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THEORY OF RELATIVISTIC SUPERMULTIPLETS

IJI. PERIODICITIES IN HADRON SPECTROSCOPYT

Behram Kurgunoglu
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University of Miami, Coral Gables, Florida 33124

The theory for all fundamental particles proposed earlier is
further discussed and the higher hadron supermultiplets [NO,N] and
the corresponding mass levels of the various spins and parities have
been calculated, where NO,N refer to the dimension numbers of the
groups S0(3,2) and U(3,1), respectively. The results of the theory
and the experimental data on hadron masses are found to be in
excellent accord. The parities of the particles are obtained un-
ambiguously and the theory predicts 2 and higher spin mesons in
addition to known ones. In the extreme limit of the parameters p
and A where p=0, A=0, the [5,4], [5,61, 15,101, [5,15] levels each
describe the photon whilst the level [5,20] yields the graviton
as a massless 2+ particle. The limit p=0, A=0 for the barvon and
the lepton supermultiplets [4b,N], [4£,N}, respectively, when coupled
together imply the existence, at the lowest levels [4b,4] and [42,4],
of two s = %, 2-component neutrinos. Higher spin massive and massless
leptons are also predicted. The most fundamental feature of the

wave equation is the prediction of a periodicity in the hadron and
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AF-AFOSR-1268-67 and the National Aeronautics and Space Administration
under NASA grant no. NGL 10-007-010.




and lepton spectra. The recurrence of the lower level mass
structures in the higher levels with the different values of the
parameters p, A and m lead to a new basis for the proliferation

of the particle states and their interaction patterns. In a space

of sPin,c?% (=B + %), the Z-quantum number, &? and internal quantum
numbers, all barycns and also all mesons are identical systems
occupying different states. No two baryons or two mesons can

occupy the same state and therefore their wave functions must be
antisymmetric with respect to an interchange éf their respective
quantum numbers S,cfg, zZ, 72 etc. This super-exclusion principle
will play a basic role in the formulation of the interaction concept
of this theory. A further consequence of the theory is the prediction
of integral spin leptons described by the supermultiplets [SE’N]

and [lOE,N]. The presence of such particles could be related,
besides W-bosons, to the existence of a new type of weak interaction

violating the various discrete symmetries.



1., INTRODUCTION
(1)

In the previous paper ; to be referred to as I, a wave

equation describing the energy levels of the free hadron was proposed.
A preliminary numerical analysis led to the jdentification of the

first eight free baryon levels in the mass relations

1 1 1 1
I _ = - (1.1)
MZ MEO MA— My+
and
1,1 1, _ 1 1
7 G i) tE T ows (1-2)
n b2 A )

of the supermultiplets [4,6] and [4,1] , [4,4] , respectively, where
each supermultiplet is designated by its principal quantum numbers NO
(dimension number of S0(3,2) and N (dimension number of U(3,1}) in
the form [No, N}l. It has been pointed out in I that the only
physically relevant representations.of 50(3,2) are for No = 4,5 and
10 dimensions, while N of U(3,1) ranges over 1, 4, 6, 10, 15, 20, ...
However there are two sets of 4 x 4 matrices which form the bases
for the 4-dimensional representations of the group S0(3,2). These

1 1 1

i . . . .
two sets are §1Yu ' 5qu and lesYu ’ §guv , both of which satisfy

the commutation relations of the SC(3,2). These two representations

(1) B. Kurgunog’lu, n THEORY OF RELATIVISTIC SUPERMULTIPLETS, I. BARYON
MASS SPECTRUM. Center for Theoretical Studies preprint CTS-HE-69-4.
(To appear in the Physical Review D 2 issue, February 1970}.




when combined can form the basis for the 4~dimensional representation
of SU(2,2). Thus in the latter sense the two representations of

S0(3,2) , to be referred to as B and L-representations, respectively,
are related within the 8U(2,2). The L-representation (%-i YSYU r % Guv)
of S0(3,2) will be applied to lepton classification where we shall

see that the parameter p in the lepton wave equation

v o _
(TustY p i me) Wg 0 (1.3)
will have to be restricted to p<l. The matrices Tuv , as in the
baryon wave equation
uv . —
(TuvY p iMc) ¥p =0, (1.4)

are defined as the linear combination of the generators ruv + p guv

and Juv of the group U(3,1) ,
T =i +pg +AT) (1.5)
w o op Tpv 1A v

where the range of the parameter A for the leptons differs from its

range of wvalues for the baryons.

In this paper we shall continue with further investigation of

the hadron wave equation

THRV R _
(T,,8°P iMc) ¥, = O , (1.6)



where the four matrices gu belong to NO = 4 (for baryons), or to
N = 5, 10 (for mesons) of the 50(3,2) representations.

The quantized field theory of the present model implies that
the spin and statistics connection of the elementary systems can
be discussed within the framework of S0(3,2) symmetry breaking.
Each member of the supermultiplets [4,N]B and [4,N]2 will obey the
Fermi-Dirac statistics while each member of the supermultiplets
[5,N] and [10,N] shall obey the Bose-Einstein statistics. The
relation between breaking of the S0(3,2) symmetry and the spin and
statistics connection is based on the observation that the Dirac
and Kemmer wave equations break the S0(3,2) symmetry at a rate of
&E where p is the momentum of the particle. This property, in our
theory, is taken over and generalized further by including the
group U(3,1) (which has no double-valued representations) to induce
a level structure to all the states of the hadron.

Like the Fermi-Dirac systems, the mesons also are of two-prong
type, i.e., both [5,N] and [10,N] are meson supermultiplets obeying
the same symmetry laws as contrasted to [4,N]£ and [4,N]B which have

different discrete symmetries. Both 5 and 10 dimensional representa-

tions of S0(3,2) obey the Kemmer-Duffin algebra

BiB,B, * BBLB = = (g, B + g, 8) (1.7)

just as both yu and YsYﬁ representations of S0(3,2) obey the Dirac

algebra



T Yy FYyY, = - 29 (1.8)

u uv

Operating with pupvpp on both sides of {(1.7), we obtain

(8”p ) [8%p )% + p*] =0 .
Hence, using the Kemmer eguation

(B”pu - imc) ¢ =0, (1.9)
we obtain

(p? - m?c*)¢ =0,
which in momentum space implies
p? = m?c? (1.10)

The same procedure applies for the Dirac algebra and leads to the

statement (1.10). We thus see that No = 4£, No = 4B and N, = 5, 10

are the only physically relevant representations of the group S0(3,2).
Finally, we remark that within the group S0(3,2) there exists

a possibility of obtaining mesons whose discrete symmetries differ

from [5,N] and [10,N]., For example, the algebra (1.7) can be

satisfied by taking i BsBu in place of Bu , Where



BB +BB =0, BB =88 ,8 =-i (BB -68) (1.11)

Thus as can easily be verified the matrices BSBu and Buv belong to

the Lie algebra of S0(3,2).

2. THE SUPERMULTIPLET [4,10]

The energy levels of the supermultiplets [4,4] and [4,6] were
discussed in great detail in I. The method of I was useful only
for the sake of a general presentation of the theory and also for
a systematic spin decomposition of the wave equation. Here we
shall introduce a much shorter technique which yields the same results
and is based on the space-~time symmetry classification of the wave
functions leading to coupled sets of equations for each spin in a
supermultiplet. For the definition of the various symbols and
quantities the reader should consult I. In order to illustrate the
method we shall recalculate the levels for the [4,6].

The wave equation for the supermultiplet [4,6], using the

J and also the wave function

definitions of Puv' uv

= _ 1 suv

oa aluv]

can be written as
_ U 3 : P - p
[(p=1)y"p, -imepl¥p o + (1+iX) (v 2 Uy oq = VP ¥y +

-1 P - P =
(1-ix) (puy w[pv] P,Y w[pu]) =0, (2.1)

where a square bracket around the indices implies antisymmetry while a
curly bracket implies symmetry under permutations of the respective

indices and



where the Dirac index o of the wave function has been suppressed.
+
The two % wave functions of the [4,6] can be represented in the

form

=1

_ JHY
n—YYIP[w]rnz o

THRY)
. TP Vil

Introducing the definitions (2.2) in (2.1) we obtain the coupled

equations
[(p + 21}\—3)y”pu - imecpln  -4(p + 2iA)pn, =0
[(p + 2i —1)Y“pu + dimepln - (1 - iMpn =0

Hence, eliminating n1 or n2 , we f£find that both n1 and nz satisfy

the wave eguation
1‘1 — L = u - * -
Ly Py imeln [y Py imeln =0
with

p2 (0%+422+3) -m®*c?p?®

e = 2mcp

from which, as in I, we obtain the mass spectrum

_Wp__
M(Z,B)

7B + BY [p? + 4(1+rx%)] , p? = M%c?

where

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



=% 1 and B = % 1 (baryon number}.

The Z guantum number appears in all the baryon multiplets.

+
The two % wave functions

1
= ; = - 2-7
T T Ve o My T e RNy 2.7
obey the coupled wave equations
. u . . . .
+ - + (1 - 1A =0 2.8
i(p ir)y P, 1me]n211 ( i )pnlu ' ( )
. U . . . . _
+ -2 + + 2 -+ = 0 2.9
[{p + iX-2)¥ P, mcD]nlu {(p + iX)p L ’ ( )
where we used the fact that the wave functions nlﬁ and nzu , as
follows from the projection operators (6.2) of I, satisfy the
relations
LARLI c.,p u .,y Mou . p ST © (2.10)
The equations (2.8), (2.9) lead to
i . i . .
- = - =0 2,11
[y P, :Lm,c]n”1 Ly P, - ifieln ( )

where now

mzczpz _ pz(p2+l2)
2mep




and the corresponding mass spectrum is

mp

m = ZB + BI/ (pz + }\2 + l) . (2.12}

For the supermultiplet [4,10], using the definitions (A.3.1},
(A.3.2) for an ’ Juv of I, the wave equation can be split up in
the form

. s D
(y pu imec) Tsu 0 (2.13)
and

_3 P o P
u])+(1 1A)(puv T{pv] p,Y ¥

[oul’

[ (p-1)yH p,~imepl¥p i+ (141X (vp T[pv] Y P W[p

=0 (2.14)

which is the same as the wave equation of the supermultiplet [4,6].
The four spin %—Wave functions of [4,10] can be defined as

. i
HpY ‘:Yulb r &=

— - 2.15
3 5U b P ! ¢ )

2

(2)

where §3 and Cu are the wave functions of a pair of % particles

and they satisfy the coupled set of equations
(y'p, + imc) T+ 2pz =0 , (2.16)

(v!'p - imc) £ =0 (2.17)
u "

AW

(2) The gquantity ; [kw]’ with A,w = 1,2,...5, is a scalar under

S0(3,1) transformations and a four dimensional spinor under the
SL(2,C) transformations, where Oy =~ % i (YAY - YA)’ are the

ten generators of the group S0(3,2) and where {YkrY }= - 2g, . The

dy, LS the metric tensor of the group s0(3,2), g 9., = 1,9, = 0,
g . =0, T g - §,,, Where p = =1,..4, and j,k = °1, 2,3. The vy, are
4J the fl%e DJ_rac3 matrices y.  and y.. Hence we see that the étates

¥5u describe negative parity uparticies.



