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NUMERICAL 	 SOLUTION OF THE COMPRESSIBLE LAMINAR, TRANSITIONAL 

AND TURBULENT BOUNDARY LAYER EQUATIONS WITH 

COMPARISONS TO XPERIMENTAL DATA 

By 

Julius Elmore Harris
 

- ABSTRACT 

A system of equations describing the laminar, transitional, and
 

turbulent 	compressible boundary layers for either planar-or axispnmettic 

flows together with a numerical method bywhich the'system can be
 

accurately solved is presented. Stability theoty and its relation to
 

transition is discussed, and methods are presented with which reasonable
 

estimates may be made of the location of transition and the extent of 

the transitional flow region. These methods are used in the numerical. 

procedure to connect the three separate boundary layer regimes into one 

continuous region described by one system of governing equations. The
 

transitional boundary layer structure is developed from a consideration 

of the statistical production of turbulent spots.' The fully developed 

turbulent region is treated by replacing the Reynolds stress terms with 

an eddy viscosity model. A specifiable turbulent Prandtl number is used 

to relate the turbulent flux of heat to the eddy viscosity.
 

The numerical method used to solve the system of equations is a
 

three-point implicit finite-difference scheme for variable grid-point
 

spacing in both spatial coordinates. The method is self starting; that 

is,, it requires no experimental data input, and is highly efficient with 



regards to flexibility, computer processing time, and accuracy. The
 

method is inherently stable; no constraint is placed on the system by
 

a grid-point spacing stability parameter. To the author's knowledge 

this represents the first time this particular numerical procedure has 

been applied to transitional and fully turbulent boundary layer flows
 

as well as the first time the transitional flow structure has been 

included in such a procedure.
 

Numerous test cases are presented and the results are.comparedWwith 

experimental data for supersonic and hypersonic flows. These test cases 

include flows with both favorable and adverse pressure gradient histories,
 

mass flux at the wall, and transverse curvature. The results clearly 

indicate that the system of equations and the numerical procedure by 

which they are solved can be used to accurately predict the character­

istics of laminar, transitional, and turbulent compressible - boundary­

layer flows.
 



NUMERICAL SOLUTION OF THE COMPRESSIBLE LAMINAR, 

AND TURBULENT BOUNDARY LAYER, EQUATIONS 

COMPARISONS TO EXPERIMENTAL DATA 

By 

Julius Elmore Harris 

B. of Aerospace Engineering 

M.S. in Aerospace Engineering 

Thesis submitted to the Graduate Faculty 

Virginia Polytechnic Institute
 

in candidacy for the degree of,
 

DOCTOR OF PHILOSOPHY,
 

in
 

Aerospace Engineering
 

May 1970 

Blacksburg, Virginia
 

TRANSITIONAL, 

WITH 

of the 



II. TABLE OF COWTENTS 

CHAPTER 	 PAGE 

I. TITLE 	 .. . *. 

II. TABLE OF CONTENTS • • 	 ii
 

III. ACKNOWLEDMNTS ......... ............. 	 v
 

IV. LIST OF FIGURES ..... ..... ...........	 vi
 

V. LIST OF SYMBOLS . . . ...............	 x
 

VI. INTRODUCTION .................... 	 .... 1
 

VII. 	 MATHEMATICAL DESCRIPTION OF THE EQUATIONS FOR THE
 

LAMINAR, TRANSITIONAL, AND TURBULENT COMPRESSIBLE
 

BOUNDARY LAR.. ............... ........... 6
 

7.1 The 	System of Partial Differential Equations . . 6
 

7.1.1 Geometry and Notation........... .... 6
 

7.1.2 Differential Equations. ....... .... 7
 

7.1.3 Boundary Conditions ...... . ........ 14
 

7.2 The 	System -of Non-Dimensional Equations ..... 15
 

7.2.1 Non-Dim~nsionai Variables . . ... ..... 15
 

7.2.2 Non-Dimensional Governing Equations...... 16
 

7.2.3 The Stretched Coordinate System..... .. 17
 

7.3 The System of Transformed Equations . ....... 19
 

7.4 Eddy Viscosity and Eddy Conductivity Models . . 23
 

7.4.1 Physical Plane ......... . .. ....... 23
 

7.4.2 Transformed Plane 	 . . . . 34
 

7.5 The 	Transition Region . .. . ...... .... 35
 

'ii 



CHAPTER PAGE
 

7.5.1 Stability and Transition.............. 36
.... 


7.5.2 Transition Location ......... ...... 40
 

7.5.2.1 Stability Index ...... ....... 42
 

7.5.2.2 Empirical Correlations ....... 46
 

7.5.2.3 Experimental Transition .47
 

7.5.3 Transitional Flow Structure ........ 49
 

7.5.4 Transition Extent . ....... ....... 52
 

7.6 Boundary Layer Parameters ........ ... ..... 55
 

7.6.1 Displacement Thickness . . .
........ 55
 

7.6.2 Momentum Thickness .......... ..... 56
 

7.6.3 Shear Stress ........ .......... 57
 

7.6.4 Skin Friction Coefficient. ......... 58
 

7.6.5 Heat Transfer ............... 59
 

7.6.6 Heat Transfer Coefficient ......... 59
 

7.6.7 Stanton Number ...... ........... 61
 

7.6.'8 Friction Velocity .......... ..... 61
 

7.6.9 Law of Wall Coordinates. . 61
 

7.6.10 Defect Law Coordinates .. .... 62
 

7.7 Pitot Pressure Profiles ........ . ..... 62
 

7,.8 Exterior Flow . . . . .. .. . . . . . . .. 64
 

7.9 Variable Entropy . . . .... ........ .. 67
 

VIII. NUERICAL SOLUTION OF THE GOVERNING EQUATIONS 70
 

8.1 The ImplicitSoiutonTechnique ...... .72
 

8.1.1 Finite!fDifferencd Mesh Model ......... 72
 

8.1.2 Finite-Difference Relations......... 77
 

in 



CHAPTER PAGE
 

8.1.3 Solution of Difference Equations ... ..... 84
 

8.1.4 Solution of Continuity Equation ...... 85
 

8.1.5 Initial Profiles ....... .......... 86
 

8.1.6 Evaluation.of Wall Derivatlves . . ...... 87
 

8.1.7 Eddy Viscosity Distribution .... ...... 89
 

8.1.8 Convergence and Stability . ........
 

8.1.9 Viscous Stblay.er .. 93
 

82 Digital Computer Program . . 95
 

IX. EX PE SOLUTIONS FOR TESYSTEM OF EQUATIONS ........ 99
 

9.1 High Reynolds Number Turbulent Flow . ...... .... 99
 

9.2 Tripped Turbulent Boundary Layers ............. 107
 

9.3 Laminar Flow With Mass Injection ...... ..... .112
 

9.4 Blunt Body Flow ................ ........ j19
 

9.5 Highly Nonsimilar Flow With Transverse Curvature 120
 

9.6 Adverse Pressure Gradient Turbulent Flow . . . . .. 129
 

9.7 Flow Over Sharp Tipped Cones .......... 133
 

9.8 Flow Over Planar Surfaces ........ ... ...... 139
 

X. DISCUSSION AND CONCLUSIONS ....... ...... ..... 150
 

XI. REFERENCES . .5....... ........ ..... ... -4
 

XII. VITA ........ ......... .............. 1.
 

XIII. APPENDIX ........ ... ..................... .. 165
 

iv
 

http:Stblay.er
http:Evaluation.of


III. ACKNOWLED3EENTS 

The author would like to .expresshis appreciati6n to the following
 

people at the Langley Research Center, NASA:
 

1. Mr. Ivan E. Beckwith for his contiiiued assistance through all
 

phases of this thesis.
 

2. Mr. Joseph M. Price for assistance during the development of 

the digital computer program. 

5. Miss Virginia B. Salley for preparing the- final thesis figures. 

The author would like to express.his sincere appreciation to the
 

following people at the Virginia Polytechnic Institute:
 

1. Dr. Fred R. DeJarnette, of the Aerospace Engineering -Department, 

for serving as his committee chairman and for his active interest 

during the course of this thesis. 

2. -Dr. R. T. Davis, of the Engineering Mechanics Department, whose 

classroom lectures on viscous flow, assistance, and continuing 

encouragement has played the major part in the initial formulation and 

eventual solution of the problem presented in this thesis. 

v.
 



IV. LIST OF FIGURES
 

FIGURE 	 PAGE 

1. Coordinate system and notation ......... 	 ....... 8
 

2. Boundary conditions in the physical plane ... .... 14
 

3. Boundary conditions in the stretched plane . ......	 18
 

4. Two-layer turbulent boundary-layer model........ . 23
 

5. Matching procedure for two-layer model......... 	 . 32
 

6. Vorticity Reynolds number ..... ...... .....	 44
 

7. Transition extent definition ......... ....... 	 54
 

8. Cases where variable grid-point spacing is required 74
 

9. Finite difference grid model .... ............. 76
 

10. High Reynolds number turbulent flow ... .... .... 103
 

(a) Comparisons to skin friction coefficient data . 103
 

(b) Comparison 	to velocity profile data ..... ....
.. 103
 

(c) Transition region velocity profiles ...... . . .104
 

(d), Transition region temperature profiles .... ... 104
 

(e) Transition 	region total pressure profiles .. 105
 

(f) Transition 	region Mach number profiles .... 105
 

(g) Intermittency distribution in transition region 106
 

(h) Boundary-layer thickness in transition region . 106
 

11. 	 Comparisons with experimental data for tripped
 

turbulent boundary layers .l........... . 1
 

(a) 	Velocity profile and skin friction coefficient
 

=for Y6 1.982 	 ....... log.......
109
 

vi 



FIGURE 	 PAGE 

(b) Mach number profile for M. = 1.982 .. .... 109
 

(c) 	Velocity profile and skin friction coefficient 

for M = 5.701 ... ........ ........ i10 

(d) Mach number profile for M = 3.701 ..... ...... 110
 

(e) Mach number profile and skin friction coefficient
 

for L= 4.554f. ........ .......... ..1
.

(f) Mach number profile for Y6 = 4.554 ..... .... 1il 

12. 	Hypersonic laminar boundary layer flow with mass
 

injection ........... ............. ... ... 113
 

(a) Comparisons to heat transfer data .... ....... ..
 3
 

(b) Velocity profiles .... ......... ....... 114
 

(c) Mach number profiles. 	 115
 

(d) Vorticity Reynolds number aistribution for zero 

mass injection . .. . ............... 	 116
 

(e) Vorticity 'Reynolds, number, distribution-Sot 

variable mass injection . . .......118
 

13. Hypersonic blunt body flow ... . ... .......	 120
 

14. Comparisons with data for highly nonsimilar supersoni
 

flow with transverse curvature effects. . . . . .... 121
 

(a) Geometry of configuration .	 121
 

(b) Experimental edge Mach number distribution . . 123
 

(c) Momentum thickness for M = 1.398 •.• .•..... 125
 

(d) Momentum thickness for Mm = 1.7 ......... 126
 

(e) Skin friction coefficient for M = 1.398 • .127
 

(f) Skin friction coefficient for M. = 1.7. .... 128
 

vii
 



FIGURE 	 PAGE
 

15. 	 'Comparisons to experimental data for adverse pressure
 

gradient supersonic tUrbiilent flow ..... ... ...... 130
 

(a) Experimental Mach number distributionk.. . . . . .. . 130
 

(b) Comparisons to experimental momentum thickness and 

form factor distributions ...... ..... .... 132
 

16. Comparisons with 	experimental Stanton number distributions 

for 	hypersonic flow over sharp-tipped cones ....... ... 135
 

. . .x l o6  
(a) M 	=7, R* = 3 .00 5 

. . . . . . . . . . .
 (b) M, =7, R* =3.94 xl06 . .  	 15e 

06(c) K = 7, Re =5.30 x 	 . . . . . . . . . . . . . .  
 • 136 

O6.
(d) =7, • = 6.69 x 	 •136 

.(e) M= 7, Re =7.48x 6 . .	 . . .  . . . . . . . .
 •10137
 

. . . .	 . . . .(f) M = 7, Re =9.18X106	 . . . . . .
 137 
6 .. .	 .(g•~8 R=12.50 x10 . .. . . . . . . . . .
 138
 

(h) M =8, R*=1T.20xl06..	 . . . . . . . . . . .
 . . . 138
 
e 

17. Comparisons with 	velocity profile data and momentum
 

thickness for laminar, transitional, and turbulent flow 

over a hollow cylinder at M = 2.41 ..........	 141
 

(a) Re* = o. 6
672 x 10.... ......... 	 ..... 141
 

(b) R* = 2.88 x lO6. 	 ........ ............ 14,
 

(c) R* = 5.76 x 106 . . . ... .... . . . . . .. .. 142
 

(d) Re = 8.64 x 106................. . . . 142
 

,(e) : = 11.50 X 106 ...... ... .... .. .... 143
 

(f) Momentum thickness 	 . . . . 143
 

viii
 



FIGURE PAGE 

18. Comparison with experimental data for laminar and 

transitional flat plate flow at M. = 7.8 ..... . . 144 

19. Stability index as function of unit Reynolds number . . . 147 

ix 



V. LIST OF SYMBOLS 

a power law constant, eqation (6.41) 

Aln BlnOln,Dln, coefficients in the aifference/'equqtion (8.29) 

ElnFlnWGln and. defined by ekuations (A-3) to (A-9) 

A2nB2n n n 
E%'F~~n'G% 

efficients in the difference equation (8.30) 
en 'defined -

' 

and, d by 'equations (A-1), to (A-i6), 

skin frictiocoef1 * *2 
Cfe 
Cf 

skin friction coefficient 
skin friction coefficient 

at wall,, -w/(7 Peue 
at-wall,,; "<I( 1 p:u*2 ) 

w 2 

Cf total skin friction coefficient, equation (7.98) 
e 

Che Stanton number defined in equation (7.112) 

CP specific heat at constant pressure 

C0 max maximum pressure coefficient defined in 

equation (8.40) 

CmlJC' defined in equations (A-45) and (A-46) 

Eml,Eml defined in equations (A-36) and (A-37) 

BY defined in equation (A-39), 

F velocity ratio, u/ue 

Fml defined in equation (A-29) 
Fm2 defined in equation (A-32) 

Fy defined in equation (A-40) 

G , a typical quantity in the boundary layer 

h heat transfer coefficient, equation (7.110.) 

H a typical quantity in the boundary layer 

x 



H1H27H3..., H11 'H12 coefficients defihed by equations (A-17) to 

(A-28) 

i index used in grid-point notation, equation (8.1) 

I constant used in correlation equation (7-79) 

j flow index; j = 0 planar flow, j = 1 

axisymmetric flow 

J constant used in correlation equation (7.79), 

K grid-point spacing parameter, equation (8.1) 

K1 constant in eddy viscosity model equation (7.52) 

K2 constant in eddy viscosity model, equation (7.65) 

Kz thermal conductivity 

KT eddy conductivity, equation (7.9) 

.2 defined in equation (7.41) 

T mixing length, equation (7.52)'-

LmALJ. defined in equations (A-34) and (A-35) 

L reference length, equation '(7.20(b)) 

m grid-point spacing index (fig. 9) 

M Mach number 

n index defined in figure 9' 

N total number of grid points (fig. 9) 

p pressure 

q heat tran'sfer rate, equation (If 163 ) 

Q convergence parameter, equation (7.18) 

r radial coordinate'. 

rb base radius, equation (8.41), 

xi 



rf 


ro 


r~
s 


R* 
e 

Rref 


Rex 

Rexi 
Xt~i 


Re,*,t 


Re 

Ree 

S* 


t 


T 


Taw 


TmlT 2 

Ty 

u 


U 

U+ 


u 

recovery factor, equation (7.fll)' 

body radius 

shock wave coordinate 

unit Reynolds number, u*/v*, (feet) - 1 

reference Reynolds number, equation (7.24)
 

Reynolds number based on x*, - x* 
Ve
 

Reynolds number at transition, - x* 
Ve t'i 

transition Reynolds number based on displacement 

thickness, - 8*
Ve t
 

Reynolds number based on transition extent, 

- x* )
t,f t~i 

Reynolds number based on momentum- thickness, 

(U*/V* ) 
eu/~ e 

Sutherland viscosity constant (198.60 R> 

transverse curvature term, equation (7.34) 

static temperature 

adiabatic wall temperature, equation (7.108) 

defined in equations (A-30) and (A-33) 

defined in equation (A-4a) 

velocity component in x-direction 

defect,law coordinate, equation (7.118)
 

law of wall coordinate, equation (7.i16b)
 

friction velocity, equation (7.115
 

xii
 



v 


v 


+
v


V 


'VM 


x 

xt'i 


xt'f 


Xl x 4XIX
 5 


y 


y+' 


YM 


y 


YIY2;YYjY4,YYY 6 

z 


zs 


aconstant 


pconstant 


Y, 


velocity component in y-direction
 

velocity component defined by equation (7.7)
 

velocity component defined by equation (7.26)­

transformed normal velocity component,
 

equation (7.37)
 

defined in equation (A-31)
 

boundary layer coo52dinateatahgent to surface
 

beginning of transition (fig. 7)
 

end of transition (fig. 7)-'
 

functions of the grid-point spacing defined 

by equations (8.7) to (8.11) 

boundary layer coordinate normal to surface 

.law of wall coordinate, equation (7.116a)


defined in figure 5
 

boundary layer'coordinate normal to surface in
 

stretched plane (fig. 3)
 

functions of the grid-point spacing defined 

by equations (8.15) to (8.20)
 

body coordinate
 

shock wave coordinate
 

defined in equation (7.41)
 

defined in equation (7.84) 

defined in equation (t.41) 

defined in equation (7.84) 

ratio of specific heats 

xiii
 



7transverse 


P 


S 

Nine 


tx t 

Ax 

E 

E 


Gav 


E 


~1transformed 


enondimensional 


e 

A 


p 


v 


V 

IIJI1
 2 


intermittency distribution,
 

equation .(7.68)
 

streamwise intermittency distribution,
 

equation (7.81)
 

"boundary layer thickness 

incompressible displacement thickness 

nonditensional displacement thickness, 6*/L* 

transiti6n extent, Xtf4 - Xti 

grid-point-spacing in physical plane
 

grid-point spacing in transformed plane
 

.(see fig.&) :
! 

eddy Viscosity 

eddy viscosity function defined in equation (7.15)
 

defined in equation (8.37Y
 

eddy viscosity function defined in equation (7.16)
 

normal boundary layer coordinate
 

momentum thickness, e/L*
 

static temperature ratio, equation (7.36)
 

defined in equation '(7.83)
 

molecular viscosity
 

kinematic viscosity p/p
 

average kinematic viscosity, equation (7.55)
 

transformed streamwise boundary layer coordinate
 

defined in equation (7.82)
 

functions defined in equations (7.72) to (7.74)
 

xiv 



p density
 

a Prandtl number, Cp/K;
 

at static turbulent Prandti number, equation (7.10)
 

T shear stress
 

TZ laminar shear stress 

Tt turbulent shear stress 

TT ,  total shear stress, equation (7.93) 

angle between local tangent to surface and
 

centerline of body (see fig. 1)
 

X stability index, equation (7.78) 

Xma x maximum local value of X (fig. 6) 

(Xmax)cr value of stability index at transition 

Astreamline (see fig. 1) 

Wstretching parameter defined in equation (7.27)
 

91,9203)4,05 functional relations in equations (7.48). (7.50), 

(7.86), and (9.1) 

Subscripts 

e edge value 

i inner region of turbulent layer 

m ,mesh point in i-direction; see fig. 9. or 

measured pitot value, equation (7.124) 

o outer region of turbulent layer 

n mesh point in 1-direction; see figure 9 

ref reference value; see equations (7.125) to 

(7.128).
 

Xv 



s shock condition
 

S.4. sublayer
 

t total condition 

w wall value 

free stream. 

Superscripts 

* - dimensional quantity 

fluctuating component
 

time average value
 

Other Notation
 

A coordinate used as a subscript means partial'differential with respect
 

to the coordinate. See equation (8.4).
 

