64 grey levels, each code wore 

would be 22 bits in length. Even with threshold coding it would 

be unlikely that a significant bandwidth compression could be 

achieved for such large length code words. In order to achieve 

a bandwidth compression with transform coding it is necessary 

o recode, or quantize, each transform domain sample so that 

it may be represented by relatively short length code words. 

There are two basic approaches to this process: each sample could 

be quantized to the same number of levels, with the quantization 

levels possibly chosen according to a nonlinear scale; or the 

number of levels could be permitted to vary from sample to sample 

with a linear spacing of quantization levels. The latter approach 

will result in the most efficient coding, but the code words will be 

of variable length. This creates problems in data synchronization 

and channel coding for error correction. The former method can 

be adapted for relatively efficient constant word length coding. 
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In the subsequent discussion only the first method of quantization 

is considered. 

5. 1 Quantization Scales 

In the quantization process let the transform sample 

component (amplitude, real part, imaginary part, magnitude, 

or phase) to be quantized be represented by the function 

F(u,v). The range of the sample component is assumed to be 

broken up into K positive and K negative bands separated by 

th 
= . 0, ± 1, ± ,., ±K). The zero

quantization levels Q.(j 

quantization level and the upper and lower quantization levels 

are assigned the values 

Q0 = 0 (5-1a)
 

NA (5-lb)
 

Q- -NA (5-1c)
 

where A represents the maximum value of a sample of the original 

image of N by N elements. If a transform component falls in a band 

bounded by quantization levels Q- and Q., the component is1 

quantized, and subsequently reconstructed, to the value F.(u, v) 

which lies within the band. The relationship between quantization 

and reconstruction levels is given in Figure 5-1. 

Quantization and reconstruction levels are logically chosen 
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reconstruction 
levels 

F_K F_2 F_1 F1 FK 1 FK 

A A A A A A 

NA NA 
-K 2 -K+ -1 0 1 K-1 QK + 2 

quantization 
levels 

Figure 5-1 Quantization and Reconstruction Levels 



to minimize the effects of the quantization error introduced by 

the amplitude truncation of samples. Table 5-1 lists some error 

criteria for the selection of quantization and reconstruction 

levels. The quantization error criterion depends upon the appli­

cation of a reconstructed image. The principal consideration is 

whether the image is to be used for subjective viewing or photo­

metric measurements. 

For subjective viewing the relative spatial error criterion 

listed in Table 5-1 provides an indication of image quality. This 

relative spatial error criterion is predicated upon the fact that 

incremental brightness changes in the reconstructed image are much 

more noticeable if the brightness level is low than if it is high. 

Thus, to minimize the relative spatial error, the density of 

quantization levels in the spatial domain should be greater at the 

lower amplitude levels. But, since the brightness of every point 

of a reconstructed image is a function of the amplitude of a single 

transform sample, then by the same reasoning, the density of 

quantization levels should be greater for low level transform samples. 

From psychophysical tests, it is known that the human viewer is 

very sensitive to the location of high frequency brightness transitions, 

but relatively insensitive to their actual magnitude. In fact 

images which have been "crispened" by high pass filtering often 

appear preferable to the original image. From this characteristic 
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TABLE 5-1
 

Quantization Error Criteria 

N-1 N-1-

Cumulative mean -square 0 E[f(XY)-fA. , 
spatial error x=O y= 

N-i N-1 2 
Cumulative mean square I X rFuv)-P(u,vl 
transform error u=O v=O 

N-i N-1 
Cumulative spatial error . o1f yY)-rx, Y>1 

x=O y=O 

N-1 N-i
 
Cumulative transform error E . IF(u,v)-F(uv)l 

u=O v=O
 

Relative spatial error If(x, y)-x,y) I
 
I f(x, ) I 

Relative trinsfor'm erroi' IF(u,v)-F(u, v)l 
IF(u, v)l 

F(u, v) = quantized value of F(u,v) 

f(x,y) = inverse transform of quantized value of,F(u,v) 
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of subjective viewing it would seem that the density of quantization 

levels, at low transform sample amplitudes, should be greater 

at the higher spatial frequencies than at the lower spatial 

frequencies. 

If photometric measurements are to be made on an image 

the cumulative mean square spatial error is a common fidelity 

criterion. For a mean square error criterion the quantization 

levels in the transform domain must be selected to minimize 

the cumulative mean square error in the spatal domain. Let 

8 = Z N- N- E [f(xy)-f(x'y)] (5-Z)s N X=O 0= 

represent the cumulative mean square spatial domain error 

where T (x, y) is the image reconstruction from the quantized 

transform samples, F(u,v). For a Fourier or Hadamard transform 

N-1 N-1A~x, y) Z Fo F= (u, v) b(x,.y,u, v) (5-3) 
u=O V=O0 

and 

N-i N-1 
f(x,y) Z f, F(u, v) b(x, y, u, v) (5-4)

U=O v=O 

Hence, the spatial domiain mean square error can be written as 
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N-i N-i (N- 1'N­
s N Tv 0 

z
•b(x, y,u,v)] (5-5) 

Expanding the integrand yields 

= I N-i N-i {[N- N-I N-i N-I 
- Z) o, Eo E Zo EF(u,v)-F(U,v)l

tN i=0=0 v =0 

* [f(uv')-F(u, v')I b(x, y, u,.v) b(x, y,u',v' (5-6) 

Rearranging the order of summation gives" 

N-1 N-1 N-1 N-1
 

-- Z F, P, fIl(uv)-i(uv)]s N2 
U= V=ut=Ov'=O 

N-i N-i 
x=0) b(x,y,u,v)b(x.y,-',v) (5-7) 

As a result of the orthogonality of the transform kernel, 

8s= 1 ZZEE E EF(u,v)-F(u,v) [F(ul',v')-F(u',v,)I 
N 

2 U V l1 
N6(U-ul, -v')v 

or 

[F(uv) -i(u8, L E- -7 v) (5-8b) 
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The cumulative mean square error in the spatial domain of 

the reconstructed image is therefore equal to the cumulative 

mean square error in the transform domain. Minimization of 

8s can then be accomplished by minimization of the mean square
s 

error 

c5(u,v) =- {E[F(u, )-F(u'v)]Z} (5-9) 

in the transform domain for all spatial frequencies. For the 

Hadamard transform, quantization and reconstruction levels 

for the transform sample amplitude must be found to minimize 

S (u,v). In the case of the Fourier transform the mean square 

error of the real and imaginary, or phase and magnitude, 

components of a transform must each be minimized. The mean 

square error of a transform component may be written in explicit 

form as 

(u, v) = +(u, v) + ( (u; v) (5-10) 

in which 

d (u, v) 
K 
E 

Q 

(u, v) 

1 (u, v) 

[F (uv)-F(u v)3 p(Fc) d F c (5-1la) 

and 
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-K Qj(u, v) 2
 

P
(u,v) = F IFc(uv)-F(uv)] (F c 
) dF 

Qj+l(U, v) 

where p(F c) is the probability density of the transform sample 

component to be quantized. If p(Fc) is a symmetrical probability 

density about Q0 = 0, then (5+(u,v) equals d_(u,v), and the 

quantization rule determined by the minimization of 5 (u, v) 

is the same as that determined from d (u,v). 

