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parallel viewing.  Because of t h e  c o r r e l a t i o n  between accommoda- 
tion and convergence, a r e a d e r  who i s  somewhat near - s igh ted  may 
f i n d  it e a s i e s t  t o  s e e  a fused  s t e r e o  image i n  sha rp  focus  i f  
he chooses t h e  left-right p a i r s  f o r  viewing wi thout  eyeg la s se s .  
These p a i r s  may a l s o  be  viewed s a t i s f a c t o r i l y  wi th  a s u i t a b l e  
b inocu la r  s t e r eoscope .  A r eade r  who i s  somewhat f a r - s i g h t e d  
may be a b l e  t o  s e e  a fused  s t e r e o  image i n  sha rp  focus  i f  he  
chooses t h e  right-left p a i r s  f o r  viewing wi thou t  eyeg la s se s .  A 
r eade r  w i t h  s t r o n g  o c u l a r  accommodation i s  u s u a l l y  a b l e  t o  s e e  
s a t i s f a c t o r y  s t e r e o  images wi th  e i t h e r  left-right o r  right-left 
p a i r s .  I f  a  right-left p a i r  i s  viewed i n  parallel f a sh ion ,  o r  
a left-right p a i r  i s  viewed i n  cross-eyed f a s h i o n ,  t h e  perspec-  
t i v e  becomes i n v e r t e d ,  and a pseudoscopic image i s  seen.  

Because of a computer coding e r r o r ,  t h e  s t e r e o s c o p i c  drawings 
i n  F igu re  1 3  provide  on ly  a f r a c t i o n  of t h e  f u l l  depth  i l l u s i o n  
which was in tended ,  
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INFINITE PERIODIC MINIMAL SURFACES 
WITHOUT SELF-INTERSECTIONS 

Alan H. Schoen 
Electronics Research Center 

Cambridge, Mass. 

SUMMARY 

A preliminary account of a study of the partitioning of 
three-dimensional Euclidean space into two interpenetrating 
labyrinths by intersection-free infinite periodic minimal sur- 
faces (IPMS) is given. A construction algorithm for deriving 
such surfaces leads to the identification of the five cases 
already known, plus a number of new examples. 

By the use of this algorithm and other methods, a total of 
seventeen intersection-free IPMS have been identified. Photo- 
graphs of plastic models and computer-generated drawings of 
examples of such surfaces are shown. 

Also described and illustrated is an example of a non- 
orientable IPMS, generated from a skew pentagonal surface module. 

A counterpart to Schoenflies' proof that there exist only 
six quadrilateral modules of IPMS is mentioned: There exist 
only eight pentagonal modules of IPMS having non-cubic Bravais 
lattices. 

I. INTRODUCTION 

The five published examples of infinite periodic minimal 
surfaces (IPMS) which are free of self-intersections are as 
follows. In 1865, the first published example of an infinite 
periodic minima2 surface (IPMS) was described by H. A. Schwarz 
ref. 1). This surface was also studied in memoirs published 
independently by Riemann and by Weierstrass. In Schwarz's 
analysis, which is described by Darboux (ref. 2) as deeper and 
more comprehensive than that of his contemporaries, the analytic 
solution for the surface is expressed in terms of the Weierstrass 
parametrization for minimal surfaces. We call this surface, 
which has symmetry related to that of the diamond crystal 
structure, Schwarz's diamond surface, or D. A finite portion of 
D is shown in Figure 1. 

A surface which is adjoint (i.e., conjugate under bending 
according to Bonnet's transformation (ref. 3)) to D, which we 
call the primitive surface, or P I  was also described by Schwarz. 
P, illustrated in Figure 2, has symmetry related to that of the 



a. Oblique view. 

b .  View along (111) a x i s .  

c. View along ( 1 0 0 )  a x i s .  

F igure  1.- Schwarz 's  diamond s u r f a c e  (Dl; 
f a c e s  a r e  t h o s e  of t h e  r e g u l a r  map 1 6 , 4 1 4 ) .  



d.  R i g h t - l e f t  s t e r e o s c o p i c  views of D .  

F igure  1.- Concluded. 



a. Oblique view 

b. View along (111) axis 

c. View along (100) axis 

Figure 2.- Schwarz's primitive surface P; 
faces are those of the regular map ( 6 ,6131 .  



d. R i g h t - l e f t  s t e r e o s c o p i c  views of P :  
f a c e s  a r e  t hose  of t h e  r e g u l a r  map 
( 6 , 4 1 4 1 .  

e .  L e f t - r i g h t  s t e r e o s c o p i c  views of P :  
f a c e s  a r e  t hose  of t h e  r e g u l a r  map 
{ 6 , 4 / 4 ) .  

F i g u r e  2 .  - Conclud-ed. 



p r i m i t i v e  cub ic  l a t t i c e .  The Brava is  l a t t i c e  ( l a t t i c e  of t r a n s -  
l a t i o n a l  symmetry) f o r  D i s  face-centered-cubic  ( F ) ;  t h e  Brava is  
l a t t i c e  f o r  P  i s  t h e  p r i m i t i v e  cubic  l a t t i c e  ( P ) .  A fundamental  
r eg ion  of  P o r  D i s  of genus 3. 

Both D and P a r e  f r e e  of s e l f - i n t e r s e c t i o n s .  (It  i s  r e a d i l y  
shown* t h a t  t h e r e  a r e  i n f i n i t e l y  many IPMS which have s e l f -  
i n t e r s e c t i o n s . )  A review of r e s e a r c h  on p e r i o d i c  minimal s u r f a c e s  
sugges t s  t h a t  o n l y  t h r e e  o t h e r  IPMS w i t h o u t  s e l f - i n t e r s e c t i o n s  
have been  i d e n t i f i e d .  One of  t h e s e  t h r e e  s u r f a c e s  was s t u d i e d  i n  
d e t a i l  by E .  R .  Neovius ( r e f .  4 ) ,  a  p u p i l  of Schwarz. For 
reasons  which a r e  expla ined  below, w e  c a l l  t h i s  Neovius s u r f a c e  
t h e  compZement of  PI  o r  C (P) . C (P) i s  i l l u s t r a t e d  i n  F i g u r e s  
3 and 4 .  The remaining two examples, which we c a l l  H and CLP, 
r e s p e c t i v e l y ,  were desc r ibed  by Schwarz ( r e f .  1). The Weie r s t r a s s  
pa rame t r i za t ion  f o r  H I  of  which a  s i n g l e  fundamental r e g i o n  i s  
shown i n  F igu re  5 ,  was ob ta ined  by Schwarz. CLP, which does  no t  
appear t o  have been analyzed,  i s  shown ( i n  an i r r e g u l a r  fragment)  
i n  F igu re  6 .  Both H and CLP a r e  of genus 3 .  C(P)  i s  of genus 9 .  

The au tho r  would l i k e  t o  exp res s  h i s  s p e c i a l  thanks  t o  
H.B.  Lawson, Jr .  and t o  J . C . C .  N i t s che ,  f o r  h e l p f u l  d i s c u s s i o n s  
of t h e  a s s o c i a t e  s u r f a c e  t r ans fo rma t ion  and o t h e r  t o p i c s .  Thanks 
a r e  due a l s o  t o  N.W. Johnson f o r  a  d i s c u s s i o n  of t h e  t heo ry  of 
r e g u l a r  maps, and t o  P .  Pearce ,  whose i n v e s t i g a t i o n s  of  curved 
polyhedra ( " sadd le  po lyhedra" ) ,  w i th  minimal s u r f a c e  f a c e s ,  l e d  
t h e  au tho r  t o  t h e  s tudy  of Schwarz 's  s u r f a c e s .  The h e l p  of 
Robert N .  Davis,  i n  t h e  p r e p a r a t i o n  of  t h e  computer f i l m s  from 
which s e l e c t e d  frames a r e  shown i n  Appendix 11, i s  g r a t e f u l l y  
acknowledged. 

11. THE EXISTENCE OF OTHER IPMS WITHOUT SELF-INTERSECTIONS 

Whether o t h e r  examples of i n t e r s e c t i o n - f r e e  IPMS e x i s t  i s  
a  q u e s t i o n  which does  no t  appear t o  have been s t u d i e d .  Schwarz 
mentioned t h e  problem of f i n d i n g  s u f f i c i e n t  cond i t i ons  f o r  a  
f i n i t e  minimal s u r f a c e ,  bounded by l i n e  segments, t o  s e r v e  a s  a 
fundamental r e g i o n  f o r  an i n f i n i t e  d i s c r e t e  group of r o t a t i o n s  - 
i . e . ,  a  fundamental r eg ion  f o r  an  i n f i n i t e  minimal s u r f a c e  which 
i s  p e r i o d i c  ( b u t  no t  n e c e s s a r i l y  f r e e  of s e l f - i n t e r s e c t i o n s ) .  
The p e r i o d i c i t y  of such an i n f i n i t e  s u r f a c e ,  which i s  e q u i v a l e n t  
t o  t h e  d i s c r e t e  c h a r a c t e r  of t h e  under lying r o t a t i o n  group,  
imp l i e s  t h a t  around any p o i n t  P of t h e  s u r f a c e ,  one can always 
c o n s t r u c t  a  neighborhood which c o n t a i n s  no o t h e r  p o i n t  of  t h e  
s u r f a c e  which i s  e q u i v a l e n t  t o  P. (Schwarz a l s o  d i scussed  t h e  
q u e s t i o n  of whether t h e  s o l u t i o n  f o r  such a  s u r f a c e  can be 
expressed i n  terms of  e l l i p t i c  f u n c t i o n s  of t h e  coo rd ina t e s .  
These q u e s t i o n s  w i l l  no t  be  d i scussed  h e r e . )  

I n  t h i s  t e c h n i c a l  n o t e ,  we p r e s e n t  an i n t r o d u c t o r y  d e s c r i p -  
t i o n  of twelve new examples of IPMS which we f i n d  t o  be  f r e e  of  

* To be publ i shed  
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a .  C (P)  (from a photograph 
o f  Neovius'  model, shown 
i n  h i s  Ph..D. t h e s i s ,  
1883, r e f .  4 ) .  

b. The s u r f a c e  a d j o i n t  t o  
C(P)  ( r e f .  4 ) .  

F i g u r e  3 . -  The two s u r f a c e s  ana lyzed  by Meovius: C (P )  
( t h e  complement of P)  and t h e  s u r f a c e  a d j o i n t  t o  C ( P ) .  



a.  O b l i q u e  v i e w .  

b .  V i e w  along ( 1 1 1 )  a x i s .  

c. V i e w  a long  ( 1 0 0 )  ax i s .  

F i g u r e  4 .- V i e w s  of C ( P )  . 



d .  Oblique view of a f r a g -  
ment of an i n f i n i t e  u n i -  
form skew po lyhedron  
which has  a l a b y r i n t h  
s t r u c t u r e  homeomorphic 
t o  t h a t  of C (P) . This  
polyhedron is  desc r ibed  
by t h e  symbol ( 8 * * 6 * 4 ) .  
Its v e r t i c e s  a r e  a l l  
symmetrically e q u i v a l e n t ,  
and i t s  f a c e s  are a l l  
r e g u l a r  polygons. 

e .  The two symmetry domains 
a s s o c i a t e d  wi th  t h e  two 
d i s t i n c t  k inds  of v e r t i -  
ces  of t h e  s k e l e t a l  
graph of e i t h e r  laby- 
r i n t h  of C ( P )  (cf . r e f .  
l o ) .  These s a d d l e  
po lyhedra  form a b ina ry  
space-f i l l i n g  arrange-  
ment (honeycomb) i n  
which t h e r e  e x i s t s  a 
one-to-one correspond- 
ence between t h e  edges 
of e i t h e r  s k e l e t a l  graph 
of  C (P )  and t h e  f aces  of 
t h e  honeycomb (Appendix 
11). 

Figure  4 .  - Concluded. 



a. Right-left stereoscopic views of H. 

b. Left-right stereoscopic views of H. 

Figure 5.- Schwarz's hexagonal surface H. A single lattice 
fundamental region is shown. (The model was assembled from 
pentagonal plastic modules, formed in the shape of pieces 
of the self-intersecting surface which is adjoint to H, 
which were then bent into the desired shape.) 



Figure 5c (Concluded).- An alternative form of a lattice 
fundamental region of H; the convex hull of this assembly 
of pentagonal faces is also a regular hexagon right prism 
(cf. Figures 5a and 5 b ) .  



Figure 6.- Two oblique views of a fragment 
of the Schwarz surface CLP. 



self-intersections, Several of these examples are derived from 
a construction algorithm which was suggested by a study of 
Bonnet's associate surface (bending) transformation (ref. 3), and 
especially by a study of the example, described by Kummer and 
Schwarz (ref. I), of the dual relationship between the free plane 
boundary curves of a quadrilateral module of P and the line- 
segment boundaries of the adjoint quadrilateral module of D. An 
elementary discussion of this duality, and also of its signifi- 
cance in the construction of intersection-free IPMS, is provided 
in Appendix I. 

An explicit solution has been found, thus far, for only one 
of these twelve new surfaces. This surface, which is associate 
to P and DI has been named the gyroid (refs. 5 and 6), or G I  
and it is illustrated in Figure 7. concerning the remaining 
eleven new IPMS, a proof of existence and of the absence of 
self-intersections is elementary for one surface (Figure 8), 
which we call the complement of D, orltC (D) !ref. 6) . For six 
others, which have been named HI-T, H -RI T -R , St-s", I-WP, 
and F-RD, respectively, the existence proof is based on elemen- 
tary properties of the adjoint transformation and on the pro- 
perties of kaleidoscopic groups (ref. 7). Because of limits 
on the orientation of the normal vector along the boundary of 
a minimal surface, which follow from the fact that a minimal 
surface is wholly contained within the convex hull of its 
boundary curve, HI-T and C(D) can both be proved to be free of 
~elf~intersections. Complete analysis of the surfaces H -R,  T1-R', 
St-s , I-WP, and F-RD would be required to prove rigorously that 
they have no self-intersections. For two of these cases, F-RD 
and I-WP, much of the required analysis was performed by Stessmann 
(ref. 8), in an incomplete study of their respective self- 
intersecting adjoint surfaces. I-WP and F-RD are shown in 
Figures 9 and 10, respectively. For two other cases, which we 
have named RII and RIII (these are also described below), both 
existence and freedom from self-intersections are guaranteed, 
for a finite range of proportions of an elementary ~lachenstiick, 
by known results (ref. 9) concerning existence conditions for 
finite doubly-connected minimal surfaces of this general type. 
Finally, for the two remaining examples, which we have named 
C ( H )  (Figure 11) and 0,C-TO (Figure 12) ,) respectively, the 
absence of self-intersections can be "proved", at present, only 
by invoking the results of experimental demonstrations performed 
with soap films and with the bending of thin plastic models of 
surfaces proved to be minimal surfaces. 

Because of the diversified and complex character of these 
examples, a full acount of the subject will be deferred until 
an extended report* is completed. In that report, each of these 

* To be published 



a .  View i s  a long  (100) a x i s  of G .  

F i g u r e  7 . -  The g y r o i d  ( G ) ;  f a c e s  a r e  
t h o s e  of t h e  r e g u l a r  map ( 6 , 4 1 4 ) .  



b. Right-left stereoscopic views of G. 
View is along (111) axis. 

c. Left-right stereoscopic views of G. 
View is along (111) axis. 

Figure 7. Continued. 



d. Right-left stereoscopic views of G. 
View is along (100) axis. 

e. Left-right stereoscopic views of G. 
View is along (100) axis. 

Figure 7.- Continued 



f. Close-up view of 
the approximately 
helical tunnel in 
one labyrinth of 
G. View is along 
(100) axis. 

g. View of G along (110) 
axis. 

h. View of G along 
(111) axis. 

Figure 7.- Concluded. 



a. Two 12-gon faces 
(center) of C (D) , with 
the Petrie polygon 
faces (left and right, 
respectively) of the 
two dual regular maps 
on D: {4,614} and 
{6,414} (cf. ref. 6). 

b. Oblique view of C(D). 

c. The symmetry domains 
of the skeletal graph 
of either labyrinth of 
C(D) (cf. Fig. 4e). 

Figure 8.- The complement of Schwarz's diamond surface D: C(D). 

18 



d. View of C (D) along 
(111) axis. 

e. View of C (D) along 
(110) axis. 

f .  View of C (D) along 
(112) axis. 

Figure 8.- Continued. 



g .  Right-left stereoscopic views of c(D). 

h. Left-right stereoscopic views of C(D). 

Figure 8.- Concluded 



a .  View along ( L O O )  a x i s .  
The assembly of 4 8  f a c e s  
appear ing i n  t h e  upper 
h a l f  of t h e  p i c t u r e  con- 
t a i n s  two l a t t i c e  funda- 
mental  r eg ions  of I-WP. 
I t s  convex h u l l  i s  a  
cube. For t h e  assembly 
of 96  f a c e s  i n  t h e  lower 
ha l f  of t h e  p i c t u r e ,  
t h e  convex h u l l  i s  a  
rhombic dodecahedron. 

b. V i e w  a long  ( 1 1 0 )  a x i s .  

c .  View along ( 1 0 0 )  a x i s .  

F igure  9 . -  The s u r f a c e  I-WP. 



d. View of I-WP along 
(111) axis. 

e. View of I-WP along 
(110) axis. 

f .  View of I-WP along 
(111) axis. 

Figure 9.- Continued. 



g. View of I-WP alonq 
(100) axis. 

h. View of I-WP along 
(110) axis. 

i. Oblique view of I-WP. 

Figure 9.- Concluded. 



a .  View a long  ( 1 0 0 )  a x i s .  

b .  V i e w  a long (111) a x i s .  

F igu re  1 0 . -  The s u r f a c e  F-RD. This  assembly of 2 4  f a c e s  
c o n t a i n s  one-half of a l a t t i c e  fundamental r eg ion  of 
F-RD. I t s  convex h u l l  i s  a cube. 



c .  Oblique view of F-RD. 

d.  Oblique view of F-RB. 

F igu re  1 0  (Concluded).-  The convex h u l l  of t h e  l a t t i c e  
fundamental r eg ion  shown i n  F igure  10c i s  a  rhombic 
dodecahedron. 



a. View along c-axis. 

b. Oblique view. 

Figure 11.- The complement of Schwarz's hexagonal surface H: 
C ( E ) .  A single lattice fundamental region is shown. 
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c. V i e w  a long  c-axis  . 

d. View along a -ax is .  

Figure  11.- C ( H ) :  Assembly of fou r  l a t t i c e  fundamental r eg ions  
(concluded) . 



V i e w  a long (100) a x i s .  
This  assembly of 4 8  f a c e s  
i s  a l a t t i c e  fundamental 
r eg ion  of 0,C-TO. I t s  
convex h u l l  i s  a cube. 

View along (111) a x i s .  

F igu re  1 2 . -  The s u r f a c e  0,C-TO. The s i x ' t u b u l e s  c e n t e r e d  on 
t h e  (100) axes a r e  of smaller d iameter ,  r e l a t i v e  t o  t h e  enc los ing  
cube, than  t h e  corresponding s i x  t ubu le s  of t h e  Schwarz s u r f a c e  
P ( c f .  F igures  2d and 2 e ) .  The e i g h t  (111) tubu le s  of 0,C-TO 
a r e  smaller t han  t h e  corresponding e i g h t  i n  I-WP ( c f .  F igu re  9 ) .  
(The e i g h t  (111) t u b u l e s  of I-WP a r e  sma l l e r  than t h e  f o u r  
corresponding ones i n  F-RD ( c f .  F igure  l o ) . )  



c. V i e w  of 0 , C - T O  along 
( 1 1 0 )  ax i s .  

d. O b l i q u e  v i e w  of 0 ,C-TO.  

F igu re  1 2 .  - C o n t i n u e d .  



h. Right-left stereoscopic views. 

Figure 12 (Concluded).- Assorted views of the surface 
0,C-TO: one and one-half lattice fundamental regions. 



a. Right-left stereoscopic views. 

b. Left-right stereoscopic views. 

Figure 13.- Stereoscopic views of the surface H I - T .  



c. Right-left stereoscopic views. 

Fiqure 13 .- Continued 



e. Right-left stereoscopic views. 

f. Left-right stereoscopic views. 

Figure 13.- Continued. 



g. Right-left stereoscopic views of a single 
lattice fundamental region of H' -T . 

h. Right-left stereoscopic views. 

Figure 13.- Continued. 



i. Right- 
left 
stereo- 
scopic 
views 

j .  Right- 
left 
stereo- 
scopic 
views 

k. Right- 
left 
stereo- 
scopic 
views 

Figure 13.- Continued. 



1. Left-right stereoscopic views of a single 
lattice fundamental region of HI-T .  

m. Lef t-right stereoscopic views of H I  -T. 

Figure 13.- Continued. 



Left-Right 
Stereoscopic 
Views 

o. Left-Right 
Stereoscopic 
Views 

p. Left-Right 
Stereoscopic 
Views 

Figure 13.- Concluded. 



IPMS will be described in detail. Meanwhile, we describe an 
algorithm which may be used to construct eleven of the seventeen 
IPMS discussed in this note. These eleven examples include the 
five surfaces already known to Schwarz and Neovius. We will 
also describe how the existence of specific additional examples 
of intersection-free IPMS can be investigated, using (a) an 
extension of the construction algorithm and (b) experimental 
methods based either on the associate surface bending of thin 
plastic models of surfaces proved to be minimal surfaces, or on 
the construction of soap films bounded by the interior faces of 
appropriate convex polyhedra (or on both). 