TVC transverse curvature
 

T-S Tollmien-Schlichting
 

xvi 



V7. INTRODUCTION 

The boundary layer concept first introduced by Prandtl (ref. I)
 

in 1904 diVides the flow field over an arbitrary surface into two
 

distinct regions; an inviscid outer region in which solutions to the
 

Euler equations describe the flow field characteristics, and a viscous
 

inner region where the classical boundary-layer equations are valid. 

The boundary-layer region may be further divided into three categories; 

namely, laminar, transitional, &nd turbulent. 

The laminar boundary layer has received considerable attention 

over the past 60 years, especially over the past decade with the
 

increased availability of high-speed digital computers. Early solutions 

of the boundary layer equations were obtained for incompressible, zero 

pressure grad-ient, adiabatic flows, These solutions were generally 

obtained by series expansion techniques and .were elegant in formulation, 

but time-consuming to obtain; howeVer, they' did yield valuable information 

for extrapolation to more compler flow systems. The addition of pressure
 

gradients into the problem required the use of numerical techniques which 

were impractical without high-speed digital computer systems. This 

difficulty led to the development of momentum integral approaches in 

which the actual boundary layer equations were not satisfied at each 

point across the viscous region, but instead were .,satisfied only in the
 

average. Reviews of these early methods are given in references 2, 3, 

and 4. 

1 
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As flight speeds increased, it became necessary to include the
 

effects of compressibility. The inclusion of compressibility coupled
 

the momentum and energy equations ahd resulted in a formidable system 

of five equations, three 6f .which (the conservation of mass, momentum, 

and energy) were nonlinear partial differential equations. The 

requirement of simultaneous solution of this system prevented any 

complete numerical solutions from being obtained u'ntil the advent of
 

early digital computer'sybtems. Therethen appeared a number of similar
 

and so-called local similarity soluti6ns. A~review of these methods
 

and solutions is presented in reference 5. Finally, in the early part 

of the past decade the complete nonsimilar laminar equations for the 

compressible, nonadiabatic boundary layer were solved to a high degree 

of accuracy by finite difference techniques (see Blottner, ref. 6).
 

One of the earliest observations made by students of fluid mechanics 

was that, in general, a turbulent or random-like state of motion was the 

most natural state of fluid flow. 0. Reynolds (ref. 7) in his now 

classical study of pipe flow observed that at some value of the parameter 

Ud/v, where U, d, and v represent the mean velocity of the flow, 

the diameter of the pipe,, and the kinematic viscosity, respectively, 

the laminar flow degenerated to a turbulent state in which the molecular
 

viscosity became of secondary importance in relation to the kinematics 

of the flow. Early investigations of turbulent flow categorically 

divided nonlaminar flow into two regions; transitional and turbulent.
 

Transition, and the ability to accurately predict its location 

on an arbitrary surface has been the object of intensive analytical 



3
 

and experimental research for many years. A complete understanding of
 

the transition process as well as the ability to predict its location
 

for general flow configurations has not yet been achieved. However,
 

the effects of basic flow parameters on transition have been studied
 

in detail. The flow within the transition region, which is basically
 

nonlinear in character is neither fully laminar nor fully turbulent but 

a combination of both. The detailed mean flow within the transition 

region itself has not.been studied as extensively as the location of
 

transition and the characteristics of the eventual fully developed
 

turbulent'boundary layer. Consequently, little if any effort has been 

specifically directed towards the problem of developing a suitable 

system of equations that would describe the mean characteristics of
 

transitional flow. There have been a few experiments in which the mean 

profiles were.measured as well as some where the intermittent character
 

of the flow was studied, but more detailed work is still required. 

There have, of course, been many experimental tests at high speeds in 

which the heat transfer at the wall has been measured, but this describes 

little if anything of the flow structure away from the wall. Savulescu 

(ref. 8) has recently presented ohe of the first thorough reviews of
 

transition phenomena. Morkovin (ref. 9) recently completed the most
 

current and extensive 'reyiew of modern stability theory and experimental 

hypersonic transition. The characteristics of transitional boundary 

layers for low speed incompressible flow as well as compressible flow 

(ref. IO) has recbived s6me attention. 'These results at least allow 

workable models of the mean flow structure in the transition region to 



be formulated and applied tentatively to compressible flow systems.
 

It appears that at the present time it is not possible to obtain
 

completely general solutions for transitional flow. However, it is_
 

possible to develop models for the mean flow from existing data on the
 

infermittency distributions which represents in a broad sense the
 

statistical distribution of turbulence intensities.
 

Compressible turbulent boundary-layer flows have received much 

attention over the past decade because of the vital need of being able 

to accurately predict heat transfer and skin friction for high performance, 

aerospace vehicles. However, most of the work has been experimental with 

the main objective directed towards developing empirical or semiempirical 

correlation techniques. Little if any effort was devoted to obtaining 

numerical solutions of the'equations for turbulent boundary layers until 

a*few years ago. The principal difficulties were associated with the 

modeling of the turbulent transport terms as well as techniques for 

obtaining solutiots on existing,digital:computer systems. Even today 

because of the limited understanding 6f these turbulent transport 

processes, completely-general solutions of the mean turbulent boundary 

layer equations are'not poasible. However, ty modeling the turbulent 

transport terms thr6ugh eddy viscosity o2 mixing length concepts it is 

possible to solve the system of equations diiectly. Reviews of recent 

analytical advances are contained in references 11 and 12 for 

incompressible flow and references 13 and 14 for compressible flows.
 

The purpose for the present thesis is to present a system of
 

equations describing the laminar, transitional, and turbulent compressible
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boundary layers and a solution technique with which the system may be
 

accurately solved for either planar or-axisymmetric perfect gas flows.
 

The solution technique has teen fouhd to yield accurate results for
 

compressible lamindr; transitional, and fully developed turbulent
 

boundary layers with 15ressure gradients, heat transfer, and mass 

transfer at thewall. The solution technique utilizes 3-point implicit 

difference relations and the method first developed by Flugge-Lotz and 

Blottner (ref. 15) and later improved upbn'by Davis and Flugge-Lotz 

(ref. 16) to solve the difference equations. The equations are solved
 

in the transformed plane. Transverse curvature terms are retained, 

and variable entropy effects may be included. The transition region is 

modeled by utilizing an intermittency distribution which describes the 

statistical distribution of turbulent spots and modifies the models of 

the turbulent transport processes., The turbulent region is treated 

by solving the mean turbulent boundary layer equations in which the 

Reynolds stress terms are replaced by an eddy viscosity model, and a
 

specifiable turbulent Prandtl number function relates the turbulent 

fluix of heat to the ,eddy viscosity. The eddy viscosity mode: is based
 

upon existing experimental data.
 



VII. MATHEMATICAL DESCRIPTION OF THE EQUATIONS FOR THE LAMINAR, 

TRANSITIONAL, 	 AND -TURBULENT COMPRESSIBLE. 

BOUNDARY LAYER 

In thischapter the governing equations for the compressible
 

boundary layer together with the required boundary conditions are
 

presented. Special attention.is d~votbd to the eddy viscosity and eddy
 

conductivity models used to represent the apparent turbulent shear and
 

heat flux terms appearing in- the mean turbulent boundary-layer equations. 

Boundary layer stability, transition; and tranditional region flow 

structure are also discussed. 

7.1 The System of'Partial Differential Equations
 

7.1.1 	Geometry and Notation
 

The orthogonal coordinate system chosen for the present analysis
 

is presented in figure 1. The boundary layer coordinate system is 

denoted by x* and y* which are tangent to and normal to the surface, 

respectively. The origin of both the boundary layer coordinate system, 

(xy*)' and the body coordinate system,. (z*,r*) is located at the 

stagnation point for blunt body flows as shown in figure l, or at the 

leading edge for sharp-tipped cones or planar surfaces. The velocity
 

components 	 u* and v* are oriented in the x* and y* direction, 

respectively. Transverse curvature terms are retained because of their
 

importance in the development of boundary-layer flows over slender bodies 

of revolution where the boundary-layer thickness may become of the order 

of the body radius, r*. A discussion of transverse curvature and its
0 

6 

http:attention.is
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effect on the resulting boundary-layer characteristics is presented 

by Lewis (ref. 17). The radial coordinate, r* represents the true 

radial distance from the centerline of the body to a given point (x*,y*) 

in the boundary layer. The angle 9 is the angle between the z* axis 

and local tangent evaluated at (x*,o). The coordinates (xt,i ,) and 

(x* ,o) represent the location at which transition is initiated and 

completed, respectively. 

7.1.2 Differential Equations
 

The flow of a compressible, viscous, heat conducting fluid is
 

mathematically described by the continuity, Navier-Stokes, and energy
 

equations together with an equation of'state, a heat conductivity law,
 

and a viscosity law. For flows at large Reynolds numbers, Prandtl 

(ref. 1) has shown that the Navier-Stokes and energy equations can be 

simplified to a form now recognized as the classical boundary layer 

equations. These equations may be written as follows (see ref. 2);. 

Contnuity
 

(r*jp*u*) +- (r*jp*v*) 0(7.1) 
x* ,3 y* 

Momntum 

=--- r' *r* yj (7.2) 
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r
 

Shock wave­

Boundary-layer edge--\ Ue. 

r ro 

e 1- Crdillnate s m n . 

' " • . ~Turbulent J ' ~ --

Figureal.- Coordinate system and notation.
 

xx 



Energy 

oy* dx* 

PL++**JtCX*) v* = 2 

~N ~gr*j y; +yrjx 

(7.3) 

Osborn Reynolds (ref. 7)' in 1883 was the first to observe and 

study the phenomena of transition from laminar to turbulent flow. in 

his theoretical studies of turbulence (ref. 18) he assumed that the 

instantaneous fluid velocity at a point could be separated into a mean 

and a fluctuating component. The result of his early work was a set. 

of mean turbulent boundary layer equations. This system of equations 

can be written as follows (see ref. 19):
 

Continuity
 

±*r% -*' 
' 4°YL r + /1 o (y ) 

Momentum , • 

F * i 

P ** X--"++ P* JY*i "j P:­ (7) 

1 1V 4 

u
Uj
r*3
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Energy 

X* CP* + + p*y* 

2,dp*4- flXi K '< pQ 6=U* 


dx* rE* L C*yy P; JY* 
-((o6.') 

6 *v*' *1* 

(7;.6) 

The mean turbulent equations are identical to those for the 

laminar boundary layer (eqs. (7.-) to (7.3)) with the exception of the 

correlations of turbulent fluctuating quantities which are the apparent 

mass, shear, and heat flux terms caused by the action of turbulence. 

The main problem of calculating turbulent flows from this set 

of equations is concerned with how to relate these turbulent correlations 

to the-mean flow and thereby obtain a closed system of equations. In 

the present analysis, the apparent mass flux term, p*lv*', the apparent 

shear stress term, p* u*'v*' (Reynolds stress term) and the apparent 

heat flux term, C* p* v*'T*' are modeled or represented by a new 

velocity component, v% an eddy viscosity e-, and an eddy conductivity 

KT, respectively. 

A new velocity component normal to the surface is defined as
 

follows:
 

v*7*=v* + p* P1_(7.7) 



The eddy viscosity is defined as
 

- 0'*=* (7.8) 

and the eddy conductivity as
 

r, v*f-T* " 

K = - * P* (7.9) 

The static turbulent Prandtl number is defined as,follows:.
 

ij*'T*± -'. 
*T 

Equation (7.10") pan then be expressed in terms of equations (7.8) and 

(7.9) as 

0p (7.11)
 

The eddy viscosity model used in the present analysis is discussed in
 

Section 7.4:.
 

In terms of equations (7.7) through (7.11) the governing
 

differential equations may be written as follows:
 

Continuity
 

___)+ r* *) a (7.12) 
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Momentum
 

+- * - , (7.13) 
yX* , dx r*J vy*\ 

Energy
 

C 5 *aI* Tu* P* *~T*)-(i + = u* d)* + 

r* i 'a1 

re7e14e)
 

The terms e and -e appearing in equations (7.13) and (7.1k) are 

defined as follows: =(! + -cr ( 7.16 

c (l + 6r) _ (7.15) 

and 

e=(l + - r) (-6 
- at 

respectively. 

Th tunction, r, appearing in equations (7.1-5) and (7.1-6) 

represents the streamwise intemittency.,distribution in the transitional 

region of the boundary layer. P assmes a value of zero in the laminar 

region of the boundary layer,and a value of unity in the fully turbulent 

boundary layer. The variation of P within the transitional region of 
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the boundary laye r depends uponthe statistical growth and distribution 

of turbulent spots. The intermittency function is discussed in 

Section 7.5.3.
 

lh order to complete the system of equations the perfect gas law
 

and Sutherlands viscosity relation are introduced.
 

Gas Law
 

F*= a(zl )P*T* (7.17) 

Viscosity Law 

* + siive (air only) (7.18) 

llref \T1-ef/ rrT'ef *Tefl 

The system of governing euqations then consi-sts of three nonlinear 

partial differential equations and two algebraic relations. Two of
 

these differential equations (eqs. (7.13' and (7.14)) are second order 

while the remaining differential equation (7.12) is first order. 

Consequently, if suitable relations for E, tr., and r can be specified 

there are five unknowns, ,namely, u*, V*, p*, T*, and * and five 

equations. 

The pressure gradient term appearing in equations (7-13) and 

(7.14) is replaced by the Bernoulli Telation; namely 

dp* du* 
-- = _ -X* (7.19)

ax* e e dx
 



which is determined from an inviscid solution. If variable entropy
 

is considered (see Section 7.9y dp*/dx* is retained in equations (7.13)
 

and (7.14).
 

7.1.3 Boundary Conditions
 

In order to obtain a unique solution to the system of ,governing
 

equations it is necessary-to satisfy the particular boundary conditions
 

of the problem under consideration. These conditions are shown
 

schematically in figure 2.
 

UN*, Ye*) =Ue*(X* 

T*(x*,ye*) T *(x*) 7 

Boundary - Ioyer region 

U -K jy . - ) ,. T (X 0) T 

v~~ x 0 (xt 

Figure 2.- Boundary conditibns in'the physical plane.
 

Theveocty an epeaue' * ..
The velozlity and-temperature distribuitionf at the edge of the boundary
 
' , 

layer ate determined from the shape of the body by using inviscid flow
 

theory and re discussed in Section 7.8'2: The Po-slip condition is, 
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imposed at the wall; however, arbitrary distributions of v* and T*
 
w W 

may be specified.
 

The parabolic nature of equations (7.13) and (7.14) requires
 

that the initial velocity and temperature profiles be specified at x.
 

These initial profiles are obtained in the present investigation from
 

either an exact numerical solution of the similar boundary layer
 

equations or from experimental data and are discussed in Section 8.1.5. 

7.2 The System of Non-Dimensional Equations
 

7.2.1 Non-Dimensional Variables
 

The non-dimensional variables chosen for the present analysis
 

are defined as follows:
 

Dependent Variables 

ui' U*/U* 

ref
 

V=v*/uM* 
ref 

P P*/(p* fu 2 
ref ref (7.20a) 

ref 

T =T/T* 
ref
 

= ef 

Independent Variables 

x = xt/L* 

y y*/,* (7.20b) 

r r*/j 
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The reference values ,of density and velocity used in equations'(7.20)
 

are taken to be those of the free stream, the reference temperature
 

is taken to be ef/Cp*,and the reference viscosity is the value of
 

the molecular viscosity evaluated from the Sutherland law at the
 

reference temperature. The reference length (characteristic length)
 

L* may be taken as the nose radius, for example, in the case of a 

spherically blunted body or as any unit length for planar flows. (See 

equations (7.125) to (7.128).) 

7.2.2 Non-Dimensional Governing Equations
 

The non-dimensional equations are obtained by substituting 

'equations (7.20) into equati6ns (7.12), 7-1),'-and (7.14) and are as. 

follows: 

Continuity
 

",:(r 0 (7215(rJpi;)' + a (7.21) 
y
 

Momentum
 

P + , uyyp .e l 4 6 (7.22) 

Energy 

' )xdx k\P Bref ri 6y (r aP T + u ++3 j 

The parameter Eref appearing in equations (7.21), (7.22), and (7.23) 

is a reference Reynolds number defined as 
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L

Prefuref


Rref = (7.24)
 

7.2.3 The Stretched Coordinate System
 

In order to remove the reference Reynolds number from the governing
 

non-dimensional equations as well as stretch the coordinate normal to
 

the wall a new independent variable, Y. is defined; that is
 

y = / (7.25) 

A new velocity, component is' also defined by the relation 

- v+ = V (7.26) 

where the parameter w is defined as follows: 
-1/2
 

m = (Pt-ef) (7.27) 

The non-dimensional governing equations then become in terms of 

the stretched variables 

Continuity
 

,(r~pu) + y-(rJ pv±) (7.28)-0 

Momentum
 

-u++2uP.(~ 
y 

dp +1 
(7.29)
 

Energy
 

3i~ ++= +a i (7.30) 



The equation of state '(eq.(7-17)) and the viscosity law (eq. (7.18))
 

may be expressed as follows:
 

Equation of State
 

P: (L ) pT (7.31) 

Viscosity Law
 

S3/2(l- -S) (air only) (7.32)
 

where S = S*/Tref. 

The boundary conditions for the system of equations in the 

stretched, non-dimensional plane are presented in figure 3. 

u (X , Ye) =Ue(X) 
T (X,Ye) =Te(X) 

Y ry., y region
 

Y 

Boundary-liayer regionV X 

(XY) = u1(Y). (X )uo) 0 
Fig-e v+(X Y ) v+(Y) ith) v vle )Vt 

lT(xi ,Y) =T(Y) ,.'(Xo), =Tw(X ) 

Figure 3.- Boundary conditions in the stretched plane., 
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7.3 The System ,of Transformed Equations
 

The system of governing equations is singular at x = 0. The 

Probstein-Elliot (ref. 20) and Levy-Lees (ref. 21) transformation can be 

utilized to remove this singularity as well as control the growth of 

the boundary layer as the solution proceeds downstream. In reference 16,
 

Davis and Fliigge-Lotz obtained solutions to the laminar boundary layer 

equations in the real plane for axisymmetric flows. However, the
 

solutions were obtained for only a few nose radii downstream of the
 

stagnation point and the boundary layer growth problem was not serious. 

If solutions are required many nose radii downstream, say on the order
 

of 1,000, then the boundary layer growth can cause problems if the 

solution is obtained in the physical plane'unless provisions are made 

for checking and adding additional grid-point when required.
 

The transformation utilized can be-written as follows:
 

f x 2j . a 
,
t(x) Peue[lero ,dx (7.3a)
 

r Y 
Peuero 


= j'Y tj -2. (q.553b)Jo 

where the parameter t appearing in equation (7.33b) is the transverse,
 

curvature term and is defined as
 

t =I +ro 4a 
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The relation between derivatives in the old (x,Y) and new ( ,, )'
 

coordinate systems are as follows:
 

P eu elle(7 

.35)
(~)Pe% e)K(= 

Two new parameters,- F and e are introduced and are defined as 

F =u/u
 

(7.36) 

as well as a transformed normal velocity
 

=- -[Q-+P~~~tj (3) 

The governing equations in the transformed plane can be expressed
 

as follows:
 

-Continuity
 

-W + 2j F + F =60 (738) 

Momentum
 

2 F 6F 6F + 13(F2'
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Energy
 

~2 c e 2j-It'\ 
2F -+V---lt -e ict E -=0 (7r4o) 

where
 

- = (Pu) /(Pu)e 

ui (7.41) 

The parameter I can be written by using the viscosity relation
 

(eq. (7.32)) and the equation of state (6q. (7.31)) as,
 

I =f(l + ) (air only) (7.42) 

where S - S/Te 

The transverse curvature te~m can be .expressed in terms of the 

transformed variables as
 

= + 1 - .dr) .. (7.-3)PeUe, 0 P ,, 

where the ± sign in,equation (7.4}.), is required in order to,6btain 

solutions for axisymmetric boundary layer flows over a body or inside 

a duct (nozzle), respectively.
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The physical coordinate normal to the wall in the stretched real 

plane is obtained from the inverse transformation; namely 

Cos Jro I+ 2 V2T TI '/2 
Y = +o cs (7,44) 

P Ueroj / "
 

The selection of the correct sign in equation (7..44) is made on the basis
 

of + for axisymmetric flow over bodies of revolution and - for fl6w
 

inside of axisymmetric ducts (nozzles). 

