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Preface

This report comprises the fina'.{ report for a study
entitled, 'Transform Processing and Coding of Iinages, " performed
by the Electronic Sciences Laboratory of the Uniyc?rsity of Southern
California for the Jet Propulsion Laboratory under JPL Contract
952312, Mr. 'fhom.as Rindfleis¢h of JPL s;erved as project director
for the study. This report supplants the in’ceri‘mireport USCEE No.
341 entitled "Transform Processing and Coding of Images, '’

published in March, 1969. Pertinent introductory material from

that report is included in the present report for completeness.
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1. Introduction

The basic goal of digital image coding is the development
of a coding technique that permits the represer'ltation, and
subsequent recovery, of an image by a minimal number of code
bits [1-3]. In some applications virtually no image distortion is
permitted in the coding process, while in other applications a
controlled amount of distortion is allowable in the achievement of
a substantial bit reduction. In general, when redundancy is
removed from a data source, the compressed data is more
sensitive to the effect of channel errors. One of the restrictions
in selecting a coding method, therefore, is that the compressed
data must not be overly sensitive to channel errors.

In 1967 a new technique of image coding, called Fourier
transform coding, was developed at the University of Southern
California [4-6]. Another related method, called Hadamard transform
coding,was discovered at USC in 1968 [7-8]. Since then investigations
have been made into the applications of other mathematical
transforms for image coding. Out of these studies has emerged

the generalized technique of transform image coding [9-11].
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1.1 Image Transform Coding

Figure 1-1 contains a block diagram of the image
transform coding system. In operation a two-dimensional
transform is taken of the brightness samples of an image, or
subsection of an image, on a line by line basis. The resultant
transform samples are then operated upon by a sample selector
that selects which samples are to be transmitted on the basis
of magnitude or position in the plane. Those samples that are
to be transmitted are quanti;ed and coded. At the receiver, the
data is decoded to reconstruct the transform domain, and an
inverse transform is taken to reconstruct the original image.

A bandwidth reduction is' achieved simply by not trans-
mitting all of the traisform domain samples, Those samples
that are not transmitted are generally of such low magnitude that
they contribute little in the image reconstruction,

There are two basic forms of sample selection--zonal
sampling and thre shold_sampling--tﬂat can be employed. In
zondl sampling, only those transform samp.les that lié within a
certain geometric region in the transform domain are selected
for transmission. The basic problem with zonal sampling is that
in certain pictures many large magnitude samples may lie without

the zonal region and will, therefore, not be transmitted. In order
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Generalized Transform Coding of Images




’éo avoid such errors it is possible to establish a threshold level
on the magnitude of transform domain samples such that if the
transform sample magnitude is greater than the threshold it
will be selected, and the sample will be deleted if it falls below
the threshold. With threshold coding it is necessary to code the
location in the transform domain of a selected sample as well
as its value.

The major advantage of image transform coding other than
its potential for bandwidth compression is the tqleranc? to channel
errors that transform coding affords. An intuitive justification
for transmitting the transforlm of an in;age rather than the spatial
representation of the image is that for many transforms the
channel noise introduced in the image transform tends to be
distributed evenly over the entire reconstructed image. Consequently,
the channel noise is manifested as a low spatial frequency error
in reconstruction. Experimental evidence indicates that the eye
is more sensitive to the high frequency discrete errors caused
by channel errors in the spatial domain than it is to the same

number of errors in the transform domain.
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1.2 Original Images

Figure 1-2 contains photographs of the five original
images that have been used as test images for the evaluation
of image transform coding. These images contain 256 by 256
elements quantized to 64 grey levels, The images were read
from magnetic tape, displayed on a Hewlett-Packard Model 1300
cathode ray tube display, and photographed with Polaroid Type

47 film.
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a. Surveyor footpad b. Moonscape

c. Surveyor experimental box d. Surveyor boom

Figure 1-2 Original Test Images




2. Image Transformation

In this section consideration is given to the mathematical
formulation of image transforms. The characteristics and
properties of the Fourier, Hadamard, Haar, Karhunen-Loeve, and
a class of transitional transforms are briefly developed. Experi-

mental results are presented.

2.1 Formulation

An image may be represented by an array of intensity
components or samples over the image surface by two dimensional
sampling, For the present discussion an image array will be
considered to be a square array of N2 intensity samples described
by the function f(x,y) over the image coordinates (x,y).

Conceptually, there are two major types of image transforms
which shall be called transforms of the first and second kind, A
transform of the first kind maps a two dimensional image array
of dimension N X N into a one dimensional vector of dimension

1x l'ﬁlZ according to the relation

N-1 N-1
= LT Z-1
F(w) s {:':’o f(x, y) a(x, y, w) (2-1)

forw=0,1,2,+++, Nz-l

ke



where a(x,y,w) is the forward transform kernel of the first

kind. A reverse transform of the first kind is defined as

) NZ-1
f(x,y) = 2-'0 F(w) b(x, y, W) (2-2)
for x,y=0,1,2,+++, N=1

where b(x,y,w) is the reverse transform kernel of the first
kind. A transform of the second kind maps an image array of
dimension N X N into a two dimensional array of the same

dimension as defined by

N-1 N-1
Flu,v)= & L  f(x,y) a(xy,u,v) (2-3)
x:O Y:O

foru,v=0,1,2,+++, N=1

where a(x, y,u, v) is the forward transform of the second kind.

The corresponding reverse transformation is given by

: N-1 N-1

fix,y) = L I _ F(a,v) b(x,y,u,v) (2-4)
u=0 v=0

for x,y=0,1,2,+++, N=-1

where b(x, y,u,v) is the reverse transform kernel of the second
kind. For transforms of the first and second kind, when the
function ftx. y) resulting from the reverse transform operation is

equivalent to the original image, f(x,y), the reverse transform is
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called an inverse transform, Transforms of the first and second

kind are said to be orthogonal if the following conditions

are met*
Transforms of the first kind:
2 a(x,y,w) a*(or, B,w) = b(x-@, y-B)
w
31 bx,y,w) b (@, B,w) = 6(x-a, y-B)
w
b2 Z}a{x, vy, w) a*(x. y, 8) = 6(w-8)
Y
?—;E b(x, y, w) b*{xl Y Q = 6(“"'&
x5y
Transforms of the second kind:
2 L alx,y,u,v) a¥(a, B,u,v) = §(x-a,y-B)
u v
Z 2 b(x,y,u,v) b¥(e, B,u,v) =6 (x-a, y-B)
u v

Z L alx,y,u,v) a¥(x,y,8,9) = 8(u-0, v-0)
Xy

2 Z b(x, y,u,v) b¥(x, v, 6,9) =8(u-8,v-p)
xy

%
The limits of summation are eliminated in subsequent
equations unless required for clarity.

g

(2-5a)

(2-5b)

(2-5¢)

(2-54d)

(2-6a)

(2-6b)

(2-6c)

(2-6d)



A forward transform kernel of the second kind is said

to be separable if it can be written as
a(x,y,u,v) = al(x, u) az(y. v) (2-7)
A separable two dimensional transform can be computed in two

steps. First, a one dimensional transform is taken along each

row of the image, f(x,y), yielding

N-1
F(uo,y) = L f(xy) a,(xu) (2-8)
x=0
Next, a second one dimensional transform is taken along each

column of F(u, y) giving

N-1
F(u,v) = 2 F(@y) 2,07, v) (2-9)
Y:

The transformation kernel is called separable symmetric if

a(x,y,u,v) = a,(x,u) a,(y, v) (2-10)

For ease of implementation, the separable symmetric property is
desirable.

It is often useful to express two dimensional transforms in
matrix notation. For example, with a forward transform kernel of

the second kind that is separable symmetric let:
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(£]

image matrix, f(x,y)
[F] = transformed image matrix, F(u,v)

[al

]

transform matrix, A(x, B)
Then by matrix multiplication

[F] =[Al[£1[A] (2-11)

Now pre- and post-multiplication of each side of [F] bya

reverse transform matrix, [B], gives

] = [BI1[F1(B] = [B]1[A][f][A][B] (2-12)

where [f] is, in general, an approximation of [f]. If the reverse

transform matrix is the inverse matrix [A]"} of [Al, then
(£1 = (AT (A6 [adCAT? (2-13)
But
a1} (Al =[al[A) ! = [ (2-14)
where [I] is the identify matrix. Hence

[2)= 0 = (A1 [rlia]™ (2-15)

Thus, f(x,y) and F(u,v) can be expressed as two dimensional
transform pairs if [A] has an inverse. If [A] is a unitary matrix,

then by definition



[B] = LA]-I = [A]*T unitary matrix

where [AT* is the complex conjugate matrix of [Aland [A]T

is the matrix transpose of [A]. If in addition [A] is symmetric

- =
[(B]1=[A] i [A] symmetric unitary matrix

A real, unitary matrix is called an orthogonal matrix. For

such a matrix
= -1 5y £
(B] =[A) " =[aA] orthogonal matrix
Finally, if [A] is a symmetric orthogonal matrix, then

[B]=[aA ]‘1 = [a] symmetric orthogonal matrix

If the forward transformation matrix is constrained to be

(2-16)

(2-17)

(2-18)

(2-19)

unitary, then the transformation can be interpreted as a decomposition

of the image data into a generalized two dimensional spectrum.
Each spectral component in the transform domain corresponds to
the amount of energy of the spectral function within the original
image. In this context the concept of frequency may now be
generalized to include transformations of functions other than sine
and cosine waveforms. This type of generalized spectral analysis
is useful in the investigation of specific decompositions which are

best suited for particular classes of images.
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The following paragraphs contain an analysis of the Fourier,

Hadamard, Haar, transitional, and Karhunen-Loeve transformations

with particular emphasis on their applicability to image processing.

2.2 Fourier Transform

The discrete Fourier transform with and without efficient
computational algorithms, has long been used for signal
analysis [12]. Only recently have Fourier transform methods
been utilized for image coding [4-6].

The two dimensional Fourier transform of an image field,

f(x, y), may be expressed as

p N-1 N-1 2mi
F(u,v) = = ED bu f(x,y) exp ( - T(u.x +v,vy) (2-20)
x= ‘y:

The inverse Fourier transform which reconstructs the original

image is given by

N-1
b

u=0

5|
f(x,y) =

Mz

2mi
% o Flv) exp = (ax +vy) (2-21)

Since the transform kernels are separable and symmetric the two
dimensional transform can be computed as two sequential one

dimensional transforms.
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The terms u and v are called the spatial frequencies

of the image in analogy with time series analysis. When the
Fourier transform relationship is expressed in the form given
by Equation (2-20) the origin, or zero spatial frequency term appears
in the corner of the transform plane. For display purposes it is
convenient to shift the origin to the center of the transform
domain. This is easily accomplished by multiplying the image by
the function (-1}“”Ir before the transformation [13].

Even though f(x, y) is a real positive function, its transform,
F(u,v), is in general complex. Thus, while the image contains
N2 components, the transform contains ZNZ components, the real
and imaginary, or magnitude and phase components of each
spatial frequency. However, since f(x,y) is a real positive function,

F(u,v) exhibits a property of conjugate symmetry [13]. Specifically,
F(u,v) = F (-u, -v) (2-22)

As aresultof the conjugate symmetry property of the Fourier trans-
form it is only necessary to transmit the samples of one half of the
transform plane; the other half can be reconstructed from the half plane

*
samples transmitted . Hence, the Fourier transform of an image

*
A reconstruction of the original can be obtained from the half
plane transform samples directly by a Hilbert filtering technique [13].
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can be described by NZ data components.

The two dimensional Fourier transform of an image is
essentially a Fourier series representation of a two dimensional
field. For the Fourier series representation to be valid the field
must be periodic. Thus, the original image must be considered to
be periodic horizontally and vertically. The right side of the image
therefore abuts the left side and the top and bottom of the image are
adjacent. Spatial frequencies along the coordinate axes of the
transform plane arise from these transitions. Although these are
false spatial frequencies from the standpoint of being necessary for
representing the image within the image boundary, they do not impair
reconstruction. On the contrary, these spatial frequencies are
required to reconstruct the sharp boundaries of the image,

Figure 2-1 presents displays of the Fourier transforms
in shifted form of two of the original test scenes. The logarithm
of the magnitude of each transform is displayed rather than the
magnitude itself in order to reduce the dynamic range of the display.
In addition, a threshold display is presented in which all the absolute
values above the threshold are set to white and all others are made
black. Such a display gives a graphic illustration of the heavy
concentration of energy around the origin (center of photograph) of

the Fourier transform.
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a. Logarithm of the magnitude of the b. Threshold display of the Surveyor
Surveyor box transform box transform

¢. Logarithm of the magnitude of d. Threshold display of the moon-
tne moonscape transform scape transform

Figure 2-1 Fourier Transforms
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2.3 Hadamard Transform

The Hadamard transform, also known as the Walsh
transform, is based upon the Hadamard matrix which is a square
array of plus and minus ones whose rows and columns are orthogonal
to one another [14-16]. If [H] is an N by N Hadamard matrix,

then the product of N and its transpose is

[H1CH]T = NI (2-23)

If [H]is a symmetric Hadamard matrix, then Equation (2-23)

reduces to

[ul [H] = nl1) (2-24)

A Hadamard matrix multiplied by the normalization factor

3 is an orthonormal matrix.
NN

The lowest order Hadamard matrix is the Hadamard matrix

1 1
(a,] = (2-25)
1 -1

It is known that if a Hadamard matrix of order N exists (N >2), then
N =0 (mod 4). The existence of a Hadamard matrix for every
value of N satisfying this requirement has not been shown, but
constructions are available for nearly all permissible values of N

up to 200. The simplest construction is for a Hadamard matrix
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of order N = 2" where nis an integer. In this case if [HN]

is a Hadamard matrix of order N, the matrix

H, ] = (2-26)
is a Hadamard matrix of order 2N.