From (2.14) we obtain the same mass spectrum (2.6) of the super-

multiplet [4,6]. The equations (2.16} and (2.17) yield the mass m

for the remaining two L particles of {4,10}. In deriving the

2
egquations (2.16) - (2.18) we used the relations
W,V vV uo_ o,
™rYe)= - (rUp v - 2p

Yqu(YpPp) = (YpPp)Yqu + 2"y - vVpM

The three E—states of [4,10] are represented by

2

+ .

v+ 1l v, +
- = = : T = 2.18
S T Yy S TP Vil r G T Y (2.18)
where Esu represents a %f particle and where, as in the case of
[4,6], the superscript (+) of ¥ signifies the action of the
projection operater (6.2) of I on w[uv] for the state of spin % '
and each of (2.18) satisfy the relations of the type (2.10). The
wave functions czu r czu obey the same set of coupled eqguations
as in {4,61 and the wave function Qsﬁ satisfies the equation
U .
- = 0 2.19
(y"p, = imeg ( )

Hence the mass of the g- particle is djust m.
From the discussion in I of the [4,4] and [4,6] mass spectra
it is clear that the parameters p and A will, for the supermultiplet

[4,10], éssume a different set of wvalues from [4,4] and [4,6].
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In I, it was also shown that the mass formulas (1.1l) and (1.2)

could be fit with wvarious other combinations of s = % and

s = %« All these fits correspond, of course, to different sets
...{_'
of values for the parameters p and A. Thus the pair of % and

+
the pair of % of [4,10] mass levels are given by (7.17) of I

and therefore they can fit a mass relation of the type (1.1) with
different mass values than those used in [4,€6]. Furthermore the
parameters p and A also assume different values from that of
[4,6]. The remaining pair of %ﬁ and also the %- are of equal

mass represented by the parameter m. All of these masses of

[4,10]1, as follows from (7.17) of I, can be expressed in a single

expression

_mp 2 2 442 15 _

W(zosT = 2B+ B/ [o® + 220 + 1) (7= - s(st1))] (2.20)
where s = %, %, B (= £t 1) is the baryon number and the Z-guantum

number assumes the wvalues -1, 0, 1. The mass formula (2.24) differs
from (7.17) of I in the appearance of %% in the square root and
also in the fact that the Z = 0 and s = % is doubly degenerate while

Z =0, 8 = % is a singlet.

3. THE SUPERMULTIPLET {4,15]

In order to compare our model with the current theory and ex~
periments and to derive further conclusions from it we shall derive

the mass spectra for the-[4,15] and also for one of the [4,20}.



i1

The wave eguation for the [4,15], as follows from the definitions
(A.4.1), (A.4.2) of I for the generators Fﬁv and Jﬁv’ respectively,

can be written in the form

S TR _1 u = Legriny MoV (g - o
Llp- 3y P, imepl¥ 1= 7 Jac Ipa ¥ Py ¥cal 7 (L+id)y'p (Jup)ab(Jv ) cd

: R PR | R P _
¥rear™ -1y e (I, oy (9,7 g Yregr = © -

(3.1)

where the Dirac spinor index is suppressed and where Yab (a,b=1,...,6}
are the elements of the matrix Fs defined by (A.2.20) of I. In the
derivation of (3.1) we used the relations

% J LA S S SR (3.2)

uwvab ¥ cd T %ad °be T Cac ®ba T Jad Ibe T Yac Iba
between the generators (Ju'v)ab of the N=6 representation of U(3,1).
The relations (3.2), as will be seen, play a fundamental role in
predicting negative parity particles.
Now, on multiplying (3.1) through with the coefficients (Juv)ab

and summing over a and b (= 1,2,...6) and using the relations

T J =g T

s Yuv T v s %(Ju\))ab (3 (3.3)

oo’ab = o Fvp T Jup vo ’
we obtain the wave equation for the supermultiplet [4,6] given by
(2.1). Hence we see that the [4,15] contains a mass spectrum of the
same form as the spectrum of [4,6]. Thus the [4,6] subspectrum of

: + +
the [4,15] consists of a pair of % and a palr of % particles
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described by the 24-component wave function
n =lire @ .w . (3.4)
[uv] 2 uy

where ¥ represents the matrix form of the wave function ?[ab]’ The
sum rule for the mass spectrum of Nuv] is the same as (1.1) but the
parameters p,A and m assume different values from that of the
[4,6] and therefore the corresponding particle masses are also
different from tﬁe [4,6] supermultiplet.

The remaining members of [4,15], as indicated by the reduction
(A.4.3) of the V¥

[ab]’ 2T described by the wave function

¢! = 0 (3.6)
The corresponding wave eguation can be obtained by multiplying

{3.1) through with the coefficients (ruv){a'b} 9a1a and summing over
a,b and a' as

(Yppp -ime) ¢g 3 = O (3.7)

The appearance of the ?5 (= g, p! 1in the definition (3.5} of the
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wave function ¢{UV} implies, clearly, that it describes negative
parity particles. This can, more readily, be seen in terms of
space-time transformation properties of the wave function. “Thus

using the definitions (see appendix A of I)

cHVpo 0 0

_ i
2 pva “pob

Q =

1. .
71 9 qua pob Cuvpo * Jap (3.8)

the wave function ¢{ﬁv} as defined by (3.5), can be written as

X _ 1. . _
¢{uv} =3t (ruv)a'b-ga'a li!ab -
l _yépo
z*© Qyv ¥riuet, 10011 Iyn Yrivsl, too11’
(3.9}
where
¥ =l(Q' Q -Q Q )Y (3.10)
[{uvl,[pcl]l™ 4 uva *pob uvb “poa’ "[ab] :

The wave function ¢{ﬁv} can be decomposed, according to its spin

content, into the wave functions

_ 1 P RY _ 1 ﬁ v .
¢, = PP dpny r b, =5 YR 400 (3.11)

o]

—

for a pair of % particles,

D _ 1L v, R
¢1u ) P ¢{HV} ! ?2U = ¢{uv} (3.12}
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with

u _ W, . _ i — U _
P ¢1u p ¢1 P Y ¢1u ¢2 r P ¢2u p¢2 P Y ¢2u o,

for a pair of g- particles, and

o .
= -3¢ .0l g =0 (3.13)

for a % particle., A further reason for the presence of negative
parity particles in the [4,15] is contained in the structure of

the Pauli-Lubansky operator

W .
AB _ 3 _ Ll vy L . ouv _
o2 =7 %p ~ 70 WA g - 7YY T, 1) o2

i

p : u_v
(3.14)

where the subscripts A and B are used in place of [ab] and [cd],

respectively and where we used the relations

12 § . 68

Spp = 6 ad Sbe

_ iy _
o) 1ac1 9 Viepi™ — YUpvla (? Yg + Spp ac %ba

-2g (3 ), (37

I, FIQY po’ A

P = -
(Jup)[AC](Jv )[CB]_ wv’ TAB]

B

The second term on the right side of (3.14) is defined by (3.2).
Hence we see that the presence of the latter allows the presence
of the negative parity particles. This observation is, of course,
compatible also with the structure of the wave equation (3.1).

The equation (3.1) because of its second term can be multiplied



i5
through by g_,, to see the negative parity structure in all the
texrms.
From (3.7) and the definitions (3.11) - (3.13) of the wave

functions we obtain the coupled set of wave equations

(Yupu—imc)¢1 =0, (Yupﬁ + imc)¢2+2p¢l =0 , (3.15)

TR TER
- =0 + +2 =0
(y P, 1mc)¢lp ¢y Py 1mc)¢2p p¢1p ’

(Y”pﬁ-imC)cp =0 .

Hence we see that all of the above five negative parity particles

have egual masses represented by m.

4. THE SUPERMULTIPLET [4,20]

.It has been pointed out in I that the group U(3,1} has two
20-dimensional representations defined by ?{ab}(w{aa}= Q) and w[abc]'
Here we shall discuss the symmetric wave function L‘F{ab} and defer

the fully anti-symmetric wave function ¥ or its dual representation

1
% Sabcdef !ldef]

anti-symmetric tensor €

[abcl
to the future publications in this series. The fully

abcdef ! as for.a‘u'vp0 , has only one non-
vanishing component where the indices a,b,...f(= 1,2,...6) have
different values.

The wave equation of the [4,20], as follows from (A.5.1) and

(A.5.2) of I, can be writéen as



16
R T _1 U _ 1 . p_O A
Lo+ F)vTp =imeol¥y 13- 3 9 Y P,E = (IR AT 3) £ p3 0,

_ L. 0.0 AL, 1 g P01 —
(4.1)

where

vy , o* =0 , (4.2)

and where we used the relations

L v - 1 _ 2
7 T {apr 7 ) {cal™ %aa Spe * Sac %ba ™ 5 %ap Sca = 3 Jap Jeq - (443

It must be observed that, because of the non-compactness of

the group U(3,1), the wave function ¢ does not vanish, viz.,

1 =1 _ widy = 1 _uvpo
w{ =5 (¥ yrlly = = (4.4)

=3 9 Y{ab} 4 Yituvi, [pol} 7

where

vIJ = it g T g oyse ooy x
J3]
so that ¥3 is just the complex conjugate of Wjj' In all the above
relations the Dirac spinor indices have been suppressed. The [ is

. 1 . .
the wave function of a 5 particle where w{[uv],[pﬁl}’ the space-time

tensor-spinor form of the [4,20] wave function, is defined by
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Yo, [po1Y T %'(qua Qob T Qb ona)w{ab}_J (4.5)
g*® g% *{iwl o013 = ©
Hence, by contracting, we obtain
R 7 (Iyv) {and Y{abl) 7 (4.6)

which is the same as (4.2). By using the definition (4.6) in

(4.1) and noting that gab(ruv){ab} = 0 we obtain a wave eguation

for the reduced wave functions ¢{UU} and © ,

1. p . .
Lo+ F}y7p,-imepldy 3 - (HM)ply, ¢, + v, ¢

- (1-1i —l - 2 —..J..T.. p =
(I-ir) (p ¢, + Py¢, .~ 59, P9 ) * 73 (VP Y P~ 5 9, Y P)E =0
(4.7)
where
_1 0 = vPg - = L .u = = pM 4.8
S TP O Gy TY by O SR 8, TPy (4.8)
and where we used the relations
Loy, 0. ) .=g g +9g. g . -%g g . (4.9
4 uv’ ab po’ cd o “Vp up “vo 2 “uv “po
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Operating on the (4.7) by pupv, Yupv and also on the (4.1)

by 9.p Ve obtain the coupled set of equations

[ {p- §- -ZiA)YuPu-ime]dJl +(2ix-1pg, * V3 y'p;z =0, ‘ (4.10)
[(p- 2 -2i0)y'p, +imcplo +2 (o= g-—six)p¢1 £ 3/3pg =0, (4.11)
[ (p- %oy“pu - imcplg  /3p ¢ =0, (4.12)

+ -
which describe two % (¢1,¢2) and one % (z) particles. From (4.10)-

(4.12) it follows that the three wave functions ¢1,¢2 and ¢ satisfy

the wave equation

(YuPu ~ iMc)¢ = © (4.13)

where ¢ = ¢1,¢2 or ¢ and where
M ogx®
e h+fx?
f= % -9, 9 =-(p*-3p+ %Z + 8A%) , (4.14)
= (p- 2) (8A24p2-gp+ 23 L = |mep
h = (p- 5) (BA"+p~~dpt T +3(p+ 5) , x = 5

From (4.13) and (4.14) we obtain the cubic equations

x* + fx2 + gx + h =0 , (4.15)



i9

where the + and - signs of £ and h refer to particles and anti-
particles, respectively. Thus if we let xl ' x2 ’ x3 represent
the roots of the cubic equation (4.15) with the + sign, then
-x1 ’ -x2 R —x3 are the roots of (4.15) with the - sign.

