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FOREWORD 

This document is the final report of NASA Contract NASW-1700. 

The contract provided for the analysis of the flight film obtained 

under NASA Contract NASW-1555 (Aerobee 150, No. 4.209 flown 

on March 15, 1968) and for the refurbishment, calibration, 

testing, alignment and field support of a high resolution grazing 

incidence X-ray telescope system to be flown on an Aerobee 150 

rocket (No. 4. 263 flown on Tune 8, 1968) and further for the 

development of the film obtained on this flight. Because of a 

failure in the pointing control system of Aerobee 4. 209 used in 

the' first flight, the analysis has been limited to two exposures. 

During the second flight all systems operated correctly and the 

resulting X-ray images were of a higher resolution than any 

previously obtained. The flight also resulted in the high resolution 

observation of an X-ray flare. 

The Project Scientist for this contract was Dr. Giuseppe S. Vaiana. 
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1. 0 INTRODUCTION 

AS &E has been involved in the development of X-ray imaging 

telescopes since 1960. The initial laboratory work was performed 

in the period 1960-1962 and demonstrated the feasibility of cylin­

drically symmetric double reflection optics of the type first pro­

posed by Wolter for use in X-ray microscopy. The first applica­

tion of devices of this type was to study the solar corona in a 

collaborative program with Dr. John Lindsay at NASA/GSFC. X­

ray telescopes were flown on two solar pointing rockets, one in 

October 1963, and the second in March, 1965. This program 

resulted in the first solar X-ray images obtained with grazing in­

cidence optics and clearly demonstrated the potential of this 

instrumental technique. 

Satellite measurements are necessary to study long-term changes 

in the X-ray emission associated with active centers and the 

quiescent corona and to obtain a meaningful sample of X-ray 

flares. It was for this purpose that the AS&E X-ray spectroheli­

ogram was flown on the OSO-IV satellite. This experiment has 

obtained continuous data for 2 1/2 years and is still operating. 

As a result of these programs, the technology associated with 

grazing incidence optics advanced rapidly, and it became possible 

to obtain imaging systems with a resolution which was more than 

an order of magnitude better than that previously achieved. Arc­

second resolution is desirable in studies of the solar corona, 

since it is reasonable to anticipate that the arc-second structure 

observed in the chromosphere may be reflected in the Coronal X­

ray distribution. In order to study this question and to study 

the fine structure associated with active center and flare emis­

sion, AS&E proposed a program of high resolution solar X-ray 
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studies using both broad band filter spectroscopy and the higher 

resolution ( X/A? = 50) transmission grating spectroscopy. 

This program consists of a series of rocket observations in the 

period from 1968 to 1971 to be followed by extended measure­

ments in 1972 from the Apollo Telescope Mount. 

The first rocket in this series, designated 4. 209 CS, was launched 

on March 15, 1968. Subsequent flights have occurred on Tune 8, 
1968, April 8 and November 4, 1969 and March 7, 1970. Analysis 

of the data obtained from these flights has produced the following 

major conclusions: 

1). That much of the X-ray emission from the sun 

originates in the corona directly above active regions. These 

areas of the corona are characterized by higher local temperatures 

and increases in the particle density of at least an order of 

magnitude above the quiet corona. 

2). That there exist within the emitting regions struc­

tures with dimensions of a few arc-seconds which often closely 
resemble the corresponding Ha plage seen on the disc. 

3). That the enhanced X-ray emission in the corona 

extends to considerable height (100, 000 to 150, 000 km) above 

its associated active region. The three-dimensional structure is 

generally complex and appears to be governed by the magnetic 

field which does not correspond to a simple bi-polar configuration 

within one active region. 

4). That the spectra of flare regions are substantially 

harder than those of active regions. However significant differ­

ences are also present among the spectra of non-flaring active 

regions. 

5). That there exist small, concentrated, point-like 

features which are associated with and correspond to bright 
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bi-polar chromospheric structures evident in the CaK spectro­

heliograms. 

The present contract (NASW-1700) provided for the analysis of 

the data obtained from the initial flight in the series (March 15, 

1968) and support for the second flight of the rocket payload. 

The statement of work for this contract is the following: 

1. Reduce, analyze and prepare for publication the 

scientific data obtained from the solar X-ray experiment on the 

Aerobee rocket during 'performance of NASA contract NASW-1555. 

The data will consist of solar X-ray images. This analysis 

will include for the suitable exposures; (i) the introduction of 

aspect data on the film; (ii) microdensitometer tracing of the 

data; (iii) a conversion of photographic density into deposited 

energy values; (iv) an evaluation of fluxes for various significant 

features; and (v) the interpretation and publication of the findings. 

2. Refurbish and calibrate a grazing incidence X-ray 

telescope system with an angular resolution of better than 10 

arc-seconds to obtain solar X-ray photographs from an Aerobee 

rocket. 

3. Refurbish one instrument housekeeping unit 

including commutators, timers and batteries; and instrument 

switching logic for use with the X-ray photographs from an 

Aerobee rocket. 

4. Provide the necessary nose cone modifications, 

nose cone separation system, solar 'STRAP' sensor mounting, 

and instrument support strubture for housing in an Aerobee rocket 

the items developed under 2 and 3 above. 

5. Provide the necessary field support for integration 

and testing at GSFC of the assembled instrument with an Aerobee 

rocket. 
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6. Provide quality assurance by inspection and 

monitoring of fabrication of flight items fabricated hereunder. 

7. Develop the. instrument's flight film and submit 

a final report covering the effort performed on this contract. 

The evaluation of the photographic data is presented in Section 2. 0. 

The modifications to the instrument for the second flight are de­

scribed in Section 3.0. Sections 4. 0 and 5.0 are devoted to 

flight performance and post flight inspection respectively. The 

flight films of the second flight are presented in Section 6. 0. 
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2.0 EXPERIMENTAL RESULTS 

2.1 Introduction 

The purpose of this experiment was to obtain high resolution 

spectroheliograms of the solar X-ray emission. The instrument 
consisted of a grazing incidence X-ray telescope, a 12 exposure 

camera, a transmission grating, and an electromechanical pro­

grammer. It has been described in detail in the final report for 

NASA Contract NASW-1555 (ASE-1953). 

Because of the considerable interest in studying flare associated 

X-ray emission, the time of launch was chosen to coincide with 

a visible light flare. To facilitate this effort a direct telephone 
connection was established with ESSA and several observatories, 

and the rocket countdown was held at T-3 minutes. The rocket 
launch took place at 1904 UT March 15, 1968 immediately follow­

ing the observation of a subflare. 

