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AN ANATYTTICAL AND EXPERIMENTAL'STUDY OF THE INFLUENCE
OF COMPONENT VISCOELASTIC SHEAR MODES ON
LAUNCH VEHICLE TORSIONAL DYNAMICS

Ross L. Goble

¥’

ABSTRACT

'

- This research report presenté[an aﬁalytical_inveétigation of the

Influence of viscoelastic shear modes of 'a solid propellant motor.on the

torsional dynamics of the parent launch vehicle‘system.‘_Tﬁe eqﬁaﬁions
kof motion which describe the behavior sf f@e~5robellagﬁlin pu?e shear
are derived from the théory of elastiéify,‘w;%h;%he pfopellant
mathematically modeled as & thick-walled hollow cylinder. The resulting
general solution of thé governing Bessel's eguation is then evaluated
for ffee-freea ffee-pinned, and pinned—free(boundary conditions. The
frequency determinant is also established for the same boundary condi-
tions., A coirespondence principle is invoked to obtain the associated
propellant frequency characteristics in the viscoelastic ;egiﬁe. The
composite gsystem problem consisting of the combined propellant and
launch vehicle_components is then developed using Lagrange's equations
for dissipative systeqs with coupling.constraint conditions expressed as
Lagrange Muliiplier relations. ©Small damping assumptions are made, and
the problem is expressed in matrix form. A frequency scaling technigue

is used to circumvent the singularity problems which arise in the

solution of the system eigenvalue problem due to the presence of the



Lagrange multiplier relations. A si@plified experimental technique is
then employed to verify the method of systems analysis.

Application of the analysis to the torsional dynamies of a con-~
temporary sxisymmetric launch vehicle with a small solid propellant
segment attached as an upper stage is presenﬁed. C;mparisons of system
dynamic characteristics for the assumptions of elastic, viscoelastic
ﬁnd rigid propellant inertias are provided. Results indicate the
necgssity for considering propeilant shear flexibility about the
rotational axis of symmetry in assessing composite system dynamic

response to oscillatory torsional excitations during flight.
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L. INTRCDUCTION

-

Various analytical methods have bfaen developed for examining the
dynamical behavior of viscoelastic propeliants to include %he effects
of temperature and pressure’ bfhj,'angular oscillétion-effects on
ablation {5], thermomechanical behavior;durigg‘cyciic ;oading ugﬂ, free
and forced multiaxis vibrations @Lié],‘and‘other éynamic phenomena
EE;, 2@]. Iﬁ short, the viécoelastic cylinder, case”ﬁqndgd at‘its outer
boundary to an elastic cylihder; ﬁas been)rig&rpqsly treated enalyti-

cally for a wide range of signifigant bound;ry conditions and motion
chfa.ract‘eristics, These a.nalyt:‘i.cal 'mt;‘i:-hod.s de,afl. ‘]‘.I_l general with highly
idealized structures, but have application téilaunch vehidles wherein
the solid propellant motor is the prime mover. Even so, Baltrukronis
{211 has pointed éut the laek of well-founded methods to quantitatively
evaluate the contributions of the propellant to the dynemic responses
of the composite structure. Achenbach @é}‘also has stated that the
interaction of the coﬁbustion process and the mechanical vibrations of
the solid rocket shopld be further investigated.

An equally importent interaction is that arising in launch vehicle
systems where small solid propellant rocket motors’ ars used in’upper
stages of launch vehicles in which the main stage is liquid-fueled. In’
this case the solid propellant prior to its ignition is genersally
treated as a rigid body in analyzing the overall vehicle modal
characteristics. Otherwise, the coupled system.thus described ﬁas

received lititle attention in the literature. The rigid body simulation



of the solid propellant, however, is not thought to be sufficient for
enalysis of the vehicle system response to cscillatory torsional

. _
excitations which can oceur in the flight profile., The purpose of the

present paper is to investigate the torsional responsé characteristics

Lt
-

of a more realistic launch vehicle syé_tem E:omprj:sed :Z)f a long elastic
thin-walled vehicle cylinder containing a cpnc;ﬁtric viéEoelégtic solid
propellant upper stage attached o§§r a short'po?t;on:of the‘elag%ic
vehicle cylinder. Comparison% qf the r??ponsé fréqpenciégland mode
shapes of the total system fof'vari‘ous ‘assumptions _ccgncerning tile visco-
elastic eylinder are pr_esent‘ed.j vTAhc‘a primary! value of the im{estigatio’n
lies in the fact that the ma,j;rii:y é)f the work doxief’ gle] éate involving
elastic and viscoelastic -cy-linders {v;i.th applica.t;‘.bn t'p solid propellants
has pertained to the solid propellant and its’ﬁon,ded containe"r per se
without relation to the overall systems problem,

As pointed- out by Ache:nbach [?5] , analytical methods_ for determina-
tion of propellant dynamics are important, not only to ensure propellant
structural integrity, but also to brovide information on propellant
natural frequencies and mode shapes for analysis of the co:nple:te 1a’unch
vehicle dynasmics. It is a problem in this latter category to which the
Present investigation is addressed.

As previously mentioned, while the dynamics of solid propelilants
have been examined considerably in the literature, natural vibration

characteristics of propellants in twist or torsion appear to have

received the least attention.
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There have been some recent works, hoiarev'er, whic}l- treat ‘the torsion
problem well, An example ié fhé work b§.Ke;kar Bﬂq which provides a
closed-form sclution for a holloﬁ elastlic cylinder bonded. FO 8 thin -
casing of a different mater‘ial. Th;cv’ee-dirﬁénéio_nal.l elasticitir theory is
utilized, and the approach represents a hi-gh:er @egrpé of soph@}sti‘.cation )
than torsional solubions such as Achenbach's '[25] which involved only
one displacement component. o

" Other investigators such as Sann and Shaffer [26] and'Baltmkronis,
Chi, and Gottenberg [27] performed slastic transverse vibration studies
for layered cylinders in which two displacement components were obtained.
Since the problem under consideration, however, is one of total vehicle
torsional respénse in which the encased propellant represents but one
entity, it was lmportant to survey the literaturs for studies' pertinent
£0 dynamics of vehicle sﬁstemé. It was found that even when launch
vehicle systems have been considered, attention has generally been
directed analytically and experimentally toward modes of vibration and
response characteristics which do mnot pertain to torsion '[28-33] R
Matrix methods for discrete mass launch wvehicle re];;resentation are, c;f
course, plentiful and practical since such vehl:.cles are generally
composite axisymmetric bodies, discontinuous with regard to distribution
of physical characteristics along the axis of symmetry. (Aun example is
provided in reference [54] .) While many analytical methods exist for
motion analysis of such vehicles, using single beam discrete mass
representation [35] ag well as branched-beam methods [361 s, recourse Lo

discrete analogies and numerical methods of solution via computer are



e

commonplace; therefore, existing analogies will be used for the dis~
continuous elastic cylinder portion of the systém.inve%tigated herein.
Governing equations‘fo}'therpure shear natu;él-modes‘and
" B “ v ‘

frequencies of a thick-walled cylindrical prepellant are derived from

basic linear elasticity theory coﬁsideriné free-free, free-pinned, and
-pinnéd—free boundary conditiong; A dynamical correspordence prineciple
Y . .

is then used to obtain the natural fré@ugncieé in‘the'viscoelastié

medivm. The short viscoélastic”?ylindrical propellant - long elastic
cylindrical vehicle system is coupled through the use of Lagrange

. Multiplier constraint relations. Lagrangéﬁé equations.are then used to
develop the total éystem eigenvalue problem. Variations in-the elastic
restraints at the viscoelastic disc ~ elastic cylinder interface then
permit system dynamic characteristicé 0 be examined on a parametric
constraint condition basis.

The eigenvectors cobtained define the modal coefficients -of the
component modes which are subsequently used %0 establish system modes
at the cbmposite system frequencies. The anelytical method thus
developed is sufficiently general to handle a wide array of linear non-
homegeneous systéms of equations‘whereiﬁ the physical dynamics problem
inecludes elastic or viscoelastic elements separately or in combination.
* Ag previously mentioned, the method has particular application to the
launch vehicle system problem at hand,

A simplified disc-shaft experimental model used to verify the

‘method of systems analysis is discussed, and analytical system natural.



frequency characteristics are compared against the experimentally
determined data.
The method of analysis is then applied to & characteristic launch

vehicle, Elastic,viscoelastic,and rigid propellant shear modes are used,
respectively,in combination with launch vehicle forsional modes to pro-
vide a comparative study as to the effects of such propellant

' 4 H
assumptions on launch vehicle system torsional response characteristics.



il. DERIVATION OF THEORY

The approach taken in solving the systems dynamical problem is to
first develop the dynamic elasticity solution for thé propellant segment
(figure 1) in a pure shear mode, [Justification for the assumption that

thg propellant segment behaves in pure shear is provided later in the

digeussion of the theory application to a launch vehicle é';ystem

*

problem. ) - ‘. .

Both the elastic and viscoeléstig propellant dynamic characteristics

*
[}

are developed in the present chapter.

’
" ‘1

Pure Shesar Elasticit& Sdiution

The tangentiél eéuilibriUm equation for plane’problems in polar -
coordinates is [37]. ) CaTE :

<

30, oT " T e - oo
= TP - R y

?9@+ e + 2 + By =0 . '(2-1)

+ '

*

H-

+

The body force per unit volume, E@, can be- expressed for the shear

problem as

ge

T, o= 5 28 o (2-2)
? at2

but p = ¢r, thus
Fy = -Sr'c'p, " {2=3)

Now, making the assumption of pure shear motion, substituting relation

(2-3) into (2-1), and simplifying, the governing equation becomes



DIFFERENTTAL ELEMENT CONSIDERED BELOW
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PROPELLANT CROSS~SECTION
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Figure l.~ Propellant section coo:cdinatés.
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Expressing the shear stress in terms of the shear modulus,

0 (2-h)

fl

o = GFVxg 5 (2-5)

and it can be seen from figure 1 that the shearing strain is

e =

Therefore _ !
. . 3

T O 5 (2-1)

Also 7 R
O ' .
rp _ (. % . d _
or ( re F) GF ) . (2-8)

E)

‘Making the substitution of relations (2-7) aﬁd .(:2-8). into (214) and

simplifying, the governing eguation takes the form

Qf

ag-{-%?;-_-—%(p*o {2-9)

&

Now p = ¢r, and if it is assumed that the cylinder oscillates with
undamped hermonic motion, p(r,t) = p(r)el®®, and the first order

derivative of ’eq,uation (2-9) is obtained as

; .
3% T8 P 13 o _ imhfp' _ D
3;-“*%“*~;5;‘;§-61“’(?';§) (2-10)

where for the sake of brevity, p = p(r,t) and p = p(r) here and in



the following development. The second order derivative of (2-9) is
developed from (2-10) as

3% _ % d :
rZ8.® o . |
¥p T32 o T eimt(p__ P _p 2_P) (2-11)
r

are re B ¥ T T2 2 13

Also

c-;; ="% = ~a2elnt % (2-12)

Making substitution of relations (2-10), (2-11), and (2-12) into
equation (2-9), and multiplying througﬁ by et pesylts in the”

differential equation

S B oo (2-13)
T

which can be simplified to

p' 2 & 1]
=+ |0 —~=|pP=0 - (2-1h)
v [ Gr re]
Maki . . 0=5 _ 12 . .
ng the substitution Ty " A= dnto (2-14) yields
H
"+ 2+ (7\2 - L)p =0 (2-15)
r e .

-

which is precisely the Bessel's equation of first order with parameter

A, for which the solution is

N *

o(r) = & () + By () - T (2-16)
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The physical boundary conditions for the free-free natural mode

investigation are that the shear vanish at r =R, and T = Rjj

therefore, S .l . 0 (by equation (2-7)); hence & _ p(z)
ori{g; Orig, . dr r
(by equation (2-10}); thus
Qg _ P(RO) dp B p(Ri) (2—17)
dr R ar Ry B

Ro

Substituting equation {2-16) into the outer and inner redius boundary -
conditions of (2-17) yields

ATy (ARg) + BY1'(ARo) = p(&) (2-18)
AJ]_‘(?\Ri) + BY]_'(-I\‘Ri) = P;i%) ('2—1.9)
1

Substituting for p(R,) and p(R;) in equations (2-18) and (2-19) in

terms of the exact solution (2-16) and rearvanging, the resulting set of

simultaneous equations is

AEIJ_'{(?\RO) - Xjé—o 31(7\30‘)} * B[Yl'CK_Ro) "X%;‘ Y1(7\‘Ro):“ =0
A[Jl'(mi) - ﬁ}l- Jl.(?\Ri)] * B[Yl'(hﬁi‘) - M-%— Yxkkai)} =0 (2-20)

L

Now the recurrence relstions for Bessei functions include the fpllowing:

FILHNE) = Wy (D) - 03g(R)  (e-a1)

i

where 'n indicates the order, and X, the argument. Also
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| R, (F) = Te,_1(X) - 0, () ' - _ " (2-22)

- H
i v

Making substitution of (2-21) and (2-22) into (2-20), the resulting |

set of equationg, simplified and expresséd in matrix form is ! L
. ., v )

Modo (M) - 203(ARs)  NBo%(WRo) - 2 (ARo) || &

| ‘ 0.  (2-23)
| MRido (AR;) - 2J7(AR;) AR Yo(AR;) - 20(ARg) | [ B] -

1

z

The system of -equations (2-23) has a solution other than the
trivial solution if, and only if, the determinant of the coefficients

is egual tc zero. The resulting secular eguetion for the roots A, 1is

thus
'[?\nBoJo’(kR‘o) - 251(7\1:{0%' [AnRiYO(?\Ri), - 2Yl.(7\Ri£]
- [KnBoYo(%R;)) - QY]_(?\Roﬂ [knRiJo(kRi) - EJl(miﬂ =0 (2-24)

The mode shape can now be -developed with the houndary conditions
expressed in terms of the Bessel's functions.
Substituting equation (2-16) into equation (2-19) for plr)

evaluated at r = R; ylelds, after simplifying

J1{ARs)
ARy

73 (ARs)

AlT1'(ARy) - R

- |y Ory) - (2-25)

or
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Y, (ARy)
[Ylmi) ) _L_]
) ARj
A =B (2-26)
&T ‘(KR") chﬁﬂi)]
Thus the mode shape {2-16) eliminating the arbitrary constant A 1§
- . i - . N
. Y (Ry)
- Y3 (ARg) - T -
. i i
p(x) = BY(Ar) - | e | 3 () (2-27)
. DRy |
J17(MRy) - = ;
. - R ! ‘
\. . : ' .o J

or after use of equations (2-21) and (2-22)" and further éiiﬁplify;ngj
(2-27) becomes T ) ; o
> ‘ P

»

o(r) = §{[:hRiJO'(7\Ri)' - 2Jl(hRi)szx(h?) - [?\RJ:_YIO(?\R]-_-)‘ - 2,Yl(7;f€i~)J‘ J‘I(J\r)}

] . - P . *
’ : . (2-28)
where

B

B = - -
MRido(AR: ) - 207(ARs)

and since B 1s arbitrary, we can choose it such that B =1.

