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ABSTBAQT
A system of equations descriﬁiné the iéminar, t;apsitional; and
o A A .

; turbulene compressible bouhdary iayepe for eitﬁer p}anar~o£ axifyﬁmetiic
flows together with a numerical meehed by which %he*éys%ém can be ' =
accurately solved is presented. Staeility‘theofy and its relaeicn to
transition is discussed, and methods are presented.with which reasonable
estimates may be made of the location of transition and the extent of
the transitional flow region. These methods are used in the numerical .
procedure to connect the three separate boundary layer regimes into one
continuous region described by one eystem of governing equations. The
transitional boundary layer structure is developed from a consideration
of the statistical producétion of turbulent spots. ~ The fully developed
turbulent region is treated by replacing the Reynolds stress terms with
an eddy viscosity model. A epecifiable turbulent Prandtl number is used
to relate the turbulent flux of heat to the eddy viscosity.

The numerical method used to solve the system of equations is a
three-point implicit finite-difference scheme for varigble grid-point

spacing in both spatial coordinates. The method is self starting; that

is, it reguires no experimental data input, and is highly efficient. with



regards to flexibility, computer preocessing tige, and accuracy. The
method is inherently stable; no consbtraint is placed on the system by
a grid-point spacing stability parameter. To the author's knowledge
this representé the first time this particular numerical procedure has
been applied to transitional and fully turbulent boundary layer f£lows
as well as the first time the transitibﬁal flow structure bhas been
included in‘ sucﬁ a procedure.

Numerous test cases are presented and the results are.compz:ared'with
experimental data for supersonic and hypersonic flows. These test cases
include flows with both favorable and adverse pressure gradient histories,
mass flux abt the wall, and transverse curvature. The results clearly
indicate that the system of equations and the numerical procedure by
which they are solved can be used to accurately predict the character-
istics of laminar, transitional, and ‘-::urbulent .compreésible-boundary—

layer flows.
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VI. INTRODUCTLION

The boundary layer concept first introduced by Prandtl (ref. I)
in 190k divides the flow field over an arbitrary surface into two
distinct reglons; an inviscid outer region in which solutions to the
Euler equations describe the flow field characteristics, and a viscous
inner region where the classicalfboundaryalayer equations are valid.
The boundary-layexr region may be furfher divided into three categories;

. ' : .
namely, laminar, transitional, and turbulent.
The lamiﬁar ‘boundary layer has recei&ed considerahle attention

over the past 60 years,'eépecially over the past decade with the

increased availability of high-speed digital computers. EFarly solutions

! :

of the boundary layer equations were obtéined for incompressible, zero

' e

% - . ) . :
pressure gradient, adiabatic flows. These solutions were generally

AP * .

obtained by series expansion teclmiques an@ were eiegant in formulation,
but time-~consuming te obtéin} hoﬁeier, th?y'did yield valuable information
for extrapolation to more complex flow systems. The addition of pressure
gradients into the prcoblem required the use of numerical technigues which
were impractical without high-speed digital compuﬁer‘systems. This ‘
difficulty led to the development of momentum integral approaches in
which the actual boundary layer eguatlons were not satisfied at each
point across the viscous reglon, but instead were .satisfied only in the
average. Reviews of these early methodé are given in references 2, 3,

and k.



Ag T1light speéds Increased, it became: necessary to include the.
eTfects of compressibility. The inqlusioﬁ of compressibility coupled
the momentum and energy eqhations ahd resulted i£ a formiﬁable system
of five eguations, three of which (the cogéeryatién of mass, momentum,
and energy) were nonlinear partial &ifferential edhations. The

reguirement of simultanecus solution of this system preﬁented any

complete numerical solubions from being obtained until the advent of

M .

early digital compuﬁer:sySte@s. Tﬁere.thén appesared a nﬁmber'of similar
and so-called local similé;ity.solut;éns.{.A:review of these methods
énd‘solutions is presentéd in fef;rence 5.- Figélkyz iﬁ the early part
of the past decade the complete,néﬁsimilar laminar equations for the
éompressible, nenadiabatic boundary‘layer‘were golved to a high degree
of accuracy by finite difference techniques (see Blottner, ref. 6).

One of the earliest observations made by students of fluiﬁ:pechanics
was that, in general, a turbulent or random-like state of mobion was the
most natural state of fluid flow. 0. Reynolds (wef. 7) in his now
classical study of pipe flow observed that at some value of the parameter
Uﬁ/v, where U, d, and v represent the mean velocity of the flow,
the diameter of the pipe, and the kinematic wviscosity, respsctively,
the laminar flow degenerated to a turbulent state in which the molecular
viscosity became of secondary importence in relatién to the kinematics
of the.flow. Early investigations of éurbulent flow categorically
divided nonlaminar flow inbo two regions; transitional and turbulent.

Transition, and the #bility to aceurately prediet its location

on an arbitrary surface has been the object of intensive analytical



5

and experimental reséarch,for many years. ., A complete understanding of
the transition process as well as the ability to predict its location
for general flow configuretions has not yet been achieved. Hoﬁever,
the effects of basic flow parameters on transition bhave been studied

in detail. The flow within the transition reglon, which ig basically
nonlinear in character is neither fully laminar nor fully turbulént ﬁut.
a combination of both. The detailed mean flow within the transition
region itself has not. been studied as extensively as the location of
transition and the characteristics of the eventual fully developed
turbulent boundary layer. Consequently, little if any effort has been
specifically directed towards the probleﬁ of developing a suitable
system of equations that Would'describe_the mean characteristics of
transitional flow. There have been a few experiments in which the mean
profiles were measured éé well as some where the intermitient character
of tﬁe flow was studied, but more detailed work is still required.
Theré=have, of course, been many experimental tests at high speeds in
which the heat fransfer at the wall has been measured, but this describes
little if anything of the flow s@ructure away frqm.the wall. Savulescu
(ref. 8) has recently presented one of the first thorough reviews of
transition phenomena. Morkovin (ref]f?) recently completed the most

current and exteqsivenreyiew of modern stability theory and experimental

' - -

hypersonic transition. The characteristics of transitional boundary

! LI o

layers for low speed incompressible f£low as well as compressible flow
4 L ' 'k‘l w
(ref. 10) has recéived some attention. These results at least allow

Fl

-workable models of the mean flow structure in the transition region to



be fgrmulated and applied tentatively $o compressible flow systems.