The y-coordinate in the physical plane is obtained from 

equations (7.25), (7.27),. and '(7.44); that is, y'= mY. 

The boundary conditions in the transformed plane are as follows:
 

Wall Boundary
 

F(gO) = 0
 

V(E,O) =Vw(0.' (7.5a)
 

O(t,o) =e_( )J 
Edge Conditions
 

F( 'qe) 1 
 (7.45b) 

The boundary condition at the wall for the transforred V component can 

be related to the physical plane as
 

VT ww\ (746) 
c17W~LrJ PeUe / 
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where the no-slip constraint has been imposed on equation (7.37). It 

should be noted that the apparent mass flux teitm appearing in 

equations (7.4) and (7-5) is zero at the wall. Therefore equation (7-46) 

can be expressed in terms of the physical mass flux at the wall as 

Vw= .4-ww 	 (7-47)Sero PeUe 

7.4 Eddy Viscosity and Eddy Conductivity Models
 

7.4.1 	Physical Plane
 

The turbulent boundary layer can be treated as a composite layer
 

-consisting of an inner and outer region as shown schematically in
 

figure 4. (See Bradshaw, reference 22.)
 

ue -

Outer 	region 

Inner region 

Viscous 	sublciyer 

Figure 4.- Two-layer turbulent boundary-layer model. 
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The thickness of the inner region ranges between 0.18 to 0.25. 

The character of the flow depends primarily on the shear stress at the 

wall, Tw and the molecular viscosity- [i. The mean velocity distri­

bution in this region responds quickly to changes in the wall conditions 

since the turbulent eddy structure is small. The mean velocity 

distribution is characteristically described by the "law of the wall" 

relation
 

U j (7.48) 

The law of the wall relation was first derived,by Prandti (ref. 23).
 

If the wall is smooth the inner region will .contain a sublayer, usually
 

referred to in the literature as either the laminar sublayer or the
 

viscous sublayer, adjacent to the wall.
 

The viscous sublayer is very thin in relation to the total 

boundary-layer thickness. 'The thickness of the sublayer usually ranges 

between 0.0018 to 0.018. The layer is highly viscous in character; 

consequently, the mean velocity is a linear function of' y. For the
 

viscous sublayer, equation (7.48) can be written as
 

u=Y u(7-49) 

UT V* 

The relative thinness of the viscous sublayer, and its importance in
 

determining the correct shear stress and heat flux at the wall requires
 

that very small grid-point spacing in the y-direction be utilized in
 

the wall region for the numerical procedure used in the present
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analysis. This particularly important point is discussed in
 

Section 8.1.
 

The outer region of the turbulent boundary layer is very thick
 

in relation to the wall region. It ranges in thickness from 0.88 to 0.98.
 

The flow in this region is basically independent of the molecular
 

-viscosity,dependent upon the wall shear stress and strongly affected
 

by boundary layer edge conditions such as pressure gradients in the
 

streamwise direction, dP/dx. The mean velocity distribution for the
 

outer region is usually diecribed by the velocity-defect law-: 

Me '­

('U T 

The basic argument leading to the! form of the velocity-defect law is 

-
that the reduction in velocity, uIe ,u at a distance y from the wall
 

is the result of a tangential stress at the wall, indepeident of how the
 

stress arises but dependent on the d'tance to which the effect has
 

diffused from the wall. The flow in the outer region hows similarity
 

to wake flow, and the eddy atructure is large scale in relation to the
 

inner region. Consequently the response of the mean velocity distri­

bution to changes in boundary conditions is quite slow. The eddy
 

viscosity model, then, must characterize these basic flow structures if
 

it is to yield accurate results. For additional discussion on the inner
 

and outer regions see references 2 and 24.
 



26
 

inner Region Model
 

The eddy viscosity model used in the present analysis for the 

inner region is based on the mixing-length hypothesis as developed by
 

Prandtl (ref. 25) in 1925. The eddy Viscosity for this region
 

referenced to the molecular viscosity may be expressed as follows: 

where the mixing length, may be written as 

= Kly* (7.52) 

The value of K1 has been obtained experimentally and has a value of 

approximately 0.4, the value which will be used in the present analysis. 

However, Van Driest (ref. 26) concluded from an analysis based upon
 

experimental data and the second problem of Stokes (ref. 27) (sometimes
 

referred to as the Rayleigh problem, ref. 28) that the correct form for
 

the mixing length in the viscous sublayer should be as follows:
 

Kj*1- exp(- (7.53) 

where the exponential term is due to the damping effect of the wall on
 

the turbulent fluctuations. The parameter A* is usually referred to
 

as the damping constant., The exponential term approaches zero at the
 

outer edge of the viscous sublayer so that the law of the wall region
 

equation, as expressed in equation (7.52) is valid. The damping
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constant A* is a strong function of the wall boundary, conditions and
 

is defined ,as
 

-1/2 

A 26vj.)y.4 

Equation (7.54) was originally ottained for incompressible, zero
 

pressure gradient, solid wall flow,; that is ,pi 'constant, dp*/dx* - 0 

and = 0. The relation has, however, been applied to compressible 

flows where p* and v* are evaluated locally across the sublayer, 

where p* is evaluated locally and an average value of v* is utilized, 

and where v* and p* are both evaluated at the wall conditions. In
 

the present analysis the mixing length will be defined as follows
 

1/2 

* =Kly* exp Vw y* 

- where v is the average value of the kinematic viscosity taken over 

the viscous sublayer. The density and viscosity appearing in 

equation (7.54) will be evaluated locally. The eddy viscosity for the 

inner region referenced to the molecular viscosity can then be written 

as 

11 / ex Vw 
-y u ( -6
C) se =e 
 P*5*n u 
2L - (. f 1~]

2 

where A* is defined in equation (7.54). 
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Cebeci (ref. 29) has recently attempted to account for the effects
 

of both pressure gradient and mass injection or removal at the wall on
 

the damping constant. Cebeci begins with the two-dimensional x-momentum
 

equation written as
 

*
u* + - ia*L!+*_+!= p- (7.57) 

y p4 dx* p* 3y* y* 

Cebe'ci then neglects the Reynolds stress term and assumes that in the 

wall region equation (7-57) can be written as (V* = 0) 

(.8)
 

dy* dx*
 
d",T* -. 5dp* 

which becomes upon integration. ­

,~+r* LY* (.) 

It should be noted that for ?v* = 0 it is not necessary to neglect the
 

Reynolds stress term; that is, r* in equation (7.59) could be replaced 

with T* However, if * =-0 the Reynolds stress term must be 

The wall shear stress term
neglected in'the approach used by Cebeci. 


wT-appearing in equation (7.54) is then replaced by the local shear
 

such that a new definition for the damping constant is obtained; that is
 

* *\ -1/2A D * 
A6v*Z*+ dp_*(7.60) 

( * dx* p;
 

http:dp_*(7.60
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This approach is similar to that followed by Patankar and Spalding 

(ref. 30) where they utilized the £o.chl,value,of, T* in equation (7.54)
 

instead of the,wall value, TW*.
 

The assumptions made by Cebeci in obtaining equation (7.60) are
 

not necessarily valid. Furthermore, as previously'-mentioned, the flow
 

in the outer region of the turbulent boundary layer is predominately
 

affected by pressure gradients and not the flow in the law of the wall 

region. Consequently, the pressure gradient correction to the damping
 

constant as obtained by Cebeci is of questionable value and will not be
 

utilized in the present analysis.
 

The effect of mass flux at the wall has also been treated by
 

Bushnell and Beckwith (ref. 31) and Cebeci (ref. 29). Cebeci, for non­

zero v* expresses equation (7.57) as
 
w
 

dT* vw T* dp*- o (7-61)
dy* v* ax*
 

which can be integrated to yield
 

=* T# exp ( w *) +~ jvexrf y*(62 

Equation (7.54) can then be written as (where Tr has been replaced 

with T*) 

- /*,T .V * {_pllr *. l 

A* = 6v ,exp y* + z-L*\ xp, , (7.63) 
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Bushnell and Beckwith (ref. 31) studied the effect of wall mass
 

flux on the damping constant from experimental data for zero pressure­

gradient flow. These results agree well ith eguation (7.63) for zero
 

pressure-gradient flows; that is
 

-/2
I* 

w (7.64)

26v* p- exp(; y* 

Two apparently conflicting ideas by the author of the present 

paper should now be discussed concerning the development of Cebeci 

(ref.,29). First, it has been stated that equation (7.60) is of 

questionable value for pressure gradient flows. Secondly, it has, been 

stated by the author that equation (7.,64) agrees well with experimental 

values of A* for non-zero V*" However, equations (7.60) and (7.64) 

were bdth obtained from equation (7-57) by utilizing the same set of 

assumptions. Consequently, the question arises as to how can 

equation (7.6o) be of questionable value, an& equation (7.64) be of value?
 

The answer lies not so much in the derivation but more so in the response 

of the turbulent boundary layer to pressure gradients and changes in wall 

boundary conditions. It is well known that pressur- gradients affect
 

the mean profiles mainly in the outer region, but -equation (7.6o) is
 

applied only in the inner region; in particular, only in the visous
 

sublayer. However, the mean profiles in the inner reglon are particularly
 

sensitive to wall boundary conditions which is precisely where
 

equation (7.64) is applied.
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OuterRegion Model
 

The eddy viscosity in the outer region 'is based upon the Clauser
 

(ref. 32) model. The ratio of the eddy viscosity to the molecular
 

viscosity can be expressed as follows:
 

o=Y .o** 5kinc (7.65) 

where 5* is the incompressible displacement thickness defined as
 
kinc
 

e* = (1 - F)dy* CY.66) 

7.6
kinc o 


The use of 8i as the scaling parameter for the mixing length is
 
inc 

34i.)
 

The value of K2 in equation (7.65) is taken to be o'.0168 as reported
 

in reference 35. However, in order to account-for the intermittent'
 

character of the outer layer flow equation (7.65) must be modified by,
 

an intermittency factor first obtained by Klebanoff (ref. 36); that is
 

discussed by Maise and McDonald (ref. 33). {See also, Mrkovin,. ref .­

*u*
( K2 7 'lin e 7 (7.67) 

where the transverse intermittency factor 7(y) is defined as
 

1- erf[5(Z - 0-78)] (.8 
Y 2 (7.68)
 



32
 

Matching Procedure
 

The criteria used to determine the boundary between the-inner and 

outer regions is the continuity of eddy viscosity. A sketch ,of a typical 

eddy viscosity distribution is presented in figure 5. 

rOuter Ilw (eq. 7.69) 

y 

Inner low (eq. 7.69)-7 

0 I 
E 

Figure 5.- Matching procedure for two-'layer model.
 

The matching procedure may then be formally Written as follows:
 

;21/]2] exl 
J_2- exp IE( o Yy* < 

>(7.69) 
kjyj A*C) = 2 e k3nc

07 y> m*V 

The location of the boundary separating the two regions; Ym* Is determined
 

from the continuity of equations (7.69); that is, where
 

0 (7.70)­
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Eddy Conductivity
 

In Section 7.1.2 the eddy conductivity was formulated in terms of 

a static turbulent Prandtl number andtthe eddy vi-scosity (see eqs. (7 9), 

(7.10), and (7.11)). The two-layer model eddy viscosity relation 

previously discussed suggests that there should be -two models for the 

static turbulent Prandtl number, at. However, current experimental 

data for at are inconclusive. The incompressible data which are 

available for the outer region of pipe flows (ref. 37) and boundary 

layers (ref. 38) indicate that at has a value between 0.7 to 0.9. 

These data indicate that as the wall is approached at reaches a 

maximum value near the wall and then drops off rapidly to a value 

between 0.5 and 0.7 at the wall. For the case of compressible flow 

there is very little data available. For a Mach number of 5 it appears 

that at assumes a value very near unity in the outer region and 

decreases to values on the order of 0.7 to 0.9 at the wall (ref. 39). 

However, Rotta (ref. 40) found that at may achieve values as high as 

2 as the wall is approached. Bushnell and Beckwith (ref. 31) conclude 

that in the absence of better data for turbulent Prandtl numbers, the 

choice of the correct at distribution with yb/8 must depend upon 

agreement between the calculated and experimental profiles and wall 

fluxes. In the present analysis the turbulent Praiidtl number will be 

assumed constant with a value of 0.9 unless specifically stated otherwise; 

however, any other value or functional relationship could just as easily 

be used. 
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7.4.2 Transformed Plane
 

Since the governing equations are solved in the transformed plane
 

it is necessary to transform the eddy viscosity relations from the real
 

plane to the transformed plane. 

Inner Region
 

In the inner region the ratio of eddy viscosity to molecular
 

viscosity is as ofllows
 

° t j (7.71)
sE - eUe=Klr y I 6 : 

where Y is defined by equation (7.44). The parameter I1 appearing
 

in equation (7.71) is the damping term and is defined as
 

i = 1 - exp(- f[3_ H2) (7.72). 

where
 

JT 2~7,)(7.73)
 

and 

YPeU erozw kF J1 /2 

26 zep t tetJ (7.74) 

http:2~7,)(7.73
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Outer Region
 

in the outer region the ratio of eddy viscosity to molecular
 

viscosity is as follows:
 

Pee c (727n5) 

o e a3 2e2 

where
 

1- erf 5(-Y/Ye - 0.78)(
7 2 (7.76)

2 

and
 

e8kinc - ---- r' [1 t-je(1 F)dj-c4 

(7-77) 

7.5 The Transitin'Region 

Equations (7-38).1, (7.39), (7.40), and (7.42) together with the 

boundary conditions (eqs. (7.45)),,and the eddy viscosity relations 

defined by equations (7.71) and (7.75) complete the required system for 

either laminar or fully developed turbulent boundary layer flows. 

However, the mainobjective of the present analysis is to present a 

technique that will efficiently solve the laminar, transitional, or 

turbulent boundary layer equations as the boundary-layer develops along 

the surface. 'Consequently, the location of transition xti, the extent 

of the transitional flow xtIf - xti and the characteristics of the 
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mean flow structure in the transition region must be taken into
 

consideration. 

The author in developing this section on transition flow has
 

had to purposely omit many excellent references because of the 

massive bulk of information available. A number of the cited references
 

present extensive reviews on the subject and should be consulted for
 

more information if required.
 

7.5 .1 Stability and Transition 

The stability of laminar shear flows and the eventual transition 

from the laminar state to the turbulent state of motion has probably 

received as much concentrated attention as any other problem area 

in fluid mechanics. The continuing interest in this area of fluid 

mechanics,is due to the fundamental importance of being able to make 

a realistic prediction of where and if transition will occur on a given 

configuration in a 'given environment. The influence of many parameters 

which affect transition has been studied and documented; however, after 

nearly sixty years of research ceitradictions or paradoxes still 

remain unanswered even for incompressible flows. Pioneers in transition 

research were impressed by the three-dimensionality of turbulence and
 

did not seriously consider the possible role of any two-dimenslonal 

amplification process such ap prddicted by the early stability work 

(see ref. 2). This attitude was understandable since the results from 

the Tollmien-Schlichting (hereafter referred to as T-S) school of 
4, ­

thought predicted an orderly vorticity pattern which differed
 

drastically from the observed random three-dimensional vorticity 
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components of transitional and turbulent boundary layer flows., The 

probleem was further complicated by the high-level of free-stream 

'turbulence that existed in the early wind tunnels which apparently' 

prevented the development of the'T-S type am~ificaion pr6cess. 

Furthermore, due to the limited bmoint of transition data and its 

apparent agreement with Taylor's (ref. 41) local separation criteria 

there was no widespread acceptance of the T-S process until about 1947. 

The first indication that the T-S amplification prbcess existed was 

obtained by Schubauer and Skramstad (ref. 42) in their classical 

,experimental study of flat plate flow in the low free-stream 

turbulence tunnel of the National Bureau of Standards. 

The T-S instability arises from the viscous instability in the 

laminar shear layer. It is a two-dimensional wave motion that 

selectively amplifies disturbances over a band of unstable frequencies. 

C. C. in (refs. 43 and 44) was able to calculate with very good
 

agreement the results of the-Schubauer-Skramstad experiment. Klebanoff
 

and Tidstrom (ref. 45) were able to trace the growth of the unstable
 

.waves into the nonlinear region of transition where the T-S approach 

becomes invalid. They observed that when the velocity perturbation 

due to the wave exceeded approximately 10 percent of the mean speed the 

nonlinear effects became important. Any further development of the 

mean flow instability was then three-dimensional. In this region of the 

transition process "peaks and valleys" form consisting of variations in 

mean cross flow. The "peaks and valleys" eventually break down and form 

turbulent "spots."' 
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A turbulent spot is essentially an isolated region of turbulent
 

flow surrounded by an otherwise laminar flow field. Ithas.been estab­

lished that the flow within the spdtlhas the same basic charactdristics
 

as that of a fully developed turbulent flow. The existence of these
 

isolated spots of turbulence was first reported by Emmons (ret. 46.) 

in 1951 (see also ref. 47). Klebanoff, Schubaiery and co-workers 

(ref. 48) were the first to carefully study the shape of the spots and 

their characteristics. They confirmed that the flow within a given 

spot was turbulent in nature, that the spot propagated through the 

surrounding flow field, and that the spot grew in size as it was 

convected downstream. The transition process is completed by either,
 

or both, the transverse growth of spots or cross-contamination and the
 

creation or production of new spots at new transverse locations. When
 

the entire flow region at some streamwise location xtff is covered
 

by a turbulent flow structure the boundary layer is then said to be
 

fully turbulent. 

The natural transition process by which a fully developed flow
 

structure is obtained may be categorically divided into six separate 

stages. The first stage, of course, is the laminar region of the 

boundary layer. The second stage begins with the formation of two­

dimensional unstable waves arising from an instability in the laminar 

layer. The third stage, which marks the beginning of the nonlinearity, 

is the formation of "peaks and valleys" or longitudinal streaks in the 

mean velocity profiles. The fourth stage occurs with the breakdown 
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of' one or more of the low-speed streaks and the formation of "spots" 

of turbulence. The fifth stage consists of the growth of the spots
 

through cross contamination and the process of new spot creation
 

(production). The sixth and final stage in natural transition is then
 

fully developed turbulent layer. (See Kline, S.J., reference 49.)'
 

Stability theory cannot currently be used to predict either the 

nonlinear details of the transition process after the two-dimensional
 

waves have been-amplified or the location of transition, xt' i -

Stability theory ca,, however, establish which boundary layer profiles
 

are unstable and the initial amplification rates. The theory can
 

.identify those frequencies which will be amplified at the g'eatest rate
 

as well as.the effect on stability of various flow parameters. One of
 

the more important contributions of linear stability theory has been
 

to reveal how these flow parameters should be varied in order to delay
 

transition, i.e., wall cooling, suction, etc. The Blasius profile was
 

studied by Tollmein (ref. 50) in 1929. The results of his work remained
 

unconfirmed experimentally until the classical experiments of Schubauer
 

and Skramstad in; 1947 (ref. 42). Since the beginning of the past decade
 

the solution techniques utilized in stability theory have been greatly
 

modified by the availability of high-speed digital computer systems.
 

Now, instead of having to work many hours in order to obtain a minimum
 

-of results of questionable accuracy, the digital.computer can obtain
 

an immense quantity of highly accurate numerical results from the
 

governing system of equations. "A review of methods used to predict the
 

location of transition from stability theory is presented by Jaffe,
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Okamura, and Smith in reference 1. However, aspoint which should be
 

strongly stressed is that a thorough study of the connection between
 

stability and transition still remains to be completed.
 

There currently exists a number of good review articles and
 

books on stability theory. Review articles have been written by Stuart
 

(ref. 4), Shen (ref. 52), Reed (ref. 53), and Drazin and Howard (ref. 54)..
 

The article by Reed considers asymptotic theory in detail. Drazin and
 

Howard in turn consider only the inviscid theory. The articles by
 

Schlichting (ref. 2) should also not be overlooked. The most complete
 

study of modern boundary-layer, stability, in the opinion of the author,
 

is presented by Mack (ref. 55).
 

7.5.2 	Transition Location
 

Many parameters influence the location of transition. These
 

parameters can best be thought of as formimg a parameter phase space. 