The mode shape normalized at = RO takes the final form

[hRiJO(RRi) - éal(mi)]yl(xr) - [miyo;(mi) - eyl(mi)]jl(?\r)

r) o= -
_'p( ) [?\RiJO(ARi) - 2J (hRi)]:Yl(RRO) - [ARiYO(?\Ri) - 23{1(7\3-i )]J1(7\RO,)
‘ (2-29)
Thus the free-free motion of -the elastic propellant segment is
completely defined by equation (E-éh) for freguencies and.(2;29} for

mode shapes.,
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Before proceeding to the viscoelastic solubion for the propellant,

brief discussion of three appendiceg related to the propellant modes is
in order. General frequency and modal relations, for‘which equations.
{2-24) and (2-29) are special cases, have been included in Appendix A.
Other boundary conditions described by selection of' proper coeffic%ents
in these general reilations are pinned-free and free-pinned shear mode
conditions. Orthogonallty conditions for the free-free moles are
developed in Appendix B. Also, an_altérnate method of solving ex-
,pressi;ns (2-24) and (2-29) using asymptotic approximations to the
Bessel's functions is provided in Appendix C. This method of solution
to the problem at hand was. developed specifically for an early stage

of the analysis and,to the author's knowledge, does not exist elsewhere
in the published literature., It should also be pointed out yeye that a

computer program has been developed for thfs‘investigation to solve?‘

relations (2-2L4) and (2-29) and is included in Appendix E; .
- - I ’ ' - "4

Returning to the present analyticaliprocess,_it is nexf.required to
1 . i

establish the viscoelastic natural motion déseription for the prb:

- ¢ i

pellant in shear. Eguations (2-24) anﬁ (2-29) will be used in this

.
[

development. ! S

Viscoelastic Solution

It is well known that various means can be employed to obtain the
viscoelagtic solution directly from the elastic solution provided
certain criteria are met such that the dynamical correspondence

Principle applies. Although meny quasi-static problems have heen

solved through the use of Laplace transform btechnigues, few classes
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of dynamical problems have been solved via correspondence principles.
As is pointed out in the literature [?%], Fourier transform ‘techniques

have been emﬁloyed for some dynamical problenms,. witp‘inversian of the

4 ' *, !

transformed scolution after substitution of wviscoelastic . moduli oftefz-
being guite difficult, Fisher and Leltman [?9] have developed:a o

correspondence principle which utilizes the Fourler transform technlque
H ' R {

and which applies to the propellant natural motion being considered

herein., The authors provide an ana.l},"blcal proof for the hﬂothe51s

that if the elastic mode shapes of s:l_mple free v:.bratlon are dependent’

upon only cne relevant relaxation functlon, .the V1scoelast1c: mode -
shapes are the same as those developed for the assocn.a’ted elastlc

material (specifically, those described by equation {2-29) in the

present analysis), and the frequencies are related by the expression

[z-‘g—:r =1+ Gé(g‘r) (2-30).
where
wy = viscoelastic natural fr:equericy -
‘w, =-elastic natural frequency established by equation (2-21+)
@G° = the zero frequency, (or elastic) shear moduius
and

[ =L/;mé(se)e-iw‘fs ds

which is the transform of the viscoelastic shear modulus, Equation
(2-30) evolves from the following considerations., Using the notation

of [39] » an operator ILg . is defined as



Lue(x,t) = @%(x,t) +b[(‘) &e)glx,t-s) ds (2-31)

where G° = the shear modulus at zerc frequency snd G{g) is a real-
valued differentisble function on (0,») whose derivative G(s) is

absolubely integrable. Also, the integral E(mv) is defined as
a("-‘v)‘=f G(s)e V8 as (2-32)
0 .

For solenoidel motion of a homogenecus isotropic viscoelastic

solid, the governing equations can be written as
3%u
IgVx (VX 1) = = (2-33)
ot

where W is the displacement funetion and

r

IR SR T o -G-
G = the shear.function = ——Hgﬁ_(ﬁl

Now if simple free vibrations are assumed, where the definition of

simple [ 39] for solenoidal motion is
Voeu=90

then ux,t) = f(:c)ejm‘~rt , and by making use of equation (2-31) and

(2-32), (2-33) becomes

oBay? s
V2e(x) + _0“’"____ £2(z) =0 - . (2+34)
G. N

+ Gloy)
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Mso for the elastic regime, if £(x)c¥et geseribes a simple free

vibration, .the resulting equations of motion are

26w€

FE(x) + £(x) - (2-35)
Subtracting (2-35) from (2-34) ands simplifyiﬁg vields ,
Wy 2 . G(wv) \l ) o
[‘”—e] Sitveo - (8-36)

oy . . .
waich is the same relation as (2-30) and means that for a simple free

Yo v .

vibration, the mode shapes‘of‘éhe’viscbelaétic solid are the same as

those of the associated elastlc solld and the frequenc1es are, related
by (2-36). Note that G{ay) 1s-t£é Fourier transform shear modulus
and we seek the value in the frequency domaln, such that the

relatlon (2-36) is usablg in 1ts present form. ® Now it has been

shown that for maz?;} filled and unfilled polymers, -the storage and
loss moduli,. G; and G2, respectively, may be feplaced in the
expression Glavy) =lGlQD73+ 16wy )

by

n

G = Ko,k . (2-37)

and

Gp = Koy, © (2-38)

where Ki and X5 are constants and & .and . .are exponents,
It has also been shown that for speclflc frequency ranges of*
interest, the ratio of loss modulus to storage modulue is qplte small,

implying swall damping. The assumption will be made at +this point,
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therefore, that the loss moduius may be neglected. Thérefore, replacing
Glwy) in expression (2-20) with the storage modulus G; from (2-21),

che obtains

[C-D—"]E =1+ Kl% (2-39)

e Go

Wote that fregquency dependence of the viscoelastic shear modulus
is retained with the compiex component neglected. This implies that
the analysis hereafter is viscoelastic in the sense that the shear
storage modulus is frequency dependent, but is quasi-elastic inwthé
sense that damping is neglected. Thus, the free-free propellant shear
motion description is complete, with elastic eigenvalues, A,

established by relation (2-2#), and elastic frequencies determimed by

2
[d)) 2 = ..?.\_...G-.F_.
e 5 '

Viscoelastic frequencies are given by relation {2-39), and viscoelastic

(as well as elastic) propellant modes are established by equation (2-29).

t £

It is now necessary to develop the systems problem by deriving ‘the

'
]

governing equations which couple the viscoelastic propellant segment

- . L]
to the launch vehicle cylinder. This derivation is contained in the |

féllowing chapter.



ITT. SYSTEMS ANATYSIS

To this point, we have developed the propellant free-free normal
mode solution (2-29) and the viscoelastic frequency expression (2-39),

both restated here for the purpose of continuity

[mi.rotmi). - 2Jl'(7\Ri)j T, (Ar) -'[miyo(mi) - 2Y1(7;Ri)_]f J, (k)
(M8, (ARy) - 27, (W] Yy (ARy) ~[AR,Y, (MR}~ 2Y; (AR,Y]T, (AR )

r) =

(2-29)

@ g ‘chn K |
[ &1 =1+ == (2-39)
e G

Thesz mode and. frequency expressions will be used in the develop-

ment of the systems analysis which follows. In order to develop the
governing .equations of motion which describe the system dymamics, we
will require four basic elements which are as follows:

(1) Propellant free-free natural modes in shear ..

-
[

(2) Viscoelastiec ‘propellant frequencies

(3) Vehicle elastic fre'e-‘fre‘e natural modes and frequencies in
torsion o ’

(11-) Appropriate ph;fgﬂ:,c'al con_Strain%: cé)ﬁdél-’b:i,.éps"wh‘;(":h couple the
propellant Ia.nti‘ vehicle modes together. b ‘

A graphic description of‘the system phys‘ica:lacomp;)ﬁents is provided in figure 2.
The epproach used in dew.réloping the‘ éoupleé. system problem is the

convenient Lagrange's equations method, with the equations expressed

in the general form for dissipative systems

18



19

PROPELLANT CASE
ATTACHMENT TO
STRUCTURAL SHELL |
AT VEHICLE 'sth STATTON

PROPELLANT
SEGMENT

ROCKET MOTOR

NOZZLE ROCKET MOTIOR

CASE

PROPELLANT
SECTION UNDER
SHEAR

VEHTCLE -

TORQUE

Figure 2,~- Launch vehicle system physical components schematic.



20

%E(:]? )‘“ :L * :gzz MBx (3-2)
4,/ 3

e %I 1

where L.

it

the Lagrangian = T (the total system kinetic energy) —

U (the total system potential energy)

L Lagrange multipliers

n

dissipation function (velocity dependent)

a coefficients of the Lagrange multipliers

[3:3
Dissipation has been considered in order to make the solufion more
general, even though damping has been considered as negligible in the
previous propellant dynamics development.

Now the Lagrangian requires development of the system kinetic and
potential energies. The kinetic energy pergunit volume for the

H

propellant segment in shear is R

=

.2 .
ATy =5 6° 4y (3-2)

T

Now p in (3-2) can be expressed in modal series:form as

. P =‘X a_p{r), (3-3)
. n - B ) *
where i

D - ik’
-8 =8 '€ -
n n

&

Therefore, integrating over the propgllﬁnt‘volume, trdrdd, the

propellant kinetle energy becomes
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or

) R - .
Ty = ﬂlﬁf r Zan '-Pn('.r')". dar (3-kk)
A ]

Also the kinetic energy of the launch. vehicle can be expfesse& -as
1 b : 2 :
= 5 \/O 2(x) bpp(x,t)2 ax ¢ - (3-5)

Agaln, modal series representation of the angular deflection 6

in (3-5) will be used, that is

Oy = z 7 6y (s) (53-6)
1.

where

c, = ¢, e
i i

Therefore, making substitution of (3-6) into (3-5) yields
' 2

L . "
vy =3 20 | ) T s a (5-7)
o] .

i

The total system energy is obtained by adding (3-7) to (3-4), or

B IV = N EEN s
T=:r16f T Zanpn(r?l dr+§f0 Z(x) Z ey gi(x).

i n i

(3-8)
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How the potential energy in shear of‘%he propellant per unit volume

can be written as

Uﬁ .

vol.

rof +

Tro T10. . (3-9)

-

where the volume is 2rdrd8 as defined before. ,The_sﬁéar stress T

has been given in relation (2-7);as i

Alse, from relation (2-6), the shear strain Vv is

_ %
7r$ =T 3F

Substitution of (2-6) and 62-7) into (3-9) and integration over the

2n R 2
_ 1 fo] ap
Uf —'EU/\ Jf GF (%'EF) rdrds
0 Ri

volume yields

or
R 2
_ o (ro
UF = nlGy f T (“ES:F“) dr (3-10)
R
i !
But we have shown in relation (2-10) that
_1(% _»p
235 =

and by relation (3-3)



°
I
>
"
b“d
~
2

Therefore

I

o) aare) (5-12)

where the prime indicates differentistion with respect to r.

Making substitution of relation (3-3) and (3-12} into (3-11) yields

p (r) i \
§%’=%(Z T ) ) - e
n - n ] ’

Now substituting (3-13) imto (3-10) and simplifying results in

UF="?'.GF~/:;)I':Z.B‘ p'(::-)--z‘I P( 1
n

i

o (3-14)

2

which is the final relaticn for the‘pote_ﬁtial enei‘gy.'of the propellant.

The potential energy of the launch vehicle can be written as
L 3 |
_1r f Iy 2 .
Uy =3 f; Try Gy 5 (x0)7 a&x (3-15)
But in (3-6) we had

Oy = z DRAC)

i

Therefore
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aeLV

— = b, (s) (3-16)

Substituting (3-16) into (3-15) yields
1 L . 2
Uiy = 5 1w G f; Z c; §;'(s)| ax. (3-17)
|1 :

The total system potential energy is obtained by adding relations.

