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INFINITE PERIODIC MINIMAL SURFACES
WITHOUT SELF-INTERSECTIONS

Alan H. Schoen
Electronics Research Center
Cambridge, Mass.

SUMMARY

A preliminary account of a study of the partitioning of
three-dimensional Euclidean space into two interpenetrating
labyrinths by intersection-free infinite periodic minimal sur-
faces (IPMS) is given. A construction algorithm for deriving
such surfaces leads to the identification of the five cases
already known, plus a number of new examples.

By the use of this algorithm and other methods, a total of
seventeen intersection-free IPMS have been identified. Photo-
graphs of plastic models and computer-generated drawings of
examples of such surfaces are shown.

Also described and illustrated is an example of a non-
orientable IPMS, generated from a skew pentagonal surface module.

A counterpart to Schoenflies' proof that there exist only
six quadrilateral modules of IPMS is mentioned: There exist
only eight pentagonal modules of IPMS having non-cubic Bravais
lattices.

I. INTRODUCTION

The five published examples of infinite periodic minimal
surfaces (IPMS) which are free of self-intersections are as
follows. In 1865, the first published example of an <nfinite
periodic minimal surface (IPMS) was described by H. A. Schwarz
(ref. 1). This surface was also studied in memoirs published
independently by Riemann and by Weierstrass. In Schwarz's
analysis, which is described by Darboux (ref. 2) as deeper and
more comprehensive than that of his contemporaries, the analytic
solution for the surface is expressed in terms of the Weierstrass
parametrization for minimal surfaces. We call this surface,
which has symmetry related to that of the diamond crystal
structure, Schwarz's diamond surface, or D. A finite portion of
D is shown in Figure 1.

A surface which is adjoint (i.e., conjugate under bending
according to Bonnet's transformation (ref. 3)) to D, which we
call the primitive surface, or P, was also described by Schwarz.
P, illustrated in Figure 2, has symmetry related to that of the




a. Oblique view.

b. View along (111) axis.

c. View along (100) axis.

Figure 1.- Schwarz's diamond surface (D);
faces are those of the regular map {6,4]4}.




d. Right-left stereoscopic views of D.

Figure 1l.- Concluded.




a. Oblique view

b. View along (11l1l) axis

c. View along (100) axis

- Figure 2.- Schwarz's primitive surface P;
faces are those of the regular map {6,6]3}.




d. Right-left stereoscopic views of P;
faces are those of the regular map
{6,4]4}.

e. Left-right stereoscopic views of P;
faces are those of the regular map
{6,4]4}.

Figure 2.~ Concluded.




primitive cubic lattice. The Bravais lattice (lattice of trans-
lational symmetry) for D is face-centered-cubic (F); the Bravais
lattice for P is the primitive cubic lattice (P). A fundamental
region of P or D is of genus 3.

Both D and P are free of self-intersections. (It is readily
shown* that there are infinitely many IPMS which have self-
intersections.) A review of research on periodic minimal surfaces

suggests that only three other IPMS without self-intersections
have been identified. One of these three surfaces was studied in
detail by E. R. Neovius (ref. 4), a pupil of Schwarz. For
reasons which are explained below, we call this Neovius surface
the complement of P, or C(P). C(P) is illustrated in Figures

3 and 4. The remaining two examples, which we call H and CLP,
respectively, were described by Schwarz (ref. 1). The Weierstrass
parametrization for H, of which a single fundamental region is
shown in Figure 5, was obtained by Schwarz. CLP, which does not
appear to have been analyzed, is shown (in an irregular fragment)
in Figure 6. Both H and CLP are of genus 3. C(P) is of genus 9.

The author would like to express his special thanks to
H.B. Lawson, Jr. and to J.C.C. Nitsche, for helpful discussions
of the associate surface transformation and other topics. Thanks
are due also to N.W. Johnson for a discussion of the theory of
regular maps, and to P. Pearce, whose investigations of curved
polyhedra ("saddle polyhedra"), with minimal surface faces, led
the author to the study of Schwarz's surfaces. The help of
Robert N. Davis, in the preparation of the computer films from
which selected frames are shown in Appendix II, is gratefully
acknowledged.

II. THE EXISTENCE OF OTHER IPMS WITHOUT SELF-INTERSECTIONS

Whether other examples of intersection-free IPMS exist is
a question which does not appear to have been studied. Schwarz
mentioned the problem of finding sufficient conditions for a
finite minimal surface, bounded by line segments, to serve as a
fundamental region for an infinite discrete group of rotations —
i.e., a fundamental region for an infinite minimal surface which
is periodic (but not necessarily free of self-intersections).
The periodicity of such an infinite surface, which is equivalent
to the discrete character of the underlying rotation group,
implies that around any point P of the surface, one can always
construct a neighborhood which contains no other point of the
surface which is equivalent to P. (Schwarz also discussed the
question of whether the solution for such a surface can be
expressed in terms of elliptic functions of the coordinates.
These questions will not be discussed here.)

In this technical note, we present an introductory descrip-
tion of twelve new examples of IPMS which we find to be free of

*To be published




a. C(P) (from a photograph
of Meovius' model, shown
in his Ph.D. thesis,
1883, ref. 4).

. The surface adjoint to
C(P) (ref. 4).

Figure 3.- The two surfaces analyzed by Neovius: C(P)
(the complement of P) and the surface adjoint to C(P).



a. Oblique view.

b. View along (111) axis.

c. View along (100) axis.

Figure 4.- Views of C(P).




d. Oblique view of a frag-
ment of an infinite uni-
form skew polyhedron
which has a labyrinth
structure homeomorphic
to that of C(P). This
polyhedron is described
by the symbol (82:6+4).
Its vertices are all
symmetrically equivalent,
and its faces are all
regular polygons.

The two symmetry domains
associated with the two
distinct kinds of verti-
ces of the skeletal
graph of either laby-
rinth of C(P) (cf. ref.
10) . These saddle
polyhedra form a binary
space-filling arrange-
ment (honeycomb) in
which there exists a
one-to-one correspond-
ence between the edges
of either skeletal graph
of C(P) and the faces of
the honeycomb (Appendix
11).

Figure 4.- Conciluded.
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a. Right-left stereoscopic views of H.

b. Left-right stereoscopic views of H.

Figure 5.- Schwarz's hexagonal surface H. A single lattice
fundamental region is shown. (The model was assembled from
pentagonal plastic modules, formed in the shape of pieces
of the self-intersecting surface which is adjoint to H,
which were then bent into the desired shape.)




Figure 5c¢ (Concluded).~ An alternative form of a lattice
fundamental region of H; the convex hull of this assembly
of pentagonal faces is also a regular hexagon right prism
(cf. Figures 5a and 5b).

11
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Figure 6.- Two oblique views of a fragment
of the Schwarz surface CLP.




self-intersections. Several of these examples are derived from

a construction algorithm which was suggested by a study of
Bonnet's associate surface (bending) transformation (ref. 3), and
especially by a study of the example, described by Kummer and
Schwarz (ref. 1), of the dual relationship between the free plane
boundary curves of a quadrilateral module of P and the line-
segment boundaries of the adjoint quadrilateral module of D. An
elementary discussion of this duality, and also of its signifi-
cance in the construction of intersection-free IPMS, is provided
in Appendix I.

An explicit solution has been found, thus far, for only one
of these twelve new surfaces. This surface, which is associate
to P and D, has been named the gyroid (refs. 5 and 6), or G,
and it is illustrated in Figure 7. Concerning the remaining
eleven new IPMS, a proof of existence and of the absence of
self-intersections is elementary for one surface (Figure 8),
which we call the complement of D, or C(D) (ref 6). For six
others, which have been named H'~T, H'-R, T'-R', §'-8", I-wP,
and F-RD, respectively, the ex1stence proof is based on elemen-
tary properties of the adjoint transformation and on the pro-
perties of kaleidoscopic groups (ref. 7). Because of limits
on the orientation of the normal vector along the boundary of
a minimal surface, which follow from the fact that a minimal
surface is wholly contained within the convex hull of its
boundary curve, H'-T and C(D) can both be proved to be free of
self 1ntersectlons. Complete analysis of the surfaces H'-R, T'-R'
s'-s", I-wp, and F-RD would be required to prove rigorously that
they have no self-intersections. For two of these cases, F-RD
and I-WP, much of the required analysis was performed by Stessmann
(ref. 8), in an incomplete study of their respective self-
intersecting adjoint surfaces. I-WP and F-RD are shown in
Figures 9 and 10, respectively. For two other cases, which we
have named Ryy and Ryrr (these are also described below), both
existence and freedom from self-intersections are guaranteed,
for a finite range of proportions of an elementary Flachenstlick,
by known results (ref. 9) concerning existence conditions for
finite doubly~-connected minimal surfaces of this general type.
Finally, for the two remaining examples, which we have named
C(H) (Figure 11) and 0,C-TO (Figure 12),:rrespectively, the
absence of self—intersections can be "proved", at present, only
by invoking the results of experimental demonstrations performed
with soap films and with the bending of thin plastic models of
surfaces proved to be minimal surfaces.

Because of the diversified and complex character of these
examples, a full acount of the subject will be deferred until
an extended report* is completed. In that report, each of these

*To be published

13




14

. - . - o
- .. -
- .
- «2‘”‘75/;@'/ - e
= o
. ...
.

.

*
- .

-
/ov/," =

-
-

-

|
.

.
.

-
-~ -
. -

.-

ééa%
.

-

.
.
-
e

-

-

.
- -
.
.
-
-
-
.

-

a. View is along

(100) axis of G.

Figure 7.~ The gyroid (G); faces are
those of the regular map {6,4]4}.
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b. Right-left stereoscopic views of G.
View is along (111) axis.

c¢. Left-right stereoscopic views of G.
View is along (111) axis.

Figure 7. Continued.

15




d. Right-left stereoscopic views of G.
View is along (100) axis.

e. Left-right stereoscopic views of G.
View is along (100) axis.

Figure 7.~ Continued
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f. Close-up view of
the approximately
helical tunnel in
one labyrinth of
G. View is along
(100) axis.

g. View of G along (110)
axis.

h. View of G along
(111) axis.

Figure 7.- Concluded.
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b. Oblique view of C(D).

C.

Two 1l2-gon faces
{(center) of C(D), with
the Petrie polygon
faces (left and right,
respectively) of the
two dual regular maps
on D: 4,641 and
{6,4]4} (cf. tef. 6).

The symmetry domains
of the skeletal graph
of either labyrinth of
C(p) (cf. Fig. 4e).

Figure 8.- The complement of Schwarz's diamond surface D: C(D).
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d. View of C(D) along
(111) axis.

e. View of C(D) along
(110) axis.

f. View of C(D) along
(112) axis.

Figure 8.- Continued.
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g. Right-left stereoscopic views of c(D).

h. Left-right stereoscopic views of C(D).

Figure 8.- Concluded

20




a. View along (100) axis.
The assembly of 48 faces
appearing in the upper
half of the picture con-
tains two lattice funda-
mental regions of I-WP.
Its convex hull is a
cube. For the assembly
of 96 faces in the lower
half of the picture,
the convex hull is a
rhombic dodecahedron.

b. View along (110) axis.

c. View along (100) axis.

Figure 9.- The surface I-WP.
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d. View of I-WP along
(111) axis.

e. View of I-WP along
(110) axis.

f. View of I-WP along
(111) axis.

Figure 9.- Continued.
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g. View of I-WP along
(100) axis.

h. View of I-WP along
(110) axis.

i. Oblique view of I-WP.

Figure 9.- Concluded.
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a. View along (100) axis.

b. View along (11l1l) axis.

Figure 10.- The surface F~-RD. This assembly of 24 faces
contains one-half of a lattice fundamental region of
FP-RD. Its convex hull is a cube.
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¢. Oblique view of F-RD.

d. Oblique view of F-RD.

Figure 10 (Concluded) .- The convex hull of the lattice
fundamental region shown in Figure 10c is a rhombic
dodecahedron.
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a. View along c-axis.

b. Oblique view.

Figure 11.- The complement of Schwarz's hexagonal surface H:
C(H). A single lattice fundamental region is shown.




c. View along c-axis.

d. View along a-axis.

Figure 11.- C(H): Assembly of four lattice fundamental regions
(concluded) .

27




a. View along (100) axis.
This assembly of 48 faces
is a lattice fundamental
region of 0,C-TO. 1Its
convex hull is a cube.

b. View along (111) axis.

Figure 1l2.~- The surface 0,C-TO. The six tubules centered on

the (100) axes are of smaller diameter, relative to the enclosing
cube, than the corresponding six tubules of the Schwarz surface

P (cf. Figures 2d and 2e). The eight (111) tubules of 0,C-TO

are smaller than the corresponding eight in I-WP (cf. Figure 9).
(The eight (111) tubules of I-WP are smaller than the four
corresponding ones in F-RD (cf. Figure 10).)
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View of 0,C-TO along

C.

(110) axis.

C-TO.

14

fo

lew O

Oblique v

S

Figure 12.- Continued.
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h. Right-left stereoscopic views.

Figure 12 (Concluded) .- Assorted views of the surface
0,C-TO: one and one-half lattice fundamental regions.
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a. Right-left stereoscopic views.

b. Left-right stereoscopic views.

Figure 13.- Stereoscopic views of the surface H'-T,
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c. Right-left stereoscopic views.

d. Left~rignt stereoscopic Views.

Figure 13.- Continued
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f. Left-right stereoscopic views.

Figure 13.- Continued.
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a single
_To

left stereoscopic views of

lattice fundamental region of H

g. Right

h. Right-left stereoscopic views.