Such a parameter phase space would include Reynolds number, Mach number, 

unit Reynolds number, surface roughness, nose bluntness, pressure 

gradients, boundary conditions at the wall, angle-of-attack, free
 

stream 	turbulence level, and radiated aerodynamic noi-se. Morkovin
 

(ref. 9) recently completed a very extensive and thorough examination 

of the 	current state-of-the-art of transition in shear layers from 

laminar to turbulent flow. The most striking conclusion that one
 

obtains 	from the review is that although A great bulk of experimental 

data on 	transition currently, exists, much of the information on high­

speed transition has not been 'documentedin sufficient detail to allow 

the separation of the effects of multiple parameters 6n transition. A
 



discussion of the effects of each of the prameters that may influence
 

transition in high-speed flow is beyond the scope of the present paper.
 

Furthermore, it is seldom posible to study any one parameter experi­

mentally while holding the remaining parameter phase space constant.. 

The reader-interested in a-detailed discussion is directed to the
 

paper by Morkovin (ref. 9) where over 300 related references are cited
 

and discussed. The paper by Savulescu (ref. 8)':should also be consulted.
 

Another, although less'detailed discussion, is presented by Fischer
 

(ref. 56). The effects of radiated aerodynamic noise on transition is
 

discussed by Pate and Schueler (ref. 57). Hypersonic transition to
 

name but a few references, is discussed by Scftley, Grabel, and Zemple
 

(ref.. 58)j Richards (ref. -59), Potter and Whitfield (ref. 60), and
 

Deem and Murphy (ref. 61). A very good discussion on the effects of 

extreme surface cooling on hypersonic flat-plate transition is presented
 

by Cary (ref. 62). The effects of nose bluntness and surface roughness
 

on boundary layer transition are discussed by Potter and Whitfield 

(ref. 63). 

It would be prohibitively time consuming to obtain a detailed 

stability analysis for each of the test cases considered in the present 

paper (see Chapter IX). Furthermore, even if such an analysis were
 

completed the transition location would not be obtained. Consequently,
 

in the present analysis the location of transition will be determined
 

by one of, or a combination of, the following three methods. These
 

methods are (1) a stability index or vorticity Reynolds number first
 

proposed by Rouse (ref. 64), (2) correlations based upon a collection
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of experimental data over a broad range of test conditions, ,nd (3)by 

using the measured experimental location of transition as a direct 

input into the analytical solution. One might immediately assume that 

the latter of the three methods would be the most accurate; however, 

caution must be exercised in interpreting and applying the results of
 

experimental transition measurements since data on all parameters that 

may affect transition are seldom available. Also- the transition 

location may very well be a function of the method used to obtain the 

experimental data. There ,are a number of ways to experimentally 

measure the transition location which often yields different locations 

for the identical boundary layer. This fact has contributed to much of 

the current confusion and scatter that results when attempts are made
 

to correlate a great number of experimental transition data obtained 

in a number of different investigations without considering how transition 

was determined.
 

7.5.2.1 Stabiliby Index
 

Hunter Rouse (ref. 64) nearly 25 years ago obtained through a 

process of dimensional analysis combined with observed fluid motion that 

,astability index could be expressed as follows:
 

X (7.78) 

This index has the form of a vorticity Reynolds number which is 

obtained from the ratio of the local inertial stress P*y.2pu*/ y*)2­

to the local viscous stress p*(2i*/ y*). Rouse assumed that in order 
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for transition to occur the stability index should reach some limiting 

value which was assumed invariant. He was able to further show that 

this invariant value, (max) cr should be on the order of 500 for
 

incompressible flows.
 

The use of Xma x as a stability index is, in principle similar 

to the basic reasoning which led'0. Reynolds (ref.' 7) in 1883 to
 

postulate that the nondimensional parameter ud/v could 'be used to
 

define a critical value (ud/v)cr at which transition would occur in
 

a circular pipe of diameter, d. Unfortunately, (Xmax)cr is a function
 

of the transition parameter phase space in much the same fashion as the 

critical Reynolds number, and cannot in reality be a true invariant 

of the flow as suggested by Rouse (see Section 9.8; fig. 19). The 

stability index does, however, possess a number of important character­

istics which can be directly related to the stability of laminar flows;
 

for example, the position of the critical layer can be obtained directly
 

from equation (7.78).
 

A typical transverse distribution of X for a compressible 

laminar boundary layer is presented in figure 6. The stability index 

has a zero value at the wall and approaches zero as the outer edge of 

the layer is approached. The maximum value of X, Xmax, will occur
 

at some transverse location, (y/5)Xmax. The values of X... and
 

(Y/8) are of importance in the usage of the stability index as a
 
g max 

guide to boundary layer stability and transition.
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X=XL jA 1' 

8(Y/8).'rmx 

0. (XYmox)cr 

Figure 6.- Vorticity'Reynolds number. 

As the laminar boundary layer develops over a surface, Xmax 

increases monotonically until the critical value (Xmax)cr is reached 

at which point transition is assumed to occur; that is, the location of 

xt i . For compressible flows (Xmax)cr is not an invariant. in the 

present study (Xmax)cr was found to vary from approximately 2100 to 

values on the order of 4ooo. The variation of (Xmax)cr is a strong 

function of unit Reynolds number for data obtained in air wind tunnel 

facilities (see Section 9.8) as would be expected from the previously 

mentioned transition studies. However, while not invariant the 

stability index does exhibit the same dependence on various parameters
 

as results from the more complicated stability theory. For example, at
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a given streamwise location, , x,. the value cf max is found to decrease 

'(which implies a more stable flow) with wall cooling, wall suction, and 

favorable pressure gradients, whereas it increases (which implies a more 

unstable flow) with wall heating) mass injedtioi (transpiratien), 'and 

adverse pressure gradients. To the author's knowledge the stability 

index has been used as a correlation parameter in only two boundary­

layer transition studies. A modified form of the-parameter was used to
 

correlate the effect of free-stream turbulence on transition by Van Driest 

'and Blumer (ref. 65). correlation attempts, using Rouse's original 

invariant assumptions, were made in reference 66; however, the results 

were only fair.
 

One of the most important characteristics of the vorticity
 

Reynolds number is that the value of (y/8)Xmax is in excellent
 

agreement-with the experimental location of the critical layer which
 

represents the distance normal to the wall at which the first high
 

frequency burst representing laminar flow breakdown will occur.
 

.Stainback (ref. 67) recently obtained the Rouse stability index for
 

similar laminar boundary layer flows over a broad range of wall-to-total
 

temperature ratios for Mach numbers up to 16. The numerical calculations
 

were made for both air and helium boundary layers. The agreement between
 

(y/8) and'the experimental critical layer position was excellent
 

over the entire range. (See Section 9.3.)
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7.5.2.2 Empirical Correlations
 

In most instgnces the design engineer has to rely on empirical
 

correlations of experimental transition data in order to fix the most
 

probable transition location for a design configuration. However, 

caution should always be used when obtaining the most probable location 

of transition from such correlations, since-any given correlation is 

based upon a specific collection of data which will not be completely 

general. Furthermore, the transition process may not be unique;,for 

example, the blunt-body transition paradox (see refs. 9 and 68). 

There currently exists a large number of empirical correlations
 

for predicting the probable locatiohof transition. Some of these
 

correlations are of questionable value; however, some can be used with
 

confidence providing it is realized that 'one is predicting'a probable
 

range of locations' and not an exact fixed point. --One 6f the more 

successful correlations wasobtained by Beckwith (refi69)'at,the
 

Langley Research Center. The correlation developbd by Beckwith is
 

based on experimental transition data obtained over a'wide range of
 

test conditions in air wind tunnels, ballistic ranges, and free flight.
 

The correlation can be expressed as follows:, 

ORe410.7exp(-.o5) 
log I + JMe(a (7.79)
 

where R* denotes the unit Reynolds number per foot, u*/v*. Thee e 

constants I and J are functions the environment in which transition
 

was measured and are given in the following table.
 

http:0.7exp(-.o5
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Facility I 4 

Air wind tunnel 0.95 o.167
 

Ballistic range 1.00 0.125-


Free flight 1.32 0.130
 

Equation 	 (7-.79) can be expressed in terms of the transition Reynolds 

number, 	 Rexti as follows (see ref. 69): 

*o.'6 + 2Me(w)0.YexP(-o.05M] 
Re i 3te 0 (7.8o) 

Re~i 2 Zw (0.094 M2 + £.22 e)2 

For an in-depth review of the problems associated with transition the
 

reader is referred to the results of the Boundary Layer Transition Study 

Group meeting held in San Bernardino-, California, in 196p,(refs. 69,
 

70, 71, and'72).
 

7.5.2.3 	Experimental Transition
 

Much of the confusion that exists today concerning boundary
 

layer transition may be attributed to one of, or a-combihation of, the
 

following three factors.- The first factor is that in many instances the
 

investigator who made the experimental study may not have carefully­

measured or recorded the exact conditions under which'the data were. 

obtained. The second factor is that the experimentally observed transitior 

location depends on the experimental technique used to obtain its 

location. The third, the most pessimistic factor, is that transition 

may not be a unique process under all conditions (ref. 9). 



The importance of carefully measuring the environment under 

which the experiments are made cannot be overstressed. In the past, 

many of the factors which may influence ,transition such as free-stream 

turbulence and acoustic radiation from the tunnel side wall boundary
 

layer were not measured. (See references 69 to 72.) The location of
 

transition as obtained experimentally is a strong function ,ef the method 

used to determine its location. There are currently a nuber of
 

techniques used to obtain the transition location.. Some of these
 

methods are hot-wire traverses, pitot tube surveys near the wall, 

visual indication from schlieren photographs, and heat transfer 

measurements at the wall,. Each of thesea methods basically measures a 

different flow process. Consequently?. it woul& be misleading to believe 

that each technique would yield the same location for transition if 

simultaneously applied to the same boundary layer. Of course, the 

concept of a transition "point" is misleading in itself since transition 

does not occur at a "point" but instead-over some finite size region. 

For the test cases presented in the present analysis the 

-experimental transition location will be determined from heat transfer 

measurements at the wall whenever possible. The main reason for this 

choice is that it is the method most often used in the literature.
 

However,it should be noted that the actual nonlinear transition 

process begins somewhat upstream of the location where the heat transfer 

at the wall deviates from the laminar trend.
 



7.5.3 	Transitional Flow Structure
 

Assuming that the transition location has been fixed for a
 

given problem one must next consider the following two important
 

factors; first, the length of the transition region, xtf - Xt,i 

(sometimes referred to as transition extent), and secondly, the mean
 

flow characteristics within the region. Once appropriate models. are
 

obtained for these two factors it is possible to smoothly connect all 

three flow regions such that one set of governing equations may be 

used.
 

The classical laminar boundary layer equations should yield 

reasonably accurate profiles and wall fluxes in the linear region of 

transition; that is, prior to the turbulent spot formation. The 

intermittent appearance of the turbulent spots and the, process of
 

cross-contamination is not well understod.' The spots originate in a
 

more or less random fashion and merge'with one another,as they grow
 

and move downstream. Eventually, the entire layer is contaminated
 

which marks the end of the transition process, xtf. The process by
 

which cross-contamination occurs appears to have been, studied in detail 

only by Schubauer and Klebanoff (ref. 73) since its dfiscovery by 

Charters (ref. 74) in 1943. As the turbulenb spots move over a fixed
 

point in the transition region, the point experiences"ah alternation 

of fully laminar flow when no spot is present to fully turbulent flow 

when engulfed by a spot. These alternations can be described by an 

intermittency factor which represents the fraction of time that any 

point 	in the transition region is engulfed by fully turbulent flow.
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The distribution of spots in time and space in Gaussian for,
 

low speed, natural transition. However, very little is known about
 

the spot distribution in high speed compressible flow. Furthermore,
 

there is no assurance that the spot formation and distribution in 

hypersonic flows will be analogous to the low speed model. However, 

in the absence of a more satisfactory theory, the author has chosen­

the approach of Dhwan and Narasimah (ref. 75) which was obtained 

mainly from low speed data. In reference 75 the source density 

function of Emmonds (ref. 46) was used to obtain the probability 

distribution (inbermittency) of the turbulent spots. Dhwan and
 

Narasimah (ref. 75) obtained an intermittency distribution of the form
 

r( ) -1 - exp(- 0.412 g2 ) (7.81) 

where 

= (x - xt, i ) (7.82) 

for xt i -x xtf. The term it equation (7.81) represents a 

normalized streamwise coordinate in the transition zone, and A is a
 

measure of the extent of the transition region that is
 

A= (x) w -(x)' ' (7.83)f-314 •r=l/4 

In the present analysis the transition extent, Xt,f - xt i (see 
f
 

Section 7.5.4) is first calculated; neit, the intermittency function
 

is determined such that P = 0.9999 at x = xt A .
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For low speed transition, Dhawan and Narasimah show that all 

transition regions may be correlated to form a universal intermittency 

distribution. Potter and Whitfield (ref. 63) have shown that similarity
 

exists in the transition process for subsonic, supersonic and hypersonic
 

flows. Although the effect of pressure gradients on the intermittency 

distribution has not been studied in detail, it is believed that the
 

distribution will be affected primarily im the region of the initial
 

spot generation.
 

The intermittency distribution across the layer at a given 

streamwise location in the transition region is a function of the
 

shape of the turbulent spots. In reference 73 it is shown that the 

spots have a nearly constant cross sectional area close to the surface. 

The intermittency distributions in the transverse direction (y-direction)
 

are similar to those observed by Corrsin and Kistler (ref. 76) for fully
 

developed turbulent boundary -layers (see ref. 77). Corrsin and Kistler
 

found that the transverse intermittency varied from a maximum of unity 

near the wall to a near zero value at the outer edge of the layer. The
 

transverse intermittency distribution is of secondary importance in 

relation to the streamwise aistributioi in,determining the mean profiles
 

and wall fluxes. In the present analysis the only intermittency 

distribution applied in the transverse'direction (y-direction) is that
 

of Klebanoff (ref. 36) in the outer layer as applied to the fully ­

developed turbulent iayer-; that is, equation (7.;68). 
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7.5.4 Transition Extent
 

The assumption of a universal intermittency distribution implies 

that the transition zone length (transition extent) can be expressed 

as a function of the transition Reynolds number, uexti/Ve. In 

reference 75 it is shown, for the transition data considered, that the 

data are represented on the average by the equation
 

Re - ep (7.84)xt xt, i 
* * 

where ZSx t = xt f - xt i . The coefficients ma and p are found to 

assume -values of 5.0 and 0.8, respectively. The location of the 

completion of transition, ttf can then be obtained directly from 

equation (7.84) as follows: 

Xt f = xt'i + (7.85)
 

where Re* is the local unit Reynolds number, u / e Morkovin 

(ref. 9) found that bnly about 50 percent of the experimental data he 

considered, could be fitted to the low speed universal curve of Dhawan 

and Narasimah; that is to equation (7.84). This was .to .beexpected, 

since the data considered in reference 75 covered only a very limited 

Mach number range. 

Potter and Whitfield (ref. 63) measured .the extent of the 

transition zone over a rather broad Mach number range (3< m. <5, 

Mw = 8).' They observed that the transition region, ,when defined in 

terms of Rext is basically independent of the unit Reynolds number' 

and leading edge geometry; that is 
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(7.86)Rt = 3(Re 1i MO 

They noted (ref. 63) that the extent of the transition region increased
 

with increasing transition Reynolds number over the Mach number range 

Q < M < 8 for adiabatic walls. The extent of the transition 

region was also observed to increase with increasing Mach numbers for 

a fixed transition Reynolds number. 

In the present analysis, due to the. lack of general correlations
 

for the extent of transition this quantity will be obtained directly
 

from the experimental data unless otherwise noted. In particular, if 

heat transfer data are available the transition zone will be assumed 

to lie between the initial deviation from the laminar heat transfer
 

distribution and the final peak heating location. The transition
 

region defined on the basis of the Stanton number distribution is 

presented in figure 7. The design engineer does not have the advantage 

of experimental data which were obtained under the actual flight 

conditions. Consequently, the most probable location of transition 

would be obtained from a correlation such as presented in equation (7.79) 

a (7.80). The extent of transition could then be obtained from 

equation (7.85) or an approximate relation such as follows: 

e1 , (7.87)
 

Rext i 

Since the main objective of the design engineer is to obtain estimates
 

of the heat protection requirements or viscous drag, for example, the
 

errors involved in using equation (7.87) would be negligible for a.full
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scale vehicle. However, inaccurate estimates of ,thetransition 

location, xt i could lead to significant errors.
 

7.6 Boundary Layer Parameters 

Certain boundary layer parameters are of interest to the design
 

engineer as well as to those interested in the general development of
 

the boundary' layer for arbitrary boundary ,conditions. A number of 

these parameters, which are used in chapter IX, are presented in this 

section for the physical plane as well as for the transformed plane 

where meaningful.
 

7.6.1 Displacement Thiclness
 

The displacement thickness is a measure of the distance by
 

which the external streamlines are shifted becduse of the development
 

of the viscous boundary layer. If in the problem under consideration
 

interaction is important, the displacement thickness may be used to
 

determine a new effective body (ref. 15). The boundary layer displacement
 

thickness for compressible flows is defined as
 

jj'Ye tJ(I p, )dy (7.88) 
-0 PeUe 

where g* is defined as the nondimensional displacement thickness,-

8*/L*. In the transformed plane the nondimensional displacement
 

thickness becomes 

* -- F)d (7.89) 
p~urg
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It should be noted that the definition of 5 for axisymmetric 

flows with transverse curvature is not the same as the definition of the 

nondimensional displacement thickness for two-dimensional flows, §*2D. 

The displacement thickness with transverse curvature is related to its
 

two-dimensional counterpart by the following relation (ref. 78)
 

_ 	 I1+ \4+-
27. 

'- , (7.90) 

The incompressible displacement thickness used in the outer
 

region model for the eddy viscosity is presented in equation'(7.66) and
 

(7.77) 	for the real and transformed p!-anes, respectively. 

7.6.2 	Momentum Thickness - -

The momentum thickness is., sed in a mimber of solution techniquesS' 8 

as well as.in current transition correlations.' The nondiensional
 

momentum thickness for the physical plane is defined as follows:
 

ejO pe -' )dy 	 (7.9"1) 

U	 'Peue Ue0 

The nondimensional momentum.thickness in the transformed plane may 

then be'expressed as follows:
 

e c j ffle F(l - F)d (7.92) 
r0 do 
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7.6.3 	Shear Stress
 

The viscous drag of a body moving through a fluid is dependent
 

upon the shear stress at the wall. For turbulent boundary layers the
 

shear stress distribution across the layer is also an important
 

parameter. The total nondimensional shear stress may be divided into
 

two components, laminar and turbulent; that is
 

TT = TI + 'tt 	 (7-93) 

or,. in 	terms of the current notation
 

c
 

The nondimensional total shear stress, TT is ,defined as
 

'rT T* Lre~ef(7*95). 

Equation (7.95) becomes in the transformed plane
 

2j j
 

TT = 	 (7.96) 

where j is defined in equation (7.15).
 

As the wall is approached, TT approaches TZ and equation (7.96)
 

becomes at the wail
 

2j
 

Pe leUero /F 
Tw Ir -W=5 _( 	 7-97 ) 
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7.6.4 	Skin Friction Coefficient
 

The skin friction coefficient is usually of more interest to the
 

design engineer than the actual magnitude of the shear stress. The
 

friction coefficient is defined as
 

- e 	 "T Peue) (7.98) 

which becomes in the nondimensional physical plane
 

Cfe ,2Te (7.99)
 
ofa 2
 

or
 

2 

2 y/ (7.100) 

In the transformed plane equation (7..-O0) becomes. 