(3-14) and (3-17) yielding

Ro o — , - . 1)n( .
U = :n:'&(:'rF @ T Z &, B, (?) - an: = dr .
. oo - -

.12
n)‘
i n '
- A [ .
1 U T :
. 1 N - - Je
+5 Iy Gy L/; }: c; b, '(s)] ax, . (3 18?
f i . - v M ¢ : N

Thus the Lagrangian I can be obtained by subtractiné (3-18) from .-
(3-8) or

42 2
R - LN L
L = nlGg ﬂ r Z 8, pn(r) dr + 5 J; Z(x).lz c, Qi(x dx

n i

+ ,
- %16y L/;jo r‘EZIEZ p '(r) - }: E;fpnir)‘ i dr
. n

[ n -

N L[ _ 2
“Lae fo z (e ax | (3-19)
i
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Now the dissipabtion function abt propellant radius r, assumed to

be velocity dependent is
Fr) = £ K plr,6)2 (3-20)
r)=5Kp r,t) 3= )
vhere K = 2 kn, the damping coefficient (3-21)

n
and from (3-3)

°
]
>~
5”]
SN
2

or

T
1l

Z a_n py(r) '(3122);-

Substituting (3-21) and (3-22) inbo (3-20) and integrating o{r_er',

the radius of the propellant, the dissipation function G becomes
1 R, - i
¥-1 f Z x [ eo)] ar (3-23)
R -
1 =n ;

Now the constraint relations which must be satisfied in coupling
the propellant to the launch vehicle at the common interfa;:e at R0
are that displacemen‘ts and stres_seé be compatible. The mathématicai
statement of the displacement condition expressed in Lagrange

miltiplier form is
AP - R o] =0 ) (3-2)

Now making substitution -of the modal form relations (3-3) and (3-6) for

the propellant and lsunch vehlcle deflections, respectively, '_yﬁ:éld.s
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M) T ) B, ) T (e [ =0 (5-25)
n i

Also, the continulty of stresses across the interface can be expressed

as )
A [T - T, 1=0 . (3-26)
e [T ~Tngy)
where TR o is obtained from relation (2-7), evaluated at r = Ro s O
s) ) :
, _ 3
T'.’(‘CP = GF r E
’ r= r=R
[a} o]
or ’
- - 9P| (3
"Ro = O By 35 (3-27)
o)
r=Rq

But since modal form series have been used, we can evaluste

%’% by using. (3-13) ;s OT
r=R .
o]
&) — L - t- ‘ ; —P——-n(RO) ’
-t "R, Z 8, P "(Ro) - Z "n Ry - =28
r= n. a

Substituting (3-28). into (3-27) end simplifying yields g

0

o B
R Cp Z & p,'(Ro) - z “n R, | (3-29)
. © n ’
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Now the shear stress TR 0 on the launch vehicle elde of the inter-
o LV
face is in equilibrium with the inertis of the launch vehicle, or

2

T = R hap 8 (3-30)
ROBLV LV
By substitution of the modal expression (3-6) for GLV’ we
obhtain
TR .. = BB w?ps Ei e ¢, (s) (3-31)
o LV v .

i

Substitution of (3-29) and (5-51) into (3-26) yields

{ Za p, '(R) }:_ Py Fo) -Rha)p z_c_ P o

L (3-32)’
Equations (3-19) (3-23}; (5-25), and (3-32) now prov1de all the E

It

essentlal elements required to develop the system govermng equations,

by performing the indicated operstions of (3-1) on t‘hese four
relations in the generslized coordinates qp = aj, Cy» the

following equations are cbtained. For gy = a,

2:t26f [Za p(r]p(r)d.
..EMGFJ;ROI- Za P, (r)"z__p() Py t{r) -

i n )
[y =
+~JR §: k an p, (r) pm(r) ar = A P (R + AGgl Py
i o

(3-33)
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and for q = c,j

L . :
J e ) 5 @] e e

i

L e .
A AR DI R RSN
i

- ?\ERohwa P Cj(s) ' (3-34)

LY

Relations (3-25), (3-32), (3-33) and (3-34) completely define the
coupled systems problem. In order to simplify and render solvable this
system, recourse to -orthogonality conditions in the component modes is
neceggary. These orthogonality conditions are derived for the
propellant cylinder in Appendix B, and the eldgstic vehicle eylinder
orthogonality Irela.tions are also given therein.

Equation {3-33) can be initially simplified by expanding the

second integral to

. P PP
1. 2lp tar - | R
ExIGF Zan fr[pn r)pmdr - r(pn = )r dr |

n

(3-35)
(where it is understood that the p's are functions of r only and’
that the upper and lower iﬁtegr&l limits are Bo and Ri 3

respectively). Integrating the first of these expanded integrals 'by

parts by letting
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, Pn)
- — — 1 —
I‘(Pn T/ u ; jpm dr = dv
" T L} = =
(rpn - Pn Pn ) ar dn Pm v
then we have
R. . VI
‘ o Lo - .
-Pn) } AR . '
== . - n . _
r(Pn =) Pp f R, Py Or o (3-36)
Ri" - .

t

L

The first term vanighes identically st the limits by ;rirtue of the
free-free boundary conditions (2-17).
Now using the D.E. of motion (eq. (2-1%)), we have after

rearranging

f Pr!.I 286 1 .
P = - (‘ @ —G-FT + ;g) P, (_3-3’?)-

where the UJn are the viescoelastic frequencies of the propeliant

obtained from (2-39).

Meking this substitution into equation (3-36), we have

o
| t =G)2.5_' ‘ . _ i
frpn P, 4 =0 Gy R R " N T ar

(3-38)

Now, substituting the right side of relatlion (3-38) into equation
(3-35) for the fir.st integral and expanding the second integral, we

have
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. 238 ‘ . Pmpn
anlly Z'an [a)n _G; frpm p, 4 +fpm Pa dx “j"f_
n
PD
-fpn' pmdr+j ;‘mdrj (3-39)

which reduces to
2 ‘
2rld wn Zanfrpmpn dr
n

Appendix B i-elation (B—9) indicates that a value exisbs only when

m = n, Tixerefore, for 21l terme of the series when m # n,

. %
2nld @ Zanf,rpmpn dr =
n

and for m = n,
2nld W Z frp v d.r nmf-ﬂF c o o{3-40).

Where a)n is the viscoelastic component frequency

'S

Also, it can be shown from more orthod.ox Orthogonal:l.ty proofs

“that the second 1ntegra.l of equation (3-311-) reduces to

2 S Coe
cJ_ a);j fl'v;1 for 1 £ j ‘ o . (BTl‘lﬂ)

b 1

where wj is the elastic component frequency.

Now simple harmonic motion in the generalized coordinates e, and cy

has been assumed. Making use of this fact and relations {3-40)} . and
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(3-41}, it can be shown that relations (3-33) and (3-34%), after

some simplificabion, reduce to
a ' R R

n 2 2 2 o 2 i %1( O)
R [(wn - e ) IF * iaﬂo f kn Pn (x) d‘ﬂ * ?\2 Ro GF Iént(Ro) TR J .
o] : n R:L

+R A 2 (Ry) =0 (3-k2)

and
- a2 _
EA CETHER'E SACEL N S NAOE

(3-43)
nere = M F 2
and o is the coupled. system frequency.

Recasting equations (3 42). and (3- 1,LB) to separate system frequency

elements from natural component frequency elements,

a R 1 a a .
n 2 2 J‘ o 2 n n 2
= -!imR k p Ar) dr| — = — ;
IFnRo o} Ri n-n RO IFn 30(1:)33 )
%) PR
ni o b .
+R GFEP ' (RO) TR j-!-Ro Pn(Ro)?‘l )' . (5-44) .

o]

and
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[Iv.ciﬂ“thC(S)?\]—-—[Iv -RQ(S)A]
.1
(3-L5)

Also, the constraint relations (3-25) and (3-32) can be rearranged

iwt —_— it )

(remembering that a =& ¢ and ¢y =c; @ as follows

&

Z EE Ro Pn(RO) - B z %, t’i(s) -AJ. =0 (3-46)

n © i
and

n . &
Kot Pg Z e; §,(s) N, E z 'R"‘ o Pn' (By) - 2 r Po{Ro)
i - 1 . n ° _
© (3-47)

Neglecting the second term of equation (3-U4l4) which is the damping of the .
nth propellant mode, equations (3-44) through (3-47) can be \expreésed v

conveniently in matrix form as

mm@@:%mﬂ@},fw 7 sa8)
W . oy oy

o
T F ot

R e

where [M] and 7[N] are partitioned matrices as follows
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b~ =
o oo — | !
(@] _,.C._S P.:.ﬂlp_ I.\.l _ h
) = sn |l o lo
T 2B
TEoEbesTE R
P e
o © o * ’ | ..m.l\uwll
._ i “._o__ =
| __ | | oo
. —.-. . _ ) — u_.
_ | - |-
] PR 1z
A s 1<
‘___ |8
| i
o o 1 3
o _T_V _0 “rm
——— = = — _ _.m.o
T_“.! *0 (@] llll_ll_lnmll
“ o |o [ o
) i
“. __ .
) N
e _,_O o _ | |
) @] ()
i _o [
_ o _0

(3-49)
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B i | - |
()
IFow2 | 0 0 e ¢ Inbpotno) !ROG [ "{R,) - Fo J
2 | 7, (R,
o , | © 0 - 0 :Bop:}(ﬁo) IROGI: '(®,) -T]
I : . ', : : ,(R)
nmn"’ | o 0 c e © |R°Pn(R,,) |R° [ '(R) T ]
R e J:vﬁoa__'__u_——h—,-noc_o(;,m_o—__.nm
ST T |
- : ' ) 1 | :
0 0 o | I, o I-Rogi(s) l o,
S IR R T TP e I R
v p (R ) p (%) : “l |
R Gp|By' (R) = ~2p B Splpy (R - 2 RolpiPn’ (Ro) no! ° ° o-" 1 o [ °
L ° ° | i _

He




and ¢80 )

G - < %o >. (3-51)

It should be noted that equation (3-48) represents a coupled
viseoelastic-elastic system, because as was stated in equation (-2—39")
the propellaﬁt frequencies, o , are nov vigecoelastic frequenciles.
Equation (3~48) is quite general, however, and for the matrices as
defined, N could be either elastic or viscoelastic frequencies.

It is important to note here one specific advantage of having
selected the Lagrange Multiplier technique. The use of Lagrange

Multiplier constraint relations permits the necessary boundary
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conditions linking the viscoelastic cylinder to be satisfied on the
sum of the modes (rather than on individual modes such as is required
in the Rayleigh-Ritz method). This artifice allows the use of ‘:E'ree—
free modes and the atteﬁdant simple boundary conditions to describe the
viscoelastic eylinder shear motion. Various slopes of this &ylinder st
the bonding surface can thus be examined parametrically. The effect is
analagous to permitting a rotational spring to exist at the interface.

It should be observed that the order of degeneracy of the systems
problem matrixk is increased by the inclusion of the _multipliers , but
this affords no difficulty to the problem solution by modern

computational equipment.

Solution of System Equations R

t

It can be noted that presence of the rigid body modes and the )
Lagrange multiplier relation causes singularity cf both matrices ENj
and M}, respectively, thus precluding solution of thé elgenvalie,

problem in its present form.  An. sliernate form [»;'e,ferexice 1] for the '

problem is obtained by scaling the eigenvalues ag’follows:

4

Equatioiz (3-148) can be written as
[0 of - 0]+ [l - D] P =0 ° (32)

where ¥ 1s a constant scaling factor.

Factoring and rearrsnging relation (3-52) yields

0 (3 = - —— [+ ) = 0 (5-53)
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which is valid for

1]>-(D2

The square matrix on the right-hand side of equetion (3-53) is now

nonsingular, and equation (3-53) can be written as

(21 {x) = " {v) (3-54)

where

1

[B] = [N+ ] ™" [M] emd ' = —2—p
ot W

Equetion (3-54) is now in standard eigenvalue form and is solvable by
general iterative procedures and sweeping methods (ou'blin_ed. in P
Appendix D) for the eigenvectcrs and respective natural freq_uencié;.

Obvious adventages to this method are that the solution ﬁel@
all modes, including the riéid body modes, without recourse to sweeping
matrices Tfor establishing the lowest systen i‘und.amenta;. ‘There are '
minor difficulties to be noted in this method of Scaling eigéx&wjalueg,
however. First, lacking prior knowledge as to the lowes’:: frequency,
n must be chosen as positive. With positive‘.' n .close proxi;éli:ty"oﬁ

5 <

adjacent latent roots forces slower convergence of the; solution tﬂap
would otherwise occur in the unmodified system. Alsé, the orgier :oi.‘ the
[H] matrix is larger than required since the rigild body ‘mod.e's.arel :
present in the modified form. These minor disadvantages are over-
shadowed, however, by the fact that the form of equation (%-54) 1s

guite familiar and is easily solved by elementary means.
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It is readily recognized that the use of digltal computer solution -
methods are required for expedient soluticn of mtrix expressions such
as {3-54). A computer program was developed specifically for the
problem described herein and has been supplied in.Appenﬁix,E;

It will be noted that the eigenvector {x} as defined éf::y rel'ﬁ.‘bién‘e
(3-51) represents the modal coefficients of Fhe:pfopellgnt’aﬁd vehicle
natural modes (also included in the eigenvector are the constraint .
fbrces,?gjhe) Therefore in order to obtain the deflection characteristics
of the components at any system frequency, it is necessary to multipl§
the resulting eigenvalue, {%}, by a matrix comprised of the component

natural modes in the manner following: By selecting the partitioned

eligenvector section relevant to propellant modes, that is

(-

c

dﬂ{‘m

-uqu

(.
oHs”

-
and using the nstural modes of the propellant, pn(r),'described.by

relation (2-29) with the radial coordinate given by
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Then
3 ~fa)@ (W@
PO(rl) Pl(rl) e pn( rl) ﬁ%
o1
PO(I‘E) Pl(re) Ce e pn(r2) -_R;
.pQ(rS) Pl(rB) ... pn(rB)
< & %
. . |
G N = -
L ~ = o

(3-55)

where {yp (a) repregents the propellant deflection at the gth
system frequency. A similar matrix operation which will yield the

launch vehicle system deflections is



ko

_ —_
CEolx). e x) FESNIEN (q) N @
g Gl e b0 ||
Eo(x5)' Cl(x3) R cj(xfa) { > !, >
- w
X | c, | |
| olxy) ¢, (x) .. (=) | .
L- v
(3-56)

where the longitudinal coordinate is described by

xj, J=1,2, ... k

and. {yLv}gq') represents the vehicle deflectiqn at the gth system
frequency. The ¢ J(x) are not developed in the present investigation
since methods for establishing natural mode data. for launch vehicles
in torsion are wellrdocumented [he].

