N 70 29

WADAL

NASA TECHNICAL 5o

MEMORANDUM
NASA TM X-53984

CALCULATIONS OF ASTROPHYSICAL
PARTITION FUNCTIONS

By M. J. Hagyard
Space Sciences Laboratory

February 16, 1970

NASA

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama

MSFC « Foem 3190 (September 1968)




TECHNICAL REPORT ST ANDARD TITLE PAGE’

1. REPORT NO. 2. GOVERNMENT ACCESSION NO,
TM X-53984

3., RECIPIENT’S CATALOG NO.

4. TITLE AND SUBTITLE

Calculations of Astrophysical Partition Functions

S, REPORT DATE
February 16, 1970

6. PERFORMING ORGANIZATION CODE

7. AUTHOR(S)
M. J. Hagvard

8. PERFORMING ORGANIZATION REPORT #

g. PERFORMING ORGANIZATION NAME AND ADDRESS

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

10. WORK UNIT NO.

14. CONTRACT OR GRANT NO.

12, SPONSORING AGENCY NAME AND ADDRESS

13. TYPE OF REPORY & PERIOD COVERED

Technical Memorandum

14, SPONSORING- AGENCY CODE

15, SUPPLEMENTARY NOTES

Prepared by Space Sciences Laboratory, Science and
Engineering Directorate

16, ABSTRACT

A method for the calculation of the internal energy partition function of an atom or ion
immersed in a plasma is presented. Sample calculations are made at various temperatures and
electron pressures, and the numerical results are compared with those of other authors. The
importance of the contributions of higher parent terms is clearly demonstrated.

17. KEY WORDS 18. DISTRIBUTION STATEMENT

Limited Distribution

19, SECURITY CLASSIF, (of this report) 20. SECURITY CLASSIF. (of this page)

Unclassified Unclassified

21. NO. OF PAGES | 22. PRICE
/

23 | $3.00

MSFC = Form 3292 (May 1969)




ACKNOWLEDGMENT

The author wishes to acknowledge the helpful discussions she had with
Dr. Goetz K. Oertel in preparing this program.




TABLE OF CONTENTS

SUMMARY . . .. . e e e e e e e
INTRODUCTION | . ... i i e e i i e i e e e e
PARTITION FUNCTIONS OF ATOMS AND IONS IN A PLASMA, . .. ...

REDUCTION OF THE PARTITION FUNCTION EQUATION FOR
PRACTICAL CALCULATIONS . .. . . .. i i e e

NUMERICAL CALCULATIONS . . . .. .. it it it ee e n
2 O
AL TL e e e e e
Fe L e e e e e
Fe Il . . e e e e
CONCLUSION | . . e e e e e e e e e e e e
REFERENCES | . . e e e e e e e e e e
LIST OF TABLES
Tables Title
i, Computed Partition Functions For ALIII ..............
2. Computed Partition Functions for ALII. . .. .. ..........
3. Partition Function of Neutral Iron as a Function of

Temperature and Electron Pressure . . .

4, Partition Function of Singly Ionized Iron as a Function
of Temperature and Electron Pressure ... ............

iii




TECHNICAL MEMORANDUM X-53984

CALCULATIONS OF ASTROPHYSICAL
PARTITION FUNCTIONS

SUMMARY

This report outlines a method for the calculation of the internal energy
partition function of an atom or ion immersed in a plasma. The influence of
the surrounding plasma on the atom or ion is considered by including a
probability function Pi in the sum over the energy states:

o0 - Xi/ kT
partition function U = Z 8 Pi e
i=1

In this expression gi is the statistical weight of the ith level with excitation
energy xi, T is the absolute temperature, and k is the Boltzmann constant.
The function Pi denotes the probability that an atom or ion in the ith energy

level is not perturbed by surrounding ions, and it is a function of the tempera-
ture and electron pressure of the plasma. The calculation for the partition
function U is done in three steps. The first is an actual summation over all
levels belonging to principal quantum numbers for which the energy levels are
completely tabulated; the second step is a summation through principal

quantum number 15, assuming hydrogenic levels. In the last step the remaining
sum is approximated by an integral and all levels X; are replaced by the

ionization potential. The contributions of parent configurations other than the
series limit are included and the final equation is written in a form that
explicitly shows the effect of higher parent terms in the calculations.