The optimum placement of the quantization and reconstruction 

levels to minimize the mean square error of a quantized signal 

has been determined by Panter and Dite [401 . The reconstruction 

levels should be located midway between each pair of quantization 

levels. Thus 

%(,v)4-Q.l(U, v)
 

F.(u, v) =
3 2 (5-12) 

The quantization levels can be determined to a good approximation 

[401 from 

.NA -s 
NA 2 

f0 p[Fc3 dF 

-8 (5-13) 
S2z p{fc)dFc 
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Three cases of interest for quantization of the Fourier and 

Hadarnard transforms are listed below. 

Uniform distribution: 

(5-14a)P CF -N=! 

= N(uV) (5-14b)A 

Rayleigh distribution:, 

F2
 

p{Fc } _ c exp - (5-15a) 
0 (u, v) ZCT (u, v) 

NA 1 2 
ZN (u,v
 

Af K [F d F
 
NA - f) 

, f expIFc(UV) ] 

0 69'(u,v) (5-15b) 
( NA . 2
 

-2 F (uv

J-[F(u, v) ] exp C dF
 

0 6 a 
2 (u, v) C
 

Gaussian distribution: 

2
P{Fc1= [-TC (u,v)3 exp . (5-16a) 

NA ~2K /_F (u v) d 

.NA2
 
N--A j exp 2IF
 

0 6 (u,'v) (5-16b) 
F (u,v)0 exp 2- dF 

o 6rZ(u, v) J C 
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The quantization scales determined by Equations (5-15b) 

and (5-16b) for the Rayleigh and Gaussian distributions have 

the desired subjective property that the quantization levels are 

more closely spaced at the lower quantization levels, and a- - _-e 

more closely spaced at the higher spatial frequencies for which the 

variance a (u, v) is smaller. Unfortunately, the quantization levels 

are nonlinearly related to the sample variance. Hence, it 

becomes necessary to compute a separate quantization scale for 

each transform sample. 

There are two other scaling laws--the Gaussian error 

function and the logarithmic--that have the same general 

characteristics as the optimum mean square error quantizer, but 

for which the quantization levels are linearly related to the 

sample variance. In the Gaussian error function quantizer the 

quantization levels are selected so that when the probability density 

of transform samples is Gaussian with variance 0 .(u,v), the 

probability that a transform sample, is quantized to a given 

reconstruction level is the same for all levels. Thi results in 

a uniform entropy for all reconstruction levels, and therefore a 

constant word length code may be used for each quantized sample. 

The quantization levels are given by the solution of the equation 
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j 1 exp -d F 
c1 Q -I ZIT oZ(u,v) ep 2a(u,v)(u,v)2a

2 
dF 

=1,2,' K-K NA f 


f 1 exp d F

0 /?ZrTZ (u, v) a Z(u, v) 

(5-17) 

NA 

For - large the denominator approaches one-half and the 

scaling law can be expressed in terms of the Gaussian error function 

as 

1 = + erf - erf (5-18) 
2K J _CFu,v) f -CV (u, v) 

where 

erffx - -- exp -z 2 az 

The logarithmic quantizer--obeys the function 

An {+ W(u,v) ,en 1 + for j =O, I,Z,''',K-1 

(5-19) 

in the positive quadrant and the inverted and reversed function 

in the negative quadrant where W(u, v) is a spatial frequency 

weighting function. The quantization levels are approximately 
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j ] o '
 Q. = W(uv) 	 for j = O,,Z,, , K-i (5-ZOa) 

NA 
(5-2Ob)= -2-


A convenient implementation of the logarithmic quantizer can 

be realized by adding plus one to each sample component and then 

taking the logarithm. The resulting continuous function can 

then be quantized linearly. 

Figure 5.Z shows the relationship between the quantization 

levels set by the optimum, Gaussian error function, and logarithmic 

quantizers when the probability density of the transform domain 

samples is Gaussian with variance 2(u, v). This figure indicates 

that Gaussian error function scale is a reasonably good approximation 

to the optimum scale for a transform sample maximum standard 

deviation in the range of about 1, 500 to 4,000. 

5. 	2 Quantization Experiments 

A series of experiments has been conducted to assess the 

effects of quantization of Fourier and Hadamard transform domain 

samples. In these experiments the transform domains were 

quantized and reconstructions were obtained of the quantized samples. 

The cumulative root mean square quantization error 
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Figure 5-2 Comparison of Optimum and Gaussian Error Function
 

Quantization Scales
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2 [f(x, y) -(x, (5-Z) 

was measured for each quantized image. In addition the 

difference function 

d(x, y) = If(x, y) -f (x, y)I (5-22) 

was formed to indicate the spatial correlation of errors. 

Figures 5-3 and 5-6 show the effects of quantization on 

the Fourier and Hadamard transforms, respectively, for a 

Gaussian error function quantizer with 64 quantization levels. 

In these experiments the transform domain variance function was 

modeled as 

2 S20 (uv) = exp {­
where S and p are the maximum and spread variance parameters. 

A computer search procedure was developed to determine the 

best values of S and p to minimize the quantization error Q, 

The reconstructions in Figures 5-3 and 5-6 were made on images 

quantized with the values of S and p giving a minimum value of 8Q. 

Figures 5-4, 5-5, 5-7, and 5-8 illustrate the effect of an 

incorrect choice of the variance parameters S and p. There is a 

broad range in the values of S and p which provide good quality 
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a. amp. par. 
spread par. 