Figure 13.- Continued.
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Right-
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gle
lattice fundamental region of H'-T.

Left-right stereoscopic views of a sin

l.

—'T-

m. Left-right stereoscopic views of H

Figure 13.- Continued.
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IPMS will be described in detail. Meanwhile, we describe an
algorithm which may be used to construct eleven of the seventeen
IPMS discussed in this note. These eleven examples include the
five surfaces already known to Schwarz and Neovius. We will
also describe how the existence of specific additional examples
of intersection-free IPMS can be investigated, using (a) an
extension of the construction algorithm and (b) experimental
methods based either on the associate surface bending of thin
plastic models of surfaces proved to be minimal surfaces, or on
the construction of socap films bounded by the interior faces of
appropriate convex polyhedra (or on both).

An elementary discussion of some aspects of Bonnet's
associate surface transformation, and of its significance in
the construction of intersection-free IPMS, is given in Appendix I.
Some other related topics are also briefly discussed there.

IITI. LABYRINTHS, SKELETAL GRAPHS OF LABYRINTHS, AND THE
NAMING OF INTERSECTION-FREE IPMS ACCORDING TO SKELETAL GRAPH

Each IPMS is identified here by a specially coined name.
In several cases, including Schwarz's surfaces D, P, H (hexagon),
and CLP, this name is an abbreviation of the name assigned to a
certain infinite periodic graph. Each such graph may be con-
sidered as the skeletal graph of an_infinite labyrinth; each
intersection-free IPMS partitions R3 into two such labyrinthine
regions, and, therefore, two such graphs are associated with
each IPMS. When the labyrinths are congruent, the graphs are
congruent, and we then adopt the convention that the name of
the IPMS is the same as the name of the graph (cf. Schwarz's
D, P, H, and CLP). (In several cases, a different convention is
used for naming such surfaces, partly because the structure of
the labyrinths does not suggest simple familiar names for their
skeletal graphs.) When the labyrinths — and also their skeletal
graphs — are not congruent, the name of the IPMS is composed of
abbreviations which describe each of the skeletal graphs, these
abbreviations being segarated by a hyphen. For example, a
certain IPMS, called H -T (Figure 13), can be said to be based
on two skeletal graphs which we call H' (hexagon) and T (triangle),
respectively. - : o ' ,

These associated pairs of skeletal graphs can be considered
as dual graphs. By means of an empirically developed algorithmt
which is a refinement of an algorithm described elsewhere
(ref. 10) for establishing a dual relationship between two in-
finite symmetric graphs (i.e., graphs with equivalent edges and
equivalent vertices), it has been found possible to construct a

tSee Appendix II
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[symmetrical] dual relationship between the two skeletal graphs
associated with every one of the seventeen IPMS discussed in this
note. Not all of the seventeen IPMS have labyrinths for which
the skeletal graphs are symmetric graphs; nevertheless, this

dual graph construction algorithm leads to unigue self-consistent
results in all seventeen cases.

The utility of the concept of skeletal graph may be illus-
trated by mentioning that given an associated [duall pair of
infinite periodic graphs which are interchanged by the action
of appropriate two-fold rotational isometries, or given a pair
of distinct dual infinite periodic graphs which have appropriate
mirror-plane isometries, the guestion of the existence of an
intersection~free IPMS for which the graphs in question may be
regarded as labyrinth skeletal graphs can be immediately trans-
formed into a question which is amenable to investigation by
mathematical methods. This point will be discussed further in
Section VI. Although the isometries of the skeletal graphs
and those of the corresponding IPMS are identical for each of the
intersection-free surfaces considered in this note, it is not
true that the topological structure of a given IPMS implies the
existence of a unique pair of dual skeletal graphs for that
surface, unless it is stipulated that the two skeletal graphs
of an IPMS have the same space group as the IPMS. For example,
consider Schwarz's D and P surfaces: these two adjoint surfaces
have the same genus: 3; their skeletal graphs are of degree 4
(D) and 6 (P), respectively. As noted by Schwarz, either of
these infinitely multiply-connected IPMS may be transformed into
the other by a continuous deformation, the surface at all stages
of the deformation being a minimal surface. (This deformation
may be described rather simply in terms of a continuous change
in the separation of every pair of parallel "crossed" triangles
which bound a doubly-connected minimal surface module of the
IPMS.) Hence, the concept of a skeletal graph would be somewhat
ambiguous, if we did not require that a surface have the same
space group as the pair of skeletal graphs which belong to it.
The concept of skeletal graphs appears to be a useful one. It
provides a picturesque model of both the symmetry and connected-
ness of each IPMS. Furthermore, the concept of skeletal graph
can also be usefully applied to the qualitative consideration of
a number of different examples of infinite periodic surfaces of
constant (but non-zero) mean curvature, which are deformable in-
to the examples of IPMS described here. A detailed discussion
of the concept of skeletal graphs is included in Appendix II.

The five examples of intersection-free IPMS known to

Schwarz and Neovius all contain an infinite number of straight
lines. A straight line lying in a minimal surface is an axis
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of two-~fold rotational symmetry. Because the effect of such an
isometry is to interchange the two sides of an orientable surface
and, therefore, also to interchange the two labyrinths into
which R3 is partitioned by the surface, the labyrinth pairs for
these five examples are directly congruent. Among the twelve
new examples of IPMS discussed here, one — the gyroid — has
inversion symmetry and oppositely congruent labyrinths. Of the
remaining eleven cases, four contain straight lines and have
directly congruent labyrinths; the remaining seven examples
have mirror-plane symmetries, contain no straight lines, and
their labyrinths are non-congruent. (These remarks should, of
course, be considered with due regard for the unproved state —
for some of these surfaces — of the assertion that the surfaces
are free of self-intersections.)

IV. KALEIDOSCOPIC CELLS, OR FUNDAMENTAL REGIONS
FOR GROUPS OF REFLECTIONS IN R3

We now describe the convex polyhedra which provide plane
boundaries for finite minimal surfaceg which can be replicated
by reflection to yield IPMS without self-intersections.

Coxeter (ref. 7) has shown that there are seven convex
polyhedra II; which are fundamental regions of discrete groups
generated by reflections. These polyhedra, which will be called
kaleidoscopic cells, are described in the following list:

Iy: Rectangular parallelopiped.

M,: Tetragonal disphenoid, an isogonal, isohedral tetra-
hedron with isosceles triangle faces; the four vertices of the
tetrahedron have Cartesian coordinates proportional to (1 2 0),
(L - 20), (-102), and (- 1 0 - 2), respectively.

y: Trirectangular tetrahedron (one-half of II,); its four
vertices have coordinates proportional to (- 1 0 0), (1 - 2 0),
(L 2 0), and (- 1 0 2), respectively. I3 is called "trirectang-

ular" by Coxeter, because its face angles include three right
angles.

Mg: Quadrirectangular tetrahedron (one-half of II3); its
four vertices have coordinates proportional to (1 0 0), (- 1 0 0),
(1 - 20), and (- 1 0 2), respectively. I is called "quad-
rirectangular" by Coxeter, because its face angles include four
right angles.

Ig: (338) prism, a triangular (right) prism, each of the
three angles of the base triangle being m/3.
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g: (244) prism, a triangular (right) prism, the three
angles of the base triangle being 7m/2, w/4, and w/4, respectively.

»: (286) prism, a triangular (right) prism, the three
angles of the base triangle being n/2, w/3, and 7n/6, respectively.

The three tetrahedra, IIp, I3, and II4, which are fundamental
regions of groups of reflections having cubic Bravais lattices,
necessarily have invariant proportions. On the other hand, each
of the remaining four examples of II{ may be chosen with some
arbitrariness with respect to relative proportions. Thus, I
(monoelinic Bravais lattice) may have any set of relative values
whatever of height, depth, and width; the three prisms, Ig, lg,
and II7 (hexagonal and tetragonal Bravais lattices) may have
arbitrary values of height with respect to lateral dimensions.
In the context of minimal surface boundary conditions, however,
the relative proportions of the cells I, Ig, llg, and II; must
satisfy certain inequalities. These inequality relations arise
because the existence of a non-simply-connected minimal surface
with a specific type of boundary is subject to limitations on
the allowed separation of the fixed curves or free boundaries
(here planes) which bound the surface. The familiar examples of
the catenoid and of doubly-connected minimal surfaces bounded by
parallel coaxial "aligned" regular polygons of finite order
(this latter case was investigated in detail by H. A. Schwarz
(ref. 1)) illustrate this kind of limiting behavior on boundary
separation. h

V. ALGORITHM FOR CONSTRUCTING AN INTERSECTION-FREE
MIRROR-SYMMETRIC IPMS, WHICH IS ADJOINT TO A TWO-FOLD
ROTATIONALLY-SYMMETRIC IPMS (NOT NECESSARILY FREE OF SELF-
INTERSECTIONS) COMPOSED OF CONGRUENT REPLICAS OF A
SIMPLY~-CONNECTED MINIMAL SURFACE SPANNED BY A

STRAIGHT-EDGED POLYGON

Consider a kaleidoscopic cell II. I is a convex polyhedron
with m faces F, (r = 1,2,...,m).

Construct the,set of vectors {Uys} (r = 1,2,...,m): the
direction of each Ur is chosen to coincide with the outward
normal to Fy, and the magnitudes of the {Uy} need only satisfy
the relation

u. = 0. (1)

T ™M=

1

Let I' be a polyhedron dual to II. Each distinct Hamilton
line Hy in I corresponds to a distinct permutation T, of the
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set {F..} of faces of II. In each such permutation T,, only
adjoining faces of I (faces which intersect in an egge of 1)
correspond to consecutive elements in T,.

Now construct the polygon W, with edges {Ur}, which are
ordered consecutively in Wy accordlng to the sequence corresponding
to the Hamilton line H,. Let My be the minimal surface spanned
by Wy. (Md is unique, since Wo, is found to have a convex pro-
jection in every case which arises.) The minimal surface Mar
which is the adjoint of My, is bounded by plane lines of curvature
Cq,r. Each curve Cq,r, which lies in the plane of the face f, of
a polyhedron I* which is of type I, is the image, under the
adjoint transformation, of the edge Ur of My.

Except in the case of the three tetrahedral cells H2, I3, and
4, which have invariant proportions, the polyhedron I* has
proportions which are determined — as discussed below — by the
proportions of W,. The exact relation between the proportions of
I* and the proportions of W, can be determined only from a complete
analytic solution for the adjoint surfaces My and M

(The directions of the vectors Ur could equally well have
been chosen to lie along the <Znward normals to the faces Fy of I.
This freedom of choice for the sense of the U, is simply an
expression of the fact that if 6 is the transformation angle in
the associate surface transformation of a minimal surface, then
adjoint surfaces exist both for 6 = 7/2 and for 6 = -1/2; two
such adjoint surfaces are simply mirror images of one another.)

For each of the three tetrahedra, Iy, I3, and Iy, the
invariant proportions of the cell allow only one solution of
Eg. (1) (aside from a multiplicative constant). The five skew
guadrilateral solutions W, found, for these three cells, by
application of the above rule for deriving all distinct polygons
Wy associated with a cell, belong to the set of six Schoenflies
quadrilaterals (ref. 8) from which IPMS can be generated. (The
sixth Schoenflies quadrilateral contains one vertex angle of
2n/3; associated with this vertex, there is a branch point
corresponding to self-intersection in the IPMS obtained by
analytic continuation of the minimal surface module M, spanned
by the quadrllateral A simplified model of the adjoint surface,
based on M¥*, is shown, in an assembly constructed from flat
pieces of cardboard, in Figure 14.

For each of the three prism cells I5, H6, and II7, the edges
Ur of the skew pentagons W, are found to be a subset of the
edges of a prism Qy of the same type as the kaleidoscopic prism
cell itself. The two edges of equal length in Wy, each of
which lies at the intersection of a pair of lateral faces of the
prism ("altitude" edges), may be chosen to be of arbitrary
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Figure 14.- A simplified model of a self-intersecting infinite
veriodic minimal surface. This surface is constructed from
congruent replicas of a guadrilateral bounded by plane
lines of curvature. The guadrilateral is adjoint to
that straight-edged quadrilateral, among the six
such polygons enumerated by Schoenflies, which
contains a face angle of 1200 (cf. ref. 8).
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magnitude with respect to the lengths of the remaining edges of
Wy. For each of the six solutions Wy which are obtained from
the three prisms, IIg, IIg, and I, there is a unique inverse
relation between the relative altitude of the prism Q, (i.e.,
the ratio of the altitude of Q, to the length of one of the
transverse edges of Qy) and the relattve altitude of the

corresponding kaleldoscoplc prism cell n* (i.e., the ratio of
the altltude of IT* to the length of one of the transverse edges
of T*): as the relative altitude of Qy increases without limit,

the relative altitude of II* approaches zero; as the relatlve
altitude of Q, approaches zero, the relative altitude of n*
increases, approaching a limiting finite value.

For the rectangular parallelopiped kaleidoscopic cell, Iy,
the edges Uy of the two derived skew hexagons Wy are subsets of
the edges of rectangular parallelopipeds Qy which have dlfferent
proportions, in general, from those of the adjoint cells n*
Inverse relations hold here, also, between the relative dlmen—
sions of the kaleidoscopic cells I* and the relative dimensions
of the cells Q.