An elementary discussion of some aspects of Bonnet's 
associate surface transformation, and of its significance in 
the construction of intersection-free IPMS, is given in Appendix I. 
Some other related topics are also briefly discussed there. 

111. LABYRINTHS, SKELETAL GRAPHS OF LABYRINTHS, AND THE 
NAMING OF INTERSECTION-FREE IPMS ACCORDING TO SKELETAL GRAPH 

Each IPMS is identified here by a specially coined name. 
In several cases, including Schwarz's surfaces D, P I  H (hexagon), 
and CLP, this name is an abbreviation of the name assigned to a 
certain infinite periodic graph. Each such graph may be con- 
sidered as the s k e l e t a l  graph  of an infinite l a b y r i n t h ;  each 
intersection-free IPMS partitions R~ into two such labyrinthine 
regions, and, therefore, two such graphs are associated with 
each IPMS. When the labyrinths are congruent, the graphs are 
congruent, and we then adopt the convention that the name of 
the IPMS is the same as the name of the graph (cf. Schwarz's 
D, PI HI and CLP). (In several cases, a different convention is 
used for naming such surfaces, partly because the structure of 
the labyrinths does not suggest simple familiar names for their 
skeletal graphs.) When the labyrinths - and also their skeletal 
graphs - are not congruent, the name of the IPMS is composed of 
abbreviations which describe each  of the skeletal graphs, these 
abbreviations being separated by a hyphen. For example, a 
certain IPMS, called H -T (Figure 13), can be said to be based 
on two skeletal graphs which we call H' (hexagon) and T (triangle), 
respectively. 

These associated pairs of skeletal graphs can be considered 
as d u a l  graphs. By means of an empirically developed algorithm* 
which is a refinement of an algorithm described elsewhere 
(ref. 10) for establishing a dual relationship between two in- 
finite symmetric graphs (i.e., graphs with equivalent edges and 
equivalent vertices), it has been found possible to construct a 

+see Appendix II 
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[symmetrical] dual relationship between the two skeletal graphs 
associated with every one of the seventeen IPMS discussed in this 
note. Not all of the seventeen IPMS have labyrinths for which 
the skeletal graphs are symmetr ic  graphs; nevertheless, this 
dual graph construction algorithm leads to unique self-consistent 
results in all seventeen cases. 

The utility of the concept of skeletal graph may be illus- 
trated by mentioning that given an associated [dual] pair of 
infinite periodic graphs which are interchanged by the action 
of appropriate two-fold rotational isometries, or given a pair 
of distinct dual infinite periodic graphs which have appropriate 
mirror-plane isometries, the question of the existence of an 
intersection-free IPMS for which the graphs in question may be 
regarded as labyrinth skeletal graphs can be immediately trans- 
formed into a question which is amenable to investigation by 
mathematical methods. This point will be discussed further in 
Section VI. Although the isometries of the skeletal graphs 
and those of the corresponding IPMS are identical for each of the 
intersection-free surfaces considered in this note, it is not 
true that the topological structure of a given IPMS implies the 
existence of a unique  pair of dual skeletal graphs for that 
surface, unless it is stipulated that t h e  two s k e l e t a l  graphs 
o f  an IPMS have t h e  same space group a s  t h e  IPMS. For example, 
consider Schwarz's D and P surfaces: these two adjoint surfaces 
have the same genus: 3; their skeletal graphs are of degree 4 
(D) and 6 (P), respectively. As noted by Schwarz, either of 
these infinitely multiply-connected IPMS may be transformed into 
the other by a continuous deformation, the surface at all stages 
of the deformation being a minimal surface. (This deformation 
may be described rather simply in terms of a continuous change 
in the separation of every pair of parallel "crossed" triangles 
which bound a doubly-connected minimal surface module of the 
IPMS.) Hence, the concept of a skeletal graph would be somewhat 
ambiguous, if we did not require that a surface have the same 
space group as the pair of skeletal graphs which belong to it. 
The concept of skeletal graphs appears to be a useful one. It 
provides a picturesque model of both the symmetry and connected- 
ness of each IPMS. Furthermore, the concept of skeletal graph 
can also be usefully applied to the qualitative consideration of 
a number of different examples of infinite periodic surfaces of 
constant (but non-zero) mean curvature, which are deformable in- 
to the examples of IPMS described here. A detailed discussion 
of the concept of skeletal graphs is included in ~ppendix 11. 

The five examples of intersection-free IPMS known to 
Schwarz and Neovius all contain an infinite number of straight 
lines. A straight line lying in a minimal surface is an axis 



of two-fold rotational symmetry, Because the effect of such an 
isometry is to interchange the two s i d e s  of an orientable surface 
and, therefore, also to interchange the two labyrinths into 
which R~ is partitioned by the surface, the labyrinth pairs for 
these five examples are d i r e c t l y  c o n g r u e n t ,  Among the twelve 
new examples of IPMS discussed here, one - the gyroid - has 
inversion symmetry and o p p o s i t e l y  congruen t  l a b y r i n t h s .  Of the 
remaining eleven cases, four contain straight lines and have 
d i r e c t l y  congruen t  labyrinths; the remaining seven examples 
have mirror-plane symmetries, contain no straight lines, and 
their labyrinths are non-congruen t .  (These remarks should, of 
course, be considered with due regard for the unproved state - 
for some of these surfaces - of the assertion that the surfaces 
are free of self--intersections. ) 

I V .  KALEIDOSCOPIC CELLS, OR FUNDAMGNTAL REGIONS 
FOR GROUPS OF REFLECTIONS IN ~3 

We now describe the convex polyhedra which provide plane 
boundaries for finite minimal surfaces which can be replicated 
by reflection to yield IPMS without self-intersections. 

Goxeter (ref. 7) has shown that there are seven convex 
polyhedra Hi which are fundamental regions of discrete groups 
generated by reflections. These polyhedra, which will be called 
k a l e i d o s c o p i c  c e l l s ,  are described in the following list: 

XI: R e c t a n g u l a r  paraZZeZopiped. 

X2: T e t r a g o n a l  d i s p h e n o i d ,  an isogonal, isohedral tetra- 
hedron with isosceles triangle faces; the four vertices of the 
tetrahedron have Cartesian coordinates proportional to (1 2 O ) ,  
(E - 2 O ) ,  ( -  l 0 2 ) ,  and ( -  l 0 - 2 ) ,  respectively. 

113 " r i r e c t a n g u l a r  t e t r a h e d r o n  (one-half of 112) ; its four 
vertices have coordinates proportional to ( -  1 0 0 ) ,  (1 - 2 O ) ,  
(1 2 O ) ,  and ( -  l 0 2), respectively. X3 is called "trirectang- 
ular" by Coxeter, because its face angles include three right 
angles. 

X4: Quadr i ree tangu lar  t e t r a h e d r o n  (one-half of R 3 ) ;  its 
four vertices have coordinates proportional to (1 0 O ) ,  ( -  1 0  O ) ,  
(1 - 2 O ) ,  and ( -  1 0 2 ) ,  respectively. J14 is called "quad- 
rirectangular" by Coxeter, because its face angles include four 
right angles. 

IT5: (333) p r i s m ,  a triangular (right) prism, each of the 
three angles of the base triangle being ~ / 3 .  



E 6 :  ( 2 4 4 )  pr i sm,  a  t r i a n g u l a r  ( r i g h t )  pr ism,  t h e  t h r e e  
angles  of t h e  base  t r i a n g l e  being n / 2 ,  ~ / 4 ,  and ~ / 4 ,  r e s p e c t i v e l y .  

117: ( 2 3 6 )  pr i sm,  a  t r i a n g u l a r  ( r i g h t )  prism, t h e  t h r e e  
angles  of t h e  base  t r i a n g l e  being n / 2 ,  ~ / 3 ,  and ~ / 6 ,  r e s p e c t i v e l y .  

The t h r e e  t e t r a h e d r a ,  112, 113, and II4,  which a r e  fundamental 
r eg ions  of  groups of r e f l e c t i o n s  having cub ic  Brava is  l a t t i c e s ,  
n e c e s s a r i l y  have i n v a r i a n t  p ropor t ions .  On t h e  o t h e r  hand, each 
of t h e  remaining fou r  examples of IIi may be  chosen wi th  some 
a r b i t r a r i n e s s  w i th  r e s p e c t  t o  r e l a t i v e  p ropor t ions .  Thus, ill 
(monoclinic Brava is  l a t t i c e )  may have any set of r e l a t i v e  v a l u e s  

whatever of h e i g h t ,  dep th ,  and width;  t h e  t h r e e  pr isms,  115, E 6 ,  
and 117 (hexagonal and t e t r a g o n a l  Bravais  l a t t i c e s )  may have 
a r b i t r a r y  va lues  of h e i g h t  wi th  r e s p e c t  t o  l a t e r a l  dimensions.  
I n  t h e  c o n t e x t  of minimal s u r f a c e  boundary c o n d i t i o n s ,  however, 
t h e  r e l a t i v e  p ropor t ions  of t h e  c e l l s  I I1 ,  IT5, R 6 #  and 117 must 
s a t i s f y  c e r t a i n  i n e q u a l i t i e s .  These i n e q u a l i t y  r e l a t i o n s  a r i s e  
because t h e  e x i s t e n c e  of a  non-simply-connected minimal s u r f a c e  
wi th  a  s p e c i f i c  t y p e  of boundary i s  s u b j e c t  t o  l i m i t a t i o n s  on  
t h e  al lowed s e p a r a t i o n  of t h e  f i x e d  curves  o r  f r e e  boundar ies  
(he re  p l anes )  which bound t h e  s u r f a c e .  The f a m i l i a r  examples of  
t h e  ca t eno id  and of doubly-connected minimal s u r f a c e s  bounded by 
p a r a l l e l  c o a x i a l  "a l igned"  r e g u l a r  polygons of f i n i t e  o r d e r  
( t h i s  l a t t e r  c a s e  was i n v e s t i g a t e d  i n  d e t a i l  by H .  A .  Schwarz 
( r e f .  1 ) )  i l l u s t r a t e  . . t h i s  k ind of  l i m i t i n g  behavior  on boundary 
s e p a r a t i o n .  

V. ALGORITHM FOR CONSTRUCTING AN INTERSECTION-FREE 
MIRROR-SYMMETRIC IPMS, WHICH IS  A D J O I N T  TO A TWO-FOLD 

ROTATIONALLY-SYMMETRIC IPMS (NOT NECESSARILY FREE OF SELF- 
INTERSECTIONS) COMPOSED OF CONGRUENT REPLICAS OF A 

SIMPLY-CONNECTED M I N I M A L  SURFACE SPANNED BY A 
STRAIGHT-EDGED POLYGON 

Consider a ka l e idoscop ic  c e l l  II. II i s  a  convex polyhedron 
wi th  m f a c e s  Fr (r = 1 , 2 , . . . , m ) .  

A 

Cons t ruc t  the , se t  of v e c t o r s  {u,} r = 2 . . . m )  t h e  
d i r e c t i o n  of  each Ur i s  chosen t o  co inc idg  wi th  t h e  outward 
normal t o  Fr,  and t h e  magnitudes of t h e  {ur} need on ly  s a t i s f y  
t h e  r e l a t i o n  

Let  R be a  polyhedron d u a l  t o  II. Each d i s t i n c t  Hamilton 
l i n e  H, i n  I I '  corresponds t o  a  d i s t i n c t  permutat ion To of  t h e  



s e t  { F ~ }  of f a c e s  of II. I n  each such permutat ion T , on ly  
a d j o i n z n g  f a c e s  of II ( f a c e s  which i n t e r s e c t  i n  an cage of II)  
correspond t o  consecut ive  e lements  i n  T,. 

Now c o n s t r u c t  t h e  polygon W, w i th  edges {Gr 1, which a r e  
o rde red  consecu t ive ly  i n  W, accord ing  t o  t h e  sequence corresponding 
t o  t h e  Hamilton l i n e  H,. L e t  M, be t h e  minimal s u r f a c e  spanned 
by W,. (M, i s  unique,  s i n c e  W, i s  found t o  have a  convex pzo- 
j e c t i o n  i n  every case which a r l s e s . )  The minimal s u r f a c e  M,, 
which i s  t h e  a d j o i n t  of M,, i s  bounded by p l ane  l i n e s  of c u r v a t u r e  
C a r  Each curve C,,,, which l i e s  i n  t h e  p l ane  of t h e  f a c e  f r  of 
a  polyhedron II* which i s  of  t ype  II,  i s  t h e  image, under t h e  
a d j o i n t  t r ans fo rma t ion ,  o f  t h e  edge Ur of M,. 

Except i n  t h e  c a s e  o f  t h e  t h r e e  t e t r a h e d r a l  c e l l s * n 2 ,  113, and 
II4,  which have i n v a r i a n t  p r o p o r t i o n s ,  t h e  polyhedron II has  
p ropor t ions  which a r e  determined - a s  d i scussed  below - by t h e  
p ropor t ions  of W,. The e x a c t  r e l a t i o n  between t h e  p r o p o r t i o n s  of 
II* and t h e  p ropor t ions  of  W, can be determined on ly  from a  complete 
a n a l y t i c  s o l u t i o n  f o r  t h e  a d j o i n t  s u r f a c e s  M, and ME.  

A 

(The d i r e c t i o n s  of t h e  v e c t o r s  Ur could  e q u a l l y  w e l l  have 
been chosen t o  l i e  a long t h e  inzdard normals s o  t h e  f a c e s  Fr of II. 
Th i s  freedom of choice  f o r  t h e  s e n s e  of  t h e  Ur i s  simply an 
exp res s ion  of  t h e  f a c t  t h a t  i f  8 i s  t h e  t r ans fo rma t ion  a n g l e  i n  
t h e  a s s o c i a t e  s u r f a c e  t r ans fo rma t ion  of a  minimal s u r f a c e ,  t hen  
a d j o i n t  s u r f a c e s  e x i s t  bo th  f o r  0 = n /2  and f o r  8 = -n/2; two 
such a d j o i n t  s u r f a c e s  a r e  simply mi r ro r  images of one a n o t h e r . )  

For each of t h e  t h r e e  t e t r a h e d r a ,  II2, II3, and IIq ,  t h e  
i n v a r i a n t  p ropor t ions  of t h e  c e l l  a l low on ly  one s o l u t i o n  of  
Eq. (1) ( a s i d e  from a  m u l t i p l i c a t i v e  c o n s t a n t )  . The f i v e  skew 
q u a d r i l a t e r a l  s o l u t i o n s  W, found,  f o r  t h e s e  t h r e e  c e l l s ,  by 
a p p l i c a t i o n  of t h e  above r u l e  f o r  d e r i v i n g  a l l  d i s t i n c t  polygons 
W, a s s o c i a t e d  wi th  a  c e l l ,  belong t o  t h e  set  of s i x  Schoenf l i e s  
q u a d r i l a t e r a l s  ( r e f .  8 )  from which IPMS can be gene ra t ed .  (The 
s i x t h  Schoenf l i e s  q u a d r i l a t e r a l  c o n t a i n s  one v e r t e x  ang le  of  
2n/3; a s s o c i a t e d  wi th  t h i s  v e r t e x ,  t h e r e  i s  a  branch p o i n t  
corresponding t o  s e l f - i n t e r s e c t i o n  i n  t h e  IPMS ob ta ined  by 
a n a l y t i c  c o n t i n u a t i o n  of t h e  minimal s u r f a c e  module Mg spanned 
by t h e  q u a d r i l a t e r a l .  A s i m p l i f i e d  model of  t h e  a d j o l n t  s u r f a c e ,  
based on M:, i s  shown, i n  an assembly cons t ruc t ed  from f l a t  
p i e c e s  o f  cardboard,  i n  F igu re  1 4 .  

For each of t h e  t h r e e  prism c e l l s  R5, n 6 ,  and I l 7 ,  t h e  edges 
6, of  t h e  skew pentagons W, a r e  found t o  be  a  s u b s e t  of  t h e  
edges of a  prism Q, of  t h e  same type  a s  t h e  ka l e idoscop ic  pr ism 
c e l l  i t s e l f .  The two edges of equa l  l e n g t h  i n  W,, each of 
which l i e s  a t  t h e  i n t e r s e c t i o n  of a  p a i r  of  l a t e r a l  f a c e s  of  t h e  
prism ( " a l t i t u d e "  e d g e s ) ,  may be chosen t o  be of a r b i t r a r y  



Figure 14.- A simplified model of a self-intersecting infinite 
periodic minimal surface. This surface is constructed from 
congruent replicas of a quadrilateral bounded by plane 
lines of curvature. The quadrilateral is adjoint to 
that straight-edged quadrilateral, among the six 
such polygons enumerated by Schoenflies, which 
contains a face angle of 120° (cf. ref. 8). 



magnitude with respect to the lengths of the remaining edges of 
W,. For each of the six solutions W, which are obtained from 
the three prisms, II5, H6, and IT7, there is a unique inverse 
relation between the r e l a t i v e  a l t i t u d e  of the prism Q, (i.e., 
the ratio of the altitude of Q, to the length of one of the 
transverse edges of Q,) and the r e l a t i v e * a l t i t u d e  of the 
corresponding kal$idoscopic prism cell II (i.e., the ratio of 
the altitude of II to the length of one of the transverse edges 
of II*): as the relative altitude of Q, increases without limit, 
the relative altitude of II* approaches zero; as the relative 
altitude of Q, approaches zero, the relative altitude of X* 
increases, approaching a limiting finite value. 

For tQe rectangular parallelepiped kaleidoscopic cell, Ill, 
the edges Ur of the two derived skew hexagons W, are subsets of 
the edges of rectangular parallelepipeds Q, which have different 
proportions, in general, from those of the adjoint cells II*. 
Inverse relations hold here, also, between the relative dimen- 
sions of the kaleidoscopic cells II* and the relative dimensions 
of the cells Q,. 

It was stated abfve that each of the curved edges C, r of 
the minimal surface M,, which is adjoint to M,, lies in the 
plane of the face fr of a polyhedron II*. This result is an 
elementary consequence of (a) the invariance of the Gauss map 
of a minimal surface under the associate surface transformation, 
and (b) the interchange of asymptotics and lines of curvature 
(here, l i n e a r  asymptotics and mirror-symmetric plane lines of 
curvature) under the adjoint surface transformation (ref. 11). 
While this result provides a convenient phenomenological method 
for the construction of minimal surfaces of type M$, it is not 
sufficient to insure the absence of self-intersections in the 
IPMS M:, which js obtained by analytic continuation of M: (i .e. , 
by reflecting M, in each of the faces of II*, then reflecting 
the r e f l e c t e d  surfaces in each of the faces of the replicas of 
II*, etc.). Thus, without proof to the contrary, it is necessary 
to allow for the possibility that one or more of the curved 
edges Car, extends beyond an edge of the face fr in whose plane 
it lies, to form what we will call an "extended loop". The 
existence of such an extended loop implies that the IPMS M; 
intersects itself. In each of the examples which arise from the 
algorithm described here, it is not difficult to present a 
convincing demonstration that such extended loops do not occur, 
by (a) examining the behavior of the normal to a soap-film model 
of the adjoint surface M,, thereby showing the "impossibility" 
of an assignment to the faces of II* of a self-consistent set of 
edge curves C,,, which include any extended loops; (b) bending 
thin models of thg surface M, into the configuration of the 
adjoint surface M,; and (c) constructing M: in the form of a 



soap film (in unstable equilibrium) in II* (or in a cell of pro- 
portions approximating those of IT*). Such demonstrations, 
although quite convincing, do not constitute a mathematical 
proof of the non-existence of self-intersections. In general, 
only quantitative information derived from detailed analysis 
of each surface will afford such proof, and this analysis has 
not been attempted. (As mentioned in Section 11, elementary 
arguments are sufficient to prove that HI - T  is free of self- 
intersections.) 

Meanwhile, it has been found possible to construct models 
of IPMS of type M: which appear to be fair approximations to the 
actual form of the desired minimal surface, either by bending 
thin plastic models of surfaces of type Ma, or by constructing 
thin plastic models of M; on the basis of measurements of soap 
film models of M: which are blown in cells II*. The fact that 
such methods lead to results of reasonably good accuracy in the 
case of the surfaces D, PI and C(P), where the complete solutions 
are known, lends support to the idea that reasonably correct 
models can indeed be constructed in this way. 

VI. THE CONSTRUCTION OF INTERSECTION-FREE IPMS WHICH HAVE A 
MORE COMPLICATED FUNDAMENTAL REGION THAN THOSE IPMS 

OBTAINED BY USE OF THE ALGORITHM OF THE PREVIOUS SECTION 

Certain infinite periodic graphs (including several examples 
of symmetric graphs) for which a fundamental region may be chosen 
to lie within a kaleidoscopic cell, have been examined with an 
eye toward the possibility that there may exist an intersection- 
free IPMS for which such a graph prcvides a labyrinth skeletal 
graph. If one rrtakes use of the meta~hc~rical concept of i n f l a t i n g  
the infinite graph (regarded as a flexible hollow tubular graph), 
so as to transform it into a hypothetical IPMS, it is a straight- 
forward matter to deduce the approximate configuration of the 
curved edges CaTr of a hypothetical surface of general type M:, 
these edges lying in the faces of a cell II*. (The isometric 
property of the associate surface transformation, coupled with 
the requirement that Wa be a closed polygon, constrains the 
relative lengths of the edges Cafr.) In some cases, this hypo- 
thetical surface M$ is multiply-connected, with no plane lines 
of curvature or linear asymptotics in the interior of M:. It is 
believed that several of these cases probably correspond to real 
examples of intersection-free IPMS, but conclusive evidence on 
this point is lacking so far. 