The total systems problem has now been cast in‘t‘;o' {tlatrix qform, and.
appropriate solution methods have been develop'ed.. The-,next logi:c‘al
'step in the investiga.{i’on was to ée.lect a sa‘bisfactoz"y .mea,ns ,:of- total
-systems analysis verification. This process is deserided é.n th'er

followling chapter,



IV. VERLFLCATION OF SYSTEMS ANALYSIS

As has been stated, the primary goal in the investigation was to de-
velop a systems analysis which could be applied to a characteristic
launch vehicle such as that for Project FIRE shown schema.ticallt){ in
figure 2. Prior to application of the analysis to the FIRE system, how-
ever, it was deemed important to use an experimentsl model to verify the
fact that the analytical method would correctly prediect response .
characteristics of & system comprised of two components when the modal
information for the components had been analytically developed separately
and then the components coupled together.

While it would have been very desirable to employ a large-scale
dynamic model of a launch vﬁhicle with a solid propellant segment such
as that discussed in Chapter I, an appraisal of Ifabrication and test
setup costs required to develop such a model indicated the unfeasibility
of doing so. After giving careful consideration to several simpler
vehicle gystem models which could be manufactured, and after noting that
the frequency response range of the cylindrical vehicle representations
would be unacceptably high, it was objious that other avenues,of"experi— J
mental verification would have to be explored; It was then observed

.that in the analytical development of the two boundary ¢onditions for the

system (equations (3-25) and (3-32)), the radius of attachment could be
¥

changed from the outside to the inside radius with little gffor@.

2

Although the resulting experimental model then bore little‘simi;arity to
' i

[ [

a launch vehicle system, it was concluded that a meoprene disc could be

attached at its inner radius to a brass shaft and by proper selectianof
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physical characteristics such as radii and lengths, composite system
frequencies would be in a sufficiently low range (below 1000 cps ) "as to
be readily measurable. Such amodel was subsequentiy c?nsi;;-ucted and is
described schematically in figure 3. 1In addiéion to the neoprehe disc
fabrication, a steel disc, equal in rigid body inerfia to the n€oprene
item, was made. Use of the steel disc will be discussed subsequently
Physical data for all system components are g:.ven in Table I ‘

Disc modes and frequencies for both the neopfgne anq,stéel items
were established using the propellant shear mode comﬁuter progr%m'of
Appendix E which was developed to solve equations (2-24) and (:2-;29 Y o:E;
Chapter IT, Elastic assumptions for the neoprene disc were ﬁsed:bgcause
it was expected to bhehave elast&dally for small-time, shérit-pericd
frequencies. BShaft modal data were determined by a standard torsicnal
modes analysis not included herein. Coupled necprene disc-brass shaft
and steel disc-brass shaft frequencies and modes were then established
via the systems analysis compuier program of Appendix E which was written
to. solve the matrix relation (3-54%). The analytical free-free mode
shapes of the neoprene disc have been presented in figure 4, and the
resulting analytical neoprehe disc deflections at system frequencies are
shown in figure 5. 8Steel disc ana.lyt-ical nodal data were not plotted,
since the more salient information for the steel disc—shafi combineation
was the frequency spectrum which is discussed later.

Once the analytical informstion had been established, an experi-

mental program was underteken to verify the adequacy of the systems
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TORSION-FREE
52 SUSPENSTON

/////r—-BRASS SHAFT -

~ TORSIONAL INPUT

UPPER COLLAR

NEOPRENE DISC

Figore 3.~ Disc-shaft experimental model schematic.
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TABLE I.. SHAFT-DISC PHYSICAL, PARAMETERS

Suspension end

Brass shaft configuration

Ttem | Material Dimensions Remarks
So01id rod with two |
1/2-in.-thick by

1-in. nominal diameter 2-in. -diameter
‘Sha.ft Red brass 100-in, length brass collars for
disc attachment
{see sketch)
, . 50 durometer
"] exc! 14-in, outside diameter
disc Neoprene 1-in, inside diameter 1 Shear modulusg =
l-in. thick 90 1b/in2
nominal
"Rigid" 8.§-i'n: outside dat.ameter-‘
disc Steel 1-in, inside dismeter
Y-in. thick
90,5 in. ot
89 in.

Qe

Removable collar

Fixed collar



MODE 2
154.5 CPS

k5

\/

272 CPs.
MODE, %

213.6 CFS
MODE 3

- i
Figure 4.- Analytical disc free-free mode shapes.
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MODE 2

100.4 CP8

286 CPS
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Figure 5'.- Analytical neoprene disc charac‘beri's{:ics at system frequencies,
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b
analysis. The test setup and apparatus are described in t?e‘next‘

section.

Test Method

The boundary conditions simulafed for the system were free-free.
A small cable sized to ensure negligible torsional restraint was used
as the upper end suspension method (fig. 6). The lower end was com-
pletely free. Two ‘five-pound shakers (fig. 7) were hooked up 180
out of phase to provide as clean a torsional input as possible to the
ghaft. The driving point was near a system“néde‘sﬁch that very small
forcing was required to excite system modes. To ensuré that only system
torsional response characteristics would be measured, a complete trans-
verse modal survey of the shaft was performed prior to the torsional
test to identify-other modes. Also, several rotational orientations of
the accelerometer mount disc radius were evaluated to assess the possi-—
bility of spuriocus mode deteption. Minor changes in response measure-—
ment were noted after changiné the disc position, and the tests were
completed with the accelerometers aligned perpendicular to the back-
board (fig. 8).

The neoprene disc (fig. 9) was supported prior to testing by a ply-
wood disc covered with teflon to preclude neoprene disc sag (fig. 10).
The disc was fixed between two brass collars and double-backed tape
between collar and disc on both sides-to preciudé'relaiive rotation at.

the interface,



SIMULATED FREE-FREE
END CONDITION

Figure 6,- Free-free suspension for experiment,



Figure T.,- Vibration shaker mounting for experiment.



BACK STOP

NEOPRENE DISC
ACCELEROMETERS

ACCELEROMETER ORIENTATION I
TOP VIEW

BACK STOP

NEOPRENE DISC ‘E

ACCELEROMETERS

ACCELEROMETER ORIENTATION II
TOP VIEW

Figure 8.~ Radial accelerometer orientation schematic.




Figure 9.~ Neoprene disc.
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TEFLON COATED SUPPORT 7 |
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¥

T
i ﬂ' d

Figure 10.- Neoprene disc location in system.
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Measurement data were obtained from five small (5g) Unholtz-Dickie
accelerometers mounted across a radius (see fig. 10). All accelerometer
readings at each resonant frequency were recorded on an oscillograph.
Five runs were made at each resonance allowing resonance verification
via oscilloscope monitoring of a separate accelerometer Lissajous
pattern for each run. Frequencies of the resonances were read from a
digital counter and from the control osecillator. Final determination of
frequencies was made later by direct reading of the oscillograph traces.

The complete test setup for the neoprene disc-shaft is shown in
figure 11. The setup was identical for subsequent tests with the neoprene
disc replaced with the steel disc (fig. 12). For the steel disc modes,

only three accelerometers were used.

Teat Results

All data are presented in Table II for both shaft-disc systems. The
analytical data generated via the systems analysis method developed in
Chapter III and discussed in the prior section are also presented for
comparison.

The experimental and analytical neoprene disc deflections at the
disc-shaft first mode frequency are plotted in figure 13. Frequency
agreement was generally acceptable for the experimental setup utilized,
but corroboration of the analytical mode shapes was difficult. Several
considerations concerning the experimental mode shapes are as follows:

1. Only five accelerometers were used, making node determination

at higher frequencies (where nodes are more closely spaced) difficult.




& 0SCILLOGRAPH R

Figure 1l.,~- Complete test setup.



Figure 12,- Experimental steel disc.
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TABLE II.- RESULTS OF SHAFT-DISC EXPERIMENT AND ANALYSIS

i

. Fregquency, cps ,l ‘
System ‘Mode f—— — —
' Analytical Experimental |
1 |- 100, T A
2 | 62 7 162
Shaft- — : :
neoprene 3 22 - 230
disc
h 286 . 278
0 348 350
6 399 Lol
Shaft- 1 266.5 266
steel -
dise 1 2 | Th1.7 *

bet included in test éguipment frequency span
range.
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Analytical mode 100.4 CPS

= == = Experimental mode 107 CPS

Figure 13.- Analytical vs experimental mode shapes for neoprene disc
at system frequencies,
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2. Close proximity of several lateral and torsional natural
frequencies also hanmpered mode determination at higher frequencies.

3. The efforts to obtain good fixity at the disc-shaft interface
may have affected the modal responses adversely in that there is the
possibility that the tightening of the collars may have squeezed the
neoprene disc at the inside radius thereby shifting the effective
attachment radius outward. Several analyticael runs with different
‘attachmen% radii were made by computer i an attempt to achieve better
modal agreement in the higher modes, but better resulis were not obtained.

With these-shortcominés, however, it is felt that the systems analysis
predicted the frequency responses well., It should be noted that the
frequency spectruﬁ for the rigid steel disc (even thouéh possessing rigid
body inertia identical to the neoprene item) differed considerably from
that for the neoprene disc thus pointing u@ thé errors to be encountereﬁ
when flexibdle body effects are neglected.

Having established what was felt to be satisfactory agreement between
analytiéally predicted and experimentally determined natural systém
characteristics, particularly‘in the ffeguency spéctrum, the final step-
in the investigation was to apply the analytical mFthoa to the FIRE
vehicle. Detailg of the example problem are given in the following

chapter,



V. EXAMPLE SYSTEMS PROBLEM

I |

"
4

The systems analysis developed in Ch&pﬁerJII is‘éﬁblicablerté the -
Lt \ p ! .

) . ’ v

examination of a wide asrrsy of cgﬁpoéite systemé torsional dyﬁémics
problems, including systems suéh'§§:the expériﬁéntal model;digéusse&
previously. However, it was developed for the,specific purpose of
deseribing the torsional motion of a characteris%ic launch vehicle such
as usged for project FIRE. ‘The vehicle system: is comprised of a near
axisymmetric discontinuous thin-walled elastic cylinder with a solid
propellant mot;r attachedjnear the forward end in the payload region
(fig. 14), The case examined is not for academlc purposes cnly, it may
be notei,'since_flight data have Indicated that the three booster
engines which are gimbaled to permit roll control as well as thrust,
tend to "chug" on shubtdown in a manner which induces a quasi-sinusoidal
torsional excitation (fig. 15) devoid of any components which would
‘induce other modes of vibration. This inpqi is %n turn transmitted
l forward threough the length of the vehicle, ultimately reaching the
propellant attachment station. Since the Young's modulus for a typical
propellant casing is E = 0.6 X 106, 8 nominsl zero frequency value for
the p?opellant is E = 500, and the propellant-length fraction .of the
total-systeﬁ length is small (approximate1§'6 percent), classical
torsicnal deflection over the casing iength will be neglected for the
application of the analytical method. Tt will alsc be noted that for
the rigid casing assumpticn, the case responds by undergeing angnlar

rotation constant throughout its length under the influence of

59
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Figure Ih.- Atlas FIRE configuration.



QUAST-STNE
"CHUG" AT ENGINE
CUTOFF(TYPLCAL)

BOOSTER ENGINE

BOOSTER AFT END BOOSTER AFT END LOOKING FORWARD

'Figure 15.~ Booster torsionai input.
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torsional excitation. Also, when the difference in casing and
propellant moduli as well as the mounting arrangement are considered,
Justification for the assumption that the propellant would behave in
pure shear is evident. Figure 16 contains more detailed information
about the payload portion and is typical of the mounting arrangement
for flight research experiments of this class. The viscoelastic
propellant is shown shaded and is encased in a fiberglass-wound casing
(item l), The load path in twist is through a bolted joint near the
propellant aft end, via the aluminum forging (item 2) through the "V"
clamp ;jéints*in the adapter section, then through the aluminum skin
structure to the mating joint (item 5). The sandwich structure (item 3)
is not intended as .a load path and is for the purpose of.' flight

accelercmeter mounting only.

Discrete Vehicle Model -

The mathematical model used to describe the longltudinally
discontinuous launch wehicle ig given in figure 17. The physical
attachment station of the propellant is as shown in the figure. The
discrete torsional stiffness and inertias are given in Table IIT. It
may be noted that for the vehicle modal deflections and associated
generalized inertias computed by standard elgenvalue routines using
the discrete data, only the modal deflectiong o:f the attachment station
(i.e., the launch vehicle—propellant-mech;nical int?r}ace) are required ’
in the systems problem. (Also, the prc;i)ellant container inertia is ‘

lumped at the wvehicle attachment point and corisid.efed. in "the, veh:icle

modal data.)
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Figure 16.- Solid propellant mounting schematic,
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®» — ROTATIONAL INERTIAS
} — ROTATIONAL STIFFNESSES

PROPELLANT CASE BRANCH

T~ MOTOR
NOZZLE
BRANCH 1

MATN
/ VEHICLE.