It was stated above that each of the curved edges Cq.r OF
the minimal surface Mar which is ad301nt to My, lies in the
plane of the face fy of a polyhedron n* This result is an
elementary consequence of (a) the invariance of the Gauss map
of a minimal surface under the associate surface transformation,
and (b) the interchange of asymptotics and lines of curvature
(here, linear asymptotics and mirror-symmetric plane lines of
curvature) under the adjoint surface transformation (ref. 11).
While this result provides a convenient phenomenologlcal method
for the construction of minimal surfaces of type Ma, it is not
sufficient to insure the absence of self-intersections 1n the
IPMS Ma, which 1s obtained by analytic contlnuatlon of Ma (i.e.,
by reflecting Ma in each of the faces of II*, then reflecting
the reflected surfaces in each of the faces of the repllcas of
n*, etc.). Thus, without proof to the contrary, it is necessary
to allow for the possibility that one or more of the curved
edges Cqy,r extends beyond an edge of the face f£.. in whose plane
it lies, "to form what we will call an "extended loop" The
existence of such an extended loop implies that the IPMS M*
intersects itself. 1In each of the examples which arise from the
algorithm described here, it is not difficult to present a
convincing demonstration that such extended loops do not occur,
by (a) examining the behavior of the normal to a soap-film model
of the adjoint surface Mg, thereby showing the "impossibility"
of an assignment to the faces of I* of a self-consistent set of
edge curves C which include any extended loops; (b) bending
thin models of’ the surface My into the conflguratlon of the
adjoint surface Ma' and (c) constructing Ma in the form of a
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soap film (in unstable equlllbrlum) in I* (or in a cell of pro-

portions approx1mat1ng those of II*). Such demonstrations,
although quite convincing, do not constitute a mathematical
proof of the non-existence of self-intersections. In general,

only quantitative information derived from detailed analysis

of each surface will afford such proof, and this analysis has
not been attempted. (As mentioned in Sectlon II, elementary

arguments are sufficient to prove that H'-T is free of self-

intersections.)

Meanwhile, 1t has been found possible to construct models
of IPMS of type M which appear to be fair approximations to the
actual form of the desired minimal surface, either by bending
thin plastic models of surfaces of type My, or by constructing
thin plastic models of Mu on the basis of measurements of soap
film models of M} which are blown in cells II*. The fact that
such methods lead to results of reasonably good accuracy in the
case of the surfaces D, P, and C(P), where the complete solutions
are known, lends support to the idea that reasonably correct
models can indeed be constructed in this way.

VI. THE CONSTRUCTION OF INTERSECTION-FREE IPMS WHICH HAVE A
MORE COMPLICATED FUNDAMENTAL REGION THAN THOSE IPMS
OBTAINED BY USE OF THE ALGORITHM OF THE PREVIOUS SECTION

Certain infinite periodic graphs (including several examples
of symmetric graphs) for which a fundamental region may be chosen
to lie within a kaleidoscopic cell, have been examined with an
eye toward the possibility that there may exist an intersection-
free IPMS for which such a graph provides a labyrinth skeletal
graph. If one makes use of the metaphcrical concept of inflating
the infinite graph (regarded as a flexible hollow tubular graph),
so as to transform it into a hypothetical IPMS, it is a straight-
forward matter to deduce the approximate configuration of the
curved edges Cy,r of a hypothetical surface of general type Mur
these edges lylng in the faces of a cell II* (The isometric
property of the associate surface transformatlon, coupled with
the requirement that W, be a closed polygon, constrains the
relative lengths of the edges Cy,r.) In some cases, this hypo-
thetical surface M is multiply- connected with no plane lines
of curvature or linear asymptotics in the interior of Ma~ It is
believed that several of these cases probably correspond to real
examples of intersection-free IPMS, but conclusive evidence on
this point is lacking so far.

In several other cases, the hypothetical surface M& is simply-
connected, but the number of boundlng arcs Cg, T is greater than
the number of faces of the cell II*, i.e., there is at least one
face fy of I* containing two arcs: Cg , and Ca,r- In such
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cases, it is fruitful to investigate the behavior of the normal
to the adjoint surface My and also, occasionally, the limiting
behavior of M, when it has edge proportions near those of
"slightly perturbed" examples of proved minimal surfaces having
straight edges. Such perturbed examples are constructed by
forming a kind of linear combination of the polygonal boundaries
of a pair of appropriate minimal surfaces; the boundary of the
resulting surface, in each such case, includes some edges common
to the pair of surfaces and some edges which are fractional por-
tions of edges unique to each of the pair of surfaces. It is
then sometimes possible to prove that there must ex1st a unlque
set of proportions of My for which the "extra edge" Cy , in M}
actually does lle in a plane which is not merely paraliel to

the face fy of I*, but coplanar to it, as in the hypothetical
surface. When thlS situation occurs, the surface My is a
possible intersection-free IPMS; nevertheless, the absence of
extended loops of the kind dlscussed in the previous section
must be proved in order to insure that M does not intersect
itself. '

While a number of promising examples of such hypothetical
IPMS have been identified, only two have been carefully investi-
gated so far.* One of these, which we call the complement of
the Schwarz surface H, or C(H), is of genus 7 (Figure 11). The
other, which is called 0,C-TO (Figure 12), is a surface of
genus 10; an explanation of its name and a description of its
structure are given in Table II of Section IX.

The existence of C(H) and of 0,C-TO, and the absence of
self-intersections from these surfaces, have been confirmed by
the construction of fundamental regions Mj for each surface in
the form of soap films in the appropriate kaleidoscopic cells:
s for C(H) and 4 for 0,C-TO.

VII. COMPLEMENTARY PAIRS OF INTERSECTION-FREE IPMS

It was observed by the author that the intersection-free
surface C(P) studied by Neovius (a) contains exactly the same
straight lines as does Schwarz's primitive surface P, and (b)
has the same set of isometries, or space group, as P. This
observation, which accounts for the assignment of the name C (P)
to this Neovius surface, led immediately to the construction of
the surface C(D) (ref. 6). D and C(D) also contain the same
straight lines and share a common space group. P and C(P) have
genus 3 and 9, respectively; D and C(D) have genus 3 and 19,
respectively.

*Note added in proof: A third such IPMS, of genus 5, with hexa-
gonal ad301nt module M, and cell Iy, has been found. It will
be named g-g'; it is related to the structure of hexagonal

graphite.
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The relations exemplified by these two pairs of surfaces
led the author to define two complementary minimal surfaces as
a pair of intersection-free IPMS which have the property that
the set of all straight lines lying in either surface is the same.
For each of the known pairs of complementary IPMS, the space
group — but not the genus — is the same for the two surfaces.
(Cf. ref. 12, for a discussion of Konig's theorem: "any
connected graph may be embedded in an orientable surface so as
to form the vertices and edges of a map.")

A third example of a pair of complementary IPMS is provided
by Schwarz's surface H (genus 3) and the surface C(H) (genus 7).
In this case, unlike the other two, the embedded lines do not
form a connected graph; instead, they form an infinite set of
parallel replicas of the 1nf1n1te plane graph composed of the
edges of the regular tessellation {3,6} of equllateral triangles.
Thus, the graph is the collection of all the lateral® edges of
a space-filling assembly of equilateral triangle right prisms.
It is almost certainly true that the existence limits of H and
C(H) do not coincide, i.e., there probably exists a range of
proportions for the cell IIg for which H exists but C(H) does
not exist (or vice versa). Thus, the complementary relation
between these two surfaces is restricted to the interval on
the relative altitude of IIg for which both surfaces are defined.

The fact that the complements of P, D, and H are of higher
genus than P, D, and H, respectively, may be picturesquely
illustrated by comparing appropriate portions of each surface
and of its complement which are orthogonally bounded by the
interior faces of a given suitably chosen polyhedral cell.

If the cells are chosen to be a cube for P and C(P), a tetragonal
disphenoid for D and C(D), and a rhombic prism (equal to two
adjoining cells of type Ilg) for H and C(H), then it is found
that whereas P, D, and H are represented by surface modules
having one curved edge (plane line of curvature) per cell face,
their complements are represented by surface modules having two
curved edges per cell face. It seems likely that no other
singularity-free minimal surface modules, containing the same
straight line segments, can be bounded by the interior faces of
these cells. Each of these cells is a fundamental region for

a group of reflections. In the case of D, the group is the
complete group of reflections for D. In the case of P and also
of H, the group is a subgroup of the complete group of reflec-
tions for the surface.

There exists an infinite symmetric graph of degree six,
which contains all the vertices of the f.c.c. graph of degree
twelve, but only half as many edges; the edges incident at each

* By "lateral edges" is meant edges perpendicular to the prism
axes.
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vertex lie in a plane. This graph can be embedded in either P

or in D. If each of the regular skew hexagons, defined by a
circuit of six edges of the graph, is spanned by a minimal surface,
P is the resulting IPMS. If each of the regular skew quadri-
laterals, defined by a circuit of four edges of the graph, is
spanned by a minimal surface, D is the resulting IPMS. Because
the sets of all straight lines, in P and D, include other lines
besides those in this graph of degree six, D and P are not con-
sidered to be complementary surfaces. (These other lines are

not the same for P and D.)

Finally, CLP is found to be self-complementary: if the
surface is subjected to a translation by one-half of the ele-
mentary lattice distance along the c-axis (tetragonal symmetry
axis), the graph composed of all straight lines lying in the
untranslated surface coincides with the corresponding graph
for the translated surface (Figure 6).

VIII. THE GYROID

This surface appears to be the only known example of an
intersection-free IPMS which contains neither straight lines nor
plane lines of curvature. Thus, its symmetry group includes no
mirror reflections, and the axes of rotational symmetry do not
lie in the surface. The gyroid belongs to the cubic crystal
system; its space group is I47/23/d. A few descriptive remarks
concerning this surface and its relation to the P and D surfaces
of Schwarz appear in references 5 and 6. Because a detailed
analysis of the gyroid will shortly be published elsewhere, only
a few summarizing remarks will be made here.

The gyroid G has a body-centered cubic (b.c.c., or cubic
I) Bravais lattice. It is associate to D, which has a face-
centered cubic (f.c.c., or cubic F) lattice, and to P, which
has a primitive cubic (cubic P) lattice. The angle of associa-
tivity (see Appendix I) for G, computed with respect to D, is
found to be

GG = ctn_l(K'/K)
(2)
2 38.0147740° ;
K' = K'(l/2) and K = K(1/2), which are complete elliptic integrals

of the first kind, with modulus k = 1/2, are the two fundamental
periods of the elliptic functions in terms of which Schwarz
(ref. 1) expressed the parametric solutions for D and P. The
parametrization of the gyroid, therefore, is given by the
following equations:
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% = Re exp (18 )F (1) (1 - t°) ar, (3)

y = Ref i exp (18,)F(v) (L + %) ar, (4)

z = Ref 2 exp (18,)7F (1) dr, (5)
where

P) = (1 - 14cd 4 <8 72 (6)

The skeletal graphs of the two enantiomorphous labyrinths
of G are mirror-symmetric Laves graphs of degree three (refs.
5,13).

The nearly circular plane "holes" in P (shown by Schwarz
to have radius variations of only ~ * 0.4%) correspond to nearly
helical geodesics, on G, which have radius variations, with
respect to cylindrical helices, of only ~ % 0.5%.

P, D, and G may be thought of as metric realizations of the
following regular maps with holes (refs. 5,12,14): {6,4]4},
{4,6|4}, and {6,6|3}. These regular maps are reflexive (ref.
12) in P and in D; they are non-reflexive in G.

A most convenient way of representing the group of isometries
by which one can construct any surface associate to P and D,
using congruent replicas of a face of any one of the three
regular maps listed above, is to construct a group of left- and
right-handed screw isometries. Based on the map {6,4]|4}, for
example, the four-fold screw isometries collapse to a screw of
zero pitch (but finite "hole" diameter) for P, and reach a limit
of finite pitch (but zero "hole" diameter) for D. The images
of these hole curves in P and G are straight lines in D.
Figure 16 shows computer-generated stereoscopic drawings of a
single lattice fundamental region in D, G, and P, respectively.
The transformation of the quasi-circular holes in P into straight
line holes in D, via intermediate quasi-helical holes of the
type which appear in G, is illustrated by the example of the
line segment which is shown extending from left to right along
the central axis of the fundamental region of D. This line
segment corresponds to a single pitch of the general guasi-helical
hole curve. The diameter of such a quasi-helix is defined as
the diameter of the closely similar circular helix which passes
through the vertices of the regular map {6,4|4} shown in the
figure. Thus, the quasi-helix may be described as the circum-
helix of the regular helical polygon, having a four-fold screw
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isometry, which is a hole of the regular map {6,4|4} in the
regular warped polyhedron (ref. 5) which is homeomorphic to G.

While P and D are not the only adjoint pair of intersection-
free IPMS (the intersection-free IPMS CLP and its homeomorphic
adjoint are essentially the "same" surface, aside from a change
in tetragonal proportions), no example of three intersection-free
associate IPMS, aside from the case of P, D, and G, has been
found. It is considered highly unlikely that any other inter-
section-free IPMS containing neither straight lines nor plane
lines of curvature will be found. No examples, aside from P,

D, and G, of intersection-free IPMS in which regular maps can
be embedded, are known.

The three infinite regular skew polyvhedra (ref. 14) of
Coxeter and Petrie correspond to those three, among the six
regular maps which can be embedded in P and D, whose edges
cannot be drawn on P and D as line segments. Thus, the regular
skew polyhedra have the same vertices as the corresponding
regular maps in P and D, but a pair of adjacent vertices in the
regular skew polyhedra is joined by straight edges instead of
by the curved edges which join them in P and D. When adjacent
vertices of any of the three regular maps in G are joined by
line segments, the faces of the regular map become regular skew
polygons, not regular plane polygons as in the case of P and D.

