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' 	 *RSTRACT

Data from the Auroral Particles Experiment on OGO-4 have peen

rnalyzed to determine the properties of the band region of low energy

electron precipitation in the la:s morning hours. The existence of

this precipitation is consistent with a scheme- involving a release

of a body of electrons on closed magnetic field lines La the vicinity

of midnight at the time of a magnetospheric substorm, with a subsequent

drift in local time through the morning hours at least as far as noon.

While drifting the electrons encounter a strong pitch a.-gle diffusion

mechanism which precipitates them into the atmosphere to produce the

mantle aurora. This mechanism seems to exist independent of substorm

magnetic activity. The diffusion coefficient must be i2rger than 10-3/

second, and the resulting lifetime of the electrons is about 6 x 103

seconds. The energy density of the source electrons in the midnight

region would not be unreasonably large if the source is in the cusp.



INTRODUCTION

Measurements from satellites of precipitating low energy electrons

have established the existence of two fairly distinct regions of precip-

itation during the late morning hours. The first, lower latitude region,

is characterized by relativel; hard, isotropic radiation, not displaying

much structure in its latitude profile. It has been labeled the "hard

day zone" by Sharp and Johnson (1968), "the auroral zone" by Burch (1968),

and the "band region" by Hoffman (1969). The second, higher latitude

region, is distinguidhed by a nominally ve_-y soft electron spectrum, and

exhibits a highly structured profile in the counting rate from a low

energy electron detector. It has been described by the terms "soft day

zone". the "soft zone", and the "burst region" by the afore mention%A

experiment. -rs.

Data from the OGO-4 Auroral Particies Experiment have been analyzed

to •dete-emine further properties of the lower latitude region of precip-

itation, with special interest in the origin or source of the precipitating

electrons, and the association of these electrons with auroral activity

in the late morning hours.

This analysis, which also utilized ground station magnetic records

as an indicator of magnetic activity, suggests that the existence of

this electron precipitation is consistent with a scheme involving a

release of a body of electrons on closed magnetic field lines in the

vicinity of midnight at the time of a magnetospheric substorm, with a

subsequent drift in local time through the morning hours at least as far

as noon. While drifting the electrons encounter a precipitation mechanism

which causes a loss of the electrons into the atmosphere.
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In searching for an auroral optical phenomenon which could be associated

with these precipitating electrons, we find that the auroral type defined

as the "mantle aurora" by Sandford (1964, 1968) is consonant with our

particle observations. This aurora, measured photometrically at the

]3914 and X5577 emissions, is a relatively steady, diffuse, subvisual

aurora covering a large area of the sky, and occurring in the absence of

discrete auroral forms as recorded on ground level all-sky camera photo-

graphs (Gowell and Akasofu, 1969). The region of luminosity exists in

a zone at nearly constant magnetic latitude from the midnight region

through the morning hours to noon. Sandford (1968) found that on inte-

grating the emissions over the entire high latitude region, the mantle

auroral emissions were on the average the predominant optical phenomenon

during solar maximum, giving rise t3 the majority of all auroral emissions,

while at solar minimum such emissions dropped to about half the Emissions.

This s -!Pests that the mantle aurora region of space is an important sink

for energy from the magnetosphere.

Unfortunately the data from the OGO-4 experiment does not allow u

to conclusively prove the described sequence of events of narticle re-

lease, drift, precipitation and auroral emissions due to operational

criteria associated with the experiment (see Experiment and Operational

Criteria, below) as well as problems inherent in interpreting data

acquired from a luw altitude polar orbiting satellite. Instead the con-

sistency with this model will be displayed in the following manner:

1. We will show that electrons do not precipitate in copious quantities

in the region of local midnight at auroral latitudes except during
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magnetic activity in that sector, especially substorm activity.

We restate this as auroral electrons display their existence in

the midnight region only during substorms. We will later con-

clude that at the time of substorms the electrons begin their

eastward drift in magnetic local time. Because the particle

measurements were performed by an experiment on a low altitude

satellite the only indication of the existence of electrons on

a magnetic field line is the observation of precipitating or

low altitude mirroring particles. There is no knowledge of the

possible existence on a line of force of electrons all of whose

mirror points lie above the satellite (a condition equivalent to

there being no precipitation mechanism). Therefore, there is

no discussion as to when the electrons are accelerated or are

injected onto auroral field lines near midnight. It is only

in the context of measuring electrons at lord altitudes that we

use the word "existence".