The exposure sequence, the films and filters used in this exper­

iment are listed in Table I. The first nine exposures were 

chosen to provide broad band X-ray spectroheliograms and one 

visible light image. For the last three exposures, a transmission 

grating with a resolving power of the order of 50 was positioned 

in the optical path to provide high resolution X-ray spectrohelio­

grams. 

In addition to the images obtained with the grazing incidence 

optics, two other images of the sun were placed on each film 
strip. The first was imaged with a 2 inch diameter .achromatic 

doublet, the second with an 0. 08 inch pinhole. The lens was 

designed to yield a high resolution (-2 seconds of arc) visible 

light picture which can be compared with ground based observa­
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TABLE I 

Exposure Sequence for Aerobee 4. 209 Flown on March 15, 1968. 

Transmission Exposure Time 
Exposure Film Filter Grating (seconds) 

1 103-0 2 mil Beryllium No 34 

2 Pan x Parylene c No 2 

3 Pan x 1/2 mil Beryllium No 6 

4 103-0 2 mil Beryllium No 18 

5 Pan x 1/2 mil Beryllium No 2 

6 103-0 1/2 mil Beryllium No 6 

7 103-0 1/2 mil Beryllium No 18 

8 Pan x Neutral density for No 2 
visible light image 

9 103-0 Parylene c No 6 

10 103-0 1/2 mil Beryllium Yes 5.5 

11 103-0 Parylene Yes 40 

12 Ilford 1/2 mil Beryllium Yes 35 
Com­
mercial 

All films except Ilford Commercial were untop-coated. The 

parylene filters are composed of 10, 000 R of parylene c coated 

with 5000 2 of aluminum. 
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tions to determine roll orientation. The pinhole image serves as 
an additional fiducial mark on the film which is required to deter­

mine the center of the solar disk in the X-ray image. Because of 

the failure of the attitude control system the images obtained 

were severly degraded. The failure resulted in the continuous 

oscillation of the optical axis over the solar disc with the sub­

sequent smearing out of the features in the X-ray image. How­
ever during two of the short exposures (2 seconds) the oscillation 

of the rocket was slight and predominantly in one direction. Con­

sequently the image degradation was moderate and the exposures 

are of scientific value. TheseX-ray exposures appearas Figures 2.1 

and 2. 2. At the bottom the original film strip negatives are reproduced. 

2.2 Solar Morphology on March 15, 1968 

On March 15, 1968 the sun was moderately active with a dozen 

calcium plages visible on the disc. These regions provided a 

good sample in age; two (McMath numbers 9265 and 9253) had 

been observed on at ,least the five previous solar rotations, while 

others were making their first appearances. It was one of the 

latter, McMath number 9267, which was responsible for the sub­

flare at 1900 U.T. which was recorded during this experiment. 

This active region had been, since its first appearance on the 

east limb on March 12, one of the most prominent areas on the 

sun. While gradually increasing in sun spot area it was also 

the most impressive feature at 9.1 cm and by March 14 it had be­

come the source of many small subflares. - The frequency of sub­

flares increased substantially on March 15 and it was shortly 

after the onset of one of these subflares that the rocket was 

launched. This particular subflare reached its maximum develop­

ment at approximately 1903 U.T. and lasted about 10 minutes. 

Ground measurements of the photospheric magnetic field indicated 
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seconds with a parylene filter and 
Figure 2. 1 Exposure II: 2 

un-topcoated Pan-x film. 
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Figure 2. 2 Exposure V: 2 seconds with a 1/2 mil Beryllium filter 
and un-topcoated Pan-x film. 
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that this region had a complex structure with very large field 
gradients in the vicinity of the flare. Maps of the solar activity 
on March 15, 1968, from ESSA Solar-Geophysical Data IER-FB-295 
are shown in Figure 2. 3. Ground-based maps are shown for radio 
wavelengths (9. 1 and 21 cm), magnetic fields, and the CaC line. 

2.3 Solar X-Ray Emission on March 15, 1968 
Inspection of the X-ray images shows that there are several regions 
on the sun which are emitting X-rays with wavelengths between 

2 and 25 R. The most impressive region is that associated directly 
with the flare. The 2 second exposure (Figure 2. 1) on un-topcoated 
Pan-x film taken with a parylene filter shows the flare somewhat 
overexposed in the northeast quadrant of the sun. The inner struc­
ture of the flare can be seen in the 2 second exposure taken with a 
1/2 mil beryllium filter and un-topcoated Pan-x film (Figure 2.2). 
Aspect information obtained from the visible light images indicates 
that the excursion of the optical axis produced by the faulty Attitude 
Control System (ACS) was predominantly in one direction during 
this exposure. Consequently if we examine the X-ray emission in 
a direction normal to the pointing excursior we find that the flare 
has a hard core approximately 10 arc-seconds wide. We believe 
that this core region is directly associated with the region that 
produced the subflare at the time of launch. 

All the active regions visible in Ha (Figure 2. 4) have counter­
parts in the X-ray photograph taken with the parylene filter. 
Even small Ha brightenings like those on the equator at 600 E 
and 60 W longitude have corresponding brightenings in X-rays. 

The activity at the southwest limb appears to be due to active 
centers which are behind the limb in Ha. The images also sug­
gest a correlation between the localization of the X-ray emis­
sion and the age of active regions. In general, older regions 
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Figure 2.4 Solar HQ photograph taken March 15, 1968. 
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appear to have a more diffuse X-ray emission. 

Closer examination reveals that correspondence between the H a 

and X-ray images of a region depends upon its position on the 

solar disc. The X-ray emitting regions, when close to the center 

of the disc, appear to conform rather well with the shape and 

boundaries of the Ha bright regions. However the X-ray images 

near the limb show an extended structure which is not found in 
the Ha images. We are inclined to interpret these X-ray struc­

tures, which extend to heights of 100, 000 km or more above the 

H a plages, in terms of the loops which are. observed in white 

light photographs of the corona. 

The general coronal emission not associated with either flares or 

plages is also evident in the exposure, taken with the parylene fil­
ter,especially around the sun's southern pole. Since this emis­

sion appears to be absent in the longest exposure taken with the 
beryllium filter (18 seconds), we conclude, in agreement with 

conclusions from previous observations, that the general coronal 
emission is somewhat softer than the emission associated with 

the plages or the flare. 

One of the main conclusions to be made from this analysis re­
lates to the spatial correspondence between the X-ray and the Ha 

flare. This indicates a close link between the two emission phe­

nomena. This is puzzling because of the large difference in 

degree of ionization required to produce the X-ray and the Ha 

radiation. One explanation is to consider a strong magnetic 

connection between the two regions. The X-ray emission associ­

ated with the other plage regions suggests such a magnetic link. 
However in the case of the flare the difficulty arises from having 

to assume a strongstable magnetic link while at the same time 
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having to require a sudden change in the magnetic field config­

uration to account for the energy released during the flare.
 