Numerical results are presented for four different species at several
temperatures and pressures; these are compared with calculations of other
authors. In the case of Al Il (Mg I isoelectronic sequence), which has two
parent configurations, the error incurred by considering only the main parent
term in the calculations is clearly demonstrated.




INTRODUCTION

To fully interpret the experimental data obtained from a magnetograph
system, the theory for the formation of a Zeeman-sensitive absorption line
in a magnetic field must be investigated. Moe [1] has shown how the radiative
transfer equations for polarized light, as derived by Unno [2], can be numer-
ically integrated using any desired atmospheric model. In his derivation Moe
has made the assumption of local thermodynamic equilibrium so that the rate
equations and transfer equations are uncoupled and the level populations are
governed by the Saha-Boltzmann equations. These latter equations require the
calculation of internal energy partition functions for atoms and ions, taking into
consideration their dependence on the local temperature and electron pressure
of the surrounding plasma. This report outlines the program that was developed
in order that partition functions could be calculated for any atom or ion, using
any desired atmospheric model.

PARTITION FUNCTIONS OF ATOMS AND IONS
IN A PLASMA

Partition functions enter into astrophysical calculations in the deter-
mination of atomic level populations through the Saha and Boltzmann equa-
tions. In particular, one must calculate the internal energy partition function
for atoms or ions with all energies measured relative to the ground state:

o0 —xi/lgT‘
U= ) g e o | (1)

Here 8, is the statistical weight of the ith level, X is the excitation

energy of the ith level, T is the absolute temperature, and k is the Boltzmann
constant. For an isolated atom or ion, the partition function is divergent
because of the combining factors of an infinite number of levels and a series
limit. However, when an atom (or ion) is immersed in a plasma, the higher
levels that were bound states in the isolated atom become continuum states
because of the interaction between the atom and neighboring ions. Thus the
number of bound levels is finite and the partition function sum is convergent.
This concept can be analytically expressed as a probability function, Pi’

which denotes the probability that an atom in the ith energy level is not




perturbed by the surrounding plasma. For the lowest-lying levels, Pi is one;

for the higher levels, the energy of the states decreases, and the optical
electrons are more influenced by perturbations from surrounding ions on the
potential field in which they move so that Pi decreases, Finally, when the

interaction energy is comparable to the ionization energy of the bound optical
electrons, the state is destroyed and Pi is zero. The partition function can

thus be written

0 -xi/kT
U=) g P e . (2)

The determination of the probability Pi has been approached in several

ways. The method outlined below is due to Unsold [3]. A different approach
to the problem is to consider the reduction of the ionization limit as outlined by
Griem [4]. Basically, Unsold considers Pi to be given by the probability

that the nearest neighboring ion is beyond a critical distance RC:
3 o ¢
. (3)

where No is the number density of perturbing ions. For singly ionized
perturbers, NO equals the number density of free electrons Ne; in general

for a perturbing ion of charge Z',

Z'N = N =P /kT |, (4)
(¢] 5] e

where Pe is the electron pressure.

Following the discussion of Pecker and Schatzman [5], RC is that

separation of the perturbing ion and atom at which the maximum potential
energy of the optical electron in the resulting field of the atom and ion equals
the ionization energy of the electron in its orbit.