BRANCH

BOOSTER
ENGITE U
o~ BRANCH

TH

(DISCRETE BRANCH MODEL)

Figure 17.- Atlas meth model,



TABLE ILIL.~ TORSIONAL PHYSICAL DATA OF ATIAS STRUCTURE

NODE | 'x |I ROLL x 1070 |xg x 1079
(in.) . 1b-in.® | in.-1b/rad
1 98 .202 - 19 A
2 120 .22} .80 18
3 150 .20L 2.55 17
L 177 2,425 12,10 16
5 210 2.093 13.91 15
6 250 2.493 10.L43
7 1. 290 1.465 10.10 14
8 340 2,172 7.03 13
9 390 .805 6.95 124
10 430 s384 T.7h 11
11 L0 .291 7.23 10
12 510 276 T7.05 S
13 550 261 6.h2 9
1 590 245 5.92 8
15 630 276 |l 5.74 .
16 670 L2681 - “6.25 7
17 710 202 - . 5.50 6
18 750 .204h 3.53 5
19 790 . .238 k.36 4
20 150 1:h92 - 23.10 3 20.
21 120 2.121 . 30.70 - 1 57
22 98 5,000, 11.60 73
23 75 2.363 - . 5.67 24
et 30 2,348 ° -
20 - 1 . = - | 20.53

@9



TABLE ITI.- TORSICNAT PHYSICAT DATA OF ATIAS STRUCTURE = Concluded

- -
I Roll x 10
in 2
< ‘ 1b-in, : Kp X 10-9
Node | (in.) | X-259 with [X-259 with-| in,-1b/rad
go0lid fuel out fuel
19 790 - - -
25 { 808 5,215 5.215 8.660
26 830 5.215 5.215 5,250
27 | 82 9.310 9.310 7.640
28 8712 32,400 32,400 h,290
29 889 8.230 1.84%0 5.224
30 8ok 7,600 7.600 17,762
31 908 . 9.730 9.730 2.214
32 926 4,100 4,100 2,278
3% 95k 5.910 5.910 1.045
3l 996 .860 .860 .213%
35 976 1,925 1.925 -
36 | 948 6,240 1.8%0 .0681
37 9%0 10,220 2,660 167
38 910 10,220 - 2,660 «150
39 870 BT 671 -
Lo 8h2 A459 LH59 - L0143
29 889 - - e -
38 910 - -- 143
29 889 - - S
39 870 - — . +0183.

349

339

32¢

31
30
29

289

27I
26

' ZSAL
"19

® 35

¢ 36

¢ 37

38

39

40

1013

808

99
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The launch vehicle torsional modes and frequencies with the
propellant excluded are given in figure 18 and differ slightly from
those of reference [42] in that the propellant casing i's considered

rigid in this study.

Propellant Model

Recourse to discrete ana-lysis is not required for the propellant
since it can be represented by the continuous deflection result in
shear developed by the closed form solutiom in Chapter II for a wvisco-
elastic thick walIed. cylinder. Scome license was taken, however, in
permitting the mathematical model to ‘have & circular ceross-gection
port. In reality thls inside port deviates sl:.gh‘tly from c1rcula.r1ty
although it has been assumed that for this study the sys‘i:em

dynamic differences due to the assumed and real cross-sectlons are

1
*

negligible.

i

Physical data for the propellant,are provided in Table IV,

1
+

Vehlecle Sys‘ben:is -Ans];ysis . L . LT

N ' [

The method employed in solv:n_ng 'i:.he systems problem was to follow .

the same analytical steps as d.escribed. in Chapters IT and III In

order to evaluate wvarious propellant assumptions, shea.r mode shapes
with frequencies for an elastic propellant (fig 19)- ‘&;ere fJ‘.I‘S‘t ‘. a
established using equations (2-29) and.-(E-Ell-) and then cc,:mbined. with
launch vehicle torsional modes to develop the systemts ‘freguencies. In

the systems analysis for this propellant assumption s 9 propellant modes

and 12 vehicle modes were used. Modal and frequency results of the
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ir— o = 283 rad/sec

;l(x) 0=
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. Figure 18, - Launch vehicle torsional modes and freﬁuencies without
solid propellant.



69

1~ @ = 744 radfséc

Zs(x) 0 _"'-=___ N — . —

. | | S 1

11— w= 885

! ! [ [ A

VEHIGLE -1
TORSIONAL -

DEFLECTIONS 1~ j w = 1002 R
C7(X) )] - -

- | { } 1 | |
100 300 500 700 200 1100
X, inches

Figure 18.- Concluded.
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TABLE IV.-~ PROPELLANT PHYSTCAL DATA

Outside radius

14.85 in.

Inside radius

k,5 in, nominal

Length

56 in. nominal

Density

.0635 1b/in3

Shear modulus

200 1b/in? nominal




*we = 714 rad/sec

1035 radfseg MODE 2

MODE 3

1362 rad/sec
MODE 4

406 rad/sec
MODE 1

* MODE SHAPES ARE FOR ELAST;I’.G

AND VISCOELASTIC PROPELLANT.
FREQUENCIES ARE FOR ELASTIC
PROFELLANT.

Tigure 19.- Propellant shear mode shapes,

L
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‘coupled system dynamics analysis with the elastic propelia.nt are

presented in figure 20 for the prope]'.lant’énd figu:'re 21 ‘for the

¥

vehicle. -
: 19

Next the viscoelastic propellant was considered with Trequencies
P i R ¥
camputed from equation (2-39) , restated herje;:.f'or elarity -,
2 Ko K
o

(Dv .
. m—- = 1 + ) ) (’2—39)
e G :

Constants were obtained from modulus versus frequency data of
reference [211 over the frequency range of 300 to 3000 cps. It was

clear that for the storage modulus as herein defined, that is,

o]
li

o
E

-

selection of Kl = 2.47 and k = 1 would appropriately match the

referenced data for the frequency range mentioned 'above.

Propellant menufacturer's data yielded a value of a° = 200 lb[in2

(G° = the shear modulus at zero frequency).

Using the above dats, viscoelastic frequencies were computed for
the‘first five propellaﬁ‘b modes and tﬁe propellant characteristics
again coupled to the vehicle modes through the systems equations, The
resulting propellant deflections for the viscoelastic assumption and

the assoclated wvehicle modes at the syster frequencies are presented

in figures 22 and 23, respectlvely.



w in rad/sec
Ro 14.85"
R = 4,5"

w = 297

w = 588

. Figure 20.- Elastic p:E:OPellant shear deflections at system frequencies.

¢l
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@ = 297 rad/seé
1 = 322 rad/sec
C]_(x) 0-
2L
w = 415
1 —
2090 ‘E"‘\ —
L :
w = 502
Ly /->:' .
;3(3') O'A&__g"
_VEHICLE -1 L
TORSIONAL
DEFLECTIONS L w = 388
- . ~ F7 . _s
5,0 0 = : ErE—
%
LY
-] b ¥
1 w = 696 T t
0 -
7;5(:0 -
_1‘,_ !
.-
b '
I | nl L I
0 200 400 600 . 800 v 1000
%, inches o '

Figure 21.- Launch vehicle deflections at system frequencies with
elastic propellant,



w = 382 rad/sec

w = 252

Figure 22,-~ Viscoelastic propellant shear deflections at system frequencies.

Gl
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w = 252 radfsec

-1
VEHICLE
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Figure 25,~ Leunch vehicle deflectlons at system freguencies with

viscoelastic propellant.
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Finally, the propellant was assumed rigiakgﬁd the systéms‘énalysip‘

H

again performed to yield the wvehicle deflecticris at the'system N
frequencies (fig. 24%). Because of tﬁe simplicity of the propellant
assumptibn, no propellant modes are presented, The reéults agree
well with those of reference [42] even though the method of analysis is
guite different.

¥or comparison, the system frequency spectrum for each of the

three propellant assun@tions‘ié~presented in Table V.

Discussion of Results

It is readily apparent from observing the Table ¥- resulbs éhat
there are essentially no differences in the frequency spectrum between
_the rigid and viscoelastic propellant-vehicle systems. The differences
between the elastic and viscoelastic frequency spectra are more
pronaﬁnced with six elassgtic propellant-system moﬁes oceurring in the
saﬁe ¥ange (0 to 696 rad/sec) as that in which only four viscoelastic
propellant-system modes oceur. 'Tﬁe mode-by-mode frequency equivalence
in the viscoelastie versus rigid propellant vehlcle systems results,
however, are misleading. Whereas the viscoelastic propellant behaves
rigidly through the third system mode (511 rad/sec) (see fig. 20) it
will be noted that the propellan£ responds at 696 rad/see in quite a’
flexible manner.

A further observetion mey be made by comparing the system vehicle
response data of figures 21 and 22. It is noted that very little
differences occur in these dees with viscoelastic versus rigid_“

propellant assumptions. It appears that the rigid propellant assumptién



78

1 w = 253 rad/sec
— T —
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-1
—m :
¥'—-
;r
1 *
VEHICLE :
TORSTONAL .
DEFLECTIONS
1— =511 .
0 i__’_,—
?;3(X)
- . . e Lt
-1 . ‘ . . X § 5. .
N . *
4 L
1 . i [
1L— o =696 . ‘
i .
(%) 0 ———— - —
1}
. .
: 4 | |
0 200 400 600
X, inches

Figure 24,- Isunch vehicle deflections at system frequencies with
rigid propellant.
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TABLE V.- LAUNCH VEHICLE SYSTEM MODES AND FREQUENCIES

FOR VARICUS PROPELLANT ASSUMPTIONS

Launch vehicle éystem frequencies (r&d/seé)

Hode Elastic propélla.nt Viscoel;as‘tic propellant | Rigid propelliant
1 297 252 252

2 322 382 385

3 k76 511 511

L 502 696 696

5 588 Th2 The

6 886 885

696
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has smali effect on the vehicle responses in e gross sense as compared
to the viscoelastic propellant assumption. The appropriaté propellant
agsumption however, is still quite important since it is slways ’
necessary to have complete knowledge of key syéteﬁ component natural
response characteristics to insure structural design'integrity as well

as proper guidance system selection.



VI. CONCLUDING REMABKS

1

The- primary objective of the enclosed analysis was to dévelop'a
systems analytical method which would permit the examination of various
e
upper stage propellant assumptions and the effect of these assumptions

on launch vehicle system dynamics in torsion., Aé a result of the
investigetion and in order to meet the objective,_a launch vehicle
systems analysis has been performed wherein the propellant and vehicle
natural modes were generabted separately and then coupled together via
Iagrange multiplier relations for the appropriate boundary conditions.
For the propellant shear éisplacement, a general closed form Bessel's
solution to the governing equations of motion has been developed.
Simple harmonic motion was assumed, and general expressions for both
the secular eguation and the propellant normalized modes have been
derived, Also, an orthogonality proof for the propellant free-free
modes has been provided. An alternate and copciSe method for
evaluating the normalized free-free propelilant modes and Trequency
expressions using asymptotic spproximations to the Bessel's functions
has-been presented.,

The viscoelastic frequencies of the propellant were developed by
neglecting loss modulus and using an empiricalily establishedafrequency-
dependent storage modulus in conjunction with an existing frequency
correspondence principle relating viscoelastic and elastic frequencies.
Since damping was neglected, the analysis may be considered as quasi-
elagstic but with variable shear modulus. ASsumptions that damping was

81
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negligible were justified on the basis of published data on the
relation of storage modulus to loss modulus for the frequency range of
interest.. |

In the systems problem development., several convenient mathemat-
ical methods were employed which rendered the problem more tractable.
First, Lagrenge multiplier methods were used to describe the constraint
conditions. Boundary conditions could théreby be satisfied cn the sum
of the vehicle and propellant modes rather than on individual mo:ies
such as required in Rayleigh-Ritz procedures; Readily o'btained f‘-;:'ee- .
firee component modes can ?herefore be I.‘;S&‘é.., ,‘Also., nuge of ;Lagr&mge .
multipliers causes convergence on the exacji; frequer.:{c‘y from the io?rer'
side. as compared to Rayleigh-Ritz proceleres which<conv'erge fro‘mv the
’higﬁer gside. Althousgh use of the multiﬁl:‘tér ;:'ela'j;ions mcouples the
equations of motion for the vehicle ané éropel$ant3,ﬁ£e:ef§ect of thé
multipliers is to increase the size of and cause singuiqrity{gf the
system matrices. This problem is alleviated by aﬁpiiqationnof a
Trequency scéling technique which permits even rigidibody elements in
the system matrices."

Application of the totsl analytical process was effected in two
ways. First, an experimentzl model consisting of a neoprene disc
attached gt its inher radius to a brass shaft was built to verify the
analytical method. The shaft and neoprene disc analytical modes were
generated separately, then coupléd together in the systems problen.
‘The experimental frequencies and mode shapes were then 6b%ained and

r

compared with analytical values. Good agreement was obtained in the
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frequency spectrum although oniy the lower modes could be obtained
experimentally. It is felt that more accelérometers should have been
used, or perhaps other methods should bejdeveloped for modal
determination of such systems.

The systems analysls was next applied to a chafacteristic launch
vehicle and rigid, elastic,-én& viscoelastic propellant assumpiions
were examined. Tt was found that while the vehicle modal responses at
system f;eqpencies differed only slightly for the three assumptions,
propellant component natural freqguency and responses at system natural
frequenéies were considerably different. ;t may be concluded that
correct propellant description is more i@portant from the gtandpoint of
its own response_ai system frequencies rather than from an& modifying
effect It may havé on overall vehicle response,

It is alse concluded. that appropriate propellant flexibility
assumptions are required if correct response characteristics of Llaunch
vehicle systems Vhich contain solid propellants as upper stages are
to be determined., ITn this regard, it is felt that the digsertation '
investigation extends previous work in vehicle torsional d&namics.

A more formidable set of tasks which are red?ﬁmgnded to extend t%e
énalysis contained herein would include-three—diménsioqal Yiséo— ) |
elasticity solutions-{which would thereby permit tors;pnal as well as
shear deflection throughout the propellant length), eia§tic fropel}ant

case assumptions and the use of nonecircilar propellant core

configurations.
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IX. APPENDICES

In this chapter are included studies relewvant to the foregoing

investigation.