,- ' ge r °Jt ' .-F
 
t
f H~ "" 	 (7.101)

fe ­
7 

or, when evaluated at the wall 

20 e 	 or(7 1) 
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7.6.5 	 Heat Transfer 

The heat transfer between the boundary layer and the wall is 

required for aerodynamic heating analysis. The heat transfer at the 

wall is related to the temperature gradient at the wall in the
 

dimensional physical plane through the following equation:
 

t 

or in 	nondimensional form as ­

-w (7.104) 

where
 

* .2 
./( refUref 

qw (Lerr (7.105) 

Equation (7.104) becomes in the transformed plane
 

Pe 'eUeer,' 9 
q= - -~±uTr(.	 (7.106) 

7.6.6 	Heat Transfer Coefficient
 

The heat transfer coefficient is defined by the following
 

relation:
 

=h* ' q 	/(T* - T* ) (7.107)"
aw 
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where T* denotes the dimensional adiabatic wall temperature. In 
aw 

the present analysis the adiabatic wall temperature is defined as
 

T* = rf(Tt - T*) + T* (7.108) 

Equation (7.107) can be written in .nondimensional form as follows: 

h = %w (7.109)
 
Tw - Taw 

where the nondimensional heat transfer coefficient h is defined as
 

h=h* (Ortef (7.1101' 

The recovery factor rf used in equation (7.I08) has'the .following 

form 

rf + (T-1/ 6 '(7._ 

This relation was developed by the author and "i, based"onthe oncept 

that the flow within the turbulent spot has'the-same strcture abthat 

of the fully turbulent regien of the boundary layer. .It can be -seen 

from equation (7.111), that the recovery factor assumes the accepted
 

mean values for pure laminar or fully turbulent flows of l/ and 

5l/3 respectively. Within the transition region the recovery factor 

is a function of the turbulent spot distribution through the inter­

mittency factor, r. (See equation (7.81).) 
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7.6.7 Stanton Number 

A convenient nondimensional parameter often used in the
 

literature to describe the heat transfer at the wall is the Stanton
 

number which is defined as follows: 

(7.112)
C h*/(OpPee) 


7.6.8 Friction Velocity
 

The velocity .scale most often used for turbulent flows is the
 

friction velocity. This important parameter is defined as
 

r* 
u* 

T
= - (7.113) 

which becomes in the transformed plane
 

rtero( (7yllk
 

where
 

T iUref (7-11,5) 

7.6.9 Law of Wall Coordinates.
 

The law-of-the-wall coordinates used in'turbulent flow 

(see eqs. (7.48) and (7.49)) are defined in the' physical plane as 

(7.116a)

y */* 
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and 

:-ul (7.1_16b.) 

Equations (7.116) may be written in the,transformed variables as 

y+,PeuTy ' 

+ gel 2 .(7.117a) 

and
 

u+=F e(F e (7-117b) 
r2 w 

7.6.10 Defect Law Coordinates
 

The defect law coordinates used in turbulent flow ,(see
 

eq. (7.50)') are y/8 and u. The coordinate u is defined as
 

follows:
 

u (ue ­

or
 

u =Ue(!- T (7.119) 

7.7 Pitot Pressure Profiles
 

The total pressure is one of the mean profile values that can 

be measured directly in experimental studies. Consequently, it is 

advantageous to calculate the total pressure distribution across the 

layer for comparison to experimental data when available. The total 

pressure distribution is often encountered in the experimental 
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literature in one of two forms; (1) the local isentropic total pressure 

distribution referenced to the isentropic value of the total pressure 

at the boundary-layer edge (the term isentropic as used here means that 

the flow is locally brought to rest isentrqpically)., and t(2) the actual 

pitot tube measurement of the total pressure referenced to the pitot 

tube value at the edge of the bounaary layer. For subsonic flows the 

tvo methods are identical; however, -for supersonic flows caution must 

be exercised in interpreting the experimental results. 

If the static pressure is constant across the boundary layer, 

the local isentropic total pressure referenced to the isentropic value 

at the edge of the layer may be expressed as 

7/7-! 

Pt L2 + (7 - 1)M21Pte L + (-Y l)e J (7.120) 

The local Mach number, M, may be expressed i-n terms of the mean 

temperature and velocity profiles as follow:
 

eF
 
M ' u (7.121)
 

(7,- i)T 

which becomes- at the outer edge
 

Ue _ (7.122) 

In the case of subsonic flows the experimental profiles can be 

directly compared to the distribution obtained from equation (7.120); 
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however, for supersonic flows it is necessary to divide the boundary 

layer into a subsonic and a supersonic region. 'The boundary separating, 

these two regions occurs where the local Mach number-is unity and is 

obtained: from equation (7.121). In the subsonic region of the boundary 

layer the pitot tube measures the .local isentropic total pressure;
t­

however, it is usually referened to the measured pitot value at the 

-edge of the boundary iayei where the flow is supersonic. Then the 

correct expression for the subsonic region. becomes 

/ "r (7.123) 

Pm ,( + 1) 7+ 

In the supersonic region of the layer the ratio can be written as,
 

Pt )27/y-l [2 M2 - (7 1)]- (7-2) 
tme 1-)j 

In the present analysis the total pressure distributions will be
 

obtained from equations (7.123) and (7.124) for the subsonic region and
 

supersonic region of the boundary layer, respectively. The 'boundary
 

between the two regions will be obtained ftrom equation (7.121); that is,
 

where the local Mach number is unity.
 

7.8 Exterior Flow
 

The following quantities will be specified in order to describe
 

the exterior flow and fluid properties
 

,Tt M, *P* T* e atrCSpC*S* 



65
 

Reference Values
 

The reference values are evaluated for an isentropic, perfect
 

gas as follows:
 

ref M ( l)CpTt, (7.125)
 

(y-+ 4 
 7~ 2
 
l +Pref (- Y C-)Pt,K\ 7 ' jl 1.7. 126) 

p. t.c 

ref/ p
ref (7.127) 

2.270(Tf)3/2 X'11 

=ref - (air only) (7.128) 
Tref +, 

The reference values are indeppndent of body geometry and are used to
 

form the dimensionless variables (see eqs. (7.,20).
 

Edge Values
 

The inviscid ptessure distribution must be specifiedfor a 

given flow geometry in qrder to obtaihasolutiQn of the governing 

differential equations (eqs. (,7-.38) to, (7.40)). This 'distribution can 

be obtained from either experimental data or from an exact solution of 

the full inviscid Euler equations. In the case of supersonic flows
 

where shock wave curvature may have a first order effect on the
 

boundary layer structure, the effect of variable entropy should be
 

taken into consideration (see Section 7.9). The total pressure behind
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the shock wave, Pts can be obtained from' the 6blique shock relations
 

(ref. 79) provided the shock wave angle, es(rs,zs) is specified;
 

that is t
 

2 1 

1)kM sn(r. z. +,2 (27v ' sin2srs z)- l-J 

(7.129) 

where Pts is the dimensionless total pressure behind the shock wave 

evaluated locally at the shock wave coordinate (rs,zs). For'cases 

where the effect of variable entropy iseither neglected or negligible., 

Pts is evaluated at r. = 0 (see fig. 1) and is invariant along the 

streamline *e(OX). For cases where the flow is either subsonic 

everywhere or supersonic shock free flow, Pt s = Pt " 

The edge conditions can then be calculated from the specified
 

static pressure distribution and the knowm value -of Pts as follows 

2 rts Y 1/2 

M(7-130) 

Te = 9,(I+ Y2 1M) -1(7.131) 

Ue = (7- ')Te (7.132) 

P = ( y_ !e (7.133)\Y - 1 T6 
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and
 

e' (Te) H -_) (air only) (7.134) 

where S S/Tref" 

7.9 Variable Entropy
 

One of the important factors that should be taken into con­

sideration for slender blunted or sharp-tipped bodies in supersonic. 

flow is the effect of the variable entropy introduced by shock wave. 

curvature on the boundary layer characteristics. The basic problems 

associated with incorporating variable entropy into the boundary 

layer solution are (1)'to obtain the entropy distribution along the 

boundary layer edge as a function of x, and (2) to develop an 

iterative solution technique with which this distribution can be 

efficiently included in the solution 6f the governing boundary layer 

equations (eqs. (7.38) to (7.40)). In the present analysis the shock 

wave coordinate's and inviscid pressure distribution are obtained from 

an exact inviscid flow field solution. The boundary layer equations 

are then solved by the method presented in chapter VIII. At each x­

solution station a mass balance is obtained between the total mass
 

contained in the boundary layer at the particular x-station and the 

mass passing through a streamtube of radius r4 (see fig. 1). From 

this the entropy distribution-as a function of x can be obtained. 

The resulting total pressure at each x-station is stored for future
 

use in the digital computer. The actual equations and procedures
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utilized in the process are discussed in the remaining portion of this
 

section.
 

The shock wave coordinates and inviscid pressure distribution
 

can be directly obtained from the solution developed by Iomax and Inouye 

(ref.. 80) for -either sharp-tipped or blunt axisymmetric or planar 

geometries. The mass balance equation which equates the mass of the 

fluid passing through a streamtube of radius r (see fig. 1) to the 

total mass entrained in the boundary layer at a given x-station can be
 

expressed for either axisymmetric or planar flows as follows 

( j ' +P* U* TJr*J,' 1) joe p *u*sc3r*o dy*# (7.135) 
ref ref a 

or in terms of the dimensionless variables as 

• Ci+)Pe% e 
o, 44 

0'rdy (7.136) 

Equation (7.136) can, then be expressed in the transformed plane as 

follows:, 

9?= lm F d (7.137) 

Equation (7.137) is locally solved for rs 'at each x-station 

along the body surface. The shock wave angle'. (rsZs) is then 

obtained from the known shock wave coordinates at the shock wave 

streamline intersection point, (rsZs). The total pressure behind 
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the shock wave on the streamline ve(rszs) is then evaluated from 

equation (7.129). These values are stored in the computer for each 

x-station. This process is continued until the solution at the final 

x-station (maximum x-value) is qompleted. The boundary layer solution 

is then known for the condition of constant entropy,. This is called 

the first iteration and if variable entropy is to be Afeglected it 

represents the final solution. In.order to include variable entropy 

effects the solution is.then restarted at = 0 (x = 6) and the 

solution recalculated using the previously stored values of Pt. 

to calculate the new local Values 'of Me Te Ile? Pe and Le (see 

eqs. (7.130) to (7.13 ); tiis defined as the second iteration. It
 

should be noted that Ft. is independent of, for the first
 

iteration cycle; however, for subsequent iteration cycles Pts is a
 

function of g. The new Pts values for the i + 1 iteration are 

calculated during the i iteration. The Pe distribution as a function 

of x is an invariant for all iteration cycles.
 

The convergence criteria used at each x-station is as follows:
 

Iue.+ - <- Q (7.138) 

where i is the iteration index and Q denotes the specified 

convergence requirement. Bbr engineering calculations three iterations 

are generally sufficient for a,one percent or smaller change in ue at 

each x-station; that is for Q = 0.01. 



VIII. NUMERICAL SOLUTION OF THE GOVERNING EQUATTONS 

The governing equations for the compressible lamiar, transitional, 

and turbulent boundary layers form a fifth-order system. Three of the 

equations are nonlinear partial differential equations (see eqs. (7.38) 

to 7.40)) and the remaining two are algebraic relations (see eqs. (7.31) 

and (7.32)). The most important feature of this system is that it is 

parabolic and, as such, can be numerically integrated in a step-by-step
 

procedure along the body surface. In order to cast the equations into 

a form in which the step-by-step procedure can be efficiently utilized, 

the derivatives with respect to and 1) are replaced by finite 

difference quotients. 

The method of linearization and solution used in the present 

analysis closely parallels that of Fl'gge-Lotz and Blottner (ref. 15) 

with modifications suggested by Davis and Fligge-Lotz (ref. 16) to 

improve the accuracy. These modifications involve the use of three­

point implicit differences in the -directioh which produce truncation 

errors of order (AM1 A22) rather than (Ax) as in reference 15. The 

primary difference between the present'development and that of refer­

ence 16 is that the solution is obtained in 'the transformed plane for 

arbitrary grid-point spacing in the %[!diredtion-and for a spacing in 

the q-direction such that the spacing between aiy two successive grid, 

points is a constant. To the author's knowledge,;this numerical solu­

tion technique has not been previously applied to either transitional
 

or turbulent oundary-layer flows. 

70 
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The three-point implicit difference quotients are first developed
 

for the particular grid-point spacing utilized herein. These results 

are then substituted into the governing equations for the conservation 

of momentum and energy in order to obtain a system of difference equa­

tions. The most important characteristic of the system of difference
 

equations, other than the fact that they are linear, is that the trans­

formed normal component of velocity, V does not appear explicitly as 

an unknown at the solution station. Consequently, the N-1 linear 

difference equations can be simultaneously solved to .yield the N-1 

unknown values of F and 9. Having obtained the N-1 values of F 

and 8, the N-1 values of V can be obtained by a numerical integra­

tion of the continuity equation. Some details of the implicit method 

have been purposely omitted; for these the reader is referred to 

Fl'ugge-Lotz and-Blottner (ref. 15). The reader interested in a thorough­

discussion of the various schemes that could be utilized to obtain either
 

pure difference equations, as in the present paper,'or'difference­

differential equations such as used by Smith 'and Clutter (refs. 81 and 

82) is referred to Davis and Flugge-Lotz (ref. 16). The- advantages and 

disadvantages of implicit differences in relation to explicit differ­

ences are discussed by Fliigge-Lotz and Blottner (ref. 15)-and will mot 

be discussed herein.
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8.1 The Implicit Solution Technique 

8.1.1 Finite Difference Mesh Model
 

It has been shown for laminar boundary layers that equally 

spaced grid points can be utilized in the normal coordinate direction 

(for example, see refs. 14 and 15).- However, for transitional and 

turbulent boundary layers, the use of equally spaced grid points is 

not practical for the present solution method. As previously mentioned
 

in Section 7.4.1, the viscous sublayer thickness is on the order of
 

0.0018 to 0.015. In order to obtain a convergent (valid) solution to
 

the governing equations, it is necessary to have "anumber of grid
 

points within the viscous sublayer. The viscous sublayer problem is 

discussed in detail in Section 9.1 where the errors resulting from
 

improper grid-point spacing iri the wall region are demonstrated with
 

a numerical example. Since a numiber of grid points ,mst be positioned 

within this relatively thin layer in relation to the total thickness, 

8, one cannot afford- to utilize ,equally spaced grid points from the 

viewpoint of computer storage requirements and processing time per test 

case. For example, if the total thickness of the 1-strip tas 100 for 

a particular problem of interest, then the requirement of equally 

spaced grid points would mean on the order of 1,000 points in relation
 

to 200 for variable spacing. In order to avoid the necessity of using
 

an inefficient number of grid points, a variable grid-point scheme
 

must be utilized.
 

The grid-point spacing in the 1-direction used in the present
 

analysis assumes that the ratio of any two successive steps is a
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constant, that is, the successive Alli form a geometric progression.
 

There are any number of schemes that could be employed to distribute
 

the points across the l-strip; however, the presrent method has been
 

found to be flexible and of utility.
 

The desirability of having variable grid-point spacing in the
 

%-coordinate has previously been mentioned in Section 7.3. The
 

importance becomes clearly apparent for problems in which either the 

rate of change of the edge conditions is large or discontinuous bound­

ary conditions occur, or in the -transition region where the mean pro­

files are changing rapidly. A good example of the former case would 

be a slender, blunted cone in supersonic flow. Variable grid-point 

spacing in the i-direction could be utilized by having very small steps 

in the stagnation region where the pressure gradient is severe 

(favorable) and in some downstream region where transitional flow exists. 

A good example of the case of discontinuous boundary conditions would 

be a sharp-tipped cone with a porous insert at some downstream station 

through which a gas is being injected into the boundary layer. -Rela­

tively large step sizes could be utilized upstream of the ramp injec­

tion; however, small steps must be used in the region of the ramp
 

injection. Downstream of the porous region, as the flow relaxes,
 

larger step sizes could be used. It is very important that small grid­

point spacing be utilized in the transition region where the mean pro­

files are a strong function of the intermittency distribution. Typical
 

examples of the above-mentioned cases are shown schematically in 

figure 8. Therefore, because of the requirements imposed by a 



Region Of highly favorPressue grlient flow 'ShockI W -

Region Of abrupt-.changing 
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completely general problem where the possibility exists for abrupt or 

rapidly changing edge conditions and boundary values, as well as the 

particular problem associated with the transitional and turbulent
 

boundary layers., variable gxid-point spacing is utilized in the present
 
S 

technique in both the and ij directions. The grid-point spacing 

in the t-direction is completely arbitrary., The grid-point spacing in 

the r-direction is such that the n. (i = ,l2,.. N) form a geo­

metric progression. 

In constructing the difference quotient , the sketch of the 

grid-point distribution presented in figure 9 is useful for reference.
 

The dependent variables F and 8 are assumed known at each of the 

N grid points along the m-l and m stations, but unknown -at 

station m+l. The A 1 and A 2 values, not specified to be qual 

are obtained from the specified x-values (xm_lxm Xm+i) and equa­

tion (7.33a). The relationship between the A i for the chosen grid­

point spacing is given by the following equation:
 

i = (K) 1 (8.) 

In equation (8.1), K is the ratio of any two successive steps, ATt 

is the spacing between the second grid point and the wall (note that 

the first grid point is at the wall)., and N denotes the total number 

of grid points across the chosen rI-strip. The geometric progression 

spacing of the grid points defined by equation (3.1) is but one of any 

number of possible schemes. This particular approach has been found to. 

be satisfactory by a number of investigators; for example, Bushnell and
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Beckwith (ref. 31) and Cebeci (ref. 78). The total thickness ,of the 

rI-strip can then be expressed as follows: 

IN 	 (K / 1 (8.2) 

Another 	particularly important and useful relatien is, 

K =--; .	 0(3) 

The spacing of the grid points .i ,.completely ,det6rnined for a specified 

set of TIN, K, and N values. 'The selection of ithe eptimum -K and 

N values for a specified n1 depends upon the particular problem 

under consideration. The main objective in the selection is to obtain 

the minimum number of grid points with which a convergent solution may 

be obtained. That is, in order to minimize the computer processing 

time'per test case, it is necessary to minimize the total number of 

grid points across the boundary layer and to maximize the spacing be 

between the solution stations along the surface. The laminar layer 

presents no problem since a K value of unity is acceptable; however, 

for transitional and turbulent -layers, the value of K will be a 

number slightly greater than unity, gay 1.04. 

8.1.2 	Finite Difference Relations
 

Three-point implicit difference relations are used to reduce the
 

transformed momentum and energy equations (eqs. (7-39) and (7.40o)) to 

finite 	difference form. As previously mentioned in Section 8.1.1, it
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is assumed that all data are known at 'the stations m-1 and m (see 

fig. 9). We then wish to obtain the unknown quantities at the grid
 

points for the m+l station. The notations G and H are
 

utilized in the following development to represent any typical variable.
 

Taylor series expansions are first written about the unknown grid 

point (m+ln)in the E-direction as follows: 

=
Gm,n Gm+l,,n - )m+I GC)m+l -2(G 6 GC )m+l,n +,. V.n n 55
 

)2 ' "
 
+ A 3 ', (~ 

2 

- 6 (G )m+ln + " . (8.4b) 

where subscript notation has been utilized to denote differentiation;
 

that is, G i,G etc.
 

Equations (8.4a) and (8.4b) can be solved to yield 

( ) = XiGm+in - X2Gm,n + X3Gm-l,n 
m~l~n2 Ang2 

a 2 (t~l+ 2 )y 
-4G + .(8.5)

6 

and
 

Gm+l.n = X4Gm,n - XG+,n 2k + 2Gf . . (8.6) 
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The XIX 2,... ,X5 coefficients appearing in equations (8.5) and (8.6)
 

are defined as follows:
 

A + 2 2
I
 

X, = + 2(8.7)
Ali I + A 2 

A l + A 2 
x+2 = 2 Al (8.8) 

X3 = 2 (8.9 
- An(A 1 + Al 2 ) 

(8.1o)X4- AEI + 

and
 

X=A92 (8.!1.) 