It appears that at %he present time it is not possible ﬁo obtain
completely general solutions for transitional flow. However, it is-
possible to develop models for the mean flow from existing data ;n the
intermittency distributions which represents in a broad sense the
statistical distribution of turbulence intensities.

Compressible turbulent boundary-layer flows have receivéd qucﬁ
atteﬁtion over the past decade because of the vital need of being able
to accurately predict heat transfer and skin friction for high performance -
aerospace vehicles. However, most of the work has been experimental with
the main cbjective directed towards developing empirical or semiempirical
correlation technigues. Little if any effort was devotéd to obtaining
numerical solutions of tge:equations for turbulent boundary layers until
a few years ago. The priﬂc%pal difficulties were associated with the
modeling of the turbulgnt’transfort terms as well as techniques for
obtaining solutioﬁ; oﬁ éxistipé,digital:coﬁputer systems. Even today

because of the limited understanding of these turbulent transport

5
N -

processes, coﬁpietely-genéral soluticns of the mean turbulent boundary
layer equations are ‘not possible. waever,.bylmodeling the turbulent
1 - ) i | '

¥

transport terms thﬁéugh éddy Visdgsity df mixing'length concepbs it is
possible to solve the gystem of,géﬁations diiéctly. Reviews of recent
analytical advances are contéined iﬁ references 1) and 12 for
incompressible fiow and references 13 and ;4 for compressible flows.

‘ The purpose for the present thesis is to present a system of

equations describing the laminar, transitional, and turbulent ccmpressiblie
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boundary layers and a solution teéhnigue with Fhich the system may be
accurately éblved fér either plaqaf'or,aﬁisymmetric perfect gas flows.
The solution techﬁique has,Been’f?uhd foryield accurate results feor
compressibie’laﬁ&nér} Sransitional, and fuli;'develoPed turbulent
boundary lqﬁprs with ﬁ;éssu?é g‘;::'aad_.:’Le‘-nts.J heat transfer, and mass
transfer at‘thetwall. Tie solution techqiqne utiliz;s 3-point implicit
difference rela%iqné and the'metﬁgd firsﬁ‘developed by Flugge-Lotz and
Blottper (ref. 15) and later impfo%ed ufbp‘by Davis and Flugge-Lotz
{ref. 16) to solve the difference equations. The equations are solved
in tﬁe transformed plane. Transverse curvature terms are retained,

and variasble entropy effects may be included. The transition region is
modeled by utilizing an intermittency distribution which describes the
statistical distribution of turbulent spots and modifies the models of
the turbulent transport processes. The turbulent region is treaté&

by solving the mean turbulent boundary layer eguations in which the
Reynolds stress terms are replaced by an eddy viscoslty model, and a
specifiable turbulent Prandtl number function relates the turbulentn
flux of heat to the eddy viscosity. The eddy viscosity model is basgd

upon existing experimental data.



VII. MATHEMATICAL DESCRIPTION OF THE EQUATIONS FOR THE LAMTNAR,

TRANSITIONAL, AND'TURBULENT COMPRESSTBLE

BOUNDARY TLAYER

In this- chapter %he‘goeerning eéuationszfor the compressible
boundary layer together w1th the requlred boundary conditions are
] presented. Spe01al attentlon As devoted to the eddy viscosity and eddy
conductivity models used o represent the apparént turbulent shear and
heat flux terms appearlng in-the mean turbulent boundary-layer equations.
Boundary layer st&blllty, tran51t10n, and tran51t10nal region £low

1

structure are aISO'dlscussed.
. :

7.1 The System of’Partisl Differential Equations

T.l.l Geometry and Nobation

The orthogonal coordinate system chosen for the present analysis
. is presented in figure 1. The boundary layer coordinate system is
‘denoted by x¥ and y¥ which a;e tangent to and normal to the surface,
respeetﬂvely.'JThe origin of both the boundary layer cocrdinate system,
(x*,y%) and the body coordipateksfstem,- (z%,1%) 18 located at the‘
stagnation point for blunt body flows as shown in figure 1, or at the
leading edge for sharp-tipped cones or planar surfaces. The velocity
eomponents u¥ and v¥ are oriented in the x* and y¥* direction,
respectively. Transverse curvature terms are retained because of their
importance in the development of boundary-layer flows over slender bodies
of revolution ﬁhere the boundary-layer thickness may become of the order
of the body radius, rg. A discussion of transverse curvature and its

6
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effect on tpe resulting' boundary  layer characteristics is presensed

by Lewis (ref. 17). The radial coordinate, r* represents the true
radial distance from the centerline of the body to a given point (x¥,y¥)
in the foundary layer. The angle § is the angle between the z% axis
and local tangent evaluated at (x%,0). The coerdinates (xg;i,o) and
(xﬁ;f,o) represent the location at which transition is initiated and

completed, respectively.

T.1.2 Differential Equations

The flow of a compressible, viscous, heat conducting fluid is
mathematically described by the continuity, Navier-Stokes, and energy
equations tegether with an equation of state, a heat’ conductivity law,
and a viscosity law. For flows at large ﬁeynolds"numbers, Prandtl
(ref. 1) has shown that the Navier-Stokes and energy equations can be
simplified to a form now recoénized as the classicai'boundary layer

equations. These -eguations may be written as follows (see ref. 2):.

Continuity
. 5 ; o 5 j.
g -~ (x*'p¥*u*) f’g;; (r*p¥*v¥) =0 (7.1)
Moméntum

A ) f : T N _ <




Shock wave-

1 =

T+ Transitional TS~ :
N 5 _ - ; . el ; 1
1 : ' ' =

e
el
oy

Figure l.- Coordinate systefu and nobtabion.