Appendix A - General Freguency and Modal Relations

for Propellant Shear Dynamics

The general solution to the Bessel's equation (2-15) describing

the propellant motion in shear (2-16) was found to be
p(r) = A7 (Ax) + BY;(AT) (A-1)

Free-free boundary conditions were used in Chapter IT to establish the

natural modes for the investigation. The resulting equation for the

frequencies (2-24) was
DuBIoR,) - 2 3,080 ] [R %o (8)) - 2 %, (08, ]

- B (R, - 2 YR V][ AR T (MB,) - 2 3, (a8y) ] - o

(A-2)

and. the expression for-the normalized modes (2-29) was established as

Ryomy) - 2 3,0 T, () -'[}Riio(mi) - 2 Y, (R,)] 3 ()

S(r) - L0 =
R, % OR) - 2 3,0 Y, 08 ) - EmiYO(mi,)» - 27, (Ry) | 7,00 )

(a-3)

Pinned-Free Modes Co

For the case of pinned-free boundaries of the prépeliént, the

boundary conditions are expressed as

89
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. ap| _ P(Ro)
2 Ro Ro

dr (A-k)

p(r)

i

Making substitution of relation (A-1) into (A-4) and performing the

indicated operations yields
AT, (AR;) + BY;(AR;) = 0 (A-5)

and
AJI():RO) + BYI(KRO)

R0

(A-6)

AT Y(R) + BY,'(RR ) =

from which the transcendental equation is readily developed by
rearranging and,setfing.the determinant of the coefflcients equal to

zZero, or

I, 0r,)

i I (R )
3 "OR ) -9

4

Making use of the recurrence relatioﬁs for the Bessel's functions
(2-21) and (2-22) permits (A-T) to be simplified to

E‘Ro"To(mo) -2 JJ.(}‘RO):]N[Y:L(}‘Ri)]
(4-8)

- E\Ro%(mo) -2 Yl(-)\RO)Zl El(mi)] =0
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the normalized modes expression is developed in.a sﬁr’a.igh'ﬁfoi'wai:'d.' -

manner to yield

[3,08,)] ¥, Ow) - [3, (08, ] 7, Ow)
[3.08,)] 1 0R) - [1,08;)] 7, (Ro)

p(r) = (4-9)

where the normalizing radius is R'O.

Free-Pinned Modes

For the case of free-pinned modes, the boundary 'conditions of (A-6)
are readily converted simply by interchanging quantities RO and. Ri' 3
or

AJl(mo) + Bxl(mo) =0

AT, (R, ) + BT, (AR, )

. 17 , H = - v
AT %R, ) + BY; (R, ) R (A-10)
vhich leads directly to the transcendental relation
J:L(.7\Bo ) ' Y1(7\Ro )

7,0R,) (h-11)

UOR,) - T, (R, ),

. ti = —————

i 1 i - Y, (%R;) X

The normalized modes relation is readily expressed as

PRI O0R) - 2 3 R V] T () - [T - 2 Y, (R I 03 ()

B(r) = =t O L ‘ ;
R 30(R) - 2 7, 0m)] ¥, (AR - [ T00R,) - 2 ¥, )] 3y (me)

) ‘(Aﬁ-ie)
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By examination of relations (A~2), (&-3), (A-8), (A-9), (A-11), and
(4-12), several observations can be made.
First the transcendental relation can be expressed in general

form as

Loy M8, (R -8, 3,08} E% AR T OR) -8, T OR,) ]

- ]:a'l MR, T,(NR)) - 2, Yl(mo)} E"ﬁ ARy Jo(AR;) - 8 Jl(m:;.):l =0

(A-13):

. ¢

and the normalized modes equations can be expressed in general form

as 4

o) - (a3 (8;) a3, 08, )] ¥, (ar) -Esmifo(xﬁi")-%;Yl(ﬁﬁiﬂil(hf)
E“BmiJO(@i) a3, OR,)] OR ) "(%7‘3,1&'0-(7‘31) - &uﬁl(m;ﬂ"}l(@

4
»

"(a-14)
where by appvropriate selection of the a coéfficients the three cases of”

free-free, free-pimned, and pinned-free modal characteristics can be +

established. The proper coefficients are given in the followinhg list.

CASES
Coefficients Free-Free Free-Pinned Pinned-Free ,
al 1 0 1
8y 2 -1 2
a.3 1 1 O
8), 2 2 -1
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An zdditional observation is that the mode shapes (A—lh) for the
free-free and free-pimed boundary conditions have identical form with
a3 =1 and ay = 2 for both cases. The identical nature of the modes
is due to the selecticn of the free end condition for both cases to
develop the modal expressions. This selection is clarif;eé by the
steps required to proceed from relations (2-25) to (2-29) iﬁ Chapter II.
The transcendental equations for the two cases are of course different.

A general set of egquations for free-free, free-pinned, and.piﬁﬂed—
free modes and frequencies bas thus been developed in this investiéation,
with free-free modal information being used in the earlier systems

analysis,
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Appendix B - Orthogonality of the Component Modes

Thick-Walled Cylinder Compornent

The differential equation of motion for the element of cross
section is (from eqguation (2~14)) for any mode -
SR
dra T ar

—- 1;) By = 0 (B-1)

where p, indicates the normalized nth mode pp(r)}. .
The same equation written for the normalized mth mode, pm(r) is
2 2 e
d“p dp,, . (3] . el
L 1 m + T -1 Py =0 (B-2)
ara' I d:I‘ GF r2 .

A

Multiplying (B-1) by pp and (B~2) by by, subtracting thé two

results and simplifying yields
5 ( 2 2) 2fpy o, . afp, dp,
—_— - TPmPn = TPy, —— + D, —— =~ Ip & A——-—- —
& ©n" = By 7 PmPn h .2 n “Fw m 2 Pn 3%

or
L (o - )rmap = e () - e () (89

Integrating both sides of equation (B-3) between the limits R;

to R, yields
te) RO ' Ro R0 a
@( 2-%2)_[ oDy dr =f pn%(rpm‘) ar _f Pu g{rey) ar
Ry By ' - YRy

(B-14)



95

The vight side of equation (B-4) can be evaluated by integrating

the first of the integrals by parts, Tetting

d
u= dv = — ') dr
Py i (rpy')
du = py' dr v o= rpy’

Thus, the first integral on the right side of eguation (B-4) becomes

R, .
" PR, .
TP _f YPy'Dp' dr (B-5)
R Ry
i

Similarly, the second integral becomes

. . Ry :
TPy Pp ' -fR P, 'Ry AT (B-6)
5
Ry,

Substitution of equations {B-5) and (B-6) into equation (B-4). and
evaluation of the result at the integral limits yields, after

simplification

S O o) f;" YByPn & = RoPo(Ro)Pn' (Ro) - RoPu(Fo)pn' (Ro)

- Ripn(Ri)pp' (Rs) + Ripy(Rs)pn'(Ri)
(B-7)
Substituting into relation‘(B-T), £he Tollowing free-free boundary'

conditions



v, (Ro)
2y (Bo) = —5-

p,(Ri)
Pnr(Rl) = nRil

which are true for all modes, it is seen that the sum of the right~hand

terms of {B-T) vanishes, or

x‘!

>Ry P
(mha - wh?)u/ﬂ TPpD, dr = 0 T (B-8)
Ri - . %

*
Y

and, since the @, are distinect, then for the total cylinder volune,

. &

*

the orthogonality conditlon is

o Bo
eﬂzal/n IPypy, dr
Ry

il

where M?n is called the generslized mass of the fuel, cay

Elastic Thin-Walled Cylinder Component

It can readily be shown from established procedures that a like
orthogonality relation holds for the thin-walled cylinder., The

expression is

{

O
-

R
"t
Ct

o
fo 2 (x)83 ()¢ 5(x) ax =

=Iy;, 1=3 {B-10)
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Appendix C - Asymptotic Approximations

Unless Bessel's function subroutines are weadily available,
computation,o? the generalized mass (equation B-9) in the orthogonality
derivation requires cumbersome’eYaluation of an integral in which the
Bessel's functions must be expanded in series form. It is convenient
to utilize“asymptotic approximations to the Bessel's functions in that
computation. The compubation of the generslized mass and the
associated reevalustion of equations (2-24) and (2-29) follows: X

The expression for the effective mass of the fuel as @eve}oped in
Appendix B is

L

My = 2718 fR;RO r;[ﬁn(r)zlg dr (1)

where Dy(r) is obtained from equation (2-29) as

[}RiJo(hﬁi) - 2J1(%Bii]yl(%r) - [%RiYo(“Ri) - E?ILABii]Jl(“r)
al) - [ABiJO(ARi) - 2Jl(7xRi)] ¥ (NRo) - [mifo(mi). - by ()}, (R)

Substitution of the right side of (2-29) for the normalized mode

shape pn(r) into egquation (C-1) yields



Mp_ = EﬁlﬁfRo . [miJO(mi), - E‘Il(?‘Ri)] Y1 (Ar) - [7\Rj_Yo(7\Rj_) - 2Y]_(?\Ri)]3'1(7\r) 7 2

2 - - dr (¢-2)
Ry [miao(mi) - 2J1(7\Ri)] v (AR,) - [miyo(mi’) . 2Yl(7\Ri)JJl(7\RO)

where A = A, the eizenvalue of the nth mode.

Using the asymptotic approximations for Bessel's functions of the first and second kinds,

oo (552 )

vhich are:

Iu(x) = —~ (c-3)
2
sin (X -~ £ . 22
5,

and substituting equations (C=3) and (C-4) into equation (C-2) and simplifying, the numerator of

the braced quantity becomes

. ?\Rlsln (7\1. _%ELE) cos (?\Ri - %) - ARy cos (7\1‘ - %E) sin (7\31 _ ]:}) .2
2- , (c-5)
o \[ByT + 2 sin (7\31 - -31-:1) cos (7\ - %E) - 2 cos (7\31 - %’E—) sin (7‘1' - '5‘1?)
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To simplify notation, let

\
Ny - =B
Ny - o= o) (c-6)
M_E:

T

Employing equation (C-6) and simplifying, quantity (C—5) reduces t0

) ?\Ril[sin B COS @ -~ COS W sir} al)2

(ﬂf?\)eRiI‘ + 2‘[sin B cos p - cos B sin pult.

r 4

which can be further reduced by use of double éngle guadrant relations
4
and simplification, to

( 7\)23 {2 sin (B ~ p) + AR; sin (p - cx,)} ; ‘(C‘-"()'
E3 ;T

-Resubstbitution of equations {C-6) now provides the desirsble form of

term (C-T7) after siwplifying by angle quadrant relations, or

-(—7\)2—R- {2 sin MR; - r) - AB; cos MRy - r)} (c-8)
n

Thus, equstion (U~2) mey now be written as

{2 gsin MRy - r) - 7\31 cos ARy - r)} A]

dr

| T I 7\) Ryr
MFn = Bﬂlﬁ\/;i v - {2 — — - RO)}EJ
T — sin ;- - NR; cos MR; - .
Ny i - By B;



100

which can be simplified to

2nldR, Ro
Kg Ry

n

[2 sin k(Ri -r) - hRi'cos XﬁB{ -‘rﬂ 2 dr {(C-9)

where . . .
) P W= <7
Kp = {2 sin A(R; - Ry) - AR cos MRy - RO)}'. {c-10)

Expanding the integrand of equation (C-9)¥‘simplifying, and integrating

yields ( . RPN
N [R(Bi -r) sin gh(Bi - ry1ﬁp )
- —7\' . 2 - . I J .
R
‘ i
2n 18R, - 2}31 r J Bo‘ . o - )
Mp = T < - —5 |-eos MRy - rL!l . > : (¢-11)
- |
haRig AR; - r)  sin 2MB; - 7)| ©
B - R T !
LN .1/

After substitution of the limits and simplifying, the final relstion

for the generalized mass of the fuel is

_ 2rIBR, ,r Rl[l - cos ?W(Ri ~ RO)] + (;l-\_ - 7\Ri2) [sin 27\(?&1 - RO)]

n Kr
. 7\:(R:i. - Ro) ui+ 2
"[ 2 }(i 'i)

Tt is readily seen that expression ((-12) lessens considerably the

(c-12)

labhor involved in computing the effective inértia as opposed to the use
of Bessel's functions. The eigenvalue problem for the approximate

solution is developed as Tollows:
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Substituting the equations (C-3) and (C-&) into eguation (2-24)

for the appropriate order Bessel's functions yield

: N
| - X , 1A
?\nRO cos (hi l}) . cos (7\30 lL)
AR -3
2 2 J
sin (?\RO - E) sin (7\Ro - %_E)
- ?‘InBo ﬁﬁ = JEﬁ\Ro
U 2 2

or, simplifying (C-13) and rearranging yields
7 - . b4 1
KQRORi [cos(?\Ro - L—E) s:u? (7\R._;_ - E) - sin (’)\Ro - 1_!-) cos (‘)\Rl - E)J

+ 2R3 ;in ('/\RO - %) cos (7\31 - E—) - cos (?\RO - %) s'ix} (7\35_ - Z%)]

.~

+ 2R, ;in (7\RO - TT) cos (7\Ri - 3_1’:.) - cOos '(7\Ro - L’E) sir‘1 (RR]_' %’f_}]

+ ll-:[sin (7‘31 - %) cos (7\30 - %ﬁ) - cds (7\R1 -gﬁ) sin (NRO - %LE):' =0
L ety

v

Again, employing double angle relations, eguation (-C—;L’%) simplifies to
MPR,R; sin N(R; - Ro) + 2AR; sin (}\Ro - ARy ‘- g.)
+ 2 i - -+£)+1Lsin?xR°-R =0
M<c351n(7\’£{0 ARy + T n MR- Ro) =0
or

[A®R,Ry + 4] sin AB; - R,) - 2AR{ cos A(Rj -Ro) + 2AR; cos MRy - R)) = 0
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or

[7\23031 + u:l sin M(B; - R,) + 2A(R, - B;) cos A(Ry - R,) = 0 (c~15)

or, finally

2MBo - By)

tan MR; - Ry) + =0 (c-16)
4 o+ RORi7\2_ '

which -is the transcendental relation, developed from the approximations
for the Bessel's function, for the roots A.