Taylor series expansions are next written about the unknown grid 

point (m+ln)in the n-direction as follows:
 

2 
Gm~ln+ I = 01n~l,n + A~n(G%)m+l~n +---G)ln 

+ (G1)x1n++ (8.12a) 
a ndIITI)m+ln 

and 



8o
 

A 2 
Gm+l,n-i = Gm+i,n - ATjn-i(G p+,n+ -- rnm+,n 

(%iAm+j~n+ . . - ­ -

(G ) + .(8.12b)
 

Equatiohs (8.12a) nd (8.12b) can be solved to yield
 

(2m+1,nr= Y=Gm+l,n+l - Y2Gm+ln + Y3Gm+lni 

+ (A-" A6)G + .. 13) 

and
 

1 n -I
()m+n = m+l n Y5Gm+ln " Y6Gm+l 

" G I +. (.14)• 6
 

The Y1,Y2,...)Y 6 coefficients appearing in.equations (8.13) and (8.14)
 

are defined as follows:
 

YI Aqn(A%,
2+ Ann-l)
 

2
 

2 A 
 (8.16)
 

2 (8.17) 

3 Anlyn(A + A%-1. )n
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Y4 A 1 (8.18) 

&Tln('A%+Ann_l) 

+n Ann) 

(.9
y n_1 

5 Ann An 1 

and 

An (8.20) 

6 Ann1 (Ann + A%_,) 

For the case of equally spaced grid points in the, ' and TI 
4, - 4 

coordinates, equations (8.7) to (8..l)aiand (8.15) to (8.20) reduce to 

the following relations:
 

xi=3 ' 

X -2 

X5 = 1 

and
 

Y, 1 
All 

If2 = 
2YJ1
 

If
Y 1 (8.,21b) 
= (2 All) 

2 
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=0j 

Y6 
 Y4
 

where A and Al represent the spacing between the grid points in 

the and q coordinates, respectively.
 

Equations '(8.5), (8.6), (8.13), and (8.14) can thea be written
 

for constant grid-point spacing as follows:
 

3m+ln ­ 4GMn + Gm-l,n + AG m+l~n 2 A9 3 G 4.22) ( 


(8.22) 

Gi+l n - G . • (8.23)R= 2Gmn 0m-l±n + AE2 + . 

A 2
2G) Gm+ln+l - 2Gm+3,n + Gm+ln-1 

12 GTII + • . 
(6q2 m+l~n A2 


(8.24)
 

and
 

Gm+ln+l - Gm+ln- l_7 G + .• (8.25) 
(Qrn+tn 2 6 . .2A . 

Equations (8.22) to (8.25) are recognizedas the standard relations for
 

equally spaced grid points. (see, for'example, ref. 16.2
 

Quantities of the form 'that appear in the governing
 

equations must be linearized in order to obtain a system of lifiear
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difference equations. Quantities of this type are linearized by
 

utilizing equations (8.5)'and (8.6); that is,
 

G = (X4Gm, n - X 5Gml,n) (XiGm+l,n - X2Gm,n + X3Gm..i,n.) 

+ o(Ai1 A 2 ) (8.26) 

The procedure used to linearize nonlinear products such as
 

G) 'H, is the same as that used by Fl'gge-Lotz and Bl6ttner (ref. 15)
 

and is as follows:
 

jm+l 'n /rn)Mn) 1 m+l,n mn T/m'n 

+ \_ n l(8.27) 

where the'terms, () mn and 6(T]m, are evaluated from equa 

tion (8.14), but at the known station, m. Equating G to H in 

equation (8.27), the linearized form for quantities of the type 
2 obtained; that is,

is otie;ta s 

(P)2 =(m)r, L) 1 ,n -(' Il (8.28)n rnm+

where ( X+in is obtained from equation (8.14).
 

The preceding relations for the difference quotients produce
 

linear difference equations when substituted into the governing
 



differential equations for the conservation of momentum (7.39) and
 

energy (7.40). These linear difference equations may be written as
 

follew:
 

Al% ,aW + n + Cl + ++ -Iu+lnlnmta,+,1 

+ Elnn+i,n + Flnm.il,n+l GIn (8.29) 

A2nFm+±,n-I + B2nFm+ln + C2nFm+,n+y D2nm+ln+,l 

+ E2ne +l,n + F2n8m+in+i (8.o) 

The coefficients Aln Bln ... PGnPAPn;...,G2n are functions of.quan­

tities evaluated at stations m and m-i and are therefore known. 

These coefficients are presented in the appendix. 

8.1.3 Solution of Difference Equations
 

The proper boundary conditions to be used with the difference 

equations for the specific problem under consideration are specified 

in equations (745). The system contains exactly 2(N-l) mutualtr 

dependent equations for 2(N-a) unknowns since the boundary conditions 

are specified at the wall (i = 1, see fig. 9). This system of equations 

can then be simultaneously solved for the 2(N-i) unknoins at the m+l 

station. The system is of a very speclaa type, since a large number 

of the coefficients in the system are zero., The simultaneous solution
 

technique has been discussed in detail by'Fliigge-Lotz and Blottner
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(ref. 15). A discussion of the technique as applied to the incom­

pressible laminar boundary-layer equations is, also presented by
 

Schlichting (ref. 2, pp. 181-184). '(See, also, Richtmyer ref. 83.)
 

8.1.4 	Solution of Continuity Equation
 

It is important to notice that the transformed normal component
 

of velocity, V does not appear as an unknown at station n+I in the
 

difference equations (eqs. (8.29) and (8.5O)). This arises because of
 

the way quantities of the type V 7'F are linearized (see eq. (8.26)).
 

Consequently, equation (7.38) can be numerically solved for the N-I
 

unknown values of V at station m+l once the values of F and 8
 

are known at station m+l. Equation (7.38) can be integrated to yield
 

the following relation for V at the grid point (.m+ln):
 

F + F) d 	 (8,3.1)VM~~nVml'ifoTn ( 2 


where Vm+l,1 represents the boundary condition at the wall and is
 

defined in equation (7.47) as a function of the mass transfer at the
 

wall, (p*v*),. The integral appearing in equation (8.31) can then be
 

numerically integrated across the f-strip to obtain the N-i values
 

of V. In the present analysis the trapezoidal rule of integration was
 

utilized. However, any sufficientlyaccurate numericalprocedure could
 

be used (see, for ,example, refs. 84 or 85).
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8.1.5 Initial Profiles 

Initial profiles for starting the fin-ite difference scheme' are 

required at two stations since three-point diff6rences are utilized 

(see fig. 2). The initial profiles at the stagnation point or line for 

blunt bedies, or at x = 0 for sharp-tipped bodies; are obtained by an 

exact numerical solution of the similar boundary-layer .equatiens. The 

equations are solved by a fourth-order Adams-Bashforth-Moulton fixed­

step size integration method with a fourth-order Runge-Kutta technique 

(ref. 85) used to start the integration. The N-1 values of F, e, 

and V which are now known at the N-1 equally spaced grid points 

are numerically redistributed to N-1 grid points whose spacing is 

determined from equations (8.1) to (8.3) if a variable spacing is 

required. The second initial profile located at station m is assumed 

to be identical to the one located at station m-1. Any errors that 

might be, incurred because of this assumption are minimized by using an 

extremely small A , that is, an initial step size in the physical 

plane on the order of Ax = 1 X 10- 5 . The solution at the unknown 

station, m+l, is then obtained by the finite difference method. One
 

advantage of variable step size in the i-coordinate is clearly demon­

strated for blunt body flows. Davis and Flugge-Lotz (ref. 16) found 

that from the standpoint of accuracy and computer processing time 

step sizes on the order of 0.005 in the physical plane were required.
 

However, in the present solution extremely small, equally, spaced step
 

sizes can be,utilized in the stagnation region and then increased to
 

more realistic values once the errors due to the starting procedure
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have approached zero. Davis and Flligge-Lotz (ref. 16) were prinarily 

interested in obtaining solutions for only a few nose radii downstream; 

consequently, equally spaced but sufficiently small grid-point spacing
 

in the x-coordinate could be utilized. However, for engineering calcu­

lations where solutions may be required as far downstream 'as 1,000 or 

more nose radii, one cannot afford to use equally spaced grid points.
 

It is also advantageous to have the capability of starting the 

solution from experimental2y measured profiles, especially in the case 

of turbulent flow. This capability has also been incorporated into 

the digital computer program used in the present aAaaysis. This capa­

bility 	is extremely useful for cases where one ,cannot easily locate the
 

origin 	of the boundary layer, for exanple, nozzle walls. 

8.1.6 	Evaluation- of Wall Derivatives 

The shear stress and heat transfer at the wall (eqs- (7-97) 

and (7.106)) are directly proportional to thei gtadient of F and e 

evaluated at the wal, respectively. Using G to. represent a general 

quantity, where Gm+ l is not specified to be zero, the four-point 

difference scheme used to evaluate derivatives at the 'wal is as 

follows:
 

X+l,l 	= Y7Gm+il~ + Y8Gm+l,2 + YgGm+I,3 + Y'lOGm+l,4 (832j) 

where the coefficients Y7V .-. 'YO are defined by the following
 

equations:
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Y (i + K-+ K2) 2 [K(1 + K) -1 j + (1 + K) (83a) 
(1 + K)(1 + K + K2 )K3 AL1 

(I + K + K2 ) (8.33b) 
8 K2 Aq 

tp 

I1+K+l) 
Y- (1 + K+ "KA1 (8.33c) 

(K)K 3 All, 

and 

( + K + K2K( 

For the case of equally spaced grid points ih the q-direction 

(K = 1), equations (8.33) become 

=
Y7 (6 An) 

8 18 
.(6 

(8.34)
9 

Y9 - (6 A) 
2y 


YO ('6 LqI)
 

and equation (8.32) reduces to the familiar four-point relation; that is, 

(---)m+,1 - - 18Gm+1,2 + 9 Gm+1,3 ­'£A(llGm+ll 2Gm+1,4) 

(8'• 35 ) 
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8.1.7 Eddy Viscosity Distribution
 

The major advantage of the present solution technique in rela­

tion to Cebeci, Smith, and Mosinkis (ref. 78) and Beckwith and Bushnell
 

(ref. 86), for example, is that the momentum and energy equations
 

(eqs. (8.29) and-(8.30)) are simultaneously solved without iteration,
 

whereas in the above two references the momentum and energy equations
 

are each individually solved and iterated for convergence. The eddy
 

viscosity function distribution G and e (see eqs. (7.15) and (7.16))
 

and their derivatives with respect to q represent somewhat of a prob­

lem unless extreme care is used in the initial extrapolation of the
 

known values of C-ln and mn to the unknown station, m+ln.
 

During the development of the digital computer program, the
 

numerical method would frequently become unstable in either the tran­

sitional or turbulent flow region (see Section 8.1.8 for discussion of
 

convergence and stability). This problem would always occur in one of
 

two ways. In some instances an apparently converged solution would be.
 

obtained, but the distribution of boundary-layer thickness would not
 

'be smooth. In other instances, where the transition was abrupt or
 

where boundary conditions were abruptly changed, the solution would not 

converge. The problem was finally traced back to its origin, which was 

a nonsmooth or "rippled" eddy viscosity distributioA across the layer. 

These "ripples" first occurred in the region where the inneTr and outer, 

eddy viscosity models were matched. If the initial "ripples" were 

below a certain level, the solution would,apparently converge, but 

slightly nonsmooth boundary-layer thickness ,distributions would-'occur. 

http:and-(8.30
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If the initial "ripples" were above a certain level, the disturbance 

would grow very rapidly as a function of and propagate throughout 

the layer as the solution proceeded downstream. Vlhen this occurred, 

no valid solution could be obtained downstream "of the initial 

disturbance. 

The initial extrapolation of the known values of ,mn and 

m-ln to the unknown grid point (m+l,n) is obtained as follows (see 

eq. (8.6)):
 

+ = Xlte;n - 5 Em-l,n (8.36) 

However, there is no assurance that the distributton of the extrapolated 

values at station m+l will be smooth across the, layer for all poss-ible 

flow conditions. If "ripples"' occur in the extrapolated G distribu­

tion and if these "ripples" are of sufficient magnitude tP cause the 

sign of the derivative of G with respect to rj to alternate, then
 

the method becomes highly unstable.
 

The requirement of small grid-point spacing in the law of the
 

wall region contributes to the instability problem in that the size of 

an "acceptable ripple" is a function of the g-rid-point spacing being 

utilized in the f-direction. For turbulent layers where the viscous 

sublayer is relatively thick, the grid-point spacing in the outer 

portion of the law of the wall region will be large in comparison to­

cases where thd viscous sublayer is relatively thin. Consequently,
 

the former case can tolerate a "larger ripple" in the region of the 
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match point than can the latter case without experiencing an alterna­

tion in the sign of the derivative of 7 with respect to 9.
 

There are two possible ways to eliminate the problem caused by 

the "ripples" in the eddy viscosity distribution. The first approach 

is to develop an iteration scheme in which case the present solution 

technique has no advantage in relation to the technique used in 

reference 86; that is, the advantage of the unique simultaneous solu­

tion would be lost. The second approach is to numerically smooth the 

extrapolated eddy viscosity distribution prior to the matrix solution. 

Both approaches were trued by the author during the development phase 

of the digital computer program. The second approach was incorporated 

into the solution and will be discussed in the remaining portion of 

this section. 

The problem posed by the "ripples" in the eddy viscosity dis­

tribution, -ifthey exist, can be avoided by utilizing a three-point
 

mean value for E at station m+l,n, that is,
 

= am =m+ln-l + (m+l,n. + 6m+l,n+l(caV)m+i n 3(8.37)
 

where av denotes the three-point mean of the eddy viscosity func­

tion. In the present analysis the eddy viscosity functions appearing 

on the right-hand side of equation (8.37) are first obtained at each' 

grid point across the m+l station from equation (8.36). Having 

obtained these values, the three-point mean is-evaluated at each of 

the N-1 grid points from equation (8.37J. The matrix solution is
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then obtained for equations (8.29) and (8.30). Having obtained the 

N-1 values for F, e, and V at station m+l, the eddy viscosity
 

distribution is recalculated at the m+l station prior to moving to
 

the next grid-point station. This procedure has been found to be
 

stable under all circumstances and to yield convergent solutions for)
 

transitional and fully turbulent boundary layers. 

8.1.8 Convergence and Stability 

The implicit difference scheme ttilized in the present: analysis 

is consistent; that is, it may be considered as a formal approximation 

to the governing partial differential equations. A finite difference 

scheme is consistent if the difference between the partial differential 

equation and the difference equation goes to zero as the grid-point 

spacing approaches zero. That is, a scheme is consistent if the 

truncation error goes to zero as the grid-point spacing approaches 

zero. The difference quotients used in the present analysis satisfy 

this requirement. However, the fact that a system is consistent does 

not necessarily imply that the solution of the difference equations as 

the grid-point spacing approaches zero converges to the actual solution 

of the partial differential equations. In order for convergence to be
 

assured, the difference equation system must be convergent. Unfortun­

ately, for the boundary-layer equations as used herein there is no
 

oaompletely satisfactory mathematical analysis with which the conver­

gence or divergence of the present scheme can be demonstrated (ref. 15). 

The convergence of the system can best be studied numerically by vary­

ing the grid-point spacing. This approach is used in Chapter DC of 
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the present paper. Convergence problems can become very cri-tical in 

the turbulent region of the boundary layer when the viscous sublayer is 

not properly treated. Of course, one should keep in mind that there 

are no 	 exact solutions of the mean turbulent boundary-layer equations 

against which comparisons for convergence may be made.
 

The stability of the finite difference scheme, as opposed to the 

convergence, can be carefully studied mathematically. The three-point 

implicit scheme used in the present method is stable regardless of
 

the grid-point spacing (ref. l.5, pp. 44-49). The stability of the 

method is the major advantage of the implicit,difference scheme in 

relation to the explicit approach where it is necessary to control the 

grid-point spacing through a stability parameter. (See, for example, 

refs. 87 to 91.,) 

8.1.9 	Viscous Sublayer
 

.The relative thinness of the viscous sublayer (Section 7.4.1)
 

and its importance in determining the correct shear stress and heat 

flux at the wall requires that very small grid-point spacing in the 

n-direction be'utilized in the wall region for the present numerical 

procedure. Although a careful study of either the' minimum number of 

grid points that must be located in the viscous sublayer or the optimum
 

spacing of the grid points across the entire boundary layer has not
 

been completed, it has been found by the author that at least 5 to 10
 

grid points in the viscous sublayer at each x-solution station will
 

yield 	a convergent solution. (This study is currently being completed
 



94
 

and will be reported in a subsequent NASA publication containing the
 

digital computer ,program.)
 

Preliminary data obtained from experimental studies and a 

thorough literature survey by the Gas Dynamics Section at the Langley 

Research Center indicates that the viscous sublayer thickness, +
 

ranges from approximately 8 to 14 over the Mach number range from 3 

to 47 for adiabatic to cold wall conditions and for air or helium flow 

mediums. (These data are currently being processe for publication by 

W. D. Harvey' and F. L. Clark at the Langley'Research Center.) Conse­

qently, a mean value of y = 10 and equation (7.il6a),allows a 

reasonable estimate of y . as follows: 

S.' . 4 (8.38) 

where the local values of v* and p* in equation (7cl6a) have been
wI
 

replaced with the known wall values in eqtation (.8.38).] An accurate 

estimate of' the value' of T* for a particular case can be obtained 

from a number of current 'correlations, for example, Spalding and 01h 

(ref. 92). Therefore, a estimate of ys.* can be obtained from 

equation (8.38); however, the numerical solution is obtained in the 

transformed plane. The sublayer thickness in the transformed plane can 

then be obtained directly from equations (7.33b) and the estimated bee 

value. The final step is to esmate the boundary-laer thickness and 

the optimum total number of grid points across the boundary layer. 

Having reasonably accurate estimates of the viscous sublayer thickness, 
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the total boundary-layer thickness, and the optimum number of grid 

points, equations (8.1) to (&.3) can then be used to obtain the spacing 

parameter, K, -in order to place from 5 to 10 grid points in the vis­

cous sublayer. An example of the effect'of grid-point spacing on the 

convergence of the numerical method is presented in Section 9.1.
 

8.2 Digital Computer Progr 

The repetitious nature, of the implicit finite-difference scheme 

makes the method well suited for digital computers. The present solu­

tion technique was programed by -the author for the CDC (Control Data 

Corporation) 6000 series computer operating on Scope 3. The coded 

program will not be presented herein since it is quite lengthy as well 

as currently being-documented for publication by the National Aeronautics 

and Space Administration. 

The main objectives in the development of the computer program 

used in the present study were accuracy, minimum computation process 

time, flexibility, and simplicity. The accuracy requirement is, of 

course, of paramount importance in any numerical procedure. The 

CDC 6000 series machines cost on the order df $1 thousand per hour to 

operate. Consequently, the computer process time per test case must 

be held to a minimum by optimum programing procedures. Both of these 

requirements should be carefully considered in any digital computer 

program. However, flexibility and simplicity are often overlooked when 

the primary objective of the study is to obtain solutions for one
 

particular class of flows in order t6 satisfy one specific requirement. 
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The importance of simplicity in input requirements is also often neg­

lected when the needs of other personnel associated with the research
 

center, uriversity, or aerospace industry are hot taken into considera­

tion. These objectives were necessary in-the present cage since the
 

program was developed by the author for general use at the Nati6nal' 

Aeronautics and Space Administration, Langley Research CeAter. Some of 

the more important points concerning the flexibility ,6ff the program 

will be discussed in the remaining portion of this section. 

The input requirements that must be specified in order to obtain 

the external flow are discussed in Section 7,8. The input values for
 

% , ' M o, T Y, O*, and S* are dependent upon only 

the free-stream test conditions and flow medium. However, P* which
 
e 

must be specified as a function of the boundary-layer coordinate, x*,
 

is a function not only of the test conditions and flow medium, but also 

body geometry. The pressure distribution, P , as a function of the 

boundary-layer coordinate, x*, is obtained from experimental data when 

possible or from the method presented in reference 80, when applicable.
 

A very useful option for engineering studies of the boundary-layer
 

characteristics has been provided by programing Modified Newtonian 

pressure relations (ref. 93) directly into the program for blunt-body 

flows; that is,
 

+ 7 -,/ - 2 

= Pl+w ~ 21 M ) + M2 %a cos) (8.59) 
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where the maximum pressure coefficient, Cpmax may be expressed as 

Cpmax 7T+-(8.4o) 

This option is particularly useful for cases where engineering design 

data are required for-a particular class of configurations over a 

broad range of flight conditions. A good example would be the class 

of power-law bodies for which equation (8.39) will ,yield an accurate 

representation of the true pressure distribution at hypersonic speeds 

(ref. 941). This class of bodies may be described mathematically &s 

follows:
 

rh 
rb L)
 

where rb designates the base radius for a 'body of length L.-, For
 

this particular example, the power-law exponent a,- could be varied
 

to study the viscous drag over a range of flight conditions with a:
 

minimum of input requirements. Another very useful application would
 

be to study the heat transfer to the vehicle over a given flight trajec­

tory. In this case the variable input required for the solution would 

be specific values of mt' 1tt-O, and -M. at points along the tra­

jectory. The most probable location of transition and the extent of
 

the transition region would be obtained from empirical correlation 

relations (see Section 7.5).
 