Energy

3 : S g dp*

% u% * » O %) = px =%
0‘[“ pert SR .ay*(cféTﬂ "
r*f)K* 2
- 1 B(C*T*)' +u*(8u*)
pxd OF* GS Jy* P )

Jy*

(7.3)

Osborn Reynolds {ref. T) in 1883 was the first to observe and
study the phencmena of transition from laminar to turbulent flow. In
his theoretical studies of turbulence (ref. 18) he assumed that the
instantaneous £luwid velocity :at a pbi:nt ;:ould be' sepa;gted into a mean
and a fluctuating ucompo‘nent. The lre'sulj; of hii‘:‘, éarly work was a set
.of mean turbulent boundary. layer equa‘tions." This systgn’:x of equations

. 4
can be written as Pollows (see ref: 19): C .

.\ ' *
' f .

Continuity R e .
ko b - N . -
v ! ’ I!;
NSO TVRDENRNRIR- T O JUW SV <Ly LY
—(r* —— # + =0 . .
Bx*(r prX) + By*r pr{v el 0 (7-4)
¥ .
Momentum ! * . ,'%
¥
ap
* * V¥t
p*.u*_a..u_-f- v*+p v au*,z.-
ox¥x p¥ ay* Adx¥
- .
+ —-—-—l. -—-—-,a r*‘j u*,a___u* - p¥¥tyk! ’
‘r*J oy * oy*

{7.5) .
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Energy

p*'v%;-“ a

p¥|ux -alz—-*('cgm "+ (v* * ay* CW*)

: : ’ 2:
. gp* 33K

=u_%*p‘-i-':L 0 it a(cxm{) +}_L-:e

ax¥* .yl By* C* Oy *

: 1 9 = ou#*

= m«[*‘“ CW*'T*’)] A
(7:6)

&he mean turbulent eéuéﬁions are identical to those for the
laminar boundary layer (eags. (7.1) to (7.3)) with the exception of the
correlations of turbulent fluctuating quantities which. are the apparent
mass, shear, and heat flux terms caused by 'bh.e action of ‘burbulence‘.

The‘main prdblem‘of calculating turbulent £flows from this set
of -equations is concerned with how to relate thESé turbulent correlations

to the ‘mean flow and thereby obtain a closed system of eguations. In

the present analysis, the apparent mass flux term, p#*'v*', the apparent
shear stress term, p¥% R (Reynolds stress term) and the appareﬁt
heat flux term, Cg p*-§¥35¥7 are modeled or represented by a new
veloclty component, ?*} an eddy viscoslity €%, and an eddy conductivity
K§} respectively.

A new velocity component normal to the surface is_defined as

follows:

—~ ¥kt
vH = X 4 pE v (7_'.7)
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The eddy viscoslty is defined as

u*"v*'
e = - (7.8)
Su*/dy*
and the eddy conductivity as . Lo o
oo : ¥ U
1 * v vUT
¢ Kp o= - 0F pR (7.9)
. T P, aT*/ay*

Cy

The static 'tur'bhlent Prandtl number is:defipgé as, follows:
C S L

u*'v*’ T* /Sy %

TRIDRT (au* /By*)

. s

¥

. . lbO% (7-10)

Equation (7.10) can then be expressed in terms of equations (7.8) and
(7.9) as

* %

O = = (7.11)
kg

The: eddy viscosity model used in the present znalysis is discussed in
Section T.l. ‘ ‘

‘ In terms of equations (7.7) through (7.11) the governing
differential equations may be written as follows:

Continuity

o) + Le(eeloiiny =0 (7.12)
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Momentum

dur |~ Ouxy  GP¥ 1 3y f 5 = dux ‘
p*(l-l'* e .ay*> T o 8y*<r* T

Energy
e : ~ 0 i _ ap#* —{du 2
p*[u* a—x-;(c:'gf*) -+ TFE é“ﬁ(C%T*{] = u¥ a—x*- + ]J.*E('ay—::)
1 2 [rdura 3. '
. CHT*) |
o] oy o oy* P :

(7-1k)

-+

~

The terms & and € appearing in -equations {7.13) and (7.1%) are

defined as follows:

—_ e* .
e = (1 + " ) ' (7.15)
and ¢’
c=1+£9p (7.16)
« u* o't ‘ . b .
, P '

respectively.
Th%:function, I', appearing in eqpatiéﬁq (7-15) and (T.lﬁ)

represents gﬁe,streamyise intérﬁipﬁencyxdistriﬁuiion in the transitional

region of ‘the bouﬁdary layer: 5 igssunes a val;e of zero in the laminar

region of the'boundary layer.snd a value of unity in the fully turbulent

boundary layer. The variation of TI' within the transitional region of
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the boundary layer depends upon,the statlstlcal growth and distribution

of turbulent spots. The 1nterm1ttency functlon 15 dlscussed in

- H
. l‘l N

Section T.5.3. L " ;
ih order to complete the system of equations the perfect gas lawy
and Sutherlands viscoslty relation are introduced.

Gas Law

P* = czg(y - )p**r* - (7.17)

Viscosity Law

3/2 , *
¥ (TT* ) . (T 1+ S*/Tref ) (air only) (7.18)

* %/ % fme
uref ref /Tref + 5 /Tref

The sy%tem of governing eugations then consists of three nonlinear
partial differential equations and two algebraic relations. Two of
these differential equations (egs. (7.13) and (7.14)) are second order
while the remaining differential equation (7.12) is first order. |
Consequently, if suitablénrelations for E*, o4 and T caq'be specifiea
there are Pive unknowns; namely, u*, V%, p¥, T¥, and p* and five
eguations.

The pressure gradient term appearing in equations (7.13) and

(7.;&) is replaced by the Bernoulli relation; namely

dp* dul
— = - pru¥ —2 (7-19)
dx% 2 € gyw
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which is determined from an inviscid solution. IT variable entropy
1s considered (see Section 7.9) dp¥/dx” is retained in equations (7.13)
and (7.1k).

T.1.3 Boundary Conditions

In order to obtain a unigue solution to the system of governing
equations it is necessary to satisfy the particular boundary conditions
of the problem under consideration. These conditions are shown

schematically in figure 2.

U*(x*lye*) = Ue*(x*)

Ty =L 00 )/

Boundary - fayer region

W T & O B A QYO LR
I 1% % L% %
VXY )=% (y) V(X ,0) =V, (X))
. * % ® *
y=Tilyy ., T (x,0) =Tw (X'}

,Figure 2.~ Boundary conditions in the physital plane.