The roots x , X . X satisfy the linear relation

X +xXx +x =-£f . (4.16)
2 3

1 1 1 _ _
- ta te T m T Zmp (4.17)
where, as will be shown, the M1 ’ M2 refer to negative masses and

where m and p on the right hand side will be eliminated in favor

+ — f—
of the masses for the % ’ % and % particles.

The () signs in the equations (4.1), (4.7) and (4.10)-(4.12)
originate from the N=20 representation of the Puv as given by
(A.5.1) of I where it has been pointed out that the + sign (or
- sign) can be transformed into - sign (or + sign) by a parity trans-
formation on the two pairs of indices of the (Puv){{ab};{cd}}
affected by (Tqu){ab}(rqu){cd}' It is interesting that the commutation
relations of the group U{3,1l) contain, for the N=20 representations,
those solutions in its structure which make the emergence of a
negative parity state z along with & pair of positive parity states
¢1 and ¢2 , as seen from (4.10)-(4.11), a Lorentz invariant fact.

Now from the theory-of cubic equations it follows that the

three roots of (4.15) are given by


http:4.10)-(4.11
http:4.1O)-(4.12

= - N Zm ¢y _ L
x 4y ( 3)(2 Z%} cos (3 + 3) 3Bf (4,18)
-1
where 2 = 0, = 1, B == 1, x = %ﬂ B -1 , and
a = —4(%{2 + 2x%+3), b = B[8(1+A%*)- % £f(£2+92%)1 ,
cos¢=M,A=4a3+27b2
2av (~a)
1.t 21
—(D) A = 1+6(142%) + 7= (1+A*)% +8(L+A%)* +E£(1+2%) (£7490%) +
£2 (A% +12202+9+£2)

and therefore ~A>0 , (4.19)

so that the cubic equations have three pairs of real and unegual

roots. The functions y(= Bx?® + fx® + Bgx + h) assume their maximum
(minimum) and minimum (maximum) values at the points X1 = - %[f—/(3a)](>0)
and X, =~ % [f+/ (-3a)] (<0) , respectively. At the points X, and X,

the second derivative y" for B = 1 satisfies the inegualities y“(x1)>0
and y"(x2)<0. Therefore, because of the relations |x2| > |xll , h >0,
of the three roots of y = O (with B = 1) the two of them are negative

and one is positive, whilst for the case B = -1 the two roots are
positive and one is negative. Hence we see that we have three

positive and three negative roots corresponding to baryons and anti-

baryons, respectively. These roots are as given by (4.18).
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The higher spin reduction of the eguation (4.7), after using

the projection operator (8.75 of I for the spin %—, consists of the

coupled set of equations

1 . v . + . +
[{p 5 —iM)y P, —:mep}¢111 - (l—ll)pq)zu =0, (4.20)
3 . v ; + 5 . +
[(pt+ 5 -1iA)y P, +J_mcp]¢2u + 2(p- 5 31A)P¢1u =0 , (4.21)
g+
which describe two 5 particles. The mass spactrum corresponding

to (4.20) and (4.21) is given by

= 2B + BY [% + s (s+1)+p(p=1) +5A2] (4.22)

:ﬂg
!

where s = % and Z =+ 1, B =% 1. Hence putting M = Mu for 2 = -1,

B=1and M = M5 for Z =1, B = 1, we can write the relation

2 _1 1
5 4
On combining (4.17) and (4.23) we obtain
1 1 1l _ 3,1 1 1
rtry taeTT Gt R (4.24)
1 2 3 4 5

where m will be eliminated with the use of the mass relations for

the other members of the [4,20].

The wave functions of the remaining two % and three %

baryons can be constructed from
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o= Ly + _ 1. +
E{uv} =51 Tr(PuvrsT Y . E{uv] =35 Tr(JquSW ) . (4.25)

=

where the superscript (+) signifies the absence of spin % states

in the wave functions (4.25). Now using the relations

Tr(PﬁVP r

= ) = 4.26
. pﬁ) Tr{JuvPSPuv} 0 ( )

and the wave equation (4.1) of the [4,20] we find that the wave

functions (4.25) satisfy the equation

[ (p+ %)chg —imeplzy g = [lo+ %—)ch ~imepley o,y = O - (4.27)

g

The ruv and Jﬁv in (4.25) and (4.26) refer to N=6 representation
of U(3,1). From (4.27) it follows that the two % and the three
% baryons described by the wave functions (4.25) have equal masses

given by

M, = Bmp (4.28)

1
pFa

It is interesting to observe that the mass (4.28) was obtained
+
in I for the spin singlet 3 of the supermultiplet [4,4]. This kind

2
of periodicity in the baryon spectrum is one more novel aspect of
the present theory. DNow, on eliminating the parameters p and m
between (4.23), (4.24) and (4.28) and remembering that M1 and M2

in (4.17) referred to negative mass we obtain the sum rule of the
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supermultiplet [4,20] in the form
l —_— T mee— W —
i o — = = = - (4t29)

3 .3
5 5 M6 both spin 5

and spin % and furthermore M3 and M6 refer to the masses of the

negative parity baryons of the [4,20]. All of the masses appearing

where Mz' Mz, M3 ara spin L and Mk, M5 spin

in (4.29) are now positive.

5. DISCUSSION OF THE_BARYON SPECTRUM
The mass levels of the supermultiplets [4,N] depend on the
baryon number B, the spin s and also the space-time quantum number Z.
The dependence on Z, for some supermultiplets, is of the foxm BZ.
Therefore a different classification can be based on a guantum

number A defined by
B+ 2= JE . (5.1)

We may thus eliminate the barxryon number B in favor of A and 7.
For the supermultiplets so far calculated the number S assumes the
values O, 1, 2 for the baryons and 0, -1, -2 for the anti-baryons.
The additive character of S as defined by (5.1} is similar to the
hypercharge quantum number of SU(3) but it is gquite clear that ‘)4{
is not related to the hypercharge.

Each member of a supermultiplet with fixed parity P(= % 1)

can be depicted in a space spanned by the guantum numbersgf{, Z
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and s. The numbers JZ and % belong to the category of external
quantum numbers like the spin and parity of the Poincaré’group.

The four numbersﬁff, Z, 8 and P, because of the absence of a
definition for the electric charge, do not completely specify the
baryon. We need to discover the internal guantum numbers connecting
different supermultiplets. In other words the members of an
"internal supermultiplet" consisting of particles with the same

spin and parity lie in different space-time supermultiplets described

by the four numbers qﬁf, Z, s and P. Tor example the mass relations
MO = g8 + BY[(p- 2)% + 3(A2+1)1, B2 = 2B + BY[p2+4 (A%+1)] ,
M 2 M

for the s = %-members of the [4,4] and [4,6], respectively, do

indicate an internal structure in their dependence on (A% + 1)

and on p. The sae type of p and (A% + 1) dependence arises for
+

the pair of % part of the [4,20] as

= ZB + BY[ (p- %)2 + 5(L + A%)1 .

3ﬂ5
1)

However, it is not, as yet, clear enough to deduce some new
"numbers" from them.
The figure 1 constitutes a diagramatic illustration of the

space-time and internal structure of the baryons.



[y tp=imdy =0

z

o =+1

9
|

—1

Figure 1
BARYON SUPERMULTIPLETS

The planes perpendicular to the axes contain baryons of different spins and parltles,
forming the space- time supermultiplets. A hyperplane through the central axis may be

constructed in such a way that it contains baryons of equal spin and parity, hence
defining an internal supermultiplet.

17T
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The perpendicular intersection of the co-axial "cylinders" for

fixed internal gquantum numbers yield concentric "spherical” shells.
Each spherical shell contains baryons of fixed spin angular momentum
with the appropriate values of S , Z and P, Particles of

negative parity are placed on the plane Z = 0, but not all particles
with Z = 0 have negative parity. Thus the space-time supermultiplets
result from the perpendicular intersection of the co-axial cylinders
by a plane specified by fixed internal quantum numbers and no two
members of a supermultiplet assume the same values of all the four
numbers A& ; 2, 8, P, and carry the same electric charge. In the
latter sense in the space spanned by pﬁ{, Z, 8 (together with the
parity and electric charge) the baryon classification behaves like
the electron configuration in the atoms determined by the Pauli
exclpsion principle operating in the position and spin spaces.

A "super exclusion principle" in the sgbove sense may be the basis

for the proliferation of the strong interaction regonance states.

Therefore in the space of S , Z, s, P and electric charge all

the baryons are identical particles and no two baryons can oCCupy

the same state. Thus, if the guantum numbers of one baryon is

interchanged as a group with those of another, the baryon wave
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function must change sign.

An "internal supermultiplet" lies in a plane coﬁtaining the
axis of the co-axial cylinders and the baryons of equal spin and
parity. It is guite conceivable that different internal super-
multiplets lie on planes oriented with respect to one another with
fixed angles between them. Such relationships between these internal
planes is expected to emerge from the theory as a result of the
representations of some internal group.