It should be noted that the above-mentioned class of bodies
 

(eq. (6.41)) presents somewhat of a problem in that the boundary-layer 
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coordinate, x, cannot be obtained in closed form as a function of the
 

body coordinates, z and ro . This presents no problem in the
 

present program, since the program contains an iteration subroutine
 

which will obtain x as a function of the body coordinates for any
 

geometry where ro can be expressed as a function of z.
 



IX. EXAMPLE SOLUTIONS FOR THE SYSTEM OF EQUATIONS 

The finite difference -solution technique developed in Chapter VIII
 

together with the transition criteria, transitional flow structure, and 

transition extent discussed in Chapter VII is applied in the present 

chapter to a number of typical supersonic and hypersonic configurations 

of current interest. In all cases the gas is assumed to be perfect air 

with a constant ratio of specific heats, y, equal to 1.4, a constant 

Prandtl number a, equal to 0.72, and a constant static turbulent 

Prandtl number, at equal to 0.9. The molecular viscosity, a, is 

evaluated from Sutherland's viscosity law (eq. (7.32)). The external
 

pressure distributions used are either experimental or were obtained by
 

the author from an exact .solution of the full inviscid Euler equations
 

obtained at the Langley Research Center (ref. 80).
 

The selection of a typical set of test cases always presents a
 

problem since there are so many possibilities from which to choose.
 

However, the cases considered in the present chapter should serve as an 

indication of the merits of the solution technique as well as the 

validity of the system of equations. 

9.1 High Reynolds Number Turbulent Flow 

The accurate prediction of boundary-lyer characteristics for 

high Reynolds number turbulent flow is important in the design of high­

speed vehicles., In particular, it is important' to be able to predict 

with accuracy the skin friction drag. An excellent comparison case of 

99
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high Reynolds number turbulent flow is the data of Moore and Harkness 

(ref. 95). The experimental skin friction data were measured with a 

floating element type balance. The test model was a 10-foot-long 

4-foot-wide sharp (0.002 to 0.004 inch thick) leading-edge flat plate. 

The test conditions were as follows:
 

'M= 2.8 

P* = 2.088 X 104 b/ft2 

t,o 

T* = 5.6 x l02 OR
 

-w _ 9.47 X 10-1 
T*
 

The experimental transition location was not reported in 

reference 95. Consequently, for the numerical calculations, the tran­

sition location was determined by the stability index (Section 7.5.2.1) 

and was assumed to occur at the x-station where X... achieved a value 

of 2a,500. The extent of the transition region was automatically calcu­

lated from equation (7.85). The intermittency distribution was calcu­

lated from equation (7.81). The solution was started at the leading 

edge of the sharp flat plate (x --0) by obtaining an exact:numerical 

solution of the similar boundary-layer equations (eqs. (A-47) to (A-49)) 

by the method discussed in Section 8.1-5. Th grid-point spacing was 

varied in both the and r directions in order to bh/eck for conver­

gence. It should be noted that the selection of (Xiajcr9 2,500 

was based partially on experience and partially on the results presented 
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in Section 9.8 where the variation of (X 1ax95 with R* is dis­

cussed. The location of transition ranged from 0.84 to 1.4 inches 

from the ,leading edge for (Xax)cr between 2,.500 and3,500, respec­

tively. This variation in transition location had negligible effect on 

the skin friction coefficientd in the' Tuly turbulent region of flow. 

The numerical results for the skin friction,coefficient distri­

bution are compared to the experimental data in figure 10(a). The 

agreement is excellent over the entire Reynolds number range of the 

experimental data for K = 1.0+; however, for K = 1.01, convergence 

was not attained. It should be noted at this point that the terms 

convergence and stability, as used in relation to the numerical method, 

are defined herein as in reference 15 and are discussed in Section 8.1.8. 

The divergence (failure to obtain a convergent solution) for K = 1.01 

is attributed to an insufficient number of grid points in the wall 

region; in particular, in the thin viscous sublayer region. This 

particular problem is discussed in Section 8.1.9. The effect of the 

grid-point spacing parameter K on the numerical solution was studied 

for additional values of 1.02, 1.03, 1.05, and 1.06. The solution was
 

found to diverge for K < 1.02 and converge for K'> 1.02. The Cfe 

results for K > 1.02 (other than K = 1.OY)-are not presented since 

the variation of Cfe with K would not 'be discernible if plotted to 

the scale of figure 10a). The convergence criteria used in this
 

particular example was to decrease the grid-point spacing until any
 

change which occurred in Cfe at a given x-solution station was beyond 

the fourth significant digit. The laminar curve shown in figure 10(a) 



102
 

was obtained by suppressing transition (r = 0). Grid-point spacing 

in the i-direction was varied from Ax = 0.001 to 0.°04, and convergence 

to the accuracy of the experimental data was obtained for all values. 

Because of the abruptness of transition, step-sizes greater than 

Ax = 0.04 were not studied. 

A comparison to an experimental velocity profile is presented 

in figure 10(b).' The profile was obtained 'at an Rex value of 

8.45 X 1o7 No experimental data were availble for y+ values leis 

than 102.. The agreement between the numerical r~sults and the experi­

mental profile is seen to be very good. 

Typical profiles of F, e, PtnP, aand M/e 'just prior• ,e e 

to transition (Re. = 1.46 X 106); midway throtghthe transition region 

(Re. = 1.96 ,x 106), and at the completion of transition (Re = 3.44 X 106)x 


are presented in-figures 10(c) to 10(f), r~spectively: No experimental
 

data were available in this region; however, the results are, in
 

general, typical of any transition region (see Section 9.8). The
 

intermittency distribution and boundary-layer thickness distribution
 

in the transition region are presented in figures 10(g) and 10(h),
 

respectively.
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Figure 10.- High Reynolds number turbulent flow. 
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9.2 Tripped Turbulent Boundary Layers 

In many of the current supersonic wind-tunnel facilities it is 

often necessary to trip the laminar boundary layer artificially in 

order to obtain turbulent data. A good example of turbulent data 

obtained in tripped boundary layers -is that of CoIes (ref. 96)'. These
 

data were obtained in the Jet Propulsion Laboratory's 20-inch super­

sonic wind tunnel. The test model was a sharp leading-edge flat plate. 

The free-stream Mach number was varied froml.966 to4.5%4. _,Test 

numbers J0, 20, and 22 (see page 33 of ref. 96) were- selected'as typical 

comparison cases. For these three cases-the laminar bouchdary, layer was 

tripped by a fence located at .the leading edge iof the flat plabe (see 

fig. 40 of ref. 96). The skin friction was measured at three surface 

locations with a floating element balance. Boundary-lay63 profiles 

were measured at x* = 21.48 inches. 

The test conditions for the three comparison cases are listed 

in tabular form below. 

OR Coles test No. Me , t lb/ft2 Tc Tftt 

30 1.982 1977.4 545 o.8295
 

20 -3-701 2868.5 561 .7152
 

22 4.554 8132.2 554 _67&6 

Transition was assumed to occur near the leading edge of the
 

plate for the numerical calculations,, xt i = -0.005 ft, and to be 
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completed (P = 1.0) at xtf 0.010 ft. Twenty equally spaced
 

x-solution stations were used in the region 0 < x* < 0.010 ft; the
 

x-solution stations were then equally spaced 0.01 ft apart over the
 

remainder of the plate. The total number of grid points in the
 

f-direction and the grid-point spacing parameter K were assigned
 

values of 301 and 1.04, respectively. The computer processing time
 

per test case was approximately 3 minutes. The numerical results are
 

compared to the experimental velocity and Mach number profile data in 

figures 11(a) to 11(f) for the three test cases. The agreement between 

the numerical results and the experimental data is very good for all 

three test oases. In particular, it should be noted that the experi­

mental skin'friction coefficients (see figs. 11(a), 11(c), and 11(e))
 

were predicted to within 'l percent -which is well within the accuracy 

range of 2'percent as quoted for the data in reference 96. 

Numerical resultd obtained by Pletcher' (ref. 97; see, also, 

ref. 98) are also presented on figures 11(a) to 11(f). A three-layer 

mixing length concept was used in reference 97 to model the turbulent 

transport terms. The resulting equations were solved by an explicit 

finite difference technique using the DuFort-Frankel (ref. 99) differ­

ence scheme. The agreement between the numerical results of refer­

ence 97 and those of the present solution is very good for the three
 

test cases. To the author's knowledge, the method used in reference 97
 

is the only explicit finite difference technique currently being used
 

to solve the mean flow turbulent boundary-layer equations.
 

1 The author would like to thank Professor R. H. Pletcher,
 
Department of Mechanical Engineering, and Engineering Research 
Institute, Iowa State University, Ames, Iowa, for permission to use 
these data.
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(a) Velocity profile and skin friction coefficient for L = 1.982. 

Figure 11.- Comparisons with experimental data for tripped turbulent 
boundary layers. 

1.0-

Me 0 Exp. data; Me= 1.982 
4 Ref. 97 

- Present solution 

.2 

I I I I I I I I I 

0 2 4 6 8 10 12 14 16 Is 
y/ 

(b) Mach number profile for MA = 1.982. 

Figure 11.- Continued. 
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Figure 1.- Continued.
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Figure 1.- Continued.
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9.3 Laminar Flow With Mass Injection 

In some instances it may become necessary to protect high­

performance vehicles by transpiration cooling (mass injection at the 

wall). An example of laminar data that may be used for comparison is 

presented by Marvin and Akin (ref. 100). The data were obtained over 

a range of injection rates for a sharp-tipped 50 cone. The cone was 

solid for x* < 3.75 inches; the remaining portion of the cone was 

porous. The test conditions were as follows: 

6= 7.4 

= 8.6& X 104 lb/ft 2 

t,co 

T* = 1.5X 10 3 OR 
t,co 

W 3.8 x 10-1 

Theair'injection rate ranged from 1.056 x O1- 4 slugs/(ft 2 -sec) to a 

10- 4 maximum value of 3.84. x sjugs/(ft 2 -sec). 

A comparison of the heating rate at the wall normalized by the 

heating rate'at the wall just prior to the ramp injection (x = 1) is 

presented in figure 12(a). The mass injection distribution was not
 

uniform, as can be seen from the plot of the actual injection distribu­

tion normalized by the ideal injection rate. The non-uniform distri­

bution of mass injection was utilized in the numerical solutions. The 

agreement between the numerical results and the experimental heat trans­

fer data is excellent over the entire injection range. 
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(a) Comparisons to heat-transfer data.
 

Figure 12,- Hypersonic laminar boundary layer flow
 
with mass injection.
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For the maximum injection rate ((p*v )w = 3.84 slugs/ft2/sec), 

the boundary layer separated from the cone surface at x = 1.92. The 

calculated velocity and Mach number profiles at x 1.92 are presented 

for the four test cases in figures 12(b) and 12(c), respectively.
 

1.0u 	 ft2 

Present solutions (p*v*)w, slugs ­
"
 

1"056X10-4 


.8 _ -- 2.112 j
3.840 	 z 

x 1.92 .­

.6 -	 -AI-.A 

Y 

/4 
*/ 

.2 /
•/
 

0 	 .2 .4 6 .8 1.0 

F 

(b)Velocity profiles.
 

Figure 12.- Continued.
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(c) Mah number profiles. 

Figure 12.- Continued. 

The vortieity Reynolds number distribution for (P*v*)w = 0 is pre­

sented in figure 12(d). The maximum value of the vorticity Reynolds 

number, Xex, is seen to increase with increasing x. In paticular, 

the y/5 value at which Xmax occurred is in excellent agreement with 

the location of the critical layer position (see ref. 67). The effect 
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(d) Vorticity Reynolds number distribution for zero 

mass injection. 

Figure 12.- Continued. 
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of mass injection on the vorticity Reynolds number distribution is
 

presented in figure 12(e). Increasing mass injection is seen to 

increase the value of Kmax at a given x-station as well as'move the 

location at which the maximum occurs, (y/)Xmax toward the outer 

edge of the boundary layer. To the author's knowledge no data are 

currently available for the critical layer position with mass injec­

tion at the wall.
 

This particular example is a case where variable step size must 

be utilized in the region of the ramp injection (x = 1.0). For this 

test case, the Ax values (grid-point spacing in x-direction) were 

constant and equal to 0.01 up to x = 0.99 at which point the step 

size was decreased to a value of 0.001 through the ramp injection 

region. The step size was then progressively increased up to a value 

of 0.01 at x = 1.5. The flow was laminar; consequently, K was set 

to unity and 101 equally spaced grid points were utilized in the 

T-direction. The digital computer processing time per test case was 

approximately 2 minutes. 

It should be noted that the test conditions as listed in 

references 100 and 101 are not correct. The conditions given herein
 

are correct and were obtained by the author from Mr. Joseph Marvin at
 

the Ames Research Center.
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Figure 12.- Concluded. 
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9.4 Blunt Body Flow 

The numerical procedure as presented in the present paper has
 

been applied to a number of blunt body supersonic and hypersonic flows. 

A typical case is presented in figure 13 for hypersonic flow. The 

pressure distribution was obtained by the author at the Langley Research 

Center (ref. 80). The test conditions were as follows: 

M =10.4 =Tt 2 l0O3 0RTl 2. X 10l


P =2.249 x 105 lb/ft 2 _ 2-5 × 10 

Solutions for this particular example have been obtained by Marvin and 

Sheaffer (ref. 101) and Clutter and Smith (ref. 102). The distributions 

of the heating rate at the wall referenced to the value at the stagna­

tion point (x = 0) and the,shear stress at the -wall are compared to 

the results presented in references 101 and 102 and are presented in 

figure 13 -

Equally spaced grid points were used in the e-direction. Solu­

tions for &x values of 0.001 to 0.02 were obtained'to check for con­

vergence. Oscillations in the qw due to the starting procedure 

approached ,zero after approximately 10 to 15 steps along the surface. 

The data shown in figure 13 were obtained using nx = 0.005, although 

much larger steps could be used for engineering calculations ,say 

Ax = 0.01. The grid-point spacing in the r-direction was constant 

(K = 1) with a value of 0.01. The computation time per body station; 

was about 3 seconds as compared to-42 sec"nds~in reference 102. 
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Figure 13.- Hypersonic blunt body flow. 

9.5 Highly Nonsimilar Flow With Transverse Curvature 

Turbulent boundary layer data for flows where variable pressure 

gradients exist are few in number. 'A good example of a case where 

both favorable and adverse pressure gradients occur as well as where 

transverse curvature effects are importaAt']ist the data of inter, 

Rotta, and Smith (ref. 105). The -model used in the itudy'was an 'axi­

symmetric piecewise continuous, 'c6nfiguration ,and is presented in' 

figure 14(a). 

Experimental data are presented in reference 103 only for the
 

region where the boundary layer is turbulent; however, the solutions 

presented herein were obtained by starting the calculations at the tip 

of the sharp cone forebody (x = 0-). This particular configuration has 

received considerable attention over the past '2-yearperiod.
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(a) Geometry of configuration. 

Figure 14.-Oomparisons with data for higbly ncAsimilar supersonic 
flow with transverse curvature effects. 
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Calculations have been made by Herrihg and Mellor (ref. 104), Cebeci, 

Smith, and Mosinskis (ref. 78), and Bushnell and Beckwith (ref. 31). 

However, the above-mentioned solutions were all started by utilizing 

the experimentajly measured profiles at station z - 2. To the author's 

knowledge the solutions presented in the-present paper are the first to 

be obtained without any dependence 4hatsoever- on experimental profile 

or skin friction data. , -

The test conditions forthe two cases considered are astfollows: 

Case 1 Case 2' 

M. 1.398 M 0= 1.70 

D 9.2px 102 Ib/rt 2 P" 9.92,X 102 lb/ft2 
tow tjoo
 

= t* 5.36 x lo2 OR T* =5•36 x l0 2 R 

__ - x n- 1 9.71 X10- 1 9.76 l0 -

The experimental Mach number distributions are presented in figure 14(b). 

The edge Mach number distribution was used as an input to the digital 

computer program instead of Pe" Equations (7.131) to (7.151) and 
e 

(7.31) were used to calculate the required edge conditions from the 

specified edge Mach number distribution. The initial conditions behind 

the conical shock wave were obtained from reference 105.
 

The initial profiles required to start the finite difference
 

solution were obtained by an exact solution of the similar boundary­

layer equations (eqs. (A-47) to (A-49)) at x = 0. Transition was 
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(b) "Experimental edge Mach number distribution. 

Figure 14.- Continued. 
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initiated at the solution station, xt,i where ';a x achieved a value 

of 2,500. The transition extent was then automatically computed from
 

equation (7.87). The grid-point spacing in the i-direction varied
 

from a maximum nx value of 0.01 to a minimum value of 0.001 in the
 

regions of large pressure gradients. Variable grid-point spacing in
 

the '-direction was required with a K value of i.C4. Calculations
 

were made for K values of 1.03 and 1.05 to insure convergence. The 

computer processing time per test case was approximately 4 minutes. 

The numerical results are compared with the experimental data 

for momentum thickness and skin friction coefficient distributions in 

figures 14(c) to 14(f). 

The agreement, between the numerical and experimental momentum 

thickness and skin friction coefficient distributions is very good for
 

both test cases. In particular, note the agreement with the minimum 

Cf. data point in transition (fig. 14(f)) and the erratic behavior 

of the data in the region x < 1 (figs. 14(e) and 14(f)). It is also 

of interest,to note that while the solutions with transverse curvature 

were in closest agreement with the 6 values for x < 3.5, the solu­

tions without transverse curvature agreed best with the Cfe values 

in the same region.. A similar trend is presented in reference 78.
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9.6 Adverse Pressure Gradient Turbulent Flow, 

The design engineer is often required to make estimates of the 

skin friction, heating rate, and other boundary-layer characteristics 

for turbulent boundary-layer flows in. adverse pressure gradient regions. 

Good examples of such flows would be the boundary layer over a deflected 

control surface (compression surface) and over the centerbody of a
 

supersonic engine inlet. An example of turbulent data obtained in an.
 

adverse pressure gradient is presented by McLafferty and Barber 

(ref. 106). One of the test configurations was a flat plate with a 

single-radius curvature compression surface at the rear of the plate. 

The test conditions were as follows: 

M = 5 = x 2 OR3.0 t 6.1o o 

-
P* 2.116 x 13 lb/ft 2 w = 9.28 x 1 

For this particular example the pressure gradient across the 

boundary layer was significant. However, for the present numerical 

calculations, this factor was neglected since the -system of equattonI 

as used herein does not contain the y-momentum equation. The experi­

mental Mach number at the edge of the boundary layer was used tb btain 

the required edge conditions. This ,distribution is presented in 

figure 15(a). The station x = 0 marks the beginning of the com­

pression surface. No experimental measurements of the skin friction 

were made. 

For the present solution the calculated momentum thickness
 

Reynolds number at the beginning of the compression, x = 0, was
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matched to the experimental value of Ree6 2,i0. Equally spaced 

x-solution stations were used; Ax = 0.001. The total fiumber of grid 

points in the r-direction and the grid-point spacing parameter K were 

assigned values of 201 and 1.04, respectively. The computer prohessing 

time was approximately 2 minutes. For this particular test case it was 

necessary to increase the value of K2 from o.oi68 to 0.0672 in the 

outer region eddy viscosity model. This increase in K2 was necessary 

in order to obtain attached flow throughout the compression. It should 

be noted that this particular example is the only case in the present 

paper where the value of Y is different from that given in 

Section 7.4.1; that is, K2 = 0.0168. The numerical- solution results 

for momentum thickness and form factor are presented in figure 15(b). 

The calculated momentum thickness distribution agrees well with the 

experimental data for -2 < x < 0.5; however, the numerical results 

fall somewhat below the data throughout the remaining compression. The 

agreement between the solution and the experimental form factor distri­

bution is good throughout the compression.
 

The eddy viscosity model as used herein (see Section 7.4) was
 

developed from data obtained in zero pressure gradient flows. The
 

effect of streamline curvature has been studied by Bradshaw (ref. 107).
 