From Figure 1, with R and r fixed, one can see that the potential
energy of the electron will be greatest along the line of separation R between
the atom and perturber. Thus,




Ep= -5 - =, (5)

where p+ r=R. The effective charge
of the atom minus the optical electron
is denoted by Ze' If we maximize

E_ under the constraint that

p
p+tr=R, with R fixed, there re-
sults:
Z Z'
= — s (6)
B

Figure 1. Schematic diagram showing
the relative separations of atom,
ion and electron.

where ry and py are the respective
values of r and p at which EP is a

maximum, Thus,

7 2 A 2
e e
E = - - 7
< P)maximum ry 01 o
. ry _ | Z
with o 7

Then RC is the separation distance at which this maximum potential

energy equals the ionization energy of the optical electron with shell number

n, :
i

Z e z'e® _  hcRy?7? ()
ry Pt n? '

1

In this expression hydrogenic levelshave been assumed for the optical electron;
Ry is the Rydberg constant, h is Planck's constant and c¢ is the velocity of
light. Using the relation Rc =ry+ py and equation (6), the expression for

Rc becomes

R - nt | £XZxZ +2N7Z7Y
c i hc Ry Z*

(9)




The probability function Pi is now written

-C(Z)P 6nf ‘
P=e e ! (10)

where 0 = —5—(,)—;0— . The constants C(Z) are tabulated in Aller [6].

REDUCTION OF THE PARTITION FUNCTION EQUATION FOR
PRACTICAL CALCULATIONS

For an atom (or ion), the partition function is to be calculated from
the expression

o -C(Z) P_0 niG - xi/kT
U = 21 g e e ) (11)

The energy states X, are tabulated in tables of atomic energy levels [7], but,

for most atoms, these tables are incomplete, with only levels of the lower
orbital angular momentum configurations being known. Following the approach
outlined by Aller, Elste and Jugaku [8], U is written as the sum of two

parts:

U=0U,+U; . (12)
If the atomic energy level tables become incomplete at principal quantum
number ni =m ,
n;=(m-1) -x,/kT
Uy = Z g P e , (13)
i=1
with g = 2 Ji + 1. In the tables of Reference 7, the energy levels are

expressed as wave numbers so it is convenient to write

xi/kT = (2.8548 x 10_4) 6 ;; =cy 0 v, The term U, is the remaining

summation over higher levels of which wave numbers are incompletely
tabulated. To include all the states of these higher levels, it seems best to




assume hydrogenic structure for the levels and perform the sum, rather than
use the tabulated levels and risk omission of states with high statistical weights.
Accordingly,

0 ~Cy 6 2 Ry %
Uj= ) g Pe R U (14)

' -1
where Ry = 109 678.758 cm ', Z = 1 for neutral atoms, Z = 2 for singly

ionized atoms, etc., and ;L is the wave number limit of the atom or ion. The

statistical weight g of a hydrogen-like system consisting of a ''running"
electron with outer shell number n, added to a "'parent configuration'' with a

multiplicity of states (2S+ 1) (2L + 1) is given by
g = 2 ni2 (28 + 1) (2L+ 1). (15)

The quantum numbers S and L refer to the parent configuration of the atom
(or ion). Usually the term '"parent configuration' refers to the ground state of
the next higher ionization stage; however, some systems have more than one
parent term and this must be considered in the summation of Uy, Suppose there
are N parent terms listed in the tables of predicted terms. Then

~ 2
-cy O(VL) - Ry %
) (g), P e N (16)

j=1 n‘*m

The wave number limits of the higher parent terms can be written in terms
of the series limit vt

~

~ _ + A~
(vpy = Lt AN,

where (A;)j refers to the listed wave number of the jth parent configuration

in the tables for the next higher ionization stage. The statistical weights
(gl) can be written as




(g). = 2n2 (28, +1) (2L +1
8); Jesrn L+

Then equation_( 16) becomes

~ 7,2
e -¢cy0{v. -Ry—%
- 2 L n,
Up = [2(28+1) (2Lg+ 1) ), n’p e i
n.=m
i 1
No(281) (2L, 1) -cie(A?)j
+ -
x| 1 2 G LD © ' (17)

The last term in brackets in equation (17) represents the contribution of all
parent terms other than the series limit term (with quantum numbers S; and
L;). This contribution is independent of Pe and can be easily evaluated for

a given range of 6 to determine the importance of higher parent terms in the
calculation of Uj.