The overriding impression obtained from the photographs is that 

the X-ray emitting regions resemble the H'regions at the base 

of the corona, but that at higher levels the X-ray emitting regions 

are rich in looplike structures which interconnect Ha active re­
gions and are controlled by the solar magnetic field. This inter­

pretation supports those theories that describe the additional 

heating in the upper layers of active regions in terms of an en­

hanced magnetic field. 

2. 4 Aspect Information 

Aspect data, in terms of error signals proportional to the angular 

displacements of the pitch and yaw axes of the rocket referred to 

a co-ordinate system whose Z-axis is the vector direction to the 

center of the sum are transmitted to the ground in real time through­

out the flight. These data enable a reconstruction of the actual 

pointing direction of the X-ray telescope, with respect to the 

center of the sun, to be made for each exposure. Two of the 

resulting traces for exposures I and II are shown in Figures 2.5 

and 2.6. It is obvious, by inspection, why no further analysis 

of exposure I was attempted and why the results produced by the 

analysis of exposure II are scientifically significant. 

2. 5 Energy Release of Active Regions
 

One of the important measurements which it is possible to make
 

from the photographic images is the rate of energy release from the 

flare, individual active regions and the whole sun during the ob­

servation period. This measurement requires an integration of 

the photographic density distribution over the images of the var­

ious structures on the film and a knowledge of the energy response 

of the film and of the telescope-broadband filter combination. 
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The various stages and procedures in the analysis are outlined 

below. 

First the variation in photographic density across the exposure is 

measured using a microdensitometer. The resulting two-dimensional, 

color coded, isotlensitometer tracing (IDT) of the parylene expo­

sure is shown in Figure 2. 7. The contours of photographic density 

must be calibrated in terms of the incident energy. This is ac­

complished by preparing a calibration film which contains a 

series of steps produced by a known number of aluminum Ka X­

rays. Each step of the calibration film is exposed to twice the 

number of photons as the previous step. The highest step is 

chosen to have the maximum density recordable by the film. In 

general the calibration strips contain 10 or more steps. After 

converting the number of photons to energy, we can obtain the 

relationship between net measured photographic density and in­

cident energy. Each solar X-ray exposure is developed together 

with a calibration strip to prevent uncertainties arrising from 

differences in the development process. Then by scanning the 

calibration strip at the same time as the X-ray image, the density 

contours can be related to the energy in ergs deposited on the 

film. 

The IDT shown in Figure 2. 7 was produced by scanning the pary­

lene exposure with a 50 by 50 ji pinhole and a ihagnification of
 

10:1. The areas of constant density shown on this IDT have
 

been integrated using a compensating polar planimeter to obtain
 

integrals of the total deposited 'energy as a function of area. The
 

results of these integrations are shown in Figure 2. 8. It is seen 

that the whole sun, including the corona, deposited a little less 

than I erg of X-ray energy on the film during the 2 second expo­

sure. We can convert this energy into the incident flux in front of 
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the telescope by folding in the wavelength response of the tele­

scope and the parylene filter. These curves are shown in Figure 

2. 9. After performing the calculation we obtain a value for the
 
2


flux in the wavelength band 3.5 to 25 R of 3.6 x 10- 2 erg cm­

-1 26
 sec . Thus the sun was emitting energy at the rate of 1 x 10
-1 

erg sec , in this wavelength band at this time. 

The energy emitted by the sun is the summation of the energy 

emitted by the several active regions. Integrals for two of these 

regions are shown in the insert of Figure 2. 8. Region 9627 is 

the region which produced the subflare and is a young region, 

while region 9253 has been present for at least 5 solar rotations. 

The integrals from these and the other visible plages suggest that 

there may exist a differentiation with respect to age of the emission 

characteristics. Thus the central area is less pronounced in 

the older active regions and consequently they appear more 

diffuse than the younger regions. However because of the poor 

quality of the data no really firm statement can be made at this 

time. 

In conclusion we note that the radiation from active region 9627 

makes up slightly more than 20% of the total X-radlation of the 

sun although it occupies only about 10% of the area. 

2. 6 Structure of the Flaring Region 

Comparison of the exposures obtained with the parylene and 

beryllium filters show the exponential nature of the emission, as 

most of the energy appears at wavelengths longer than the 13 

cut-off of the beryllium filter. fn fact the beryllium exposure 

contains little more than the bright point associated with the 

flaring region. Figure 2. 10 shows a series of one-dimensional 

IDT scans across the flare normal to the direction of motion of the 

optical axis. The scans were made at a magnification of 
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50:1 with a pinhole of dimensions 20 by 200A. 

The full width at half maximum of the resulting distribution is 

approximately 1 minute of arc. However, our experience suggests 

that this width may arise almost entirely from the scattering 

function of the telescope and that the flaring region itself was 

probably less than 5 arc-seconds wide. 

2.7 Solar X-ray Line Spectra 

The final 3 exposures taken on the March 15 flight had a 

transmission grating interposed between the telescope and the 

image plane. Of these one was lost due to a catastrophic 

failure of the parylene filter. The other 2 were taken'with a 

1/2 mil beryllium filter and both of these had their images 

severely degraded by the rocket motion. Consequently it was 

impossible to interpret their images. 
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3.0 EXPERIMENTAL MODIFICATIONS, TESTING AND ALIGNMENT 

3.1 Experimental Hardware 

The hardware for NASA Aerobee rocket 4.2 63 CS payload was 

constructed under NASA Contract NASW-1555 and is described 

in the final report for that contract (Document ASE-1953). A 

list of the major systems of the payload follows: 

a. Nose cone eject mechanism and support ring. 

b. Mirror protection device mechanism. 

c. SolarCapture andTracking (SCAT) system fine eyes. 

d. Grazing incidence X-ray mirror, focal length 52", 
with visible light lens, filter and pin hole aper­
tures. 

e. Mirror-Camera optical mounting system. 

f. Movable X-ray transmission grating. 

g. Electronics panel.. 

h. Instrumentation panel. 

i. Single reflection light baffle. 
j. Twelve frame rotating drum, camera and adjustable 

mounting support. 

After launch the experiment was controlled by a central processor 

mounted in the electronics panel. Two Haydon chronometrically 

governed DC interval timers were used to provide the timing se­

quence for the camera exposures and to provide the command to 

position the grating at the end of the ninth exposure. 

The commands for ejection of the nose cone and starting the tim­

ers were supplied by the ACS (SCAT) system. The eject command 

was given immediately after erection and stabilization of the 

vehicle at T + 81 seconds. The start programmer command to 

actuate the timers and camera was given after the fine eyes had 

pointed the payload at the sun. This occurred at T + 113 seconds. 
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The complete sequence of events in chronological order with the 

appropriate T + time is given in Table II. 