2. Next we will show that during the morning hours, and more clearly

near noon, the electrons do not precipita`e or exist at latitudes

characteristic of the mantle aurora (580 to 780) at the time of

a substorm.

3. Finally we will provide examples of precipitation of electrons

in the late morning sector some hours after the magnetic activity

near midnight. This delay in the appearance of electrons in the

late morning hours is the time for these electrons to drift from

midnight to noon. The sequence of the existence of electrons
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at midnight and the late morning hours is the basis for the con-

clusion that the electrons commence their drift at the time of

the substorms.

4. To associate these electrons with the mantle aurora, we will

shot-? that the energy influx of the observed electrons is suf-

ficient to produce the emissions measured by Sandford, and the

spatial distribution of the precipitating electrons is similar

to that of the mantle aurora.

EXPERIMENT AND OPERATIONAL CRITERIA

Details of the Auroral Particles Experiment have been thoroughly

described by Hoffman and Evans (1967) and pertinent aspects by

Hoffman and Evans ( 1968). Briefly, the experiment contains an array of

eight detectors, each comprised of an electrostatic analyzer for species

and energy selection and a Bendix channel electron multiplier as the

particle detector. Four of the detectors always point radially away from

the earth (00 ) and measure electrons in narrow (about + 15%) energy bands

around 0.7, 2.3, 7.3 and 23.8 kev. Three others are positioned 300 , 600,

and 900 to the earth-spacecraft radius vector, and all measure electrons

in an energy band at 2.3 kev.

Because this experiment was devised at the time when the fatigue

characteristics of channel multipliers were relatively unknown, tt« exper-

iment was not allowed to operate continuously in orbit. Data acquisition

was initiated via ground command usually as the satellite was approaching

the auroral zone. This command initiated a 13^ minute timer controlling
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the high voltage on the detectors which allowed data to be collected

when the satellite passed over the auroral zone, crossed the polar cap,

and again crossed the auroral zone. The necessary proximity of a

ground station to initiate the acquisition period caused data to be ac-

quired only during certain portions of the day, and seldom were more

than three successive passes obtailed.

Data acquisition for the experiment was further complicated and com-

promised by orbital operations requirements of the spacecraft, especially

pertaining to spacecraft attitude control and on-board tape recorder

dumps, as well as by the use of several different spacecraft data ac-

quisition formats, some of which did not interrogate any or all of the

experiment.

The satellite was launched on July 28, 1967, into a low altitude

polar orbit having an apogee of 908 km, a perigee of 412 km, an inclina-

tion of 860 and a period of about 98 minutes.

DATA DISPLAY

In the analysis of data acquired from the experiment when the satellite

was passing through the high latitude region during the morning and noon

hours, the two precipitation regions were identified in the following

mariner: the lower latitude band region is most distinguishable in the

output of the 7.3 kev electron detector, which produces a relatively

unstructured counting rate profile of moderately , intense fluxes (> 105

electrons/cm2 -sec-ster-kev). The higher latitude burst region is char-

acterized by larva, rapid variations in the counting rate of the 0.7 ke,
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detector, although -_ such times the 7.3 kev detector may also respond

in coincidence. Since the two regions may somewhat overlap, the band

region is defined as chat precipitation region of 7.3 kev electrons not

in coincidence with structured 0.7 kev electron precipitation. This

band region is the primary region of interest in this paper.

The display of data in the first eight figures has the following

common features. Data are a ,yeraged over about a 10 second period of

accumulation independent of the bit rate from the satellite. The orbit

of the satellite is shown in magnetic local time (NIT), invariant latitude

(A) coordinates with a tick mark at each minute. The locations of per-

tinent magnetic observatories are also marked for the time periods of the

experiment data acquisition. The time scale for the magnetograms, in UT,.

is itanediately above the tracings. The small letters M or N above the

vertical arrows on the magneto grams indicate when the observatory passed

local magnetic midnight or noon. The.H or X by each magnetogram scale

refers to the horizontal or northward component of tue field, respecti-•aly.

The base line on the magnetograms was arbitrarily chosen, since only the

occurrence of a disturbance is of interest.