91,000 
4,000 

b. difference 
R.M.S. error 2.2 

Surveyor box 

c. amp. par. 174,000 d. difference 
spread par. = 1,500 R.M.S. error 2.9 

Surveyor boom 

e. amp. par. = 43,000 f. difference 
= 

spread par. = 4,300 R.M.S. error 1.1 
Surveyor footpad 

Figure 5-3 Fourier transform quantization: examples of correct parameter 

scaling -- Gaussian error function quantizer, 64 levels 
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a. 	 amp. par. = 350,000 b. difference 
spread par. 4,000 R.M.S. error= 11.9 

too large amplitude parameter 

c. 	 amp. par. = 20,000 d. difference 
spread par. 4,000 R.M.S. error = 14.5 

too small amplitude parameter 

Proper spread parameter 

Figure 5-4 Fourier transform quantization: examples of incorrect amplitude 
parameter scaling -- Gaussian error function quantizer, 64 levels 
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a. 	 amp. par. = 91000 b. difference 
spread par. = 16000 R.M.S. error = 8.4 

too large spread parameter 

c. 	 amp. par. = 91000 d. difference 
spread par. = 1000 R.M.S. error = 5.3 

too small spread parameter 

Proper amplitude parameter 

Figure 5-5 Fourier transform quantization: examples of incorrect spread 
parameter -- Gaussian error function quantizer, 64 levels 
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a.amp. par. = 475 b. difference 
spread par. 11,100 R.M.S. error= 1.9 

Surveyor box 

c.amp. par. = 575 
spread par. = 10,000 

d. difference 
R.M.S. error = 2.3A 

Surveyor boom 

e. amp. par. 400 f. difference 
spread par. = 10,000 R.M.S. error = 1.3 

Surveyor footpad 

Figure 5-6 Hadamard transform quantization: examples of correct parameter 
scaling -- Gaussian error function 
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a. 	 amp. par. = 1400 b. difference 
spread par. = 11,100 R.M.S. error= 7.8 

too large amplitude parameter 

c. 	 amp. par. = 200 d. difference 
spread par. 11,100 R.M.S. error= 8.2 

too small amplitude parameter 

Proper spread amplitude 

Figure 5-7 Hadamard transform quantization: examples of incorrect amplitude 
parameter scaling - Gaussian error function quantizer, 64 levels 
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a. 	 amp. par. =475 b. difference 
spread par. =15,000 R. M. S. error 5. 2 

too large spread parameter 

c. 	 amp. par. 4 75 d. difference 
spread par. 4000 R. M.S. error= 4. 2 

too small spread parameter 

Proper amplitude parameter 

Figure 5-8 	 Hadamard transform quantization: examples of incorrect spread 
parameter -- Gaussian error function quantizer, 64 levels 
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reconstructions. Experiments previously reported [Z71 show 

the effect of using 32 and 16 quantization levels picked according 

to the Gaussian error function quantization scale. The quantization 

error is noticeable for 32 levels and quite bad for 16 levels. 

In summary of the quantization experiments, it has been 

found that good quality Fourier and Hadamard transform 

reconstructions are possible when the transform samples have been 

quantized to as few as 64 levels using the Gaussian error function 

quantization scale. 
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6. Fourier and Hadamard Image Transform Bandwidth Reduction 

A sample reduction, and a subsequent bandwidth reduction 

by proper coding, are possible by coding the Fourier or Hadamard 

transform of an image rather than the image itself. This sample 

reduction is obtainable because, as a result of the element-to­

element correlation in the image, many of the transform domain 

samples are of extremely low magnitude and may be deleted 

from the image reconstruction without seriously degrading the 

quality of the reconstructed image. 

The process of selecting samples for inclusion in the image 

reconstruction can be conveniently analyzed from the viewpoint 

of two dimensional sampling. Figure 6-1 illustrates a generalized 

block diagram of a transform sampling system. The forward 

transform of an image, F(uv), is multiplied by a two dimensional 

sampling function, S(u,v), which takes on the values zero or one 

according to some a priori or adaptive rule. The sampled image 

transform, Fs(uv), is 

F s(u,v) = F(uv) S(uv) (6-1) 

The reconstructed image, f (x, y), is then the reverse transform 

of Fs(u,v), Thus, 

N-1 N-1
 
fs(xy) = nZ=0 nZO F(u,v) S(u,v) b(x,yu,v) (6-2) 
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f(x,y) 

original
image 

'00 

S(u, v) 

sampling 
function 

Figure 6-1 Transform Domain Sampling 



In the case of the Fourier transform, as a consequence of 

the frequency translation theorem, the reconstructed image 

can he expressed as a spatial convolution, denoted by the 

symbol k , of the original image and the inverse Fourier 

transform, s(x, y), of S(u,v). Thus, 

f(xy) = f (x,y) (® s(x,y) (6-3) 

It should be noted that this result does not hold for the Hadamard 

transform since the Hadamard transform does not possess a 

sequency translation property. 

Table 6-1 lists three basic transform sampling methods. 

With the random sampling method the sampling function, S(u, v), 

assumes the value 0 or 1 according to some probability 

distribution p(u,v) over the transform domain. Experiments have 

been performed in which one-half of the Fourier transform samples 

have been randomly discarded independent of their location in the 

transform domain. The resultant reconstructions were of poor 

quality due to errors in deleting large magnitude low frequency 

samples. Several variations were attempted in which more of the lower 

spatial frequencies were included, but the results were not 

particularly encouraging. It appears that at most a 2:1 sample 

reduction can be obtained by random sampling at the cost of 

moderate degradation. 
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TABLE 6-1
 

Classification of Transform Sampling Methods
 

Sampling 
Description Function Conditions 

S(uv) 

with probability p(u,v) 
Random 

sampling 
0 with probability 1 - p(u,v) 

1 u,v in sampling regionZonal 
sampling 

o u,v not in sampling region 

F(uv) > MT(uV)1Threshold 
sampling 0 F(u,v) j MT(uV) 
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The zonal and threshold sampling techniques are 

discussed in the following sections. 

6. 1 Zonal Transform Sampling 

In most scenes of interest the energy in the Fourier 

transform domain tends to be clustered toward the lowest spatial 

frequencies. Similarly, the Hadamard transform domain energy 

is greatest at the low sequencies. For example, in the three 

Surveyor spacecraft scenes, 95% of the image energy in the 

Fourier transform is contained in 1%or less of the transform 

samples [27]. 

With an image energy distribution clustered at the low 

spatial frequencies or sequencies, the most obvious means of 

conserving bandwidth is simply to not transmit the high spatial 

frequency or sequency samples. Discarding the high spatial 

frequencies or sequencies is equivalent to passing the image 

through a circular, zonal, low pass filter; the result is a loss of 

focus. If some degree of resolution loss is acceptable, zonal low 

pass filtering of the transform domain yields relatively large 

bandwidth reductions. 