Fhe corresponding normalized mode shape is

_ F [2 sin A(R; - r) - AR; cos MR; ~ 1)
Bnlr) = * {2 sin AMR; - Ry} - ARy cos A(Ry - RO)}
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Appendix D - Method of Obtaining Higher Modes

In order to obtain modes higher than the fundamental in the
solution of equation (3-48) an orthogonality sweeping procedure can be
used and is developed as follows:

Writing equation (3-48) for the gth and hth modes and rearranging,
o0 (o) - [ () 2
o) (o) = (1] (m) (0-2)

Premultiplying (D-1) by ¥, and (D-2) by ¥, and subtracting the

second equation from the first
wg?(y (1] (e - (i {ve) .
o2l )+ el )0 T
By virtue of the symmésry or [M] and ['_1\1], ’ -

1) ) = Lrell¥) G

and a like relation holds for [M:l inserted for [N], thus permitting

equation (D-3) to be simplified and rearranged to

(0% - on?){yg)(u] {on) = © (D-4)

and, for distinet . w, then

Lng[M] {zn) =0, &8#1 QED. (D-5)



Thus, we have shown that any two eigenvectors of the system are orthogonal. with respect to the
inertis metrix M. To obtain the explicit relation required, relation (D-5) can be written in

expanded form as

I I (g) ; \(h)
am 8 - a
[RgRi-nouRolcoC-ouC:7\l|?\2-JrIFO ! 00. ..0 I 0’ O ﬁ"g‘
Ip, | CO...0 i o} 0 a1
R RO
PSR B S };|, : :
Ig, | 00, .0 ‘ of 0 18%1'
Y R F e S I
00 ... OI Ivl | ¢ I Bohpsgl(s) < Cl &..—. 8]
- . L] 'l L] l * . :
AREEL S W L I
00...0 00...0 1o, o ~ N
0 0. . . Ol Ryapgto(s).sRohpgty(s)y o) o 4 i
\ .
(D-6)

-" By performing the indicated metrix multiplication, equation (D-6) tokes the form

HOT



105
-R-: W, 5 et % I, 5 {(qo(g)_f{% + ?\gcg?Rth&sﬁo‘(,S‘)_)} Co(h)

Fourt {(Ci(g):‘vi * -M(g)%hpsﬁo(S))}ci(h)

teeat {(co(g)ﬁghpsgo(s) +...+ci(g)thpséi(S))} 7\2(h) =0

Therefore , the solution form for any on’e of the components of the hth

. (ao)h .
eigenvector, say | = is

A\

(a,(8) a,(n) h
1% ;_30- IF]_ ta .+an(g)an(h)IVO-+".+ ci(g)ciFh)IVi
g (R) 1 ' . '
R T e Rematolslog™) et 2 ORgno gy (s)es ™ $
IF —_
o0&

\+ co(ngohpS(;O(s)M(h)1+...+ ci(g)Rohpsii(s)Ra(h) /

(p-7)
or in more general terms
Now utilizing the f?.ct that. ‘
sy (h) ) _l(h) a_n(h) _ an(h)’, Co(h) _ Co(h): e (9-9)

R "R 'R TR
which can be stated in general form as

7y () = 3, ()
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A general expression can be written as'follows

;(yO\(h) ’b A ylgg) A2yé(g);t.giyi($;,Tiyom(h}‘

1

N lo 1 0 wen O {iy

LY

or
{y}(h)‘ - (8] {Y}'(h‘)
where [S] is commonly termed the sweeping matrix and 1s applied as

follows: From equation (3-54) the eigenvalue problem is

 E& -

therefore

HIEISREYNOR (p-11)

and since the contribution of the first mode has been removed, iteration
on equation (D-11) will force convergence on the‘éécond mode and its
coéresponding frequency. For higher modes, the Process is repested,

and the order of the sweeping matrix reduces for each successive
operation. WNote, however, that because of cumilative errors which are
usually incurred in the successive sweeping matrix operation, it is

wise to check the highest mode by inversion of the original matrix

egquation. -



Appendix E - Computer Programs

Those computer programs necesgary to the solution of the systems
problem developed in the investigation. contained herein and develbped_
specifically to support this investigation are presented on the pages

following.

lQT
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20
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Propellant Cylinder Shear Modes °

PROGRAM AZ2168 (INPUT OUTPUT+» TAPES= INPUT » TAPES=0UTPUT
DIMENSION ROOT(SOJvRITOO)oP(TOO)-PPR(TOO)9XLAMBDA(100)1RIJ(700)9
IRJ(TDO)vRBRJ(?OO)oSUM(?OO)1RY€1000}$RIY(IGOO)!TITLE(B) RBRY(?OO}A
COMMON RZQRIWIC'A11A2!A3°A4 A5|A61A70A89
REAL MFN» IFN

EXTERNAL FOFX, ! .
NAHELIST/NAMI/AOBoDXnRZvRIcEIQEZoMAXleBR9LMAX0RL9DR'RMAX|GF0 .
1DELTAEL+RC+FKy Al0A20A3oA49A5yA6vA7;A8vGR.

CALL CALCOMP,

CALL LEROY»

READ(S+106}TITLE

READ{SeNAML } o

WRITE(S«NAME ),

WRITE(S5+4105)

WRITE(6+108)YTITLE .

S5Q=SQRT(GF*GR/DELTA)

PI23414159

FA=2.%P 1 XDE|_TA¥EL /GR,

€
3

1c=1
‘DO 30 I=1.LMAX,
DDX=DX

CALL ITRZ2(X+AsB4DDXsFOFEXsE1+1EZ«MAXI 4 ICODE ) o
IF{ICODE 14241 s

XLAMEBDA (115X

A=X4+D¥

CONTINUE «
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GO TO 4«
1 PRINT, 102, ICODE,I,

102 FORMATU{IX+8HERROR N0O414428H IN ITRZ2 SUBROUTINE«ROOT NOsI41 4
IF{T1«6Te1)G0 TO 34
STOP«
3 LMAX=I=1,
4 DO 40 I=1.LMAX.
NRR=0+
K=1¢
RIK)=RL+
XLRO=XLAMBDA (1) #RI
XLRBR=XLAMBDA(T)*RBR.
CALL BSSLS({XLRORI24IERR) ¢
ME=1.
IF(IERR)IS+6¢5
S PRINT 1004ME+XLAMBDAC(L )
L00 FORMAT(IX.QTHERROR IN° BSSLS SUBROUTINE USING R AND LAMBDA. AS+[3+
IE1S5a7) s
STOP.
6 CALL BSSLS(XLRBRORBRJQEcIERR)O'
ME=3.
IFC(IERRYS«Be Sy
8 CALL BF4F(XLPO$RIY»2'IERRv-l)1
M3=] .
. IF(IERRI9410¢P
9 PRINT lOIolERRoMS;XLAMBDA(I)n
1'01 FORMAT ('1X+BHERROR NO+T14+42H IN BF4F SUBROUTINE USING R AND LAMBDA
1 AS+I3E1ISe Ty
STOP,
10 CALL BFA4F(XLRBRWRBRYs2+1ERR+=1)4
M3=3.
IF{IERRY9¢12+9»
- 12 FI=A3¥XLRO¥RIJ(1L)-A4GERIJ(2 )
F2=zF1¥RBRY (2)4
F3=AT*XLROXRIY 1 1-AB¥RIYI(2)
Fa=F2-F3¥RBRJ(2 )1
18 XLR=XLAMBDA(IY¥RIK).
NRITETGO{IO}XLAMBDA(I)qR{K)OXQRQ .
110 FORMATI(¥ LAMBDA =XE1lSe7+v¥ R =¥E15e7 4% XLR =*E1547)
CALL BSSLS{XLRRJ+Z2+IERRY s
ME=2+
IF{IERR)IS5« 1345
13 CALL BF4F{XLR+RY12+IERR 11}
M3=2,

L


http:IF(IERR)'5,8.5v
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IF(IERRIGs1449,
14 PK)=(F1¥RY(2)~-F3H#RJI(2))1/F4,
RDR=R (K )-+DR»
IF(NRR+EQs1)G0 TO 20,
IF(RDReLT«RMAX ) 15450
15 K=K+1.
RIKIY=RDRs
GO TO 18
50 NRR=1,
Kak+1
R (K.) =RMAX s
GO TO 18,
20 DO 18 M=1,K,
16 PPRIMI=SRIMIXP (M )%EZ2,
CALL TRAP(PPRRK4SUM«O )}
MFN=FAXSUM (K )
OMEG=XLAMBDA (T }*SQ.a
EF=OMEG/ (2+#PI ),
ITFN=RZ%®%23MF N
BUF = IFNXOMEG¥%2,
PROD=RC*P (K
WRITE(S8+107)
WRITE(S6+108)XLAMBOA (] ) +OMEGEF ¢ MFN4 IFN+BUF PROD ¢
CALL PLOT(KsRsPEFWFK Y
40 CONTINUE, )
GO TO 70
105 FORMAT(1IHl + /1SX¥ELASTIC FUEL, SHEAR TWIST MODES¥)
106 FORMAT(BAL1O) : )
107 FORMAT(// +SX+6HLAMBDA+IGX+BHFREQ RPS+TXe8HFREQ CPS+TX+8HGEN MASS
110X XRINF¥* 411 X s XBUF¥ 3.1 034 ¥PROD¥* ) o
10B FORMAT(7E1Se7) s
END»
FUNCTION FOFX{X)
DIMENSION RANS (700 )%eRIANS(T700)RETITO0)+RIST(T00) 4
COMMON RZsRIVICALJAZ+AS+AL yASIAE AT yvAB
KR=X*RZT »
XRI=X%*¥R 1,
CALL BSSLS(XR+RANS+24+IERRYY
IF(IERR)Y1 +291
1 PRINT 101X N
101 FORMAT(1X.36HERROR IN BSSLS SUBROUTINEs FOFX ROOTE1Se7 )
STOP. .
2 CALL BSSLS{XRI+RIANS+24+1ERR)»
. IF(IERRY1 ¢3¢



20
103

30

10

15
20

40

100

111

CALL BF4F(XR«RST+Z2+IERR+=1)+«
IF(IERR)S 4 +5.

PRINT 1024 IERR«Xs .

FORMAT ((1X+8HERROR NO4+144+31H IN BFaF SUBROQUTINEs FOFX ROOTEISe7}e
STOR .

CALL BF4F (XRI«RIST+2+IERRe~=1 )+

IF({IERR)Sa6+5s

FOFX= (Al %¥XRX¥RANS (] )—A2¥RANS(2) )X (AZXXRI¥RIST(1)1~A4¥RIST(2) 1~ (ASEXR
L¥RST (1 }-ABARST(2 )1 ¥ (ATXXRIX¥RIANS (] }-AB¥RIANS(2) 1
IFCICeEQe1Y20+300

WRITE(GE+IO03IX+FOFX+RIANS{1)eRISTHI )
FORMAT(/IX;EHX=oEIS.?oEXqBHFX=oEISoT-EX:THJRI(l)-oEIS-Tq?HYRI(I)—
1E1S7/)

IC=IC+1s

CONT INUE:,

" RETURN» i

END s

SUBROUTINE TRAP {YeX+NL»SUMsSUML )«

DIMENSION Y{NL) X {NL)+SUM(NL ),

SUM( 1)=SUMt .,

NEM=NE =1 o

DO 1 N= 1 4NLM,

NP=N+1 «

SUMINP) SUM(N)+(Y(NP)+Y(N))*(X(NP)‘X(N))/E-.
RETURN «

END i

SUBROUTINE PLOT(KsRsP+EFFK) s

DIMENSION R(T7003¢P{T700) +X(TO21aY(TO2Y4sPHL (700 )
DO 10 1=1.K,

PHICII=P{I)/R{Ie

PMAX=PHI (1)

DO 20 I=1.K.,

IF(PHI(1)eGT oPMAXI1IS420 ¢

PMAX=PHI (1),

CONTINUE «

F=le/{FK®X¥PMAX )y

DO 40 1=1.K,.

PHIC(IY=PHI (1l Y%F,

X(PY=R{11%¥COS(PHI (1Y)

YOEY=ROIIRSINIPHI (1))

WRITE(E+ 100} (RGI )P T aPHI(II XTI aY (1)W1 “IOK)G
FORMAT(//?X-*R*.!4X;*P*-IZXQ*PHI*O14Xo*X*vl4Xs*Y*/(SEl5cT)}o
CALL GRID(Oe 9003l l0445+¢5)n

CALL ASCALE(X+Se+Ke 14200
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CALL ASCALE(Y+5e1Ks1420a)s

KI=K+1 s

K2=K+2

YIKZI=XCK2)

. CALL AXES{O.vO.,C-vS-vX(Kl)sX(KEJOlrqE-QIHXq-iE.iSu-l)|
CALL. AXES{0s904 49095 sY (K1 }a¥(K2)elusZ2eelHY 012541}
CALL NOTATE(2e¢15:51214411HFREQUENCY =¢0psv111} .
CALL NUMBER(3¢B.5¢51s14s EF+0s43)s C
CALL LINPLT(XsYsKel10e0QeODs0)e
CALL. CALPLT (104400 e=3)1
RETURN ¢

ENDs

PROGRAM AZ168 CASE 7CK‘-‘1A FREE—FREE - —29—70
SNAME A=e0l +B=20e+DX=a01sRZ= TOORI—Q5OE1-—DIE Gan—olE—écb’lAXI =100 +RBR=7 e+
GR=3B6s v
LMAX=1S+RL= e 51DR= « 25 JRMAX=Te 1 GF = 90|ODELTA—530460E 3.EL-—-—1.¢RC—059A1—101
AZ2=2e1A3=1 0 ¢ A4=2s 1A5=1 4 s AG= 2erA7E144AB= EchK 56735

-

L oaa

-y
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Systems Eigenvaluéﬁfrogram

PROGRAM AD107 (INPUT s QUTPUT + TAPES=INPUT + TAPEG6=0UTRPUT) cca’

DIMENSION XM(40440) W (4039XN(40440)¢XIF (40} 1PP(4014V(40)4ZIC40) v s
1XG{40)1eWI (40P (40) s
2aFK{40) WV (40)+GFV(40)YR(10),
DIMENSION HEAD(8).
NAMELIST /NAM]/ZWeXLaGF s RZsPPyPaVIWTI 42T o XH RHO NN 1T o XIF 0 F1 414
111'[6!TEST|G‘CIQERIOXGIRN.FKQTA3!DTABQT‘FONROGTS!EPSQEREQ
1 READ(S+103)HEAD,
IF(EOF 451243,
2 ETOP, - N
3 READ{(SiNAMI 1y
WRITE(S1NAML }
WRITE(Gs 104 IHEAD,
DO 10 I=1.,40, .
BOQ 10 J=14400
XMCIad)=040
10 XNCleJ)=04
Pl=3.141509
NAB=NN+I1+2,
NCENN+TT4+1 4
0O S0 J=1 4NN«
TE{W(J)eEQeDe ) 22424,
22 R(1)=0es
"NR=Z1y
GO TO 18,
24 BesFRILIXWISINER/GF
Cm~W(J)HHD
‘K=3y
T3=TAB

DO 1S I=1,NRODTS
8 CALL SEARCHgcvs.DTAa.TF.ERarFNE.K.oFNg).