1. Midnight Precipitation.

The purpose of Figure 1 is to show that electrons of 7.3 kev energy

do not precipitate with any appreciable intensity in the midnight sector

during magnetically quiet periods. The 7.3 kev detector was measuring

fluxes less than 10 5 north of 710 latitude and much less than this below

660 . Three bursts in coincidence with the 0.7 kev electrons occurred
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between 660 and 71°, more specifically at 66k°, b9° and 71°. The average

flux of 7.3 kev electrons between 66 0 and 710 latitudes was about

2.6 x 105 . Note the extremely quiet magnetograms from Murmansk (USSR) and

Tromso (Norway) when these observatories were also near midnight.

in contrast to the data in F i gure 1, Rev. 931 in Figure 2 displays

large intensities of 7.3 kev fluxes near midnight during a substorm. From

600 to 650 the fluxes exceeded 10 7 , and at higher latitudes the inten-

sities in two bursts exceeded 2 x 107 . As indicated in the lower half

of the figure this data was acquired during a substorm observed at Kiruna

(Sweden), when this observatory was located a few minutes before magnetic

midnight (see the small polar plot in Figure 2).

Of course these observations are consistent with the results of

sounding rocket measurements of auroral particle precipitation at night

(for reviews, see Evans, 1967; Whalen and McDiarmid, 1969), and are only

shown as part of a complete and self-consistent model if the source of

late morning precipitating electrons.

2. Late Morning Precipitation During Substorms.

We next show three examples of no appreciable fluxes of precipitating

electrons near local noon while magnetic substorms were in progress in

the midnight sector.

Using data from a noontime pass during the same substorm as the pre-

vious example, we see during Rev. 933 shown in Figure 2 very small fluxes

of 7.3 kev electrons in the latitude interval 68° to 780 . In fact most

of the measurable precipitation is in coincidence with bursts at 0.7 kev



- 8 -

at latitudes 700 , 740 and 770 , and therefore does not corres i ond to our

definition of a band region. This data was acquired almost eight hours

after the onset of the abnormally long substorm or overlapping series

of substorms at Kiruna.

The example in Figure 3 is not as convincing as the previous example,

because small fluxes at 7.3 kev were observed from experiment turn-on at

2341 to 2342 when the burst region was entered. However, these fluxes

of about 3 x 105 were an order of magnitude weaker than those observed

at this loyal time during precipitation events, as will be shown. Note

that this pass,Rev. 771, occurred about five hours after the onset of the

substorm.

The final example of this type (Figure 4) shows the lack of precip-

itating electrons in the very early afternoon hours during a large sub-

storm. During Rev. 1352 the flux of 7.3 kev electrons did not reach 105

from latitude 73 0 to the highest latitude reached (from about 1037 to

1041 UT), while during Rev. 1353 the flux was less than 2 x 10 5 from 7ro

to 810 (1212.5 to 12 1 8 UT) except for a burst in coincidence with the

large 0.7 kev precipitation at 1214 UT. The data from these two revolutions

was acquired during a large substorm apparent in the College (Alaska) mag-

netogram when this observatory was near local midnight.

Towards the end of these two segments of data, when the satellite

passed through the auroral zone in the early evening hours local time,

large fluxes of 'ooth 0.7 and 7.3 kev electrons were encountered. These

data sh(;w the wide extent in local time from which the 7.3 kev electrons

can originate during a substorm.
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These three examples demonstrate that there is no significant dif-

fuse source o: region of precipitating electrons in the late morning

hours at latitudes appropriate to the mantle aurora during magnetosphere=

substorms.

3. Late Horning Precipitation After Substorms.

Finally we show a set of four examples, each with increasing complexity,

of electrons precipitating during the late morning hours, but appearing

well after the onset of a substorm in the midnight region.

The event shown ir. Figure 5 involved a substorm co aa acing about

1330 UT en Cctob4E 11, 1967, as observed at College (Alaska) when the

observatory was tear local early morning hours. The satellite pass some

61C hours later at about 10 hours AII.T, Rev. 1108, encountered fluxes of

7.3 kev electrons exceedir.; 106 at latitudes from 680 to 750 . At about

730 the burst region began, and was evident even in the 7.3 kev detector

output between 760 and 840 latitudes. During this pass the Kiruna obser-

vatory at local midnight indicated no magnetic activity.

The next example of this type (see Figure 6 magnetograms) had an

initiating substorm commencing between 11 and 12 hours UT on October 23,

1967, and again observed at College. Data sere acquired from a series

of four passes commencing abosit 6 hours after the onset of the substorm

and occurring at about 09 hours MLT. During these passes the Murmansk

observatory was rotating in local time through the midnight hours and

m_asared :ome small magnetic activity during the times of the first two

passes, 1242 and 1243 (see the bottom of Figure 6).
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The electron flux measurements during the morning portion of the

four passes are plotted in the first, third, fourth and fifth panels in

the upper portion of Figure 6. Fot Rev. 1242, data from only the highest

latitude portion of the band region were acquired from 72 0 to 74 0 lati-

tude and centered around 1810 UT. For the next three revolutions the

burst and band regions only slightly overlapped, so the 0.7 kev fluxes

are not plotted. In panel 2 the data sre plotted from the midnight portion

of Rev. 1242 during the small magnetic disturbance seen at Murmansk, and

itideed appreciable fluxes of both 0.7 and 7.3 kev p lectrons were measured.