The summation over the hydrogenic levels in Uy is performed through
n, = 15 (Uyq); the remaining sum (Uyy) is approximated by an integral where
the following assumption is also made:

~ 2

“Ry 25 =~ 1 .
£3 v niz Vo for ni>15

Thus the expression for Uy, can be written as

-x. 0 © -[C(Z)P 6] n®
L 9 c
Up = 2(28;+ 1) (2 Ly+ 1) 10 [ n’e dn |
n=16 (18)

where X1, is expressed in eV. With the substitution

n= e e e1”

there results




- [>]
2(28+1) L+ ) X1, [ Y 4y (19)
sNC(Z) P_0 Yo

Uy =

where y, = 163 NC (Z) Pe0 . The final result for the total partition
function becomes:
ni=(m—1) ey 0 ;’i

U= ), (25, +1) P e + 2(28;+ 1) (2 Ly+ 1)

i=1 !

~ 2 N

15 -cy0 (u - Ry '—Z—g-> z

2 L n,

A Poe +

X Z : . i
n,=m ! NC(Z) Pee

(2 84+ 1)

1

- XLQ
x (2 Ly+ 1) 10 Eric (yg) i

N (28 +4)(2L, +1)  -cq0(AD),
j j . j (20)
(28,+ (2L + 1)

=2

-C(2) P 0 niG
with Pi = ¢ . The error function can be evaluated from the

expansion
o2
Erfc (y5) = e 70 (ayt+ agtl+ agtd + a td+ agth),
-1
where t = [1+ (0.3275911) y,1 , and

a; = 0.254829592,
a, = -0.284496736,
a; = 1.421413741,
a, = -1.453152027,
as = 1.061405429,

il

1

il

il




NUMER ICAL CALCULATIONS

A FORTRAN program has been written specifically for the calculation
of Fe I and Fe II partition functions, which occur in the analysis of the forma-
tion of the Fe I 5250.2-A line in a magnetic field, following the approach of
Moe [1]. The program was designed to be flexible enough to be adapted to
other atoms or ions, as well as to be able to handle various photospheric and
sunspot models. The program is divided into three parts corresponding to
the calculations of Uy, Uj; and Uy,.

In the calculation of Uy, all the wave numbers (;i) , statistical
weights (2 Ji+ 1), and shell numbers (ni) must be read into the program.

The shell number m at which the wave number tables become incomplete

can be determined by a comparison of the tables of the observed and predicted
terms. If the observed terms are almost complete for a given shell number,
the missing states can be estimated from corresponding terms of other mem-
bers of the isoelectronic sequence. Or, if the missing states have small
statistical weights and correspond to higher wave numbers, they may be
neglected in the sum. The calculations for Uy; and Uy, are straightforward.

To check out the program, partition functions were calculated for four
different species, ranging from simple-series spectra to complex spectra:
Al III (Na I isoelectronic sequence), Al II (Mg I sequence, two parent con-
figurations), Fe I (Fe I sequence, 19 parent configurations), and Fe II
(Mn I sequence, 24 parent configurations) .

Al 111

For Al TI, the tables of wave numbers are complete from the 3s 28
through the 6h 2H° configuration; the sum in Uy is thus started at n = 7.

In compiling the known levels, each substate was considered separately for
the three lowest levels. The parent configuration of A11IIl is a 1SO state,
which indicates a parent multiplicity of one, The partition functions for Al III
were calculated for various electron pressures at the temperature 6 = 0, 14;
the results are listed in Table 1 together with Al IIT partition functions cal-
culated by Aller, Elste and Jugaku [86, 8].




TABLE 1. COMPUTED PARTITION FUNCTIONS FOR Al III

6 Log P_ ALTII U At v
0.14 2.0 13.086 13, 18
0.14 3.0 6.16 6. 17
0.14 4.0 3.97 3.98

a. [6,8].
Al 11

For singly ionized aluminum, Al II, the calculations are more com-
plex because of the presence of two parent configurations in the table of
observed terms: %S and 2P’ . For the ni = 3 shell number of the optical

electron, there are four missing terms: the 1S term of the 3p® configuration
and the 1P, 1D’ and !'F® terms of the 3p (?P% 3d' configuration. Wave
numbers were estimated for these levels using the wave numbers of corre-
sponding terms of SiIlI and P IV,