In its general morphology, G has a kind of hybrid character
with respect to P and D: G has open round "tunnels" (in either
labyrinth) which are centered on cube axes, or (100) directions,
as does P. G also has open round "tunnels" (in either labyrinth)
centered on cube body-diagonal axes, or (111) directions, as
does D. (These "tunnels" in D, however, are not "straight",
i.e., they conform to the diamond-branched labyrinths of D.)

The general example of a surface associate to P and D is
not periodic, i.e., its symmetry group is continuous, not
discrete. Only a countably infinite number of surfaces associate
to P and D are periodic; among these, G is the only example
without self-intersections. The non-periodic surfaces can be
described as having infinitely many self-intersections in each
finite region of space. Each of the periodic surfaces, on the
other hand, must satisfy certain commensurability constraints;
it is convenient to express these constraints in terms of the
proportions (pitch and diameter) of the approximately helical
"holes" (refs. 5,14) of the regular map {6,4|4} inscribed in
the surface. These commensurability constraints imply that the
set of periodic surfaces associate to P and D can be put into
one-to-one correspondence with the set of positive rational
numbers. If 6 is the angle of associativity (see Appendix I),
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with respect to D, of a periodic associate surface, than it is
found that the allowed values of 6 are given by the relation

0y o = ctn™ L[ (p/q) (XK' /K)T; (7)

p and g are any two coprime positive integers; K' = K(1/2) and
K = K(1/2) are the complete elliptic integrals appearing in
Eq. (2). For the gyroid, p =g =1 (see Eq. 2).

The countably infinite set of self-intersecting surfaces
associate to P, D, and G may be regarded as being related to
P, D, and G in somewhat the same way as the four self-inter-
secting Kepler-Poinsot polyhedra are related to the five
Archimedean regular polyhedra. On any of these self-intersecting
minimal surfaces, the three regular maps {6,4|4}, {4,6]|4}, and
{6,6]3} may be inscribed (refs. 5,12,14). The "simplest" of
these self-intersecting surfaces is the one with p = 1 and
g = 2 (see Eq. 7); in this case, the regular map {6,4|4} has a
particularly simple relation to the structure of self-inter-
sections. This surface has been named dh, for diamond honey-
comb.

Schwarz made repeated references (ref. 1) to the bending
of minimal surfaces according to Bonnet's associate surface
transformation (ref. 3), in his discussion of P and D, but he
does not appear to have made any investigation of the global
properties of actual surfaces associate to P and D. Thus, the
gyroid appears not to have been identified before now; further-
more, the results summarized by Egq. (7) also appear to be new.

If a lattice fundamental region for each of the three sur-
faces P, D, and G is chosen to have the highest possible point
group symmetry, then the respective point groups may be listed
as follows:

p: 232 (cubic)

m > m
D: 4 3 m ([regular] tetrahedral)
G: 32 (trigonal).

Correlated with this sequence of reduced symmetry of the point
group is a monotonic increase in the normalized surface-to-
volume ratio S§/v2/3, per lattice fundamental region, for the
sequence P +~ D > G. (For comparison, it should be noted that
the corresponding value of S/V2/3 for the regular skew
polyhedron {6,4]|4} is (3/2)V3 2 2.5987.)
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The computed values of S/V2/3 for P, D, and G are given below:

Surface s/ve/3
P 3(K/K') = 2.3451
D (3/2%/3y (x'/R) = 2.4177
G (3/4%/3y (x'/R) [1 + (RK/K')°] 2 2.4533

For C(P), the only other example for which the necessary data are
available, S/v2/3 is found to have the value 3K'/K 2 3.51048; in
this case, the modulus k = 1/V/3. Related results for C(D) would
be of some interest, but the difficulty of obtaining a parametri-
zation of this surface appears formidable.

Kelvin considered the following isoperimetric problem:
what space-filling polyhedron (not restricted to be convex) has
the smallest surface area for a given value of the volume?
Kelvin found that a modification of the truncated octahedron in
which the edges are slightly curved, all faces being minimal
surfaces, leaves the volume unchanged, while the surface area
is reduced by roughly one part per thousand. No example with
a smaller value of S/V2/3 is known, but it has not been proved
that the Kelvin solution 1is optimum.

A different isoperimetric problem may be described as
follows: among all intersection-free surfaces in R3 which have
the translational periodicity of a 3-dimensional lattice and
which partition R3 into two congruent regions, which has the
smallest value of S/v2/3? 1In this case, S is the area of a
single lattice fundamental region of the surface, and V is the
volume of a primitive cell of the lattice. It appears quite
possible that the periodic minimal surface P is the optimum
example of such a surface. Both P and D can be transformed into
space-filling assemblies of Kelvin polyhedra by the following
construction rule: Add lamellae to the IPMS by spanning all
closed geodesics with minimal surfaces; then deform the resulting
configuration homeomorphically until all surface intersections
satisfy the requirements of equilibrium under surface tension.
In this final state, the angles of intersection of the three
lamellae which intersect along every curved edge are each 21/3,
and the four curved edges which intersect at every vertex meet

~

each other at the angle cos~1(-1/3) £ 109°28'.

If this construction rule is applied to G, it is found that
when the minimal surface lamellae are added, R§ is partitioned
into congruent 17-faced curved polyhedra which are homeomorphic
to the Dirichlet cells of the vertices of the two skeletal
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Laves graphs of G. (In the case of both P and D, also, the
Dirichlet cells [truncated octahedral of the vertices of the
two skeletal graphs are homeomorphic to the curved polyhedra
which result from this construction.) It is not known whether
this construction can be carried to completion in the case of
G, i.e., whether the added lamellae, which are curved decagons,
together with the qguadrilateral and hexagonal faces formed on

G by the intersections of the closed geodesics, can be deformed
into a homeomorphic configuration of minimal surfaces whose
intersections satisfy the laws of equilibrium under surface
tension. However, if such an equilibrium state does exist, the
examples of P and D suggest that the derived cell is unlikely
to have a very much smaller value of S/V2/3 than the corresponding
Dirichlet cell. For the 17-faced Dirichlet cell in the case

~

of G, S/V2/ S 5.644680; for the truncated octahedron, S/Vz/3

® 5,314740. Hence, it appears likely that <f <t exists, the
analog to the Kelvin polyhedron which is derived from the gyroid
by the empirical construction rule given above has a larger

value of S/V2/3 than does the Kelvin polyhedron.

These considerations are hardly conclusive, since they are
based on an incomplete analysis, but they provide weak additional
evidence in support of the Kelvin polyhedron as the solution
of the classical S/V2/3 isoperimetric problem.

It appears that G may be unique in a symmetrical sense:
in contrast to P and D, for which variants of lower point group
symmetry may easily be proved to exist, G may not have any
variant forms of lower symmetry. This statement is based on
the discussion which follows.

P is one of two distinct minimal surfaces which may be
derived, by means of the construction algorithm of Section V,
from the kaleidoscopic cell II; in its most symmetrical form:
the cube. The surface module Mé, in this case, is a face of
the regular map {6,4|4} on P. My is a face of the regular map
{6,4]|4} on D; the six edges of equal lengih which form the
boundary of M, correspond to a solution Ur| = constant in
Eq. (1). The other solutions of Egq. (1) in this case give rise
to a two-parameter family of adjoint surfaces which resemble
both P and D, but which have lattices of lower symmetry (either
tetragonal or monoclinic). By considering the inverse rela-
tions which hold between the relative dimensions of the parallel-
opiped HI, spanned by a hexagonal face of P in its most general or-
thorhombic form, and the relative dimensions of the parallelopiped
Qqr from which a subset of six edges forms the boundary W, of
a hexagonal face of D in its most general orthorhombic form, it

is possible to show that except when |UrJ = constant in Eq. 1,
no intersection-free associate surface on a body-centered lattice,
corresponding to the gyroid, exists. This result suggests the
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possibility that there does not exist any body-centered orthorhom-
bic version of G, however it is obtained. 1In any case, if such
an IPMS does exist, it cannot be obtained from lower symmetry
variants of P and D by the associate surface transformation.

It is not known whether surfaces derived from the gyroid,

with non-zero constant mean curvature, exist.

If oblique sets of basis vectors for the cubic lattices
P and F are constructed for suitably chosen simply-connected
lattice fundamental regions of P and D, respectively, then it is
possible to construct a representation of the bending of either
fundamental region into the other, in which each basis vector
describes an elliptical trajectory centered on the origin fixed
in the surface. When 0 = 05 (mod m), the image of this set of
vectors is a set of basis vectors for the cubic I lattice of the
gyroid. (When 6 = 65 (mod 7), the gyroid is again generated,
but the three vectors lie in a plane.) If [G4(8), ¢(8), % (6)]
is this set of vectors, then the determinant |uvw| defines the
volume of a lattice primitive cell for D, G, and P, when
8@ = 0, 6g, and /2, respectively. These volumes are simple
functions of the complete elliptic integrals appearing on p. 52.

IX. SEVENTEEN INTERSECTION-FREE IPMS

In this section, we provide a list of the seventeen sur-
faces which are the subject of this note. We will assume here
that all of these surfaces are free of self-intersections, i.e.,
we will disregard the possibility that any of them contains
any "extended loops" of the type described earlier. 1In Table
I, these surfaces are listed according to their assigned names,
in order of increasing genus. (The genus of each surface was
computed by applying Hopf's theorem (ref. 15), which states
that the Euler-Poincaré characteristic of a compact orientable
surface is equal to twice the degree of the Gauss mapping, to
a lattice fundamental region of the surface.)

For each of the 14 surfaces for which a single "Fldchenstlck"
Mé can be orthogonally bounded in the interior of one (or more)
of the seven kaleidoscopic cells, the identity and the number
of faces m of the cell II; are listed, and the number m' of
Elane line of curvature) edges of the surface Mj contained in

is also given. Whenever the application of the construction
aigorlthm of Section V allows the generation of that surface 1n
more than one of the kaleidoscopic cells, the values of m and m'
are given for each such cell. The number of the figure (if any)
in which the surface is shown is also listed.

Table II provides a list of descriptive remarks, concerning
each of the seventeen surfaces, which are sufficiently specific
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to assist the reader to some degree in identifying each surface,
even in those cases where no illustration has been provided.

Table III lists the crystal system and space group symbol
for each of these seventeen surfaces. The space group is also
identified by its number in the International Tables for X-ray
Crystallography (ref. 16).

TABLE I.- SEVENTEEN INTERSECTION~FREE
INFINITE PERIODIC MINIMAIL SURFACES

Fig.|| Name of |Genus|Kaleido- Number m of Number m' of

No. |Surface scopic Faces of Hi Boundary Curves

Cell 1, of Surface Module
i *
M
o

2 P 3 H4;H6;Hl 4(H4);5(H6);6(Hl) 4(H4);5(H6);6(H1)
1 D 3 H2 4 4
7 G 3 —_— - —
5 H(=RI) 3 HS 5 5
6 CLP 3 Hl 6 6
13 ||H'-T 4 I 5 5

1 n
— ||8 -8 4 H6 5 5
— ||H -R 5 H7 5 5
1]
— IT -R 6 H7 5 5
10 ||F-RD 6 H3 4 4
11 [jC(H) 7 H5 5 7
9 I-WP 4 H4 4 4
3,4}jjc(P) 9 H4;Hl 4(H4);6(Hl) 4(H4);12(Hl)

I RII 9 —_— — —
12 }jo,C-TO 10 H4 4 5
— || Rr1z 13 — - -
8 C (D) 19 H2 4 8

55




56

TABLE II.~- DESCRIPTIVE REMARKS CONCERNING THE SEVENTEEN
INTERSECTION-FREE INFINITE PERIODIC MINIMAL SURFACES

CLP

Primitive surface of Schwarz (ref., 1)
Diamond surface of Schwarz (ref. 1)

Gyroid, associate to P and D (cf. Section VIII
and refs. 5,6)

Hexagonal graph surface of Schwarz (ref. 1). This
surface is also designated Ry, to indicate that it

can be constructed from doubly-connected fundamental
regions ("ring-like surfaces"), bounded by the
opposite parallel equilateral triangles of a prism

of type II5. The hexagonal graph comprises all of the
the lateral edges (i.e., edges perpendicular to the
c-axis) of a space-filling assembly of congruent
regular hexagon right prisms, as well as one-half of
all the other edges of such an assembly. Specifically,
these latter edges ("altitude" edges) may be described
as the set of alternate axial edges of a honeycomb of
infinitely long congruent regular hexagon right prisms
obtained by removing the hexagonal faces from the
honeycomb of finite hexagonal prisms.

Crossed layers of parallels surface: This Schwarz
surface (ref. 1) may be described in terms of two
congruent skeletal graphs, each of which is called
"crossed layers of parallels." This graph, which
belongs to the tetragonal crystal system, is con-
structed from equidistant parallel layers of
parallel lines. Each layer lies in a plane per-
pendicular to the tetragonal axis (c-axis), and is
made up of an infinite set of equidistant parallel
lines. All pairs of adjacent layers are equidistant;
the lines in adjacent layers are orthogonal ("crossed").
Every pair of lines in adjacent layers is joined by

an edge, parallel to the c-axis, which is the line
segment of smallest length connecting the pair of
lines. Alternatively, CLP may be described in terms

of the smallest straight-edged polygon which may be
inscribed in the surface: a hexagon, visible in

Figure 6, whose edges are a subset of the edges of

a square prism. For the model shown in Figure 6, the
square prism is a cube; the space group is not affected
by the choice between cube and general square prism.

Hexagonal graph — Triangle graph surface: the
skeletal graph of one labyrinth (hexagonal) consists




10.

s'-s
H"-R
T'-R
F-RD

of all of the edges of a space-~filling assembly of
congruent regular hexagon (right) prisms; the
skeletal graph of the dual labyrinth (triangular)
consists of all of the edges of a space-filling
assembly of congruent equilateral triangle prisms.