A striking observation of these morning precipitating electrons is

the identical maximum flux of about 3 x 10 6 during all four passes, which

extended in univeral time over a period of five hours. We use this obser-

vation as evidence that particles in the late morning precipitation

originated near midnight at the time of the substorm around 1200 UT,

rather than associating them with the disturbance seen at Murmansk, since

this later activity lasted only through the first two of the four passes.

Since wE. know that electrons exist in the midnight region only at the

time of magnetic activity in the auroral zone, these electrons must have

spent the time beLv-c,n the substorm when they were presumably near mid-

night and their precipitation in the late morning hours drifting in local

time. Since these particles drift they must be on closed field lines, so

it is on this basis that we conclude that electrons are released on closed

field lines in the region of midnight during substorms and subsequently

drift through the morning hours.
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The third example of this type, shown in Figure 7, is similar to the

second in that a new magnetic disturbance occurred during some of the

noontime passes. (Because the apparent drift time from midnight to late

morning hours for electrons of these low energies is at least two times

the average time between substorms, it is very difficult to obtain clear

examples of morning precipitation without intervening magnetic activity

at midnight, especially when the additional criteria of the satellite

and experiment operational constraints are added, as well as the require-

went of proper locations of magnetic observatories.)

The initiating substorm commenced at 13 hours UT on October 3, 1967,

as recorded by the College observatory (see magnetograms in Figure 7),

and lasted for over two hours The Murmansk and then the Leirvogur

observatories moved uhrough the midnight region during the time period

between revolutions 990 through 993. Their records indicate some magnetic

disturbance, especially just prior to revolution 990, but by revolution

993 the Leirvogur tracing ':as very quiet. The electron Beta from the -!id-

night portions of the passes, plotted in panels 1 and 3 of Figure 7, also

indicated this decreasing activity in the midnight region. Rev. 990,

plotted in the first panel, showed reasonable fluxes of both 0.7 and 7.3

kev electrons from 75 0 down to 640 at about 2052 UT. However, during

Rev. 991 shortly after midnight local time and at about 2230 UT the in-

tensities at 7.3 kev plotted in the third panel were considerably depressed

between latitudes 750 to 670 compared to the fluxes observed in this

section on the previous pass, indicating, like the magnetograms, a de-

creasing activity.
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In spite of this decreasing activity at midnight, data from revolutions

991, 992 and 993 near noon (plotted in panels 2, 4 ane a) show continuous

precipitation in the latitule interval 68 0 to 760 . In fact, of the three

revolutions, the last has the largest integrated flux across the entire

precipitation region, and this occurred when the activity at midnight was

a minimum. Thus again it appears that late morning precipitation does

not occur simultaneous with activity in the midnight region, but rather

occurs some hours subsequent to magnetic activity in this region.

The final example (Figure 8) is again a sequence of events. The in-

itial observations of precipitating electrons during the late morning

hours occurred during substorm activity at midnight. However, electrons

apparent_y originating during this activity were encountered several

hours -ater precipitating near noon.

As recorded at College and Barrow (Alaska), the associated initiating

magnetic ectivity in the midnight region from about 1100 to 1500 UT on

rebruary 5, 1968, was not in the form of classical substorms (see magneto-

grams in Figure 8), but instea:i there was a period of magnetic disturbance.

The first electron observations during the late morning hours occurred

at 2017 UT (Revolution 2833, plotted in panel 1 of Figure 8) in which

appreciable 7.3 kev electron fluxes were measured frog:. about 74 0 down to

670 . While Murmansk and Kiruna at midnight showed some magnetic variations

during this acquisition period, a substorm did not commence until a few

minutes after the pass. On the next revolution, 2834 (panel 2), pre-

cipitating electrons with fluxes greater than 10 6 at 7.3 kev were measured

at latitudes below 68 0 at experiment turn-on at 2145 UT Just after midnight
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MLT, and almost over Murmansk, as shown in the polar plot above this

panel. Surprisingly the magnetic field at Murmansk and Kiruna had almost

returned to normal during this pass. Towards the end of the data ac-

quisition period on this revolution moderate fluxes of electrons at 7.3

kev were again observed in the morning hours from 750 down to 670 . In

the following revolution, number 2835 shown in the third panel, a similar

behavior appeared both in the portion of the pass post-midnight and

during the morning hours. The next revolution, 2836, had more fragmented

precipitation post-midnight, but again similar fluxes at 7.3 kev during

the morning hours. even though at this time the magnetic field near local

midnight at Leirvogur was quiet.