Zonal low pass filtering of a sequency ordered Hadamard 

transform is equivalent to multiplying the transform samples by 

the sampling function 
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Hadamard transform: 

S(u,v) = 0 if u 2 
+v > R2 22 

S u,v=0,I,"',N-I (6-4) 

S(uv) = 1 otherwise 

For the Fourier transform the sampling function is 

Fourier transform: 

S(uv) = 1 

S(N-I-u, v) = 1 

S(u, N-l-v) = 1 if" N 
u,v =0, I, - -- 1 

T =S(N-l-u, N-l-v) 1 

S(u, v) = 0 otherwise 

(6-5) 

Figure 6-2 shows the effects of Fourier and Hadamard transform 

zonal low pass sampling of the Surveyor box scene over the full 

frame of 256 by 256 elements. These experiments support the 

widely known fact that the high frequency and sequency brightness 

transitions are important even though they are relatively few in 

number and contain a low proportion of the image energy. The 

image degradation tends to be more noticeable for zonal filtering 

of the Hadamard transform than the Fourier transform for the 

same sample reduction factor because of the rectangular shape of 
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a. 	 4:1 Fourier b. 4:1 Hadamard 
R = 143 

c. 	 8:1 Fourier d. 8:1 Hadamard 
R = 101 

e. 	 16:1 Fourier f. 16:1 Hadamard 
R =71 

Figure 6-2. 	 Circular Low Pass Zonal Fourier and Hadamard Transform 
Sampling of Surveyor Box over Full Frame of 256 x 256 
Elements, unquantized transform. 
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the two dimensional Hadamard reconstruction waveforms. The 

eye is very sensitive to the presence of sharp brightness transitions 

within an image. With the Hadamard transform all transitions 

occur within one element, whereas in the Fourier transform the 

brightness transitions are spread over many elements since the 

reconstruction waveforms are two dimensional sinusoids. 

If the zonal low pass filter has square rather than circular 

boundaries in the transform domain, it is possible to produce a 

low pass version of the original by the simple expedient of spatial 

averaging of elements in the original image. In this case the 

complexities of the transform operation would probably not be 

warranted if a low pass reconstruction is acceptable. 

It has been conjectured that to produce a subjectively pleasing 

image, the eye only requires the low spatial frequencies of an 

image signal to provide the overall grey scale and the high spatial 

frequencies to provide the edge transitions. The mid-spatial 

frequencies are assumed to play a minor part in the reconstruction 

of an image. This conjecture has been tested by sampling the 

Fourier and Hadamard transforms of an image with a circular 

zonal rejection filter with the characteristic functions 
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Fourier transform: 

S(u'v) = 0 

S(N-1-u,v) = 0 2 < 2 2 Z N 
u u~v=0, 1,''ifR 1+ --R 2 

S(uN-I-v) = 0 2 
2 

or u + v > R 
= 0N-l-v)S(N-1-u, 

(6-6) 
S(u,v) = 1 otherwise 

Hadamard transform: 

2 2 v2 2 u2 v2 2 
+v oru +v > R3S(u, v) = 0 forR <U < R2 

(6-7)
S(u,v) = 1 otherwise 

Figure 6-3 shows the effect of band rejection filtering on the Surveyor 

box scene. The image quality appears to be somewhat degraded as 

compared to the results of Figure 6-2 with a simple circular zonal 

low pass selection of transform samples. 

In the development of zonal transform sampling techniques 

presented in Section 4 for transforms in 16 by 16 element blocks, it 

was found that a hyperbolic zone suppressed the grid effect for high 

sample reduction factors better than a circular zone. The effect of 

the use of a hyperbolic zone of full size, 256 by 256 point, images is 

shown in Figure 6-4. These reconstructions show a perceptible 

improvement to their counterparts in Figure 6-Z for a circular zone. 

For natural images it appears that a hyperbolic zone matches the 
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a. Fourier b. Hadamard 
R =100; R2 =233.8 

R = 256 

c. 	 Fourier d. Hadamard
 

R, =125; 245.5
R2 

= 256
R3 


4:1 sample reduction 

Figure 6-3 Circular Band Rejection Zonal Fourier and Hadamard 

Transform Sampling of Surveyor Box over Full Frame 

of 256 x 256 Elements, unquantized transform. 
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REP RO 

a. 4:1 Fourier b. 4:1 Hadamard 

c. 8:1 Fourier d. 8:1 tiadamard 

e. 16:1 Fourier f. 16:1 Hadamard 

Figure 6-4 Hyperbolic Low Pass Zonal Fourier and Hadamard Transform 
Sampling of Surveyor Box over Full Frame of 256 x 256 
Elements, unquantized transform. 
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energy distribution better in a spatial frequency or sequency ordered 

transform plane than does a circular zone. 

6. 2 Threshold Transform Sampling 

The difficulty with zonal transform sampling is that large 

magnitude transform samples often are included in the rejection zone 

and therefore deleted from the reconstruction. This problem can be 

overcome by the threshold sampling technique in which samples whose 

magnitudes are greater than a pre-specified threshold level are 

included in the image reconstruction independent of their position 

in the transform domain. 

Figure 6-5 and 6-6 are plots of the percentage of transform 

domain samples lying below a magnitude threshold level for the Fourier 

and Hadamard transforms. Maps showing the location of transform 

samples exceeding the threshold level for the Fourier and Hadamard 

transforms are shown in Figure 6-7. It should be noted that the large 

magnitude samples tend to be located at the lower spatial frequencies 

or sequencies. But many high spatial frequency and sequency samples 

exceed the threshold. In low pass zonal filtering these transform domain 

samples would not have been included in the image reconstruction. 

Figure 6-8 to 6-11 show the effects of threshold coding in the 

transform domain for the Fourier and Hadamard transforms. Each 

transform domain has been quantized to 64 levels per transform sample 
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a. Fourier 	 b. Hadamard 
5:1 sample reduction 

c. Fourier 	 d. Hadamard 

10:1 sample reduction 

e. Fourier 	 f. Hadamard 

20:1 sample reduction 

Figure 6- 7 	 Maps of Fourier and HadamardTransform Samples above 
Threshold for Surveyor Box over a Full Frame of 256 x 256 
Elements. 
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a. 5:1 sample reduction 	 b. Difference 
R.M.S. error 	= 3.6 

1% 
c. 10:1 sample reduction 	 d. Difference 

R.M.S. error = 3.8 

e. 20:1 sample reduction 	 f. Difference 
R.M.S. error = 4.7 

Figure 6-8 	 Fourier Transform Threshold Coding: Effects of Thresh­

olding for Surveyor Box over a Full Frame of 256 x 256 

Elements, quantized transform. 
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a. 10:1 sample reduction 	 b. Difference 
R.M.S. error - 3.7 