In several other cases, the hypothetical surface M: is simply- 
connected, but the number of bounding arcs Cafr is greater than 
the number o$ faces of the cell II*, i.e., there is at least one 
face fr of II containing two arcs: Cafr and ~ 4 , ~ .  In such 



cases, it is fruitful to investigate the behavior of the normal 
to the adjoint surface M, and also, occasionally, the limiting 
behavior of M, when it has edge proportions near those of 
"slightly perturbed" examples of proved minimal surfaces having 
straight edges. Such perturbed examples are constructed by 
forming a kind of l i n e a r  c o m b i n a t i o n  of the polygonal boundaries 
of a pair of appropriate minimal surfaces; the boundary of the 
resulting surface, in each such case, includes some edges common 
to the pair of surfaces and some edges which are fractional por- 
tions of edges unique to each of the pair of surfaces. It is 
then sometimes possible to prove that there must exist a unique 
set of proportions of M, for which the "extra edge" C; r in M; 
actually does lie in a plane which is not merely p a r a l f e l  to 
the face fr of II*, but c o p l a n a r  to it, as in the hy othetical P surface. When this situation occurs, the surface M, is a 
possible intersection-free IPMS; nevertheless, the absence of 
extended loops of the kind discussed in :he previous section 
must be proved in order to insure that M, does not intersect 
itself. 

While a number of promising examples of such hypothetical 
IPMS have been identified, only two have been carefully investi- 
gated so far.* One of these, which we call the complement of 
the Schwarz surface HI or C(H), is of genus 7 (Figure 11). The 
other, which is called 0,C-TO (Figure 12), is a surface of 
genus LO; an explanation of its name and a description of its 
structure are given in Table I1 of Section IX. 

The existence of C(H) and of 0,C-TO, and the absence of 
self-intersections from these surfaces, have been confirmed by 
the construction of fundamental regions M; for each surface in 
the form of soap films in the appropriate kaleidoscopic cells: 
IT5 for C(H) and 114 for 0,C-TO. 

VII. COMPLEMENTARY PAIRS OF INTERSECTION-FREE IPMS 

It was observed by the author that the intersection-free 
surface C(P) studied by Neovius (a) contains exactly the same 
straight lines as does Schwarz's primitive surface PI and (b) 
has the same set of isometries, or space group, as P. This 
observation, which accounts for the assignment of the name C(P) 
to this Neovius surface, led immediately to the construction of 
the surface C(D) (ref. 6). D and C(D) also contain the same 
straight lines and share a common space group. P and C(P) have 
genus 3 and 9, respectively; D and C(D) have genus 3 and 19, 
respectively. 
-- * Note added in proof: A third such IPMS, of genus 5, with hexa- 
gonal adjoint module M, and cell II5, has been found. It will 
be named g-g'; it is related to the structure of hexagonal 
graphite. 



The r e l a t i o n s  exempl i f ied  by t h e s e  two p a i r s  of s u r f a c e s  
l e d  t h e  au tho r  t o  d e f i n e  two complementary minimal surfaces a s  
a p a i r  of i n t e r s e c t i o n - f r e e  IPMS which have t h e  p rope r ty  t h a t  
t h e  s e t  of a l l  s t r a i g h t  l i n e s  l y ing  i n  e i t h e r  s u r f a c e  i s  t h e  same. 
For each of t h e  known p a i r s  of complementary IPMS, t h e  space 
group - b u t  n o t  t h e  genus - i s  t h e  same f o r  t h e  two s u r f a c e s .  
(Cf. r e f .  1 2 ,  f o r  a  d i s c u s s i o n  of Konig's  theorem: "any 
connected graph may be embedded i n  an o r i e n t a b l e  s u r f a c e  s o  a s  
t o  form t h e  v e r t i c e s  and edges of a  map.") 

A t h i r d  example of a  p a i r  of  complementary IPMS i s  provided 
by Schwarz 's  s u r f a c e  H (genus 3)  and t h e  s u r f a c e  C ( H )  (genus 7 ) .  
I n  t h i s  c a s e ,  u n l i k e  t h e  o t h e r  two, t h e  embedded l i n e s  do n o t  
form a  connected graph;  i n s t e a d ,  t hey  form an i n f i n i t e  set  of  
p a r a l l e l  r e p l i c a s  of t h e  i n f i n i t e  p lane  graph composed of t h e  
edges of t h e  r e g u l a r  t e s s e l l a t i o n  { 3 , 6 }  of e q u i l a t e r z l  t r i a n g l e s .  
Thus, t h e  graph i s  t h e  c o l l e c t i o n  of  a l l  t h e  l a t e r a l  edges  of  
a  s p a c e - f i l l i n g  assembly of e q u i l a t e r a l  t r i a n g l e  r i g h t  pr isms.  
I t  i s  a lmost  c e r t a i n l y  t r u e  t h a t  t h e  e x i s t e n c e  l i m i t s  of H and 
C ( H )  do n o t  co inc ide ,  i . e . ,  t h e r e  probably e x i s t s  a  range of  
p ropor t ions  f o r  t h e  c e l l  115 f o r  which H e x i s t s  b u t  C ( H )  does  
n o t  e x i s t  (o r  v i c e  v e r s a ) .  Thus, t h e  complementary r e l a t i o n  
between t h e s e  two s u r f a c e s  i s  r e s t r i c t e d  t o  t h e  i n t e r v a l  on 
t h e  r e l a t i v e  a l t i t u d e  of 115 f o r  which bo th  s u r f a c e s  a r e  d e f i n e d .  

The f a c t  t h a t  t h e  complements of P ,  D ,  and H a r e  of h ighe r  
genus t h a n  P ,  D ,  and H ,  r e s p e c t i v e l y ,  may be p i c t u r e s q u e l y  
i l l u s t r a t e d  by comparing a p p r o p r i a t e  p o r t i o n s  of each s u r f a c e  
and of i t s  complement which a r e  o r thogona l ly  bounded by t h e  
i n t e r i o r  f a c e s  of a  g iven  s u i t a b l y  chosen po lyhedra l  c e l l .  
I f  t h e  c e l l s  a r e  chosen t o  be a  cube f o r  P and C ( P ) ,  a  tetragonu2 
disphenoid f o r  D and C ( D ) ,  and a  rhombic prism (equa l  t o  two 
ad jo in ing  c e l l s  of t ype  TI5) f o r  H and C ( H ) ,  t hen  it i s  found 
t h a t  whereas P I  D ,  and H a r e  r ep re sen ted  by s u r f a c e  modules 
having one curved edge (p l ane  l i n e  of c u r v a t u r e )  pe r  c e l l  f a c e ,  
t h e i r  complements a r e  r ep re sen ted  by s u r f a c e  modules having two 
curved edges p e r  c e l l  f a c e .  I t  seems l i k e l y  t h a t  no other 
s i n g u l a r i t y - f r e e  minimal s u r f a c e  modules, con ta in ing  t h e  same 
s t r a i g h t  l i n e  segments, can be bounded by t h e  i n t e r i o r  f a c e s  of  
t h e s e  c e l l s .  Each of t h e s e  c e l l s  i s  a  fundamental r eg ion  f o r  
a  group of r e f l e c t i o n s .  I n  t h e  c a s e  of D ,  t h e  group i s  t h e  
complete group of r e f l e c t i o n s  f o r  D .  I n  t h e  c a s e  of P and a l s o  
of H ,  t h e  group i s  a  subgroup of t h e  complete group of r e f l e c -  
t i o n s  f o r  t h e  s u r f  ace .  

There e x i s t s  an i n f i n i t e  symmetric graph of degree  s i x ,  
which c o n t a i n s  a l l  t h e  v e r t i c e s  of t h e  f . c . c ,  graph of deg ree  
twelve,  b u t  on ly  h a l f  a s  many edges;  t h e  edges i n c i d e n t  a t  each 

* B ~  " l a t e r a l  edges" i s  meant edges perpendicu la r  t o  t h e  pr ism 
axes .  



v e r t e x  l i e  i n  a  p lane .  This  graph can be embedded i n  e i t h e r  P 
o r  i n  D .  I f  each of t h e  r e g u l a r  skew hexagons, def ined  by a  
c i r c u i t  of s i x  edges of t h e  graph ,  i s  spanned by a  minimal s u r f a c e ,  
P  i s  t h e  r e s u l t i n g  IPMS. I f  each of t h e  r e g u l a r  skew quadr i -  
l a t e r a l s ,  de f ined  by a  c i r c u i t  of fou r  edges of t h e  graph ,  i s  
spanned by a  minimal s u r f a c e ,  D i s  t h e  r e s u l t i n g  IPMS. Because 
t h e  s e t s  of aZZ s t r a i g h t  l i n e s ,  i n  P and D ,  i nc lude  o t h e r  l i n e s  
bes ides  t h o s e  i n  t h i s  graph of degree  s i x ,  D and P a r e  no t  con- 
s ide red  t o  be complementary s u r f a c e s .  ( ~ h e s e  o t h e r  l i n e s  a r e  
no t  t h e  same f o r  P  and D . )  

F i n a l l y ,  CLP i s  found t o  be self-compZementary: i f  t h e  
s u r f a c e  i s  sub jec t ed  t o  a  t r a n s l a t i o n  by one-half of t h e  e l e -  
mentary l a t t i c e  d i s t a n c e  a long t h e  c -ax is  ( t e t r a g o n a l  symmetry 
a x i s ) ,  t h e  graph composed of a l l  s t r a i g h t  l i n e s  l y ing  i n  t h e  
u n t r a n s l a t e d  s u r f a c e  co inc ides  wi th  t h e  corresponding graph 
f o r  t h e  t r a n s l a t e d  s u r f a c e  (Figure  6 ) .  

V I I I .  THE G Y R O I D  

Th i s  s u r f a c e  appears  t o  be t h e  on ly  known example of an 
i n t e r s e c t i o n - f r e e  IPMS which c o n t a i n s  n e i t h e r  s t r a i g h t  l i n e s  nor 
p lane  l i n e s  of cu rva tu re .  Thus, i t s  symmetry group i n c l u d e s  no 
mi r ro r  r e f l e c t i o n s ,  and t h e  axes  of r o t a t i o n a l  symmetry do n o t  
l i e  i n  t h e  s u r f a c e .  The gyro id  belongs t o  t h e  cubic c r y s t a l  
system; i t s  space group i s  14~ /23 /d .  A few d e s c r i p t i v e  remarks 
concerning t h i s  s u r f a c e  and i t s  r e l a t i o n  t o  t h e  P  and D s u r f a c e s  
of Schwarz appear i n  r e f e r e n c e s  5 and 6 .  Because a  d e t a i l e d  
a n a l y s i s  of t h e  gyro id  w i l l  s h o r t l y  be publ ished e lsewhere ,  on ly  
a  few summarizing remarks w i l l  be made he re .  

The gy ro id  G has  a  body-centered cubic  (b . c . c . ,  o r  cub ic  
I) Brava is  l a t t i c e .  I t  i s  a s s o c i a t e  t o  D ,  which has a  face-  
cen te red  cub ic  ( f . c . c . ,  o r  cub ic  F )  l a t t i c e ,  and t o  P I  which 
has a  p r i m i t i v e  cubic  (cubic  P) l a t t i c e .  The ang le  of a s soc i a -  
t i v i t y  ( s e e  Appendix I )  f o r  G ,  computed wi th  r e s p e c t  t o  D ,  i s  
found t o  be  

K '  z K '  (1/2) and K E K ( 1 / 2 ) ,  which a r e  complete e l l i p t i c  i n t e g r a l s  
of t h e  f i r s t  k ind ,  wi th  modulus k  = 1/2,  a r e  t h e  two fundamental 
pe r iods  of t h e  e l l i p t i c  f u n c t i o n s  i n  terms of  which Schwarz 
( r e f .  1) expressed t h e  paramet r ic  s o l u t i o n s  f o r  D and P .  The 
pa rame t r i za t ion  of  t h e  gy ro id ,  t h e r e f o r e ,  i s  given by t h e  
fol lowing equa t ions :  



x = Re 2 1 exp (iBG)F(r) (1 - r ) d'r, 

y = Re 2 J i exp (iBG)F'(r)(l + r ) dr, 

z = R ~ J  2 exp (iBG)rF(r) d ~ ,  

where 

The skeletal graphs of the two enantiomorphous labyrinths 
of G are mirror-symmetric Laves  g r a p h s  of degree three -(refs. 
5,13). 

The nearly c i r c u l a r  plane "holes" in P (shown by Schwarz 
to have radius variations of only - + 0.4%) correspond to nearly 
h e l i c a l  geodesics, on G, which have radius variations, with 
respect to cylindrical helices, of only - + 0.5%. 

P, D ,  and G may be thought of as metric realizations of the 
following r e g u l a r  maps w i t h  h o l e s  (refs. 5,12,14): {6,414), 
(4,6141, and {6,613). These regular maps are reflexive (ref. 
12) in P and in D; they are non-reflexive in G. 

A most convenient way of representing the group of isometries 
by which one can construct any surface associate to P and D, 
using congruent replicas of a face of any one of the three 
regular maps listed above, is to construct a group of left- and 
right-handed screw isometries. Based on the map {6,4]4), for 
example, the four-fold screw isometries collapse to a screw of 
z e r o  pitch (but f i n i t e  "hole" diameter) for PI and reach a limit 
of f i n i t e  pitch (but z e r o  "hole" diameter) for D. The images 
of these hole curves in P and G are straight lines in D. 
Figure 16 shows computer-generated stereoscopic drawings of a 
single lattice fundamental region in D, G, and P, respectively. 
The transformation of the quasi-circular holes in P into straight 
line holes in D, via intermediate quasi-helical holes of the 
type which appear in G, is illustrated by the example of the 
line segment which is shown extending from left to right along 
the central axis of the fundamental region of D. This line 
segment corresponds to a single pitch of the general quasi-helical 
hole curve. The diameter of such a quasi-helix is defined as 
the diameter of the closely similar circular helix which passes 
through the vertices of the regular map (6,4141 shown in the 
figure. Thus, the quasi-helix may be described as the c i r c u m -  
h e l i x  of the r e g u l a r  h e l i c a l  p o l y g o n ,  having a four-fold screw 



i somet ry ,  which i s  a h o l e  of t h e  r e g u l a r  map (6 ,414)  i n  t h e  
r e g u l a r  warped polyhedron ( r e f .  5 )  which i s  homeomorphic t o  G .  

While P and D a r e  n o t  t h e  on ly  a d j o i n t  p a i r  of  i n t e r s e c t i o n -  
f r e e  IPMS ( t h e  i n t e r s e c t i o n - f r e e  IPMS CLP and i t s  homeomorphic 
a d j o i n t  a r e  e s s e n t i a l l y  t h e  "same" s u r f a c e ,  a s i d e  from a change 
i n  t e t r a g o n a l  p r o p o r t i o n s ) ,  no example of t h r e e  i n t e r s e c t i o n - f r e e  
a s s o c i a t e  IPMS, a s i d e  from t h e  c a s e  of P I  D ,  and G I  has been 
found. I t  i s  cons idered  h igh ly  u n l i k e l y  t h a t  any o t h e r  i n t e r -  
s e c t i o n - f r e e  IPMS con ta in ing  n e i t h e r  s t r a i g h t  l i n e s  nor p l ane  
l i n e s  of c u r v a t u r e  w i l l  be  found,  No examples, a s i d e  from P I  
D ,  and G I  of i n t e r s e c t i o n - f r e e  IPMS i n  which r e g u l a r  maps can 
be embedded, a r e  known. 

The t h r e e  i n f i n i t e  r e g u l a r  skew polyhedra ( r e f .  1 4 )  of 
Coxeter and P e t r i e  correspond t o  t h o s e  t h r e e ,  among t h e  s i x  
r e g u l a r  maps which can be embedded i n  P and D I  whose edges  
cannot  be drawn on P and D a s  l i n e  segments. Thus, t h e  r e g u l a r  
skew polyhedra have t h e  same v e r t i c e s  a s  t h e  corresponding 
r e g u l a r  maps i n  P and D ,  b u t  a p a i r  of a d j a c e n t  v e r t i c e s  i n  t h e  
r e g u l a r  skew polyhedra i s  joined by s t r a i g h t  edges i n s t e a d  of  
by t h e  curved edges which j o i n  them i n  P and D .  When a d j a c e n t  
v e r t i c e s  of any of t h e  t h r e e  r e g u l a r  maps i n  G a r e  jo ined  by 
l i n e  segments, t h e  f a c e s  of t h e  r e g u l a r  map become r e g u l a r  skew 
polygons,  n o t  r e g u l a r  p l a n e  polygons a s  i n  t h e  c a s e  of P and D .  

I n  i t s  g e n e r a l  morphology, G has  a kind of hybr id  c h a r a c t e r  
wi th  r e s p e c t  t o  P and D :  G has  open round " tunne l s "  ( i n  e i t h e r  
l a b y r i n t h )  which a r e  cen te red  on cube axes ,  o r  ( 1 0 0 )  d i r e c t i o n s ,  
a s  does  P. G a l s o  has  open round " tunne l s "  ( i n  e i t h e r  l a b y r i n t h )  
cen te red  on cube body-diagonal axes ,  o r  (111) d i r e c t i o n s ,  a s  
does D .  (These " tunne l s "  i n  D I  however, a r e  n o t  " s t r a i g h t " ,  
i . e . ,  t hey  conform t o  t h e  diamond-branched l a b y r i n t h s  of  D . )  

The g e n e r a l  example of a s u r f a c e  a s s o c i a t e  t o  P and D i s  
no t  p e r i o d i c ,  i . e . ,  i t s  symmetry group i s  cont inuous ,  n o t  
d i s c r e t e .  Only a countably  i n f i n i t e  number of s u r f a c e s  a s s o c i a t e  
t o  P and D a r e  p e r i o d i c ;  among t h e s e ,  G i s  t h e  on ly  example 
wi thout  s e l f - i n t e r s e c t i o n s .  The non-periodic s u r f a c e s  can be 
desc r ibed  a s  having i n f i n i t e l y  many s e l f - i n t e r s e c t i o n s  i n  each 
f i n i t e  r eg ion  of space.  Each of t h e  p e r i o d i c  s u r f a c e s ,  on t h e  
o t h e r  hand, must s a t i s f y  c e r t a i n  commensurability c o n s t r a i n t s ;  
it is  convenient  t o  exp res s  t h e s e  c o n s t r a i n t s  i n  terms of t h e  
p ropor t ions  ( p i t c h  and d i ame te r )  of t h e  approximately h e l i c a l  
"ho le s "  ( r e f s .  5 ,14)  of t h e  r e g u l a r  map (6 ,414)  i n s c r i b e d  i n  
t h e  s u r f a c e .  These commensurability c o n s t r a i n t s  imply t h a t  t h e  
s e t  of p e r i o d i c  s u r f a c e s  a s s o c i a t e  t o  P and D can be p u t  i n t o  
one-to-one correspondence w i t h  t h e  s e t  of p o s i t i v e  r a t i o n a l  
numbers. I f  0 i s  t h e  ang le  of  a s s o c i a t i v i t y  ( s e e  Appendix I ) ,  



with  r e s p e c t  t o  D ,  of a  p e r i o d i c  a s s o c i a t e  s u r f a c e ,  t han  it i s  
found t h a t  t h e  allowed va lues  of 8 a r e  given by t h e  r e l a t i o n  

p and q a r e  any two coprime p o s i t i v e  i n t e g e r s ;  K' E K ( 1 / 2 )  and 
K E K(1/2) are t h e  complete e l l i p t i c  i n t e g r a l s  appear ing i n  
E q .  ( 2 ) .  For t h e  gy ro id ,  p = q = 1 ( s e e  E q .  2 ) .  

The countably  i n f i n i t e  s e t  of s e l f - i n t e r s e c t i n g  s u r f a c e s  
a s s o c i a t e  t o  P I  D ,  and G may be regarded a s  being r e l a t e d  t o  
P I  D l  and G i n  somewhat t h e  same way a s  t h e  fou r  s e l f - i n t e r -  
s e c t i n g  Keplex-Poinsot polyhedra a r e  r e l a t e d  t o  t h e  f i v e  
Archimedean r e g u l a r  polyhedra .  On any of t h e s e  s e l f - i n t e r s e c t i n g  
minimal s u r f  a c e s ,  t h e  t h r e e  r e g u l a r  maps { 6,4 1 4 1 ,  { 4 , 6  1 4 1 ,  and 
(6,6131 may be i n s c r i b e d  ( r e f s .  5 ,12 ,14 ) .  The "s imples t"  of 
t h e s e  s e l f - i n t e r s e c t i n g  s u r f a c e s  i s  t h e  one wi th  p = 1 and 
q = 2 ( s e e  E q .  7 ) ;  i n  t h i s  c a s e ,  t h e  r e g u l a r  map (6 ,414)  has  a 
p a r t i c u l a r l y  simple r e l a t i o n  t o  t h e  s t r u c t u r e  of s e l f - i n t e r -  
s e c t i o n s .  Th i s  s u r f a c e  has  been named dh,  f o r  diamond honey-  
comb. 

Schwarz made r epea t ed  r e f e r e n c e s  ( r e f .  1) t o  t h e  bending 
of minimal s u r f a c e s  according t o  Bonnet ' s  a s s o c i a t e  s u r f a c e  
t r ans fo rma t ion  ( r e f .  3 ) ,  i n  h i s  d i s c u s s i o n  of P and D ,  b u t  he 
does n o t  appear t o  have made any i n v e s t i g a t i o n  of t h e  g l o b a l  
p r o p e r t i e s  of a c t u a l  s u r f a c e s  a s s o c i a t e  t o  P and D .  Thus, t h e  
gyro id  appears  no t  t o  have been i d e n t i f i e d  be fo re  now; f u r t h e r -  
more, t h e  r e s u l t s  summarized by E q .  (7 )  a l s o  appear t o  be new. 