Several hours later data were acquired from a midnight to noon pass

(Rev. 2839, plotted in the last panel of Figure 8) when the magnetic

activity at midnight, now measured by Great Whale River and Churchill

(Canada), had completely subsided. Particle precipitation was almost

non-existent in the midnight portion of the pass from 0548 to 0551 UT,

but the high latitude boundary of the local noontime precipitation region

was observed before data acquisition, ceased at 0601 UT.

Again, with this series of passes there appears a lack of correlation

between the occurrence and intensity of electron precipitation in the

late morning hours and simultaneous magne tic cuaditions near midnight,

whereas the existence of earlier magnetic activity near midnight seems

to be a necessary condition for morning hour electron precipitation.
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4. Energy Spectrums

Only four point energy spectrums of near 0 0 pitch angle particles

could be obtained from the experiment. In general, the spectrums may

be grossly characterized as "knee-type" (Figure 9), that is, the slope

between 2.3 kev and 7.3 kev is less than. above 7.3 kev and below 2.3

kev. Spectrum labeled "2", however, has a constant E -1 slope. Unfor-

tunately the energy resolution of the experiment was not sufficient to

distinguish structure such as peaks in the spectrum in the kev energy

range, such as have been observed in breakup and pre-breakup aurora

(Evans, 1969).

Under the assumption that the precipitating electrons were isotropic

over the upper hemisphere at all energies (see Pitch Angle Distributions,

following) the energy spectrums of the energy influx were calculated for

the three spectrums in Figure 9 and are plotted in Figure 10. The knee-

type spectrums show peaks in the energy input at the 7.3 kev detector.

An estimate of the total energy input in the range 0.7 to 25 kev results

in 6, 5 and 2 ergs/cm2 -sec for the three spectrums, respectively. With

a loss cone of about 600 to 700 , about one-half to two-thirds of this

energy is lost into the atmosphere.

The energy spectrum during revolution 1108 (Figure 9) was previcusly

published (Hoffman, 1969, Figure 3, labeled "Band"), and was used by

Rees (1970) to examine the effect of these bombarding fluxes on the atmos-

phere. One of his results was the calculation of the integrated column

emission rates for the X3914 and X5577 lines for this spectrum of incident

electrons and he obtained 0.60 and 0.43 kR respectively, about the levels
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observed by Sandford (1964, Figures 7 and 9) for Kp of 1 to 2. The

spectrums measured during revolutions 991 and 992 contained energy in-

fluxes a factor of three larger, and assuming the same relationship

between total energy influx and the intensities of the emissions which

Rees calculated for revolution 1108, the column emission rates in the

kR range would be obtained. Such intensities were measured by Sandford

for Kp of about 3.

Therefore, the electron energy influxes measured by the OI;0-4 experi-

ment appear to be sufficiently intense to produce the mantle aurora.

5. Pitch Angie Distributions

Four point pitch angle distributions at the energy 2.3 kev were also

obtained from the experiment, and three example distributions measured

in the morning hours at the latitude of the mantle aurora are displayed

in Figure 11. in general the distributions indicate isotropic distributions

of the electron flux uver the upper hemisphere..

At this time we do not consider departures from isotropy shown in

the figure to be significant because of the difficulty in making these

relative measurements with independent detectors. About two weeks after

initial turn-on the experiment was beset with some noise problems in the

detectors, which worsened with titre in orbit. While the analysis of the

data involvec the subtraction of this noise from the counting rates,

with estimates of the accuracy of this background included in the error

bars of the plotted points, theee remains some uncertainty in the exact

values. We are confident, however, that these problems do not affect

the general results presented.
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6. Spatial Distribution