Another regularity to be observed refers to the recurrence of
the low lying mass structures at the higher mass levels. Thus the

[4,1] mass level recurrs in the supermultiplet [4,10] for the pair
of % and also for the pair % but, of course, with the different

valueé of m than assigned in the [4,1]. Purthermore, the mass
relation of the s = % member of the [4,4] recurrs for the mass

of the s = % and s = %-members of the [4,20], whilst the entire
mass structure of the [4,6] recurrs in the mass spectra of the
[4,10] and [4,15], all, of course, with different values of the
parameters m, A and p. The above interpretation of the theory

and also the expectations pointed out there have constituted the

bases for the choice of this paper's title.
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6. MESON SPECTRUM

In accordance with the discussion in I- the wave functions

of the massive integral spin supermultiplets can be represented

as

%y » % %a r Ygwnl 7 %arabl ¢ Yafab} !

(6.1a)
N=lL , N=4 , N=6 , N=10 , N=15 , N=20 ,

®xlabel * Palmnel, (2211 * ®a{abel * ®A{Inol,[Ecl} *

(6.1b)
N=20 |, N=45 , N=50 |, N=55 ,

with ¢k{aa}= S ¢l{abb}= o

where the subscript A acted on by the S0(3,2) and its subgroup of
homogeneous Lorentz group transformations and it ranges from 1 to 5
for No = 5, or from 1 to 10 for NO = 10 representations of the
S0(3,2). All the other indices are as defined in I. Thus the mesons
are classified according to five and ten dimensional representations
of the group S0(3,2). Both classifications contain Oi, li, 21,...
mesons. The properties of these two prongs of mesons and their
dynamical and symmetry differences may lead to some new information
on these particles.

The appendix (A.7) of I contains a brief discussion of the

group S0(3,2) and its integral spin representation in terms of the
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B-matrices. The B-matrices for NO = 5 representation of S0(3,2),

in terms of tensor notation, can be represented by

a
=0 6.2}
r (Bu)p ( )
where
H,v,p,0 = 1,2,3,4

These relations aid considerably in the discussion of the meson

wave equation

\ .
(1, 8'P° - ime)¢ =0 , (6.3)
describing the bare supermultiplets [5,N] and [10,N]. The total
angular momentum operators of these supermultiplets can be

represented as
G =L _+B8 . + T ' (6.4)

where, as before, Lﬁv uv

of 8U(3,1). The Buv are the spin matrices in the five or ten

= xupv - XUPU and J are the six generators

dimensional space of the S0(3,2) transformations. The operators Guv

commute with the Tuvsupv. Under a Lorentz transformation of the

R

coordinates x" - At x° the wave function of the meson supermultiplet

transforms according to
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-1
¢(x) » S(M(A x) = ¢"(x") , (6.5)
where the non-unitary operator S(A) is defined by

S(A)

I

I RN
exp [- 7 i£V (8 + 3 01 (6.6)
and it acts on both the S0(3,2) and U(3,1) indices of ¢. The Lorentz
matrix is as defined by the (2.5) and (2.6) of I. The Lorentz
invariance of the wave equation (6.3) further reguires the trans-
formation rules

=1 B YV - o V
s ) TuVB S (A} Au T ..B ' (6.7)

pv

which entail the statement that the operator Tuva transforms as a
vector. The statement (6.7) is valid also under the unitary ‘
representations of the Poincare group. As in I, it is easy to show
that the wave equation (6.3) is, for all the supermultiplets [5,N]
and [10,N], Poincare invariant and therefore the Poincare gfoup is
unitarily implimentable.

The supermultiplet [5,1] is described by the Kemmer wave

equation

(Bup‘

u - imc)g = O (6.8)

The discussion in (A.7) of I on the composite structure of its’

spin shows that the meson of (6.8) is of O type. The equation



30

(6.8) is invariant under the reducible Lorentz transformations

1,1 (0,0)

('_r_ . A, . 1 it
D'2'2 + D generated by the BUV which leave B ¢l = 65¢5 + B ¢U

also invariant.
By using the definitions (6.2) in (6.8) we obtain the coupled

eguations

p”¢u -me ¢ =0 , po_-mc¢ =0 . (6.9)
Hence

(Pz—m2c2)¢5 =0 , (pz—.-mzcz)pucpu =0 .
The Pauli-Lubansky operator for the equation (6.8) is given by

= 2[1 + 2~ (g¥p.)%1 , W2 = 2wWp® ,
PZ H

“UN IS

which can be used to construct spin O and spin 1 projection operators

r = % 2-"y , 1 = %.E_ ) (6.10)
o n2 1 Pz
U .y _ ol u _ .
Thus from PO(B pu) = B pu ’ Fl(B pu) =0 it follows that
¢ (s=1) = P1¢ = 0. Furthermore the corresponding current density

is given by

T
9¢ 3¢
T s _'s o) . (6.11)

= —=ipBR" =.l- 1- =i_h.
J 1080 = 050 0t =g g T T o %

u
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Hence the equation (6.8) corresponds to a O meson described by

a wave function ¢ (= ¢5,¢u)-

7. THE SUPERMULTIPLET {5,4]

From the meson wave equation (6.3) and the definitions (6.2)

we obtain the coupled equations

(Tpv)g p’ ¢§ - mc¢5p =0, (7.1)
(T,))5 B 6 g~ mco, =0 . (7.2)

In general, to obtain the mass levels corresponding to the various
spins within a supermultiplet one uses the spin projection operators.

For the [4,5] the corresponding projection operators are given by

=1 2-%y06 - Ty (7.3)
2 2
P P
rl = %.E; (6 - ﬂ;) (7.4)
[ p
o= %Z E; (ﬂ; - 2) (7.5)
p P
where
2 - |- 2_2 =
p Pup Pl+ p r Tt Tl + Tz r
w2
Fyt= e - 12
2 p p
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and W is the Pauli-Lubansky operator of the supermultiplet [5,4]

defined by

s =8 + J

= U w_ 1 _pvpo
W=Ww , W =5e¢ 8,0Py , Soo oG o0

u
The operator PO projects out the spins 1 and 2, and retains the
spin O. Similar actions are performed by the Pl and P2 as in-
dicated by their subscripts 1 and 2, respectively. The spin matrices
Suv are the sum of the spin matrices of the S0(3,2) for NO =75
and of the U(3,1) for N = 4, respectively. The BUV can be written

as

B = A, M (7.6)

h= 3 @B (7.7)

and where the 4 x 4 matrices Muv are of the same type as Jﬁv
defined by (8.2) of I. However, the Mﬁv introduced in (7.6)
commute with the Jﬁv of the U(3,1) for N = 4.

Now, using the definitions (8.24) of I, the spin matrices

of the [5,4] can be written as

w
i
N =

1
Ao (T, + ) +#5A, (T_+ T + 1+ 1) (7.8)
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where the 4 X 4 matrices Taj and Tbj’ as in the definitions of
Taj mﬂ'%jlntmmsomej,ana&ﬂnmdby
Ta = M'" -iN'-, Tb = M' +iN’ (7.9)

and they satisfy the commutation and anti-commutation relations
(8.25) of I. The two terms in the brackets of (7.8), because of

the completeness relations

Ccommute and the first and second terms result from adding two and
four one half spin angular momenta. Because of their transformation
properties under parity operation, as discussed in section 8 of T,
the resultant spin angular momenta refer to the O , 1+ mesons.
In fact this spin and parity assignment is also evident from the
transformation properties of the wave function ¢Au(k=l"‘5’ ﬁ=l,..4).
Thus the parities of the [5,4] are fixed unambiguously.
However, only the components ¢5ﬁ of the wave function
¢lu(= ¢5u,¢vﬁ) generates a non-vanishing current just as in the
case of the [5,1] only the ¢5 part of ¢A appeared in the current
vector (6.]1). Hence the ¢kﬁ describes one 0~ meson and one 1° meson.
On eliminating ¢ﬁv from (7.1) and (7.2) we obtain an equation

for the component ¢5u in the form
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2240240+ D) p2 4+ 2(02-2p + v - m?c?p? = . 7.10
(A+p%+o+ TP 6 (A"-2p + 2)p, P'¢_, —mcpp =0 ( )
Introducing the wave functions
_ 1 .
u = ¢ - Ep u (7-11)

for the 0" and 17 mesons, respectively we find that they satisfy

the equations
(p? - Mic*)u =0, (p? - Mfcz)uu =0 (7.12)
where, as seen from the definition (7.11},
pfu =0 (7.13)

and where

2 2 2 2

mpy* _ - 3 2 mp, * _ 1 2

(Mo (p 2) + 3(1+r°) , (M_ = (p+ 2) + 1+X . (7.14}
Under a reflection of coordinates the SU(3,1) index u of the

wave function is acted on by the matrix F, (see section IV. of I)

whilst the S0(3,2) index A as pointed out before, transforms by

the action of B. Therefore, the space parity operation on the wave

function consists of writing

P¢ = B_F ¢(I_x) (7.15)
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This means that the components ¢5u, o) of the wave function ¢Aﬁ

pu
transform like pseudo-scalar x polar vector and axial vector X

polar vector, respectively, where we employed the symmetry properties
of the wave function ¢A for the [5,1], the Kemmer wave function.

Let us now introduce the dimension formula of the group U(3,1)

in the form

N =3I (2J+1) (7.16)
where 3 = Q0 for N =1, J = % for N =4, J =0,2 for N = 6,
5=1,3 for N =10, J=1,2,3 for N =15 and J = 3, 5, 3, 5 for ¥ = 20,
J =0,2,2,4 for the other twenty dimensional representations of U(3,1).
(3)

This type of J-structure was discussed by Flowers for the group

u(4).
In terms of the J-number we can combine the mass formulas

{(7.14) into a general mass formula for the supermultiplet [5,4],

2
D) = [p+s(s+1)-31% + [23-s(s+1)] (A\3+1) , (7.17)
where J = % and s=0, 1. However, in analogy with baryons, here also

we can introduce “the Z-quantum number by writing (7.17) in the form

2
@) " = (p- %-+z)2 + [1+s(s+1)-22] (A2+1) , (7.17a)

where the meson masses are identified as (s=0, Z=-1) and (s=1, Z=1).