I f  a l a t t i c e  fundamental r eg ion  f o r  each of  t h e  t h r e e  su r -  
f a c e s  P I  D l  and G i s  chosen t o  have t h e  h i g h e s t  p o s s i b l e  p o i n t  
group symmetry, then  t h e  r e s p e c t i v e  p o i n t  groups may be l i s t e d  
a s  fo l lows:  

P: 4 3 2 ( cub ic )  m m 
- 

D :  4 3 m ( [ r e g u l a r ]  t e t r a h e d r a l )  
- 

G :  32 ( t r i g o n a l )  . 
C o r r e l a t e d  wi th  t h i s  sequence of reduced symmetry of t h e  p o i n t  
group i s  a monotonic i n c r e a s e  i n  t h e  normalized sur face- to-  
volume r a t i o  ~ / ~ 2 / 3 ,  pe r  l a t t i ce  fundamental r eg ion ,  f o r  t h e  
sequence P -+ D + G o  (For comparison, i t  should be noted t h h t  
t h e  corresponding va lue  of ~ / ~ 2 / 3  f o r  t h e  r e g u l a r  skew 
polyhedron (6 ,414)  i s  (3/2)43 2 2.5987.) 



The computed va lues  of  S/V 2 / 3  f o r  P ,  D ,  and G a r e  g iven  below: 

Surf ace  

For C ( P ) ,  t h e  on ly  o t h e r  example f o r  which t h e  necessary  d a t a  a r e  
a v a i l a b l e ,  ~ / V 2 / 3  i s  found t o  have t h e  va lue  ~ K ' / K  3.51048; i n  
t h i s  c a s e ,  t h e  modulus k = 1/16. Related r e s u l t s  f o r  C ( D )  would 
be of some i n t e r e s t ,  b u t  t h e  d i f f i c u l t y  of  o b t a i n i n g  a  paramet r i -  
z a t i o n  of t h i s  s u r f a c e  appears  formidable .  

Kelvin considered t h e  fol lowing i s o p e r i m e t r i c  problem: 
what s p a c e - f i l l i n g  polyhedron (no t  r e s t r i c t e d  t o  be convex) has  
t h e  s m a l l e s t  s u r f a c e  a r e a  f o r  a  g iven va lue  of t h e  volume? 
Kelvin found t h a t  a  mod i f i ca t ion  of  t h e  t runca t ed  octahedron i n  
which t h e  edges a r e  s l i g h t l y  curved,  a l l  f a c e s  being minimal 
s u r f a c e s ,  l e aves  t h e  volume unchanged, wh i l e  t h e  s u r f a c e  a r e a  
i s  reduced by roughly one p a r t  pe r  thousand.  No example w i t h  
a  smal le r  va lue  of ~ / V 2 / 3  i s  known, b u t  it has  no t  been proved 
t h a t  t h e  Kelvin s o l u t i o n  i s  optimum. 

A d i f f e r e n t  i s o p e r i m e t r i c  problem may be desc r ibed  a s  
fo l lows:  among a l l  i n t e r s e c t i o n - f r e e  s u r f a c e s  i n  R~ which have 
t h e  t r a n s l a t i o n a l  p e r i o d i c i t y  of a  3-dimensional l a t t i c e  and 
which p a r t i t i o n  R3 i n t o  two congruent r e g i o n s ,  which h a s  t h e  
s m a l l e s t  va lue  of ~/V2/3? I n  t h i s  c a s e ,  S i s  t h e  a r e a  of  a  
s i n g l e  l a t t i c e  fundamental r eg ion  of t h e  s u r f a c e ,  and V i s  t h e  
volume of a  p r i m i t i v e  c e l l  of t h e  l a t t i c e .  I t  appears  q u i t e  
p o s s i b l e  t h a t  t h e  p e r i o d i c  minimal s u r f a c e  P i s  t h e  optimum 
example of such a  s u r f a c e .  Both P and D can be t ransformed i n t o  
s p a c e - f i l l i n g  assembl ies  of Kelvin polyhedra by t h e  fo l lowing  
c o n s t r u c t i o n  r u l e :  Add l ame l l ae  t o  t h e  IPMS by spanning a l l  
c l o s e d  g e o d e s i c s  'with minimal s u r f a c e s ;  t hen  deform t h e  r e s u l t i n g  
c o n f i g u r a t i o n  homeomorphically u n t i l  a l l  s u r f a c e  i n t e r s e c t i o n s  
s a t i s f y  t h e  requirements  of equ i l i b r ium under s u r f a c e  t e n s i o n .  
I n  t h i s  f i n a l  s t a t e ,  t h e  ang le s  of i n t e r s e c t i o n  of t h e  t h r e e  
l ame l l ae  which i n t e r s e c t  a long every curved edge a r e  each  2 ~ / 3 ,  
and t h e  fou r  curved edges which i n t e r s e c t  a t  every v e r t e x  meet 
each o t h e r  a t  t h e  ang le  cos- I ( -1 /3)  109°28 ' .  

I f  t h i s  c o n s t r u c t i o n  r u l e  i s  app l i ed  t o  G it i s  found t h a t  
when t h e  minimal s u r f a c e  l ame l l ae  a r e  added, RS i s  p a r t i t i o n e d  
i n t o  congruent 17-faced curved polyhedra w h i c h  a r e  homeomorphic 
t o  t h e  D i r i c h l e t  ce2Z.s o f  t h e  v e r t i c e s  o f  t h e  two s k e l e t a l  



Laves graphs o f  G .  ( I n  t h e  c a s e  of bo th  P and D ,  a l s o ,  t h e  
D i r i c h l e t  c e l l s  [ t r u n c a t e d  oc tahedra]  of t h e  v e r t i c e s  of t h e  
two s k e l e t a l  graphs  a r e  homeomorphic t o  t h e  curved polyhedra 
which r e s u l t  from t h i s  c o n s t r u c t i o n . )  I t  i s  n o t  known whether 
t h i s  c o n s t r u c t i o n  can be  c a r r i e d  t o  completion i n  t h e  c a s e  of  
G ,  i . e . ,  whether t h e  added l ame l l ae ,  which a r e  curved decagons,  
t o g e t h e r  w i t h  t h e  q u a d r i l a t e r a l  and hexagonal f a c e s  formed on 
G by t h e  i n t e r s e c t i o n s  of t h e  c lo sed  geodes i c s ,  can be deformed 
i n t o  a homeomorphic c o n f i g u r a t i o n  of minimal s u r f a c e s  whose 
i n t e r s e c t i o n s  s a t i s f y  t h e  laws of equ i l i b r ium under s u r f a c e  
t e n s i o n .  However, i f  such an equ i l i b r ium s t a t e  does  e x i s t ,  t h e  
examples of P and D sugges t  t h a t  t h e  de r ived  c e l l  i s  u n l i k e l y  
t o  have a ve ry  much sma l l e r  va lue  of  s / v ~ / ~  than  t h e  corresponding 
D i r i c h l e t  c e l l .  For  t h e  17-faced D i r i c h l e t  c e l l  i n  t h e  c a s e  
of G ,  s /v2l3 5 5.644680; f o r  t h e  t r u n c a t e d  oc tahedron ,  s /v2i3 

5.314740. Hence, it appears  l i k e l y  t h a t  i f  i t  e x i s t s ,  t h e  
ana log  t o  t h e  Kelvin polyhedron which i s  de r ived  from t h e  gy ro id  
by t h e  e m p i r i c a l  c o n s t r u c t i o n  r u l e  given above has  a l a r g e r  
va lue  of s / v ~ / ~  t h a n  does  t h e  Kelvin polyhedron.  

These c o n s i d e r a t i o n s  a r e  ha rd ly  conc lus ive ,  s i n c e  they  a r e  
based on an incomplete  a n a l y s i s ,  b u t  t hey  provide  weak a d d i t i o n a l  
evidence i n  suppor t  of  t h e  Kelvin polyhedron a s  t h e  s o l u t i o n  
of t h e  c l a s s i c a l  s / v ~ / ~  i s o p e r i m e t r i c  problem. 

I t  appears  t h a t  G may be unique i n  a symmetr ical  sense :  
i n  c o n t r a s t  t o  P and D l  f o r  which v a r i a n t s  of lower p o i n t  group 
symmetry may e a s i l y  be  proved t o  e x i s t ,  G may no t  have any 
v a r i a n t  forms of lower symmetry. This  s t a t emen t  i s  based on 
t h e  d i s c u s s i o n  which fo l lows .  

P i s  one of two d i s t i n c t  minimal s u r f a c e s  which may be 
d e r i v e d ,  by means of t h e  c o n s t r u c t i o n  a lgo r i t hm of S e c t i o n  V ,  
from t h e  ka l e idoscop ic  c e l l  IT1 i n  i t s  most symmetrical  form: 
t h e  cube. The s u r f a c e  module M:, i n  t h i s  c a s e ,  i s  a f a c e  of 
t h e  r e g u l a r  map (6 ,414)  on P .  Ma i s  a f a c e  of  t h e  r e g u l a r  map 
(6 ,414)  on D ;  t h e  s i x  edges  of equa l  l e n  &h which form t h e  
boundary of M, correspond t o  a s o l u t i o n  4 U r I  = c o n s t a n t  i n  
Eq. (1). The o t h e r  s o l u t i o n s  of Eq. (1) i n  t h i s  c a s e  g i v e  r ise  
t o  a two-parameter fami ly  of a d j o i n t  s u r f a c e s  which resemble  
both  P and D ,  b u t  which have l a t t i c e s  of  lower symmetry ( e i t h e r  
t e t r a g o n a l  o r  monoc l in i c ) .  By cons ide r ing  t h e  i n v e r s e  r e l a -  
t i o n s  which hold between t h e  r e l a t i v e  dimensions of t h e  p a r a l l e l -  
opiped I l l ,  spanned by a hexagonal f a c e  of P i n  i t s  most g e n e r a l  or-  
thorhombic form, and t h e  r e l a t i v e  dimensions of t h e  parallelepiped 
Q,, from which a s u b s e t  of  s i x  edges forms t h e  boundary W, of 
a hexagonal f a c e  of  D i n  i t s  most genesa l  orthorhombic £ o m ,  it 
i s  p o s s i b l e  t o  show t h a t  e x c e p t  when IurI = c o n s t a n t  i n  E q .  I ,  
no i n t e r s e c t i o n - f r e e  a s s o c i a t e  s u r f a c e  on a  body-cen tered  Z a t t i c e ,  
correspond ing  t o  t h e  g y r o i d ,  e x i s t s .  This  r e s u l t  sugges t s  t h e  



possibility that there does not exist any  body-centered or thorhom-  
bic version of G ,  however it is obtained. I n  any case, if such 
an IPMS does exist, it cannot be obtained from lower symmetry 
variants of P and D by the associate surface transformation. 
It is not known whether surfaces derived from the gyroid, 
with n o n - z e r o  constant mean curvature, exist. 

If oblique sets of basis vectors for the cubic lattices 
P and F are constructed for suitably chosen simply-connected 
lattice fundamental regions of P and D, respectively, then it is 
possible to construct a representation of the bending of either 
fundamental region into the other, in which each basis vector 
describes an elliptical trajectory centered on the origin fixed 
in the surface. When 8 = BG (mod T), the image of this set of 
vectors is a set of basis vectors for the cubic I lattice of the 
gyroid. (When 8 = eG (mod v ) ,  the gyroid is again generated, 
but the three vectors lie in a plane.) If [fi(8), 9(8), f?(8)] 
is this set of vectors, then the determinant luvwl defines the 
volume of a lattice primitive cell for D l  GI and P, when 
8 = 0, 8 ~ ,  and ~ / 2 ,  respectively. These volumes are simple 
functions of the complete elliptic integrals appearing on p. 52. 

IX. SEVENTEEN INTERSECTION-FREE IPMS 

In this section, we provide a list of the seventeen sur- 
faces which are the subject of this note. We will assume here 
that all of these surfaces are free of self-intersections, i.e., 
we will disregard the possibility that any of them contains 
any "extended loops" of the type described earlier. In Table 
I, these surfaces are listed according to their assigned names, 
in order of increasing genus. (The genus of each surface was 
computed by applying Hopf's theorem (ref. 15), which states 
that the ~uler-Poincar6 characteristic of a compact orientable 
surface is equal to twice the degree of the Gauss mapping, to 
a lattice fundamental region of the surface.) 

For each of the 14 surfaces for which a single "Flachenst6zkU ME can be orthogonally bounded in the interior of one (or more) 
of the seven kaleidoscopic cells, the identity and the number 
of faces m of the cell IIi are listed, and the number m' of 
(plane line of curvature) edges of the surface M: contained in 
II. is also given. Whenever the application of the construction 
aigorithm of Section V allows the generation of that surface in 
more than one of the kaleidoscopic cells, the values of m and m' 
are given for each such cell. The number of the figure (if any) 
in which the surface is shown is also listed. 

Table I1 provides a list of descriptive remarks, concerning 
each of the seventeen surfaces, which are sufficiently specific 



t o  a s s i s t  t h e  r e a d e r  t o  some degree  i n  i d e n t i f y i n g  each s u r f a c e ,  
even i n  t hose  c a s e s  where no i l l u s t r a t i o n  has  been provided.  

Table  I11 l i s t s  t h e  c r y s t a l  system and space group symbol 
f o r  each of t h e s e  seventeen s u r f a c e s .  The space group i s  a l s o  
i d e n t i f i e d  by i t s  number i n  t h e  I n t e r n a t i o n a l  T a b l e s  f o r  X-ray 
CrystaZZography ( r e f .  1 6 ) .  

TABLE I.- SEVENTEEN INTERSECTION-FREE 
INFINITE PERIODIC M I N I M A L  SURFACES 



TABLE 11.- DESCRIPTIVE REMARKS CONCERNING THE SEVENTEEN 
INTERSECTION-FREE INFINITE PERIODIC MINIMAL SURFACES 

1. P  P r i m i t i v e  s u r f a c e  o f  Schwarz ( r e f .  1) 

2 .  D Diamond s u r f a c e  o f  Schwarz ( r e f .  1) 

3.  G G y r o i d ,  a s s o c i a t e  t o  P  and D ( c f .  S e c t i o n  V I I I  
and r e f s .  5 , 6 )  

4 .  H ( = R ~ )  Hexagonal g raph  s u r f a c e  o f  Schwarz ( r e f .  1) . T h i s  
s u r f a c e  i s  a l s o  d e s i g n a t e d  R I ,  t o  i n d i c a t e  t h a t  it 
can  b e  c o n s t r u c t e d  from doubly-connected fundamenta l  
r e g i o n s  ( " r i n g - l i k e  s u r f a c e s " ) ,  bounded by t h e  
o p p o s i t e  p a r a l l e l  e q u i l a t e r a l  t r i a n g l e s  o f  a  p r i sm 
o f  t y p e  I15. The hexagonal  g raph  comprises  a l l  of  t h e  
t h e  l a t e r a l  edges  ( i . e . ,  edges  p e r p e n d i c u l a r  t o  t h e  
c - a x i s )  of  a  s p a c e - f i l l i n g  assembly of  c o n g r u e n t  
r e g u l a r  hexagon r i g h t  p r i s m s ,  a s  w e l l  a s  one-ha l f  o f  
a l l  t h e  o t h e r  edges  of  such  a n  assembly.  S p e c i f i c a l l y ,  
t h e s e  l a t t e r  edges  ( " a l t i t u d e "  edges )  may b e  d e s c r i b e d  
a s  t h e  set  of a l t e r n a t e  a x i a l  edges  of  a  honeycomb o f  
i n f i n i t e l y  long  congruen t  r e g u l a r  hexagon r i g h t  p r i sms  
o b t a i n e d  by removing t h e  hexagonal  f a c e s  from t h e  
honeycomb of f i n i t e  hexagonal  p r i s m s .  

5 .  CLP Crossed  l a y e r s  o f  p a r a l l e l s  s u r f a c e :  T h i s  Schwarz 
s u r f a c e  ( r e f .  1) may be d e s c r i b e d  i n  t e rms  o f  two 
congruen t  s k e l e t a l  g r a p h s ,  each  of which i s  c a l l e d  
" c r o s s e d  l a y e r s  of  p a r a l l e l s . "  T h i s  g r a p h ,  which 
be longs  t o  t h e  t e t r a g o n a l  c r y s t a l  sys tem,  i s  con- 
s t r u c t e d  from e q u i d i s t a n t  p a r a l l e l  l a y e r s  o f  
p a r a l l e l  l i n e s .  Each l a y e r  l i e s  i n  a  p l a n e  p e r -  
p e n d i c u l a r  t o  t h e  t e t r a g o n a l  a x i s  ( c - a x i s ) ,  and i s  
made up of  a n  i n f i n i t e  se t  of  e q u i d i s t a n t  p a r a l l e l  
l i n e s .  A l l  p a i r s  of  a d j a c e n t  l a y e r s  a r e  e q u i d i s t a n t ;  
t h e  l i n e s  i n  a d j a c e n t  l a y e r s  a r e  o r t h o g o n a l  ( " c r o s s e d " ) .  
Every p a i r  of l i n e s  i n  a d j a c e n t  l a y e r s  i s  j o i n e d  by 
a n  edge ,  p a r a l l e l  t o  t h e  c - a x i s ,  which i s  t h e  l i n e  
segment of  s m a l l e s t  l e n g t h  c o n n e c t i n g  t h e  p a i r  o f  
l i n e s .  ~ l t e r n a t i v e l y ,  CLP may be  d e s c r i b e d  i n  t e r m s  
o f  t h e  s m a l l e s t  s t r a i g h t - e d g e d  polygon which may b e  
i n s c r i b e d  i n  t h e  s u r f a c e :  a  hexagon, v i s i b l e  i n  
F i g u r e  6 ,  whose edges  a r e  a s u b s e t  o f  t h e  edges  o f  
a  s q u a r e  p r i sm.  For  t h e  model shown i n  F i g u r e  6 ,  t h e  
s q u a r e  p r i sm i s  a  cube;  t h e  s p a c e  group i s  n o t  a f f e c t e d  
by t h e  c h o i c e  between cube  and g e n e r a l  s q u a r e  p r i s m .  

6.  H I - T  Hexagonal g raph  - T r i a n g l e  g raph  s u r f a c e :  t h e  
s k e l e t a l  g raph  o f  one  l a b y r i n t h  (hexagonal )  c o n s i s t s  



of a l l  of t h e  edges of a  s p a c e - f i l l i n g  assembly of 
congruent r e g u l a r  hexagon ( r i g h t )  pr isms;  t h e  
s k e l e t a l  graph of t h e  d u a l  l a b y r i n t h  ( t r i a n g u l a r )  
c o n s i s t s  of a l l  of t h e  edges of a  s p a c e - f i l l i n g  
assembly of congruent e q u i l a t e r a l  t r i a n g l e  p r i sms .  

Large square  graph - Smal l  square  graph s u r f a c e :  t h e  
s k e l e t a l  graph of one l a b y r i n t h  ( s ' )  i s  made up of  
p a r a l l e l  l a y e r s  of i d e n t i c a l  square  t e s s e l l a t i o n s ,  
a d j a c e n t  l a y e r s  being jo ined  a t  edge midpoints  by 
edges perpendicu la r  t o  t h e  l a y e r s ;  t h e  s k e l e t a l  
graph of t h e  dua l  l a b y r i n t h  ( s " )  i s  made up of l a y e r s  
of  i d e n t i c a l  square  t e s s e l l a t i o n s ,  halfway between 
and p a r a l l e l  t o  t h e  o t h e r  l a y e r s ;  e a c h l s q u a r e  i n  S" 
has m e - h a l f  t h e  a r e a  of a  square  i n  S  . The squa re s  
i n  S"  a r e  jo ined by edges ,  perpendicu la r  t o  t h e  
l a y e r s ,  a t  a l t e r n a t e  v e r t i c e s ;  t h e s e  edqes pas s  
through t h e  c e n t e r s  of t h e  squares  i n  S . 

8. H"-R Hexagonal graph  - Rhombic graph  s u r f a c e :  HI' i s  t h e  
c o l l e c t i o n  of a l l  l a t e r a l  edges of a  s p a c e - f i l l i n g  
assembly of congruent r e g u l a r  hexagon ( r i g h t )  
pr isms,  p l u s  edges,  pe rpend icu la r  t o  t h e  hexagonal 
l a y e r s ,  which j o i n  neighboring l a y e r s  a t  t h e  mid- 
p o i n t s  of t h e  hexagon edges.  R i s  a  graph whose 
i d e n t i c a l  l a y e r s  a r e  rhombic p l ane  t e s s e l l a t i o n s ,  
each rhombus being t h e  "sum" of two a d j a c e n t  
e q u i l a t e r a l  t r i a n g l e s .  'The connec t ions  between 
a d j a c e n t  rhombic l a y e r s  a r e  edges,  pe rpend icu la r  
t o  t h e  l a y e r s ,  which j o i n  a c u t e  rhombic v e r t i c e s .  
Rhombus Area = (1/3) (Hexagon Area) . 