The command to close the mirror protection device was given by 

the timer at severance from the instrumentation system. The 

time of command was T + 300 seconds and it was also used to 

shut off power to the programmer and lock the camera in position. 

3.2. Repairs and Modifications 

After the initial flight in this series, 4.209 CS, the payload had 

landed on the side of a cliff. The rocket casing had received 

a number of severe scratches and dents and the mirror protection 
device was also severely damaged. However post flight inspec­

tion showed very little internal damage and no degradation of the 

mirror performance was observed. 

On return of the payload to AS &E the mirror protection device, 

which had been designed to completely close the front of the 

payload cylinder at severance to prevent damage to the mirror 

on impact, was completely rebuilt. The dents in the rocket skin 

were knocked out and it was decided to replace the 2 parylene 

filters with 1/8 mil mylar filters, coated with 2200 R of aluminum, 

as one of the parylene filters had ruptured during the ascent stage 

of flight 4.209 CS. Some minor modifications 4 gere made to the 

exposure times based on the experience gained from the initial 

flight (Table I1). 

These changes were completed by the end of April 1968 and the 

payload was delivered to NASA-GSFC on May 1, 1968 for integra­

tion and testing. The following tests were performed in the se­

quence recorded below. 

May 1, 1968 Arrived at NASA-GSPC, installed flight eyes and 

instrumentation panel, set up and checked out 
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TABLE II
 

Sequence of Events for Aerobee 4. 263 Flown on June 8, 1968
 

T + Time Function Exposure 

0 Launch 
52 Burn out complete 
52 Coast-Release lockout relay 
64 Despin 
66 Erect 
81 Eject Nose-End stabilize 
83 Eject Nose-Roll stabilize 
93 Pitch 

103 Fine lock 
113 Start programmer (Timer I) 
115 22 sec. exposure 1 
137 Timer II start 
138 2 sec. exposure 2 
140.5 6 sec. exposure 3 
147 19 sec. exposure 4 
166 2 sec. exposure 5 
172 6 sec. exposure 6 
178.5 18 sec. exposure 7 
196 2 sec. exposure 8 
203 6 sec. exposure 9 
209 Grating released 
210 6 sec. exposure 10 
216 22 sec. exposure 11 
238 52 sec. exposure 12 
300 Severance 

Stop programmer 
Lock Camera 
Engage Mirror protection 
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TABLE III
 

Exposure Sequence for Aerobee 4.2 63 Flown on Tune 8, 1968.
 

Trans­
mission Exposure

Exposure Film Filter Grating Time (sec) 

1 103-0 un-tc 1/2 mil Beryllium No 22 

2 Pan x tc 2 mil Beryllium No 2 

3 Pan x tc 1/2 mil Beryllium No 6 

4 Pan x un-tc 1/2 mill Beryllium No 19 

5 Pan x tc 1/2 mil Beryllium No 2 

6 Pan x un-tc 1/8 mil Mylar No 6 

7 103-0 un-tc 1/10 mil Steel No 18 

8 Pan x tc Visible No 2 

9 Ilford Special 1/8 mil Mylar Yes 6 

10 103-0 un-tc 1/2 mil Beryllium Yes 6 

11 103-0 un-tc 1/2 mil Beryllium Yes 22 

12 103-0 un-to 1/2 mil Beryllium Yes 52 

Films labelled tc or un-tc are with or without a protective gelation 

layer (top coating) respectively, The Mylar filters were coated 

with about 2200 R of aluminum to stop the passage of visible light. 
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equipment. Ran preliminary integration test. 

Set up for vibration testing of the ACS. Ran vi­

bration tests at standard test levels. Inspected 

and reran integration test. 
May 2, 1968 Moved to Stabilization and Control Branch build­

ing and aligned eyes to optical axis. No new 

adjustments were necessary. 
May 3-6, 1968 Ran air bearing tests and final integration. 

May 7, 1968 Packed equipment and returned to AS&E. 

3.3 Description of Tests 
The following paragraphs describe in slightly more detail the 

testing performed at GSFC. 

Integration Tests 
The payload was mated with the Attitude Control System (ACS) 

and the instrumentation panel. A complete simulated flight was 
conducted and data recorded by the GSFC telemetry ground sta­

tion. A transmitter-receiver link was employed (i.e. not a hard 
line link). No major problems were encountered during the run­

ning of this test. The ACS was then subjected to vibration test­

ing and after visual inspection a second integration test was 

carried out. All systems, including the squib operated mechan­

isms worked normally. 

Alignment of Eyes to Payload Optical Axis 

The instrument had been designed with stringent tolerances to 

allow the pointing eyes to be hard mounted to the aperture plate 
without the use of shims. This was verified by optical testing. 

The mirror and camera had been previously aligned at AS&E. The 
effects of the vibration test on the mirror and camera alignment 

were checked by taking photographs with the payload camera of 
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the images produced by the solar simulator. These tests con­

firmed that the camera film plane was still aligned with respect 

to the mirror focal plane. 

Vibration Testing 

As the flight was a reflight of previously tested equipment with­

out major modifications, some of the vibration testing require­

ments were waived by GSFC. 

Final Inspection 

After the payload was returned to AS&E, it was disassembled and 

a detailed inspection was performed. The payload was then 

reassembled and shipped to White Sands Missile Range (WSMR). 
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4.0 FLIGHT OF 4. 263 CS 

The payload, equipment and personnel arrived at WSMR on 

May 11, 1968, to prepare for launch which was scheduled to occur 

between May 18 and Tune 8, 1968. 

After arriving at WSMR, the payload was checked out electrically 

and preparations were made for checking the camera focal plane. 

Procedures were arranged for taking photographs with the payload 

camera of the sun and of a laser beam that was set up at a tempo­

rary station 8. 8 miles from the camera. These photographic tests 

were performed periodically throughout the 2 week period prior to 

mounting the rocket in the tower. 

On May 14 the flight mirror was cleaned and the grating mechanism 

was installed. Functional and horizontal testing was done on 

May 15. During the horizontal test only one side of the grating 

mechanism operated. This necessitated replacing the negator 

spring for this half of the grating mechanism. Both sides then 

operated successfully. 

The rocket and payload were placed in the launch tower on May 17 
and the vertical test was completed with all systems operating 

satisfactorily. After completion of the test it was learned that 

the launch had been postponed until May 25, 1968. A second 

vertical test of the ACS(SCAT) was performed on the following 

day. After this test the camera was removed and prepared for 

flight by installation of flight film and filters. 

Tests of the organic flight filters were not completely satisfactory. 