(3) B:A. Flowers/ Proc. Roy. Soc. A'212, 248 ~(1952).
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The conserved current vector of the [5,4] is given by

TRLATY

for N=4 and also by eliminating ¢HV in favor of ¢5ﬁ, through the

By using the relations (6.2), the definitions of the T
use ‘of {(7.1) and (7.2), we cbtain

2 = 2 4% * P + ¢* pP +
mep® J, = 3 ¢5ppu¢5p + 4(¢5uP ¢5p ¢5pp ¢5u)

212 (¢* P4 ¢* pPo-  + ¢* pP +
(¢sppu¢s ¢spp ¢su ¢5Up ¢sp)

20% 5og P o+ * g% P _ 4% P - o% P .
2p7 9% B¢ 4o (5 ¥ p ¢ 3 Sl R b T

5Pp"U" s 5PTH 5

Introducing the definitions (7.11l) and (7.13) and then using

{7.14) we find
p’mc J = S—— u%p u + 2n- u* p uP o+ 2 {2+A12-2p) (u*putu*pu )
u ! 2 p U u u
where the last term can be written as
2 (2432-2p) (whpururpu )=l (%2 = @£) "1 (wkputurpu ) = O
p s P T Mo M1 uP 1% u

Hence the current density vector becomes

(7.18)

(7.19)
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which is the sum of the O  and 17 currents

- 2m + 2m P
J == u*p u J. = u* u (7.20)
o Chet tu T e Yo P
8] 1
We observe that in the configuration space the currents (7.20)
are of the form
- 0 2 p *p
I = Eﬁm_( . 0U du* y gt = iAm (u* du. _ dux” y . (7.21)
b ax"  ox boan Paxt  ax® P

The currents J; and J; differ from the (6.11l) of the [5,1] in the

mass factor since in (7.2%) in place gf M and M1 we have the
M M

u L "o - _©O 7 —_ 1

effective masses MO = m and M i

8. THE SUPERMULTIPLET [5,6]

From the definitions of the I'11 ’ Jﬁv for N=6, the wave equation

A

(6.3) can be split up in the form
(tT..) v¢u - med = 0 (t.:.) pv¢ -mcp _ =0 (8.1)
w’ab P % p sa r YTy’ ab sb
Eliminating ¢ua and using the relation
2 - H V..o _ 2 232 UV 2
Pt Ty T PP (2X%+3+p°)p° + 2p Puvp p ‘ (8.2)

we obtain
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Vv
[ (2A2+34p2) p2+2p rwp“p - m?e?p?] b p =0 (8.3)

Hence, using (Pu\)pupv)2 = p* , we get the equation
[ (2A%24p2 % 2p+3)p? - mzczpz]dasa =C (8.4)
vhich describe a 1”7 and a 17 meson with masses

2 2
G = (p+1)* + 2(10A2) , G =(p-1)? + 2(1#?) (8.5)
- M+
respectively. The corresponding wave functions can be written as

_ 1
) r a -'z'—gu

AvZele}
5 eY pp\) ¢ . (8.6)

Y 5P0

where

¢

=1 ~
¢ -2 qua 58

5HV

Thus the supermultiplet [5,6] consists of a pair of vector

and axial vector mesons described by ¢Ka(5¢5a ' ¢ua). Using the
J-structure of the U(3,1) representations introduced by (7.16) we

may rewrite the mass formulas (8.5) in the form

i

mp 2 2 2
(Er' [p+s (s+1)~T-1] “+s (s+1) (A=+1) (8.7)

where s=1 and J=0,2. In terms of the Z number the masses (8.5)

can be combined into
(B2) "= (p+3) 2 + s{s+1) (A2+1) (8.7a)

where s=1, 2= * 1.
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The conserved current vector of the [5,6] can be written as

2.

mep?

_._'—\) —
J = -i¢B Tvu¢ =

* 240324 +20T _p° 8.8
u ¢5.T4h [ (po+2) 3)Pu pT WP ]@5 ( )

where the U(3,1) index b has been suppressed. Introducing the

projection operators

r-,pp
s, = L1+ X
+ 2 - 2
j¢
and the definitions
= 3 = u*
u, Si ¢5 ; u u I‘H
we obtain
2 L. _ 2m%p? = + 2m?p? )
nep Ju 2 u, puu+ 2 _pu _
+ —_—
- . - - L. .p
4 (u_puu_ wpou, + ¢5Pppp ¢5)
From
T P s = S
pp B P2 T Py P
it follows that
2m - 2m =
J:=~—uwpu +=au
w T e PR T e BRuT (8.9)
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where u,_ satisfy the Klein-Gordon equations

(p* - c®*M2) u,. =0 .

9. THE SUPERMULTIPLET [5,10]

From the wave function ¢A[AB] (Aa,B = 1,2,...5) it is clear
that it describes the mesons corresponding to the states ¢5[5ﬁ]
d o th i i th
an ¢s[uV1 The presence of e states ¢5[uv] implies that e
mass spectrum of the [5,6] for the pair 17 and l+ mesons recurrs,
with, of course, different values of the parameters p,). and m.

The states ¢5[5u], as follows from the wave eqguation of the [5,10]

~16% -3 (1 : WV Py . gH VP
[{p-1)B o 1mcp]¢[AB] (l+1k)Jup[AB}B PN, (1 lA)va[AB]B pn, +
8%p (g 5 ¢ ~g 5 b a) =0,  (9.1)
o' 7sA "[sBI sB Y [5A]
satisfies the eguation
P, s S 9.2
(B P, 1m0)¢[5u] 0 (9.2)
where the S0(3,2) index A has been suppressed and where
N [AB]
nuv =3 Juv[AB]¢ . The Juv are of the same form as the pr

of SO(3,2) and they satisfy the relations
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1 (281 _ . __ .
7 JuviaB] Yoo = 90090 %p9ve (9.3)
1 . IR .= = = =
7 9uviae] Y ool T 9ap¥ec 9acmD (5.4)
where
M 0
- Uy
gAB=gAB_gA5gBS r J.u.\) = = A+ Muv
o] 0

and the coefficients Jap are the same as 8 or g, ef the 80(3,2).

The wave equation (9.2) can be replaced by

v _
"0y 4] - BC ¢ = 0 (9.5)

s[sﬁ]

Pubsisvl 7™ tupev1 T O (9.6)

Hence, with the obvious steps we obtain the equation

[p?*- m%c21¢ =0 (8.7)

5{5ﬁ]

which describes a 0~ and a 17 meson with equal mass m. The

corresponding wave functions are

P

2 {(9.8)

LORL TR JOTS Rl

!

where pun = 0.



42

We have thus obtained a spectrum of a doublet of l+ and 17,

a0 and a 1+ mesons whose masses can be represented by
mp, 2 2 2 2
(ﬁ*' = (p+2)° + Z°s(s+1l) (A°+1) (9.9)

where when Z=0 we have s=0,1 and when %=1 we have s=1. The current

vector is of the same type as (7.19) and (8.9) and is given by

2m 1 1 ] 2m L1 1 P
J = e—— [=— * + — * + — (= * + = * 9.10
- (= uyp, " u_puu_) = (142 n*p,n ~ nfp,n ) ( )
+ - o] 1

10. THE SUPERMULTIPLET [5,15]

As in the lower meson mass levels the states ¢5{ab] are the
only ones appearing in the current wvector. Thus from the spin
decomposition (1,1)+(0,1)+(1,0) it follows that the wave function

: + _

= i i 1
¢k[ab] ( ¢5[ab]’¢u[ab]? of the {5,151 describes a pair of 1 and
mesons arising from the recurrence of the [5,6] structure in the

[5,15] and it also contains a O, a 1~ and a 2  meson.

In this case the wave equation (6.3) can be split up as

Lo (10.1)

v _ Vo ok =
(T v) agP ¢uB-mc¢5A—O ' (Tuv)ABP ¢5B mc¢pA o,

where the indices A and B represent the indices [ab] and [cd]

respectively. Eliminating ¢UA from (10.l1) we obtain
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Pupv(Fﬁrvp+2pruv+AZquJpv+nguv)AB¢5B'm2°292¢5A =0 (10.2)
where
PS{AB}PVQ{BC}pupv =T % p* Juva Ju\)c (10.3)
qu[AB]Jpv[BC]pupv - % p* Jva Jﬁvc (10.4)

and where we used the definitions in the (A.5) of I. Hence the

eguation (10.2) becomes

1 1. 3,2 po 2.2 _ Y . p.C 2.2 .2 -
[{ze- FA 3P JpcA; Pl S pJpYAJG gP P ]¢5B m?c?p ¢5A 0 .{10.5)

Using the wave functions n[ﬁv] and t{ﬁv} as defined by

- 1 o1
n[UV]_ 2 J]..l\)[ab] ¢5[ab} 4 t{u\)}_ 3 I'u\){ac}gcb ¢5[ab] r (10.6)

and using the property Tr(PﬁvF5)=O in the wave equation (10.5) we

obtain the results

- 2 2 - m2pn2a2 P - =
[{p=1)2+2(1+2%) 1p Npv] ~ Bt enp iy t 4p (Pp¢pv pv¢pu) =0, (10.7)

(pZ - mzcz)t{u\)} =0 (10.8)

The equation (10.7) yields the same spectrum as the [5,61. The

equation (10.8) is satisfied by the wave functions
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1 v 1 v P,
= = = = - B
pzppt{uv}'tu Pty Tp
] {(p.t +p. t )} + 1 g  t - 4 PP
uv {pv}l  pFuv vy 3 “uv 3p2 M
+ - +
of the 0, 1 and 2 mesons, where
Ho_ v -

Hence the meson mass formula of the [5,15] can be
2
) = (p+2)? + 22s(s+1) (A2+1)

where Z = ¥ 1, s=1 masses correspond to the recurrence
[5,6] structure. The values %=0 with s=0,1,2 yield the
mass m for the 0, 17, 2% mesons in which the %=0 with
the recurrence of the [5,1] with opposite parity.

The corresponding conserved current vector of the
be written down as the sum of five meson currents each

is separately conserved.

{10.9)

t (10.10)

(10.11)

expressed as

(10.12)

of the
degenerate

s=0 is just

[5,15] can

of which
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11. THE SUPERMULTIPLET [5,20]

As in the case of the baryons, we shall discuss only one of

the N=20 representations. Thus the [5,20]'s spin decomposition

(0,0) ® [(1,1)+(0,2)+(2,0)+(0,0)]1 shows that it contains 0~,0%,1%,2""
2% 2 mesons described by the wave equation’
r 1P 4+ A%z 3P +p?g #n(r Po_+3 TP+ FpV
[ uprv T109 vHe Iy ( ' Jpv oV u) zpruv]ABp P é.p
- m'c* e, =0 (11.1)

where A and B represent, now, {ab} and {cd}, respectively, and

the components ¢UA of the wave function have been eliminated. As
before the mesons of the [5,20] are described by thé wave function
¢AA(E¢5A ' ¢ui) . By using the results of the appendix (r.5) of I,

it can easily be shown that

H oV _ § 2 . uv A o] n_v
(Tpfy)agP P =3P (49295 * Tyya T ) + Typa T0g PP
2 v
- %5 (Toa9s * T yp9a)P'P (11.2)
1 v v
(JupJuv)ABpva =z p ruvAruB + rupAvaBpup , (11.3)

LV, P P _ 2 - U, v
pPev(r T, + 3 TP = T (Gal e SplalP P

= : = i f the U(3,1).
where g, = g, and PuvA refer to the N=6 representation o (3,1)

On substituting from (11.2),(11.3) in{ll.l) we get

(p—2~2i})

2 g -2421iA}
o2 (p2-m’c’ )by, + [3g,p° + Lopmmt pPRIT almy 4 gyl (o

Eeel T,

1 ,,2 3,.2 po 2_ . PO Y =
+ 7 (At 2)9 T oat * {(1+A°-p)p"P PpyAgc o, (11.4)
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where

. o= _ _ 1 uwwv
Sruvt = Tuvalsa # M = 9p0sp ¢ T, ZPE Cipyy - (11.5)

By multiplying (11.4) by Ia and ruvA we obtain the equations
[p*+9)p*-m’c’p ") m, + 2/3(p-2+2iM)p°w = 0 (11.6)
. 2 2, 2_.2.2.2 2_ p -1
(p+D) "+2 (1™ p -l % T,y FA (IFAT=p) D7 (R Ty 3 #P T 0y P90 T2)
8 . 1 2 _
+ 73 (p-2-2iM) (p,p,, - 7.9y P )T, =0 (11.7)

Hence, using the definition (11.5) of the T, we obtain the

equation

[((p-2) 2+5+82%)p°-m*c®p*1m +2/3 (p-2-2iN)p°m = O (11.8)

which together with (11.6) yields the spectrum

2
@) = [(p=1)" + 4+4 (LN 1442/ 11 - (p-10) % +(1+A%) (p-1)1 , (11.9)

for the 0_(ﬂ2) and 0+(ﬂ1) mesons corresponding to Z=1, Z=-1,

respectively.