A frequency interpretation can be given to the Hadamard
matrix generated from the core matrix of Equation (2-25). Along
each row of the Hadamard matrix the frequency is called the number
of changes in sign. Harmuth has coined the word "sequency'' to
designate the number of sign changes [17]. It is possible to
construct a Hadamard matrix of order N =2 that has frequency
components at every integer from 0 to N-1.

This frequency interpretation of the rows of a Hadamard
matrix leads one to consider the rows to be equivalent to
rectangular waves ranging between *1 with a sub-period of o
units. Such functions are called Walsh functions [18-22] and are
further related to the Rademacher functions [23]. Thus, in
this context the Hadamard matrix merely performs the decomposition
of a function by a set of rectangular waveforms rather than the
sine-cosine waveforms associated with the Fourier transform.

For symmetric Hadamard matrices of order N = Zn, the

two dimensional Hadamard transform may be written in series

il




form as

) %4 L P(x, y,1u,v)
F(u,v) = N 3 EO f(x, y)(-1)
x=0 y=
n-1

where p(x,y,u,v) = iz}"..o [uixi + viyi). The terms “i’vi'xi’ and Yi
are the binary representations of u,v,,X,and y respectively.

For example,

pecMar = ®ao1 -2 **° U Ylarnany

where u, e fo 1},
Another series representation exists for a Hadamard matrix
in "ordered" form in which the sequency of each row is larger

than the preceding row. By this representation

Lt @ 72 1,%)
Fluvi= =Z T f(xy)(-1)3% V%
N x=0 Y:D
where
n-1
qxy,u,v) = I [g(u) x, + g,(v) y,]
i=0
and
gu{u} i un-l
i B R
gz{u} = un”z + um_3
gn_ltu) = 1.11 + uo

(2-27)

(2-28)




The two dimensional Hadamard transform may be computed

in either natural or ordered form with an algorithm analogous
to the fast Fourier transform computer algorithm.

Figure 2-2 presents the ordered Hadamard transforms
of two test scenes. The origin of the transform domain is now in
the lower left corner and the axes are now spatial sequencies as
opposed to spatial frequencies. Notice that as in the Fourier
case, the image energy tends to concentrate itself heavily in the
lowest spatial sequency areas providing the potential for large
bandwidth reductions. Again both a logarithmic and threshold

display are provided for dynamic range purposes.

2.4 Transitional Transforms

In related work [24-27] it has been shown that a class of
rapidly implementable orthogonal transformations exists for matrices
composed of Kronecker products of smaller core matrices. In
fact, both the Hadamard and Fourier transforms have been shown
to be subsets of this much larger class of Kronecker transform
matrices. A class of transformations exists for which the Hadamard
transform is a limiting case, and these transforms will now be
investigated as to their image processing potential.

The transformation resulting from performing the Kronecker

operation of the core matrix
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a. Logarithm of the magnitude of the b. Threshold display of the Surveyor
Surveyor box transform box transform

‘ c. Logarithm of the magnitude of d. Threshold display of the moon-
the moonscape transform scape transform

Figure 2-2 Hadamard Transforms
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sinf -cosf

(H] = I:cose sine} (2-29)

with itself n times results in a matrix whose row and column
entries, indexed by x and u respectively, can be described

by the following equation

n-1
u @xr E:O u X
(-1) (2-30)

n-1
z
sinf r=0

cosb

Hn(x,u) = (

The u, and X, variables are the bits in the binary representation
of the column and row indexes respectively. It is evident that
while the Hadamard transform has received considerable attention
(often under the name of the discrete Walsh transform) it is
important to note that this transform is the limiting case of the
powers of two Kronecker transforms presented above. As 6
varies between 0° and 45° the transforms vary from a diagonal
matrix to the Hadamard matrix at 45°, In the process of varying 8
over this interval, the transformations have ranged from having
all of their energy on the diagonal at 0° to uniform energy spread
at 45° (Hadamard case). Figure 2-3 presents examples of the
transitional transforms of the Surveyor box test scene for four
different values of 8, Notice that functions of the magnitude are
displayed in all cases because even for the 6 = 0° diagonal case,

negative signs on the diagonal are possible. It is evident from

. i



a. 8= (JO, diagonal transform, b. © = 150, threshold display
magnitude display, max. max. value = 1,200
value = 63

c. © = 309, threshold display d. @ = 450. Hadamard transform,
max. value = 6,611 threshold display, max.
' value = 11,486

cos © sin®©

| [&] - i 5o

Figure 2-3 Transitional Transforms

-cos ©
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this figure that the transform which computes the image into

the fewest significant coefficients is the Hadamard transform.

2.5 Haar Transform

The Haar transform [28] is another transformation that,
like the Hadamard or Walsh transform, requires no multiplications.
The Haar matrix consists of plus and minus ones as well as zeros
and is non-symmetric, orthogonal but not orthonormal (unless
multiplied by the proper diagonal matrix). The Haar matrix can be
likened to a sampling system in which various rows sample the
input with finer and finer resolution increasing in powers of two.

An 8 x8 orthonormal Haar matrix is shown below:

B 1 1 1 1 1 1 1 i
1 1 1 e N R <l
V2 W2 2 /2 0 0 0 0
0 0 0 0 2 Az 2 -2
E:] , 0 0 0 0 0 0 (&=31)
0 0 2 -2 0 0 0 0
0 0 0 0 20 o2 0 0
0 0 0 0 0 0 2 7 I

The Haar transform is defined for data of resolution equal |
to a power of two, and the matrix is factorable into a product of

matrices with a large number of zero entries [25]. Consequently,
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a fast algorithm also exists for this transform. The number of

computer operations required for a vector matrix multiplication

is given by 2(N-1) as compared to the 2N logzN requirement

of Fourier or Hadamard, which itself is a considerable savings

over the normal vector-matrix multiplication requirement of NZ
operations. As with the Walsh functions, the Haar functions

can be generalized to contain entries of roots of unity other

than %1, Watari [29] has described the generalized Haar system
and has shown that it is possible to preserve some of the original
Haar convergence properties. The extension to matrix factorization
is straightforward and will not be pursued further. However, the
number of operations necessary to implement a pﬂ:l order generalized
Haar transform is given by a‘geometric progression resulting in
P(N-1)/(p-1). In image processing applications, the Haar transform
provides a transform domain in which a type of differential energy
is concentrated in localized regions. Thus there is an area in
which adjacent picture element differential energy is concentrated,
(the upper right quarter of the transform plane), an area in which
differential energy of adjacent picture elements taken two ata

time is concentrated, and in general an area in which difference
energy of adjacent picture elements taken a power of two at a time

is concentrated.
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Figure 2-4 presents the Haar transform of the test

scenes. The logarithmic results vividly display the derivative
energy effect especially in the upper right quarter of the plane.
Note that in the Haar transform there is also a concentration of
image energy in the lower left corner or origin of the transform
plane. The data point at the origin in the Fourier, Hadamard, and
Haar transforms all are equal to the average energy in the original
image and correspond to the row of all '""ones'’ in the transform

matrices.

2.6 Karhunen-Loeve Transform

The Karhunen- Loeve transform is a special case of an
eigenvector matrix transformation [30-37]. Consider a real
symmetric matrix [C] of order n. The eigenvectors of [C]

are column vectors [Ki]' i=1,2,***,n satisfying the relationship

[c] Exi] = X, [Kil

where the scalars A, are the eigenvalues of [C]. Leta square
matrix [K], called the modal matrix of [c], be constructed

from the eigenvector columns in the following manner:
(k] = [[K,1[K,] - [K_]]

Also let the eigenvalues be located along the diagonal of a matrix

w2EL



a. Logarithm of the magnitude of the b. Threshold display of the Surveyor
Surveyor box transform box transform

c. Logarithm of the magnitude of d. Threshold display of the moon-
the moonscape transform scape transform

Figure 2-4 Haar Transforms
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[

[E]

Then by equation (2-32)
[cllk] = [K][E]
Now, premultiplication of equation (2-34) by ﬁ(]'l gives
x1"'cI K] = (K1 [k ICE] = (E]
Taking the transpose of both sides of equation (2-35) yields
T T -1 i T
k] [c] [[K] ] = [E]

But, since [C] is a symmetric matrix and [E] is diagonal, by

correspondence between equation (2-35) and (2-36)
-1 T
fEd== = K]

Thus, if they exist,the eigenvectors of a matrix are orthogonal.
It can be easily shown [38] that when [C] is symmetric, its
eigenvalues are all real quantities.

Consider now a data column vector [f] of length m. The

eigenvector transform [F] of [f] is then

27
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(2-35)

(2-36)

(2-37)




[F] = [k][f] (2-38)

and the inverse eigenvector transform [£] of [F] is

(1= KIT (F) = KT [(KIED = L4 (2-39)

Thus [f] and [F] are transform pairs of an orthogonal matrix
transformation. The vector [F] represents a matrix
decomposition of [f ] into a set of orthogonal waveforms defined
by [K]. Generally, the exact form of the orthogonal functions
cannot be easily described.

If only the first q of the m columns of [K] are employed in
the forward and reverse transform, then the mean square error

between the original and the reconstructed data vector is [30, 31]

m
d = 7 A (2-40)
k=q+1 K

Since the kk are monotonically decreasing in value, the error
will be minimum for any q.

When the eigenvector matrix [K] is composed of

eigenvectors of the covariance matrix

(cl= E tﬂi)—ﬁ]tfm—Tj}]} (2-41)

fori, j=1,2,---, n, of the data vectors, the resulting

eigenvector matrix [K] is called the Karhunen-Loeve (K-L) transform.
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For a two dimensional image transform of the first kind, the

forward transform kernel a(x,y,w) of Equation (2-1) satisfies

the equation

N-1 N-1
Mw) alx,y,w) = 2 L Clx,x,y,y'} alx', y', w) (2-42)
x'=0 y'=0

for w=0,1,2,¢¢+, Nz—l, where ) (w) are the eigenvalues of
the covariance function C{x,x', y,y'} of the image. The corres-
ponding K-L transform of the second kind described by the kernel

a(x, y,u,v) of Equation (2-3) is found from

N-1N-1
AMu,v) alx,y,u,v) = & 2 Clx,x.y,y'} a(x',y',u,v) '+ (2-43)
x'=0 y'=0
for u,v=0,1,2,--+, N=1, where X (u,v) are a two dimensional

ordering of the eigenvalues A(w). If the covariance function in

Equation (2-43) can be written as
cix,x',yy'}= C {x,x'} C ly,y'] (2-44)

then the transform kernel a(x,y,u,v) can be separated. The
resulting two dimensional transform can then be computed sequentially
along each row and column of the image.

Figure 2-5 contains photographs of an image that has been

Karhunen-Loeve transformed in 4 X4 element blocks., The 16 x 16

=20



a. Logarithm of the b.
magnitude of the

Inverse transform of
Surveyor box transform

transform of Surveyor box

>

c. Logarithm of the d. Inverse transform
magnitude of the of transform of girl
girl transform

Figure 2-5 Karhunen-Loeve Transforms in 4 x 4 Element Blocks
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component correlation matrix from which the K-L transform

matrix was derived is shown in Figure 2-6.

2.7 Summary

For image coding the desirable properties of a mathematical
transform are that the transform redistribute the image energy
to as few transform domain samples as possible, and furthermore
that the transform be easily computable. The Fourier and
Hadamard transforms fulfill both requirements, and will be
analyzed in greater detail in subsequence sections.

None of the transitional transforms, other than the
Hadamard transform, provide a compact distribution of energy.
These transforms will not be considered further for image coding,
but it should be noted that the transitional transforms may be
useful for dimensionality reduction for pattern recognition
applications.