A preliminary study of the spatial distribution of the precipitation

region of 7.3 kev electrons has been performed utilizing about 30 obser-

vations of the band region between 06 and 12 hours MLT. In addition to

the previous definition, of the band region, i.e., the precipitation of

7.3 kev electrons not in coincidence with structure- 0.7 kev electron

precipitation, an additional criterion was imposed: the flux at 7.3 kev

must have exceeded 10 6 electrons/cm2 -sec-ster-kev. Figure 12 contains

the average boundaries of this region for two hour intervals between 06

and 12 hours MLT. Assuming the energy spectrums are consistently shaped

like spectrum number 1 plotted in Figure 9, this flux at 7.3 kev on the

basis of Rees' calculations (Rees, 1970) would correspond to the energy

influx which would produce the 0.25 kR contours of Sandford (1968, Figure

3). Therefore, this contour of X3914 emission is also plotted in Figure

12 for the mantle aurora. Finally in the same figure we have plotted the

region of discrete auroral emissions as observed on all-sky camera photo-

graphs taken during the IQSY (Stringer and Belon, 1967). These boundaries

are based upon the incidence of rayed arcs during 15 minute intervals and

are the dominant auroral forms for defining the auroral oval in these

morning hours (see also Feldstein, 1963; Lassen, 1967).

While the coincidence between `'he 7.3 kev electron flux and the X3914

emissions is not exact, it is clearly apparent that the electron

precipitation region is much more closely associated with the mantle aurora

than the auroral oval. Exact agreement would not be expected because the

optical data were acquired during the southern winter of 1963, whereas
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the particle measurements were made during the last half of 1967 and the

beginning of 1968 from both northern and southern hemisphere passes. In

addition, criteria established to define the respective boundaries are

not necessary entirely compatible.

On the basis of the following facts: (1) that the electron energy

influx is sufficient to produce the optical emissions which Sandford has

defined as the mantle aurora; (2) both the electron influx profile and

the optical emissions are diffuse in nature; and (3) the regions of pre-

cipitation and light emission are reasonably associated spatially, we

conclude that the precipitation of these drifting electrons, apparently

originating near midnight during substorms, is the cause of the mantle

aurora.

TT Cl1T T CC T n%T

If the precipitating electrons which produce the mantle aurora spend

their lifetime drifting in local time, the magnetic field lines upon

which they existed since their'release near midnight must be closed. In

fact on the day side it appears that these electrons move on lines of

force well within the magnetosphere. Fairfield (1968), in an analysis

based upon IMP 1, 2, and 3 magnetic field measurements and the conservation

of magnetic flux, obtained the transition latitudes between closed and

open field lines. This latitude during the noon hours lay at about 78 0
 ,

several degrees above the high latitude limit of the precipitating electrons,

but at the high latitude extent of the optical emissions. As yet the

properties of these mantle aurora electrons have not been investigated

at hours earlier than 0600 MLT because of the difficulty in identifying
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the precipitation region as uniquely associated with drifting electrons

rather than with coincident substorm activity. Thus we do not yet .,ave

any details of the exact source region at midnight.

If one accepts the lifetime history of the electrons as presented

in this paper, then one must also conclude that there is no major source

or acceleration mechanism for electrons with energies above about 1 kev

during the morning hours at latitudes corresponding to the mantle aurora.

It is also reasonable to conclude that the precipitation mechanism

exists during the morning hours independent of magnetic activity at mid-

night. The observations of preci p itation in the late morning hours occur

both during Che times of activity (revolutions 1242 and 1243, Figure 6;

revolution 990, Figure 7; revolutions 2833, 2834 and 2835, Figure 8) and

during magnetically quiet times at midnight (revolution 1108, Figure 5;

revolutionsl244 and 1245, Figure 6; revolution 993, Figure 7; and revo-

lutions 21336 and 2839, Figure 8). The precipitation apparently occurs

when a particle population drifts through an existing phenomenon which

causes the precipitation.

The precipitating electrons display two dominant characteristics of

the effects of strong pitch angle diffusion:

1) The maximum precipitated flux at 7.3 kev appears to be nearly

constant, independent of the substorm or time after the storm. Note in

Figures 5 through 8 in the morning hours the maximum flux lay between

2.3 and 4.0 x 10 6 electrons/cm 2 -sec-ster-kev. In Figure 6 the maximum

flux varied from only 2.6 to 2.9 x 106 electrons/cm2 -sec-ster-kev for

the four passes which occurred over a time interval of 5 hours. In his
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treatment of strong pitch angle diffusion Kennel ( 1969) states "..: the

.precipitation rate becomes relatively insensitive to the size of the

diffusion coefficient", and therefore depends only on the size of the

loss cone, so the maximum flux should be constant. - A particle diffk,ses

across the loss cone in less than the quarter bounce period, or

Do Tg/ao2 -,> 1

where Do is the diffusio, coefficient, TB the quarter bounce period

(about 3 or 4 seconds), and ao is the size of the loss cone (about 20),

so

2

Do >> ao _ 10-3 /second
T^

2) The pitch angle distributions of the electrons at the altitude

of the satellite and, therefore, over the loss cone, are nearly isotropic

(Figure 11). Converting the local pitch angles of the measurements to

equatorial pitch angles, the measurements near 100 and 830 convert to 0.20

to 0.30 and 1 . 50 to 2.10 equatorial pitch angles respectively, depending

upon the magnetic field strength at the equator for these lines of force.