H
The velocmty,and temperature dlstributlon at the edge of the boundary

3

layer ate determlned from the shape of the body by using inviscid fiow
.oty :

theory and are dlscussed in Sectlon T.8.: The ro-slip condition is



15

imposed at the wall; however, arbitrary distributions of %3 and Qﬁ
may be specified.

The parabolic nature of equations (7.13) and (7.14) requires
that the initlal velocity and temperature profiles be specified at xf.
Thege initial profiles are obtained in the present investigation Trom
either an exact numérical solution of the similar boundery layer

equations or from experimental data and are discussed in Section §.1.5.

7.2 The System of Non-Dimensional Egquations

T.2.1 Non-Dimensional Variables

The non-dimensional variables chosen for the present analysis
are defined as follows:

Dependent Variables

.

u'= u*/u* A
ref
¥‘=‘¥*/u§éf .
P e lle) (7.200)
o =% PEer
T = TH/TE
b= pdfut )
Independent Variables
x = xf/L*
y = y*/L* (7.200)
T = r*ﬁL*
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The reference values of density and velocitylused in equations (7.20)
are Laken to be those of the free stream, the reference temperature

is taken to be dﬁgf/Cp*, and the reference viscos%ty is the value of
the molecular viscosity evaluated from the Subherland law at the
reference temperature. The reference length {characteristic length)
I* may be taken as thé nose radiuvs, for example, in the case of a
spherically blunted body or as any unit length for planar flows. (See
equations {7.125) to (7.128).)

T.2.2 an-Dimensional Go;erning Equations

J

The non—dlmen51onal eqnatlons are obtained by substltutlng

equations (7.20) into eqpatlons (T 12), (T 13), and (7.1%) and are as,

"follows:

Continuity
Cy ' T . -
‘ v 923l v Orpds =0 . .21
ax(r p?) + s;ﬁr ov) = 0 . (7.21)
Mbmgntum
Su . odu) s oap. 1|1 -]
Energy

ST | .. o7\ ap 1 au2 1 9 € o7 :
pju — + v —| =u =+ Lel—] + rd BE &= 7.25
fRer ez e 32022 o

The parameter Rpop appearing in equations (7.21), (7.22), and (7.23)

is a reference Reynolds number defined as
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T
Preflresl
Brep = ——5%—— (7.24) -
Href

i
7.2.3 The Stretched Coordinate System

In order to remove the reference Reynolds number from the governing
[ -

non-dimensional equations as well as stretch the coordinate normal to
the wall a new independent varisble, Y, is defined; that is

L Y=yl T (7.25)

i

A new velocity, component is also defined by the relation

' 1 : ) V+ - z (7-26)
& ' N w
where the parameter « is defined as fo]:l.o;q;s:
C -1/2’
o = (Reap) / (7.27)

The non-dimensional governing equations then become in terms of

the stretched variables

Continuity

| _a(rjpu) -+ _é(rj DV+) =0 (7.28)

ox oY
Momentum
3 43\ a1 35 _du
* — — = o ——— — — — ' ;2
pél & BY)‘ ax bz(r he BY) (7:29)

Energy
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The equation of state {eq. (7.17)) and the viscosity law (eq. (7.18))
may be expressed as follows: ‘

Equatiqn of Shate

P = (7 - l)‘DT (7.31)
Y
Viscogity Law
w =/ g(ﬂ) (air only) . (7.32)
T+ 8

vhere § = S*/T?éf.
The boundary conditions for the system of equations in. the

stretched, non-dimensional plane are presented in figure 3.

u(x,Ye) = ue(‘x)}
T, Y) = Talx) ]

Boundary-iayer region

au(xi,\}) = U (Y)
< VX, Y) = vi(Y)
LUT(x;,Y) =T(Y)

/ fu(x,0) =0
v¥(x,0) = vw(x)

T{x,0) = Ty(x)

Figure 3.~ Boundary conditions in the stretched plane?
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7.3 The System .of Transformed Eguations

The system of governing equations is singular at x = 0. The
Probstein-Elliot (ref. 20) and Levy-Lees (ref. 21) transformation can be
utilized tc remove this singularity as well as control the growth of
the boundary layer as the solubtlon proceeds ﬂownstream: In reference 16,
Davis and Fliigge-Lotz obtained soiutions to the laminar boundary layer
eguations in the real plane for axisymmetric flows. However, the
solutions were obtained for only a few nose radii downstream of the
stagnation point and the boundary layér growth problem was not serious.
1T solutions are required ﬁa.ny nose radil downstream, say on the order
of 1,000, then the ‘boundary layer growth can csuse problems if the
solution is obtained in the physical plane unless provisions. are made
Tor checking and adding additional grid-point when required.

The transformation utilized can be written as follows:

¥

x o3 . _
) = | eguguartax - (1.339)
o] - .
Ual ; ) o
(1) = 2 \/":‘0 f : (7.35D)

'
L

»
’

where the parameter G - appearing in eguation (7-33b) is the transverse.

curvature term and is defined as

t =1+ -E tos @ (7—3”)

0
¥
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The relation between derivatives in the cld (x,Y) ané new (&,q)

coordinate systems are as follows:

-
o\ _ .23 o on\f o
(S;{')Y = peue[-lero ("a‘g’) + ('a_x-)(g;)g
o > (7.35)
(_a) _ 9_11_32;_&)(_@
Ny N\ -("e ’a")g )

Two new parameters, F and @ are introduced and are defined as

F =ufu,
(7.36)
@ = T/7,
ag well as a transformed normal velocity
~T |
. F@_Z) (7.5
Paliehe 0|

The governing eduations in the transformed plane can be expressed

as follows:

Lontimuity
N oot Eip=g (7.38)
Momentuam

BF aF a 2:' _ aF ,2‘ 'l i £ } L
2F — + V — = —[t"Y1E |+ B(F"'-9) = 0O -39
3 o bn(,, € bn) B(. ) .'(7 )
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Energy

' N . 2
2er 2 4y .a% - ..96-,23 .}; e @) - a,ztEJE(a—F) =0 (7.%0)

of o on on o
vhere
N
1 = (pu)/(pu),
o = ug/Te > (7.41)

_ ﬁ(due)
Ug \ dE w,
The parameter 1 can be written by using the viscosity relabtion

(eq. (7.32)) and the equation of state (eq. .(7.31):) as.