9 .  T I - R '  T r i a n g u l a r  graph  - Rhombic graph  s u r f a c e :  T '  i s  
t h e  c o l l e c t i o n  of a l l  l a t e r a l  edges of a  space- 
f i l l i n g  assembly of congruent  e q u i l a t e r a l  t r i a n g l e  
( r i g h t )  pr isms,  p l u s  edges ,  perpendicu la r  t o  t h e  
t r i a n g l e  l a y e r s ,  which j o i n  neighboring l a y e r s  a t  
t h e  midpoints  of t h e  t r i a n g l e  edges;  R '  i s  a  graph 
whose i d e n t i c a l  l a y e r s  a r e  rhombic p lane  t e s s e l l a -  
t i o n s ,  each rhombus being t h e  "sum" of two a d j a c e n t  
e q u i l a t e r a l  t r i a n g l e s .  The connec t ions  between 
a d j a c e n t  rhombic l a y e r s  a r e  edges ,  perpendicu la r  
t o  t h e  l a y e r s ,  which j o i n  o b t u s e  rhornbic v e r t i c e s .  
Rhombus Area = (2/3) (T r i ang le  Area) . 

1 0 .  F-RD F-graph - Rhombic dodecahedra  graph  s u r f a c e :  (dua l  
of  f . c . c . ) :  The F-graph i s  t h e  symmetric g raph ,  of 
degree  1 2 ,  cons t ruc t ed  by j o i n i n g  a l l  n e a r e s t  
neighbor p o i n t s  of a  f . c . c .  l a t t i c e ,  by an edge.  
The RD-graph i s  cons t ruc t ed  by jo in ing  t h e  c e n t r o i d s  



of a l l  f a c i a l l y  a d j a c e n t  polyhedra by edges ,  i n  a 
c u b i c a l l y  symmetrical  packing of r e g u l a r  oc t ahed ra  
and r e g u l a r  t e t r a h e d r a .  Also,  t h e  RD g raph  i s  t h e  
assembly of a l l  t h e  edges  of a s p a c e - f i l l i n g  assembly 
of rhombic dodecahedra.  F-RD i s  t h e  a d j o i n t  c f  a 
s u r f a c e  p a r t l y  analyzed by Stessmann ( r e f .  8 ) .  

11. C (H) The compzement o f  H .  Thi s  s u r f a c e  i s  a t r i g o n a l l y  
symmetrical analog of  C(P): i f  t h e  c e l l  I l l ,  i n  
i t s  cube form, c o n t a i n s  an o r thogona l ly  bounded 
12-gon f a c e  (wi th  curved edges)  of C (P) , and t h e  
c e l l  i s  cont inuous ly  sheared u n t i l  it assumes t h e  
shape o f  a rhombic pr ism which i s  congruent  t o  
t h e  "sum" o f  two e q u i l a t e r a l  t r i a n g l e  p r i sms ,  
t h e n  t h e  12-gon f a c e  of  C(P)  i s  t ransformed i n t o  
a 12-gon f a c e  of  C (H) . 

12. I-WP I -graph  - Wrapped Package graph s u r f a c e :  t h e  I -  
graph i s  t h e  symmetric g raph ,  of degree  e i g h t ,  con- 
s t r u c t e d  by j o i n i n g  by an edge a l l  n e a r e s t  neighbor 
p o i n t s  of  a b .c .c .  l a t t i ce ;  t h e  WP graph i s  con- 
s t r u c t e d  by jo in ing  by an  edge t h e  c e n t e r s  of 
o p p o s i t e  edges  of each square  f a c e  of eve ry  cube 
i n  a s p a c e - f i l l i n g  assembly of cubes .  (The name 
WP i s  chosen because of t h e  resemblance of f i n i t e  
p o r t i o n s  of t h e  graph t o  t h e  arrangement o f  s t r i n g  
on a simply wrapped package.)  I-WP i s  t h e  a d j o i n t  
of a s u r f a c e  p a r t l y  analyzed by Stessmann ( r e f .  8 ) .  

The complement o f  P ,  analyzed by Neovius ( r e f s .  
4 , 6 ) .  

1 4 .  RII An IPMS assembled from " r i n g - l i k e  s u r f a c e s " ,  each 
bounded by t h e  o p p o s i t e  p a r a l l e l  t r i a n g l e s  (v/2, 
~ / 4 ,  n/4) of a pr ism of  t ype  n6. 

15. 0,C-TO Octahedra - cuboc tahedra  graph - t e t r a g o n a l  
' o c t a h e d ~ o n  graph s u r f a c e :  0,C i s  a symmetric graph 

of deg ree  e i g h t  which comprises t h e  edges of a 
s p a c e - f i l l i n g  assembly of r e g u l a r  oc t ahed ra  and 
cuboctahedra;  TO i s  cons t ruc t ed  from t h e  edges  of 
a s p a c e - f i l l i n g  assembly of t e t r a g o n a l  oc t ahed ra .  
Th i s  octahedron c o n s i s t s  of an assembly o f  f o u r  
t e t r a g o n a l  d i sphenoids ,  jo ined a long  a common l ong  
edge l y i n g  a long  t h e  4-fold  a x i s  o f  t h e  octahedron.  
Each t e t r a g o n a l  d i sphenoid  i s  congruent  t o  t h e  ka le ido-  
s cop ic  c e l l  v2.  Th i s  IPMS may be regarded  as a k ind  
o f  hyb r id  v e r s i o n  o f  P and I-WP: t h e  l a r g e  c u b i c a l l y -  
symmetrical  "chambers" o f  t h e  TO l a b y r i n t h  may be 



desc r ibed  p i c t u r e s q u e l y  a s  s p h e r i c a l  bubbles  which 
have sprouted  t u b u l e s  outward t o  t h e  f a c e s  ( c f .  P )  
and a l s o  t o  t h e  c o r n e r s  ( c f .  I-WP) of a n  enc los ing  
cube. T h i s  d e s c r i p t i o n ,  based on t h e  morphology 
of a l a t t i c e  fundamental r e g i o n  of  t h e  s u r f a c e ,  i s  
r e i n f o r c e d  by t h e  f a c t  t h a t  t h e  boundary of a penta-  
gona l  s u r f a c e  module M a ,  which i s  a d j o i n t  t o  t h e  
module M: of 0 , C - T O ,  can be expressed a s  a kind of 
l i n e a r  combination sf t h e  boundar ies  of q u a d r i l a t e r a l  
s u r f a c e  modules Ma of  P and I-WP ( c f .  S e c t i o n  V I ) .  
The e x i s t e n c e  of t h i s  IPMS i s  supported by t h e  
exper imenta l  o b s e r v a t i o n  t h a t  a soap-fi lm model of 
M:, formed i n  t h e  i n t e r i o r  of  t h e  ka l e idoscop ic  
c e l l  lT4, i s  s t a t i o n a r y ,  and t h e r e f o r e  appears  t o  
s a t i s f y  t h e  requi rements  of  u n s t a b l e  e q u i l i b r i u m  
f o r  a minimal s u r f a c e  which i s  o r thogona l ly  bounded 
by t h e  i n t e r i o r  of  a convex polyhedron. The 
r e l a t i v e  l e n g t h s  of  t h e  edges of  t h e  pentagonal  
module f o r  t h i s  s u r f a c e  w e r e  de r ived  from measure- 
ments of  t h e  soap f i l m  M:. 

An IPMS assembled from " r i n g - l i k e  s u r f a c e s " ,  each 16* R1ll bounded by t h e  o p p o s i t e  p a r a l l e l  t r i a n g l e s  ( s /2 ,  
n /3 ,  s / 6 )  of  a prism of  t ype  l T 7 .  

17. C (D) The complement of D ( r e f .  6 ) .  The s k e l e t a l  g raphs  
of C ( P )  and C ( D )  may be de r ived  according t o  a s imple  
r u l e  from t h e  s k e l e t a l  g raphs  of P and D ,  r e s p e c t i v e l y ;  
t h i s  r u l e  i s  desc r ibed  i n  Appendix 11. 



TABLE 111.- CRYSTAL SYSTEMS AND SPACE GROUPS 
OF THE SEVENTEEN INTERSECTION-FREE INFINITE PERIODIC 

MINIMAL SURFACES 

The lower-symmetry variants of P and D are given below: 



x.  THE EIGHT PENTAGONAL M I N I M A L  SURFACES WHICH 
ARE "FLACHENSTUCKE" FOR IPMS ON 

NON-CUBIC BRZlVAIS LATTICES 

Schoenf l i e s  ( r e f .  8 )  proved t h a t  t h e r e  a r e  on ly  s i x  minimal 
s u r f a c e s  spanned by s t r a igh t - edged  q u a d r i l a t e r a l s  from which 
IPMS can be c o n s t r u c t e d .  I n  a l l  of  t h e s e  s i x  examples, t h e  
edges of t h e  q u a d r i l a t e r a l s  a r e  e i t h e r  cube edges o r  cube f a c e  
d i agona l s .  While t h e r e  i s  an i n f i n i t e  number of polygons of  
any h igher  o r d e r ,  i nc lud ing  pentagons,  which bound minimal su r -  
f a c e s  from which IPMS can be c o n s t r u c t e d ,  t h e  number o f  pentagons 
i s  r e s t r i c t e d  t o  e i g h t ,  i f  o n l y  IPMS hav ing  non-cub ic  B r a v a i s  
l a t t i c e s  a r e  a l l o w e d .  These correspond t o  t h e  e i g h t  ways of  
c o n s t r u c t i n g  pentagons from t h e  edges of any of fou r  t r i a n g u l a r  
( r i g h t )  prisms.  The t r i a n g l e  f a c e s  of t h e s e  prisms a r e :  

( a )  30' - 60° - 90° 

(b )  60" - 60" - 60' 

(d )  90' - 45' - 45' 

X I .  A NON-ORIENTABLE IPMS 

A non-or ien tab le  IPMS has been cons t ruc t ed  i n  which s e l f -  
i n t e r s e c t i o n s  occur  on ly  a long t h e  branch l i n e s ,  a s s o c i a t e d  wi th  
s imple  branch p o i n t s ,  of t h e  skew-hexagram-like f a c e s  of which 
it i s  composed. A s i n g l e  fundamental r eg ion  of t h i s  s u r f a c e  i s  
shown i n  F igu re  15.  The Bravais  l a t t i c e  of t h i s  s u r f a c e  i s  P 
( p r i m i t i v e  c u b i c ) .  The elementary skew polygon which i s  a 
fundamental r eg ion  f o r  t h e  group of two-fold r o t a t i o n a l  i s o m e t r i e s  
of t h e  s u r f a c e  i s  a pentagon; 48 such pentagonal  f a c e s  a r e  con- 
t a i n e d  i n  a s i n g l e  fundamental r e g i o n  of t h e  s u r f a c e .  A r e p r e -  
s e n t a t i v e  pentagonal  f a c e  has  consecut ive  v e r t i c e s  a t  t h e  pos i -  
t i o n s  ( 0  0 O ) ,  ( -  1 0 1) , - 1 1 2 )  , (-  1 4 - l ) ,  and (0 4 0 ) .  

Th i s  s u r f a c e  p a r t i t i o n s  R3 i n t o  two d i r e c t l y  congruent  
l a b y r i n t h s ,  f o r  e i t h e r  of which t h e  s k e l e t a l  graph may be 
desc r ibed  a s  a symmetric graph of  degree  t h r e e  which i s  homeomor- 
ph ic  t o  t h e  Laves graph of  degree  t h r e e  ( r e f .  1 3 ) ,  b u t  which i s  
more s p e c i f i c a l l y  d e s c r i b e d ,  m e t r i c a l l y ,  a s  being de r ived  from 
t h e  diamond graph by symmetr ical ly  removing a s i n g l e  edge from 
t h e  s e t  of  fou r  edges i n c i d e n t  a t  each v e r t e x .  

The non-or ien tab le  c h a r a c t e r  of t h i s  s u r f a c e  i s  e a s i l y  
v e r i f i e d  by i d e n t i f y i n g  an a p p r o p r i a t e  c lo sed  p a t h  a long s i x  
cont iguous pentagonal  f a c e s .  A s  i s  c l e a r l y  shown by a s t e r e o -  



a. View along (111) 
axis. 

b. View along (110) 
axis. 

Figure 15.- A non-orientable infinite periodic minimal surface. 
Shown here is a single lattice fundamental region. 



c. Right-left stereoscopic views of non-orientable surface. 

6. 1,eft-right stereoscopic views of non-orientable surface. 

Figure 1 5 . -  Concluded. 



graphic projection of the Gauss map for these six faces, the 
normal to the surface is defined at any point with the ambiguity 
proper to a non-orientable surface. 

The exact equivalent topological character of a fundamental 
region of this surface has not yet been investigated. 

XII. ASSOCIATE SURFACE TRaNSFORMATION OF P AND D 
SURFACES OF SCHWARZ 

Figure 16 shows computer-drawn stereoscopic views of simply- 
connected fundamental regions of D, G, and P. The fundamental 
regions are selected to include eight skew hexagonal faces of the 
regular map (6,4141. The role of the four-fold screw operator, 
as a generator of the group by which a single such face may be 
analytically continued to construct the complete associate IPMS, 
is explained briefly in Section VIII. 

Using plastic models of the surfaces shown in Figure 16, 
one can literally bend each of these surfaces into either of the 
others. (The fundamental regions for G and for P require 
appropriate cuts in order to be simply-connected. The cut for 
G separates the hexagonal faces which have a common point near 
the top center of Figures 16b and 16e. The cut for P is along 
the approximately semi-circular arc which joins the upper-front 
pair of hexagonal faces to the upper-rear pair of hexagonal 
faces, in Figures 16c and 16f.) During much of this bending, 
it is necessary for the surface models to depart somewhat from 
the minimal surface configurations, because the associate sur- 
face transformation requires that part of the surface actually 
pass through itself, i.e., that it be self-intersecting. This 
self-intersecting behavior is shown quite clearly by stereo- 
scopic drawings of the surface computed for several values of 
the associate surface transformation angle different from those 
for D, G, and P. 



Figure 16.- Right-left stereoscopic views of fundamental regions 
of D, G, and P, respectively. The centroid of D is the fixed 
point; all other points of the fundamental region describe 

elliptical trajectories centered on the fixed point, 
throughout this bending transformation. 



Figure 16.- Left-right stereoscopic views of the fundamental 
regions of D, GI and PI respectively. Concluded. 



APPENDIX I 

SOME ASPECTS OF BONNET'S 
ASSOCIATE SURFACE TRANSFORMATION, AND RELATED TOPICS 

Any minimal s u r f a c e  M c an  be  paramet r ized  i n  t h e  form 

2 x = Re f (1 - u ) F ( u )  du,  (1) 

2 y = R e S i ( 1  + u ) F ( u )  du,  ( 2 )  

z = R e S 2 u ~  (u )  du,  
A 

where r (u )  E [x  (u )  , y (u )  , z (u )  1 i s  t h e  p o s i t i o n  of a  p o i n t  on 
t h e  s u r f a c e ,  and F ( u )  i s  any a n a l y t i c  f u n c t i o n  of t h e  complex 
v a r i a b l e  u .  

I f  F (u )  i s  r e p l a c e d  i n  Eqs. (1-3) by t h e  f u n c t i o n  F ( u )  exp 
( i e ) ,  where 8 i s A a n  a r b i t r a r y  r e a l  c o n s t a n t ,  t h e n  t h e  r e s u l t i n g  
e x p r e s s i o n s  f o r  r ( u )  d e f i n e  t h e  p a r a m e t r i z a t i o n  o f  a  minimal 
s u r f a c e  a s s o c i a t e  t o  M .  Each such a s s o c i a t e  s u r f a c e  can  be 
ob t a ined  by bending M i n  such a way a s  t o  p r e s e r v e  t h e  o r i e n t a -  
t i o n  of  t h e  t a n g e n t  p l ane  a t  every  p o i n t  of  t h e  s u r f a c e .  I n  
p a r t i c u l a r ,  when 8 = ~ r / 2  o r  - ~ r / 2 ,  t h e  paramet r ized  s u r f a c e  M* 
i s  c a l l e d  t h e  s u r f a c e  a d j o i n t  t o  M I  w i t h  c o o r d i n a t e s  

x* = 5 R e [ i ( l  - u 2 ) ~ ( u )  du,  

2 y* = T R e S ( 1  + u ) F ( u )  du,  

- z* = + ~e f 2 i u ~  (u )  du;  (6 )  

t h e  c h o i c e  between upper and lower s i g n s  i n  Eqs. (4-6) c o r r e s -  
ponds t o  t h e  cho i ce  between 8 = ~r /2  and 8 = -7r/2, r e s p e c t i v e l y .  

For a r b i t r a r y  v a l u e s  of  8 ,  t h e  c o o r d i n a t e s  of t h e  a s s o c i a t e  
s u r f a c e  can  be  w r i t t e n  

x ( 8 )  = x cos  8 + x* s i n  8 ,  ( 7  1 

y ( 8 )  = y c o s  8 + y* s i n  8 ,  

z ( 8 )  = z cos  8 + z* s i n  8 ,  ( 9  



i f  t h e  f i r s t  cho ice  of s i g n s  i s  made i n  Eqs. (4 -6 ) .  Eqs. (7 -9 )  
show t h a t  a s  8 v a r i e s ,  t h e  o r i g i n  remains f i x e d ,  and every p o i n t  
of t h e  s u r f a c e  d e s c r i b e s  an e l l i p s e  whose c e n t e r  i s  t h i s  f i x e d  
p o i n t .  

Schwarz 's  c o l l e c t e d  works ( r e f .  1) inc lude  a  b r i e f  no t e  by 
E .  E .  Kummer, who desc r ibed  a  minimal s u r f a c e  bounded by t h e  fou r  
p l anes  of a  t e t r a h e d r o n  ( t e t r a g o n a l  d i sphenoid)  which i s  one of 
t h e  seven ka l e idoscop ic  c e l l s  l i s t e d  i n  Sec t ion  I V  of t h i s  no te .  
This  minimal s u r f a c e ,  which i s  i l l u s t r a t e d  by a drawing ( r e f .  I ) ,  
i s  desc r ibed  a s  a p o r t i o n  of Schwarz 's  p r i m i t i v e  s u r f a c e ;  it i s  
a d j o i n t  t o  t h e  s u r f a c e  bounded by a  c i r c u i t  of fou r  edges  (a  
Hamilton l i n e )  i n  a  r e g u l a r  t e t r ahed ron .  This  l a t t e r  s u r f a c e  i s  
a  f a c e ,  bounded by Zinear asympto t ics ,  of t h e  r e g u l a r  map (4,6141 
on D. The or thogona l  r e l a t i o n s h i p  between t h e  boundar ies  of 
t h e s e  two q u a d r i l a t e r a l  s u r f a c e  modules p rov ides  an i l l u s t r a t i o n  
of t h e  fo l lowing  lemmas concerning p r o p e r t i e s  of a d j o i n t  minimal 
s u r f a c e s  (p roo f s  a r e  g iven  i n  r e f .  11): 

Lemma ( 2 )  The asymptot ic  l i n e s  on e i t h e r  of two a d j o i n t  
minimal s u r f a c e s  correspond t o  t h e  l i n e s  of c u r v a t u r e  on t h e  
o t h e r  s u r f a c e ;  

Lemma / 2 ) *  On two a d j o i n t  minimal s u r f a c e s ,  a t  corresponding 
p o i n t s  P and P , t h e  t a n g e n t s  t o  corresponding curves  a r e  per-  
pend icu la r .  

I t  fo l lows  immediately from Lemmas (1) and (2) t h a t  

Lemma ( 3 )  I f  t h e  asymptot ic  C on a minimal s u r f a c e  M 
i s  a  s t r a i g h t  Zine,  t hen  i t s  image C* on t h e  a d j o i n t  s u r f a c e  M* 
i s  a  Zine of c u r v a t u r e  l y i n g  i n  a  p lane  f  which i s  pe rpend icu la r  
t o  C .  

Furthermore,  us ing  Lgmma ( 3 )  and a l s o  t h e  f a c t  t h a t  t h e  
t angen t  p l anes  a t  P  and P a r e  p a r a l l e l ,  w e  have t h e  fol lowing 
Lemma : 

Lemma ( 4 )  Consider two a d j o i n t  minimal s u r f a c e s  M and M*.  
I f  P i s  any p o i n t  of a  l i n e a r  asymptot ic  C on M ,  and P* i s  t h e  
image of P on t h e  p lane  l i n e  of c u r v a t u r e ,  c*,  which i s  t h e  
image of C on M* and which l i e s  i n  t h e  p l ane  f ,  t hen  t h e  t angen t  
p l ane  t o  M* a t  P* i s  perpendicu la r  t o  f ;  hence M* meets f  per-  
p e n d i c u l a r l y  everywhere a long i t s  l e n g t h .  

( H .  B la ine  Lawson, J r . *  has  used complex a n a l y s i s  t o  prove 
Lemmas ( 3 )  and ( 4 ) ,  t oge the r  w i th  a  g e n e r a l i z a t i o n  of t h e s e  
r e s u l t s  which a p p l i e s  t o  conjuga te  minimal s u r f a c e s  embedded i n  

* p r i v a t e  communication 



t h e  Eucl idean 3-sphere;  he has  a l s o  t r e a t e d  t h e  r e l a t e d  problem 
of t h e  c o n s t r u c t i o n  of  s u r f a c e s  of c o n s t a n t  mean c u r v a t u r e  i n  
Eucl idean 3-space.)  