Bradshaw found that streamline curvature (centrifugal effects) had a 

strong effect on the turbulence structure for flow geometries where the 

ratio of the boundary-layer thickness to the radius of curvature of the 

body surface was on the order of 1/300. For concave, streamlines, such 
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as in the present case, it was shown (ref. 107) that the mixing length
 

should be increased in order to account for the effect of curvature on
 

the turbulence structure. 

This particular test case has also been studied by Beckwith 

(ref. 14 ).. Beckwith avoided separation in his solutions by computing 

the velocity gradient dUe/dXl from the static pressure distribution 

at the edge of the boundary layer Pe; rather than PW as used in 

the present solution; however ue and Pe were calculated from 

as in the present solution. It should be recalled that separation. was 

avoided in the present solution by increasing the eddy viscosity in 

the outer region. It was suggested in reference 14 that the premature 

separation problem should be corrected by the inclusion of the 

y-momentum equation and that more data should be obtained in adverse 

pressure gradient flows in order to develop appropriate mixing length 

or eddy viscosity models. 

9.7 Flow Over Sharp-Tipped Cones 

Fisher (ref. 56) studied the effect of the unit Reynolds number, 

R* on transition for a 100haf-angle cone at a free-stream Mach 

number of 7. These data provide an excellent case for comparison as 

well as to exhibit the flexibility of the digital computer program. 

The test conditions were as follows:
 



,* 2.89 x 104 to 8,7 X 10o lb/ft2 

T* 1.03 x 103 OR 
tco
 

T~w _5.2 X 10-a 
t,coT*w


The boundary-layer edge values were obtained from reference 105. The 

experimental location of transition and the extent of transition were 

used in the numerical calculations. The computer processing time per 

test case was approximately 2 minutes. 

Comparisons of the numerical results to the experimental 

Stanton number distributions are presented in figures 16(a) through
 

16(f). The value of (Ymax)cr is noted on each figure. The agreement
 

between the numerical results and the experimental data is vert good 

for all six test cases. In particular, note that the numerical.solu­

tion predicted the correct reak heating and overshoot characteristics
 

of the two, highest unit Reynolds number cases (see figs. 16(e) and 

16(fl)) -

Two cases similar to the above ones are presented in figuiei 6(g) 

and 16(h). These data were obtained by P. Calvin Stainback (unpublished) 

at the Langley Research Center on a 100 sharp cone model. The test, 

conditions for these data were as follows: 
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Figure 16.- Comparisons with experimental Stanton number distributions
 
for hypersonic flow over sharp-tipped cones.
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Case 1 Case 2
 

m.= 8 m.= 8
 

P%; = 2.91 x io5 lb/ft2 * 3.63 x 105 lb/ft2 

S,= 1.458 x lo3 °R 

t 4.o x 1 ­10
 

- i :I 

These two cases are typical of approximately 15 Cases calculated by
 

the author from the same source. Results from these remaining'cases
 

will be presented in a,future publication. They are p esented herein
 

because of the length of turbulent flow in relation to that obtained
 

by Fisher (ref. 56). The ('max)cr value is indicated on the .figures.
 

The agreement in the peak heating region is excellent; in particular,
 

note the overshoot characteristic and its agreement-with the data.
 

9.8 Flow Over Planar Surfaces
 

O'Donnel (ref. 108) studied laminar, transitional, and turbulent
 

boundary-leyer flows over a hollow cylinder. Velocity profiles were
 

measured at various stations"along the cylinder. The test conditions,
 

were as follows:
 

= 2.41 

"it = 4.95 X 102 to 8.49 x 103 lb/ft
2 

tco 
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T* =5.60 x 2 R 

For this particular' set of calculations, the experimental tran­

sition location was utilized; however, the extent of transition was 

calculated from equation (7.85). Consequently, the only variable
 

inputs to the computer program were the specific values of the total 

pressure, P =. and the transition location, t
 

The velocity profile comparisons are presented in figures 17(a) 

through 17 (e). For a unit Reynolds number of 0.672 X106, the boundary layer 

was laminar throughout the measured area. The velocity profiles are 

similar and the agreement between the numerical results and experimental 

data is very good (see fig. 17(a)). For-a umit Reynolds number of 

2.88 X 06, laminar, transitional, and turbulent flow occurred (see • 

fig. 17(b)). Similar results were obtained for a unit Reynolds number 

of 5.76 x 106 (see fig. 17(c)). For unit Reynolds numbers of 8.&x:o 

and 11.5x 10 , the flow was turbulent as presented in figure 17(d) and 

17(e), respectively. The profiles are seen to be similar for the tur- 1, 

bulent region. Comparisons with the experimental momentum thicknesses 

are presented in figure 17(f). The agreement is seen to be exdellent 

over the entire unit Reynolds number range. 

A further example of laminar and transitional boundary-layer 

flow for hypersonic test conditions is presented in figure 18. 

6 
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.Figute 18,- Comparison with experimental data for laminar and
 

transitional flat plate flow at M = 7.8. 



These data were obtained by Johnson (ref. 109)-on a sharp leading-edge 

flat plate model. The experimental test conditions were as follows: 

M.= 7.8 

P* =8.827 X 104 lb/ft 2 

T 143 1DlOR 

t,eO 

= 5.88 x lo-

The agreement between the numerical results and the experimental 

Stanton number distribution is very good. 

The experimental transition location, , was used in the 

calculation; however, the transition extent was calculated from equa­

tion (7.87). (Note that the transition from laminar to turbulent flow 

was not completed; that is) xf was not reached.) The total number 

of grid points in the n-direction and the grid-point spacing parameter, 

K, were assigned valaes of 201 and i.04, respectively. The computer 

processing time was approximately 2 minutes. 

This particular test case is presented to emphasize that the 

stability index, (Xmax)cr is not an invariant as suggested by Rouse 

(ref. a )-but is, in fact, a strong function of the unit Reynolds 

number, R* For all of the previous test cases, (Ymax))cr has. 

varied over a relatively small range 2,500 < (Xmax)cr < 3o000 

which might lead one to assume that, while not invariant, (Ymx)cr 

varies only slightly. However, the present test case,value of 4,000 
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considerably extends this range from 2,500 to 4,000. The numerical 

results obtained by assuming that transition would occur at th6 

x-station where Xma x was equal to 2,500 is shown on figure 18. This 

calculation, clearly indicates that no assumptions concerning the loca­

tion of experimental transition should be made on the basis of the 

magnitude of the stability index as being an invariant 6r a near 

constant. 

The stability index is presented as a function of unit Reynolds 

number for a number of experimental studies in figure 19. These values 

were generated by obtaining the boundary-laeyr solutions corresponding 

to the experimental test conditions and plotting the value of Xma x 

at the experimental transition location as a function of the unit 

Reynolds number of the experiment. Some of these cases have been pre­

sented as test cases in the present paper (refs. 109, 56, 108, and 

two Stainback cases). A number of points of interest concerning the 

stability index are apparent in figure 19. For example, these data can 

be represented by the general equation 

(Xmax)cr = '24 1ogo Re + n25 (9.1) 

where 24 and a5 represent functional relations of the transition 

parameter phase space. It should be noted at this point that all of 

the data presented on figure 19 represent similar boundary-layer flows 

and that nonsimilar effects such as pressure gradients might consider­

ably alter these trends.
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'Symbol Geometry me TwlTf -Ref. 

o Flat plate 4.9 0.3 toO.6 62 
El 6.0 0.2 to 0.6 62 
A 7.8 0.39 109 

5'cone '10.7, 0.17 110 

IO'cone 6.0. 0.39 Stcinback 

l0?cone 5.5 0.4 56 

Cylinder 2.4 0.9 108 

4 

- -6 

2' 

6t 

t15 20 2 .5, ,03 355, 40x.1,0 2'6'(Xmox)c,. 

Figure 19.- Stability index as function Of unit Reynolds number. 
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The limited experimental data presented on figure 19 indicate 

that Q4 is invariant, at least, for similar flows since the slopes of 

the curves for the data from references 56, 108, and the data from 

Stainbackare identical. However, the coefficient 25 is definitely 

not an invariant for these data. The data from reference 56 and 

Stainback (unpublished) were obtained at nearly equal edge and wall 

boundary conditions; however, the value of n is considerably

5
 

different. This suggests that 25 is a strong function of the test
 

environment since the data were obtained in different wlnd-tunnel test 

facilities; that is, perhaps the acoustic environment would appear in 

a5 " The data presented for the adiabatic cylinder (ref. 108) exhibits 

the same dependence on 24 as that of reference 56 and Stainback 

(unpublished); however, since these data were obtained for adiabatic
 

wall conditions and at a much lower Mach number than that for the 100 

sharp cone, a5 would appear to be a function of at least Me Tw/Te 

and the test environment. The test environment would include the 

effect of acoustic radiation, free-stream turbulence, and temperature 

spottiness of the flow.
 

The author is currently studying transition data obtained over 

a broad range of test conditions for both similar and highly nonsimilar 

flows. The basic approach being followed is simple in concept; that is, 

obtain highly accurate boundary-layer solutions using the present solu­

tion technique for the test conditions under which the experimental 

data were obtained. However, while simple in concept the process is 

quite lengthy since care must be exercised in the selection -ofthe 



149
 

test cases. It is important that only well-documented data be studied 

in which the local test conditions as well as the test environment are 

carefully reported. This represents a problem in itself since in,much
 

of the currently existing transition data no attempt was made by the 

experimenter to measure the basic characteristics of the test facility 

in which the data were obtained (test environment). The eventual goal 

of this study is to obtain not only more transition correlations but 

also more insight into the actual transition process. 



X. DISCUSSIONAND CONCLUSIONS
 

A system of equations which describe the laminar, transitional, 

and turbulent compressible boundary layers for either planar or axi­

symmetric flows as well as a numerical method by which the system can 

be accurately,solved has been presented. 

The transitional boundary layer structure was developed frem the 

point of view of the statistical production and growth of turbulent 

spots. The passage of these spots over points on the surface results
 

in an alteration of laminar and fully developed turbulent flow. These 

alternations are described by an intermittency factor which represents 

the fraction of time any point spends in turbulent flow, or the prob­

ability at any given instant of time that a specific point will be 

engulfed in a turbulent spot. The intermittency factor was used to 

modify the turbulent transport models developed for fully turbulent 

flow. 

Stability theory and its relation to experimental transition has 

been briefly reviewed. Experimental transition data were discussed 

and methods were suggested that should allow reasonable estimates to 

be made for the most probable location of transition and the extent of 

the transitional flow region. The primary objective of the present 

paper was to present a system of equations aud a solution technique 

with which the boundary-layer characteristics could be obtained regard­

less of whether the flow was laminar, transitional, "or turbulent., 

Consequently, it was necessary to discuss, in some detail the
 
4 

15Q
 



151
 

transition problem since the location of transition for a particular 

flow geometry must be either specified from experimental data or calcu­

lated from some correlation equation. A complete treatment of the 

transition problem would be a study in itself that would require many 

years to complete. The treatment of the transitional flow structure, 

as used in the analysis, is not exact in the sense of obtaining a sys­

tem of time-dependent equations from the full Navier-Stokes system,
 

but is instead based upon existing experimental data. A thorough treat­

ment of the transition location and the transitional flow structure 

still remains as one of the major unsolved problem areas in fluid 

mechanics. However3 the method as presented herein does provide
 

accurate predictions of the mean flow profiles and wall values of heat 

transfer and ,skin friction in the transition region. To the best .of 

the author's knowledge, this represents the first time this procedure 

has been incorporated into a solution technique for the complete non­

similar boundary-layer equations. . 

The turbulent boundary layer was treated by a two-layer concept 

withappropriate eddy viscosity models being developed for each lpyer
 

to replace the Reynolds -stress terms in the mean turbulent boundary­

layer equations. A specifiable static turbulent Prandtl number was 

used to replace the turbulent heat flux term. A constant turbulent 

static Prandtl number was utilized. However. any model'could be
 

directly employed once developed from experimental data. 

The numerical method used to solve the generalized system of 

equations is a three-point implicit difference scheme for variable 



152
 

grid-point spacing in both spatial coordinates. 'The method is self­

starting; that is, it requires no experimental data input. The method
 

has been found to be highly efficient with regard to flexibility, 

digital computer processing time, and accuracy. The method is 

inherently stable; that is, no constraint is placed on the grid-point
 

spacing by a step size stability parameter such as in the case of 

explicit finite difference schemes. However,, the grid-point 'spacing 

is restricted by the maximum truncation error that can be accepted for 

a given test case. To the best of the author's knowledge, this repre­

sents the first time this particular solution 'techniquehas been
 

applied to transitional and turbulent boundary-layer flows. 

A number of test cases have been presented and compared with 

experimental data for supersonic and hypersonic flows over planar and 

axisynmetric geometries. These test cases have included laminar, 

transitional, and turbulent boundary-layer flows'with both favorable 

and mild adverse pressure gradient histories as well as a case of 

highly adverse pressure gradient flow. Mass injection at the wall and 

transverse curvature effects were also considered. The agreement 

between the numerical results and the experimental data was very good 

for all of the test cases considered with the exception of the case for 

high adverse pressure gradient turbulent flow. The agreement for this 

particular case was fair; however much more work needs to be done in 

this particular area. In particular for adverse pressure gradient 

flows approaching separation, the normal momentum equation must be 

included in the governing system of equations. There is also a current 
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need tor well-documented experimental data for transitional and turbu­

lent boundary-layer flows with pressure gradient hi-stories. These data
 

are needed to develop mixing length and eddy viscosity models for
 

pressure gradient flows. One of the more important parameters that
 

should be measured is the intermittency as a function of both spatial
 

coordinates. One of the main advantages of the present numerical
 

method is the conceptual simplicity that can be utilized in the formu­

lation of the turbulent flux terms. (This advantage would be true for
 

all implicit finite difference techniques.) This advantage allows the
 

use of "numerical experimentation" through which mixing length and
 

eddy viscositymodels may be efficiently studied in relation to experi­

mental data. Through this "numerical experimentation" procedure the
 

knoWledge of basic turbulent mechanisms could ultimately be improved.
 

However, well-documented data must be available for this process to be
 

successful.
 

In concluding, ithas been shown that the system of equations
 

presented herein and tha solution technique by which they are solved
 

can be used to obtain accurate solutions for laminar, transitional,
 

and turbulent compressible -bouhdary-laydr flows.
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XTII. APPENDDC 

Equations (8.29.) and (8.30) are the difference equations used to
 

represent the partial differential equations for the conservation of
 

momentunm and energy, respectively. These equations are repeated for
 

convenience as follows:
 

AlnFm+ln. 1 + BlnFm+ln + ClrFm+l,n+i + Dlnem+ln_1 

+ Elnem+l n + Flnom+ln+i = Gln (A-1) 

A2n+ln-+ BnFm+l° + C2] +ln+l + D2n r+l,n-i 

+ E2ne+ l1 n + F2n®m+ln.= G2n (A-2) 

These equations are obtained from equations (7-.39) and (7,40) and the 

difference quotients presented in Section 8.1.'2. The coefficients Aln 

Bln, etc., in equations (A-i) and (A-2) are functions of quantities 

evaluated at stations m and m-i (see fig. 9) and- are therefore 

known. These coefficients are as follows: 

-B A, = YH 3 - YHI +, (A-3) 
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Dl = -Y6HFy (A-6) 

= Yn 

Y6 

Dl n + H 6 
(A-7) 

Fn- YY6 l n (A-8) 

Gn=H 2 ,4yFy (A-9) 

A2 n -2Y6 HeF (A-10) 

B% -- An 
Y6 

(A-n) 

cn -Y-4 A% 
y6 

• (A-12) 

D2 -Y3Ho Y6H2 (A-13 

E21 -XH - Y2­1 0 -Y 5 1 2  (A-14) 

F2 110Y~l + Y0I1 2 (A-15) 
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and 

G2n=H1TM + H8 (FY )2 + H9 (TyZ) 2 (A-.16) 

... 6 X 1 ,...,X

the grid-point spacing and are defined in equations (8.15) to (8.20) 

and (8.7) to (8.11), respectively. The coefficients H1, H2, etc., 

The coefficients Y1,Y2 ,XY 5 , etc., are functions of 

are defined as follows:
 

H1 = m+~lrnlH = F (FT) (A17) 

)H2 Vml - Lm(EmA + ELm (A-18) 

H3 = hEmiIm (A-19) 

H4 H3 (A-2O)
 

H =g F+ (A-a) 
5 mn+l Jl 

=-m+ (A-22)
H6 1 

H7 V Ll( lC' V (A-23)- +EC ) 
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H9= -E L' -( 
H9 =EmL;mlml (A-25) 

H10 =H9 1%]-
1L 

(A-26) 

and 

are 

11 = 2 'HhTY 

H1 2 = + 2H9 % 

The undefined quantities appearing in equations 

defined as follows: 

Frl = X4 Fm~n - X5Fm-ln 

(A-17) to 

(A-27) 

(A-28) 

(A-28) 

(A-29) 

TmI = xe ;n - XeM-~ n (A-30) 

Vml = X4Vm,n - XsVm-i,n (A-31) 

Fm2 = Xmn - X3Fml,n (A-32) 
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Tm2 X2"m,n -x38m_ °n (A-33)
 

1 + S 
\e/m+l (Air only) (A-34)
 

T
 
+ mml 

-_ e _ (Air only) (A-35 ) 

Atem+-1 

Em= (-av)m+ln (See'Section 8.1.7, eq. (8.37))" (A-36) 

(av)m+l,n (A-37> 
Eml­

= Y4Em,n+1 -Y5Gm,n - Y6EM,r._ (see .eq. '(8.i14) (A-3&) 

Yhmn+l " Y5 m,n - Y6Gm,n-1 (A-39) 

F: Y4Fn+± - Y5m,n - Y6 Fx, n-1 (A-41)
 

e,n-l A-1TY4"mn~l- y58m,n 6 n 
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m+m+1 (See eqs. (7.41)) -(A-42) 

and 

M+1 eTem+l 
= 2 mje (A-43) 

The transverse curvature terms are contained in the quantities 

Cm, and CL which appear explicitly in the H2 , H3 H7 ,. H8. and 

H9 coefficients. The transverse curvature term in the transformed 

plane (see eq. (7.43)) may be written as follows: 

0nj(W) 'I cos f r (-A 

t 2j  + 2(i (W , 2cse7 T (A-44) 
Peue o 

where t represents the ratio r/r and is a known quantity for theo 

N-i grid points at station m-1 and m. Then, the extrapolated values 

at m+ln are obtained as follows where the rarameter C is used to 

represent t2j: 

CM% =X4c n -XsCm-l n (A-45) 

'6C;l - 4 mn+l 5 m,n m,n-271 ~-6 

Two quantities (symbols) as of now remain undefined., 'These are 

FT and W which appear in equations (A-17') 'and (A-44), respectively. 

These are code symbols used in the digital progam. 'The code symbol W 
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appearing in equation (A-44) is used to either retain or neglect the 

transverse curvature terms for axisymmetric flows; that is, W = 1 or 0, 

respectively. For planar flows,, the transverse curvature term does not 

appear since j equals 0. 

The code symbol FT (flow type) appearing in equation (A-17) is
 

used to either retain or neglect the nonsimilar terms in the -governing 

differential equations; that is, FT-= I or 0, respectiyely. If' FT 

is assigned a value of unity, the solution to the nonsimilar equations ­

(eqs. (7.38) to (7.40)) is obtained. If PT isassigned a valie of 

zero, the locally similar solution is obtained; that is, the following ­

system of equations are solved. 

Continuity
 

+ F 0 (A-47) 

Momentum 

e 2 I) gF - ,(t (A-46) 

'Energy 

vt2'-.: #(2j 2.2" ca 2j (A_49)E -oI) 

The governing equations for the locally similar system axe 

obtained from equations (7.38) to (7.40) by neglecting derivatives of 

the dependent variables F, 8, and V with respect to the streamwise 
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coordinate, . The capability of obtaining locally similar solutions 

is desirable in that for a given test case the locally similar and 

complete nonsimilar solutions can be obtained for the identical pro­

gram inputs and numerical procedures. Consequently, the effects of 

the nonsimilar terms on the boundary layer characteristics can be 

determined by direct comparison of the results. 