Again, Kennel ( 1969) concludes, "the fluxes within the loss cone approach

isotropy and become more nearly equal to those outside."

If one assumes the dependence of the diffusion coefficient on pitch

angle which Kennel used, D=Do sings ;^- Do aq , the condition of isotropy

implies q must be positive and less than 2. Using his equation 12 and

taking the ratio h(a l )/h(a2) _ 1 for a l = 0.20 and a2 = 20 equatorial

pitch angles,
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where p=q/(2-q) and I  is a Bessel function of order p and imaginary

argument. The argument of the numerator is always smaller than the

argument of the denominator for q < 2, and the values of these Bessel.

functions monotonically, increase for all orders p. Therefore, if q 	 0,

both 1.Oq/2 and the ratio of the Bessel functions are less than I for all

Do, so no-solution exists. Aen . q > 2 the pitch angle distribution will

be isotropic part of the way into the loss core and then will plunge

exponentially to zero at -i = 0. This case is probably eliminated by the

observations of isotropy extending to equatorial pitch angles as small

as 0.20 . Thus we have the conditions on the diffusion process that

Do >> 10- 3 /sec and 0 -- q < 2.

Strong diffusion has the additional property ttiat the particle life-

time is determined onl^ by the geometric sine (if the loss region, and

therefore is utiependent upon the :source strt , ngLh or intensity of the re-

servoir of particles -with pitch angtius larger Chan the loss cone pitch

angle ( Ken+lel, 1969). The l.ifetitae is then C,. = T	 G x 10 3 sec ft^r-- z -
2 0 .;'lie appa rei1L t i p,.* On OIL'5a. : iS Of thy uaca for Lite e1.C:'rOria

Lo drift t rom midnight to noon i-i of the orde r of b +iokirs, O r S % W

about 5 times longer than the lifet-Cae.

Irmori.n).: the C1teCL OC aLuong di ffutsion as au a^_c4: leration prlices:i,

Lhi li lifVLi;.+u c an be used to esti+,)atc Cie. source 	 in the +:idni.Ai+t
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region. We assume that the particle population has been depleted by the

time the electrons have drifted - to noon, since little precipitation

occurs in the early afternoon hours. We cannot rule out, of course, the

situation where the precipitation mechanism also was absent from these

hours. Following the approach of O'Brien ( 1962) for calculating the time

to deplete the particles in a tube of force, (r),

T .., 0.1 L4Jo

DO

where Jo is the omnidirectional equatorial flux at midnight, D is the

rate out of the tube of force, and 	 v/c then

J°
WT
 0.1 L4

Using rough energy fluxes instead of omnidirectional intensities with

D 5 ergs/cm 9 sec,"p = 0.15 for 5 kev electrons, T = 8 hours, and L _ 10,

Jo _ 22 ergs/cm2..- sec

or an energy density of about 0.5 x 10 -8 ergs/cm3 . This is equivalent to

the energy density of = 35y magnetic field. Since we have not traced the

mantle aurora electrons back to the midnight region a com parison between

the particle energy density and a measured magnetic field energy density

in the source region cannot be made. If the source is in the cusp region

(Anderson, 1965), where the magnetic field gradient is large (Fairfield,

1968), the field is capable of holding many times its energy density in

trapped particles (Hoffman and Bracken, 1967).
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The concept developed in this analysis of the release of electrons

from the midnight hours followed by a drift through the morning hours

with an encounter with-a precipitation mechanism is synonymous with the

"drifting rain cloud" model proposed by Pfitzer and Winkler (1969) to

account for intensity increases of > 50 kev electrons at the geostationary

orbit. Of course, the drift rates of the 7.3 kev electrons are an order

of magnitude slower than the rates for the nominally 100 kev electrons

(Arnoldy and Chan, 1969).