The Haar transform possesses an extremely fast
computational algorithm. However, the peculiar spatial sampling
procedure--sampling in pairs of elements--does not appear
to be particularly useful for image coding, and therefore the Haar
transform will not be considered further. The Haar transform
may find some usefulness, however, for digital edge

enhancement since the transform domain is a mapping of the spatial

reis 3




10 11 12

9

13 14 15 16

Element Array

N

16

15

11 12 13 14
E

10

c D

7
¢ D D C D

D

C
B

B

E

C

E C D E
¢ D D C

D

E

D

B

C

C D B

B

B D C B

C

D

C D B

B

B C D B

E C

D

10.D C

D €¢C D D C

E

11
12

B D C B

C

E

13 D
14
15

D C D E
E D C D D C

F

c

B

F

16 G

Correlation Matrix

b,

Figure 2-6 Correlation Matrix Model for 4 x 4 Element

Karhunen-Loeve Transform

~32-



differential energy of the original image.

The Karhunen-ILoeve transform provides the best
compaction of image energy for natural images. The major
difficulty associated with the use of the Karhunen-Loeve
transform for image coding is the great amount of computation
involved. First, the image correlation matrix must be
estimated or modeled. Next, the correlation matrix must be diagonalized
to determine its eigenvalues and eigenvectors. Fi‘nally, the transform
itself must be taken. In general , there is no fast computational
algorithm for the transform. In those applications in which the
amount of computation is not of principal concern, the Karhunen- Loeve
transform may find practical applica.tion.' Furthermore, since the
K-L tr;ansform is the optimum image transform in a mean square
error sense, when sample deletion is employed, it is worthwhile
to consider its performance as a standard for other image
transforms.

The next two sections contain a general analysis of the

Fourier, Hadamard, and Karhunen-Loeve image transforms.
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3. Statistical Analysis of Image Transforms

The development of efficient quantization and coding methods
for image transform samples requires an under standing of the
statistical properties of the transform domain. This section
presents a derivation of the first and second moments of transform
samples, and also contains the development of a stochastic model
for the probability density of transform samples.

The statistical analysis of image transforms is predicated
on the representation of an original image as a two dimensional

stochastic process, f(x,y). The spatial mean
B{f(x,7)} = f(x,y) (3-1)

and the covariance

B WGy ) ~flx y )] Loy, v ) =8x,,y,) 1) = Clxpaxy, vy,
(3-2)

are assumed known or at least estimateable. Appendix A
describes measurements of the covariance function of an

image.

3.1 Moments

For a generalized forward transform given by
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N-1 N-1

F(a,v) = ELO y§0 f(x,y) a(x, y,u,v) (3-3)

the mean of the transform samples is simply the forward

transform of the mean of the image samples. Thus,

N-1 N-1
E{F (e, v}= Fla,v) = Z T fx,vy) alx,¥,49,7) (3-4a)
x=0 y=0

For an ordered, orthonormal transform with an average value

term
F(u,v) = N £(x, y) 8(u, v) (3-4b)

The covariance function of the transform domain samples

is by definition

Glu ,u,, vy, vz} =E {[F(“l’ w,)-Flu,, vl)] [F*(uz, v, )=-Flu,, VZ)*]}

(3-5)
Substitution of equations (3-3) and (3-4) yields
C{uly uZ’ Vl: VZ} =E [}?1 %')1 &(Xl’ Yl)—f(xl’ Yl)] a(xl’ Ylt ul’ Vl)]
[ 22 Bep vy, 7" 'y y,mp,)] (3-6)

*2Y2

or
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c{uli u

2V AL a b2IDIEDN EALfx),y))- f(x,yl)]

X V1% Y,
: [f*(XZ, YZ)-f(XZ,YZ)*]} (x5 7,00 v)) a*(xz,vzsuz,vz) (3-7)

The expected value of the bracketed term in the. summation of
Equation (3-7) is by definition the spatial domain covariance function,

C{Xl’ %,y YZ} . Hence,

C{u 205 V15V, }=Z E PP C{Xl’XZ’YI’YZ}
X %X,V Y,

-a(xl,yl,ul,vl) a"‘(xz,yz,uz,vz) (3-8)
The variance of the transform domain samples is
2
0%(u,v) = Clu,u,v,v} (3-9)

Therefore, the general expression for the variance of transform

domain samples becomes

qz(u,V)= 2D INDY: C{xl,xz,yl,yz}
p-4 X
1%2 V173
a7, v) a¥x

2? Yzyu: V) (3'10)

There are two special cases, of interest. For an image that is

statistically stationary in the spatial domain
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Clxp,x,¥,57,} = Clx =%, v, -v,] {(3-11)
If the original image is uncorrelated in the horizontal and
vertical directions
Clxp,x,, 757, = C (=%} CY{yl,yz} (3-12)

and the transform domain variance can be computed as 02(\1, v) =

2 2 R .
0 (u) 0 (v) provided that the transform kernel is separable.
Further investigation of the variance of transform domain samples

requires specification of the transform.

Fourier Transform

For the Fourier transform the variance function of Equation

(3-10) can be written as

2 = 2mi
o {u,v) = E 2z 2 ocf X 9%, ¥y y'z} exp { ~ —N—l' l:u(xl -xz)

L
n* R
+ vy, -v,)] (3-13)

Consider the case for which the original image is stationary

and orthogonally uncorrelated. The variance function reduces to
2 2
%, v) = oX(w) F(v) (3-14)

where

37~



2 1 PALES
P = R Zz)z) ci z,- zz} exp { - N Plz- zz)} (3-15)
12

with p = uor v and z:.l = xi or Yi" The coordinate variance

function may then be rewritten as

2 1 21 21
c(p)—N§ exp{ N 7 E) C{zl-zz}exp{" sz1> (3-16)
2 } 1
The second summation is the one dimensional discrete Fourier
transform of the covariance function shifted by 7o By the

Fourier transform translation theorem

2 1 2mi 2mi
0Py = = 25 exp { —=— e - == G(p) 3-17a)
N 2 S\ Ty Prp e N Pz, Gle (
2
or
2 .
g (p) = G(p) (3-17b)

where G(p) and C{‘zl} are one dimensional discrete Fourier
transform pairs. If the transform is over a complete image
dimengion, G(p) is the discrete version of the power spectral
density, Sz(p), of the image function along one coordinate minus

the average image power, SZ(O), along the coordinate. Hence,

o®(p) = 5,(p)=5,(0) (3-18)
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Thus, the transform domain sample variance along a coordinate
direction is directly proporﬁ.pnal to the power spectr§1 density
of the image along the corresponding orthogonal coordinate.

If the original image function can be considered to be a Gauss-

Markov process, the covariance function is [ 39]
C,(z,-2,) = C,(0) exp{ -¥|z,-2,| (3-19)

where CZ(O) is a scaling constant and ¥ is a shape constant.

Then
2y
Sz(p)—SZ(O) =C_ (0 [T——z ] (3-20)
Y+ op

For the Markov process example, the transform domain variance

becomes

48
@® + v} % wd

Gz(u, v) = CX(O) Cy(O) (3-21)

where Cx(O) and Cy(O) are the magnitude scaling constants
and the shape constants of the spatial domain covariance function,

respectively.

Hadamard transform

From Equations (3-10) and (2-20) the variance function

of transform domain samples for the ordered Hadamard transform is
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Gz(u,v) = LN- AR DY C{xl,xz, Yy YZ}
2 F}NY,
n-1 .
B (e +5,0 + g0y 7,0 ] (3-22)

(-1)

Since the Hadamard transform does not possess a sequency shifting
property it is not possible to reduce Equation (3-22) to closed’

form,

Karhunen- Loeve Transform

The general expression for the variance of the variance

of transform samples given by Equation (3-10) can be rewritten as

2 Sy S s S ST
0%u,v) = 2 2 a (xz, Y501 ) 25 2 C{xl,xz, vy yz} a.(xl, Y01 V)
%27, *1 N
(3-23)

For the Karhunen-Loeve transform from Equation (2-43) the second

set of summations defines the transform kernel. Thus,

M @) 2l vy, 8,9) = T % Clxuxy, yp5v,) alx),v,,0,0) (3-24)
L7

where A{8,9) are the eigenvalues of the covariance matrix. By

this equivalence
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2 n *
g (u,v) = %?2 )\(e,CP) a'(xzi Yz:e,q”) a (XZ: YZ, u, v) (3~25)

Since the Karhunen-ILoeve transform is an orthogonal

transformation, from Equation {2-6c)
2
G (u,v) = A{u,v) (3-26)

and the variance of each transform sample is equal to its

corresponding eigenvalue.

3.2 Probability Densities

It would be desirable to know the probability density .of
transform samples for an arbitrary image transform. Unfortunately,
this result is not easily obtained since the original image probability
density is not usually well defined, and also, the transform
operation is quite often mathematically complex. However, the
transforms considered for image processing applications form a
weighted sum over all of the elements in the original image.
Therefore, one can evoke qualitative arguments based upon the
Central Limit Theorem of sf:atistics that the probability density of
transform samples tends to be Gaussian Wiﬂllmoments as calculated
in the previous section. For the subsequent analysis, a Gaussian
model is developed for the probability demsity of the Fourier,

Hadamard, and Karhunen-Loeve transform domain samples.
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Fourier transform samples are complex numbers which
may be represented in real and imaginary, or fnagnitude and phase,
form. In.either case there are two components per transform
sample that must be quantized. The real, FR(u, v) and imaginary,
FI(u, v), components of the Fourier transform samples may be
assumed to follow the same Gaussian distribution vs/:hose variance,

Oz(u, v), is proportional to the power spectral density of the original

image. Hence,

¥ (0, v) |

1 - ']

p{FR(u,V)> = [2m 0%, 1% exp{ —B—— (3-27)
20 (u,v)

2

-F_(u,v)

P FI(u,v)} = [2n0%w 01 % exp — (3-28)
2.0 {u,v)

If the real and imaginary components are Gaussian, the magnitude

of the Fourier transform sample, FM(u, v), is Rayleigh distributed

F (e, v) ' -F;I(u, V)
p{F.  (u,v) = exp F. (u,v)>0
{ M } 02(11, v) ZGZ(u, v) M

(3-29)

and its phase, F,(u,v), is uniformly distributed
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p {Fp(u,v)} = = -m< Fp <4T (3-30)

Hadamard transform samples are real, bipolar numbers which can
be represented by a single component per sample. The statistical
distribution of Hadamard sample components, FH'(u, v), may be

considered to follow a Gaussian distribution of the form

2
2 L -F}{(H,V)
P F.(u,v)) = [2mou, V] % exp - (3-31)
H 2
207(u,v)
Karhunen-Loeve transform samples are also real bipolar numbers.
The probability density of the samples may be modeled as
2
2 _% -FK(U,V)
P{F (u,v)) = (210 (0, v)] 7% exp { —5~—— (3-32)
K : 2
20" (u, v)

When the variance function, Oz(u, v), is not known for a
particular image, or class of images,. to be transforimed, the
function can usually be modeled without seriously affecting the
quantization process. From examination of the Fourier, Hadamard,
and Karhunen-ILoeve transforms of a typical image, it can be
deduced that the variance function should be a maximum at the
origin in the transform domain, be circularly symmetric, and
decrease in magnitude monotonically toward the higher spatial

frequencies. A two dimensional function processing these
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characteristics is the Gaussian shaped curve described by

2 2 uz + V2

0 (u,v) =S exp W (3-33)
where S is an amplitude scaling constant and p is a spread
control constant. Another useful function-for modéli_ng of the
variance function is

2
2 S
0 (u,v) = (3-34)

(u2 + 012) (v2 + BZ)

where S is an amplitude scaling constant and o and B are
spread control constants. This model holds exactly for the
Fourier transform if the original image can be considered as a

Gauss-Markov process source.
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4. Generalized Transform Coding

The basic premise of image transform coding is that the
two dimensional transform of an image has an energy distribution
more amenable to coding than the spatial domain representation.
As a result.of the inherent element-to~element correlation of
natural images, for many image transforms, the energy in the
transform domain tends to be clustered in a relatively few number
of transform samples. This property can be exploited to achieve
a sample reduction compared to conventional spatial domain coding.
There are two 'methods of obtaining a sample reduction by
transform coding--zonal sampling and threshold sampling, In
zonal sampling the image reconstruction is made with a subset,
usually the lowest spatial coefficients, . of the transform domain
samples. Those samples which are employed in the reconstruction
are chosen before the transformation on the basis of expected energy.
With threshold sampling the reconstruction is made with a subset
of the largest magnitude transform domain samples.
This section presents a discussion of the performance of
the Karhunen-Loeve, Fourier, and Hadamard transforms for zonal
and threshold sampling in the transform domain. The three transforms
are compared on the basis of minimum mean square error. Experi-

mental results are presented for a subjectiVe comparison.
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4.1 Generalized Zonal Sampling

Optimum Zonal Sampling

Consider an image transform of the first kind, With

zonal sampling the image is reconstructed with the first M of

2
the N transform samples. Thus, the reconstructed image becomes

. M-1
fix,y) = L F(w) blz,y,w)

The mean square error is then given by

8 = L (D Dltmy-txy?.
s N x Vv
or
1 2 2 £
g = = 22 Elf =l 5 T D Elixy) i)
N° XY N =Y
1 "2
+ —222 Ef f (XsY)}
N XYy