Large square graph — Small square graph surface: the
skeletal graph of one labyrinth (S') is made up of
parallel layers of identical square tessellations,
adjacent layers being joined at edge midpoints by
edges perpendicular to the layers; the skeletal

graph of the dual labyrinth (S") is made up of layers
of identical square tessellations, halfway between
and parallel to the other layers; each square in S"
has one-half the area of a square in S . The squares
in 8" are joined by edges, perpendicular to the
layers, at alternate vertices; these edges pass
through the centers of the squares in S .

Hexagonal graph — Rhombic graph surface: H is the
collection of all lateral edges of a space-filling
assembly of congruent regular hexagon (right)
prisms, plus edges, perpendicular to the hexagonal
layers, which join neighboring layers at the mid-
points of the hexagon edges. R is a graph whose
identical layers are rhombic plane tessellations,
each rhombus being the "sum" of two adjacent
equilateral triangles. ‘The connections between
adjacent rhombic layers are edges, perpendicular
to the layers, which join acute rhombic vertices.
Rhombus Area = (1/3) (Hexagon Area).

Triangular graph — Rhombic graph surface: T' is
the collection of all lateral edges of a space-
filling assembly of congruent equilateral triangle
(right) prisms, plus edges, perpendicular to the
triangle layers, which join neighboring layers at
the midpoints of the triangle edges; R' is a graph
whose identical layers are rhombic plane tessella-
tions, each rhombus being the "sum" of two adjacent
equilateral triangles. The connections between
adjacent rhombic layers are edges, perpendicular
to the layers, which join obtusge rhombic vertices.

Rhombus Area = (2/3) (Triangle Area).
F-graph — Rhombic dodecahedra graph surface: (dual
of f.c.c.): The F-graph is the symmetric graph, of

degree 12, constructed by joining all nearest
neighbor points of a f.c.c. lattice, by an edge.
The RD-graph is constructed by joining the centroids
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11. C(H)
12. I-Wp
13. C(P)
14. RII
15. O'C—TO
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of all facially adjacent polyhedra by edges, in a
cubically symmetrical packing of regular octahedra
and regular tetrahedra. Also, the RD graph is the
assembly of all the edges of a space-filling assembly
of rhombic dodecahedra. F-RD is the adjoint cf a
surface partly analyzed by Stessmann (ref. 8).

The complement of H. This surface is a trigonally
symmetrical analog of C(P): if the cell Iy, in
its cube form, contains an orthogonally bounded
12-gon face (with curved edges) of C(P), and the
cell is continuously sheared until it assumes the
shape of a rhombic prism which is congruent to

the "sum" of two equilateral triangle prisms,

then the 1l2-gon face of C(P) is transformed into

a 1l2-gon face of C(H).

I-graph — Wrapped Package graph surface: the I-
graph is the symmetric graph, of degree eight, con-
structed by joining by an edge all nearest neighbor
points of a b.c.c. lattice; the WP graph is con-
structed by joining by an edge the centers of
opposite edges of each square face of every cube

in a space-filling assembly of cubes. (The name

WP is chosen because of the resemblance of finite
portions of the graph to the arrangement of string
on a simply wrapped package.) I-WP is the adjoint
of a surface partly analyzed by Stessmann (ref. 8).

The complement of P, analyzed by Neovius (refs.
4,6).

An IPMS assembled from "ring-like surfaces'”, each
bounded by the opposite parallel triangles (m/2,
n/4, 1/4) of a prism of type llg.

Octahedra — cuboctahedra graph — tetragonal
octahedron graph surface: O,C is a symmetric graph
of degree eight which comprises the edges of a
space-filling assembly of regular octahedra and
cuboctahedra; TO is constructed from the edges of

a space-filling assembly of tetragonal octahedra.
This octahedron consists of an assembly of four
tetragonal disphenoids, joined along a common long
edge lying along the 4-fold axis of the octahedron.
Each tetragonal disphenoid is congruent to the kaleido-
scopic cell m,. This IPMS may be regarded as a kind
of hybrid version of P and I-WP: the large cubically-
symmetrical "chambers" of the TO labyrinth may be




described picturesquely as spherical bubbles which
have sprouted tubules outward to the faces (cf. P)
and also to the corners (cf. I-WP) of an enclosing
cube. This description, based on the morphology

of a lattice fundamental region of the surface, is
reinforced by the fact that the boundary of a penta-
gonal surface module Mg, which is adjoint to the
module M} of 0,C-TO, can be expressed as a kind of
linear combination of the boundaries of quadrilateral
surface modules My of P and I-WP (cf. Section VI).
The existence of this IPMS is supported by the
experimental observation that a soap-film model of
My, formed in the interior of the kaleidoscopic

cell Mg, is stationary, and therefore appears to
satisfy the requirements of unstable equilibrium

for a minimal surface which is orthogonally bounded
by the interior of a convex polyhedron. The
relative lengths of the edges of the pentagonal
module for this surface were derived from measure-
ments of the soap film MJ.

l6. Rt An IPMS assembled from "ring-like surfaces", each
bounded by the opposite parallel triangles (7m/2,
n/3, n/6) of a prism of type Iy.

17. C(D) The complement of D (ref. 6). The skeletal graphs
of C(P) and C(D) may be derived according to a simple
rule from the skeletal graphs of P and D, respectively:;
this rule is described in Appendix II.
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TABLE III.- CRYSTAL SYSTEMS AND SPACE GROUPS

OF THE SEVENTEEN INTERSECTION-FREE INFINITE PERIODIC

MINIMAL SURFACES

Name of Crystal Space Group Symbol| Space Group Number
Surface System
p Cubic p 232 221
m m
D Cubic F4d3m 216
G Cubic rh3y2 214
a d
H Trigonal P 3 % 1 164
CLP Tetragonal P4 2m 111
1 6 2 2
H -T Hexagonal P T mm 191
s'-s" Tetragonal p 222 123
€ g mmm
1" 6 2 2
H -R Hexagonal P oom o 191
. 6 2 2 ’
T -R Hexagonal P T mm 191
. 4 = 2
F-RD Cubic F o 3 - 225
C (H) Trigonal P3 % 1 164
. 4 =2
I-WP Cubic I - 3 = 229
. 4 = 2
C(P) Cubic P — 3 = 221
4
RII Tetragonal P . ccC 124
, 4 = 2
0,C-TO Cubic P o 3 o 221
RIII Hexagonal P 6 2 2 177
c (D) Cubic F43m 216

The lower-symmetry variants of

P and D are given below:

4 2 2
PT Tetragonal P oomom 123
. 2 2 2
PO Orthorhombic P oomom 47
Dy, Tetragonal I 4m?2 119
DO Orthorhombic F 222 22
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X. THE EIGHT PENTAGONAL MINIMAL SURFACES WHICH
ARE "FLACHENSTUCKE" FOR IPMS ON
NON-CUBIC BRAVAIS LATTICES

Schoenflies (ref. 8) proved that there are only six minimal
surfaces spanned by straight-edged quadrilaterals from which
IPMS can be constructed. In all of these six examples, the
edges of the quadrilaterals are either cube edges or cube face
diagonals. While there is an infinite number of polygons of
any higher order, including pentagons, which bound minimal sur-
faces from which IPMS can be constructed, the number of pentagons
18 restricted to eight, if only IPMS having non-cubic Bravatis
lattices are allowed. These correspond to the eight ways of
constructing pentagons from the edges of any of four triangular
(right) prisms. The triangle faces of these prisms are:

(a) 30° - 60° - 90°
(b) 60° - 60° - 60°

(c) 120° 30° - 30°

(d) 90° - 45° - 45°
XI. A NON-ORIENTABLE IPMS

A non-orientable IPMS has been constructed in which self-
intersections occur only along the branch lines, associated with
simple branch points, of the skew-hexagram-like faces of which
it is composed. A single fundamental region of this surface is
shown in Figure 15. The Bravais lattice of this surface is P
(primitive cubic). The elementary skew polygon which is a
fundamental region for the group of two-fold rotational isometries
of the surface is a pentagon; 48 such pentagonal faces are con-
tained in a single fundamental region of the surface. A repre-
sentative pentagonal face has consecutive vertices at the posi-
tions (0 0 O0), (-101), (-112), (14 -1), and (0 4 0).

This surface partitions R3 into two directly congruent
labyrinths, for either of which the skeletal graph may be
described as a symmetric graph of degree three which is homeomor-
phic to the Laves graph of degree three (ref. 13), but which is
more specifically described, metrically, as being derived from
the diamond graph by symmetrically removing a single edge from
the set of four edges incident at each vertex.

The non-orientable character of this surface is easily

verified by identifying an appropriate closed path along six
contiguous pentagonal faces. As is clearly shown by a stereo-
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a. View along (111)
axis.

b. View along (110)
axis.

Figure 15.- A non-orientable infinite periodic minimal surface.
Shown here is a single lattice fundamental region.
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c. Right-left stereoscopic views of non-orientable surface.

d. TLeft-right stereoscopic views of non-orientable surface.

Figure 15.~ Concluded.
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graphic projection of the Gauss map for these six faces, the
normal to the surface is defined at any point with the ambiguity
proper to a non-orientable surface.

The exact equivalent topological character of a fundamental
region of this surface has not yet been investigated.

XII. ASSOCIATE SURFACE TRANSFORMATION OF P AND D
SURFACES OF SCHWARZ

Figure 16 shows computer-drawn stereoscopic views of simply-
connected fundamental regions of D, G, and P. The fundamental
regions are selected to include eight skew hexagonal faces of the
regular map {6,4|4}. The role of the four-fold screw operator,
as a generator of the group by which a single such face may be
analytically continued to construct the complete associate IPMS,
is explained briefly in Section VIII.

Using plastic models of the surfaces shown in Figure 16,
one can literally bend each of these surfaces into either of the
others. (The fundamental regions for G and for P require
appropriate cuts in order to be simply-connected. The cut for
G separates the hexagonal faces which have a common point near
the top center of Figures 16b and l6e. The cut for P is along
the approximately semi-circular arc which joins the upper-front
pair of hexagonal faces to the upper-rear pair of hexagonal
faces, in Figures l6c and 16f.) During much of this bending,
it is necessary for the surface models to depart somewhat from
the minimal surface configurations, because the associate sur-
face transformation requires that part of the surface actually
pass through itself, i.e., that it be self-intersecting. This
self-intersecting behavior is shown gquite clearly by stereo-
scopic drawings of the surface computed for several values of
the associate surface transformation angle different from those
for D, G, and P.
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Figure 16.- Right-left stereoscopic views of fundamental regions
of D, G, and P, respectively. The centroid of D is the fixed
point; all other points of the fundamental region describe
elliptical trajectories centered on the fixed point,
throughout this bending transformation.
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Figure 16.- Left-right stereoscopic views of the fundamental
regions of D, G, and P, respectively. Concluded.
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APPENDIX I

SOME ASPECTS OF BONNET'S
ASSOCIATE SURFACE TRANSFORMATION, AND RELATED TOPICS

Any minimal surface M can be parametrized in the form

X = Rle(l - uz)F(u) du, (1)

y = Refi(l + uz)F(u) du, (2}

z = ReJFZuF(u) du, (3)
where g(u) = [x(u), y(u), z(u)] is the position of a point on

the surface, and F(u) is any analytic function of the complex
variable u.

If F(u) is replaced in Egs. (1-3) by the function F(u) exp
(i6) , where 6 is an arbitrary real constant, then the resulting
expressions for r(u) define the parametrization of a minimal
surface associate to M. Each such associate surface can be
obtained by bending M in such a way as to preserve the orienta-
tion of the tangent plane at every point of the surface. In
particular, when 6 = /2 or -n/2, the parametrized surface M*
is called the surface adjoint to M, with coordinates

x¥ = = Refi(l - u2)F(u) du, (4)
v¥ = 1 Re/(l + uz)F(u) du, (5)
z* = Refzqu(u) du; (6)

the choice between upper and lower signs in Egs. (4-6) corres-
ponds to the choice between 6 = /2 and 6 = -7/2, respectively.

For arbitrary values of 6, the coordinates of the associate
surface can be written

x(0) = x cos O + x* sin 6, (7)
y(6) =y cos 6 + y* sin 6, (8)
z(6) = z cos 6 + z° sin 9, (9)
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if the first choice of signs is made in Egs. (4-6). Egs. (7-9)
show that as 6 varies, the origin remains fixed, and every point
of the surface describes an ellipse whose center is this fixed
point.

Schwarz's collected works (ref. 1) include a brief note by
E. E. Kummer, who described a minimal surface bounded by the four
planes of a tetrahedron (tetragonal disphenoid) which is one of
the seven kaleidoscopic cells listed in Section IV of this note.
This minimal surface, which is illustrated by a drawing (ref. 1),
is described as a portion of Schwarz's primitive surface; it is
adjoint to the surface bounded by a circuit of four edges (a
Hamilton line) in a regular tetrahedron. This latter surface is
a face, bounded by linear asymptotics, of the regular map {4,6]4})
on D. The orthogonal relationship between the boundaries of
these two quadrilateral surface modules provides an illustration
of the following lemmas concerning properties of adjoint minimal
surfaces (proofs are given in ref. 11):

Lemma (1) The asymptotic lines on either of two adjoint
minimal surfaces correspond to the lines of curvature on the
other surface;

Lemma (2) On two adjoint minimal surfaces, at corresponding
points P and P*, the tangents to corresponding curves are per-
pendicular.