Surveyor Boom 

c. 10:1 sample reduction 	 d. Difference 
R.M.S. error - 1.6 

Surveyor Footpad 

Figure 6- 9 	 Fourier Transform Threshold Coding: Effects of Thresh­
olding for Surveyor Footpad and Boom over a Full Frame 
of 256 x 256 Elements, quantized transform. 
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a. 5:1 sample reduction 	 L. Difference 
R.M.S. error 2.8 

c. 10:1 sample reduction d. Difference 
R.M.S. error 3.9 

Ig j.. 

e. 20:1 sample reduction 	 f. Difference 
R.M. S. error= 4.5 

Figure 6-10 	 Hadamard Transform Threshold Coding: Effects of Thresh­

olding for Surveyor Box over a Full Frame of 256 x 256 

Elements, quantized transform. 
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a. 10:1 sample reduction 	 b. Difference 
R.M.S. error= 4.8 

Surveyor Boom 

c. 10:1 sample reduction 	 d. Difference 
R.M.S. error = 1.4 

Surveyor Footpad 

Figure 6-11 	 Hadamard Transform Threshold Coding: Effects of Thresh­
olding for Surveyor Footpad and Boom over a Full Frame 
of 256 x 256 Elements, quantized transform. 
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component according to the Gaussian error function quantizer scale. 

Thus, the image reconstructions exhibit the joint effects of sample 

deletion and quantization. Difference pictures are displayed to illustrate 

the spatial distribution of errors. Also the cumulative average mean 

square error has been measured for each reconstruction. From these 

experiments it can be concluded that the Fourier and Hadamard 

transforms both provide good quality reconstructions for sample reduc­

tion factors of 5:1. Some image degradation is noticeable for a sample 

reduction factor of 10:1. 

In order to achieve a bandwidth reduction for digital image 

transmission with transform domain threshold coding it is necessary 

to code the position of the samples exceeding the threshold level. 

There are a variety of ways of position coding that could be employed. 

The simplest conceptually would be to code the coordinates of each 

significant transform sample. Higher coding efficiency can be obtained, 

however, by coding the number of non-significant samples between 

significant samples. This scheme, called run length coding, has been 

used quite successfully in the spatial domain for black or white pictures. 

To achieve a short position code length, runs are usually restricted in 

length to some maximum value, normally a power of two. By including 

a line synchronization code group it becomes unnecessary to code the 

line number. Another advantage of the employment of a line synchro­

nization code is that it prevents the propagation of channel errors over 

more than one line. 
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A run length coding procedure for Fourier and Hadamard 

transform threshold coding has been implemented on a general 

purpose digital computer. The coding procedure is "fail safe" in 

that every transform domain sample is coded for a zero level threshold; 

there is no truncation of transform samples. The basic properties 

of the run length coding procedure are outlined below: 

a. The first sample along each line is coded regardless of its 

magnitude. A position code of all zero bits is affixed to the 

amplitude code to compromise the line synchronization code 

group. 

b. The amplitude of the second run length code word is the coded 

amplitude of the next significant sample. The position code is 

the binary count of the number of samples of the significant 

sample from the previous significant sample. 

c. If a significant sample is not encountered after scanning the 

maximum run length of samples, the position code bits are 

set to all ones to indicate a maximum run length. 

A simple code to implement this run length coding procedure is 

given below. 

-114­



position amplitude 

LxXX X Y Y Y Y Y Y 

1 1 1 1 0 0 0 0 0 0 first sample of a line/below threshold 

0 0 0 0 Y Y Y Y Y Y first sample of a line/above threshold 

0 0 0 1 Y Y Y Y Y Y run length = 1 (adjacent significant samples) 

0 0 1 0 Y Y Y Y Y Y run length= 2 

1 1 1 0 Y Y Y Y Y Y run length = 14 

1 1 1 1 1 1 1 1 1 1 pseudo-run of length 14 

This run length coding procedure for transform threshold coding 

has been tested for the Surveyor box and boom scenes. As expected, 

the run length coding does not introduce any reconstruction errors. 

The effect of channel errors on position bits is considered in the 

next section. Table 6-2 shows the bandwidth reduction factors 

obtained for these test scenes as a function of the sample reduction 

factor. In all cases the run length code employed four position 

bits and runs were truncated in length to 14 samples. Better per­

formance could, no doubt, be obtained if the number of position code 

bits were tailored to match the run statistics. 
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TABLE 6-2 

Experimental Bandwidth Reduction Achieved by Fourier 
and Hadamard Transform Threshold Coding 

for Surveyor Box Scene 

Fourier Transform Hadamard Transform 

Sample Number of position bits Number of position bits 

Reduction 
3 4 5 6 3 4 5 6 

5 : 1 2.6 3.1 3.2 3.2 2.2 2.6 2.6 2.5 

10: 1 3.3 4.8 5.7 6.0 3.0 4.3 4.9 5.1 

20 :1 3.9 6.6 8.7 10.0 3.3 5.4 6.9 7.7 



7. 	 Fourier and Hadamard Image Transform
 
Channel Error Tolerance
 

A major concern of communication system designers is the 

susceptibility of data to noise interference. It is important, then, to 

study the effects of noise on the image transform coding communication 

system. The inherent "error averaging" property of transform coding 

combined with error correction coding of specific transform samples 

provides a means of image coding for which channel errors are less 

deleterious than for conventional spatial coding of an image. This 

property, of course, is predicated on the assumption that the 

particular transform used tends to compact image energy in a few 

number of coefficients in the transform domain. 

In most digital communication systems the code alphabet 

consists of two symbols which are subject to perturbations in the 

channel, and these perturbations introduce random noise at the 

receiver. The binary symmetric channel is used as the noise model 

in the study of channel effects on image transform coding. The 

classical representation of such a communication channel is given 

in Figure 7-1, where the probability of receiving an incorrect symbol 

is p regardless of which symbol is transmitted. 

-117­



i-p
0 0 

p p 

-p
1 , 

Figure 7-1 Model of a Binary Symmetric Channel 
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7. 1 Channel Noise Effects 