The first term above is the spatial domain autocorrelation
function R(0, 0, 0,0). The other terms may be evaluated by

substitution of the reverse transforms yielding'
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N™-1

2

é's = R(0,0,0,0) ~ ;—2 Z})c %,“ E {[%):0 F(w) b(x, y, W) ]
M-1 1w M-1
[ Fw') b(X;YsW'):I R L E [wéo F(w) b(x,Y,W)]

(4-4)

M-1
[ Z F(w') b(x, v, W‘):}
w'=0
Expanding the series and changing the order of summation gives
Nz-l M-1

F)F(w) Z 2 blx,¥s W) b, v, w')

8 =R(0,0,0,0) ~—5E WZ)=0 W§=0
N
N—/

w#w

> (4-5)

+'1—E

M-1 M-1-
I Z)=0 E= F(w) F(w‘)?? b(x,y, w) b(x,y, w')

By the orthogonality of the kernel b(x,y,w)

. Nz-l M-1
E %)_ Z.>=0 F(w) F(w') § (w-w')

2
8 = R(0,0,0,0) ——
s (o, ) 7z Lo o
1 M-1M-1
+ S E 2 F(w) F(w') §(w-w') (4-6)
N w=0 w'=0
Thus,
1
(4-72)

1 M 2
é_=R(0,0,0,0) - — 2 E{Fr W}
8 N~ w=0

or
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1 M1,
8 = C(0,0,0,0) = — L 07(w) (4-7b)
s NZ w=0
For a given number, M, of samples to be'included in the transformation,
the mean square error will be small if the variance of each of
the transform samples is large. The transform which minimizes
the mean square error is the Karhunen-Loeve transform of the
first kind in which the éigenvectors are arranged in correspondence
with the eigenvalues in descending order [30,317.
For an image transform of the second kind, with zonal filtering,

the reconstructed image is given by

. N-1 N-1
£(x,y) = Z& § F(u, v) b(x,v,q,v) (4-8)
N~
u,vé M(u,v)

where the transform domain indices are members of a set
determined by a mask function M(u,v). By an analysis similar
to that for an image transform of the first kind, it is found that
the mean square error is of the form

N-1 N-1

1
£S= ©(0,0,0,0) = —5 Zo VE=0 6 "(u, v) (4-9)

N | —
1, v & M(u, v}
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The transform which minimizes the mean square error is
the Karhunen-TLoeve transform of the second kind for which the
mask function corresponds. to the index pairs u,v that have the

largest eigenvalues.

Karhunen-ILoeve Transform

For the Karhunen-Loeve transform of the first kind, the

minimum mean square error becomes

1 M-1

<sS = G{0,0,0,0) - —2%):0 Mw) (4-10)
N

where A(w) represents the eigenvalues of the covariance matrix

of the image. The operational procedure for performing zonal

sampling with the Karhunen-Loeve transform of the first kind is

simply to compute and code only the first M components of the transform

which are subsequently to be used in the inverse transform..

The minimum mean square reconstruction error for zonal

sampling of the Karhunen-Loeve transform of the second kind is

1 N-1 N-1
8 =G(0,0,0,0) - — @0 V2=0 A(u, v) (4-11)
N S—_———

u,ve My, v)
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It should be noted that the mask function is generally not a

simple rectangle in the transform domain. Exhibit 4-1 shows

the ordering of the. eigenvalues for a Karhunen- Logve transform

of the second kind. In this exal;npie_ the image cova.r:;.ance.funcﬁon
is separable, and the vertical and horizontal element correlation

is the same. Therefore, the eigenvalues corresponding to each
line and column of the image are identical. The eigenvalue products
give the same eigenvalues that would be obtained for a Karhunen-
Loeve transform of the first kind. However, there is no simple

and general ordering between A(u,v) and A{w). Thus, the eigenvalue
ordering must be determined experimentally for a given Karhunen-
Loeve transform. Figure 4-1 shows 16 by 16 element sampling
masks for a 4:1 sample reduction for two values of the image
covariance function.

If a rectangular mask function

u,v ¢ M{u,v) ifu< u.i v < v, rectangular mask (4-12)

is employed for ease of implementation, the performance of the
operation will not be optimum, but the degradation will usually not
be too serious, Two other simple mask functions that could be

employed are listed below:



3.103" 559 .209 .129 A w)
1 2 .3 4 H—»
3.103 1 9.630 1.735 ° .648 .400
.559 2 1.735 .313 117 .072
.209 3 .648 .117 .044 .027
.129 4 .400 ©.072 .027 .017
Alv) I
a. Eigenvalue prodicts \(u,v) = PR P
w 1 -2 3 4 5 6 7 8
(u,v) 1.1 1,2 2,1 1,3 | 81 | 1,4 | 41 2,2
A(w) | 9.630 |1.735 | 1.735 .648 | .648 | .400 | .400 | .313
w 9 10 11 12 13 14 |. 15 16
(u,v) 3,2-.|.2,3 4,2 2,4- 13,3 | 4,3 3,4 | -4,4
AW | 17 | oy 072 | 072 | .044 " 027 | .027 | 017

b. Ordering of eigenvalue products

Exhibit 4-1. Karhunen-Loeve Transform Zonal Sampling Mask Generation
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a. XC=0.9 b. XC =10.95
YC =0.9 YC =0.90

Image covariance function -- c {xl’ Fpr Yy yz} - ®C) x) = %) (¥O)
c{o, 0,0, 0}

Figure 4-1 Karhunen-Loeve Zonal Sampling Masks



2 2
u v

1w, v € Mu,v) if — + ) <1 elliptical mask
e Ve

u,v e Mu,v) ifur< K hzgerbalic mask

The hyperbolic mask most closely resembles the optimum
mask determined by ordering the eigenvalues of the image

covariance function,

Fourier Transform

Zonal sampling with the Fourier transform consists of
sampling the lowest spatial frequencies in the transform domain,
For the Fourier transform defined by Equation (2-20}, the lowest

spatial frequencies lie in the four zones shown below:

0 R N-R-1- N-1

«—<
w
w

N-R-1 N-R-1

R N-R-1 N-1

~53.

(4-13)

(4-14)



Hadamard Transform

With an ordered Hadamard transform, zonal sampling
consists of sampling the transform domain samples with the
low sequencies. These samples lie within a circular quadrant

about the.origin in the transform domain,

4,2 Generalized Threshold Sampling

Zonal sampling in the transform domain will provide small
mean square error reconstructions of good subjective quality
if the actual magnitude of a transform domain sample does not
differ greatly from the standard deviation O(w) or O(u,v). The
difficulty with zonal sampling is that in most natural images there
are many high spatial frequency samples lying outside the sampling
zone that are of significant magnitude. In thre;hold sa{xlpling
rather than determining a priori which transform domain samples
are to be coded, the selecﬁon is made a:gter the transform has been
taken on a particular image. A threshold level is established
a priori, or pel:haps adaptively, egf}d‘onl}r those samples whose
magnitudes are greater than the threshold are coded. If the
threshold level is chosen a priori, based upon the probability density
of the transform samples, the actual sample reduction factor for
a particular image will be variable. As an altermative procedure

the threshold level could be chosen so that a given number of
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transform domain samples would be coded for a particular
image.

If transform domain threshold coding is.to be employed,
the major question of interest is: What is the optimum image
transform? In general the best transform is the transform which
maps the image energy into the fewest transform domain samples.
For a checkerboard image of half bia.ck and half white eiements
in each direction, the Hadamard transform is a ve.ry efficient
transform si'nc’e the image can be represented by only two
transform domain samples. For natural images, the image can
only be defined sta.ﬁstica.llhy, not deterministically. In such
instances the optimum (minimumAmean square error) tr;insform
is the transform for which the smallest number of samples have
ﬂ;e largest variances. As stated previously, for a given class of
images,- this transform is the Karhunen-i,oéve transform. 'I‘inis,
it is expected that the Karhunen-Loeve transform would exhibit
the best minimum mean square‘error performané;a for threshold
coding for a given class of images. -However, for a particular
image of the class, another transform could provide better

performance.
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4.3 Image Block Size Considerations

For either zonal or threshold sampling in the transform
domain, consideration must be given to the size of the image’
block. From the standpoint of image energy it is best to make the
image block size as large as possible in order t6 derive benefit
from all element-to-element correlations within the image.

For natural images, however, the correlation bet'ween element;s
separated by_over 10 to 20 elements is usually relatively small
(see Appendix A), Therefore, ls.tt-le is lost in taking the image
transform over smaller size blocks. This point is illustrated

by Figure 4-2 which contains a plot of the percentage of transform
domain energy contained in the lowest one-fourth of the transfo;m
domain samples for a one dimensional Karhunen-Loeve transform
as a function of block size. In this example the image covariance
function is modeled as a Gauss-Markov process dependent only
upon the adjacent element correlation factor, XC. As indicated
in Figure 4-2 about 90% of the image energy is contained in the
lowest one-fourth of the Karhunen-ILoeve transform coefficients
for a block size of 16 by 16 elements. The percentage of energy
contained in the low pass zone increases rather slowly for larger
size blocks and decreases much more rapidly for smaller size

blocks. It appears that a block size of about 16 by 16 elements
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Percentage of Image Energy in Low Pass Zone, Y

Y = E )‘Ngu)
N
u=l
o] {xl,xz} |x1 - x2|
—T = (XO) - ==~ normalized image covariance function
c{o.0}
100 ' I ; I
/—'
87.5 | /——
75 -
62.5 | _ —
50 ] | ] |

Figure 4-2 Effect of Image Block Size for Karhunen-Loeve Transform
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is a good compromise between maximizing the amount of image

compression possible and simplifying the implementation of the

transform coder.

4.4 Comparison of Image Transforms

A series of experiments has been conducted to determine
the image coding performance of the Fourier, Hadamard, and
Karhunen- Loeve transforms for natural images. As a result of
the computational requirements of the Karhunen-Loeve transform, the
image block size was limited to 16 by 16 elements. S

Figure 4-3, 4-4, and 4-5 contain displays of the Fourier,
Hadamard, and Karhunen-Loeve transforms. It should be noted
that there is no apparent grid structure in the reconstructed
image despite the black processing.

Figures 4-6 to 4-10 illustrate the effect of zonal low pass
filtering for the three transforms. In Figures 4-6 and 4-8 the filter
pass band for the Fourier and Hadamard transforms is a circular
zone in the transform domain. For sample reduction factors
greater than 4:1 the 16 by 16 element grid structure becomes

apparent because many of the transform samples that correspond to

*
Examples of Fourier and Hadamard transform coding in larger
size blocks are presented in Section 6.
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Figure 4-4 Hadamard Transforms in 16 x 16 Element Blocks
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‘ a. 2:1 sample reduction b. 4:1 sample reduction
I

Figure 4-6 Fourier Transform Zonal Sampling in 16 x 16 Element Blocks
-- Circular Zone

s
c. B:1 sample reduction d. 11:1 sample reduction
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a. 2:1 sample reduction b. 4:1 sample reduction

c. B:1 sample reduction d. 13:1 sample reduction

Figure 4-7 Fourier Transform Zonal Sampling in 16 x 16 Element Blocks
-- Hyperbolic Zone
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a. 2:1 sample reduction b. 4:1 sample reduction

c. B:1 sample reduction d. 12:1 sample reduction

Figure 4-8 Hadamard Transform Zonal Sampling in 16 x 16 Element Blocks
-= (Circular Zone
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a. 2:1 sample reduction b. 4:1 sample reduction

c. B8:1 sample reduction d. 12:1 sample reduction

Figure 4-9 Hadamard Transform Zonal Sampling in 16 x 16 Element Blocks
-- Hyperbolic Zone
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a. 2:1 sample reduction b. 4:1 sample reduction

c. B8:1 sample reduction d. 12:1 sample reduction

Figure 4-10Karhunen-Loeve Transform Zonal Sampling in 16 x 16 Element Blocks
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brightness changes in periods of 16 elements are excluded
from the circular pass band. To prevent this grid effect a hyper-
bolic shaped zone similar to the sampling mask of Figure 4-la was
employed. The results shown in Figures 4-7 and 4-9 show a
definite improvement in the elimination of the grid structure as
compared to Figures 4-6 and 4-8. In all four images there is an
expected loss of resolution. Figure 4-10 illustrates zonal low
pass filtering with the Karhunen-loeve transform. The filter is
a mask passing those transform domain samples corresponding
to the largest eigenvalues of the image covariance function. The
reconstructed images do not show the 16 by 16 element grid
structure, but there is some loss in resolution. Summarizing
these results: for a given sample reduction factor the Karhunen-
Loeve transform results in the smallest mean square error and
the least image degradation from a subjective viewpoint. With
a hyperbolic shaped pass band the Fourier transform is somewhat
better than the Hadamard transform for both measures of image quality.
Figures 4-11, 4-12, and 4-13 show the effects of threshold
coding in the transform domain for the three types of image
transforms. The quality rating of the three transforms from the
standpoint of subjective quality is: Karhunen-Loeve, first;
Hadamard, second; and Fourier, third. It should be noted that

the sample reduction factors obtained for equivalent image quality
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a. 5:1 sample reduction b. 10:1 sample reduction

c. 20:1 sample reduction

Figure 4-11 Fourier Transform Threshold Sampling in 16 x 16 Element Blocks
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a. 5:1 sample reduction b. 10:1 sample reduction

c. 20:1 sample reduction

Figure 4-12 Hadamard Transform Threshold Sampling in 16 x 16 Element Blocks
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a. 5:1 sample reduction b. 10:1 sample reduction