The wave functions for the 1* and 27 mesons are given by

=

P
-1 v T 1.10
oy "o P vt "5 T 7 (11.10)
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= 1 V+ & - A
Tiuvy © C{uv} p(Puﬁ2v+Pv“2u)+ 3 Juv ﬁz 3p? PPy, (11.11)
where, as can easily be seen, the restrictions
H _ Hv _ v -
P 1T211 =0, g TT{H\J} 0, p ’ﬁ-{]J\J} 0
are satisfied. From the definitions (11.10), (11.11l) and the
equations (11.7), (11.6) and (11.8) we obtain
2 .2 2 = 2 _ap2-.2 . =
(p Mlc )ﬂzu 0, (p Mzc )ﬂ{uv} 0 (11.12)
where
-2
(F) = (p-1)%+6(1+22) (11.13)
1
and
2 .
G = (p+1) *+2(102%) (11.14)

represent the mass spectrum of the.l+ and 2”7 mesons, respectively.
The remaining pair of 27 mesons are described by a wave function
whose spin content is of the form (0,2)+(2,0). If we multiply (11.4)
1 . . . .
by 5[(Tuv+ i Juv)rs}ab and contract with respect to U(3,1) indices

we obtain the equation

(pz—ﬁzcz)K{ﬁv} =0 (11.15)
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where we used the relations (4.26) and where

I - _
Kuv =35 Tr [(PuvI‘5 + i Juvr5)¢5] . (11l.16)
The equation (11.15), with the restrictions_guvmuv = 0 and
pv K = {, describes the pair of 2+ with the egual mass m,

uv
The mass spectrum corresponding to the states ﬂlu ' ﬁ{uv} and

Kuv can be expressed in a single mass relation of the form

@05 = (p+2) %+ Is(s+1)-4212% (142%) (11.17)

where (%Z=-1, s=1), (2=1, s=2), (Z=0, s=2).

12. THE SUPERMULTIPLETS [10,1] AND [10,4]

So far we have only discussed the No = 4B(baryons) and No =5
(mesons) representations of the group S0(3,2). The N, = 10
representation of the S0(3,2) in the wave equation (6.3) together
with the N = 1,4,6,10,15,... representations of the U(3,1) do also
describe mesons. As péinted out before the two prong structure of
the mesons as described by N, = 5 and N, = 10 is ;imilar to the two
prong structure of the formions (baryons and leptons) described by

and NO = 4,  representations of the S0(3,2). One basic

B %
difference between No = 5 and No = 10 arises from the fact that the

the NO = 4



49

latter supermultiplets are more crowded than the former ones.

The No = 10 representation of the S0(3,2) can be obtained from
the analogy with the'NO = 5.‘ First we observe that the ten matrices
for the five dimensional representation of the S50(3,2) can be ex-

pressed in the form
(B, = 1(8F gy - 8 afy) (12.1)

where the indices E,n,A,w = 1,2,..,5 and where gﬁA represents the

matrix BSBO, B is the metric in the space of 50(3,2) (see (3.8) of

o)
I). The definitions (12.1) do, of course,satisfy commutation rules

of the S0(3,2). From (12.1) it is easily seen that

B =B, , (u,v= lr2r3r4)r_g' =9

I -
51 u v r 9 1

v 55 d

and the remaining six components are just Buv, the spin matrices of
the Kemmer algebra.

The ten dimensional representation of the S0(3,2) is given by

‘ __ 1. Sy _ia 9
Ber) [1ro], fzel1= = 3 P10 aw By’ e (Brip) 1o B ') e (12.2)
where all the indices run from 1 to 5 and where

1 &n — o~ ' - ' I
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The ten B's as defined by (12.2) cbey the commutation rules

of the S50(3,2). By using the definition (12.1) the (12.2) can be

written in the form
— L 3 1 1 ] — 1 1 1 1 1 — T 7
®en) 11a0l, 1ze11™ ~ 7 1 1930900 Ize ~ ToeIne "o 90290 ~ JEe Iin) *

1 1 I 1 1 1 1 ot 1
g)\E (gwggnc gmnggg)f"gwe (gT]}\gEE gg)\gng) 1,

{(12.4)
where
BH - BSU
and the remaining six are the spin matrices of the NO = 10 rep-
resentation of the S80(3,2).
The action of the new £'s on the wave function ¢IC€] of tha
[10,1] is given by
[cel
Bend (0w, ze1 ¢
3 1 + t + t + ' .
1O ®rew) * Jue?ianl T et ner T Il lwe)’ (12.5)

Hence putting £ =5, n = ﬁ we obtain the action of the 10-dimensional

B's on the wave function as

[zel

B imawl, 1ze11® T = 20900 raa1 * o0 1an1 e tuel T OLws 1)
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Thus the wave eguation
- (8¥p, - imc)¢ = 0 ‘ (12.6)
of the [10,1] can be split up as
P ériy) - MC dp g = O (12.7)
Pprgv] T Pulrguy T MmOty T O (12-8)

FProm (12.7) we get the restriction pu¢[5u] = 0 and from (12.8)

the eguation
2 2 .2 = 2.
{(p*- m°c )¢[5U] 0 (12.9)
Hence the wave function ¢[En](5¢[su]' ¢[HU]) describes a 1 meson

of mass m.

For the supermultiplet [10,4] the wave equation (6.3) can be

written as
™ gt ) oY + L + =0 12.10
(TP AT TP O i1e T PP Sppugp T TEP Proy)p 4 ( )
Ty oY
T + - +
oy ¥ Mg P 0 ge ~ Tuy ¥ A0 P 16

p(Pv¢[5u]p - Py ¢[5v1p) - mep ¢[uv1p =0 (12.11)
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Now the wave function ¢[En]u (= ¢[5v]u, ¢[DUIU) of the [10,4],

as follows from the spin decomposition (%,%) X (%,%&, describes
two 07, a pair of 17, 17, a 27, and a 1~ mesons. From using the

definitions of the ruv’ Juv of N=4 in (12.10) and (12.11l) we obtain

the equations

L1, p - : P P =
{(p+ 2)P ¢[pv]u (1+1k)pu ¢[pv] (1-iX) p ¢[uV]p + mcp ¢[5U]u 0, (12.12)
1 .
(0 2 Pulsvio ™ Polrenre) = MRy 7 Opauty)
. g —_
- (1-iM)p (gup ¢[5v]c - gvp ¢[§u]0) + me¢[uv]p =0 . (12.13)

On eliminating ¢[uv}p“between (12.12) and (12.13) we get the equation

for the components ¢[5U]V in the form
1,2 2 2 .2 2.2 2y..2
[L(p+ 5) "+ (IFA5) 1p*-m®c®p™) 6y oy, = (L+A5)PT¢ 0 +

1. ; 1 '
(p= 5 - 1) (+iM)p p n , - (p* 3)°p P, Mau F

242 —i - r ey
(A%+3-4p)p 1 (L-ix}{p - 5 + iMp p, n_ +

v il

2.4 3,2 ) L 2
[3A%2+4-(p+ 2) ]pupU n, + Iv (p+ 2)(l id)p n, +

1 : _
(pt+ 5)(1+1A)pupu n1 =0 , (12.14)
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where the wave functions of the two 0*} two 1 and one l+ mesons

are given by

= L LN N 12.15

n ¢[511] , p? PP ¢[5V]u ' ¢ )

S _ Py -1 p _ P 12.16

MTu " 5P %eulp "% M " Mu "0 P Olplu” p- M, ¢ (12-16)
-1 _. YVpo 1

nzu D gw > P\,cb[sp]g {(12.17)

respectively.
The above definitions of the wave functions together with the

equation (12.14) yield the mass spectra

2
(BLy = (p+ %—)2 + 3(1+2%) (12.18)

for the O+pair and

2
@2y " = (p+ %}2 + 2 (1+22) (12.19)

for the l+ meson. The wave functions nlu and n311 lead to the

spectrum
2
mp _ 1 1 2_ 242
(F) =3 RA+35% v [A%-8(1+r%)°] (12.20)

for the two 1= mesons, where

A= (p- %)2 + 3(1+12) (12.21)

and Z=+1,
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The wave function of the 2  meson is given by

1 EpcaB

1
- i + - = + 12.22
n{UV} 2p2 Py [gUDPV ¢[5GIB gvppu¢[sa]B] p(punzv pv“zu)’ ( )
which satisfies the five restrictions
uv_ - v -
9 Mpywy =0 Py =0
The wave function ﬂ{uv} ; like nzu ; satisfies the equation
1,2 2z 2__z_ 2.2 =
[((p+ 50 +2(1+2%))p-m*c?p ]n{uv} = 0 (12.23)
Hence we obtain the interesting result that the mass of the 2~
meson is equal to the mass of the 1* meson given by (12.19).
13. THE SUPERMULTIPLET [10,6]
The supermultiplet is described by the wave function ¢[kw]a
= ) . i sfv th .
( ¢[5u]a ' ¢[uv]a) which satisfy the equations
o Vg o+ - 13.1
(T"Vap P ¢[pu}b me ti’[su]a ° ( )
P - P - = . 13.2
“ToolabP Preuin T (TuplabP ¢rvip T ™0 puvia = O (13.2)

Hence, eliminating ¢[uv]a y we obtain the eguation
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p = 0, (13.3)

v_o P v_C 2 .2
(t", TudabP P p1b ~ Ty TpolabP P Prspin'™ € Plsula

where

2P V.o _ 2 2y.,2 U v
peT, Tpg PP (21 243+p ) p“t+2p Puvp P

By using the definitions of the Fuv , J. a3 given in the appendix A

IAY
of I, the eguation (13.3) can be expressed in the form

[((p=1)2+2(1#A2))p2-m2c®p21 9 1 (yo1 = (O~L*Bu® Oy 01 [ue1 +
(1+A%=40YPY IR 0 i 1yw] Py®laul, [yp1 1T (WA L9y oPy= 9y PRIRT

P! (Po®sv1, uyl PvPispl, [w]HP2 (bropl, tuvl” Orsvl, fupl’d ¥

(L) (oML R (B o1 [yu18Lev1 , [yp1) * (170 (0TI RT Ry, )™
Pv¢[svl,[upl) + (p'l)(i+il)92(gﬁvr3p - guprsv)+(p—l)(l—iK)Pu(Pvrlp -

pl ) =0 (13.4)

where

=Q

Orsul,tvel ~ Hvpa [sula

and the definitions
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r =1
P

p - _1
1 P ¢[56]:[po] ' Tlu - ¢ESU]:[NU] P Purl !