Because of the existence of the two parent terms, the partition function
was evaluated twice, first considering only contributions for n, = 4 from the

levels of terms belonging to the 28 parent configuration, and then considering
contributions of both parent configurations. For the first case of the ’S parent
term alone, the observed terms are complete through shell number five so

that the sum Uy was begun at n, = 6. The substates of the first seven terms

of U, were summed separately; thereafter the terms were grouped as single
levels. The multiplicity (2 S+ 1) (2 L+ 1) for the series limit %S is 2.
The resulting values for the partition function calculated in this manner are
listed in Table 2 as U (%S).

TABLE 2. COMPUTED PARTITION FUNCTIONS FOR Al II
a
0 Log P_ U(%S) U(%s, 2pY% U
0.14 2.0 213.2 285.7 213.8
0.14 3.0 72.2 95.6 72.4
0. 14 4.0 26.3 33.7 26.9
a, [6,8].

10




When the contributions of both parent terms were considered, the
sum in Ujy; was initiated at n, =4 since the observed terms of the 2pl

parent configurations are very incomplete for ni> 3. The partition function

thus takes the form

~

-C19 Vj.- i5
U= ) (2J +1) P e + 2(28;+ 1) (2Ly+ 1) ), n?
n,=3 ! ! n=4 '
1 1
~ 2
-cq0 <VL—Ry F) '\/—gj -XLG
xP e i /+ —————— Erfec (y,) (2S4+1) (2L+1) 10
! NC(Z)P 0
e
(28,+ 1) (2L, + 1) -cy0AD,
T @8, v D2n.+ 1) (21)
For ALII, Ap, =53 860 cm = so that
(28, + 1) (2Ly+ 1) -cy0 Avy _ g o- 15.376 0
(281+ 1)(2 L1+ 1) N for 6 = 014, this

contributes a factor of 0.35 more to [Uyy + Uyp]. Numerical results using
equation (21) are presented in Table 2 under the heading U(%S, 2P% . The
last column represents data published by Aller, Elste and Jugaku [6,8]. The
effect of contributions from other parent terms can be clearly seen.

Fe |

The FelI and Fe Il partition function programs were initiated to
calculate the populations of the lower level of the Fe I 5250.2 A transition
for various photospheric and sunspot models for which 0.4 <6 <19,

Thus the effects of extremely high temperatures have been ignored. For Fe I,
the sum U, included the 3d®4s® and 3d® levels plus all listed terms for
which the active electron had a shell number n, = 4. Missing states in the

3d8 configuration were estimated from similar terms in Co I and Ni III
and from similar terms in members of the Cal isoelectronic sequence,
assuming a similarity between the 3d® and 3d? configurations. The missing

i1




3d6 452 states were estimated from known wave numbers of tabulated members
of that configuration. Missing levels for the n, = 4 ghell number were

numerous and no attempt was made to estimate them; rather, for a represent-
ative 6 and Pe’ their total contribution to the partition function was estimated,

using hydrogenic levels, and found tobe ~ 1.0 x 10—4. Therefore, no cor-

rections were deemed necessary for them and the Uy; sum was initiated at
_=5. Forboth Uy and Uy, only the series limit configuration a D was
1

considered as a parent term, although 19 actual parent terms exist. The

effect of omitting these other parent configurations can be determined from the
last term in brackets in equation (17). For a representative temperature for
the solar photosphere, 6 = 0.9705, this term has the value (1+ 0.63). How-

ever, for the a °D parent term alone (Uyy+ Uyp) =0.046 (assuming P_=

3.554 dynes/cmz) . Thus all parent terms contribute a value of 0,026 to the
total partition function. But at this temperature and pressure, U, = 28.486,

so that it seems justified to consider only the a ®D parent term for photospheric
and sunspot models; the contribution of the other 18 parent terms is
insignificant, percentage wise. Table 3 compares the results of the computer
program with tabulated values of Miiller and Mutschlecner [9].