The region of precipitation of the low ent-gy electrons is somewhat

at variance with the pattern described by-Akasofu (1969) during the de-

velopment of a substorm. He indicates that 5 kev electrons appear con-

centrated in the auroral bulge in the midnight sector and also rapidly

expand in local time-along the noon hemisphere auroral-oval. We would

suggest instead that the 5 kev electrons slowly expand through the morning

hours following the locus of the >50 kev electrous, rather than move into

the noon hemisphere auroral oval. The noon hemisphere auroral oval 5 kev

precipitation does not seem to be associated with these substorm released

particles.

SM414 RY OF CONCLUSIONS

While this limited body of data is insufficient to prove a unique con-

_ action between the release of a drifting body of electrons in the midnight

sector during a subsLorm and the subsequent precipitation of these electrons

in the late morning hours, this sequence of events appears to be the simplest

and most reasonable explanation; otherwise the ]al:e morning precipitation must

be associated with some so far unobserved or not readily observable phenomenon.
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We summarize the model proposed for the history of the electrons

composing the band region and the conciusions derived from this study:

1. Electrons in the energy range 0.7 kev to 25 kev are released on

closed magnetic field lines in the midnight region at the time

of magnetospheric substorms.

2. These electrons drift on closed field lines through the morning

hour:: at least as far as noon.

3.- The drifting_electrons encounter a precipitation mechanism which

is present independent of magnetospheric substorm activity.

4. These precipitating electrons can produce the mantle aurora at

least during the local Mmes from 06 to 12 hours.

5. This body of precipitating electrons does not produce the aurora

in the late morning or early afternoon portion of the auroral

oval.

6. No morning or noon energization mechanism for electrons is necessary

to account for the mantle aurora.

i. The precipitating electrons display the effects of strong pitch

angle diffusion: tl:e .A ffusion coefficient must be greater than

about 10-3 /sec while Kennel's (1969) q must lie between 0 and 2.

This range of q's implies that the diffusion mechanism is not

highly concentrated either at the equator or at low altitudes.

8. The lifetime of the electrons is 	 about 6 x 10 3 set.
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FIGURE CAPTIONS

Figure 1. Data from a northern midnight pass during a' magnetically- quiet 	 -

' period showing the lack of electron precipitation near mid- 	 -

night at such times._ It=-also gives^a baseline in particle

- fluxes for-comparison with the _-following examples _ 	 -Sed text

for a :general explanation of-the content of the figures.

Figure ° 2. _ D&ta^during a .large -and lengthy. magi toopUer t--substorm - showing

large; fluxes,--of -precipitating electrons near midnight, but	 }

nothing near noon.	 _	 a

Figure 3. Data during a large and lengthy magnetospheric substorm showing

only-small fluxes precipitating near noon even five hours 'after"

the onset of the storm.

Figure 4. Data during a large magnetospheric -substorm showing the lack

of precipitating -electrons in the early afternoon, but la^:ge

fluxes in the early evening hours.

Figure S. Data from a late morning pass showing the presence of precipi-

tating electrons five hours after the end of a substorm near

midnight.

Figure 6. Data from a series of four passes showing the electron preci-

pitation in the morning hours five to ten hours after a sub-

storm at midnight.

Figure 7. Data from a series of noon and midnight passes showing decreasing

electron precipitation at night coincident with decreasing mag-

netic activity, but constant electron precipitation at noon..

It is argued that the electrons in the noontime precipitation"

originated during the substorm some eight hours earlier.
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Figure- 8. Data from a series of morning and post midnight passes showing

decreasing electron precipitation at night coincident with

decreasing magnetic activity,_but continual electron precip-

it 	 during the morning hours.	 xt -3_s argued that the

electrons =in the;:morning.praciuitation during revolutions

283 through 2836 originated from the midnightegion during

` -the magnetic'act-iyity- during 	midday UT.- while. Cast during	 ;.

:revolution 2839 originated. from-- tiie midnight region during-

_ the magnetic activity from 20 to 24 hours--UT.;

--	 -	 .` -	 Figure	 .9.. FouV point energy spectrums of near 100-: local pitch angle

- elect-tons in the region of the-mantle aurora.

Figure 10. Energy spectrums of the energy_ influx calculated from the

spectrums in Figure 9 assuming isotropy over the upper hems-

sphere.

Figure 11. Four point pitch angle distributions at an energy of 2.3 kev

in the region.of the mantle aurora. 	 The flux for the distri-

bution labeled "3" should be multiplied by 10.

Figure . 12. A polar plot of the spatial distribution of the 7.3 kev

electron precipitation during the late morning hours in com-

parison with the region of X3914 mantle aurora emission

(Sandford, 1968) and the auroral oval ( Stringer and Belon,

1967).
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