Since there was a delay in the launch schedule, new Mylar filters 

were prepared and tested at AS&E and hand carried to WSMR. These 
arrived on May 24 in time to be integrated with the camera and 

mounted in the payload prior to the first scheduled launch period. 
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It was hoped to launch 4.2 63 CS during a class 2 solar flare. 

Consequently the count down would be held at T-3 minutes until 

the project scientist was notified of such an occurrence by the 

staff at ESSAwho were coordinating the flare patrol and'ground­

based measurements. If at the end of 2 weeks such a flare had 

not occurred, the scientific criteria for launch would be relaxed. 

The various countdowns prior to eventual launch were as follows 

(note times are Mountain Daylight Time unless otherwise spec­

ified): 

May 25, 1968 Count held from 1330 to 1830 M.D.T.Can­
celled due to high shifting winds. 

May 26, 1968 Count held at 0830 M.D.T. Count re­
started at 1153 and T-30 sec for a class 3 
flare, recycled toT-3 min. Cancelled 
at 1723 M.D.T. 

May 27, 1968 	 Count held at 0830 M.D.T.; cancelled at 
1145 M.D.T. due to conflicting range 
schedules. 

May 28-30, 1968 	 Launch not scheduled. 

May 31, 1968 	 Count held at 0830 M.D.T.; cancelled at 
1735 M.D.T. 

June 1, 1968 	 Count held at 0830 M.D.T.; cancelled at 
1730 M.D.T. 

Tune 3, 1968 	 Count held at 0830 M.D.T.; cancelled at 
1705 M.D.T. 

June 4, 1968 	 Count held at i515 M.D.T.; cancelled at 
1715 M.D.T.
 

June 5, 1968 
 Count held at 1515 M.D.T.; cancelled at 
1730 M.,D.T. 

June 6, 1968 	 Count held at 1515 M.D.T.; cancelled at 
1730 M.D.T. 

Tune 7, 1968 	 Count held at 1200 M.D.T., recycled at
 
1415 M.D.T. due to conflicting range
 
schedules. Count restarted and held at
 
1500 M.D.T. and finally cancelled at 
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1645 M.D.T. due to high winds. 

June 8, 1968 Scientific criteria relaxed as last avail­
able date for launch. Count held at 0830 
M.D.T. The project scientist was alert­
ed at 1137 M.D.T. to the occurrence of an 
Ha flare by the co-ordinating ESSA scien­
tist and ordered the resumption of the 
countdown. Launch took place at 1140 
M.D.T. 

The launch at 1140 M.D.T., or 1740 U.T., was successful as all 

AS&E and NASA-GSFC systems operated correctly. An apogee of 

93 miles was achieved and severance occurred at T + 300 sec. 

The rocket had been launched during the occurrence of a large 

1N flare of the parallel ribbon kind. The onset of the flare was 
at approximately 1732 U.T., reached the maximum development 

at about 1745 U.T. and lasted about 1.5 hours. The rocket, 

launched at 1740 U.T., acquired the sun at 1742 U.T., and ob­

tained exposures until 1745 U.T. The pointing control, devel­

oped by the Sounding Rocket Branch of GSFC achieved the unpre­

cedented accuracy of + 1 second of arc jitter throughout all of 

the exposures. 
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5.0 POST FLIGHT ANALYSIS AND RECOVERY 

The payload was recovered at about 1500 M.D.T. the same day. 

It had landed in open country with no observable external dam­

age. The flight films were recovered and returned immediately 

to AS&E for development. Later the payload was returned to 

AS&E and inspection showed no internal damage. Both of the 
mylar filters had survived the flight and no degradation in the 

performance of the mirror was observed. 
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6.0 FLIGHT FILMS FROM 4.263 CS. 

The flight films have been developed and are presented in 

Figure 6.1 through 6.12. The main scientific result obtained 

was that structural features only a few arc-seconds in extent 

were observed in the X-ray flare for the first time. The photo­

graphs also show X-ray emitting regions associated with plages 

and the general X-ray coronal emission. Spectral data were 

acquired by means of broad band filters; dispersed spectra of 

individual active regions were also obtained using a slitless 

spectrograph. 

The following general conclusions can be made from these 

photographs: 

1. There is a one to one correspondence between centers 

of X-ray emission and centers of activity evidenced by correla­

tions between the X-ray photographs and Ha, CaK and photo­

spheric magnetic field data. 

2. The general outline of the X-ray regions very closely 

resembles the outline of the 11a regions. 

3. The X-ray emitting regions show a three-dimensional 

structure extending above the active regions which is not seen 

in Hc photographs. 

4. This three-dimensional structure, which extends to 

considerable height in the corona, often takes the form of loops 

connecting portions of the same active region or of different 

active regions. The configuration of the plasma appears to be 

governed by the magnetic field and is complex. This complex­

ity of the configuration at the coronal level is likely to facili­

tate the triggering of instabilities. 

5. The slitless spectrometer technique proved able to 
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record the spectra of individual active regions. The preliminary 

analysis indicates that the spectra associated with the flare 

are measureably harder than most of the other active regions, 

and contain a MgXI line at 9.2 a. 

6. The X-ray component of the solar flare is highly 

structured. This fact eliminates models which are based on an 

extended diffuse cloud of radiating plasma. The general appear­

ance of the X-ray flare is of an ordered filamentary structure 

with characteristic dimensions of the order of 104 km. 
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DZ-060 

Figure 6. 1 Exposure I June 8, 1968 (see Table III) 
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Figure 6. 2 Exposure II June 8, 1968 (see Table III) 
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DZ-062 

Figure 6. 3 Exposure III June 8, 1968 (see Table III) 
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Figure 6. 4 Exposure IV June 8, 1968 (see Table III) 
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DZ-064 

Figure 6. 5 Exposure V June 8, 1968 (see Table III) 
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DZ-065 

Figure 6.6 Exposure VI June 8, 1968 (see Table III) 
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DZ-066 

Figure 6. 7 Exposure VII June 8, 1968 (see Table III) 
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Figure 6. 8 Exposure VII June 8, 1968 (see Table III) 
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Figure 6. 9 Exposure IX June 8, 1968 (see Table III) 
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Figure 6. 10 Exposure X June 8, 1968 (see Table III) 
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DZ-070 

Figure 6. 11 Exposure XI June 8, 1968 (see Table III) 
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Figure 6. 12 Expsoure XII June 8, 1968 (see Table III) 
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7.0 CONCLUSIONS 

The results obtained from the March 15, 1968 flight have shown 

that the X-ray flux from the whole sun, during an active period 
26 -1Iclose to sunspot maximum, was 1. 0 x 10 erg sec The active 

region, which had produced a small subflare a few minutes before 

the photographs were taken, contributed approximately 2. 0 x 10 25 
-1 

erg sec . The central core of the X-ray region, which we have 

identified with the region that produced the subflare on the basis 

of its correspondence to the Ha image of the sun, was less than 

30 arc-seconds wide. 