= \{?(l + g) ('air only) (7.%2)

e +

where §.= S [Pe.

The transverse curvature term can be expressed in terms of the

=

transformed variables as " ol

I3

¥

IO S 2 ,
v =‘i‘é_+2m 2t COS¢ . -p—e-d'f]>' Y o (7-”‘5)

Pele | o. 1P

: . P
where the ¥ sign in equation (7.43) is required in order to cbitain

[}

solutions for axisymmetric boundary layer flows over a body or inside

a duct (nozzie), respectively.
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The physicalicoordinate normal to the wall in the stretched real

plane is obtained from the inverse transformation; namely

' Fe1/d):
Y‘ To 1+ l+2\/2§wcos¢‘f"'l®d' /
- - r — ) T]‘
o cos @ DéuergJ °

(7.‘154)

The selection of the correct sign in’ebﬁ%%ion (7;44) is m;de on'tﬁe basis
of + for axisymmetric flow over bodieglof ?evolution and - for %léw
inside of axisymmetric dvcts (nozzles). |

The y-coordinate in the physical p}ane is obtained from
equations (7.25), (7.27), and (7.414); that is, y = o¥.

The boundary conditions in the transformed plane are as follows:

Wall Boundary

F(&,O) =0 )
v(£,0) =V, (&) (7.458)
8(£,0) = 8,(¢)

Edge Conditions

|
[

F(g:ﬂe) =

‘ (7-%5)
@(gsﬂe) =

|
=

The boundary condition at the wall fer the transformed V component can

be relsted to the physlcal plane as

v, - Vg?("‘”“) (7.56)




23

1

vhere the no-slip constraint has been impoded on equation (7.37). It
" Bl 4 :

should be noted that the apparent mass flux term appearing in

equations (7.4) and (7.5) is zero at the wall. Therefore equation (7.&65

can be expressed in terms of the physical mass flux at the wall as

: ot F
Vg = = E‘E) (7-47)
wterd\pdug

7.4 Bddy Viscosity and Eddy Conductivity Models

7.4.1 Physical Plane

The turbulent boundary layer can be treated as a composite layer
consisting of an imner and outer wegion as shown schemsatlcally in

figure 4. (See Bradshaw, reference 22.)

AY
Y ve )
Quter region
3 u
Inner region
I —""Viscous sublayer

_1

Figure 4.- Two~layer turbulent boundary-layer model.
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The thickness of the immer region ranges between 0.18 to 0.206.
The character of the flow depends primarily on the shear stress af the
wall, T, and the molecular viscosity, p. The mean velocity distri-
butién in this region responds quickly to changes in the wall conditions
since the turbulent eddy structure is small. The mean veloclty
distribubion is characteristically deseribed by the "law of the wall®

relation

L -
y'u
S gl(' ;) : (7.48)

The law of the wall relation was first derlved by Prandtl.(ref. 23)

+

I the wall is smooth the inner region will contaln a sublayer, usually

referred to in the lifterature aslgither the 'laminar sublayer or the

viscous sublayer, adjacent to the wall. . o oo

The viscous sublayer is very thin in rel@ti@n £6 the total
boundary-layer thickness. The thickness of the sublayer usually ranges
between 0.0015 to 0.018. The layer is highly viscoﬁs in character;
consequently, the mean velocity is a linear function of+ y. For the

viiscous sublayer, eguation (T.h8) can be written as

y iy
u :
E = ‘V* (7‘11'9)

The relative thinness of the viscous sublayer, and its importance in
determining the correct shear stress and heat flux at the wall requires
that very small grid-point spacing in the y~direction be utilized in

the wall region for the numerical procedure used in the present
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analysis. This particularly important point is discussed in
Section 8.1.
| The ouber region of the turbulent bowndary layer is very thick

in relation t& tﬁe wall region. It ranges in thickness from 0.85 to 0.95.
The flow in this region is basically independent of the molecular
Viscoéity, dependent upon the wall shear stress, and strongly affected

by boundary layer edge qonditions such as pressure gradients in the
_streamvise direction, dP/dx. The mean velocity dist?ibution for the

outer region is usuwally discribed by the velocity-defect law:

+

u - u, ¥ ’ ' ' ¥ »
= 92(1) L (7.50)

1

The basic argument leading to the Porm of the vglocityhdéfecf'law is
+ * ' :
that the reduction in veloecity, ﬂét-,u"at a distance ¥ .from!the wall '

is the result of a tangential stress:at the wall, indepgn@ent of how the

? . '

stress arises buﬁ‘dependent on the d%gtance tp which thé effect ﬁas
diffused from the wall. The flow in the outer ;égipnqéhows gimilarity
to wake flow, and the eddy structure is large scale in relation to the
inner region. Consequently, the response of the mean veloclty distri-
bution to changes in boundary conditions is quite slow. The eddy
viscosity model, then, must characterize these basic flow structures 1f

it is to yield accurate results. TFor additional discussion on the inner

and ouber regions see references 2 and 2k.
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Inner Region Model

The eddy viscosity medel used in the present analysis for the
) : C i [ . .
inner region is based on the mixing-length hypothesis as developed by

Prandtl {ref. 25) in 1925. The eddy viscosity for this region

referenced to the molecular viscosity may be exﬁfesseq as follows:

1
(5);;” -|%| ©(7.51)

where If the mixing length, may be writbten as

T =Ky : ©(7-52)

The value of Kj has been obtalned experimentally and has a value of
approximately 0.4, the vaiue which will be used in the present analysis.
However, Van Driest (ref. 26) concluded from an anslysis. based upon
experimental data and the second problem of Stokes (ref. 27) (sometimes
referred to as the Rayleigh problem, ref. 28) that the correct form Ffor

the mixing length in the viscous sublayer should be as follows:
T * *
1T = Kqy ;[l - exp(- %ﬂ (7.53)

where the exponential term is due teo the damping effect of the wall on
the turbulent fluctuations. The parameter A¥* is usually referred to
as the damping constant. The exponential term approaches zero at the

outer edge of the viscous sublayer so that the law of the wall region

equation, as expressed in equation (7.52) is valid. The damping
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constant AY is a strong function of the wall bounddry.conditions and

is defined as

-1/2 S
A*-26v*<—) L (sl

Equation (7.54) was originally obtained for incompressible, Zero
3 .
pressure gradient, solid wall flow, that im p é‘constant &ﬁ*f&x* =0