An intuitive justification for transmitting the transform 

rather than the spatial domain of an image is the fact that channel 

noise introduced in the transform of an image tends to be distributed 

over the entire reconstructed image. Consequently, the noise 

manifests itself as a combination of low order orthogonal functions 

in the image due to noise introduced in the large amplitude coefficients 

of the transform domain. If the Fourier transform is used, the noise 

presents itself as a low frequency effect and if the Hadamard trans­

form is used, the effect is low sequency corresponding to non-periodic 

checkerboards of a low number of zero crossings. Finally, if the 

Karhunen-Loeve transform could be used, the noise introduced in the 

large valued coefficients would correspond to those orthogonal func­

tions representing the largest eigenvalues and matching the original 

image closest in a mean square error sense. In all cases, since the 

eye is more sensitive to the high frequency "salt and pepper" effect 

of channel noise in the spatial domain, the same channel error rate 

in the transform domain is somewhat less offensive. Figure 7-Za 

shows a mid-grey scene after having passed through a channel with 
-1 

probability of error of Pe = 10 . Figure 7-Zb is the Fourier trans­

form of the output of the same channel whose input was the Fourier 

transform of the mid-grey scene. Figure 7-2c is the same experiment 

replacing the Fourier transform with the Hadamard transform. All 
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a. 	 BSC noise in spatial domain b. Fourier transform of BSC 
noise in Fourier domain 

c. 	 Hadamard transform of BSC 
noise in Hadamard domain 

Figure 7-2 Binary Symmetric Channel with Error Rate Pe = 10­
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three scenes have the same error rate but the induced noise energy 

is distributed quite differently. A quantizing and coding method can 

be developed to take advantage of the inherent high frequency or 

"salt and pepper" noise immunity that transform domain coding 

offers. As a first step in this direction a requirement will be made 

that each quantum level occur equally likely as any other quantum 

level. This quantization criterion will guarantee that each code word 

is equally likely to occur and will avoid any unexpected noise biasing, 

since the binary symmetric channel affects each code bit, and there­

fore each code word, independently of all others. Such a quantization 

requirement results in the quantization rule employed in the earlier 

sections of this report. As was mentioned earlier, such a scheme is 

sub-optimum with respect to quantization noise error, but is better 

suited for channel noise immunity. 

A sequence of computer noise simulation experiments have 

been conducted in order to verify the concepts presented earlier. 

Figures 7-3, 7-4, and 7-5 present the results of the simulation where 

-3 -Z 
three different noise rates: Pe = 10 -4 , Pe = 10 , Pe = 10 , were 

introduced into the spatial, Fourier, and Hadamard domains respectively. 

In addition the difference pictures are included for visual purposes. 

The "salt and pepper" effect is quite evident in Figure 7-3 for spatial 

domain errors. For errors less than Pe = 10 -
4 

the transform 

domains indicate little or no degradation while a few errors are still 
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- 4a. Pe =10 b. Difference 

- 3c. Pe 10 d. Difference 

e. Pe = 10- 2 f. Difference 

Figure 7-3 Spatial Domain Coding Effects of Channel Errors 
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10 - 4  a. Pe b. Difference 

c. Pe = 3 d. Difference 

e. Pe i0 - 2 f. Difference 

Figure 7-4 Fourier Transform Coding Effects of Channel Errors 
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-4  
a. Pe =0 b. Difference 

c. Pe 10- 3 d. Difference 

e. Pe = 102 f. Difference 

Figure 7-5 Hadamard Transform Coding Effects of Channel Errors 
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evident in the spatial domain noise. However, for larger noise rates 

the low order orthogonal functions that make up the respective trans­

formations tend to swamp out the reconstructed image. This can be 

explained by the fact that the absolute, as opposed to relative value 

of a bit error is much larger in the regions where the transform 

coefficients (eigenvalues for the Karhunen-Loeve transform) are large 

in the transform domain. This explains the effect in Figures 7-4e 

and 7-5e. Further demonstration of this effect was presented in 

reference [271 where it was shown that by protecting certain areas 

of the transform domain from noise effects, large improvements in 

noise immunity could be obtained. This suggests an error correction 

procedure, a simulation of which is presented in the following section. 

However, before developing some error correction techniques, it is 

instructive to investigate the effects of a noisy channel on thresholded 

transform domains in order that both bandwidth reduction and noise 

immunity be combined. Figures 7-6 and 7-7 present results of such 

a simulation in which a threshold has been selected to provide a 5:1 

sample reduction ratio. Again the difference pictures are presented 

for visual evaluation purposes. The noise effects now include run 

length errors in the transform domain which manifest themselves as a 

unique type of one dimensional blurring in the reconstructed images. 

Again, noise with errors less than Pe = 10 
. 4 

tend to be averaged out 

due to the reconstruction process. The threshold coding technique 

-125­



-4 a. Pe = 10 b. Difference'go. 
-3c. Pe 10 d Difference 

0 ­e. Pe = 2 f. Difference 

Figure 7-6 Fourier Transform Threshold Coding 
=Effects of Channel Errors S.R. 5:1 
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10 - 4  b. Differencea. Pe 

c. Pe 10- 3 	 d. Difference 

10 - 2  e. Pe 	 f. Difference 

\ %' " ZO o Figure 7-7 	 Hadamard Transform Threshold Coding 
Effects of Channel Errors, S.R. = 5:1 
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requires coding for position information. These code words should 

be uniformly distributed so that unexpected noise biasing does not 

occur in the position code as well as data code. More sophisticated 

coding techniques might be pursued in this area. 

7. Z Error Correction Transform Coding 

As a result of the statistical regularity of samples in the 

transform domain, a smaller amount of error correction in this 

domain will yield a better noise immunity than the same amount of 

error correction in the spatial domain. The nature of the quantization 

law is such that errors in certain positions of the transform domain 

are much more bothersome than in other positions due to the large 

statistical variance of samples at these coefficients. Therefore, it 

is natural to develop an error correction rule to correct for errors 

only in these large variance regions. One such rule would be to 

error correct code those transform samples which correspond to 

positions in the transform domain where the transform spectrum of 

the covariance function indicates a high probability of large sample 

value. This technique alone requires an increase in bandwidth to 

facilitate the error correction. However, it has been found that the 

small increase in bandwidth in the transform domain will result in 

better reconstructions than the same increase in the spatial domain. 

Figure 7-8 demonstrates this situation where a 3. 5:1 increase in 
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a. 	 Spatial domain errors b. Spatial domain 
error correction 

c. 	 Hadamard domain d. Fourier domain 
error correction error correction 

- 2
Figure 7-8 Channel Error Rate Pe=4xlO 3.5:1 Increase in Bandwidth 
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bandwidth has greatly improved the transform coded image over 

the spatial coded image. It is important to emphasize that the 

coding technique used for the transform domain should be tailored 

to a particular channel capacity. If the channel noise has an error 

rate less than about 10- , then it appears that no error correction 

is necessary as in Figures 7-4a, 7-5a, 7-6a, and 7-7a. However, 

under the circumstances of a high error rate, it often becomes 

desirable to transmit as many error corrected samples as 

possible at the expense of either increased bandwidth or of not trans­

mitting the entire transform plane. Using such a system, corrected, 

but not necessarily errorless, data could be received until either all 

data (and parity bits) are received for a complete picture or until 

normal picture bandwidth has been reached, at which time trans­

mission is terminated. In order to implement such a scheme, an 

error correcting code must be selected. 