We w i l l  now make use  of a  theorem of Weierstrass, which - 
combined w i t h  Lemma ( 4 )  - s e r v e s  a s  t h e  b a s i s  f o r  t h e  a lgo r i t hm 
( t r e a t e d  i n  Sec t ion  V of t h i s  no t e )  f o r  c o n s t r u c t i n g  minimal 
s u r f a c e s  which a r e  fundamental r e g i o n s  f o r  groups of r e f l e c t i o n s .  
Such s u r f a c e s  do n o t  n e c e s s a r i l y  c o n t a i n  any s t r a i g h t  l i n e s .  
We ie r s t r a s s  ( r e f .  1) proved t h e  fo l lowing  r e s u l t s :  

Lemma ( 5 )  Every s t r a i g h t  l i n e  l y i n g  on a  minimal s u r f a c e  M 
i s  an  a x i s  of two-fold r o t a t i o n a l  symmetry of t h e  minimal s u r f a c e  
M which r e s u l t s  from a n a l y t i c  c o n t i n u a t i o n  of M ;  

Lemma ( 6 )  I f  a  p l ane  curve l i e s  i n  a  minimal s u r f a c e  M I  and 
t h e  ang le  formed by t h e  i n t e r s e c t i o n  of t h e  p l ane  of t h i s  curve  
and t h e  tangent  p l ane  of t h e  s u r f a c e  a long t h e  curve i s  a  r i g h t  
ang le  everywhere a long t h e  curve ,  then  t h e  p lane  of t h e  curve  i s  
a  plane  o f  r e f l e c t i o n  symmetry f o r  t h e  minimal s u r f a c e  M which 
i s  ob ta ined  by a n a l y t i c  c o n t i n u a t i o n  of M .  

Lemmas ( 3 )  - ( 6 )  p rov ide  t h e  b a s i s  f o r  d e r i v i n g  examples of 
IPMS, i nc lud ing  c a s e s  which appa ren t ly  were no t  p rev ious ly  
recognized.  The mathematical  b a s i s  f o r  t h e  s u r f a c e  c o n s t r u c t i o n  
a lgo r i t hm w i l l  now be d i scussed  i n  f u r t h e r  d e t a i l .  

Lgt  W9 be  any 2tra ight-edged skew polygon wi th  d i r e c t e d  
edges U 1 ,  U 2 ,  ..., Um. Th2se gdges for?  a  c lo sed  c i r c u i t ,  
according t o  t h e  sequence U 1 ,  U 2 ,  ..., Um; hence 

Assume t h a t  t h e r e  e x i s t s  a  p lane  on which W, has  a  p a r a l l e l  o r  
c e n t r a l  p r o j e c t i o n  which i s  a  simply covered convex curve;  t h i s  
p rope r ty  ( r e f .  17)  i s  s u f f i c i e n t  t o  guaran tee  t h a t  t h e r e  e x i s t s  
a  unique minimal s u r f a c e ,  M q ,  which spans W,. (No l o s s  of 
g e n e r a l i t y  r e s u l t s  from maklng t h i s  r e s t r i c t i o n ,  because f o r  each 
of t h e  c a s e s  of i n t e r s e c t i o n - f r e e  IPMS which can be de r ived  by 
a p p l i c a t i o n  of  t h e  c o n s t r u c t i o n  a lgo r i t hm,  t h e  polygon W,, which 
forms t h e  boundary of t h e  a d j o i n t  s u r f a c e  M,, has  t h i s  convex 
p r o j e c t i o n  p rope r ty .  For o t h e r  exam l e s  of i n t e r s e c t i o n - f r e e  
IPMS, f o r  which t h e  s u r f a c e  module M i  bounded by t h e  f a c e s  of a  
ka l e idoscop ic  c e l l  has  more than  one bounding a r c  on a t  l e a s t  
one f a c e  of t h e  c e l l ,  t h e  convex p r o j e c t i o n  p rope r ty  does n o t  
always ho ld  f o r  Wa.  Furthermore,  t h e  polygon W, i n  each of 
t h e s e  l a t t e r  c a s e s  i s  no t  a  c i r c u i t  of edges of a  polyhedron 



which i s  of t h e  same type  a s  t h e  ka l e idoscop ic  c e l l ,  i n  c o n t r a s t  
t o  t h e  examples which fo l low from t h e  a lgor i thm.  For a l l  of 
t h e s e  more complex examples, n e v e r t h e l e s s ,  it appears  t h a t  Ma 
i s  unique. The p r e s e n t  d i s c u s s i o n  w i l l  be conf ined t o  t h e  c a s e s  
d e r i v a b l e  from t h e  c o n s t r u c t i o n  a lgo r i t hm;  s i m i l a r  c o n s i d e r a t i o n s  
apply t o  t h e  o t h e r  c a s e s ,  bu t  t h e s e  w i l l  n o t  be desc r ibed  f u r t h e r  
i n  t h i s  no te .  ) 

I f  M; i s  t h e  s u r f a c e  a d j o i n t  t o  M a r  t hen  from L e ~ a  (3)  it 
fo l lows  t h a t  t h e  a d j o i n t  image of each d i r e c t e d  edge Ur of M, 
i s  a  p l ane  l i n g  of c u r v a t u r e  C,,, i n  M;, l y i n g  i n  a  p l ane  er- 
pendicu la r  t o  U r .  Consider any two consecut ive  edges U r ,  gr+l * of M,, and t h e i r  r e s p e c t i v e  images C a I r r  C a I r + l  i n  M,. C, 
and Ca r+l l i e  i n A p l a n e s  f r  and f r + l ,  r e s p e c t i v e l y A  where f r  i s  
perpendicu la r  t o  U r I  and f y + l  i s  pe rpend icu la r  t o  U r + 1 .  L e t  t h e  
p o s i t i v g  s i d e  of f r  be de f lned  a s  t h e  s i d e  from which t h e  normal 
v e c t o r  Ur i s  d i r e c t e d  ou tward ,  t h e  same s i g n  convent ion apply ing  
a l s o  t o  t h e  p l anes  or thogona l  t o  t h e  remaining edges of W,. 
Then, from t h e  preceding r e s u l t s ,  making use  of t h e  f a c t  t h a t  
M, and M: a r e  o r i e n t a b l e  simply-connected s u r f a c e s ,  it  fo l lows  
t h a t  t h e r e  a r e  two p o s s i b i l i t i e s  f o r  t h e  l o c a t i o n  of t h a t  
p o r t i o n  of M: which i s  bounded by C a r ,  and C a I r + l ,  w i th  r e s p e c t  
t o  t h e  fou r  d i s t i n c t  r eg ions  of  space formed by t h e  i n t e r s e c t i o n  
of t h e  boundary p l anes  f r  and f r + l :  e i t h e r  t h i s  p o r t i o n  of M; 
l i e s  i n  t h e  r e g i o n  bounded by t h e  p o s i t i v e  s i d e s  of bo th  f, and 
f r + l r  o r  e l s e  it l i e s  i n  t h e  r eg ion  bounded by t h e  n e g a t i v e  
s i d e s  of bo th  f q  and f r+ l .  By apply ing  t h i s  argument t o  a l l  of  
t h e  p a i r s  of a d l a c e n t  edges of W a r  it i s  found t h a t  M$ may be 
c o n s t r u c t e d  so a s  t o  l i e  e i t h e r  on  t h e  p o s i t i v e  s i d e  o f  e v e r y  
one o f  i t s  boundary p l a n e s ,  or  e l s e  on  t h e  n e g a t i v e  s i d e  o f  
e v e r y  one o f  i t s  boundary p l a n e s .  These two c a s e s  correspond,  
r e s p e c t i v e l y ,  t o  two specimens of M i  which a r e  r e l a t e d  t o  each 
o t h e r  by i n v e r s i o n ;  t h u s ,  each specimen i s  a  mi r ro r  image of  t h e  
o t h e r .  They a r e  a s s o c i a t e d  wi th  t h e  va lues  8 = a/2 and 8 =  IT/^, 
r e s p e c t i v e l y ,  i n  Eqs. ( 4 - 6 ) .  

I f  W, i s  de r ived  from a  ka l e idoscop ic  c e l l  X I  accord ing  t o  
t h e  procedure  desc r ibed  i n  t h e  a lgor i thm a t  t h e  beginning of  
Sec t ion  V ,  then  t h e  a d j o i n t  minimal s u r f a c e  M: i s  bounded by 
a r c s  C, l y i n g  i n  t h e  p lanes  f, of  a  convex polyhedron which 
i s  a  ka i e idoscop ic  c e l l  X* of t h e  same type  a s  X I  b u t  w i th  pro- 
p o r t i o p s  which a r e  determined by t h e  r e l a t i v e  l e n g t h s  o f  t h e  
edges Ur of W,. I f  X i s  one of t h e  t h r e e  t e t r a h e d r a l  cells  
desc r ibed  i n  Sec t ion  I V ,  then X and II* a r e  congruent ,  because 
gq. (1) i s  s a t i s f i e d  f o r  on ly  one set  of r e l a t i v e  l e n g t h s  of  t h e  
Ur f o r  t h e  c a s e  of  t e t r a h e d r a .  For t h e  fou r  non- t e t r ahed ra l  
c e l l s ,  t h e  p ropor t ions  of X depend on t h e  r e l a t i v e  l e n g t h s  of 
t h e  0, i n  t h e  way desc r ibed  i n  Sec t ion  V.  



The existence of a pe r iod ic  minimal su r face  Ma der ived from 
M: a s  fundamental r eg ion  i s  guaranteed by t h e  f a c t  t h a t  t h e  group 
of r e f l e c t i o n s  f o r  TI i s  t h e  same a s  t h e  group of r e f l e c t i o n s  f o r  
.M:; t h i s  r e s u l t  fo l lows from Lemma (6), s i n c e  a l l  of t h e  boundary 
a r c s  Car ,  of M: l i e  i n  f aces  of TI*. The absence of self-inter- 
sections i n  M a ,  on t h e  o t h e r  hand, r e q u i r e s  a l s o  t h a t  t h e r e  be no 
"extended loops' among t h e  boundary a r c s  C a , r  of M E ,  a s  mentioned 
i n  Sect ion  V.  Each v e r t e x  of M; i s  constrained t o  l i e  i n  t h e  
su r face  of t h e  corresponding c e l l  IT', i n  f a c t ,  along an edge of 
TI*: however, t h e  p o s s i b i l i t y  t h a t  a given a r c  C a f r  may form an 
"extended loop",  i . e . ,  t h e  p o s s i b i l i t y  t h a t  a por t ion  of C a f r  
l i e s  ou t s ide  of TI*, can be excluded only by d e t a i l e d  inves t lga-  
t i o n .  By making use  of lemma ( 4 )  and a l s o  of t h e  bounds on t h e  
o r i e n t a t i o n  of t h e  normal vector  along t h e  boundary of Ma (and, 
t h e r e f o r e ,  a l s o  of M:) which a r e  implied by t h e  f a c t  t h a t  a 
minimal surface is whoZZy contained in the convex hull of its 
boundary curve ( r e f .  1 7 ) ,  it can be proved t h a t  t h e  a r c s  C a I r  
do n o t  form extended loops i n  most of t h e  f a c e s  of each M: which 
i s  generated by using t h e  cons t ruc t ion  algori thm of Sect ion  V. 
However, a s i d e  from t h e  f i v e  examples P ,  D ,  C ( P ) ,  H I  and CLP, 
which a r e  a l r eady  known (from t h e  work of Schwarz and of Neovius) 
t o  be i n t e r s e c t i o n - f r e e ,  H I - T  i s  t h e  only o t h e r  case ,  among t h e  
eleven su r faces  generated from t h i s  a lgori thm, f o r  which it i s  
p o s s i b l e  t o  prove, using only t h e s e  boundary normal vec tor  
arguments, t h a t  aZZ of t h e  a r c s  Ca t ,  of M: a r e  f r e e  of extended 
loops,  and - t h e r e f o r e  - t h a t  M i  i s  f r e e  of i n t e r s e c t i o n s .  I n  
each of  t h e  remaining f i v e  cases ,  r igorous  proof of t h e  absence 
of s e l f - i n t e r s e c t i o n s  would r e q u i r e  t h a t  t h e  complete a n a l y t i c  
s o l u t i o n  f o r  t h e  su r face  be obtained.  C ( D )  i s  e a s i l y  shown t o  
be i n t e r s e c t i o n - f r e e  by using t h e  convex h u l l  argument c i t e d  
above. 

For each of t h e  t h r e e  su r faces  C ( H ) ,  0 ,C-TO,  and g-g ' ,  t h e  
number of boundary a r c s  Ca r i s  g r e a t e r  than t h e  number of f aces  
of t h e  c e l l  TI*; arguments 6ased on t h e  preceding d iscuss ion  and 
on c e r t a i n  c o n t i n u i t y  p r o p e r t i e s  may be used t o  prove t h e  
existence of a su r face  module which i s  a fundamental reg ion  of 
t h e  group of r e f l e c t i o n s  f o r  each of these  su r faces .  However, 
n o t  a l l  of t h e  bounding a r c s  of any of t h e s e  su r face  modules 
have been shown t o  be f r e e  of an extended loop,  a s i d e  from t h e  
evidence provided by t h e  experimental  cons t ruc t ion  of soap f i l m  
models of s u r f a c e  modules i n s i d e  kaleidoscopic c e l l s .  Thus, 
a l though it has been r igorous ly  proved t h a t  f o r  each of these  
examples, t h e r e  e x i s t s  a s e t  of r e l a t i o n s  among t h e  r e l a t i v e  
l eng ths  of t h e  edges of a polygon W a f  spanned by t h e  a d j o i n t  
su r face  M a ,  f o r  which t h e  planes of t h e  boundary curves ly ing  
i n  p a r a l l e l  p lanes  coalesce, it i s  s t i l l  necessary - i n  t h e  
absence of o t h e r  evidence - t o  r e l y  on soap f i l m  models of M: 
f o r  evidence t h a t  all of t h e  boundary a r c s  a r e  f r e e  of "extended 
loops".  J u s t  a s  i n  t h e  case of modules M i  having only one 
boundary a r c  per  f a c e  of TI*, it i s  found t h a t  p l a s t i c  models of 



M: modules derived from the shapes of these soap films may be 
satisfactorily bent to produce models of adjoint surface modules 
M,, whose boundary curves closely approximate straight line 
segments, viz., the edges of the polygon W,. 

The rela-tion between the existence of a minimal surface M;, 
bounded by the faces of a kaleidoscopic cell, and the stability 
properties of a soap film model of such a surface will be 
discussed in detail in a future publication*. In brief, Schwarz 
found that the second variation of the area of such a surface is 
not positive; this property is related to the fact that a soap 
film model of such a surface is in unstable equilibrium, when 
the film is "freely" bounded by the faces of the enclosing 
kaleidoscopic cell. Experimental observation of such a film 
depends on the fact that the film is nearly stationary in its 
position of unstable equilibrium, i.e., in the position corres- 
ponding to the minimal surface configuration. When one or more 
straight line segments lie in the interior of such a surface, 
one or more fine wires can be strung inside the enclosing cell, 
coinciding with such segments, in order to prevent the soap film 
from moving away from its position of equilibrium. In some 
cases (e.g., H), the use of such a wire makes the film actually 
stationary, because it is in stable equilibrium. In other cases, 
where the equilibrium is unstable (e .g. , C ( H )  ) , the film remains 
stationary for at least several seconds when a wire is used; 
without wires, it is extremely difficult to make such films 
remain stationary long enough to observe the detailed shape of 
their boundary curves, or even to verify experimentally that 
they exist in the form of minimal surfaces. 

Another aspect of the question of the existence of inter- 
section-free IPMS of specified form can be only briefly mentioned 
here. It concerns a picturesque method of constructing and 
classifying hypothetical examples of IPMS without self-inter- 
sections. The method is based on the examination of the shape 
and symmetry of assorted multiply-connected surfaces bounded by 
the interiors of convex polyhedra. Such polyhedra are either 
kaleidoscopic cells or symmetrical aggregates of kaleidoscopic 
cells. As an example, consider a spherical soap bubble with its 
center at the center of an enclosing cube; in what symmetrical 
ways can one blow out tubular holes in the bubble, so that the 
bubble is transformed into a minima2 surface, with tubular pro- 
jections, bounded by the interior surface of the cube? An 
analysis of some examples of IPMS mentioned in this note, 
according to this mode of description, leads to a classification 
in which the surfaces are distinguished according to the cube 
elements (faces, edges, or corners), or combination of cube ele- 
ments, to which the tubules are attached. 

* To be published 



For example, the cube elements for five of the IPMS can be 
listed as follows: 

F-RD 4 corners (tetrahedrally distributed) 

I-WP 8 corners 

C (PI 12 edges 

P 6 faces 

0,C-TO 6 faces and 8 corners 

The principal advantage of this descriptive method is that 
from the standpoint of morphology, it is in some respects more 
convenient -- paradoxically - to distinguish and classify examples 
of finite portions of intersection-free IPMS whish are multiply- 
connected, instead of the simply-connected elementary modules into 
which they may be decomposed. 

It is necessary to define what is meant by calling two 
intersection-free IPMS "distinct". Suppose MJ and M2 are non- 
congruent intersection-free IPMS. Let us calculate the genus of 
a lattice fundamental region for Mi; this lattice has a primitive 
cell of minimum volume, i.e., its translational symmetry group is 
the same as that of Mi. Let p(Mi) denote the genus of Mi, and 
G(Mi) the space group of Mi. Then we adopt the following con- 
vention: 

1. I£ p(Ml) # p(Mg), or p(M1) = p(M2) and G(M1) 3 G(M2), 
then MJ and M2 will be regarded as distinct surfaces. 

2. If p (Ml) = p (M2) and G (MI) E G (M2) , then M1 and M2 will 
be regarded as the same surface. 

This classification scheme is consistent with a classification 
based on the analytic properties of these surfaces. Schwarz 
briefly discussed (pp. 95-96 of ref, 1) the relation between the 
analytic and symmetry properties of surfaces derived from B by 
changing the altitude of a hexagonal module of D along one lattice 
axis. His examples include the Scherk surface, for which the 
coordinates may be given as 

z e = cos x/cos y; 

in this case, the altitude of a hexagonal module of D is allowed 
to increase without limit. 

It has been found from a detailed study of the examples 
Pis t ed  in Table I that any two sf $he Pisted surfaces which have 



the s m e  genus, in the sense defined above, are globally 
homeomorphic by a deformation, i.e,, by a biunique continuous 
topological transformation (no surface tearing), ( C f ,  the 
classical theorem: if two closed surfaces have the same genus, 
then either may be deformed into the other,) Thus, for example, 
any one of the five intersection-free IPMS sf genus three - P,D, 
G , R ,  and CLP - can be deformed into any o f  the others, Schwarz 
(ref. I) noted that P and D are related by a deformation: either 
surface may be constructed by joining replicas of a doubly- 
connected minimal surface which is bounded by two parailel con- 
gruent equilateral triangles; the two triangles are related by 
a 600 screw motion along their cornon axis. Sf the triangle 
separation in P is increased continuously until it reaches twice 
its original value, then the deformation of P into D is accom- 
plished through a continuum of intermediate minimal surfaces, 
Thus, P and B are related by a deformation, which is topsbogically 
simpler but analytically more complicated than the adjoint trans- 
formation: dilatation or compression of the c-axis of the 
trigonal lattice sf the general surface," The deformations which 
relate most of the other pairs of IPMS of the same genus, among 
the examples listed in the Tables, involve more complicated 
changes of symmetry than the deformation relating P and D, and it 
is not known whether %he mean curvature at every point of the 
surface can remain zero throughout all of these deformations. It 
is apparent that P and D are related to their tetragonal and 
orthorhosnbic analogs (cf. Table 111) by deformations; these can 
be described loosely as dilatation or compression along one or 
two of the cube axes of the surface. These deformations preserve 
the minimal surface property. 

The existence of these deformations relating IPMS of the 
same genus suggests that the concept of a dual pair of skeletal 
graphs as representatives of a given intersection-free IPMS must 
be interpreted cautiously. It is not true, for example, that the 
topological properties of the Laves graph, viz,, that three edges 
meet at every vertex and that the smallest number of edges in any 
closed circuit of edges ("girth") is ten, correspond to a top- 
ologically fundamental property of the gyroid, The association 
between a pair of skeletal graphs and an IPMS should be viewed 
as primarily geometrical, in the sense that the symmetry (space 
group) is the same, and the topological properties are consistent, 
Thus, it is topologieaZZy just as reasonable to associate a pair 
of primitive cubic graphs or a pair of diamond graphs (with curved 
edges) with the two labyrinths of the gyroid :or those of W or 
CLP, for that ra.tter) as it is to associate a pair of enantio- 
morphous Laves graphs with these labyrinths, but of these three 
kinds of graphs, only the Laves graphs have the symmetry of the 

"Schwarz did not obtain a solution for the general minimal surface, 
bounded by t w o  triangles, which is described here. 



gyroid. A deformation of one intersection-free IPMS into 
another of the same genus can be represented by a continuous 
transformation of the skeletal graphs of the first into the 
corresponding skeletal graphs of the second, This graph trans- 
formation, whish may be called elision, may be described by 
making use of the concept of the tubular graph associated with 
each slteletab graph (cf. p. 79). The surface deformation defines 
the deformation of the homeomorphic tubular graphs; the elision 
of the skeletal graphs may be inferred from these deformations, 
(In practice, it is usually easier to find a construction for 
the graph transformation first, and then describe the corresponding 
surface deformation.) Graph elision may add vertices and edges 
to the skeletal graph, or subtract them from the graph (hence 
the name elision). Two infinite periodic graphs are defined as 
generically equivalent if their respective tubular graphs have 
the same genus per lattice fundamental region. These elision 
transformations of graphs provide a simple method of describing 
the required deformations of the corresponding IPMS, 

2% special property of CLP should be noted: it is related to 
its adjoint surface by a deformation, and both surfaces have (in 
general) the same space group. 