The Tune 8, 1968 flight was successful and produced high 

resolution X-ray images of active regions, the solar corona 

and an X-ray flare. 

Appendix A contains a list of the publications which have resulted 

from these two flights, and Appendix B contains a detailed dis­

cussion of the Tune 8, 1968 films as published itt Science. 
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List of publications supported in full or in part by NASA contract' 

NASW-1700: 

Vaiana, G.S., Reidy, W. P., Zehnpfennig, T., VanSpeybroeck, L.P. 

and Giacconi, R.., "X-ray Structures of the Sun During the 

Importance IN Flare of 8 Tune 1968." 1968, Science, 161, 564. 

Vaiana, G. S. and Giacconi, R., "Observation of an X-ray Flare: 

Spatial Distributionand Physical Parameters," Plasma Instabilities 

in Astrophysics; (Wentzel, D. G. and Tidman, D.A., Ed.; Gordon 

and Breach; 1969). 

Vaiana, G. S. and Zehnpfennig, T., "Analysis of High Resolution 

X-ray Photographs; I: An Importance IN Flare." 1969, Bull. Am. 

Astron. Soc., 1(3), 294. 

Reidy, W. P. and VanSpeybroeck, L.P., "Analysis of High 

Resolution Solar X-ray Photographs; II: Solar Active Regions". 

1969, Bull. Am. Astron. Soc., 1(3), 294. 



APPENDIX B 

X-ray Structures of the Sun During the Importance 

In Flare of 8 une 1968
 

Published in Science, 1968, 161, 564. Note that
 
the "cover page photograph" and "Figure 3"
 
referred to in this Appendix, are the same as
 
Figures 6. 6 and 6. 10, respectively, of this report.
 



ABSTRACT 

High resolution solar X-ray images were obtained with a rocket-borne 

grazing incidence telescope. The X-ray flare is large in extent, has fine 

structure and follows a neutral magnetic line. X-ray emitting coronal links 

interconnect active regions. The general coronal emission at the limb and 

several faint regions on the disc are observed. 



In order to study the physical processes which govern the onset and 

development of solar flares, we have flown an X-ray telescope on a pointed 

rocket platform and obtained high resolution X-ray photographs of the sun 

while a flare was in progress. Structural features only a few arc seconds 

in extent are observed in the X-ray flare for the first time. The photographs 

also show X-ray emitting regions associated with plages and the general 

X-ray coronal emission. Spectral data were acquired by means of broad 

band filters; dispersed spectra ,of individual active regions were also ob­

tained by means of a slitless spectrograph technique used for the first time. 

X-rays from the sun are of interest both as the most sensitive indi­

cators of solar activity and as a tool to study the physics of regions 

containing extremely high temperature plasmas or high energy electrons. 

The study of solar X-ray emission has progressed rapidly in the last few 

years. The progress in the field has been reviewed (1) by de Jager, 

Mandel'shtam, and more recently by Goldberg. 

In order to define the physical parameters of interest, one needs the 

spatial and spectral distribution of the radiation from the regions being in­

vestigated. X-ray images of the sun using pin-hole camera techniques have 

been obtained by Blake, Chubb, Friedman and Unzicker (2); Russell and 

Pounds (3); and Zhitnik, Krutov, Malyavkin and Mandel'shtam (4). Grazing 

incidence telescopes of the type first suggested for use in X-ray astronomy 

by Giacconi and Rossi (5) have been used by Giacconi, Reidy, Zehnpfennig, 

Lindsay and Muney (6) and by Underwood and Muney (7). Structural details of 

20 arc seconds could be resolved in the highest resolution X-ray photographs 

previously obtained (7). These experimenters obtained information on the 

spectral distribution of the radiation from particular solar regions by the use 

of broad band filters. On the other hand, dispersed X-ray spectra of the sun 

as a whole have been obtained by numerous groups (8). Our group has devoted 

its efforts over the last few years to the problem of simultaneously obtaining 

high resolution X-ray images and spectra of each individual emitting region(9). 
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INSTRUMENT AND EXPERIMENTAL PROGRAM 

The X-ray telescope carried in this payload is of a type described 

previously (10) and consists of a paraboloid and hyperboloid which are 

co-axial and con-focal. The incident soft X-rays are reflected once from 

each mirror at a grazing angle and form a real image of the distant X-ray 

source in the focal plane. The X-ray telescope used in this experiment
2 

has a collecting area of 34 cm and a focal length of 132 cm and is ap­

preciably larger and more sensitive than any flown previously. The speed 

of the system is sufficiently high so that a relatively slow, high resolution 

film (Panatomic X) could be used even in one of the shortest exposures (2 

seconds) and still yield useful film densities in the plage regions as well 

as in the flare. In the flight pictures, details in the flare region only 2 

arc seconds in size can be distinguished. 

The camera consists of a rotating 12-sided drum to which individual 

film and filter combinations were attached. The different filters transmit 

different X-ray wavelength intervals and exclude solar visible and ultra­

violet radiation from the film. 

A soft X-ray transmission grating was successfully used for the first 

time in this experiment. The grating, which was positioned immediately 

behind the telescope, was launched in a folded position and deployed for 

the last four exposures. The combination of the telescope and the grating 

constitutes a soft X-ray slitless spectrograph and was first suggested by 

Gursky and Zehnpfennig (11) and developed by Zehnpfennig (11). The grating 

disperses part of the radiation being focused on a given point in the focal 

plane into spectra of various orders which then bracket that point. The 

grating for this flight consisted of a 1Fl thick parylene substrate upon which 

1440 parallel gold strips per millimeter had been deposited by vacuum 

evaporation. The dispersion in the first order is 0. 50 arc miri/R, or 0. 15 

mm/R in the focal plane. 

B-2 



The experimental plan was to launch the rocket within a few minutes 

of the observation of a solar flare by an alarm network of ground-based solar 

observatories. Simultaneous ground observations were to be made in Ha, Ca!K, 

centimeter and decameter radio, and in the 5303 R coronal line. In addition, 

three experiments (12) carried on the OSO-4 satellite will be able to furnish 

the followirg: a) spectra obtained with Bragg Crystal Spectrometer on the sun 

as a whole (Naval Research Laboratory group), b) life history of the flare with 

high time resolution obtained with proportional counter technique (University 

of Leicester-University College of London group), and c) images of the sun 

obtained every 300 seconds, prior, during and after the flare with four arc 

minute resolution (American Science and Engineering group). When all of this 

information becomes available and can be correlated, we will have the most 

complete description of such an event yet obtained. The purpose of this note 

is to describe certain important qualitative features resulting from the inspec­

tion of the X-ray pictures and from the correlation with preliminary data available 

to us. 