¢. 20:1 sample reduction

I
‘ Figure 4-13 Karhunen-Loeve Transform Threshold Sampling
| in 16 x 16 Element Blocks
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are much higher for threshold sampling than zonal sampling.
For a fair comparison, however, to account for position code
bits, the sample reduction factors for threshold coding should
be multiplied by a factor of about 0.6 to 0.8 to obtain
equivalent bandwidth reduction factors.,

In summary the following conclusions can be drawn from
these experiments:

a. For both zonal and threshold sampling in the transform domain,
the best transform is the Karhunen-I.ceve transform, followed

by the Hadamard transform, followed by the Fourier transform.,

b. Threshold sampling provides higher sample and bandwidth

reduction factors than zonal sampling for all three transforms.
c. The effect of a limited block size does not appear to be a

serious problem either from the standpoint of image quality

or performance.
While the Karhunen- Loeve transform does appear to provide better
performance than the Fourier and Hadamard transforms, the
margin of performance is not too large. In view of the considerably
greater amount of computation involved with the Karhunen- Loeve
transform as compared to the Fourier and Hadamard transforms,
its utilization will probably be limited. The following sections are
therefore restricted in scope to the Fourier and Hadamard transforms.
These sections present an analysis of transform domain quantization,
a further discussion of image coding for bandwidth reduction, and a

study of the error tolerance properties of image transforms,
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5. Fourier and Hadamard Image Transform Quantization

The dynamic range of Fourier and Hadamard transform
domain samples in integer arithmetic is 1 to NZA where N
denotes the number of el‘emen_ts per line of the image and A is the
maximum integer value of the amplitude of an image sample.

If each transform domain sample were simply coded in a binary
code, logZ(NZA) bit:s would be»required for each code word.

For a 2&'36 X 256 element image of 64 grey levels, each code word
would be 22 bits in length, Even with threshold coding it would

be unlikely that a signiﬁc;ant bandwidth compression could be
achieved for such large length code words. In order to achieve

a bandwidth compression with transform coding it is necessary

o recode, or quantize, each transform domain sample so that

it may be represented by relatively short length code words.

There are two basic approaches to this process: each sample could
be quantized to the same number of levels, with the quantization
levels possibly chosen according to a nonlinear scale; or the
number of levels could be permitted to vary from sample to sample
with a linear spacing of quantizatio;.rl levels. The latter approach
will result in the most efficient coding, but the code words will be
of variable length. This creates problems in data synchronization
and channel coding for error correction. The former method can

be adapted for relatively efficient constant word length coding.
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In the subsequent discussion only the first method of quantization

is considered.

5.1 Quantization Scales

In the quantization process let the transform sample
component (amplitude, real part, imaginary part, magnitude,
or phase) to be quantized be represented by the function
Fc(u, v). The range of the sample componer;t is assumed to be
broken up into K positive and K negative bands separated by
quantization levels Qj(j = 0, 1, £2,..+, £K). The zeroth
quantization level and the upper and lower quantization levels

are assigned the values

Q, =0 (5-1a)
O =3 (5-1b)
Q. -Ha (5-1c)

where A represents the maximum value of a sample of the original
image of N by N.elements. If a transform component falls in a band

bounded by quantization levels Qj- and Qj' the component is

1
quantized, and subsequently reconstructed, to the value Fj(u, v)
which lies within the band. The relationship between quantization

and reconstruction levels is given in Figure 5-1.

Quantization and reconstruction levels are logically chosen
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to minimize the effects of the quantization error introduced by
the amplitude truncation of samples. Table 5-1 lists some error
criteria for the selection of quantization and reconstruction
levels. The quantization error criterion depends upon the appli-
cation of a reconstructed image. The principal consideration is
whether the image is to be used for subjective viewing or photo-
metric measurements.

For subjective viewing the relative spatial error criterion
listed in Table 5-1 provides an indication of image quality. This
relative spatial error criterion is predicated upon the fact that
incremental brightness changes in the reconstructed image are much
more noticeable if the brightness level is low than if it is high.

Thus, to minimize the relative spatial error, the density of
quantization levels in the spatial domain should b? greater at the
lower amplitude levels. But, since the brightness of every point

of a reconstructed image is a function of the amplitude of a single
transform sample, then by the same reasoning, the density of
quantization levels should be greater for low level transform samples.
From psychophy:;ical tests, it is known that the human viewer is

very sensitive to the location of high frequency brightness transitions,
but relatively insensitive to their actuall magnitude. In fact

images which have been '"crispened'’ by high pass filtering often

appear. preferable to the original image. From this characteristic
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TABLE 5-1

Quantization Error Criteria

-1 N-Y
Curmulative mean -square z [f(x, y)- f(x, yJ
spatial error %x=0 y=0
N-1 N-1 — 0
Cumulative mean square h [F(u', v)-F(u, v)]
transform error u=0 v=0
N-1 N-1 .
Cumulative spatial error Z z ‘f(x, y)-f(x, y)l
: x=0 y=0 .
- N-1 N-- ~
Cumulative transform error p 2‘ (v, v)=F(u, v)l
u=0 v=
Relative spatial error HERIEES ]
1z, v)
. ngu v)=F(u, v)l
Relative transform error’ ’ L
IF(un V)I

'f"(u, v) = quantized value of F(u, v)

?(x, y) = inverse transform of quantized valué of. F(u, v)
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of subjective viewing it would seem that the density of quantization
levels, atlow transform sample amplitudes, should be greater

at the higher spatial frequencies than at the lower spatial
frequencies.

If photometiric measurements are to be made on an image
the cumulative mean square spatial error is a common fidelity
criterion. For a mean square error criterion the quantization
levels in the transform domain must be selected to minimize
the cumulative mean square error in the spatial domain. Let

N-1 N-1

= 1 4 2
0 = 3 o fho B fLiuy-Feuy] (5-2)

represent the cumulative mean square spatial domain error
where f(x, y) is the image reconstruction from the quantized

transform samples, f‘(u, v). For a Fourier or Hadamard transform

N-1 N-1
fxy) = T Zi, Flu,v) b(x,y,u,v) (5-3)
and
- N-1 N-1 _
£y = D, Z, Fv) bx,y,uv) (5-4)

Hence, the spaﬁai domain mean square error can be written as
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N-1 "N-1 .
E [§=0 Zo LFw,v)-F(u, )]

2
'b(X: Ve u:v):] - (5‘5)

Expanding the integrand yields

, N-1N-1 [1\51 N-1 1\12-1 NZ-I _
[} = — 2 E E 3 F £] -F ¢]
-] NZ x=0 y:O u=0 v=0 w'=0 vi=0 [ (u V) - (u V)]
R, v =F(a', v)] b, v, 1w, v) Bz, y,u',v')] (5-6)

Rearranging the order of summation gives

. N{)l N-1 Nz-;l Nz-l -
e ) E { |LF(4,v)-F(u,v)]
s NZu—O V'ou'=0v’=0 \ ’
_ N-1N-1
[F(a!, v)-F (a', w01 2, 2o P Yy e ) by, u‘,V')) (5-7)

As a result of the orthogonality of the transform kernel,

6, = —;—2 g) ‘Z)u’ 2 E {[F(u,V)—f(u, WP, v)-F',v"]
s b{u-u', v-v') (5-8a)
or
1 -~ 2
8 = ;2 ‘12 ; E([Fu,v)-F(u,v)] (5-8b)
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The cumulative mean square error in the spatial domain of
the reconstructed image is therefore equal to the cumulative
meéan square error in the transform domain. Minimization of

és can then be accomplished by minimization of the mean square

error

6lu,v) = E { [F(a, ) ~F(a,v) 1%

in the transform domain for all spatial frequencies. For the
Hadamard transform, quantization and reconstruction levels
for the transform sample amplitude must be found to minimize

6 (u,v). In the case of the Fourier transform the mean square

error of the real and imaginary, or phase and magnitude,

components of a transform must each be minimized. The mean

square error of a transform component may be written in explicit

form as
é (u,v) = ¢$+(u, v) + ‘s_ (u; v)
in which
K Qj (u, v) )
ﬂmnd=§1£ (uvaJmﬂ—ﬂWNﬂ PF)AF
G-
and
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K Qj(u, v)

$(0,v=2 [ - [F (4v-F.u,91°pF)dF {5-11b)
- j=-1 Qj+l(u,v) ¢ J € ¢

where p(Fc) is the probability density of the transform sample
component to be quantized. If p(Fc) is a symmetrical probability
density about Qo = 0, then 5+(u, v} equals 6_(u, v), and the
quantization rule determined by the minimization of €+(u, v)
is the same as that determined from 5_(u,v).

The optimum placement of thc? ciua.n‘cization and reconstruction
levels to minimize the mean square error of a quantized signal
has been determined by Panter and Dite [40]. The reconstruction
levels should be located midway between each pair of quantization
levels. Thus

Q.(u,v) + Q, ,(u,v)
J 5 Jtl (5-12)

Fj (u,v) =

The quantization levels can be determined to a good approximation

{401 from
. NA -%
NTAIJ z (p{Fc}) aF,
Q,(mv) = N_Z < (5-13)
fo 2 (p{Fc})d F_
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Three cases of interest for quantization of the Fourier and

Hadamard transforms are listed below.

Uniform distribution:

1
plF} =% {5-14a)
. NA
Qj(u,V) =] 55 {5-14b)

Rayleigh distribution:,

F, Fi (u,v)
p{?c} = T exp{ - {5-15a)
G {u, v} 26" (u, v)
. NA 2
NA J 2K -5 Felev.
——Z—J' [Fc(u, v}l exp — d Fc
Q,(u, V) - NOA. - 6; (uu V) '(5_ 15b)
. _2"' -3 FC (u, V)
[ 2P (w] exp { ~——) aF
0 607 (u,v) ¢
Gausgsian distribuﬁon-:
2
2 - “% Fc(u: v}
P{Fc} = Ruo“fu,v)] exp (- — {5-16a)
20 {u,v)
NA 2
NA o F o (w9)
— I exp ( —rmrm—— 5 d B
2 9 6 6%(u,v) ¢
Qj(u, v) = A > 2, (5-16b)
_2— FC (11, ‘V)
‘_{' exp { — ar
0 60 “{u,v) €
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The quantization scales determined by Equations (5-15b)
and {5-16b} for the Rayleigh and Gaussian distributions have
the desired subjective property that the quantization levels are
more closely spaced at the lower quantization levels, anda__. _e
more closely spaced at the higher spatial frequencies for which the
variance O 2'(u, v) is smaller. Unfortunately, the quantization levels
are nonlinearly related to the sample variance. Hence, it
becomes necesgsary to compute a separate quantization scale for
each transform sample.

There are two other scaling laws--the Gaussian error
function and the logarithmic--that have the same general
characteristics as the optimum mean square error quantizer, but
for which the quantization levels are linearly related to the
sample variance. In the Gaussian error_f_unction quantizer the
quantization levels are selected so that when the probability density
of transform samples is Gaussian with va.ria..nce. < 2:_(11,, v}, the
probability that a transform sample is quantized to a given
reconstruction level is the same for all levels, This resultd in
a uniform entropy for all reconstruction levels, and therefore a
constant word length code may be used for each quantized sample.

The quantization levels are gi'ven by the solution of the equation
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2
Q 1 F (u,v)

I‘ R exp ( - ——2———- ch
1 Q. _, N zm Gz(u,v) 20 “(u,v)
K - JNA ] Fz(u ) for j=1,2,+-+,K-1
2 1 BV

exp { = ———s——— % 4 F

J(; A 21 0% (u, v) 26 %(u, v)

(5-17)

For 1\;—A large the denominator approaches one-half and the

scaling law can be expressed in terms of the Gaussian error function

as
. Q. Q
5= = lierf —L— ) s ers ( — (5-18)
N2 0(u,v) NZ G (u,v)
where
x
erfix} = 2z ..r exp{-Zz} dz
T 0

The logaritlimic quantizer-obeys the function

in 1+—?'L—'— = -‘Llln 1+I&- for j=0,1,2,***,K-1
Wu,v) [ K I Gt e R R

(5-19
in the positive quadrant and the inverted and reversed function

in the negative quadrant where W(u,v) is a spatial frequency

weighting function. The (iuanﬁzaﬁon levels are approximately
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QJ. = W(u,v) (%‘5) ~1 for j=0,1,2,°°7, K-1 (5-20a)
NA
%= T (5-200)

A convenient implementation of the logarithmic quantizer can

be realized by adding plus one to each sample component and then
taking the logarithm. The resulting continuous function chn

then be quantized linearly.