Some examples of intersection-free IPMS for which the 
smallest simply-connected surface module is a straight-edged 
polygon appear to have been omitted from Tables 1-611. At least 
some of these omitted cases, however, may be obtained from listed 
examples of higher symmetry, simply by changing the relative 
scale lengths along the various lattice axes so as to eliminate 
one or more classes of two-fold rotational symmetry elements from 
the space group - and, therefore, one or more straight lines from 
the listed IPMS. 

The question of whether lower-symmetry variants of a given 
intersection-free IPMS exist is too extensive to be treated 
thoroughly here, Nevertheless, it may be useful to make some 
general remarks on this subject, In many cases, the removal of 
symmetry elements from the space group of a given intersection- 
free IPMS by a suitable deformation makes ,it impossible to 
isolate a simply-connected surface module which is bounded either 
by Pine segments or by plane lines of curvature, or by both. In 
such cases, the existence of the hypothetical surface of lower 
symmetry depends on the existence of a finite multiply-connected 
minimal surface, and this question is in general a difficult 
one. The particularly interesting question of the possible 
existence of lower-symmetry variants of the gyroid is briefly 
discussed in Section VIII, The impossibility of obtaining a 
body-centered orthsrhombie variant of the gyroid by bending a 
suitable orthorbo-snbic variant of P or D suggests caution in 
speculating on the existence of variants of certain examples 
of minimal surfaces. 



APPENDIX 11 

THE CONCEPT OF DUAL INFINITE PERIODIC GRAPHS, AND 
THE "PARTITIONING ALGORITHM" FOR THE CONSTRUCTION 

OF A DUAL GRAPH 

INTRODUCTION 

I t  i s  w e l l  known i n  t h e  theory  of graphs  t h a t  t h e  concept 
of dua l  graph i s  wel l -def ined only f o r  p l ana r  g raphs .  Recently 
( r e f .  l o ) ,  t h e  au tho r  a t tempted t o  develop t h e  i d e a  of a  d u a l  
r e l a t i o n  which was r e s t r i c t e d  t o  c e r t a i n  t ypes  of three-dimen- 
s i o n a l  p e r i o d i c  non-planar g raphs ,  having s t r a i g h t  edges ,  by 
making use  of a  concept  desc r ibed  by P. Pearce:  t h e  s add le  
polyhedron ( r e f .  1 8 ) ,  We w i l l  cons ide r  a  s add le  polyhedron t o  
be any curved polyhedron,  homeomorphic t o  t h e  sphe re ,  whose 
f a c e s  a r e  minimal s u r f a c e s  spanning skew polygon boundar ies .  
Such polyhedra may have two-valent  v e r t i c e s ,  b u t  they need no t  
do so .  The skewness of  one o r  more f a c e s  of  t h e  polyhedron 
may vanish ,  i n  which c a s e  t h e  f a c e  i s  p lane .  Both Pearce  and 
t h e  au thor  have cons t ruc t ed  a  l a r g e  v a r i e t y  of s add le  polyhedra 
which f i l l  space wi thout  vo ids ,  e i t h e r  s i n g l y  (unary space- 
f i l l i n g )  o r  m u l t i p l y  (n-ary s p a c e - f i l l i n g ) .  Many examples of 
t h e s e  polyhedra w i l l  be desc r ibed  and i l l u s t r a t e d  i n  a  f o r t h -  
coming book by Pearce  ( r e f .  19)  . 

The au thor  of t h i s  no t e  found t h a t  f o r  each of t h e  examples 
t hen  known t o  him of i n f i n i t e  symmetric graphs  ( i n f i n i t e  p e r i o d i c  
g raphs ,  having t h e  t r a n s l a t i o n a l  p e r i o d i c i t y  of a three-dimen- 
s i o n a l  l a t t i c e ,  w i t h  symmetrically e q u i v a l e n t  v e r t i c e s  and 
symmetr ical ly  e q u i v a l e n t  edges)  and a l s o  f o r  a  l a r g e r  number of 
o t h e r  i n f i n i t e  p e r i o d i c  g raphs ,  an e m p i r i c a l l y  developed a l g o r -  
ithm made i t  p o s s i b l e  t o  d e r i v e  a  unique dua l  graph.  (Unique 
he re  means unique a s i d e  from deformat ions  which l eave  t h e  
topology and space group of t h e  graph unchanged,) The dua l  
g raph ,  i n  t u r n ,  when sub jec t ed  t o  t h e  c o n s t r u c t i o n  s p e c i f i e d  
i n  t h e  a lgor i thm,  l e d  back t o  t h e  o r i g i n a l  g raph ,  thereby  meeting 
t h e  minimum requi rements  of any reasonable  no t ion  of a  dua l  
r e l a t i o n ,  v i z . ,  t h a t  it be symmetric. Because s f  t h e  ad hoe 
c h a r a c t e r  of t h i s  d u a l  graph a lgo r i t hm,  an e f f o r t  was made t o  
f i n d  a  csunterexample,  i . e . ,  an i n f i n i t e  symmetric graph f o r  
which t h e  a lgor i thm l eads  e i t h e r  t o  an ambiguous r e s u l t ,  o r  t o  
no r e s u l t  a t  a l l !  Before such a  counterexample was found, 
t h e  a lgor i thm was desc r ibed  i n  a  publ i shed  a b s t r a c t  ( r e f .  1 0 )  
i n  i t s  o r i g i n a l  form. An "improvement" i n  t h e  a lgor i thm was 
then  made, and it i s  t h i s  "improved" v e r s i o n  of t h e  a lgor i thm 
which i s  g iven  below. The sadd le  polyhedron i s  t h e  dev ice  whose 
c o n s t r u c t i o n  according t o  t h i s  a lgor i thm u n d e r l i e s  t h e  dua l  



graph relation. This algorithm will hereafter be called the 
p a r t i t i o n i n g  a l g o r i t h m .  

After continued investigation of many examples of both 
infinite symmetric graphs and also other infinite periodic 
graphs, the author found an example of an infinite symmetric 
graph for which the partitioning algorithm failed to generate 
any dual graph. (A close study of this example led to the 
discovery of the gyroid, which is described in Section VIII 
of this note.) As a result of this failure of the algorithrri, 
the class of graphs considered subjects for the algorithm was 
slightly restricted (see next subsection) so as to eliminate 
the offending graph from consideration! This is an awkward 
solution to the problem, especially since the algorithm per- 
forms quite satisfactorily for a large number of infinite 
graphs which are merely periodic, but not symmetric. In any 
event, this aspect of the case illustrates the basic difficulty 
of attempting to construct a satisfactory dual graph relation 
by using admittedly ad hoe methods, not derived from first 
principles. 

The "improved" form of the partitioning algorithm is 
summarized below, for whatever intrinsic interest it may have, 
The algorithm appears thus far to serve a useful purpose by 
providing the basis for a self-consistent description of the 
dual skeletal graphs for the two labyrinths of every one of the 
intersection-free IPMS mentioned in this note (see Section 111). 

The essential idea of the partitioning algorithm is the 
following: for at least many examples of infinite symmetric 
graphs - and also for many examples of infinite graphs which 
are merely periodic but not symmetric - one c a n  a s s o c i a t e  w i t h  
e a c h  v e r t e x  o f  t h e  g r a p h  a  u n i q u e  s a d d l e  p o l y h e d r o n  wh ich  con -  
t a i n s  t h e  v e r t e x  i n  i t s  i n t e r i o r ,  and wh ich  h a s  t h e  same number 
o f  f a c e s  a s  t h e  number o f  e d g e s  i n c i d e n t  a t  t h e  v e r t e x ;  f u r t h e r -  
more ,  e a c h  o f  t h e s e  f a c e s  i s  p e n e t r a t e d  a t  a  s i n g l e  i n t e r i o r  
p o i n t  by  one o f  t h e s e  e d g e s .  This saddle polyhedron is called 
a symmetry  domain of the vertex. The edges of a space-filling 
assembly of all the symmetry domains associated with a given 
graph define a second periodic graph, the dual graph. Even 
when the original graph is a symmetric graph, the second graph 
is not necessarily a symmetric graph, i.e., it may have in- 
equivalent edges and/or inequivalent vertices. It is assumed 
throughout this discussion that the edges of an infinite periodic 
graph are line segments, and that every vertex of such a graph 
has at least three incident edges. 



For  some examples of i n f i n i t e  symmetric g r a p h s ,  t h e  V o r o n o i  
p o l y h e d r o n *  a s s o c i a t e d  w i t h  a  g i v e n  v e r t e x  of  t h e  o r i g i n a l  g r a p h  
( i . e . ,  t h e  polyhedron which c o n s i s t s  o f  a 1 1  t h e  p o i n t s  which a r e  
a s  n e a r  t o  t h e  g i v e n  v e r t e x  a s  t o  any o t h e r  v e r t e x )  d o e s  have 
t h e  p r o p e r t y  o f  having e x a c t l y  a s  many f a c e s  a s  t h e  number of  
edges  i n c i d e n t  a t  t h e  g r a p h  v e r t e x  i n  i t s  i n t e r i o r .  More o f t e n ,  
however, t h e  Voronoi polyhedron h a s  a d d i t i o n a l  f a c e s ;  t h e s e  
e x t r a  f a c e s  a r e  produced by t h e  t r u n c a t i n g  e f f e c t s  of o t h e r  
nearby v e r t i c e s  i n  t h e  g r a p h ,  i . e . ,  v e r t i c e s  which a r e  n o t  
j o i n e d  by edges  t o  t h e  g i v e n  v e r t e x .  No method i s  known f o r  
c o n s t r u c t i n g  any o t h e r  convex polyhedron - f o r  a n  a r b i t r a r y  
i n f i n i t e  symmetric  g raph  G - which e x h i b i t s  a  one-to-one 
cor respondence  between i t s  f a c e s  and t h e  edges  i n c i d e n t  a t  
each v e r t e x  o f  G .  

The s t u d y  of Voronoi po lyhedra  f o r  a  l a r g e  number o f  
d i f f e r e n t  examples of i n f i n i t e  p e r i o d i c  g r a p h s  h a s  l e d  t o  t h e  
d i s c o v e r y ,  by t h e  a u t h o r ,  of  examples o f  17-,  18- ,  and 20-faced 
convex po lyhedra  which form unary  s p a c e - f i l l i n g s .  I n  f a c t ,  
i n f i n i t e  f a m i l i e s  of 17- and 20-faced convex po lyhedra  of  t h i s  
t y p e  have been found,  by c o n s t r u c t i n g  t h e  Voronoi polyhedron 
f o r  t h e  v e r t i c e s  of c e r t a i n  i n f i n i t e  symmetric g r a p h s  which 
a r e  s u b j e c t e d  t o  a  k ind  of homogeneous " c o l l a p s i n g "  t r a n s -  
f o r m a t i o n  ( r e f s .  2 1 , 2 2 ) .  I n  t h i s  t r a n s f o r m a t i o n ,  t h e  topo logy  
of t h e  g r a p h  i s  p r e s e r v e d ,  and t h e  g r a p h  remains  symmetric 
th roughou t  t h e  t r a n s f o r m a t i o n ,  b u t  t h e  g e o m e t r i c a l  c h a r a c t e r  o f  
t h e  g raph  changes  c o n t i n u o u s l y .  A d e t a i l e d  a n a l y s i s  of  
examples o f  t h i s  t r a n s f o r m a t i o n  w i l l  be  i n c l u d e d  i n  a  f u t u r e  
r e p o r t .  * *  Voronoi proved t h a t  f o r  convex p a r a l l e l o h e d r a  i n  
~ 3 ,  t h e  maximum p o s s i b l e  number of f a c e s  i s  l 4 f ;  t h e  c o r r e s -  
ponding upper  l i m i t  i s  n o t  known f o r  t h e  more g e n e r a l  c a s e ,  
where i t  i s  n o t  r e q u i r e d  t h a t  t h e  po lyhedra  be  p a r a l l e l o h e d r a ,  
i . e . ,  t h a t  t h e y  be  e q u i v a l e n t  under  t r a n s l a t i o n .  

, The a l g o r i t h m  f o r  t h e  c o n s t r u c t i o n  of  symmetry domains 
f o r  a  g i v e n  i n f i n i t e  p e r i o d i c  g r a p h  r e q u i r e s ,  f i r s t ,  t h a t  s a d d l e  
p o l y h e d r a ,  c a l l e d  i n t e r s t i t i a l  d o m a i n s ,  be c o n s t r u c t e d .  The 
b o u n d a r i e s  of t h e  f a c e s  of t h e s e  i n t e r s t i t i a l  domains a r e  
c i r c u i t s  o f  edges  of t h e  o r i g i n a l  g r a p h ,  chosen a c c o r d i n g  t o  

* Voronoi a p p l i e d  t h i s  polyhedron c o n s t r u c t i o n  t o  t h e  p o i n t s  o f  
a l a t t i c e ,  n o t  t o  t h e  p o i n t s  of  a  r e g u l a r  s y s t e m ,  which i s  a n  
a r r a y  of  p o i n t s  i n  ~3 which a r e  symmet r i ca l ly  e q u i v a l e n t  under  
some more g e n e r a l  symmetry e lement  of t h e  f u l l  space  group 
t h a n  a  l a t t i c e  t r a n s l a t i o n  (see r e f ,  20)- V o r o n o i  p o l y h e d r o n  
i s  s imply  a n o t h e r  name for D i r i c h l e t  c e l l  ( c f .  S e c t i o n  V I I I )  

* *  To be p u b l i s h e d  
A n ~Voronoi showed. t h a t  t h i s  number i s  2 (2"-~1) in R (see ref, 2 3 )  , 



a r e c i p e  g i v e n  i n  t h e  n e x t  s u b s e c t i o n .  Next ,  a  v e r t e x  of t h e  
d u a l  g raph  i s  c o n s t r u c t e d  i n  t h e  i n t e r i o r  of e a c h  i n t e r s t i t i a l  
domain; t h e  r u l e  f o r  choos ing  t h e  p o s i t i o n  of  t h i s  d u a l  g raph  
v e r t e x  i s  a l s o  g i v e n  i n  t h e  n e x t  s u b s e c t i o n .  Then t h e s e  d u a l  
g raph  v e r t i c e s  a r e  j o i n e d  i n  p a i r s  by e d g e s ,  e a c h  such v e r t e x  
be ing  connec ted  o n l y  t o  t h o s e  i n  t h e  i n t e r i o r  o f  a d j a e e n t  
i n t e r s t i t i a l  domains.  F i n a l l y ,  t h e  f a c e s  of t h e  symmetry 
domains a r e  chosen by t h e  same r u l e  a s  t h e  o n e ,  g i v e n  i n  t h e  
n e x t  s u b s e c t i o n ,  which governed t h e  i n i t i a l  c o n s t r u c t i o n  o f  
t h e  f a c e s  of  t h e  i n t e r s t i t i a l  domains. 

The i n t e r s t i t i a l  domains a r e  s o  named because  they  occupy 
t h e  i n t e r s t i c e s  o f  t h e  o r i g i n a l  g r a p h .  The naming of t h e  
symmetry domains d e r i v e s  from t h e  f a c t  t h a t  t h e y  have t h e  same 
po in t -g roup  symmetry a s  does  t h e  i n f i n i t e  g r a p h  i t s e l f ,  w i t h  
r e s p e c t  t o  t h e  g r a p h  v e r t e x  i n  t h e  i n t e r i o r  o f  a  s i n g l e  symmetry 
domain, Because o f  t h e  d u a l  r e l a t i o n  between t h e  two g r a p h s  
under ly ing  t h i s  c o n s t r u c t i o n ,  t h e  s a d d l e  po lyhedra  which a r e  
i n t e r s t i t i a l  domains  w i t h  r e s p e c t  t o  t h e  o r i g i n a l  g raph  a r e  
symmetry  domains  o f  t h e  d u a l  g r a p h ,  and t h e  s a d d l e  po lyhedra  
which a r e  i n t e r s t i t i a l  domains  of  t h e  d u a l  g r a p h  a r e  symmetry  
domains  of t h e  o r i g i n a l  g r a p h ,  

Before  d e s c r i b i n g  t h e  p a r t i t i o n i n g  a l g o r i t h m  i n  d e t a i l ,  
i t  should  be  e x p l a i n e d  t h a t  t h e  d u a l i t y  r e l a t i o n s h i p  between 
t h e  two s k e l e t a l  g r a p h s  of an  i n t e r s e c t i o n - f r e e  IPMS i s  based 
a l s o  on t h e  f o l l o w i n g  c o n s t r u c t i o n :  Assume t h a t  t h e  s k e l e t a l  
g raph  i s  g i v e n  f o r  one  l a b y r i n t h  o f  a  p a r t i c u l a r  i n t e r s e c t i o n -  
f r e e  IPMS. L e t  each  edge of  t h e  s k e l e t a l  g r a p h  be r e p l a c e d  by 
a  t h i n  open t u b e ,  and l e t  t h e s e  t.ubes be smoothly j o i n e d  (wi th -  
o u t  i n t e r s e c t i o n s )  a round each v e r t e x  s o  t h a t  t h e  whole t u b u l a r  
graph  forms a  s i n g l e  i n f i n i t e l y  m u l t i p l y - c o n n e c t e d  s u r f a c e ,  
which c o n t a i n s  t h e  s k e l e t a l  g raph  i n  i t s  i n t e r i o r .  Such a  
t u b u l a r  g raph  i s  g l o b a l l y  homeomorphic t o  t h e  c o r r e s p o n d i n g  
minimal s u r f a c e .  I f  t h e  t u b u l a r  g raph  i s  s u f f i c i e n t l y  " i n f l a t e d " ,  
it becomes deformed i n t o  a  d u a l  t u b u l a r  g raph  which c o n t a i n s  
i n  i t s  i n t e r i o r  t h e  s k e l e t a l  g raph  of t h e  o t h e r  l a b y r i n t h  o f  
t h e  s u r f a c e .  The " o u t s i d e "  of t h e  f i r s t  t u b u l a r  g raph  i s  t h e  
" ins ide"  of  t h e  second t u b u l a r  g r a p h .  The two s k e l e t a l  g r a p h s  
f o r  a  g i v e n  IPMS a r e  r e q u i r e d  t o  have t h e  same s p a c e  group a s  
t h e  IPMS, and t o  c o r r e s p o n d ,  r e s p e c t i v e l y ,  t o  two t u b u l a r  g r a p h s  
which a r e  g l o b a l l y  homeomorphic t o  t h e  IPMS, 

T h i s  p r e s c r i p t i o n  f o r  d e r i v i n g  a  s k e l e t a l  g raph  from i t s  
d u a l  g raph  g i v e s  t h e  same r e s u l t ,  f o r  a l l  t h e  known examples 
of  i n t e r s e c t i o n - f r e e  IPMS, a s  t h e  p a r t i t i o n i n g  a l g o r i t h m ,  I n  
s p i t e  of  t h e  f a c t  t h a t  t h e  t u b u l a r  g r a p h  c o n s t r u c t i o n  i s  less 
compl ica ted  t o  d e s c r i b e  t h a n  t h e  p a r t i t i o n i n g  a l g o r i t h m ,  it i s  
probably  somewhat e a s i e r  t o  a p p l y  t h e  p a r t i t i o n i n g  a l g o r i t h m  



to actual examples. Neither construction has a rigorous founda- 
tion; furthermore, the whole concept of dual periodic graphs is 
not essential to the development of the theory of intersection- 
free IPMS. However, the underlying idea of dual skeletal graphs 
provides a unified basis for an abstract "morphological" descrip- 
tion of all presently known examples of intersection-free IPMS. 
Furthermore, as already mentioned in Sections I11 and VI, the 
skeletal graph is a convenient device for suggesting hypothetical 
examples of intersection-free IPMS and also of infinite periodic 
surfaces of non-zero constant mean curvature. 

The above description of the duality relationship between 
two skeletal graphs shows that whenever one of the graphs has 
an intrinsic handedness (cf. a Laves graph in either labyrinth 
of the gyroid), the other graph must have the opposite handedness, 
on account of the eversive character of the transformation 
which expresses the duality. 

ALGORITHM FOR THE CONSTRUCTION OF AN INFINITE PERIODIC GRAPH 
WHICH IS THE DUAL OF A GIVEN INFINITE SYMMETRIC GRAPH 

( N~~~~~~~~~~~~ ALGORITHM") 

1. Consider any infinite graph G, having straight edges, 
which has the following properties: 

All edges of G are symmetrically equivalent, i.e., 
there exists an element of the space group of G which 
is transitive on the edges. 

b. All vertices of G are symmetrically equivalent, i.e., 
there exists an element of the space group of G which 
is transitive on the vertices. 

Each vertex of G is joined by an edge to every one of 
the Z nearest neighbor vertices (the graph is described 
as being of maximum degree with respect to the vertices). 

Each vertex lies at the centroid of the positions of 
the Z nearest neighbor vertices (the graph is described 
as being ZocaZZy cen%ered). 