On une 8, 1968, the sun was moderately active. Over a dozen active 

regions were present on the disc, the most prominent being the one where the 

observed flare developed. This region (identified as McMath No. 207) had, 

since its first appearance on the east limb on June 2, increased in plage area 

and intensity, spot group area and number,9. 1 cm flux and flare activity. For 

a number of hours before the flare, the active region had shown brightening 

fluctuations. A filament associated with this region had been active in the blue 

wing of H and underwent a "disparition brusque" some 30 minutes before the 

flare. Prior to disappearance the filament was located along the neutral line 

of the magnetic configuration, as indicated by the polarity of the spots. The 

observed flare was a large IN flare of the parallel ribbon kind. It was ac­

companied by centimeter microwave bursts superimposed on a very small gradual 

rise ard fall in all the microwave region of duration comparable to the Ha flare. 

Continuum decameter emission began at 1600 UT and lasted through 1900 UT. 
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The flare was also accompanied by an ionospheric disturbance. The H& flare 

onset was at about 1732 UT, reached the maximum at about 1745 UT, and lasted 

about 1. 5 hours. The rocket was launched at 1740 UT, acquired the sun at 

1742 UT and obtained exposures until 1745 UT. The pointing control, developed 

by the Sounding Rocket Branch of Goddard Space Flight Center, achieved the 

unprecedehted accuracy of + 1 second of arc jitter throughout all of the exposures. 

EXPERIMENTAL RESULTS 

The exposure time, filter, film and nominal wavelength pass-band for each 

of the exposures are listed in Table I. The analysis of the 12 exposures has just 

started and will require extensive data reduction. There are however a number 

of new experimental facts which have resulted from a "quick-look analysis" of 

the photographs. We believe that some of the facts have important consequences 

in the interpretation of solar phenomena. A few selected images (13) (or portions 

of images) are reproduced on the cover page and in the figures to illustrate the 

conclusions. The orientatlons of the photographs are given in the figure captions 

and are not the same for all cases (the cover page photograph has the same orienta­

tion as Figure 1). The most significant observations are summarized below according 

to the catagories a) flare, b) active regions, and c) general coronal emission. 

a) Flare. The flare'itself is by far the most impressive of all the X-ray emitting 

regions. The cover page photograph, a 6 second exposure on Pan-X film with a 

3. 8 a mylar filter, shows the flare somewhat over exposed in the central portion of 

the image. The inner structure of the flare Is better displayed in Figure 2A, a 

2 second exposure with a 13[t beryllium filter and Pan-X film. 

We first observe that the flare region is more than an order of magnitude (13) 

brighter than all of the other plages, and that the X-ray emission is distributed 

into two main structures, each several minutes of arc long and approximately 20 

seconds of arc across. One of the structures is a ribbon running from northeast 

to southwest; the other structure, to the south of the first, is an "S" shaped 

feature. We have not yet received the Ha photographs taken during our flight. 
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However, from correlation with a preflight Ha image (Figure 1 and 2A'), and 

from discussion with P. S. McIntosh,the observer at ESSA at the time of the 

flare, we have been able to establish that the general structure of the X-ray 

flare strikingly resembles the one of Ha, and that the portions of the flare 

which are brighter in Ha are also brighter in X-rays and with much higher 

contrast. We find that the brightest portion of the X-ray flare (part of the 

"S" shape structure) seems to follow the location of the active filament 

which had disappeared (Figure 2A and 2A'). The flare also shows many small 

features which are not observed in nearby active regions; for example, in the 

original negative of Figure 2A, two filaments about 2 seconds of arc across 

and separated by 5 seconds of arc are clearly visible (14). 

b) Active regions. We find that all regions which are active in Ha (Figure 1) 

have counterparts in the X-ray photograph (cover page); even small Ha 

brightenings such as those at approximately 30 west and 70 west close to 

the equator have corresponding brightenings in X-rays. A closer examina­

tion reveals that the correspondence between the Ha and X-ray images of a 

region depends upon the position on the solar disc. The X-ray emitting regions, 

when seen close to the center of the disc, seem to conform rather well with 

the shape and boundaries of Ha bright regions. The X-ray images near the 

limb (Figure 2B) however, show a looping and interconnecting of active 

regions which is not found in the Ha images (Figure 2B'); one sees X-ray 

structures extending 100, 000 km or more above the Ha plage. Finally, at 

the limb (Figure 2C and 2C') there are loops and structures similar to those 

seen in white light coronal photographs. The X-ray loop structure does not 

have a corresponding Ha counterpart; however, spectra taken at Sacramento 

Peak show that the green line (5303 R) was strong in that portion of the limb, 

and two days later a weak plage region rotated onto the disc. 

The X-ray emitting regions appear to be the same size in the 44 to 

60 R and 3. 5 to 14 wavelength intervals. This observation is based upon a 
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comparison of mylar and beryllium filter exposures which had equivalent photo­

graphic densities as a result of appropriate exposure duration ratios. 

c) General corona. The general corona emission not associated with flares or 

plages is evident in the mylar filter exposures, such as the cover page, which 

include the 44 R to 60 R region. Since this emission does not appear in the 

longest exposure with the beryllium filter (3.5 R to 14 R), we conclude, in 

agreement with previous observations, that the general corona emission is some­

what softer than the plage or flare associated emission. We also find weakly 

emitting regions distributed over the disc which are not plage associated, and 

thus confirm an observation made in one of our earlier flights (10). These 

features are seen in the mylar filter exposure, for example in the north portion 

of the disc on the cover page, but cannot be found in the beryllium exposures; 

therefore, this emission is also softer than that associated with plages. 

Finally, this flight provided the first verification of the X-ray slitless 

spectrograph technique. The results show that the technique is valuable where 

high speed is required, and it should be particularly useful in the study of 

transient phenomena, and in obtaining spectral data separately from each of 

several small active solar regions. The four transmission grating exposures 

contain spectra of each of the active regions including the flare. One of these 

exposures, Exposure X, is reproduced in Figure 3. Several emission lines or 

blends can be observed in the original negatives; the lines are particularly 

evident in the higher spectral orders. The most prominent flare line in the image 

(This line is also found in some of the plage spectra.) occurs at.about 9.2 R. 

This is consistent with either Mg XI or Fe XXI lines which have been observed 

by other experimenters (4, 8). The envelope of the spectra from the several 

regions can also be observed. 