Figure 5-2 shows the relationship between the quantization
levels set by the optimum, Gaussian error function, and logarithmic
quantizers when the probability density of the transform domain
samples is Gaussian with variance Cz(u, v). This figure indicates
that Gaussian error function scale is 2 reasonably good approximation
to the optimum scale for a transform sample maximum standard

deviation in the range of about 1,500 to 4,000,

5.2 Quantization Experiments

A series of experiments has been conducted to assess the
effects of quantization of Fourier and Hadamard transform domain
samples. In these experiments the transform domains were
quantized and reconstructions were obtained of the quantized samples.

The cumulative root mean square quantization error
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8.='| L mory i ]2% 2
o | 2 3P Hetng (5-21)

was measured for each quantized image. In addition the

difference function

d(x, ) = |£(x, y)~f (x, y) | (5-22)
was formed to indicate the spatial correlation of errors.

Figures 5-3 and 5-6 show the effects of quantization on
the Fourier and Hadamard transforms, respectively, for a
Gaussian error function quantizer with 64 quantization levels.
In these experiments the transform domain variance function was
modeled as

2
u 4+ v
p/2

2 2
9 (u,v) = S exp (=

where S and p are the maximum and spread variance parameter s.
A computer search procedure was developed to determine the

best values of S and p to minimize the quantization error &'Q.

The reconstructions in Figures 5-3 and 5-6 were made on images
quantized with the values of S and p giving a minimum value of 6Q.
Figures 5-4, 5-5, 5-7, and 5-8 illustrate the effect of an

incorrect choice of the variance parameters S and p. Thereis a

broad range in the values of S and p which provide good quality
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a. amp. par. = 91,000 b. difference
spread par. = 4,000 R.M.S. error = 2.2

Surveyor box

c. amp. par. = 174,000
spread par. = 1,500 R.M.S. error = 2.9

Surveyor boom

SPYRERLEI e Ras FEhe iy

€. amp. par. = 43,000 f. difference
spread par. = 4,300 R.M.S8. error = 1.1
Surveyor footpad

Figure 5-3 Fourier transform quantization: examples of correct parameter
scaling -- Gaussian error function quantizer, 64 levels
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a, amp. par. = 350,000 b. difference
spread par. = 4,000 R.M.,S8S, error= 11.9

‘ too large amplitude parameter

c¢. amp. par. = 20,000 d. difference
spread par. = 4,000 R.M.S8. error = 14.5

too small amplitude parameter

Proper spread parameter

Figure 5-4 Fourier transform quantization: examples of incorrect amplitude
parameter scaling -- Gaussian error function quantizer, 64 levels
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a. amp. par. = 91000 b. difference
spread par. = 16000 R.M.S. error = 8.4

too large spread parameter

i'i ii"l ey e 1 B

c. amp. par. = 91000 d, difference
spread par. = 1000 R.M.S. error = 5.3

too small spread parameter

Proper amplitude parameter

Figure 5-5 Fourier transform quantization: examples of incorrect spread
parameter -- Gaussian error function quantizer, 64 levels
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a,amp. par. = 475 b. difference
spread par. = 11,100 R.M.S. error = 1.9

Surveyor box

spread par. = 10,000 R.M.S. error = 2.3

by
N
S
&
c.amp. par. = 575 d. difference ‘3-
b
S
Surveyor boom =

€. amp. par. = 400 f. difference
spread par. = 10,000 R.M.S. error= 1.3
Surveyor footpad

Figure 5-6 Hadamard transform quantization: examples of correct parameter
scaling -- Gaussian error function
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a. amp. par. = 1400 b. difference
spread par. = 11,100 R.M.S. error = 7.8

too large amplitude parameter

v a;j"'s't =
c. amp. par, = 200 d. difference
spread par. = 11,100 R.M.S. error = 8.2

too small amplitude parameter

Proper spread amplitude

Figure 5-7 Hadamard transform quantization: examples of incorrect amplitude

parameter scaling - Gaussian error function quantizer, 64 levels
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a. amp. par. = 475 b. difference
spread par. = 15,000 R.M.S., error = 5,2

too large spread parameter

Pt L

c. amp. par. = 475 d. difference
spread par. = 4000 R.M.S. error = 4.2

too small spread parameter

Proper amplitude parameter

Figure 5-8 Hadamard transform quantization: examples of incorrect spread
parameter -- Gaussian error function quantizer, 64 levels
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reconstructions. Experiments previously reported [27] show

the effect of using 32 and 16 quantization levels picked according
to the Gaussian error function quantization scale. The quantization
error is noticeable for 32 levels and quite bad for 16 levels.

In summary of the quantization experiments, it has been
found that good quality Fourier and Hadamard transform
reconstructions are possible when the transform samples have been
quantized to as few as 64 levels using the Gaussian error function

quantization scale.
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6. Fourier and Hadamard Image Transform Bandwidth Reduction

A sample reduction, and a subsequent bandwidth reduction
by proper coding, are possible by coding the Fourier or Hadamard
transform of an image rather than the image itself. This sample
reduction is obtainable because, as a result of the element-to-
element correlation in the image, many of the transform domain
samples are of extremely low magnitude and may be deleted
from the image reconstruction without seriously degrading the
quality of the reconstructed image.

The process of selecting samples for inclusion in the image
reconstruction can be conveniently analyzed from the viewpoint
of two dimensional sampling. Figure 6-1 illustrates a generalized
block diagram of a transform sampling system. The forward
transform of an image, F(u,v), is multiplied by a two dimensional
sampling function, S(u,v), which takes on the values zero or one
according to some a priori or adaptive rule. The sampled image

transform, Fs(u., v), is
Fs{u.v] = F(u,v) S(u,v) (6-1)

The reconstructed image, fs(x, y), is then the reverse transform

of FB{u, v), Thus,

N-1 N-1
£y =2 2. F(,v) S(,v) blx,y,u,v) (6-2)
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In the case of the Fourier transform, as a consequence of
the frequency translation theorem, the reconstructed image
can be expressed as a spatial convolution, denoted by the
symbol @ , of the original image and the inverse Fourier

transform, s(x,y), of S(u,v). Thus,
(xy) =y @ sxy (6-3)

It should be noted that this result does not hold for the Hadamard
transform since the Hadamard transform does not possess a
sequency translation property.

Table 6-1 lists three basic transform sampling methods.
With the random sampling method the sampling function, S(u,v),
assumes the value 0 or 1 according to some probability
distribution p (u,v) over the transform domain. Experiments have
been performed in which one-half of the Fourier transform samples
have been randomly discarded independent of their location in the
transform domain. The resultant reconstructions were of poor
quality due to errors in deleting large magnitude low frequency
samples. Several variations were attempted in which more of the lower
spatial frequencies were included, but the results were not
particularly encouraging. It appears that at most a 2:1 sample
reduction can be obtained by random sampling at the cost of

moderate degradation.
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TABLE 6-1

Classification of Transform Sampling Methods

Sampling
Description Function Conditions
S(u,v)
1 with probability p(u,v)
Random
sampling
0 with probability 1 - p(u,v)
Zonal 1 u,v in sampling region
sampling —
0 u,v not in sampling region
1 IP(u.v]l? MT(u,v}
Threshold
sampling
0 I Flu,v) l < MT(u.vl
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The zonal and threshold sampling techniques are

discussed in the following sections.

6.1 Zonal Transform Sampling

In most scenes of interest the energy in the Fourier
transform domain tends to be clustered toward the lowest spatial
frequencies. Similarly, the Hadamard transform domain energy
is greatest at the low sequencies. For example, in the three
Surveyor spacecraft scenes, 95% of the image energy in the
Fourier transform is contained in 1% or less of the transform
samples [27].

With an image energy distribution clustered at the low
spatial frequencies or sequencies, the most obvious means of
conserving bandwidth is simply to not transmit the high spatial
frequency or sequency samples. Discarding the high spatial
frequencies or sequencies is equivalent to passing the image
through a circular, zonal, low pass filter; the result is a loss of
focus. If some degree of resolution loss is acceptable, zonal low
pass filtering of the transform domain yields relatively large
bandwidth reductions.

Zonal low pass filtering of a sequency ordered Hadamard
transform is equivalent to multiplying the transform samples by

the sampling function
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Hadamard transform:

2 2 2
S{u,v) = 0 if u +v >R
u,v=0,1,""*,N-1
S(u,v) = 1 otherwise

For the Fourier transform the sampling function is
Fourier transform:

S(u,v) =1 3
S(N-1-u, v) =1

: rA 2 2
S(u, N-1-v) = 1 if u +v >R

S(N-1-u, N-1-v) =1

S{u,v) =0 otherwise

Figure 6-2 shows the effects of Fourier and Hadamard transform
zonal low pass sampling of the Surveyor box scene over the full
frame of 256 by 256 elements. These experiments support the
widely known fact that the high frequency and sequency brightness
transitions are important even though they are relatively few in
number and contain a low proportion of the image energy. The
image degradation tends to be more noticeable for zonal filtering
of the Hadamard transform than the Fourier transform for the

same sample reduction factor because of the rectangular shape of

-99.
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e, 16:1 Fourier f. 16:1 Hadamard

Figure 6-2. Circular Low Pass Zonal Fourier and Hadamard Transform
Sampling of Surveyor Box over Full Frame of 256 x 256
Elements, unquantized transform.
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the two dimensional Hadamard reconstruction waveforms. The

eye is very sensitive to the presence of sharp brightness transitions
within an image. With the Hadamard transform all transitions
occur within one element, whereas in the Fourier transform the
brightness transitions are spread over many elements since the
reconstruction waveforms are two dimensional sinusoids.

If the zonal low pass filter has square rather than circular
boundaries in the transform domain, it is possible to produce a
low pass version of the original by the simple expedient of spatial
averaging of elements in the original image. In this case the
complexities of the transform operation would probably not be
warranted if a low pass reconstruction is acceptable.

It has been conjectured that to produce a subjectively pleasing
image, the eye only requires the low spatial frequencies of an
image signal to provide the overall grey scale and the high spatial
frequencies to provide the edge transitions. The mid-spatial
frequencies are assumed to play a minor part in the reconstruction
of an image. This conjecture has been tested by sampling the
Fourier and Hadamard transforms of an image with a circular

zonal rejection filter with the characteristic functions
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Fourier transform:

S(u,v) = 0

S{N-1-u,v) =10
FRZ S utsy: 2R s ot e PR
1 Z 2

S{u,N-1-v) = 0 2 3 2
oru +v > R

S(N-1-u, N-1-v) =0 S
(6-6)
S(u,v) = 1 otherwise
Hadamard transform:
S(a,v) =0 for Rf4 u2+v2<R:or uz+v2>R§
(6-7)

S(u,v) =1 otherwise

Figure 6-3 shows the effect of band rejection filtering on the Surveyor
box scene. The image quality appears to be somewhat degraded as
compared to the results of Figure 6-2 with a simple circular zonal
low pass selection of transform samples.

In the development of zonal transform sampling techniques
presented in Section 4 for transforms in 16 by 16 element blocks, it
was found that a hyperbolic zone suppressed the grid effect for high
sample reduction factors better than a circular zone. The effect of
the use of a hyperbolic zone of full size, 256 by 256 point, images is
shown in Figure 6-4. These reconstructions show a perceptible
improvement to their counterparts in Figure 6-2 for a circular zone.

For natural images it appears that a hyperbolic zone matches the
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a. Fourier b. Hadamard
RI =100; RZ =233.8

R3 = 256

d. Hadamard |

=2
R3 56

4:1 sample reduction

Figure 6-3 Circular Band Rejection Zonal Fourier and Hadamard
Transform Sampling of Surveyor Box over Full Frame
of 256 x 256 Elements, unquantized transform.
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c. B:1 Fourier d. B:1 Hadamard

e. 16:1 Fourier f. 16:1 Hadamard

Figure 6-4 Hyperbolic Low Pass Zonal Fourier and Hadamard Transform
Sampling of Surveyor Box over Full Frame of 256 x 256
Elements, unquantized transform.
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energy distribution better in a spatial frequency or sequency ordered

transform plane than does a circular zone.

6.2 Threshold Transform Sampling

The difficulty with zonal transform sampling is that large
magnitude transform samples often are included in the rejection zone
and therefore deleted from the reconstruction. This problem can be
overcome by the threshold sampling technique in which samples whose
magnitudes are greater than a pre-specified threshold level are
included in the image reconstruction independent of their position
in the transform domain.