T ..—.:.:'[.'....._

3l 2

L0 .
b PP ¢[§P]1IUU] P (13.5)

represent the wave functions of the 01, 17, 1~ mesons, respectively.

. . - + + - -
The wave functions of the remaining O , 1, 1 , 2 , 2 mesons are

given by

_ L1 wopo
L, =3¢ Py®isvl,lp0]  * (13.6)
_ 1 . YOpPos _ ..V
Fon 2p? Tuy € PoP brivi,[pol (13.7)
r =L g YOO 5 oV :
5 2P2 wy o [593 I3 [\’U] r (13. 8)
_ 1 _yapo ) . . _ 1
Pifuvt =25 © Po{9uy® 1501, 1vo1¥ 9y Lol , [uol’ p(pur4v+pvruu)?l3.9)
r =LY% o (g 4 tg & - LT +p.T ),(13.10)
»{uv}l — 2p o PuytLsvl,[po]l vy [sul,[poc]l p ' "u 2v v 2H

respectively. Thus, as seen from the spin decomposition (%,%) ®
[(0,1}+(1,0)], the supermultiplet [10,6] contains eight mesons.
As in the previous computations, once the wave functions are defined
~ the calculation of the mass spectra follows from performing the
implied operations on the equation (13.4).

From the definitions I' and I' and the equation (13.4) we obtain

the mass spectrum
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(5= T2 (e 2+ 4(14A2) (13.11)

where Z = + 1 and -1 for the Pl and Pz, respectively. The spectrum

. . . . . b
corresponding to the pairs (I‘”1 Fau) and (P2 Pku) is given by

) U
(ﬁ—‘l - % C + % z v [C* - 8(1l+r2)2] (13.12)
where
C= (p+2')2% + 3(A%+1) (13.13)
and Z' = ; 1 corresponds to the pairs of 1~ and l+, respectively,

and where in both cases Z = * 1.

For the pair of 2 mesons we get the results
mp, 2 > 2 mp, 2 2 2
(E—J = (p~1}° + 4(1+)1°), (ﬁ—) = (p~1)° + 1+A (13.14)

respectively. Hence we see that the masses of the O and one of the

2" mesons are equal.

14. DISCUSSION OF THE MESON SPECTRUM

The branching of the meson spectrum into two classes arising
from the 5 and 10 dimensional representations of S0(3,2) does not
necessarily imply a classification of the strange and non-strange

mesons into different groups. Like the half-integral spin particles
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(fermions), the integral spin particles (bosons) belong to two
different reducible representations of the G-symmetry (=50(3,2) &)
U(3,1)). The fundamental differences (if any) between NO=5 and
No=10 mesons could manifast themselves in their strong, weak and
electromagnetic interactions.

However, like baryons, mesons also can be regarded as identical
objects in the space of spin, %, charge, parity, etc.: No two mesons
can be put into the same state. Thus the wave function of two
mesons must be anti-symmetric with respect to an interchange of
their spin, %, charge, parity etc. guantum numbers as a group, In
this way the "super exclusion principle" can form the basis for the
proliferation of mesons. The figure 2 is a diagramatic illustration
of the meson spectrum where, as in the case of baryons, an "internal
supermultiplet” of mesons lies in the plane containing the axis of
the co-axial cylinders and the mesons of equal spin and parity. There-
fore different internal supermultiplets of mesons are obtained by
fixed rotations of the plane around the common axis of the cylinders.

The predicted periodicity, observed for the baryons, as based
on the recurrence of the low lying level structures, like [5,1]1, [5,6],
at the higher levels prevails also in the meson spectrum. Although
the spectra [10,10]1,{10,15], etc. have not been calculated in this
'paper, we expect that the low lying lewvels [10,1]1, [10,6] will recurr
in the higher mass levels. The figure 2 which represents the low
lying levels from [5,1] to [5,20] and [10,1] to [10,6] and alsc the
uncalculated levels [10,10] to [10,20] contains only ten gP = o~ mesons,

where the parity assignment is based on the wave functions ¢, of [5,1}]
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and ¢{Aw] of [10,1] which describe P = 0" ana ¥ = 17 (since
1~ = (0o, %0 C)(%?O)) mesons, respectively.
As in the case of the baryon spectra, here also we can derive

"sum rules”. Thus we may write

/3,2 1

' - -l e 8-3 (14.1)
1 o m2 p 2p2
for the [5,41, and
1,2 1,2 4
) - () = — (14.2)
M_ My om?

for the [5,6], [5,10]1 and [5,15]1 where in each case m has a different
interpretation. Because of the insufficient number of relations
p and m are not eliminated. The inverse mass square relations, as
contrasted to the inverse mass relations for the baryons, are the
characteristic feature of the meson sum rules. For the [5,20], putting
p* = 2(p+1)%+ (p-1)*-1 and solving (11.9), (11.13) and (11.14) for
(p+1}2, (p-1)2, 1+1? and substituting in the identity

2

2 _ - 2
[ (o+1) 4(p DY - % [ (p+1) 2+ (p-1)21~1

we obtain the sum rule
2
[(a +a -2a_ ) (a -a )+4(7a -a -10a )] =4(4+a ~a ) (4a +a -3a ) (14, 3)
1 2 o 1 2 12 o 1 2 o 2 1

where
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2 2
a =2, a =10 | a, = %-mz( LS )
1 MZ 2 M2 MZ M2
1 1r1 'ﬂ'2

For the [10,4] from (12.18), (12.19) and (12.20) we obtain the

sum rule

= ) (14.4)
M2 M2 MM

where Mo' M1 and M, are defined by (12.18), (12.19) and (12.20),

respectively.

The sum rules for the [10,6] follow from the four mass relations

{13.12) in the form

+ o+ = =
M, M =M M_ (14.5)
where lower and upper (+,-) signs refer to Z = * 1 and %' = £ 1,
respectively. From (13.11) and (13.14) we, further obtain the sum
rule
i 1 _3 +1 , (14.6)
M; M%2 Y2 M, M
2 + -
where Mb is the mass value corresponding to Z = - 1 in (13.11) and
M2 is given by the second relation of (13.14). The remaining sum

rule involving Ma (z = 1 in (13.11)) is

2 2 2
- L %—- =
Ma L M 2 M+ M

(14.7)
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Others are given by

—) - (=) = — (14.8)
M, M, M_ V2 M, M_
and
2 2 2
s A -y = L2 (14.9)
M, M_ M, M, M_

In the absence of the internal guantum numbers the best way
to compare the above results with the existing ( and in some cases

(4)

changing) experimental data is a direct computer analysis

15. MASSLESS SPIN 1 PARTICLE AND PHOTON

It has been pointed out that in the limit of p = » the wave
equation reduces to Dirac or Kemmer type of equation describing
equal mass particles of different spins and that the resulting
equation is invariant under U(3,1) transformations. An entirely
different class of equations refer to those arising from the limiting

case of p = 0, A = 0, viz.,

WV —
PuvB pé=0 (15.1)

(4) The computer scanning of the baryon and meson spectra of this

theory is being carried out by Dr. A. Perlmutter.
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For the equation (15.1) the G-symmetry (= S0(3,2) ® U(3,1)) is
exactly broken. We have thus obtained a new formulation of the
massless particles., Consider now the p =0, A = 0 limit of the
supermultiplet [5,4] where now the components ¢5U and ¢ﬁv of the
wave function ¢Eu (¢ =1,...,5, ﬁ = 1l,..,4) decouple and (15.1)

yields the equations

L - _ p _
7 Puboy ~ Byb, - 9, @ =0 (15.2)

1L v, . v Vo
TP by, ~P Oy, ~Pd, =0 (15.3)

Multiplying (15.2) by guv we get

3! -
p'_ =0 (15.4)

and using this result in (7.10) and setting p=i=0 there we get the

wave equation

24 - =
P ¢5u = 0 (15.5)

for a massless spin 1 partiﬁle, the photon. The eguation (15.3)

together with (7.1) and (7.2) lead to
p2 A =0 (15.6;

where
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p
-2 4 4 p- L PO
B fup ¥ Ry ST PP b5,

prJ, =0 (15.7)

Thus the remaining components ¢uv of the wave function ¢Eu provide
the same result as do the components ¢5u. Prom (15.4), {15.5) or
(15.6)}, (15.7) it is clear that for the supermultiplet [5,4] the
limiting case p=)=0 yield the description of the spin 1 massless
particle in terms of the vector potential rather than the electro-
magnetic field itself.

A more interesting result is obtained from the limiting state
of the supermultiplet [5,6]. 1In this case also the components
¢sa and ¢ﬁa (a=1,2,...6) for p=A=0 are decoupled and the equation

(15.1) yield the field equations

o c . . —
TP 5ol "IvP 8510017 Pus 1vp1 PPuls 1ou1 TPp %y uvy) = © (15.8)

P _ p p ] ) ) -
Pu® [vpl = Py® [upy * P O pver * ioul T Poruvy? = © {15.9)

where

=3 - L
botuv] = T Uva $sar Coluvi™ 7 Uiva $pa (15.10)

From (15.8), multiplying by g"v, we obtain

0 (15.11

o - . m
P ¢s[u9]' g
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Hence the equation (15.8) becomes

T + = 15.12
Pustvpl * Pobsonl * Pplipuvy T ° ( )
The equations (15.11) and (15.12) are just the Maxwell's equations
and in this case the spin 1 field (photon) is described by fields
rather than by potentials. The equation (15.9) putting

8} _ . .
9 [Up] _'}gu‘-z ylelds

v * Pp(ﬁﬁ[vp] BT FTH R S D (15.13)
where
v = p;cﬂgv - p, JQi (15.14)
Operating by Pv on {15.13) we get
pYE =0 (15.15)

which together with (15.14) lead to Maxwell's equations, where we

used the fact that the tensor ¢ﬁ[vp] + ¢ is fully

ot .
_ vipul * Poluv]
antisymmetric.