A specific example of the potential of the transform error 

correction coding technique is presented below. A high error rate 

-channel is assumed with rate Pe = 4 X 10 . Three experiments are 

implemented, one of which uses an increased bandwidth and the other 

two utilize an equal bandwidth criterion such that the exact same 

number of bits is necessary to transmit the spatial domain as the 

transform coded domain, (256) (256) (6). A Bose Chandhuri-Hocquenghem 

(BCH) code [41, p. 163) which is capable of correcting a total of 
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seven errors is 31 bits long with 6 information bits (31, 6). 

Utilizing an error correcting code capable of seven error correc­

tions does not mean that the six information bits will be received 

over the noisy channel error free. Since each code word length 

has been increased to thirty-one bits, eight or more errors per code 

word cannot be guaranteed to be corrected. The probability of 

having eight or more errors in the BCH code (31, 6) is given by the 

partial sum of the binomial distribution 

p (8 or more errors) = F .I p ( 1 p)3- (7-1)
i=8 

where p is the binary symmetric channel error rate. This probability 

is an upper bound for the incorrect reception of a code word since the 

possibility of correct reception for greater than seven errors still 

exists but is unknown. For the specific channel error rate of 

-
4 X 10 the error corrected data samples will be received with 

5probability of error no greater than Z. 26 X 10 - [42] . 

Figure 7-8 presents the results of an experiment in which an 

increased bandwidth has been allowed to compensate for the parity 

bits necessary in the error correction code. However, a (31/6):l 

increase in bandwidth would be necessary to completely transmit the 

full data of either the space or transform domain. Allowing only a 

3. 5:1 bandwidth increase means that not all the data in the transform 
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domain is transmitted and thus Figures 7-8c and 7-8d are 1.44:1 

--5
low pass sequency and frequency filters with error rate 2. 26 X 10 

The spatial domain error correction is the average of 70% BCH code 

and 30% no error coding. 

For spacecraft implementations it is desirable to transmit 

the error corrected image with no increased bandwidth requirement 

over conventional spatial domain transmission. Thus a (31/6) :1 low 

5 pass frequency or sequency filter with error rate 2. 26 X 10 - will 

result in an equal bandwidth requirement. The results of this 

experiment are displayed in Figures 7-9b and 7-9d. 

Because zonal low pass transform filtering is a non-adaptive 

technique for bandwidth reduction, it is desirable to utilize the adap­

tive feature of threshold coding as a means of more optimally com­

pensating for the parity bits necessary for error coding. Thus a run 

length coding technique utilizing 4 position bits will be used in the 

transform domain. Consequently, 4 position and 6 data bits will be 

used as information bits in the transform domain for run length coded 

thresholded transform samples. Thus a new error correcting code is 

necessary and a convenient candidate is a BCH (31, 11) code. This 

A pseudo-run length coding technique is alluded to here enabling
 
4 rather than 8 bits necessary for position coding [432.
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a. Fourier run length b. Fourier zonal error 
error corrected retransformation corrected retransformationI 

c. Hadamard run length d. Hadamard zonal error
 
error corrected retra nsformation corrected retransformation
 

e. Spatial domain errors 

Figure 7-9 	 Surveyor Box Equal Bandwidth 
Error Correction Technique, Pe = 4 x 102 
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code, again of length 31 bits, has 11 information bits and is capable 

of correcting 5 or less bit errors. Consequently, the probability of 

having 6 or more errors in the BCH code for each sample is given by 

the partial sum of the binomial distribution 

p (6 or more errors) = r (1 p (1l_) 3
1- (7-2) 

3 2and is equal to 1.27 X 10 - for a channel with error rate 4 X 10 - [43]. 

Thus the cost of run length coding has changed the effective error 

. 5 3rate from 2.26 x 10 to 1.27 X 10 - for this example. Figure 7-9a 

and 7-9c are the run length error corrected retransformations with 

a 5:1 bandwidth reduction to compensate for the (31/6):l parity 

information bandwidth increase. Consequently, again, an equal 

bandwidth criterion has been maintained. 

It is suggested that other coding techniques could be developed 

which would improve upon these results. In fact, for potential hard­

ware systems, research ought to be undertaken to develop the best 

code for the channel error rate, bandwidth, and computational com­

plexity allowable. 
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8. Summary 

This report has presented a theoretical development of 

several two dimensional transforms that are potentially useful for 

image coding. Of the transforms analyzed, the Fourier, Hadamard, 

and Karhunen-Loeve transforms have proven to possess the desired 

property of image energy compaction in the transform domain. 

The energy compaction property of these three transforms 

has been exploited to achieve a sample reduction by two means: 

zonal sampling and threshold sampling. In zonal sampling a sampling 

mask corresponds to the positional ordering of the largest eigenvalues 

of the covariance matrix of the class of images to be coded. For the 

Fourier and Hadamard transforms the best sampling mask has a 

hyperbolic shape in the transform domain. Examples of the sample 

reduction achievable by zonal sampling with the three transforms are 

shown in Figures 8-la to 8-1c. The transforms were taken in blocks 

of 16 by 16 elements. The other technique of sample deletion, called 

threshold sampling, simply entails the coding of each transform domain 

sample that exceeds a magnitude threshold level. By this technique the 

reconstruction of a particular image will suffer the least degradation 

from the standpoint of energy loss. Figures 8-ld to 8-1f illustrate 

the performance of threshold coding. The important conclusions to 

be drawn from Figure 8-1 and the supporting experimental results 

-135­



a. Fourier, hyperbolic zonal sampling b. Fourier, threshold sampling 
4:1 sample reduction 	 5:1 sample reduction 

c. Hadamard, hyperbolic zonal sampling d. Hadamard, threshold sampling 
4:1 sample reduction 	 5:1 sample reduction 

e. Karhunen-Loeve, zonal sampling f. Karhunen-Loeve, threshold sampling 
4:1 sample reduction 	 5:1 sample reduction 

Figure 8-1 	 Summary of Fourier, Hadamard, and Karhunen-Loeve 
Transform Image Coding in 16 by 16 Element Blocks 
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of Section 3 are that: 

a. significant sample reduction factors can be obtained by zonal 

and threshold sampling in the transform domain for the 

Karhunen-Loeve, Fourier, and Hadamard transforms. 

b. threshold sampling provides better performance (higher sample 

reduction factors for the same degree of image quality) than 

zonal sampling. 

c. the Karhunen-Loeve transform exhibits somewhat better 

performance than the other two transforms, which in 

exhibit about the same degree of performance. 

turn, 

d. the sample reductions achieved were obtained by transform 

coding in blocks of only 16 by 16 elements. Image trans­

formation in such small blocks can be implemented quite 

simply. 