It follows immediately from Lemmas (1) and (2) that

Lemma (3) If the asymptotic C on a minimal surface M
is a straight line, then its image C* on the adjoint surface M*
is a line of curvature lying in a plane £ which 1s perpendicular
to C.

Furthermore, using Lemma (3) and also the fact that the
tangent planes at P and P* are parallel, we have the following
Lemma:

Lemma (4) Consider two adjoint minimal surfaces M and M*.
If P is any point of a linear asymptotic C on M, and P* is the
image of P on the plane line of curvature, C*, which is the
image of C on M* and which lies in the plane f, then the tangent
plane to M* at P* is perpendicular to f; hence M* meets f per-
pendicularly everywhere along its length.

(H. Blaine Lawson, Jr.* has used complex analysis to prove
Lemmas (3) and (4), together with a generalization of these
results which applies to conjugate minimal surfaces embedded in

*pPrivate communication
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the Euclidean 3-sphere; he has also treated the related problem
of the construction of surfaces of constant mean curvature in
Euclidean 3-space.)

We will now make use of a theorem of Weierstrass, which —
combined with Lemma (4) — serves as the basis for the algorithm
(treated in Section V of this note) for constructing minimal
surfaces which are fundamental regions for groups of reflections.
Such surfaces do not necessarily contain any straight lines.
Weierstrass (ref. 1) proved the following results:

Lemma (6) Every straight line lying on a minimal surface M
is an axis of two-fold rotational symmetry of the mlnlmal surface
M which results from analytic continuation of M;

Lemma (6) If a plane curve lies in a minimal surface M, and
the angle formed by the intersection of the plane of this curve
and the tangent plane of the surface along the curve is a right
angle everywhere along the curve, then the plane of the curve is
a plane of reflection symmetry for the minimal surface M which
is obtained by analytic continuation of M.

Lemmas (3) - (6) provide the basis for deriving examples of
IPMS, -including cases which apparently were not previously
recognized. The mathematical basis for the surface construction
algorithm will now be discussed in further detail.

Let Wy be any gtraight-edged skew polygon with directed

edges Uj, U2, ceny Um. These edges form a closed circuit,
according to the sequence Ul, Uz, oo, Um; hence
jﬁ ~
U_ = 0. (10)
=1 r

Assume that there exists a plane on which W, has a parallel or
central projection which is a simply covered convex curve; this
property (ref. 17) is sufficient to guarantee that there exists
a unique minimal surface, My, which spans Wy. (No loss of
generality results from making this restriction, because for each
of the cases of intersection-free IPMS which can be derived by
application of the construction algorithm, the polygon Wy, which
forms the boundary of the adjoint surface M,, has this convex
projection property. For other examgles of intersection-free
IPMS, for which the surface module My bounded by the faces of a
kaleidoscopic cell has more than one bounding arc on at least
one face of the cell, the convex projection property does not
always hold for Wy. Furthermore, the polygon Wy in each of
these latter cases is not a circuit of edges of a polyhedron




which is of the same type as the kaleidoscopic cell, in contrast
to the examples which follow from the algorithm. For all of
these more complex examples, nevertheless, it appears that Mgy

is unique. The present discussion will be confined to the cases
derivable from the construction algorithm; similar considerations
apply to the other cases, but these will not be described further
in this note.)

If M& is the surface adjoint to My, then from Lemma (3) it
follows that the adjoint image of each directed edge Uy of My
is a plane ling of curvature Cy,r in Mg, lying in a plane ger—
pendicular to Uy. Consider any two consecutive edges Uy, Upi]
of My, and their respective images Cy,ys Cq,r+1 in Mg - oL, T
and Cy 47 lie in planes fr and f,,j;, respectively, where fr is
perpendicular to Uy, and fy4] is perpendicular to Up4j. Let the
positive side of fy be defined as the side from which the normal
vector U, is directed outward, the same sign convention applying
also to the planes orthogonal to the remaining edges of Wy.

Then, from the preceding results, making use of the fact that

M, and Ma are orientable simply-connected surfaces, it follows
that there are two possibilities for the location of that
portion of M& which is bounded by C,,r and Co,r+1s With respect
to the four distinct regions of space formed by the intersection
of the boundary planes fy and fr4+]: either this portion of Mj
lies in the region bounded by the positive sides of both f, and
fr+1, or else it lies in the region bounded by the negative
sides of both f,. and f,,7. By applying this argument to all of
the pairs of adjacent edges of Wy, it is found that M3 may be
constructed so as to lie either on the positive side of every
one of its boundary planes, or else on the negative side of
every one of its boundary planes. These two cases correspond,
respectively, to two specimens of M¥ which are related to each
other by inversion; thus, each specimen is a mirror image of the
other. They are associated with the values 6 = 7/2 and 6 = -71/2,
respectively, in Egs. (4-6).

If Wy is derived from a kaleidoscopic cell II, according to
the procedure described in the algorithm at the beginning of
Section V, then the adjoint minimal surface MJ is bounded by
arcs Cy  lying in the planes f, of a convex polyhedron which
is a kaieidoscopic cell T* of the same type as II, but with pro-
portions which are determined by the relative lengths of the
edges U, of W,. If I is one of the tgree tetrahedral cells
described in Section IV, then II and II" are congruent, because
Eq. (1) is satisfied for only one set of relative lengths of the
Uy for the case of tetrahedra. For the four non-tetrahedral
cells, the proportions of II depend on the relative lengths of
the 0, in the way described in Section V.
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The existence of a periodic minimal surface My derived from
Mg as fundamental region is guaranteed by the fact that the group
of reflections for II" is the same as the group of reflections for
ME; this result follows from Lemma (6), since all of the boundary
arcs Cqy,r of M& lie in faces of II*. The absence of self-inter-
sections in My, on the other hand, requires also that there be no
"extended loops" among the boundary arcs C, , of M¥, as mentioned
in Section V. Each vertex of MJ is constrained to lie in the
surface of the corresponding cell II*, in fact, along an edge of
I*; however, the possibility that a given arc Co,r may form an
"extended loop", i.e., the possibility that a portion of Cqy . r
lies outside of II*, can be excluded only by detailed investiga-
tion. By making use of lemma (4) and also of the bounds on the
orientation of the normal vector along the boundary of M, (and,
therefore, also of M%) which are implied by the fact that a
minimal surface is wholly contained in the convex hull of its
boundary curve (ref. 17), it can be proved that the arcs Cy, r
do not form extended loops in most of the faces of each Mj which
is generated by using the construction algorithm of Section V.
However, aside from the five examples P, D, C(P), H, and CLP,
which are already known (from the work of Schwarz and of Neovius)
to be intersection-free, H'-T is the only other case, among the
eleven surfaces generated from this algorithm, for which it is
possible to prove, using only these boundary normal vector
arguments, that all of the arcs Cy , of M) are free of extended
loops, and — therefore — that Ma is8 free of intersections. 1In
each of the remaining five cases, rigorous proof of the absence
of self-intersections would require that the complete analytic
solution for the surface be obtained. C(D) is easily shown to
be intersection-free by using the convex hull argument cited
above.

For each of the three surfaces C(H), 0,C-TO, and g-g', the
number of boundary arcs Cqy . is greater than the number of faces
of the cell II*; arguments based on the preceding discussion and
on certain continuity properties may be used to prove the
existence of a surface module which is a fundamental region of
the group of reflections for each of these surfaces. However,
not all of the bounding arcs of any of these surface modules
have been shown to be free of an extended loop, aside from the
evidence provided by the experimental construction of soap film
models of surface modules inside kaleidoscopic cells. Thus,
although it has been rigorously proved that for each of these
examples, there exists a set of relations among the relative
lengths of the edges of a polygon W,, spanned by the adjoint
surface M,, for which the planes of the boundary curves lying
in parallel planes coalesce, it is still necessary — in the
absence of other evidence — to rely on soap film models of M
for evidence that all of the boundary arcs are free of "extended
loops". Just as in the cage of modules M} having only one
boundary arc per face of M*, it is found that plastic models of
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Mé modules derived from the shapes of these soap films may be
satisfactorily bent to produce models of adjoint surface modules
My, whose boundary curves closely approximate straight line
segments, viz., the edges of the polygon Wy.

The relation between the existence of a minimal surface M,
bounded by the faces of a kaleidoscopic cell, and the stability
properties of a soap film model of such a surface will be
discussed in detail in a future publication*. In brief, Schwarz
found that the second variation of the area of such a surface is
not positive; this property is related to the fact that a soap
film model of such a surface is in unstable equilibrium, when
the film is "freely" bounded by the faces of the enclosing
kaleidoscopic cell. Experimental observation of such a film
depends on the fact that the film is nearly stationary in its
position of unstable equilibrium, i.e., in the position corres-
ponding to the minimal surface configuration. When one or more
straight line segments lie in the interior of such a surface,
one or more fine wires can be strung inside the enclosing cell,
coinciding with such segments, in order to prevent the socap film
from moving away from its position of equilibrium. In some
cases (e.g., H), the use of such a wire makes the film actually
stationary, because it is in stable equilibrium. In other cases,
where the equilibrium is unstable (e.g., C(H)), the film remains
stationary for at least several seconds when a wire is used;
without wires, it is extremely difficult to make such films
remain stationary long enough to observe the detailed shape of
their boundary curves, or even to verify experimentally that
they exist in the form of minimal surfaces.

Another aspect of the question of the existence of inter-
section-free IPMS of specified form can be only briefly mentioned
here. It concerns a picturesque method of constructing and
classifying hypothetical examples of IPMS without self-inter-
sections. The method is based on the examination of the shape
and symmetry of assorted multiply-connected surfaces bounded by
the interiors of convex polyhedra. Such polyhedra are either
kaleidoscopic cells or symmetrical aggregates of kaleidoscopic
cells. As an example, consider a spherical soap bubble with its
center at the center of an enclosing cube; in what symmetrical
ways can one blow out tubular holes in the bubble, so that the
bubble is transformed into a minimal surface, with tubular pro-
jections, bounded by the interior surface of the cube? An
analysis of some examples of IPMS mentioned in this note,
according to this mode of description, leads to a classification
in which the surfaces are distinguished according to the cube
elements (faces, edges, or corners), or combination of cube ele-
ments, to which the tubules are attached.

*To be published
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For example, the cube elements for five of the IPMS can be
listed as follows:

F-RD 4 corners (tetrahedrally distributed)
I-Wp 8 corners

C(P) 12 edges

P 6 faces

0,C=T0O 6 faces and 8 corners

The principal advantage of this descriptive method is that
from the standpoint of morphology, it is in some respects more
convenient — paradoxically — to distinguish and classify examples
of finite portions of intersection-free IPMS which are multiply-
connected, instead of the simply-connected elementary modules into
which they may be decomposed.

It is necessary to define what is meant by calling two
intersection-free IPMS "distinct". Suppose ¥; and My are non-
congruent intersection-free IPMS. Let us calculate the genus of
a lattice fundamental region for M;; this lattice has a primitive
cell of minimum volume, i.e., its translational symmetry group is
the same as that of M;. Let p(M;) denote the genus of M;, and
G(M;) the space group of M;. Then we adopt the following con-
vention:

1. If p(Mg) # p(Mp), or p(M;) = p(My) and G(M7) Z G(Mp),
then M; and Mg will be regarded as distinct surfaces.

2. If p(M;) = p(M,) and G(Mz) = G(Mg), then ¥; and My will
be regarded as the same surface.

This classification scheme is consistent with a classification
based on the analytic properties of these surfaces. Schwarz
briefly discussed (pp. 95-96 of ref. 1) the relation between the
analytic and symmetry properties of surfaces derived from D by
changing the altitude of a hexagonal module of D along one lattice
axis. His examples include the Scherk surface, for which the
coordinates may be given as

A
e” = cos x/cos y:

in this case, the altitude of a hexagonal module of D is allowed
to increase without limit.

It has been found from a detailed study of the examples
listed in Table I that any two of the listed surfaces which have
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the same genus, in the sense defined above, are globally
homeomorphic by a deformation, i.e., by a biunigue continuous
topological transformation (no surface tearing). (CE£. the
classical theorem: 1if two closed surfaces have the same genus,
then either may be deformed into the other.) Thus, for example,
any one of the five intersection-free IPMS of genus three — P,D,
G,H, and CLP — can be deformed into any of the others. Schwarz
(ref. 1) noted that P and D are related by a deformation: either
surface may be constructed by joining replicas of a doubly-
connected minimal surface which is bounded by two parallel con-
gruent eguilateral triangles; the two triangles are related by

a 60° screw motion along their common axis. If the triangle
separation in P is increased continuously until it reaches twice
its original value, then the deformation of P into D is accom-
plished through a continuum of intermediate minimal surfaces.
Thus, P and D are related by a deformation, which is topologically
simpler but analytically more complicated than the adjoint trans-
formation: dilatation or compression of the c-axis of the
trigonal lattice of the general surface.* The deformations which
relate most of the other pairs of IPMS of the same genus, among
the examples listed in the Tables, involve more complicated
changes of symmetry than the deformation relating P and D, and it
is not known whether the mean curvature at every point of the
surface can remain zero throughout all of these deformations. It
is apparent that P and D are related to their tetragonal and
orthorhombic analogs (cf. Table III) by deformations; these can
be described 1loosely as dilatation or compression along one or
two of the cube axes of the surface. These deformations preserve
the minimal surface property.