2. Consider any circuit of edges Ki which forms a simply- 
connected closed curve (no self-intersections) having a convex 
central or parallel projection.(This property of K insures that 
there exists a unique minimal surface spanning Ki.f Span Ki by 
the minimal surface S(Ki), and also span every image of Kit 
Ij (Ki) , i.e., every symmetrically equivalent replica of Ki, by 
a minimal surface S[Ij (Kill. Determine whether there exist any 
two images of Ki - say, Ik(Ki) and Im(Ki) - for which the minimal 



s u r f a c e s  s [ I R  (Ki )  1 and S [Im ( K i )  1 i n t e r s e c t  a long a curve  n o t  
made up of edges  of G which a r e  common t o  t he  boundar ies  of 
I t ( K i )  and I m ( K i ) .  (Such a non-boundary-edge curve i s  c a l l e d  
a d i s a l l o w e d  i n t e r s e c t i o n  c u r v e . )  I f  no such image p a i r s  e x i s t ,  
then  K i  i s  d e s c r i b e d  a s  a n o n - s e l f - i n t e r s e c t i n g  polygon K i t .  

3. For every  n o n - s e l f - i n t e r s e c t i n g  polygon K i t ,  de te rmine  
whether t h e r e  e x i s t s  any o t h e r  n o n - s e l f - i n t e r s e c t i n g  polygon 

K j f '  l ( K i f ' )  w i t h  a t  l e a s t  one image 1, ( K j f ' )  such t h a t  s ( K ~ ~ ' )  
and s [I, ( K j  f ') I i n t e r s e c t  a long a d i sa l lowed i n t e r s e c t i o n  curve.  
I f  no such polygon Kjf '  e x i s t s ,  t hen  K i t  i s  desc r ibed  a s  a non- 
i n t e r s e c t i n g  polygon ~ ~ f ' f ' .  

4.  For every  Kif ' f ' ,  span a l l  images of ~ ~ f ' f ' f  I j  (K i t ' )  , w i t h  
minimal s u r f a c e s  S [I j  ( K i t + )  1 . 

R~ i s  now p a r t i t i o n e d  by a n-ary assembly of f i n i t e  
c lo sed  c e l l s ,  i . e . ,  by f i n i t e  c l o s e d  c e l l s  having n symmetr ical ly  
i n e q u i v a l e n t  forms. 

5. Remove a l l  minimal s u r f a c e s  S t  ( K t f ' f ' ) ,  t o g e t h e r  w i t h  
a l l  images of  S t  ( ~ ~ f ' f ' ) ,  l [ S t  ( K t f ' f ' ) ] ,  whose omission merely l e a d s  
t o  a r e d u c t i o n  i n  t h e  t o t a l  number of c lo sed  f i n i t e  c e l l s  which 
p a r t i t i o n  any g iven  " l a r g e "  f i n i t e  p o r t i o n  of ~3 ( l a r g e  means 
l a r g e  w i t h  r e s p e c t  t o  t h e  dimensions of a l a t t i c e  fundamental 
r eg ion )  . The r e s u l t i n g  c e l l s  a r e  t h e  - . i n t e r s t i t i a l  domains o f  
t h e  graph G .  

6 .  Cons t ruc t  a v e r t e x  V i n  t h e  i n t e r i o r  of each i n t e r s t i t i a l  
domain of  G .  The p o s i t i o n  of V i s  determined by t h e  fol lowing 
r u l e :  t h e  p o i n t  group of t h e  union of V wi th  t h e  i n t e r s t i t i a l  
domain i n  which it l i e s  i s  t h e  same a s  t h e  p o i n t  group of t h e  
i n t e r s t i t i a l  domain i t s e l f .  

7 .  J o i n  each v e r t e x  by an  edge Gj t o  t h e  v e r t i c e s  Vj 
i n  each o f  t h e  i n t e r s t i t i a l  domains a d j a c e n t  t o  t h e  r t h  domain 
( t h e  one which c o n t a i n s  V r ) ;  t h e s e  a d j a c e n t  i n t e r s t i t i a l  domains 
a r e  t h o s e  which have a f a c e  S r j  i n  common wi th  t h e  r t h  domain. 

- 
The graph G o f  v e r t i c e s  V and edges  E i s  d e f i n e d  a s  

t h e  graph dua l  t o  G .  

8. Apply s t e p s  1-5 t o  t h e  graph c. The r e s u l t i n g  c e l l s  
p a r t i t i o n  ~3 i n t o  congruent s add le  polyhedra ,  which a r e  t h e  
symmetry domains of G .  

DISCUSSION 

Among i n f i n i t e  symmetric graphs  of maximum degree ,  no 
examples have been found f o r  which t h e  p a r t i t i o n i n g  a lgor i thm 
f a i l s  t o  g e n e r a t e  an unambiguous dua l  graph.  More than  twenty 



examples of i n f i n i t e  symmetric graphs  have been s t u d i e d ;  not  
a l l  of t h e s e  graphs  can be shown t o  be s k e l e t a l  graphs  of i n t e r -  
s e c t i o n - f r e e  IPMS, I n  a d d i t i o n ,  a  much l a r g e r  number of  i n f i n i t e  
graphs  which a r e  p e r i o d i c  b u t  n o t  symmetric have been s t u d i e d  
and found t o  y i e l d  unambiguous dua l  graph r e s u l t s .  Neve r the l e s s ,  
it has so  f a r  no t  been p o s s i b l e  t o  e s t a b l i s h  t h e  p a r t i t i o n i n g  
a lgor i thm on a  r i g o r o u s  b a s i s .  The minimal s u r f a c e  a s  a  
boundary-spanning dev ice  should be regarded a s  a  u s e f u l  "con- 
ven ience ,"  

An example of a  graph which would be cons idered  a  counte r -  
example t o  t h e  p a r t i t i o n i n g  a lgor i thm,  i f  t h e  r e s t r i c t i o n  had 
no t  been made t o  a l low only  i n f i n i t e  symmetric g raphs  o f  maximum 
d e g r e e ,  i s  t h e  i n f i n i t e  p e r i o d i c  graph whose v e r t i c e s  a r e  t h o s e  
of t h e  r e g u l a r  map (4 ,614)  on t h e  gyro id  ( s e e  S e c t i o n  V I I I ) ,  
and whose edges a r e  l i n e  segments ( i n s t e a d  of  t h e  curved geo- 
d e s i c s  of t h i s  r e g u l a r  map embedded i n  G ) .  Th i s  graph can be 
regarded a s  a  " d e f e c t i v e "  graph ( i . e . ,  a  graph of l e s s  t han  
maximum degree)  on t h e  p o i n t s  ( v e r t i c e s )  of a  body-cen te red  
c u b i c  Z a t t i c e ;  two of t h e  e i g h t  edges of t h e  " s t anda rd"  b . c . c .  
graph,  i n  which each v e r t e x  i s  joined by an edge t o  i ts  e i g h t  
n e a r e s t  neighbor v e r t i c e s ,  a r e  omi t ted  a t  each v e r t e x  of t h i s  
graph.  When an a t t empt  i s  made t o  apply  t h e  d u a l  graph a lgor i thm 
t o  t h i s  c a s e ,  it i s  found t h a t  a f t e r  s t e p  4 i s  c a r r i e d  o u t ,  R3 
i s  p a r t i t i o n e d  i n t o  two i n f i n i t e  c e l l s ,  which a r e  homeomorphic, 
r e s p e c t i v e l y ,  t o  t h e  two l a b y r i n t h s  of t h e  gy ro id .  The a lgor i thm 
cannot  be a p p l i e d  f u r t h e r ,  i n  t h i s  c a s e ,  t o  y i e l d  a  c o n s t r u c t i o n  
f o r  a  symmetry domain. However, a  s add le  polyhedron has  been 
found which e x h i b i t s  t h e  e s s e n t i a l  p rope r ty  of a  symmetry domain 
f o r  t h i s  graph of  degree  s i x :  it i s  a  unary s p a c e - f i l l e r ,  it 
has s i x  f a c e s ,  and it ha.s t h e  same p o i n t  group i s o m e t r i e s  a s  
t h e  graph,  wi th  r e s p e c t  t o  i t s  c e n t r o i d .  This  f i g u r e  was . 
cons t ruc t ed  by e s s e n t i a l l y  t r i a l  and e r r o r  methods. I t  can be 
genera ted  by an a p p r o p r i a t e  supe rpos i t i on  of t h e  non-or ien tab le  
IPMS, shown i n  F igu re  15 ,  on i t s  enantiomorphous image; such a 
s u p e r p o s i t i o n  of enantiomorphous s u r f a c e s  p a r t i t i o n s  R3 i n t o  a n  
i n f i n i t e  p e r i o d i c  assembly of t h e s e  s ix - faced  c e l l s .  The Voronoi 
polyhedron f o r  a  v e r t e x  of t h i s  graph i s  t h e  t r u n c a t e d  o c t a h e d r o n ,  
wi th  f o u r t e e n  f a c e s .  Moreover, t h e  symmetry domain f o r  t h e  
symmetric graph of  degree  e i g h t  (maximum degree )  on t h e  v e r t i c e s  
of t h i s  graph i s  a  s add le  polyhedron ( t h e  "expanded o c t a h e d r o n " )  
with  e i g h t  f a c e s ,  each of which i s  congruent t o  a  f a c e  of  t h e  
r e g u l a r  map { 6,4 1 4 1 on t h e  Schwarz s u r f a c e  D (F igure  1) . 

A second " d e f e c t i v e "  i n f i n i t e  symmetric g raph ,  which i s  
a l s o  l o c a l l y - c e n t e r e d ,  i s  a graph of degree  s i x  on t h e  v e r t i c e s  
of  a  f a c e - c e n t e r e d  c u b i c  l a t t i c e .  This  g raph ,  when cons t ruc t ed  
wi th  s t r a i g h t  edges ,  can be embedded i n  e i t h e r  P o r  D ( s e e  
S e c t i o n  V I I ) .  Appl ica t ion  of t h e  p a r t i t i o n i n g  a lgo r i t hm t o  t h i s  
example i s  s t r a i g h t f o r w a r d  and y i e l d s  a  (non-symmetric) dua l  
graph of degree  t e n .  



Finally, a third infinite symmetric graph which is not of 
maximum degree and is not locally-centered is a graph of degree 
three on the vertices of a s imp le  c u b i c  l a t t i c e .  This graph is 
homeomorphic to the Laves graph of degree three (see Section 
VIII and ref. 13), and the partitioning algorithm leads to 
results similar to those obtained for the Laves graph: the 
symmetry domains and interstitial domains are enantiomorphous 
(a saddle trihedron, each face being a non-regular skew decagon), 
and the graph and its dual are also enantiomorphous. 

These few special examples have been described in order to 
illustrate the extremely varied properties of infinite symmetric 
graphs, when they are viewed in the context of the partitioning 
algorithm. As a further example, consider the saddle polyhedra, 
shown in Figures 4e and 8c, which are both symmetry domains and 
interstitial domains for the self-dual skeletal graphs of C(P) 
and C(D), respectively. These graphs, which are periodic but 
not symmetric, can be derived by an elementary construction 
based on the polyhedra which are both symmetry and interstitial 
domains for the self-dual skeletal graphs of the respective 
complementary surfaces, P and D. These latter symmetry domains 
are the cube (skeletal graph of P) and the expanded t e t r a h e d r o n ,  
a saddle polyhedron havin four regular skew hexagonal faces, 
with face angles 0 = co~-~(-1/3) (skeletal graph of D); thus, the 
skeletal graph for P or D is comprised of the edges of a honey- 
comb of cubes or expanded tetrahedra, respectively. The skeletal 
graph for the surface complementary to P or D can also be formed 
from the same honeycomb as for P or D itself, as follows: join 
every vertex V of the honeycomb by a straight edge to each of 
the vertices obtained by inversion of V in the centers of the 
incident faces of the honeycomb. The simplicity of these rules 
for P, D, C(P), and C(D) is paralleled by an algorithm (ref. 6) 
for the construction of C(P) and C(D), based on the theory of 
Petrie polygons for reflexive regular maps (ref, 7). 

A detailed description of the symmetry domains and inter- 
stitial domains for the two skeletal graphs of the other IPMS 
listed in Table I will be provided in a detailed report*, which 
will also include other examples of applications of the parti- 
tioning algorithm. 

Coxeter (ref. 24) has described the "reciprocal" relations 
between packings of regular and uniform convex polyhedra. The 
application of the partitioning algorithm to each of these 
examples of packings leads to exactly the results described by 
Coxeter. The partitioning algorithm, moreover, always leads to 
the Voronoi polyhedron as the symmetry domain for any infinite 
symmetric graph whenever t h e  number of  f aces  o f  t h e  Voronoi  
polyhedron i s  equa l  t o  t h e  degree  o f  t h e  graph (ref. 10). 

* To be published 



The application of the partitioning algorithm to specific 
examples of infinite periodic graphs leads to the construction 
of a great variety of skew polygons. The edges of such skew 
polygons do not always coincide with symmetry axes of any space 
group, even when the graph is symmetric (it was erroneously 
stated by the author in ref. 10 that this coincidence always 
occurs for symmetric graphs). If every one of the edges of a 
given skew polygon lies along a two-fold axis of some space 
group, then the polygon is a module for an IPMS. If some or 
all of the edges of a given skew polygon coincide with three- 
fold axes of some space group, any remaining edges being coin- 
cident with two-fold axes of the same group, then the polygon 
can be used as a module for a periodic integral varifoZd, in 
which three modules intersect along the edges which correspond 
to three-fold axes. An example of such an integral varifold was 
first described to the author by Dennis ~ohnson*; in this case, 
which is based on the pentagonal module of the surface which is 
adjoint to Schwarz's H surface (cf. Fig. 5 ) ,  the integral vari- 
fold partitions ~3 into three infinite congruent interpenetrating 
labyrinths. The three-fold intersections occur here along the 
two parallel edges of each elementary Flachenstgck. An example 
of an integral varifold which partitions ~3 into four infinite 
congruent interpenetrating labyrinths may be derived from the 
symmetry domain of the defective f.c.c. graph of degree six, 
which was first mentioned at the end of Section VII. If a unary 
honeycomb is constructed from an infinite assembly of these 
"six-pointed starfish" polyhedra, and then all of the quadri- 
lateral faces which are directly congruent to a given single 
face are removed, the four-labyrinth varifold remains. The 
original honeycomb is a superposition of two enantiomorphous 
varifolds of this type. The skeletal graphs** of each of the 
four labyrinths of this integral varifold are directly congruent 
Laves graphs of degree three (ref. 13). 

The two examples of periodic integral varifolds described 
in the preceding paragraph, as well as other examples which have 
been constructed, have the same kinds of equiangular inter- 
sections of lamellae and of edges as soap froths of finite cells 
(cf. Section VIII). Some of these other examples partition R3 

*private communication 
**  
The concept of skeletal graph is extended to include such 
examples as this, in which the labyrinth envelope has a 
singularity along each three-fold intersection of surface 
modules. The homeomorphism between the tubular graph, derived 
from a given skeletal graph, and the labyrinth envelope is 
similar to the case of intersection-free IPMS. 



i n t o  an i n f i n i t e  number of infinite domains. These i n f i n i t e  
domains, however, a r e  no t  l a b y r i n t h i n e  i n  t h e  s ense  def ined  h e r e ,  
i . e . ,  they  do n o t  have t h e  p e r i o d i c i t y  of a three-dimensional  
l a t t i c e ;  i n s t e a d ,  t h e  envelope of  each such domain i s  deformable 
i n t o  a c y l i n d e r  o f  f i n i t e  r a d i u s  and i n f i n i t e  l e n g t h ,  

I f  an  IPMS genera ted  from a s t ra igh t -edged  module i s  s e l f -  
i n t e r s e c t i n g ,  t h e  s e l f - i n t e r s e c t i o n s  may occur  e i t h e r  a long t h e  
edges of t h e  modules, o r  e l s e  a long curves  i n t e r i o r  t o  each 
module a s  w e l l  a s  a long t h e  edges. The Neovius s u r f a c e  a d j o i n t  
t o  C ( P )  and t h e  s u r f a c e  a d j o i n t  t o  I-WP a r e  examples of IPMS i n  
which t h e  s e l f - i n t e r s e c t i o n s  occur  only a long  module edges; 
t h e s e  s u r f a c e s  p a r t i t i o n  ~3 i n t o  i n f i n i t e  assembl ies  of f i n i t e  
c lo sed  c e l l s  ( s add le  po lyhedra) .  Another example of such a 
s u r f a c e  i s  t h e  assembly of  i n t e r s t i t i a l  o r  symmetry domains f o r  
t h e  Laves graph of degree  t h r e e .  I n  t h i s  c a s e ,  t h e  elementary 
s u r f a c e  module i s  a skew pentagon; fou r  such pentagons j o i n  
smoothly t o  form a s i n g l e  skew decagon f a c e  of t h e  t r i h e d r a l  
i n t e r s t i t i a l  ( o r  symmetry) domain of t h e  Laves graph.  The su r -  
f a c e  a d j o i n t  t o  F-RD, on t h e  o t h e r  hand, i s  an  example of a n  
IPMS i n  which t h e  s e l f - i n t e r s e c t i o n s  occur bo th  a long module 
edges and a l s o  a long curves  i n  t h e  i n t e r i o r  of each module; 
he re  a l s o ,  ~3 i s  p a r t i t i o n e d  i n t o  f i n i t e  c lo sed  c e l l s  by t h e  
IPMS . 

I n  F igu re  11-1 i s  shown an example of t h e  c o l l a p s i n g  t r a n s -  
format ion on an i n f i n i t e  symmetric graph - t h e  Laves graph of  
degree  t h r e e .  F igu re  1 1 - 2  shows s e v e r a l  examples of Voronoi 
polyhedra of symmetric g raphs .  The polyhedron appear ing i n  
F igure  11-2a i s  t h e  c e l l  d i s cus sed  i n  Sec t ion  V I I I  i n  connect ion 
with  t h e  gy ro id  and i t s  r e l a t i o n  t o  t h e  Kelvin i s o p e r i m e t r i c  
problem. Some of t h e s e  examples of Voronoi polyhedra were 
o r i g i n a l l y  de r ived  by t h e  au thor  us ing hand c a l c u l a t i o n s .  O the r s  
were ob ta ined  by means of a computer a lgor i thm developed by t h e  
au tho r ,  w i th  t h e  a s s i s t a n c e  of R .  Lundberg. Th i s  computer 
a lgor i thm a l s o  prov ides  f o r  t h e  automatic c o n s t r u c t i o n  of a p a i r  
of s t e r e o s c o p i c  views of t h e  Voronoi polyhedron. 

Note added i n  proof :  It has  been po in ted  o u t  t o  t h e  au tho r  by 
J. Milnor t h a t  i n  o r d e r  f o r  two d i f f e r e n t  ' i n t e r sec t ion - f r ee  IPMS 
t o  be r e l a t e d  by a deformat ion ( c f .  pp. 73-74),  it i s  no t  neces-  
s a r y  t h a t  t h e  genus p e r  fundamental reg ion  have t h e  same va lue  
f o r  t h e  two s u r f a c e s .  Thus, t h e  deformation r e l a t i o n s  descr ibed  
on pp. 73-74 a r e  merely s p e c i a l  ca se s  of  q u i t e  gene ra l  deforma- 
b i l i t y  r e l a t i o n s  among a l l  p o s s i b l e  examples o f  i n t e r s e c t i o n - f r e e  
IPMS . 



Figure 11-la.- Right-left stereoscopic view of Laves  g raph  
of d e g r e e  t h r e e .  This symmetric graph appears here in its 
normal "fully-expanded" form, i.e., as a locally-centered 
graph. In Figures 11-lb, c, d, and e, the graph appears in 
successive stages of partial "collapse". During this trans- 
formation, it retains its identity as a symmetric graph with 
fixed edge length, but it is no longer locally centered (cf. 
discussion on p. 78). When every edge has completed a 90"  
plane rotation about either incident vertex, the infinite 
graph is transformed into a regular tetrahedron; each edge 
of the graph has become superimposed onto one of the six 
edges of this tetrahedron. When the edges have completed a 
180" plane rotation, the graph enantiomorphous to the 
original graph is obtained. Throughout the transformation, 
all vertices of the graph describe elliptical trajectories 
centered on the origin of the coordinate system in which 
the transformation is described. Twelve other examples of 
infinite periodic graphs whose vertices lie in P, D, or G, 
and whose edges are homeomorphic to arcs lying in P, D, or G 
can be subjected to a "collapsing" transformation of this 
kind. 



F i g u r e  11-1b.- P a r t i a l l y  c o l l a p s e d  Laves g raph  ( s t a g e  2 ) .  

F i g u r e  P I - 1 c . -  P a r t i a l l y  c o l l a p s e d  Laves g r a p h  ( s t a g e  3 ) ;  
t h e  g r a p h  h a s  become t rans fo rmed  i n t o  t h e  " d e f e c t i v e "  
s i m p l e  c u b i c  g r a p h  ( c f ,  d i s c u s s i o n  on p .  $ 3 ) .  



Figure 11-1d.- Partially collapsed Laves graph (stage 4). 

Figure 11-1e.- Partially collapsed Laves graph (stage 5). 



Figure 11-2a.- The seventeen- 
faced V o r o n o i  p o l y h e d r o n  of 
the regular system of points 
comprising the vertices of 
two enantiomorphous L a v e s  
g r a p h s  o f  d e g r e e  t h r e e .  These 
two symmetric graphs are 
related to one another by 
inversion, in accordance with 
their positions as skeletal 
graphs of the two enantio- 
morphous labyrinths of the 
gyroid. ( C f .  discussion of 
the Kelvin isoperimetric 
problem and the gyroid in 
Section VIII. ) 

Figure 11-2b,c, and d.- 
Voronoi polyhedra for 
symmetric graphs in various 
intermediate stages of 
collapse. 



Figure 11-2 (Concluded).- Voronoi polyhedra for symmetric 
graphs in various intermediate stages of collapse. 
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