Fast computational algorithms exist for the Fourier and 

Hadamard transforms. Computation of these transforms on a 

general purpose computer in blocks of up to 1024 by 1024 elements 

appears feasible from a computational standpoint. There is no 

fast computation algorithm for the Karhunen-Loeve transform. This 

fact coupled with the realization that the Karhunen-Loeve does not 

perform appreciably better than the Fourier and Hadamard transforms 

seems to limit the practical utility of the Karhunen-Loeve transform. 

For these reasons the detailed analysis of the report has been limited 

primarily to the Fourier and Hadamard transforms. 
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An analysis has been performed to determine the optimum 

means of transform domain sample quantization. The results of 

this analysis indicate that for a quantization strategy in which 

each sample is coded to the same number of levels, the optimum 

quantizer places the quantization levels along a nonlinear scale 

both in sample amplitude and position in the transform domain. 

Unfortunately, the optimum is difficult to implement. Therefore, 

several nonlinear scales that could be deterministically computed 

were analyzed. The best performance has been obtained with a 

Gaussian error function quantizer. With this quantizer, good quality 

reconstructions have been obtained with 64 quantization levels 

(6 bits) per transform sample component for both the Fourier and 

Hadamard transforms. 

Zonal and threshold sampling of quantized Fourier and Hadamard 

transforms of images has been investigated in detail for a variety 

of images. The transforms have been taken in blocks of up to Z56 

by Z56 elements. A position coding technique for threshold sampling 

employing run length coding has been implemented and evaluated. 

Figure 8-2 illustrates the effects of threshold coded quantized Fourier 

and Hadamard transforms of images over a full frame of 256 by 256 

elements. 

The conclusions to be drawn from these experiments are that: 
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a. Fourier, hyperbolic zonal sampling b. Fourier, threshold sampling 

4:1 sample 	 reduction 5:1 sample reduction 

c. Hadamard, hyperbolic zonal sampling d. Hadamard, threshold sampling 

4:1 sample 	 reduction 5:1 sample reduction 

Figure 8-2 	 Summary of Fourier and Hadamard Transform Full Frame 

Image Coding -- Quantized and Coded Images 

-139­



a. for any size blodk,threshold sampling provides better 

formance than zonal sampling. 

per­

b. performance is better for larger size blocks, but the difference 

in performance between blocks of 16 by 16 elements and blocks 

of Z56 by 256 elements is not great. 

c. for threshold sampling, simple run length coding can be 

employed to code the position of significant samples; the run 

length coding does not affect image quality, and can be 

accomplished with a relatively few number of bits per image 

element. 

The effect of channel errors on transform coded images has 

been studied. It has been found that channel errors in the transform 

domain tend to cause a small overall loss in resolution; there are 

no discrete effects like the "salt and pepper" errors that appear in 

normal spatial domain coding. Experiments verify that errors in 

the position bits coding the position of significant samples in 

threshold coding are not serious. Errors in the lowest spatial 

frequencies (sequencies) have been found to degrade an image the 

most. By applying channel error correction to a relatively small 

number of these transform domain samples, a relatively large 

improvement in the tolerance to channel errors can be obtained. 

The equivalent amount of error correction in the spatial domain 

would provide no worthwhile improvement. 
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In final summary, it can be said that Fourier and Hadamard 

transform image coding techniques are a feasible means of obtaining 

significant bandwidth compressions for digital image transmission. 

Side benefits of transmitting the Fourier or Hadamard transform of 

an image rather than the image itself are an improved tolerance to 

channel errors and the fact that image enhancement methods can be 

readily performed in the transform domain. 
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9. Recommendations 

The general concept of transform coding has now been studied 

and evaluated rather thoroughly in this research study and by other 

investigators. There remain three areas, listed below, that merit 

further study. 

Transform Domain Coding 

Zonal sampling in the transform domain has the advantage of 

simplicity, but achievable performance is not as great as can be 

obtained by threshold sampling. However, threshold sampling requires 

position coding of significant samples. It appears that advantages of 

both techniques might be obtained by a hybrid scheme of zonal sampling' 

a set of the low spatial frequencies (sequencies) and threshold sampling 

the remainder of the transform domain. Schemes for performing this 

type of sampling should be investigated in conjunction with a study of 

the best means of position coding significant samples. 

The quantization technique presented in this report adopted the 

strategy of assigning the same number of bits per transform domain 

sample and then determining the optimum scaling of quantization levels. 

Another technique that has been reported [371 utilizes a linear quanti­

zation scale for each sample, but the number of bits per sample is 

optimally selected to minimize the total number of image code bits for 
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a given error criterion. It appears that it would be advantageous 

to combine both strategies: assign the number of bits per sample 

on the basis of the sample variance, and select the quantization 

levels according to a nonlinear scale based upon the variance. This 

quantization method should be studied further. 

Implementation 

A number of companies have available equipment to perform 

a fast Fourier transform in one dimension for up to about 1024 

points. A few companies have built fast Hadamard transform 

devices for one dimensional transforms. There are presently no 

two dimensional transform processors on the market. 

In view of the great potential for image transform coding it 

would seem worthwhile to implement prototype Fourier and Hadamard 

transform processors. As a first step a 16 by 16 element processor 

should be built and evaluated. 

Color Image Coding 

Conventional color images are represented by three overlapping 

intensity planes corresponding to three primary colors--red, green, 

and blue. In normal television practice a linear color transition is 

made into three planes which represent the luminance (the monochro­

matic representation of an image) and the two chromninance variations 

of the image. The spatial frequency response of the eye to chrominance 
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information is very poor. Therefore, a great deal of spatial 

low pass filtering on the chrominance'planes can be tolerated. 

Fourier and Hadamard zonal low pass filtering appear ideal for 

this application. Studies are needed to determine-the effects of 

Fourier and Hadamard filtering on the chrominance planes and to 

determine the best color transitions for the subsequent filtering 

operation. 
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APPENDIX A 

Imaae Covariance Function* 

Measurements have been made of the covariance function of an image 

to determine the fit of the Gauss-Markov process model. Figure A-i shows 

plots of the correlation between elements along a line, between elements along 

a column of the image, and between elements along the diagonal of an image. 

All measurements have been made on the Surveyor spacecraft scene. The 

data points have been fit by functions of the form A n 
where A is the corre­

lation between adjacent elements and n is the separation between elements. 

The fit along the rows and columns of the image appears to be reasonably 

good. As shown in the figure there is a small deviation between the Gauss-

Markov process model for diagonal elements and actual measurements. 

Measurements have been performed by Professor Lee D. Davisson of 
the University of Southern California. 
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