*

and v; = 0. The relation has, however, been applied to compressible
Tlows where p¥* and v¥ are evaluated locally across the sublayer, .
where p¥ 15 evaluabed locally and an average value of v* is utilized,
and where y¥* and- p¥ are both evaluated at the wall conditions. In
the present analysis the mixing length will be defined as follows
P 1/2
Vyr ¥,
1% = Kqy*{ 1 - exp|- — (7.55)
* *|
4 _ A
—%
.vwhere 'v  is the average value of the kinematic viscoslty taken over
the viscous sublayer. The density and viscosity appearing in
equation (7.54) will be evaluated locally. The eddy viscosity for the
inner region referenced to the molecular‘viscosity can then be written

as

2 *
ou

X .56
5 | (7.56)

. 2

/e p*KEY*S. v::: :y*
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where A% is defined im equation (7.54).
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Cebeei (ref. 29) has recently attempted to account for the effects
of both pressure gradient and mass injecticn or removal at the wall on
the damping constant. Cebeci begins with the two-dimensional x-momentum

equation written as

du* |~ rLapt, 1 3 [ xout
it TS T e T e o) (0

Cebeci then neglects the Reynolds stress term and astumes that in bhe

wall region equation (7.57) can be written as (5% = 0)

dr¥* ap* L o £ A
LM L S (7.58)
dy* ax¥* .
which becomes upon integration. %; B C : » N
. | e
- fap¥® o kﬂ o o '
T* =Tk + (Ex—;)y‘* U . - (75?)

Tt should be noted that for ?% =0 it is not necgsséfyjto neglect the
Reynolds stress term; that is, t* in eguation (7.59) could be replaced
with ﬂ;. ‘However, if' %ﬁ =-0 +the Reynolds stress term must be
neglected in the approach used by Cebeci. The wall shear stress term
T% appearing in eguatioﬁ (7.54) is then replaced by the local shear

such that a new definition for the damping coustant is obtained; that 1s

. * * ¥ .12
A* = 26.{)*(_2{_ + QI_)._ L) / (7-60)
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This approach is similar to that ‘followed by Patankar and Spaiding
P Y - ‘

(ref. 30) where they utilized the Iocil value of T* in eguation (7.54)

instead of the wall value, 7. ‘ .

The assumptions made by‘Cebe;i’iﬁ dbtaining:equation (7.605 are
not necessarily valid. FPFurthermore, as «previouély ‘mentioned , the flow
in the outer region of the turbulent boundary layer is predominately
affected by pressure gradients and not the flow in the law of the wall
region. -Consequently, the pressﬁre gradient correction to the damping
constant as obtained by Cebeci is of questicnable value and will not be
utllized in the present analysis.

The effect of massg flux at the wall has also been treated by
Bushnell and Beckwith (ref. 31) and Cebeci (xef. 29). Cebeci, for nen-

Zero v{?; expresses equation (7.57) as

e 3
* ¥ *
UM R S (7.61)
dy* ¥ - Ax¥

which can be integrated to yield

s ~ .
: Ve v¥ dp* Vi
T ST SXR Ty Y ¢ F @l B V7 - * (7.62)
W

BEquation (7.5%) can then be written as (where % has been replaced

with T%)

% ail ' fe
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Bushnell and Beckwith (ref. 31) studied the effect of wall mass
flux on the damping constant from experimental data for zero pressure-
gradient flow. These results agree well with equation (7.63) for zero
pressure-gradient flows; that is

-1/2
PP
A% = 26y%| X expl £ y% (7.64)
p¥ vE

Two -apparently conflicting ideas by the author of the preseﬁt
peper should now be discussed cencerning the development of Cebéci
(ref..29). First, it has been stated that equation (7,60)‘15 of
guestionable value for pressure gradlent flows. Secondly, it has been
stated by the author that equation (7.64) agrees well with experimental
values of A¥ for non-zero ?%- However, equations (7.60) and (T7.64)
were both obtained_from equation (7.57) by utilizing the same set of
assumptions. Conseguently, the question arises as 40 how can
equation (7.60) be of guestionable value, and equation (7.6L) be of value?
The answer lies not so much in the derivation but more so in the response
of the turbulent boundary layer to pressure gradients and changes in wall
boundary conditions. It is well known that pressp_ré gradients affect
the mean profiles mainly in the outer region, buﬁ‘equétiog (7.60) is
applied only in the inner region; in particular, only in thé viscous
sublayer. However, the mean profiles ?n ﬁhe inner.région are particularly
sensitive to wall boundary conditions Whibh'i§ preéigely where

equation (7.64) is applied.
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Quter Regien Model

The eddy viscosity in the outer region is based upon the Clauser
(ref. 32) model. The ratio of the eddy viscosity to the molecular

vigcosity can be expressed as follows:

pruk
(f) = X, B . (7.65)
pjo p* inc
where &% is the incompressible displacemeﬁt thickness defined as
inc
¥ .
yje
o =/ ° (- may i (7.66)
ine Yo .
The use of ag_ as the scaling parameter for the mixing length 1s

discussed by Maise and McDonald {(ref. 33). {See also, - Mbrkov1n, ref Bh )
The value of Ké in equation (7.65) is taken.to be q.OI68 as reported

in reference 35. However, in order to accoﬁnéffor.the in%erﬁitﬁent'
character of the outer layer flow equation (7. 65) wust ‘be. modified by,

an intermittency factor first obtained by Klebanoff (ref 36), that is

(e) Kg-p—i—afgmc o . {16y

where the transverse intermittency factor 7(y) is defined as

1 - erf[B(% - 0.78)]
7 = (7.68)

2
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Matching Procedure
The criteria used to determine the boundary between the inner and
outer regions is the conbinuity of eddy viscosity. A sketch of a typical

eddy viscosity distribution is presented in figure 5.