Figure 6-5 and 6-6 are plots of the percentage of transform
domain samples lying below a magnitude threshold level for the Fourier
and Hadamard transforms. Maps showing the location of transform
samples exceeding the threshold level for the Fourier and Hadamard
transforms are shown in Figure 6-7. It should be noted that the large
magnitude samples tend to be located at the lower spatial frequencies
or sequencies. But many high spatial frequency and sequency samples
exceed the threshold. In low pass zonal filtering these transform domain
samples would not have been included in the image reconstruction.

Figure 6-8 to 6-11 show the effects of threshold coding in the
transform domain for the Fourier and Hadamard transforms. Each

transform domain has been quantized to 64 levels per transform sample
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5:1 sample reduction

|
c. Fourier d. Hadamard
10:1 sample reduction
]

e. Fourier f. Hadamard

20:1 sample reduction

Figure 6-7 Maps of Fourier and Hadamard Transform Samples above
hold for Surveyor Box over a Full Frame of 256 x 256
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a. 5:1 sample reduction b. Difference
R.M.S. error = 3.6

c. 10:1 sample reduction d. Difference
R.M.S. error = 3.8

e. 20:1 sample reduction f. Difference
R.M.S. error = 4.7

Figure 6-8 Fourier Transform Threshold Coding: Effects of Thresh-
olding for Surveyor Box over a Full Frame of 256 x 256
Elements, quantized transform.
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a. 10:1 sample reduction b. Difference
R.M.S. error = 3,7

Surveyor Boom

c. 10:1 sample reduction d. Difference
R.M.S. error = 1.6

Surveyor Footpad

Figure 6-9 Fourier Transform Threshold Coding: Effects of Thresh-
olding for Surveyor Footpad and Boom over a Full Frame
of 256 x 256 Elements, gquantized transform.
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k. Difference
R.M.S. error = 2.8

c¢. 10:1 sample reduction d. Difference
R.M.S. error = 3,9

e. 20:1 sample reduction f. Difference
R.M. 8. error = 4.5

Figure 6-10 Hadamard Transform Threshold Coding: Effects of Thresh-
olding for Surveyor Box over a Full Frame of 256 x 256
Elements, guantized transform.
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a. 10:1 sample reduction b. Difference
R.M.S. error = 4.8

Surveyor Boom
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c. 10:1 sample reduction d. Difference
R.M.S. error = 1.4

Surveyor Footpad

olding for Surveyor Footpad and Boom over a Full Frame
of 256 x 256 Elements, quantized transform.

|
Figure 6-11 Hadamard Transform Threshold Coding: Effects of Thresh-
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component according to the Gaussian error function quantizer scale.
Thus, the image reconstructions exhibit the joint effects of sample
deletion and quantization. Difference pictures are displayed to illustrate
the spatial distribution of errors. Also the cumulative average mean
square error has been measured for each reconstruction. From these
experiments it can be concluded that the Fourier and Hadamard
transforms both provide good quality reconstructions for sample reduc-
tion factors of 5:1. Some image degradation is noticeable for a sample
reduction factor of 10:1.

In order to achieve a bandwidth reduction for digital image
transmission with transform domain threshold coding it is necessary
to code the position of the samples exceeding the threshold level.
There are a variety of ways of position coding that could be employed.
The simplest conceptually would be to code the coordinates of each
significant transform sample. Higher coding efficiency can be obtained,
however, by coding the number of non-significant samples between
significant samples. This scheme, called run length coding, has been
used quite successfully in the spatial domain for black or white pictures.
To achieve a short position code length, runs are usually restricted in
length to some maximum value, normally a power of two. By including
a line synchronization code group it becomes unnecessary to code the
line number. Another advantage of the employment of a line synchro-
nization code is that it prevents the propagation of channel errors over

more than one line.
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A run length coding procedure for Fourier and Hadamard
transform threshold coding has been implemented on a general
purpose digital computer. The coding procedure is ''fail safe' in
that every transform domain sample is coded for a zero level threshold;
there is no truncation of transform samples. The basic properties
of the run length coding procedure are outlined below:

a. The first sample along each line is coded regardless of its
magnitude. A position code of all zero bits is affixed to the
amplitude code to compromise the line synchronization code

group.

b. The amplitude of the second run length code word is the coded
amplitude of the next significant sample. The position code is
the binary count of the number of samples of the significant

sample from the previous significant sample.

c. If a significant sample is not encountered after scanning the
maximum run length of samples, the position code bits are

set to all ones to indicate a maximum run length.
A simple code to implement this run length coding procedure is

given below.

-114-




position amplitude
- il g

o

x| x[x X]Y|Y|YY YI}‘

1 1 1 1 0 0 0 0 0 0 first sample of a line/below threshold
Y Y Y first sample of a line/above threshold

0 0 01 Y Y Y Y Y Y runlength=1 (adjacent significant samples)
Y

Y Y runlength=2

1 1 1 0 Y Y Y Y Y Y runlength=14

IR B T i BB B G G NS pseudo-run of length 14

This run length coding procedure for transform threshold coding

has been tested for the Surveyor box and boom scenes. As expected,
the run length coding does not introduce any reconstruction errors.
The effect of channel errors on position bits is considered in the
next section. Table 6-2 shows the bandwidth reduction factors
obtained for these test scenes as a function of the sample reduction
factor. In all cases the run length code employed four position

bits and runs were truncated in length to 14 samples. Better per-
formance could, no doubt, be obtained if the number of position code

bits were tailored to match the run statistics.
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TABLE 6-2

Experimental Bandwidth Reduction Achieved by Fourier
and Hadamard Transform Threshold Coding

for Surveyor Box Scene

Fourier Transform Hadamard Transform
Sample Number of position bits Number of position bits
Reduction
3 4 5 6 3 4 5
Bilay 2.6 3.1 3 el 2o 2.6 2.6
10:1 3.3 4.8 5.7 6.0 3.0 4.3 4.9
20: 1 3.9 6.6 8.7 10.0 3.3 5.4 6.9




7. Fourier and Hadamard Image Transform
Channel Error Tolerance

A major concern of communication system designers is the
susceptibility of data to noise interference. It is important, then, to
study the effects of noise on the image transform coding communication
system. The inherent '"error averaging'' property of transform coding
combined with error correction coding of specific transform samples
provides a means of image coding for which channel errors are less
deleterious than for conventional spatial coding of an image. This
property, of course, is predicated on the assumption that the
particular transform used tends to compact image energy in a few
number of coefficients in the transform domain.

In most digital communication systems the code alphabet
consists of two symbols which are subject to perturbations in the
channel, and these perturbations introduce random noise at the
receiver. The binary symmetric channel is used as the noise model
in the study of channel effects on image transform coding. The
classical representation of such a communication channel is given
in Figure 7-1, where the probability of receiving an incorrect symbol

is p regardless of which symbol is transmitted.
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Figure 7-1 Model of a Binary Symmetric Channel
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7.1 Channel Noise Effects

An intuitive justification for transmitting the transform
rather than the spatial domain of an image is the fact that channel
noise introduced in the transform of an image tends to be distributed
over the entire reconstructed image. Consequently, the noise
manifests itself as a combination of low order orthogonal functions
in the image due to noise introduced in the large amplitude coefficients
of the transform domain. If the Fourier transform is used, the noise
presents itself as a low frequency effect and if the Hadamard trans-
form is used, the effect is low sequency corresponding to non-periodic
checkerboards of a low number of zero crossings. Finally, if the
Karhunen- Loeve transform could be used, the noise introduced in the
large valued coefficients would correspond to those orthogonal func-
tions representing the largest eigenvalues and matching the original
image closest in a mean square error sense. In all cases, since the
eye is more sensitive to the high frequency '"salt and pepper'' effect
of channel noise in the spatial domain, the same channel error rate
in the transform domain is somewhat less offensive. Figure 7-2a
shows a mid-grey scene after having passed through a channel with
probability of error of Pe = 10_1. Figure 7-2b is the Fourier trans-
form of the output of the same channel whose input was the Fourier
transform of the mid-grey scene. Figure 7-2c is the same experiment

replacing the Fourier transform with the Hadamard transform. All
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a. BSC noise in spatial domain b. Fourier transform of BSC
noise in Fourier domain

c. Hadamard transform of BSC
noise in Hadamard domain

Figure 7-2 Binary Symmetric Channel with Error Rate Pe = 10
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three scenes have the same error rate but the induced noise energy

is distributed quite differently. A quantizing and coding method can
be developed to take advantage of the inherent high frequency or

""'salt and pepper' noise immunity that transform domain coding
offers. As a first step in this direction a requirement will be made
that each quantum level occur equally likely as any other quantum
level. This quantization criterion will guarantee that each code word
is equally likely to occur and will avoid any unexpected noise biasing,
since the binary symmetric channel affects each code bit, and there-
fore each code word, independently of all others. Such a quantization
requirement results in the quantization rule employed in the earlier
sections of this report. As was mentioned earlier, such a scheme is
sub-optimum with respect to quantization noise error, but is better
suited for channel noise immunity.

A sequence of computer noise simulation experiments have
been conducted in order to verify the concepts presented earlier.
Figures 7-3, 7-4, and 7-5 present the results of the simulation where
three different noise rates: Pe = 10-4, Pe =ID_3, Pe = 10—2, were
introduced into the spatial, Fourier, and Hadamard domains respectively.
In addition the difference pictures are included for visual purposes.

The ''salt and pepper'' effect is quite evident in Figure 7-3 for spatial

-4
domain errors, For errors less than Pe = 10 the transform

domains indicate little or no degradation while a few errors are still
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a. Pe=10 " b. Difference

c. Pe=10 d. Difference

f. Difference

Figure 7-3 Spatial Domain Coding Effects of Channel Errors
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c. Pe=10 d. Difference

f. Difference

Figure 7-4 Fourier Transform Coding Effects of Channel Errors
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Figure 7-5 Hadamard Transform Coding Effects of Channel Errors
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evident in the spatial domain noise. However, for larger noise rates

the low order orthogonal functions that make up the respective trans-
formations tend to swamp out the reconstructed image. This can be
explained by the fact that the absolute, as opposed to relative value

of a bit error is much larger in the regions where the transform
coefficients (eigenvalues for the Karhunen-Loeve transform) are large
in the transform domain. This explains the effect in Figures 7-4e
and 7-5e. Further demonstration of this effect was presented in
reference [27] where it was shown that by protecting certain areas
of the transform domain from noise effects, large improvements in
noise immunity could be obtained. This suggests an error correction
procedure, a simulation of which is presented in the following section.
However, before developing some error correction techniques, it is
instructive to investigate the effects of a noisy channel on thresholded
transform domains in order that both bandwidth reduction and noise
immunity be combined. Figures 7-6 and 7-7 present results of such
a simulation in which a threshold has been selected to provide a 5:1
sample reduction ratio. Again the difference pictures are presented
for visual evaluation purposes. The noise effects now include run
length errors in the transform domain which manifest themselves as a
unique type of one dimensional blurring in the reconstructed images.
Again, noise with errors less than Pe = I[)_4 tend to be averaged out

due to the reconstruction process. The threshold coding technique

-125-



g

Figure 7-6 Fourier Transform Threshold Coding

e. Pe= 10-2 f. Difference
Effects of Channel Errors S.R. = 5:1
|
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Difference

\
\SG\% figure 7-7 Hadamard Transform Threshold Coding
[0°
? Effects of Channel Errors, S.R. = 5:1
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requires coding for position information. These code words should

be uniformly distributed so that unexpected noise biasing does not
occur in the position code as well as data code. More sophisticated

coding techniques might be pursued in this area.

7.2 Error Correction Transform Coding

As a result of the statistical regularity of samples in the
transform domain, a smaller amount of error correction in this
domain will yield a better noise immunity than the same amount of
error correction in the spatial domain. The nature of the quantization
law is such that errors in certain positions of the transform domain
are much more bothersome than in other positions due to the large
statistical variance of samples at these coefficients. Therefore, it
is natural to develop an error correction rule to correct for errors
only in these large variance regions. One such rule would be to
error correct code those transform samples which correspond to
positions in the transform domain where the transform spectrum of
the covariance function indicates a high probability of large sample
value. This technique alone requires an increase in bandwidth to
facilitate the error correction., However, it has been found that the
small increase in bandwidth in the transform domain will result in
better reconstructions than the same increase in the spatial domain.

Figure 7-8 demonstrates this situation where a 3. 5:1 increase in
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a. Spatial domain errors b. Spatial domain
error correction

c. Hadamard domain d. Fourier domain
error correction error correction

Figure 7-8 Channel Error Rate Pe=4x1 0-2 3.5:1 Increase in Bandwidth
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bandwidth has greatly improved the transform coded image over

the spatial coded image. Itis important to emphasize that the
coding technique used for the transform domain should be tailored

to a particular channel capacity. If the channel noise has an error
rate less than about 10_4, then it appears that no error correction
is necessary as in Figures 7-4a, 7-5a, 7-6a, and 7-7a. However,
under the circumstances of a high error rate, it often bulacomes
desirable to transmit as many error corrected samples as

possible at the expense of either increased bandwidth or of not trans-
mitting the entire transform plane. Using such a system, corrected,
but not necessarily errorless, data could be received until either all
data (and parity bits) are received for a complete picture or untl
normal picture bandwidth has been reached, at which time trans-
mission is terminated. In order to implement such a scheme, an
error correcting code must be selected.