GO TO(Ae546 14K

4 FN2=T3#X2+B*TIXXEPS+C s
DFN2=2%T3+EPSXBET3%#% (EPS=1),
GO TO 8

5 R(I)1=T3.

15 CONTINUE,
NR=NROOTS
.GO TO 184+ _

¢IT
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18
105

26

28
3z

107
50

20

25

30

a0

100
101
102

11k

NR=I=14

IFINRNE.0IGO TO 184

WRITE(641063W{J) e,
FORMAT(/% NO ROOTS FOUND FOR. w TZEE1S5e 7Y ¢
STOP,, !
wRITE(6¢105)ch>.¢Rrr).I 1aNR Yot )
FORMAT( /% W =¥E15.7+/% ROOTS’ -*.(GEIS.TL Yo
WY (JI=R{1)

IF(EPSeEQeDe 126428

FA=1 a4

GO TO 32,

FASR({1)%%¥EPS,

GFV (L) =FK (J)¥FA,

WRITE(S+107IGEV(J) e

FORMAT(¥ GFV =%E1571s

CONTINUE +

DO 20 N=1+NNs«

XM {NsNI=XIF (N) s

XNINgN) = WV(N)**a*XIF(N)+F1*Z*PI*GFV{N)*(RZ**Z)*PP(N)**Ec
XN (NsNCI=RZ*#P{N} s

XN INCyNI=RZ*P (N )

XN INAB s NY=XN (N NAB ) RZ*GFV(N)*(PP(N)—P(N)/RN}-
NCI=NN+IT.

NNI1=NN+T,,

L=t

DO 25 N=NN1sNC1,

XMINeNY=V(I,

KNIMNeNISVIIRWT (TI%%2,

KNINgNCI==RNXZI (1)«

XNINCeN)==RN%Z]I (17 »

KM (N4NCH+1 ) SXMENCH] o N ) =RZEXHERHOXZ L (1 3+
I=1+14

DO 20 JJ=1+NAB,
WRITE(S+I100 )} IS e (XM {IJeJdIsJ=1 o NAE} »
CONTINUE »

WRITE (64101 )

DO 40 JJ=14NAB,
WRITE(6+4102)JJs (XN{JJa I+ J=14NABI ¢
CONTINUE,

CALL INVERT(NAB,I4+11416v304TEST+G+ClI 4ERI ¢ XM eXN4XG) ¢
GO TO 1.4

FORMAT (¥ M(¥ ]2 4X41)=¥/(BEISeT) )n

FORMAT (/7

FORMAT (4 N(%,312,%41)=%/(BEI1S.7))»
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103 FORMAT(8A10)
104 FORMAT(/+10X«B3A10}%+
END .
SUBROUT INESEARCHZ (TA2+DTAS sy TF +ERZ2+FNZ K+ DFENZ Yo
REALLAMALAMB
GOTO(1+42+3)¢Ks
L IE(JFeGE«2)G0TO2 4 .
S TAI=TAZ2»
FNI=FN2+
DFNI=DFN2
IE=0y
FS=0es
GOTO6 . .
2 FNI=(DFN2/ABS(OFN2)Y )% 00001
7 DFMN1=DFN24
TAI=TAZ
JF=1,
GOTO8.
3 DFN1=0en
FNL=0a0
TAL=0e
JEND=0+
JE=04
8 LAMA=0a s
LAMB=0o+
JW=04
JK=Dy
& TAZ2=TA2¥+DTAZq
JF=JF+1
9 IF(TAZeGT«TFIGOTOL10
11 K=1.
RETURMN»
10 IF(JENDEQe3)IGOTO1IZ2,
TA2=TF s
JEND=JEND+1
GOTOl1
12 K=34
RETURN
4 IF(JKEQel YGOTO13:
IF(FN2/FN1)14415:164
16 IF{IE«EQea0)IGOTOL T
18 IFT(FN2=FS)/FN2,LE«ER2)GOTO19
A1=DFNI « .
A2= (FN2-FN1-DFNI1¥(TA2=TA1) )/ (TAZ~-TA1)X%2,
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20

z5

19

7

14

13

22

23
24
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TAS=TAI-AL/{2+%A2)
FS=FN2+ i
IFLCTE«EQel YGOTO20
TIE=1+

GOTO25,

TAI=TA2+

FNI=FNZ2+
DFN1.=DFNZ
TAS2=TA3s

GOTOS e

FN2=SFN2

DFN2=SDFM2

TAZ=STAZ»

FN1=FNMNZ+

IE=0.

FS=0es

GOTOTe
IF(DFNLI/DFN2eGE 4 Q0 LGOTOS
IF(DFNI#FNI a CE« Qe YGOTOS «
SFN2=FN2¢

SDFNZ2=DFN2 v

STAZ=TAZ«

GOTO18,%

T1E=0,

'FSz=0s»

AO=FNI+

A1=DFNI1+

AZ= (FN2~FN1=DFN{ ¥ (TA2=TAl 1) /{TA2=-TA1 I #%2,
TAB1=(~A1+SORT (A1 %¥%2=4 ¢ XAOFAZ) ) /(24 ¥A2)+TAL
TA32=(~Al -SQRT (AL #¥2=4 , ¥AORAR) )/ (2 RAZ)+TAL s
IF(TALLLE«TA3] AND+TA31 +LELTA2)IGOTOZZ,

IF (TAL yLE«TA32 AND s TAS2.LETA2}GOTDZ23
Q=ABS (TA31-TA2), )
R=ABS(TA32~TAZ ),

TA3=AMINL (QsR}

IF(TA3.EQeQICOTO2Z

GOTO23,

TA3=TA3L,

GOTOZ24 +

TA3=TA32,

LAMA=LAMB o

LAMB=TAS,

JK=1.,

JWEIWHT .
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IF{JWe L T+2)G0TO20

TEST=(LAMB-LAMA }/LAMB+

IF (ABS{TEST ) «GE.ER21GOTO20

K=2-!

TAZ2=LAMB+

RETURN»

LAMB=TAZ. !

GOTO21 « :

FORMAT I X% INTERPUOLLATED TIME !S NOT BETWEEN-JI AND T2% )e
END« '

SUBROUT INE INVERT(NQI4.!h!lécNMAXQTESTOGOCIoERl#A;BoXG)!
PROG. NOe« 0107 RCM RGSS GOBLE

7

EXTERNALMATINY, D DT

IL=LENGTH OF GUFSS VECTORe ¢ . ’ ' CL
11=0 NORMALIZE ON MAXIMUM ELEMENT » =NOs! NORMAL 1ZE. ON NOa s
[2=ELEMENT WHICH IS NORMALIZED ONs ,

[4=NOs OF MODES WANTED. v

DIMENSIONA(40040)1XB(40)!X(40)'AH(40!40)03(40040)!C(40!40)0
TINDEXCAD + 2+ AM (4044014 XVL40440) MWBL{ADAI1TI{2)+ERRLL )
1XG(40)

LICt)y=11

I1(2)=14

11(3)=16

ERR(1 y=TEST

ERR'(2)=ER1

ERR(3)=C1

ERR (4 )=G-

DO1SI=1+Ny

PO15J=1 e M

AMIToJISACTI DY
CALLE:GEN(IIONONMAXOIScERR!SUMIQAQB'ﬂMFAHCCOXVOTNDEXOKGOXOXEQWBO
1MATINY)

WRITE(Gs110)ISUMI

WRITE(S5+1'12)

"WRITE(S54113)

DO11I=1+13,

WRITE(S6+109)

WRITE(S+111) (B (Led) e I=144)

O WRITE(G6+109)

100
106
109

WRITEL6+106) (XV{JaldsJz=TaN)
RETURN +

FORMAT (1X11A6)

FORMAT (7TE1648% o

FORMAT(IX/ )}«
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100

11

22

23
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FORMAT{ I XGHSUM= E16+8) s

FORMAT ({4E16.B).

FORMAT(6X3IHLAMIAX IHWISXIHSUMI OX2HIS) ¢
FORMAT { 7XAHX.( 1Y)

ENDs
SUBROUTINEEIGEN({ITaTLeNXs L3sERR¢SUMI ¢ A+B e MASS s Al Co. XV o INDEX 4 XG o o
I1XBeWBeMATINV)

REALMASS s LAMIL AMX

DIMENSIONAINX e FLIBIN o T ) sMASSINM e TL Yo AHINX 4 TL J o XVINXIL) «XG(IL)
TaX{TL 3 e XBLIL)sWBINXs4 )+ CINXsIL )2 TNDEXINX42)+ I T{3)4+ERR(4)
TIre=IlL1)

I14=I1(2)}

I6=T1(3)

ER=ERR ({1}

ER1=ERR(2Z2)

C1=ERR(3)

G=ERR{4)

DD4 =1 eIl s

DO4U=14 I,

BllseJd)=B(leJ)+CIEMASS{Tad)

DO 60 I=14lILy
WRITELG6+100) T4 (BCTaJ)ed=lell )y
CONTINUE .

FORMAT(® ADD(%+124+%¥41)=%/(BEISa7))s
DO1tI=1+1ILs

DOI'tJ=14+1L o

BlI+J)=BLlIsS}/Gy

CALLMATINVIB+IL CeOsDETERMyX s INDEX ¢ NX - ISCALE)
DOZ22I=1+IL + -
DOZ22K=1 ¢ IL

C(IsK)I=0a.s

DOZ2J=1+ I
ClIWRI=BLT 4 JIRMASELIAKI+C(TaK )
SUMI=0ss

DO23I=1sIL«

DOZ3K=1+1L

SUML=SUMIFC {1 4K IEC{KaI) «

IF(CI«EQaDe }GOTOT1 e

TESTI=ABS(G/C1 )}

I3=0 .

SUM=0a

CAMM=0¢ s

DO20I=1 1L

DO20J=1 s TL.»
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50

25
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8 (I+J1=20e
DOZ21I=14+1L
July ,

B (Iedi=10s
DO19I=1+1L ¢
DOI9J=1 ¢« IL»
AH{T+JY=CtlsJ)e
I'S=0.
DO311=1I00
XBLIY=XG(I )
DO2I=1+10L

X(1)=0es

Do2J=141L
KATImAHLT o JIFXB (II+FXCT ) 0
IS=15+14
IF(154L.To(16-10))GOTOSO
WRITE(S+103}LAM, )
IF{I5+t.Ee 16}GOTO2S
WRITE(S+105)

RETURN

IFT1eNEOIGOTOL

12=1.

DO3I=1+1L . ,
IF (ABS (X (129 LeGE s ABS{X(T1})IGOTOI,
12=14,

CONTINUE

GOTOS

12=11

LAM=ABSIX (12 ).y
DO6I=1+L0s

XLIy=X(1)/LAM,
DO1BT=1+1ILs

XBITI=X(] )

TLAM=ABS  {(LAM=LAMX ) /LLAM)Y 4
IF{TLAMILE<ER)GOTO 7

LAMX=1_AM,

GOTOB.

Q=ABSL(G/LAMI=-C1 )

SUM=SUMEL AMEX2 ,

W=SQRTIQ)

IF(CI+EQe0e)GOTOTO
IF(ABS(LAM-TEST1 ) eGT+ER1IGOTO70
W=0se ’
13=13+1


http:D031=I.IL

WB(I3«1)=LAM
WB(I3+2)=W
WEB(I3.3)=SUM
WB{I3+4)=1[S
DO9TI=1.+ 1L
9 XVIII3)1=X{1)e
IF{13LTa143G0TO30.
RETURN o
30 DOIoI=1+ILs
DO1OK=1+IL+
AlT«K)I=0ws
DOI0J=1 410
10 ACTWKISXEIIAXIIIRMASS(JKIFA (T Ky
DOIZ2T=1 410+
XB (13=0es
DOl12J=1+«]IL+
12 XB {1¥=X{J)XMASS(Je114XB (1),
DENO=XB (1)¥X(1)
DO13T=2+ 1L
13 DENO=DEND+XEB (1)#X(1I},
DC14TI=1 + T
DOYaJ=1 o IL «
14 Al «JY=A{TI«J}/DENO,
DO1SI=1+10L s
DO1SJ=1 1L
15 A{lo3=B (T4DIcA(T W)
DO161I=1+IL s
DOYEI=E: ¢ Il
16 B (led3¥=Allad)e
DO17I=1sI0L 0
DO K=t sIL
AH (T 4K )=0 s
DO17JU=1 s.IL i
17 AHIT#KI=CIT s Y%A (JeKIFAHIT oK),
GOTOZ26
103 FORMAT(7EI648)
108, FORMAT (1 X1 7THDOES NOT CONVERGE ).
END,


http:DOI7J=I.IL
http:00141=1.IL
http:D0131=2.1L
http:A(I.K)=X(-I)*X(J)*MASS(J,K)+A(I.IK
http:DOIOJ=I.IL
http:DOIOK=I,.IL
http:IF(13.LT
http:D091=1..IL