/—Outer law (eq. 7.69)

Inner low (eq. 7.69)'7
LY/

O

€
Figure 5.- Matching procedure for itwo-layer model.

The matching procedure may then be formally writtem as follows:

" “ 12 M2
250 *

g) _ PHEIY¥ | e g\ ¥ Sux 0 < gk Sev
Dot eHs) F o iSe 0SS

| L (1.69)
7 pRE X _ . ' - _
'E =—E5* ¥ . y*}y*
\i/o p%  Kine . n

G

The location of the boundary separating the two regions, y5 is determined

from the continuity of equations (7.69); that is, where

(5o = (5 (770
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Eddy Conductivity

LAY

In Section 7.1.2 the eddyiEoﬁductivity was formulgtéd in terme of
a static turbulent Prandtl number and‘theleddy viscosity (gee eqs. (79),
{7.10), and (7.11)). The two-layer model eddy viscosity relation
previously diécussed suggests that there should be two models for the
static turbulent Prandtl mumber, o,.. However, curfent experimental
data for oy are inconclusive. The incompressible data which are
available for the outer reg;on of pipe flows (rgf. 37) and boundary
layers (ref. 38) indicate that 04 has a value between 0.7 to 0.9.
These data indicate that as the wall is approached oy réaches a
maximum value near the wall and then drops off rapidly to a value
between 0.5 and 0.7 at the wall., For the case of compressible flow
there is %ery Iittle data available. For a Mach number of 5 it appears
that ¢ assumes a value‘very neaf unity in the outer regicn and
decreases to values on the order of 0.7 to 0.9 at the wall (ref. 39).
However, Rotta (ref. 40) found that oy may achleve values as high ag
2 as the wall is approached. Bushnell and Beckwith (ref. 31) corclude
that in the absence of bebiter data for turbulent Prandtl mubers, the
choice of the correct oy distribution with y/ﬁ mist depend upon
agreement between the calculated and experimental profiles and wall
fluxes. ‘In the present analysis the fturbulent Prandtl number will be
assumed constant with a value of 0.9 unless specifically sta%ed othérwise;
however, any obher value or functional relation%pip could just as easily

be used.



T.4.2 Transformed Plane

Since the governing equations are solved in the transformed plane
it is necessary to transform the eddy viscosity relations from the real
plane to the transformed plane.

Inner Region

In the inner region the ratic of eddy v;sgosify’td moieqular‘
viscosity 1s as follows ‘
' .
o B | e
(“‘)1_ ued)dg 1®5§ﬂ“|.

(7.71)

vhere Y is defined by equation (T7.44). The parameter II appearing

in equation (7.71) is the demping term and is defined as

I=1-exp(-T 1) (7.72)
where
W = E_—W((a:“) (7.73)
T \0®
and

1/2

Ipglig ®'perg3w F) (7.74)

IIE—26 1820, of 2 31—1-W
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Cuter Region

! .
In the outer region the ratlo of eddy viscosity to molecular

<

viscosity is as follows

(E) el e (7.75)
(/0 He of 182
where

_ 1 - erf 5(Y/ty - 0.78).

7 = - (7.76)

2
and
B, = f 57801 - May (.77
peuerg

7.5 The Transition' Region

Equations (7.38), (7.39), (7.40), and (7.42) together with the
boundary conditions (egs. (T7.45)), and the eddy viscosity relations
defined by equations (7.71l) and (7.75) complete the required system for
either laminar or fully developed turbulent boundéry layer flows.
However, the main objective of the present analyéis is to present a
technigue that will efficiently solve the laminar, transitionzl, or
turbulent boundary layer equations as the boundary-layer develops along
the surface. ‘Consequently, the location of transition X, 40 ‘the extent

of the transitional flow Xp.p - X 40 @nd the characteristics of the
2 2 .
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mean flow structure in the transition region must be taken into
censideratioﬁ.

The author in developing this section on transition flow'has
had to purposely omit many -excellent references because of the
massive bulk of information available. Ahnumber of the cited references
present extensive reviewé on the subject and sheould be conéulted Ffor
more informstion if required.

T.5.1 Btability and Transition

The stability of laminar shear flows and the evenbtual bLransition
from the Yaminar stabe to the tufbulent(state.of motion has probably
received as much concentrabed aliention as any other problem area‘
in flwid mechanics. The continuing intersst in this area of fluid
mechanics 1s due to the fundamental importénce of being able +to make
a realistic prediction of where and if transition will occur on a given
configuration in a ‘given environment. The influence of many parawmeters
vhich affect transition has been studied an&:documehted; however, after
nearly sixty years of research certradictions or pgradoxes gtili
remain unanswered even for\incompressiﬁle flows. Pioneers in transiticn
research were imﬁressed by %he three—diqgnsionality of ﬁurbuléﬁée and
di1d not seriously consider the possible role of any’two-dimenéional
amplificétion process such as~prédi%téd by ££e eénly stability work
{see ref. 2). This attitudé was understandable since the résults from
the Tollmien-Schlichting (hé;eaf£er referrédlto és 7-5) school of '
thought predicted an orderly vorticity pattern ;fhj_ch differed

drastically from the cbserved random three-dimensional vortielty
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components of transitional and turbulent boundary layer flows., The

-
4

problem was further complicated by the high'lével of: free-sfréam

‘turbulence that existed in the early wind tunnels whicﬁ apparently’
prevented the development of tﬁéxT—S'$ype émfligica@ion'précess.
Furthermore, due fto the limited amouhf of transition data and its
apparent agreement with Taylor's (ref. 41)‘local sepa&ation.criéeria

N Fd 1 .
there was no widespread acceptance of the T-S5 process until about 19k7.

The first indication that the T-8 amplificatioh:précess existed was
obtained by Schubauer and Skramstad {ref. 42) in their classical
experinental study of flat plate flow in the low free-stream :
turbulence tunnel of the National Bureau of .Standards.