Fe 11

From the tables of observed and predicted terms for Fe II, it can be
seen that the 3d” configuration is complete. Most of the remaining tabulated
levels belong to 3d® 48* or 3d°® (parent)4x configurations (x=s, p, d, f),
which are incomplete. Numerical estimates for 6 = 1.00 and
P =2.5 dynes/cm? indicate that all missing levels of the 3d° 4s® configura-

tion would contribute =~ 2.5 x 10'3 to the partition function. Similar estimates
for all other missing states with outer shell number n, = 4 indicate their

total contribution would be less than 1.3 x 10, Consequently the Uy
sum was begun at n, = 5 and the U, sum included all listed levels with outer

shell number n, = 4, In the calculations for Uyy and Uy, only the main

parent term a °D was used; contributions of the other parent configurations
are small at the temperatures considered because of the large wave number
gap between the a D ground-state term (v = 1027 cmai) and the next lowest
term, a’P (P ~ 20 000 cm ), in the FeIIl level structure. The term in
equation (17) that represents the contributions of other parent terms to

12




TABLE 3. PARTITION FUNCTION OF NEUTRAL IRON AS A FUNCTION OF
TEMPERATURE AND ELECTRON PRESSURE

Log 7, 62 P U v°
-3.6 1.0944 0.1323 26.465 26.430
-3.4 1.0938 0.1647 26.472 26.438
-3.2 1.0933 0.2044 26.478 26.444
-2.8 1.0913 0.3150 26.505 26.471
-2.4 1.0864 0.4882 26.572 26.539
2.0 1.0748 0.7733 26.736 26.703
-1.6 1.0480 1.3070 27,138 27.103
-1.2 0.9990 2.4800 27.961 27.921
-1.0 0.9705 3.5540 28.502 28.457
0.8 0.9400 5.3040 29. 140 29.089
-0.4 0.8703 14.790 30.888 30.813
0 0.7835 62.450 33.868 33.723
0.4 0.6845 356.30 39.129 38.760
0.8 0.5688 2788.0 50.538 49,195
1.2 0.4365 26 780 82.113 75.980

a. 6 =5040/T

b. [9].

13




sum Uy + Uyy can easily be shown tobe = 0.01 for 6= 0.9705 and
Pe = 3.554 dynes/cm? the a °D term itself contributes practically nothing

to the partition function at this 6 and P(_3 so, again, the neglect of these

other terms is justified. Sample calculations from the computer program are
given in Table 4 along with values from the paper of Miiller and Mutschlecner

[9].

CONCLUSION

In conclusion, it should be emphasized that for higher temperatures
the contributions of all parent terms should be carefully examined. In a
paper by Traving, Baschek and Holweger [10], these effects have been con-
sidered in the calculations of partition functions for atoms and ions of
astrophysical interest, The resulting partition functions are presented in
polynomial form for easy machine calculations, eliminating the necessity of
reading the tabulated energy levels into the program.

14




TABLE 4. PARTITION FUNCTION OF SINGLY IONIZED IRON AS A FUNCTION
OF TEMPERATURE AND ELECTRON PRESSURE

Log 7y 6% Pe U Ub
-3.6 1.0944 0.1323 41,765 41.760
-3.4 1.0938 0.1647 41.775 41.771
-3.2 1.0933 0.2044 41.784 41.780
-2.8 1.0913 0.3150 41.820 41.816
-2.4 1.0864 0.4882 41.907 41.903
-2.0 1.0748 0.7733 42.118 42,114
-1.6 1.0480 1.3070 42.619 42.616
-1.2 0.9990 2.4800 43.599 43.598
-1.0 0.9705 3.5540 44 211 44.211
-0.8 0.9400 5.3040 . 44.907 44.909
-0.4 0.8703 14.790 46.683 46.690

0 0.7835 62.450 49.383 49,399
0.4 0.6845 356.30 53.481 53.511
0.8 0.5688 2788.0 60.719 60.763
1.2 0.4365 26 780 75.991 76.020

a. 6=5040/T

b. [9].

15
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