The existence of these deformations relating IPMS of the
same genhus suggests that the concept of a dual pair of skeletal
graphs as representatives of a given intersection-free IPMS must
be interpreted cautiously. It is not true, for example, that the
topological properties of the Laves graph, viz., that three edges
meet at every vertex and that the smallest number of edges in any
closed circuit of edges ("girth") is ten, correspond to a top-
ologically fundamental property of the gyroid. The association
between a pair of skeletal graphs and an IPMS should be viewed
as primarily geometrical, in the sense that the symmetry (space
group) is the same, and the topological properties are consistent.
Thus, it is topologically just as reasonable to assoclate a pair
of primitive cubic graphs or a pair of diamond graphs (with curved
edges) with the two labyrinths of the gyroid (or those of H or
CLP, for that matter) as it is to associate a pair of enantio-
morphous Laves graphs with these labyrinths, but of these three
kinds of graphs, only the Laves graphs have the symmetry of the

*Schwarz did not obtain a solution for the general minimal surface,
bounded by two triangles, which is described here.




gyroid. A deformation of one intersection-free IPMS into

another of the same genus can be represented by a continuous
transformation of the skeletal graphs of the first into the
corresponding skeletal graphs of the second. This graph trans-
formation, which may be called elision, may be described by
making use of the concept of the tubular graph associated with
each skeletal graph (cf. p. 79). The surface deformation defines
the deformation of the homeomorphic tubular graphs; the elision
of the skeletal graphs may be inferred from these deformations.
(In practice, it is usually easier to find a construction for

the graph transformation first, and then describe the corresponding
surface deformation.) Graph elision may add vertices and edges
to the skeletal graph, or subtract them from the graph (hence

the name elision). Two infinite periodic graphs are defined as
generically equivalent 1f their respective tubular graphs have
the same genus per lattice fundamental region. These elision
transformations of graphs provide a simple method of describing
the required deformations of the corresponding IPMS.

A special property of CLP should be noted: it is related to
its adjoint surface by a deformation, and both surfaces have (in
general) the same space group.

Some examples of intersection-free IPMS for which the
smallest simply-connected surface module is a straight-edged
polygon appear to have been omitted from Tables I-III. At least
some of these omitted cases, however, may be obtained from listed
examples of higher symmetry, simply by changing the relative
scale lengths along the various lattice axes so as to eliminate
one or more classes of two-fold rotational symmetry elements from
the space group — and, therefore, one or more straight lines from
the listed IPMS.

The question of whether lower-symmetry variants of a given
intersection-free IPMS exist is too extensive to be treated
thoroughly here. Nevertheless, it may be useful to make some
general remarks on this subject. In many cases, the removal of
symmetry elements from the space group of a given intersection-
free IPMS by a suitable deformation makes it impossible to
isolate a simply-connected surface module which is bounded either
by line segments or by plane lines of curvature, or by both. In
such cases, the existence of the hypothetical surface of lower
symmetry depends on the existence of a finite multiply-connected
minimal surface, and this question is in general a difficult
one. The particularly interesting question of the possible
existence of lower-symmetry variants of the gyroid is briefly
discussed in Section VIII. The impossibility of obtaining a
body=-centered orthorhombic variant of the gyroid by bending a
sultable orthorhombic variant of P or D suggests caution in
speculating on the existence of variants of certain examples
of minimal surfaces.




APPENDIX II

THE CONCEPT OF DUAL INFINITE PERIODIC GRAPHS, AND
THE "PARTITIONING ALGORITHM" FOR THE CONSTRUCTION
OF A DUAL GRAPH

INTRODUCTION

It is well known in the theory of graphs that the concept
of dual graph is well-defined only for planar graphs. Recently
(ref. 10), the author attempted to develop the idea of a dual
relation which was restricted to certain types of three-dimen-
sional periodic non-planar graphs, having straight edges, by
making use of a concept described by P. Pearce: the saddle
polyhedron (ref. 18). We will consider a saddle polyhedron to
be any curved polyhedron, homeomorphic to the sphere, whose
faces are minimal surfaces spanning skew polygon boundaries.
Such polyhedra may have two-valent vertices, but they need not
do so. The skewness of one or more faces of the polyhedron
may vanish, in which case the face is plane. Both Pearce and
the author have constructed a large variety of saddle polyhedra
which fill space without voids, either singly (unary space-
filling) or multiply (n-ary space-filling). Many examples of
these polyhedra will be described and illustrated in a forth-
coming book by Pearce (ref. 19).

The author of this note found that for each of the examples
then known to him of infinite symmetric graphs (infinite periodic
graphs, having the translational periodicity of a three-dimen-
sional lattice, with symmetrically equivalent vertices and
symmetrically equivalent edges) and also for a larger number of
other infinite periodic graphs, an empirically developed algor-

ithm made it possible to derive a unique dual graph. (Unique
here means unique aside from deformations which leave the
topology and space group of the graph unchanged.) The dual

graph, in turn, when subjected to the construction specified

in the algorithm, led back to the original graph, thereby meeting
the minimum requirements of any reasonable notion of a dual
relation, viz., that it be symmetric. Because of the ad hoc
character of this dual graph algorithm, an effort was made to
find a counterexample, i.e., an infinite symmetric graph for
which the algorithm leads either to an ambiguous result, or to
no result at all! Before such a counterexample was found,

the algorithm was described in a published abstract (ref. 10)

in its original form. An "improvement" in the algorithm was
then made, and it is this "improved" version of the algorithm
which is given below. The saddle polyhedron is the device whose
construction according to this algorithm underlies the dual
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graph relation. This algorithm will hereafter be called the
partitioning algorithm.

After continued investigation of many examples of both
infinite symmetric graphs and also other infinite periodic
graphs, the author found an example of an infinite symmetric
graph for which the partitioning algorithm failed to generate
any dual graph. (A close study of this example led to the
discovery of the gyroid, which is described in Section VIII
of this note.) As a result of this failure of the algorithm,
the class of graphs considered subjects for the algorithm was
slightly restricted (see next subsection) so as to eliminate
the offending graph from consideration! This is an awkward
solution to the problem, especially since the algorithm per-
forms quite satisfactorily for a large number of infinite
graphs which are merely periodic, but not symmetric. In any
event, this aspect of the case illustrates the basic difficulty
of attempting to construct a satisfactory dual graph relation
by using admittedly ad hoc¢ methods, not derived from first
principles.

The "improved" form of the partitioning algorithm is
summarized below, for whatever intrinsic interest it may have.
The algorithm appears thus far to serve a useful purpose by
providing the basis for a self-consistent description of the
dual skeletal graphs for the two labyrinths of every one of the
intersection-free IPMS mentioned in this note (see Section III).

The essential idea of the partitioning algorithm is the
following: for at least many examples of infinite symmetric
graphs — and also for many examples of infinite graphs which
are merely periodic but not symmetric — one can associate with
each vertex of the graph a unique saddle polyhedron which con-
tains the vertex in 1ts interior, and which has the same number
of faces as the number of edges incident at the vertex; further-
more, each of these faces is penetrated at a single interior
point by one of these edges. This saddle polyhedron is called
a symmetry domain of the vertex. The edges of a space-filling
assembly of all the symmetry domains associated with a given
graph define a second periodic graph, the dual graph. Even
when the original graph is a symmetric graph, the second graph
is not necessarily a symmetric graph, i.e., it may have in-
equivalent edges and/or inequivalent vertices. It is assumed
throughout this discussion that the edges of an infinite periodic
graph are line segments, and that every vertex of such a graph
has at least three incident edges.
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For some examples of infinite symmetric graphs, the Voronoi
polyhedron® associated with a given vertex of the original graph
(i.e., the polyhedron which consists of all the points which are
as near to the given vertex as to any other vertex) does have
the property of having exactly as many faces as the number of
edges incident at the graph vertex in its interior. More often,
however, the Voronoi polyhedron has additional faces; these
extra faces are produced by the truncating effects of other
nearby vertices in the graph, i.e., vertices which are not
joined by edges to the given vertex. No method is known for
constructing any other convex polyhedron — for an arbitrary
infinite gsymmetric graph G — which exhibits a one-to-one
correspondence between its faces and the edges incident at
each vertex of G.

The study of Voronoi polyhedra for a large number of
different examples of infinite periodic graphs has led to the
discovery, by the author, of examples of 17-, 18-, and 20-faced
convex polyhedra which form unary space-fillings. In fact,
infinite families of 17- and 20-faced convex polyhedra of this
type have been found, by constructing the Voronoi polyhedron
for the vertices of certain infinite symmetric graphs which
are subjected to a kind of homogeneous "collapsing" trans-
formation (refs. 21,22). In this transformation, the topology
of the graph is preserved, and the graph remains symmetric
throughout the transformation, but the geometrical character of
the graph changes continuously. A detailed analysis of
examples of this transformation will be included in a future
report.*® Voronoi proved that for convex parallelohedra in
R3, the maximum possible number of faces is 147T; the corres-
ponding upper limit is not known for the more general case,
where it is not required that the polvhedra be parallelohedra,
i.e., that they be equivalent under translation.

. The algorithm for the construction of symmetry domains
for a given infinite periodic graph requires, first, that saddle
polyhedra, called interstitial domains, be constructed. The
boundaries of the faces of these interstitial domains are
circuits of edges of the original graph, chosen according to

*Voronoi applied this polyhedron construction to the points of
a lattice, not to the points of a regular system, which is an
array of points in R3 which are symmetrically equivalent under
some more general symmetry element of the full space group
than a lattice translation (see ref. 20). Voronoi polyhedron
is simply another name for Dirichlet cell (cf. Section VIII).

**To be published

tVoronoi showed that this number is 2(27-1) in R" (see ref. 23).
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a recipe given in the next subsection. Next, a vertex of the
dual graph is constructed in the interior of each interstitial
domain; the rule for choosing the position of this dual graph
vertex is also given in the next subsection. Then these dual
graph vertices are joined in pairs by edges, each such vertex
being connected only to those in the interior of adjacent
interstitial domains. Finally, the faces of the symmetry
domains are chosen by the same rule as the one, given in the
next subsection, which governed the initial construction of
the faces of the interstitial domains.

The interstitial domains are so named because they occupy
the interstices of the original graph. The naming of the
symmetry domains derives from the fact that they have the same
point-group symmetry as does the infinite graph itself, with
respect to the graph vertex in the interior of a single symmetry
domain. Because of the dual relation between the two graphs
underlying this construction, the saddle polyhedra which are
interstitial domains with respect to the original graph are
symmetry domains of the dual graph, and the saddle polyhedra
which are interstitial domains of the dual graph are symmetry
domains of the original graph.

Before describing the partitioning algorithm in detail,
it should be explained that the duality relationship between
the two skeletal graphs of an intersection-free IPMS is based
also on the following construction: Assume that the skeletal
graph is given for one labyrinth of a particular intersection-
free IPMS. Let each edge of the skeletal graph be replaced by
a thin open tube, and let these tubes be smoothly joined (with-
out intersections) around each vertex so that the whole tubular
graph forms a single infinitely multiply-connected surface,
which contains the skeletal graph in its interior. Such a
tubular graph is globally homeomorphic to the corresponding
minimal surface. If the tubular graph is sufficiently "inflated",
it becomes deformed into a dual tubular graph which contains
in its interior the skeletal graph of the other labyrinth of
the surface. The "outside" of the first tubular graph is the
"inside" of the second tubular graph. The two skeletal graphs
for a given IPMS are required to have the same space group as
the IPMS, and to correspond, respectively, to two tubular graphs
which are globally homeomorphic to the IPMS.

This prescription for deriving a skeletal graph from its
dual graph gives the same result, for all the known examples
of intersection-free IPMS, as the partitioning algorithm. In
spite of the fact that the tubular graph construction is less
complicated to describe than the partitioning algorithm, it is
probably somewhat easier to apply the partitioning algorithm
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to actual examples. Neither construction has a rigorous founda-
tion; furthermore, the whole concept of dual periodic graphs is
not essential to the development of the theory of intersection-
free IPMS. However, the underlying idea of dual skeletal graphs
provides a unified basis for an abstract "morphological" descrip-
tion of all presently known exXamples of intersection-free IPMS.
Furthermore, as already mentioned in Sections III and VI, the
skeletal graph is a convenient device for suggesting hypothetical
examples of intersection-free IPMS and also of infinite periodic
surfaces of non-zero constant mean curvature.

The above description of the duality relationship between
two skeletal graphs shows that whenever one of the graphs has
an intrinsic handedness (cf. a Laves graph in either labyrinth
of the gyroid), the other graph must have the opposite handedness,
on account of the eversive character of the transformation
which expresses the duality.

ALGORITHM FOR THE CONSTRUCTION OF AN INFINITE PERIODIC GRAPH
WHICH IS THE DUAL OF A GIVEN INFINITE SYMMETRIC GRAPH
("PARTITIONING ALGORITHM'")

1. Consider any infinite graph G, having straight edges,
which has the following properties:

a. All edges of G are symmetrically equivalent, i.e.,
there exists an element of the space group of G which
is transitive on the edges.

b. All vertices of G are symmetrically equivalent, i.e.,
there exists an element of the space group of G which
is transitive on the vertices.

c. Each vertex of G is joined by an edge to every one of
the Z nearest neighbor vertices (the graph is described
as being of maximum degree with respect to the vertices).

d. Each vertex lies at the centroid of the positions of
the Z nearest neighbor vertices (the graph is described
as being locally centered).

2. Consider any circuit of edges K;i which forms a simply-
connected closed curve (no self-intersections) hav1ng a convex
central or parallel projection. (This prOperty of K; insures that
there exists a unique minimal surface spanning Kj. ) Span Kj by
the minimal surface S(K4i), and also span every image of Kj,
Ij(Kl), i.e., every symmetrically equivalent replica of Kj, by
a minimal surface S[Is(K;)]. Determine whether there exist any
two images of Ki — say, Ip(Kj) and Ip(Kj) — for which the minimal
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surfaces S[Ig(K;)] and S[Iy(K;)] intersect along a curve not
made up of edges of G which are common to the boundaries of
Ip(K4) and I (K;j). (Such a non-boundary-edge curve is called

a disallowed intersection curve.) If no such image pairs exist,
then K; is described as a non-self-intersecting polygon Ki+.