A specific example of the potential of the transform error
correction coding technique is presented below. A high error rate
channel is assumed with rate Pe = 4 X 10-2. Three experiments are
implemented, one of which uses an increased bandwidth and the other
two utilize an equal bandwidth criterion such that the exact same
number of bits is necessary to transmit the spatial domain as the
transform coded domain, (256) (256) (6). A Bose Chandhuri-Hocquenghem

(BCH) code [41, p. 163] which is capable of correcting a total of
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seven errors is 31 bits long with 6 information bits (31, 6).

Utilizing an error correcting code capable of seven error correc-
tions does not mean that the six information bits will be received
over the noisy channel error free. Since each code word length

has been increased to thirty-one bits, eight or more errors per code
word cannot be guaranteed to be corrected. The probability of
having eight or more errors in the BCH code (31, 6) is given by the

partial sum of the binomial distribution

31

p (8 or more errors) = 2 [ il] px(l—p}al—1 (7-1)
i=8

where p is the binary symmetric channel error rate. This probability
is an upper bound for the incorrect reception of a code word since the
possibility of correct reception for greater than seven errors still
exists but is unknown. For the specific channel error rate of

4 X 10-2 the error corrected data samples will be received with
probability of error no greater than 2. 26 X 10-5 [42].

Figure 7-8 presents the results of an experiment in which an
increased bandwidth has been allowed to compensate for the parity
bits necessary in the error correction code. However, a (31/6):1
increase in bandwidth would be necessary to completely transmit the
full data of either the space or transform domain. Allowing only a

3. 5:1 bandwidth increase means that not all the data in the transform
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domain is transmitted and thus Figures 7-8c and 7-8d are 1.44:1
low pass sequency and frequency filters with error rate 2.26 X 10'5.
The spatial domain error correction is the average of 70% BCH code
and 30% no error coding.

For spacecraft implementations it is desirable to transmit
the error corrected image with no increased bandwidth requirement
over conventional spatial domain transmission. Thus a (31/6):1 low
pass frequency or sequency filter with error rate 2.26 X 10'5 will
result in an equal bandwidth requirement. The results of this
experiment are displayed in Figures 7-9b and 7-9d.

Because zonal low pass transform filtering is a non-adaptive
technique for bandwidth reduction, it is desirable to utilize the adap-
tive feature of threshold coding as a means of more optimally com-
pensating for the parity bits necessary for error coding. Thus a run
length coding technique utilizing 4 position bits will be used in the
transform domain.* Consequently, 4 position and 6 data bits will be
used as information bits in the transform domain for run length coded

thresholded transform samples. Thus a new error correcting code is

necessary and a convenient candidate is a BCH (31, 11) code. This

*
A pseudo-run length coding technique is alluded to here enabling
4 rather than 8 bits necessary for position coding [43].
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a. Fourier run length b. Fourier zonal error
error corrected retransformation corrected retransformation

c. Hadamard run length d. Hadamard zonal error
error corrected retransformation corrected retransformation

R

e. Spatial domam errors

Figure 7-9 Surveyor Box Equal Bandwidth
Error Correction Technique, Pe =4 x 10
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code, again of length 31 bits, has 11 information bits and is capable

of correcting 5 or less bit errors. Consequently, the probability of
having 6 or more errors in the BCH code for each sample is given by

the partial sum of the binomial distribution
2 31 i 31-1
p (6 or more errors) = 2 ( i ] p (1-p) = (7-2)
i= 6

and is equal to 1.27 x 1072 for a channel with error rate 4 X 10”2 [43].
Thus the cost of run length coding has changed the effective error
rate from 2.26 X 10”° to 1.27 X 105" “gor Whis example. Figure 7-9a
and 7-9c are the run length error corrected retransformations with
a 5:1 bandwidth reduction to compensate for the (31/6):1 parity
information bandwidth increase. Consequently, again, an equal
bandwidth criterion has been maintained.

It is suggested that other coding techniques could be developed
which would improve upon these results. In fact, for potential hard-
Wware systems, research ought to be undertaken to develop the best

code for the channel error rate, bandwidth, and computational com-

plexity allowable.

-134-



8. Summary

This report has presented a theoretical development of
several two dimensional transforms that are potentially useful for
image coding. Of the transforms analyzed, the Fourier, Hadamard,
and Karhunen-Loeve transforms have proven to possess the desired
property of image energy compaction in the transform domain.

The energy compaction property of these three transforms
has been exploited to achieve a sample reduction by two means:
zonal sampling and threshold sampling. In zonal sampling a sampling
mask corresponds to the positional ordering of the largest eigenvalues
of the covariance matrix of the class of images to be coded. For the
Fourier and Hadamard transforms the best sampling mask has a
hyperbolic shape in the transform domain. Examples of the sample
reduction achievable by zonal sampling with the three transforms are
shown in Figures 8-la to 8-1c. The transforms were taken in blocks
of 16 by 16 elements. The other technique of sample deletion, called
threshold sampling, simply entails the coding of each transform domain
sample that exceeds a magnitude threshold level. By this technique the
reconstruction of a particular image will suffer the least degradation
from the standpoint of energy loss. Figures 8-1d to 8-1f illustrate
the performance of threshold coding. The important conclusions to

be drawn from Figure 8-1 and the supporting experimental results
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a. Fourier, hyperbolic zonal sampling b. Fourier, threshold sampling
4:1 sample reduction 5:1 sample reduction

c. Hadamard, hyperbolic zonal sampling d. Hadamard, threshold sampling
4:1 sample reduction 5:1 sample reduction

e. Karhunen-Loeve, zonal sampling f. Karhunen-Loeve, threshold sampling
4:1 sample reduction 5:1 sample reduction

Figure 8-1 Summary of Fourier, Hadamard, and Karhunen-Loeve
Transform Image Coding in 16 by 16 Element Blocks
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of Section 3 are that:

a. significant sample reduction factors can be obtained by zonal
and threshold sampling in the transform domain for the

Karhunen-IlLoeve, Fourier, and Hadamard transforms.

b. threshold sampling provides better performance (higher sample
reduction factors for the same degree of image quality) than

zonal sampling.

c. the Karhunen-Loeve transform exhibits somewhat better
performance than the other two transforms, which in turn,

exhibit about the same degree of performance.

d. the sample reductions achieved were obtained by transform
coding in blocks of only 16 by 16 elements. Image trans-
formation in such small blocks can be implemented quite
simply.

Fast computational algorithms exist for the Fourier and
Hadamard transforms. Computation of these transforms on a
general purpose computer in blocks of up to 1024 by 1024 elements
appears feasible from a computational standpoint. There is no
fast computation algorithm for the Karhunen-loeve transform. This
fact coupled with the realization that the Karhunen- Loeve does not
perform appreciably better than the Fourier and Hadamard transforms
seems to limit the practical utility of the Karhunen-Loeve transform.
For these reasons the detailed analysis of the report has been limited

primarily to the Fourier and Hadamard transforms.
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An analysis has been performed to determine the optimum

means of transform domain sample quantization. The results of
this analysis indicate that for a quantization strategy in which
each sample is coded to the same number of levels, the optimum
quantizer places the quantization levels along a nonlinear scale
both in sample amplitude and position in the transform domain.
Unfortunately, the optimum is difficult to implement. Therefore,
several nonlinear scales that could be deterministically computed
were analyzed. The best performance has been obtained with a
Gaussian error function quantizer. With this quantizer, good quality
reconstructions have been obtained with 64 quantization levels
(6 bits) per transform sample component for both the Fourier and
Hadamard transforms.

Zonal and threshold sampling of quantized Fourier and Hadamard
transforms of images has been investigated in detail for a variety
of images. The transforms have been taken in blocks of up to 256
by 256 elements. A position coding technique for threshold sampling
employing run length coding has been implemented and evaluated.
Figure B-2 illustrates the effects of threshold coded quantized Fourier
and Hadamard transforms of images over a full frame of 256 by 256
elements.

The conclusions to be drawn from these experiments are that:
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a. Fourier, hyperbolic zonal sampling b. Fourier, threshold sampling
4:1 sample reduction 5:1 sample reduction

c. Hadamard, hyperbolic zonal sampling d. Hadamard, threshold sampling
4:1 sample reduction 5:1 sample reduction

Figure 8-2 Summary of Fourier and Hadamard Transform Full Frame
Image Coding -- Quantized and Coded Images
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a. for any size block,threshold sampling provides better per-

formance than zonal sampling.

b. performance.is better for larger size blocks, but the difference
in performance between blocks of 16 by 16 elements and blocks

of 256 by 256 elements is not great.

c. for threshold sampling, simple run length coding can be
employed to code the position of significant samples; the run
length coding does not affect image quality, and can be
accomplished with a relatively few numbe:l: of bits per image
element.

The effect of channel errors on transform coded images has
been studied. It has been found that channel errors in the transform
domain tend to cause a small overall loss in resolution; there are
no discrete effects like the ‘'salt and pepper' errors that appear in
normal spatial domain coding. Experiments verify that errors in
the position bits coding the position of significant samples in
threshold coding a.l:e not serious. Errors in the lowest spatial
frequencies (sequencies) have been found to degrade an image the
most. By applying chamnel error correction to a relatively small
number of these transform domain samples, a relatively large
improvement in the tolerance to channel errors can be obtained.
The equivalent amount of error correction in the spatial domain

would provide no worthwhile improvement.
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In final summary, it can be said that Fourier and Hadamard
transform image coding techniques are a feasible means of obtaining
significant bandwidtﬂ compressions for digital image transmission.
Side benefits of transmitting the Fourier or Hadamard transform of
an image rather than the image itself are an improved tolerance to
channel errors and the fact that image enhancement methods can be

readily performed in the transform domain.
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9. Recommendations

The general concept of transform coding has now been studied
and evaluated rather thoroughly in this research study and by other
investigators. There remain three areas, listed below, that merit

further study.

Transform Domain Coding

Zonal sampling in the transform domain has the advantage of
simplicity, but achievable performance is not as great as can be
obtained by threshold sampling., However, threshold sampling requires
position coding of significant samples. It appears that advantages of
both techniques might be obtained by a hybrid scheme of zonal sampli‘ng'
a set of the low spatial frequencies (sequencies) and threshold sampling
the remainder of the transform domain. Schemes for performing this
type of sampling should be investigated in conjunction with a study of
the best means of position coding significant samples.

The quantization technique presented in this report adopted the
strategy of assigning the same number of bits per transform domain
sample and then determining the optimum scaling of quantization levels.
Another technique that has been reported [37] utilizes a linear quanti-
zation scale for each sample, but the number of bits per sambple is

optimally selected to minimize the total number of image code bits for
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a given error criterion. It appears that it would be advantageous

to combine both strategies: assign the number of bits per sample
on the basis of the sample variance, and select the quantization
levels according to a nonlinear scale based upon the variance. This

quantization method should be studied further.

Implementation

A number of companies have available equipment to perform
a fast Fourier transform in one dimension for up to about 1024
points. A few compénies have built fast Hadamard transform
devices for one dimensional transforms. There are presently no
two dimensional transform processors on the market.

In view of the great potentiai for image transform coding it
would seem worthwhile to implement prototype Fourier and Hadamard
transform processors. As a first step a 16 by 16 element processor

should be built and evaluated.

Color Image Coding

Conventional color images are represented by three overlapping
intensity planes corresponding to three primary colors--red, green,
and blue. In normal television practice a linear color transition is
made into three planes which represent the luminance (the monochro~
matic representation of an image) and the two chrominance variations

of the image. The spatial frequency response of the eye to chrominance
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information is very poor. Therefore, a great deal of spatial
low pass filtering on the chrominance planes can be tolerated.
Fourier aﬁ& Hadamard zonal low pass filtering appear ideal for
this application. Studies are needed to determine the effects of
Fourier and Hadamard filtering on the chrominance planes and to

determine the best color transitions for the subsequent filtering

operation.
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APPENDIX A
Image Covariance Function®

Measurements have been made of the covariance function of an image
to determine the fit of the Gauss~-Markov process model. Figure A-1 shows
plots of the correlation between elements along a line, between elements alﬁong
a column of the image, and between elements along the diagonal of an image.
All measurements have been made on the Surveyor spacecraft scene. The
data pointsA have been fit by functions of the form A" where A is the corre-
lation between adjacent elements and n is the separation between elements.
The fit along the rows and columns of the image appears t;J be reasonably
good. As shown in the figure therle is a small deviation between the Gauss-

Markov process model for diagonal elements and actual measurements.

“Measurements have been performed by Professor Lee D. Davisson of
the University of Southern California.
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