In the presence of a source the egquation (15.1) can be replaced

by

g¥ gV (15.16)
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where the S0(3,2) index £ (= 1,2,..5) has been suppressed and

. \V
where the source J' represents five currents of the form J

E.
The explicite forms of the equation (15.16) are given by
g, B ¢ - %6 - (p, ¢ +p,¢ +p ¢ ) =
up sivel T TP Coipol TP [vel TP s [pulTPp®s fuv]
g'J —g‘J (15.17)

up“v uv-p

N B - _ .
where

J = J .
[uv] Juv vu

From (15.17), multiplying by guv, we obtain

o, . _ _ L .
P70 tupl = Tt P vpr Pu®s [ou1Ppl puvy T © (15.19)

The equations (15.18) also lead to Maxwell's eqguations where the
current vector 1is defined as
1

J = —-pyJ

uoop [uv] (15.20)

which, of course, is conserved since puJu = 0.
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According to this theory the photon is described by the
wave function ¢£a (= ¢5a’¢ua) obeying the equation (15.1).
However the components ¢5a and ¢ﬁa are decoupled and each, both
in the absencé and also in the presence of external sources,
describe the same field. Although the equation (15.1) is a special
case of the fundamental wave equation {(1.6), the former could
form a basis to propose the latter equation for all the particles.
From the periodicity or the recurrence of the [5,6]1 in the

{5,10] and [5,15] it follows that the special case p=A=0 recurrs

as Maxwell's equations in the latter supermultiplets.

16. MASSLESS 27 PARTICLE AND GRAVITON _. -

The special state p=0, A=0 for the supermultiplet [5,20]
leads to an interesting result. For N=20 the wave equation (15.1)

for the massless integral spin particles becomes

i f’?.— B ’ ((Sp ov 680‘ _62' \))
uv aB H s H
_ 1 p p, _ 1 p =

p
where Christoffel symboles E

. are defined by
Uv

g = 1,00 + .y (16.2)
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and where the wave functions YHV and Y, are

l‘u.\) = (ruv){ab}¢5{ab}’ Yl = gab¢5{ab}

Furthermore the equations (1l.

p=0, A=0, the results

2

where

2
2

However the wave function ¢'5{ab} for p=0, A=0 is real and

6),

(11.7) and (11.8) yield, for

4 p _ 16 _
P Yw+ 3P (puwr\,p + P\,Yup) 373 PPy, 0,

= BV =
p*Y, = PP Y, (=0)

therefore Y, = 0. Hence, contracting the equation (16.1) with

guv we obtain the result

P Yy

and (16.6) yields the equation

(16. 3)

(16.4)

(16.5)

(16.6)

(16.7)
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The -eguation (16.8) together with the restrictions (16.4)
and (l6.7) describes a massless 2+ particle. Now using (16.1)

in the form

p
g § = 0 (16.9)}
IRV

we can rewrite the equations (16.7) and (16.8) in the form
R = 0 (16.10)
where

{ P f g ° } (16.11)
R =P -p .
Wb Uy YV of e

is the linear and flat space form of the curvatore tensor in
general relativity.
If the reality of the ¢§{ab} is not assumed then the contraction

of (16.1) with respect to the indices p and v yield
S (16.12)
o 3v3 up

Using this in (16.1) and the equation obtained from (11.7) by

setting p=A=0, we obtain the results
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l o
- - + 5 5 ~ - = 0 16.13
PuYvp Py, PoYpyt 5 P ( Iy You Iup o guvac) ( )

2 i o _ 1 o _ L . 2 _
P Yot 3(BGP Y 6™ § PR Yoy~ Ty 9,P°Y,) = 0 (16.14)
By operating on (16.13) Pp and then eliminating the resulting

expression for Y, from (16.14) we obtain

2 _ 44 Py —p oP =
P Yy T 5P R Yy PR Y, ) = 0 (16.15)
which implies the equations
2 =
P Y,y =0

P P
- =0 16.16
PuP Yyp T PyRTY ( )

The equations (16.16) are satisfied by (16.12). Thus together with
(16.4) and (16.12) the equations (16.16) provide eight conditions
on the wave function or the “gravitational potentials" Yyv- There-
fore, like any other massless particle of any spin, the graviton

has two independent states of polarization.

17. SUMMARY AND CONCILUSIONS

The detailed discussion of the wave equation for all the

particles (hadrons, leptons, photon, graviton,....) first presented
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in I, has been continued here. From the G-symmetry (= S0(3,2) Cj
U(3,1)) point of view all free particles can be put into three
classes:
(i) For massless particles of all spins, the special case of
p=0, A=0, the G-symmetry is exactly broken.

{ii) For massive leptons (p£<l) the G-symmetry is badly broken.
(iii) PFor hadrons (pH>l) the G-symmetry is approximately broken.

All free leptons belong to the [42,N] reducible representations
of G. All free baryons belong to the [4B,N] reducible rep-
resentations of G and all the free mesons as well as photon,
graviton,... belong to the [5,N] and [10,N] reducible representations
of G. Furthermore we have seen that in the space of s,{?,%, charge,
etc. all barycons and also all mesons are identical particles
Obeying a "super-exclusion principle". The wave function of any
pair of baryons, or pair of mesons is anti-symmetrical with respect
to an interchange of their respective quantum numbers s,Z%, /2
Thus the super-exclusion principle can form the basis for the meson
and baryon proliferation. The limiting case p=x» as pointed out
in I results in the Dirac or Kemmer type of equation depending on
the representation of the G-symmetry. However, the limiting case
p=0, A=0 leads for the [5,4]1, [5,6], [5,10], [5,15] to Maxwell's
equations and for the [5,20] to. the wave equation for a 2+ massless
particle, the graviton. In fact, the result for the [5,20] has been
expressed in terms of the linearized form of Einstein's field

equations in general relativity.
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The limiting case p=0, A=0, in the free massive lepton and

the baryon wave equations (1.3) and-(1.4) yield the equations
T v vV, =0 C(17.1)
Uv ' s £ r )

and

ruvy“p“¢b =0 , (17.2)
which, without any coupling between the states ¢, and ¢, can not

by themselves lead to meaningful results. In fact both (1.3),

(L.4) and also (17.1) and (17.2) have the same principle quantum
numbers INO,N] which is not the case for the [5,N] and [10,N]

where No assumes different values. Therefore a real physical
situation (i.e. the presence of interaction) does require a coupling
between the equations (1.3) and (1.4) to describe weak interactions.
The coupling in gquestion, because of the requirement of Lorentz
invariance, is between [42,N] and [4b,N] where N is the same for
both leptonic and baryonic supermultiplets. It must be observed
that the requirement of identical N for the % and b-supermultiplets
does not rule out the possibility of weak interaction of a higher
level b-multiplet with a lower level %-multiplet. The periodicity
of the level structure does allow intersupermultiplet interactions.
Furthermore, the lowest supermultiplets, because of (17.1) and
(17.2), in the weak interaction of leptons and baryons are [42,4]

and [4,,4]. The levels [42,11 and [4b,l] do not appear directly,
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except through the periodicity in the higher levels. Hence we

see that this theory predicts two different s = % two-component
neutrinos. All of the above points and application of the same
ideas to the strong interactions will be amplified in the next

paper.

For the baryons, as seen in figure 1 and in the corresponding
mass formulas for the various supermultiplets, the mass region in
the neighborhood of m is, for both parities, densely populated.
All of these, with the right parities, are found to be fittable
with m assuming the mass value in the range 1650 to 1700 Mev. The

3

five J®P = ; 5 baryons of egual mass in the [4,15] and also the
2

)=

two JF = %— baryons in [4,10] fall into line with the experimental
range of mass measurements. The situation with the mesons presents
the same kind of picture. At this point we do not anticipate a
strenuous effort in establishing further accord between this theory
and the experiment. The presence of a normal spin-parity series
(0 = 07, 17, 2%) in the [5,15] has a good candidate for it in the
1270-1300 Mev region, e.g. the A2. Of the 50 mesons analyzed so
far only ten JP = 07 have been predicted. The theory also predicts
JP = 27 mesons for which there is no strong experimental evidence
at present.

In both figures 1 and 2 different supermultiplets may be
related by means of the internal symmetries for which, we believe,

the theory does contain sufficient provisions. Therefore the

various members of, for example, pions and kaons should lie in
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different supermultiplets. Thus a plane through the egual spin

and equal parity mesons {or baryons) will contain internal super-—

multiplets in contrast to the space-time supermultiplets which lie

in a plane perpendicular to the axis of the concentric cylinders.

The latter supermultiplets contain particles of different spins

and parities but belong to the same representation of the G-symmetry.

No one supermultiplet {internal or space-time) can be defined (i.e.

s, Z,J, &9 , internal guantum numbers) completely without the other.
The algebraic structure of the mass levels for the baryons

and mesons are shown in their sum rules. The sum rules for the

bar&ons are linear in the inverse masses, whilst for the mesons the

sum rules are obtained in terms of the squares - of the inverse masses.

This proverty prevails throughout all the supermultiplets. Further-

more, the recurrence of the lower level mass relations in the higher

levels like the recurrence of the [4,1}, [4,6] in fZTiO], [4,15]

and [4,4] in [4,20], and similar recurrences in the meson spectra,

should aid in the identification of the members with similar properties

but in different supermultiplets. This periodic nature of the hadron

spectroscopy which extends through the entire spectrum of the G-symmetry

is a fundamental result of the theory. The periodocity discussed

for the hadrons is also valid for the leptons and will provide a

desirsble flexibility for the concept of interaction in this theory.
Finally, we must point out that the representation of S0(3,2)

as well as of the Kemmer-Duffin algebra (l1.7) by the set of ten

matrices BSBu and BUU implies the existence of integral spin lepton
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supermultiplets [SQ,N] with similar properties as the [4£,N]. It

is quite reasonable to assume that the [5£,N] are coupled to

matter very weakly. For example, the so far unobserved W-boson

(or the integral spin leptons) can be classified within the super-
multiplets [SR'N]' Furthermgre the presence of [SQ,N} and [102,N]
type of particles could imply the existence of new kinds of weak
interactions violating various discrete symmetries and in particular
they may be related to the riddles of the various kaon decays.

The next paper of this series, besides leptons, will discuss
the weak, strong and electromagnetic interactions as inferred from
this theory. In particular we shall derive the sum rules for the
magnetic moments of the baryon supermultiplets.

The author wishes to thank Dr. A. Perlmutter for his efforts
via numerical analysis and also an in depth search of the existing
experimental data to compare the results of this theory with

observations.