3. For every non-self-intersecting polygon K;iT, determine
whether there exists any other non-self-intersecting polygon
Kyt # I(R;T) with at least one image Ip(K4%) such that S(k;')
and S[I,(K:;1)] intersect along a disallowed intersection curve.
If no such polygon KjT exists, then KiJr is described as a non-
intersecting polygon KitT.

4. For every K;tT, span all images of KiTT, Ij(Ki++), with
minimal surfaces S[I3(KiTt)].

R3 is now partitioned by a n-ary assembly of finite
closed cells, i.e., by finite closed cells having n symmetrically
inequivalent forms.

5. Remove all minimal surfaces S' (K¢T1), together with
all images of S' (ReTT), I[8'(ReTT)], whose omission merely leads
to a reduction in the total number of closed finite cells which
partition any given "large" finite portion of R3 (large means
large with respect to the dimensions of a lattice fundamental
region). The resulting cells are the “interstitial domains of
the graph G.

6. Construct a vertex V in the interior of each interstitial
domain of G. The position of V is determined by the following
rule: the point group of the union of V with the interstitial
domain in which it lies is the same as the point group of the
interstitial domain itself.

7. Join each vertex V; by an edge Eyy to the vertices Vj
in each of the interstitial domains adjacent to the rth domain
(the one which contains Vy); these adjacent interstitial domains
are those which have a face Syj in common with the rth domain.

The graph G of vertices V and edges E is defined as
the graph dual to G.

8. Apply steps 1-5 to the graph G. The resulting cells
partition R3 into congruent saddle polyhedra, which are the
symmetry domains of G.

DISCUSSION
Among infinite symmetric graphs of maximum degree, no

examples have been found for which the partitioning algorithm
fails to generate an unambiguous dual graph. More than twenty
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examples of infinite symmetric graphs have been studied; not

all of these graphs can be shown to be skeletal graphs of inter-
gection-free IPMS. 1In addition, a much larger number of infinite
graphs which are periodic but not symmetric have been studied

and found to yield unambiguous dual graph results. Nevertheless,
it has so far not been possible to establish the partitioning
algorithm on a rigorous basis. The minimal surface as a
boundary-spanning device should be regarded as a useful "con-
venience."

An example of a graph which would be considered a counter-
example to the partitioning algorithm, if the restriction had
not been made to allow only infinite symmetric graphs of maximum
degree, is the infinite periodic graph whose vertices are those
of the regular map {4,6I4} on the gyroid (see Section VIII),
and whose edges are line segments (instead of the curved geo-
desics of this regular map embedded in G). This graph can be
regarded as a "defective" graph (i.e., a graph of less than
maximum degree) on the points (vertices) of a body-centered
cubie lattice; two of the eight edges of the "standard" b.c.c.
graph, in which each vertex is joined by an edge to its eight
nearest neighbor vertices, are omitted at each vertex of this
graph. When an attempt is made to apply the dual graph algorithm
to this case, it is found that after step 4 is carried out, R
is partitioned into two infinite cells, which are homeomorphic,
respectively, to the two labyrinths of the gyroid. The algorithm
cannot be applied further, in this case, to yield a construction
for a symmetry domain. However, a saddle polyhedron has been
found which exhibits the essential property of a symmetry domain
for this graph of degree six: it is a unary space-filler, it
has six faces, and it has the same point group isometries as
the graph, with respect to its centroid. This figure was
constructed by essentially trial and error methods. It can be
generated by an appropriate superposition of the non-orientable
IPMS, shown in Figure 15, on its enantiomorphous image; such a
superposition of enantiomorphous surfaces partitions R3 into an
infinite periodic assembly of these six~faced cells. The Voronoi
polyhedron for a vertex of this graph is the truncated octahedron,
with fourteen faces. Moreover, the symmetry domain for the
symmetric graph of degree eight (maximum degree) on the vertices
of this graph is a saddle polyhedron (the "expanded octahedron")
with eight faces, each of which is congruent to a face of the
regular map {6,4|4} on the Schwarz surface D (Figure 1).

A second "defective" infinite symmetric graph, which is
also locally-centered, is a graph of degree six on the vertices
of a face-centered cubic lattice. This graph, when constructed
with straight edges, can be embedded in either P or D (see
Section VII). Application of the partitioning algorithm to this
example is straightforward and yields a (non-symmetric) dual
graph of degree ten. :
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Finally, a third infinite symmetric graph which is not of
maximum degree and is not locally-centered is a graph of degree
three on the vertices of a simple cubic lattice. This graph is
homeomorphic to the Laves graph of degree three (see Section
VIII and ref. 13), and the partitioning algorithm leads to
results similar to those obtained for the Laves graph: the
symmetry domains and interstitial domains are enantiomorphous
(a saddle trihedron, each face being a non-regular skew decagon),
and the graph and its dual are also enantiomorphous.

These few special examples have been described in order to
illustrate the extremely varied properties of infinite symmetric
graphs, when they are viewed in the context of the partitioning
algorithm. As a further example, consider the saddle polyhedra,
shown in Figures 4e and 8c, which are both symmetry domains and
interstitial domains for the self-dual skeletal graphs of C(P)
and C (D), respectively. These graphs, which are periodic but
not symmetric, can be derived by an elementary construction
based on the polyhedra which are both symmetry and interstitial
domains for the self-dual skeletal graphs of the respective
complementary surfaces, P and D. These latter symmetry domains
are the cube (skeletal graph of P) and the expanded tetrahedron,
a saddle polyhedron having four regular skew hexagonal faces,
with face angles 6 = cos~1(-1/3) (skeletal graph of D); thus, the
skeletal graph for P or D is comprised of the edges of a honey-
comb of cubes or expanded tetrahedra, respectively. The skeletal
graph for the surface complementary to P or D can also be formed
from the same honeycomb as for P or D itself, as follows: Jjoin
every vertex V of the honeycomb by a straight edge to each of
the vertices obtained by inversion of V in the centers of the
incident faces of the honeycomb. The simplicity of these rules
for P, D, C(P), and C(D) is paralleled by an algorithm (ref. 6)
for the construction of C(P) and C(D), based on the theory of
Petrie polygons for reflexive regular maps (ref. 7).

A detailed description of the symmetry domains and inter-
stitial domains for the two skeletal graphs of the other IPMS
listed in Table I will be provided in a detailed report*®, which
will also include other examples of applications of the parti-
tioning algorithm.

Coxeter (ref. 24) has described the "reciprocal" relations
between packings of regular and uniform convex polyhedra. The
application of the partitioning algorithm to each of these
examples of packings leads to exactly the results described by
Coxeter. The partitioning algorithm, moreover, always leads to
the Voronoi polyhedron as the symmetry domain for any infinite
symmetric graph whenever the number of faces of the Voronoi
polyhedron <is equal to the degree of the graph (ref. 10).

*To be published
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The application of the partitioning algorithm to specific
examples of infinite periodic graphs leads to the construction
of a great variety of skew polygons. The edges of such skew
polygons do not always coincide with symmetry axes of any space
group, even when the graph is symmetric (it was erroneously
stated by the author in ref. 10 that this coincidence always
occurs for symmetric graphs). If every one of the edges of a
given skew polygon lies along a two-fold axis of some space
group, then the polygon is a module for an IPMS. If some or
all of the edges of a given skew polygon coincide with three-
fold axes of some space group, any remaining edges being coin-
cident with two-fold axes of the same group, then the polygon
can be used as a module for a periodic integral varifold, in
which three modules intersect along the edges which correspond
to three-fold axes. An example of such an integral varifold was
first described to the author by Dennis Johnson*; in this case,
which is based on the pentagonal module of the surface which is
adjoint to Schwarz's H surface (cf. Fig. 5), the integral vari-
fold partitions R3 into three infinite congruent interpenetrating
labyrinths. The three-fold intersections occur here along the
two parallel edges of each elementary Fladchenstiick. An example
of an integral varifold which partitions R3 into four infinite
congruent interpenetrating labyrinths may be derived from the
symmetry domain of the defective f.c.c. graph of degree six,
which was first mentioned at the end of Section VII. If a unary
honeycomb is constructed from an infinite assembly of these
"six-pointed starfish" polyhedra, and then all of the quadri-
lateral faces which are directly congruent to a given single
face are removed, the four-labyrinth varifold remains. The
original honeycomb is a superposition of two enantiomorphous
varifolds of this type. The skeletal graphs®** of each of the
four labyrinths of this integral varifold are directly congruent
Laves graphs of degree three (ref. 13).

The two examples of periodic integral varifolds described
in the preceding paragraph, as well as other examples which have
been constructed, have the same kinds of equiangular inter-
sections of lamellae and of edges as soap froths of finite cells
(cf. Section VIII). Some of these other examples partition R3

Tprivate communication

**The concept of skeletal graph is extended to include such
examples as this, in which the labyrinth envelope has a
singularity along each three-fold intersection of surface
modules. The homeomorphism between the tubular graph, derived
from a given skeletal graph, and the labyrinth envelope is
similar to the case of intersection-free IPMS.
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into an infinite number of infinite domains. These infinite
domains, however, are not labyrinthine in the sense defined here,
i.e., they do not have the periodicity of a three-dimensional
lattice; instead, the envelope of each such domain is deformable
into a cylinder of finite radius and infinite length.

If an IPMS generated from a straight-edged module is self-
intersecting, the self-intersections may occur either along the
edges of the modules, or else along curves interior to each
module as well as along the edges. The Neovius surface adjoint
to C(P) and the surface adjoint to I-WP are examples of IPMS in
which the self-intersections occur only along module edges;
these surfaces partition R3 into infinite assemblies of finite
closed cells (saddle polyhedra). Another example of such a
surface is the assembly of interstitial or symmetry domains for
the Laves graph of degree three. 1In this case, the elementary
surface module is a skew pentagon; four such pentagons join
smoothly to form a single skew decagon face of the trihedral
interstitial (or symmetry) domain of the Laves graph. The sur-
face adjoint to F-RD, on the other hand, is an example of an
IPMS in which the self-intersections occur both along module
edges and also along curves in the interior of each module;
here also, R3 is partitioned into finite closed cells by the
IPMS.

In Figure II-1 is shown an example of the collapsing trans-
formation on an infinite symmetric graph — the Laves graph of
degree three. Figure II-2 shows several examples of Voronoi
polyhedra of symmetric graphs. The polyhedron appearing in
Figure II-2a is the cell discussed in Section VIII in connection
with the gyroid and its relation to the Kelvin isoperimetric
problem. Some of these examples of Voronoi polyhedra were
originally derived by the author using hand calculations. Others
were obtained by means of a computer algorithm developed by the
author, with the assistance of R. Lundberg. This computer
algorithm also provides for the automatic construction of a pair
of stereoscopic views of the Voronoi polyhedron.

Note added in proof: It has been pointed out to the author by

J. Milnor that in order for two different 'intersection-free IPMS
to be related by a deformation (cf. pp. 73-74), it is not neces-
sary that the genus per fundamental region have the same value
for the two surfaces. Thus, the deformation relations described
on pp. 73-74 are merely special cases of quite general deforma-
bility relations among all possible examples of intersection-free
IPMS.
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Figure II-la.- Right-left stereoscopic view of Laves graph
of degree three. This symmetric graph appears here in its
normal "fully-expanded" form, i.e., as a locally-centered
graph. In Figures II-1lb, ¢, d, and e, the graph appears in
successive stages of partial "collapse". During this trans-
formation, it retains its identity as a symmetric graph with
fixed edge length, but it is no longer locally centered (cf.
discussion on p. 78). When every edge has completed a 90°
plane rotation about either incident vertex, the infinite
graph is transformed into a regular tetrahedron; each edge
of the graph has become superimposed onto one of the six
edges of this tetrahedron. When the edges have completed a
180° plane rotation, the graph enantiomorphous to the
original graph is obtained. Throughout the transformation,
all vertices of the graph describe elliptical trajectories
centered on the origin of the coordinate system in which

the transformation is described. Twelve other examples of
infinite periodic graphs whose vertices lie in P, D, or G,
and whose edges are homeomorphic to arcs lying in P, D, or G
can be subjected to a "collapsing" transformation of this
kind.




Figure II-1b.~- Partially collapsed Laves graph (stage 2).

' ““7.

K

| s 1
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Figure II-lc.- Partially collapsed Laves graph (stage 3);
the graph has become transformed into the "defective"
simple cubic graph (cf. discussion on p. 83).
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Figure II-1d.- Partially collapsed Laves graph (stage 4).

Figure II-le.~- Partially collapsed LavesAgraph (stage 5).
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Figure II-2a.- The seventeen-
faced Voronoi polyhedron of
the regular system of points
comprising the vertices of
two enantiomorphous Laves
graphs of degree three. These
two symmetric graphs are
related to one another by
inversion, in accordance with
their positions as skeletal
graphs of the two enantio-
morphous labyrinths of the
gyroid. (Cf. discussion of
the Kelvin isoperimetric
problem and the gyroid in
Section VIII.)

Figure II-2b,c, and d.-
Voronoi polyhedra for
symmetric graphs in various
intermediate stages of
collapse.
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Figure II-2 (Concluded) .- Voronoi polyhedra for symmetric
graphs in various intermediate stages of collapse.
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