DISCUSSION AND CONCLUSIONS 

Detailed comparisons with existing theories will require a quantitative 

analysis of this experimental data and the correlated data from other sources. 
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The following considerations, however, indicate certain qualitative features 

which must be included in models of flares and other manifestations of activity. 

a) Flare. It has been shown (15) that the X-ray emission contributes a large 
fraction of the energy released in a flare. From the film density and the flare 

size, we estimate the soft X-ray output of this flare to be of the order of 1030 

to 10 ergs. We consider it important that the X-ray flare is extended in area 

at the time of the Ha maximum brightness. If we make the conservative as­

sumption that the ribbons of the flare have circular cross sections with diameters 
equal to their observed widths, we find that the apparent volume of the flare 

28 3
is in excess of 10 cm 

The spatial correspondence between the X-ray and the Ha flare indicates 

a close physical link between the two emission phenomena; this is puzzling 
because of the large difference in degree of ionization required to account for the 

X-ray and the Ha emissions. One possibility is to envisage spatial separation 

between the two regions, with a strong magnetic connection to account for the 
similarity in shape. The X-ray emission associated with the other plage regions 

suggests such a magnetic link. For the flare, however, one is faced with the 

difficulty of having to assume a strong stable magnetic link while at the same 

time requirifhg a sudden change of the magnetic configuration in order to account 

for the observed radiation. 

Finally, we note the significance of the spatial association of the X-ray 
emission with the disappeared filament, and hence with the magnetic neutral 

line. A number of flare theories emphasize the role of the neutral line not only 
in the magnetic storage mechanism, but also in the trigger and first release 

process. Previously only visible light observations yielded data bearing on 
this question, but the X-ray emission is more directly connected to the 

energetic particles involved in the primary process. 
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b) Active regions, We interpret the X-ray images as lescriptive of the three­

dimensional coronal structure of the active regions. The overriding impression 

one receives from the photographs is that the X-ray emitting regions resemble 

the Ha regions at the base of the corona, but at higher levels the X-ray emitting 

regions are rich in loop-like structures which interconnect Ha active regions 

and are largely determined by the magnetic field. This interpretation strengthens 

theories which attribute the extra heating in upper layers of active regions to 

the presence of an enhanced magnetic field. We interpret the similar size of 

the X-ray emitting regions in the 44 to 60 and 3.5 to 14 a wavelength 

intervals, both at the limb and on the disc, as evidence that the X-ray active 

regions as a whole do not show large scale temperature structure. On the other 

hand, temperature structure may be present on a scale small with respect 

to the size of the regions, perhaps in a multilayer rope-like volume with strong 

magnetic field confinement. 

c) General corona. By comparing the X-ray with the Ha image we associate 

the weakly emitting regions with the brightest portions of the chromospheric 

magnetic network. It has been suggested that, in the heating mechanism of 

the corona, the magnetic field of the network plays an important role (16). It 

is, therefore, tempting to link the general X-ray corona we observe at the limb 

to the weakly emitting regions on the disc associated with the brightest features 

of the network. The softness of the spectra from both regions is also consistent 

with our opinion that these are two views of the same type of activity. 

In conclusion we realize that it will be necessary to study with comparable 

detail several flare events before we can determine if the features we observe 

are a common characteristic of all flares. The overriding impression we 

obtain from the analysis of these photographs is that more detailed under­

standing of solar phenomenology can be achieved by modest improvement of , 

spatial resolution in the X-ray region of the spectra. The dominant role played 
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by magnetic fields in the storage and release of energy in the solar atmosphere 

can be perceived from the correlation between Ha and X-ray structures, the 

existence of loops interconnecting active regions, and the development of the 

X-ray flare along a neutral magnetic field line. 

G. S. Vaiana 

W. P. Reidy 

T. Zehnpfennig 

L. VanSpeybroeck 

R. Giacconi 

American Science & Engineering 

Cambridge, Massachusetts 

July 9, 1968 
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TABLE I
 

Films, Filters and Exposure Times 

Frame Exposure Time Filter() Film (3 ) 

I 22 seconds 13i± beryllium 103-0 un-TC 

II 2 seconds 5 0 [L beryllium Pan X TC 

III 6 seconds 13[L beryllium Pan X TC 

IV 19 seconds 1 3 [ beryllium Pan X un-TC 

V 2 seconds 1 3 [ beryllium Pan X TC 

VI 6 seconds 3. 8 mylar(2) Pan X un-TC 

VII 18 seconds 2. 54a steel 103-0 un-TC 

VIII 2 seconds visible Pan X TC 

IX 6 seconds
X 6econs 

3. 811 mylar(2)
1 beyllim 

Ilford Special (4 ) 

13-0 n-T (4 ) 

X 

XI 

26 seconds 

22 seconds 

13p. beryllium 
13. beryllium 

103-0 un-TC 4 ) 

103-0 un-TC (4 ) 

XII 52 seconds 13 a beryllium 103-0 un-TC (4) 

(1) 	 The filter thicknesses given are nominal. The approximate wavelength pass­

bands are: 134 beryllium (3.5 R to 14 R); 54t beryllium (3.5 R to 10 %; and 

3. 8[1 mylar (3.5 2 to 14 R and 44 a to 60 a). 

(2) 	 About 2200 a of aluminum was evaporated on the mylar. 

(3) 	 "TC" or "un-TC" are with or without a protective gelatin layer, respectively. 

(4) 	 Exposures with the transmission grating 
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1401REPRDUCIBLE
 

DZ- 073 

in Ha light at 1555 UT, approximatelyFigure 1. A photograph of the sun 
two hours before the X-ray observations. There is a striking correlation 

between the Ha active regions and the X-ray emitting regions shown on 

the cover page. On this photograph and the cover, heliocentric north is 

approximately 300 counterclockwise from the bottom and east is on the 

(By courtesy of the ESSA Boulder Observatory)right. 
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DZ-072 

Figure 2. Figures 2A, 2B, and 2C are X-ray images of selected portions of the sun; Figures 2A', 2B', and 
2C' are Ha photographs of the corresponding portions taken two hours prior to the flight. Corresponding 
images are orientated the same way. Figure 2A is the flare region in 3.5 R to 14 R pass band (Exposure V). 
The "S" shaped structure (brightest portion of the flare) follows the neutral line marked by the filament 
(Figure 2A'), which later disappeared, as discussed in the text. Portions of the filament extend to the top 
and left of the sunspot and then up. Figure 2B shows the group of plages in the southwest quadrant close 
to the limb. At least three arches interconnecting regions can be distinguished. Notice the absence of 
the connections in Ha. Figure 2C is the loop structure at the southeast. It extends over 150, 000 km above 
the limb; no counterpart of the loop is visible in Ha but the green coronal line (5303 R)was strong in that 
portion of the limb, and a plage region rotated from the limb two days later. (The Ha photographs by 
courtesy of ESSA Boulder Observatory) 