The T-3 instability arises frem the viscous instability in the
laminar shear layer. TI% is a two-dimensional Wéve motion that
selectively amplifies disturbances over a band of unstsble frequencies.
c. C. Lin"(refs. 45 and 44) vas able to calculate with very good
agreement the results of the-Schﬁbauér-Skramstad expe¥iment. ¥lebanoff
and Tidstrom (ref. 15) were able to trace the growth of the unstable

.waves into the nonlinear region -of transition where the T-S approach
becomes invalld. They observed that when the velocity perturbation

due to the wave exceeded.épproximately 10 percent of the mean .speed the
nonlinear effects became important. Aﬁy further development of the
mean Tlow instability was then three-dimensional. In this region of the
transition process "peeks and valleys' form consisting of variations in
mean cross flow. The "peaks and valleys" eventually break down and form

turbulent "spots.™
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A turbulent spot is essentially an isolated region of turbulent
flow surrounded by an cotherwise laminar flow ;?ield. I'l: has.been estab-
lished that the flow within the spotyhas’ the same basic, chafa.c%éristics. :
as that oif a fully developed burbulent flow. The e‘xist:ance of";these
isolated spots of turbulence was f;T.r'st repori:ed‘by’Ennnons (ref. 46.)
in 1951 (see a.-lso ref. 47). ‘Kle'ba.noff, Schubanier , and.co-wor’kené's
(ref. 48) were the first to carefully study the shape of the spots and
their characteristics. They confirmed that the flow within a given
spot was turbulent in nature, that the spot propagated fthrough the
surrounding flow field, and that the spot grew in size as it was
convected downstream. The tra:élsi"oion process is completed by either,
or both, the transverse growth of sﬁots or cross~contamination a,nd‘the
creation or production of new spots at new transverse locations. When
the entire flow region at some streamwise location X5, f » 18 covered
by a turbulent flow structure the boundary layer is then said o be
fully turbul;ent.

The natural transition process by which a fully “d”eveloped* flow
structure is obtained may be categorically divided into six separate
stages. The first stagé, of course, is the laminar l;egion of the
boundary lg,yer. The second stage begins with the formation of two-
dimensional unstable waves arising from an instability in the laminar
layer. The third stage, which marks thc,a beginning of the nonlinearity,
is the formation of "peaks and valleys' or longitudinal streaks in the

mean velocity profiles. The fourth stage occurs with the breskdown
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of'one«or more of the low-speed st;eaks and the formation of 'spots”
of turbulence. The fifth stage consists of tﬁé growth of the spots
through cross contamination and the process of new spot creabion
(production}. The sixth and final stage in natural transition is then
fully developed turbulent layer. (See Kline, S.J., reference 49.)
Stability theory cannot currently be used to predict either the
nonlinear details of the transition process after the two-dimensional
waves have beenvaﬁplified or the location of transition, X, 4c
Stability theory can, however; esbablish which boundary layer profiles
are unstable and the initial amplification rates. The theory can
- identify those frequencies which will be amplified at the greatest rate
as well as. the effect on stability of various flow parameters. One of
the more important contributions of linear stability theory has been
to reveal how these flow parameters should be varied in order to delay
'transition, i.e., wall cooling, suction, etc. The Blasius profile was
studied by Tollmein (ref. 50) in 1929. The results of his work remained
unconfirmed experimentally until the classical experiments of Schubauer
and Skramstad im 1947 (ref. 12). Since the beginning of the past decade
the solution techniques utilized in stability theory have been greatly
modified by the availability of high-sﬁeed digital computer systenms.
Wow, instead of having to work many hours in o;der #q obtain a minimum
of results of questionable accuracy, the digital. computer can obtain
an immense quantity of highly accurate numerical results from the
governing system of equations. “A review of methods ﬁsed to predict the

[

location of transition from stability theory is presented by'Jqffe,
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QOkamura, and Smith in reference 51. However, aipoint wﬁich‘should'be
strongly stressed is that a thorough stuéy of the connection between
stability and transition still remains to be completed.

There curréntly exists a anuaber of good review artiecles and
bocks on stability theory. Review articles have been written by Stuart
(ref. 4), Shen (ref. 52), Reed (ref. 53), and Drazin and Howard (ref. 54)..
The article By Reed considers asymptotic theory in detaii. Drazin and
Howard in turn consider only the inviscid theory. The articles by
Schblichting (ref. 2) should also not be overlooked. The most complete
study of modern beundary—layeéjstability, in the opinion of the author,

igs presented by Mack (ref. 55). .

T.5.2 Transition Location

Many parameters‘influence the location of transition. These
parameters can best be theught of as forming a parameéer phase space.
Such a parameter phase space would include Reynolds number, Mach number,
unit Reynolds number, surface rouéhness, nose bluntness, pressure
gradients, boundary conditicns at tﬁe wall, angle-of-attack, jreeé
sfream turbulence level, and radiated aerodynamic noise. Morkovin
{ref. 9) recently completed a very extensive and thorough examination
of the current state-of~the-art of transition in shear layers from
laminar to turbulent flow. The most striking -conclusion that one

obtains from the review is that although‘é great bulk of experimental

B
¢ .

data on transition currentlyyﬁxisfs; mach of The inférmation on high-

- -

speed transition has not been documented in sufficient‘detail to allow

the separation of the effects of muitiﬁle parameters on transition. A
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discussion of the effects of each of

] "

the parameters that may influence
transition in high-speed flow is 'beyond,the:‘ scope of the present paper.
Furthermore, it ié seldom ?oggéble(to sﬁud& an&lone parameter experi-
mentally while holding the reﬁéining}parame%er phasé space constant. .
The reader. interested in a*deﬁéiléé Qiscussionfés'directed ﬁpith;;
paper by Morkovin (ref. 9) wheré over 300 related references are cited
and discussed. The paper by Savulescu (ref. 8):éhould also be consulted.
Another, although less detailed discussion, is presented by Fischer
(ref. 56). The effects of radiated aerodynamic noise on transition is
discussed by Pate and Schueler (ref. 57). Hypersonic transition, %o
- name but a few references, is discussed by Scftley, Grabel, and Zemplé
(ref. 58); Richards (ref. 59), Potter and Whitfield (ref. 607, and
Deem and Murphy (ref. 61). A very good discussion on the effects of
egxtreme surface céoling on hypersonic Ilat-plate transition is presented
by Cary (ref. 62).. The effects gf nose bluntness and surface roughness
on boundary layer transitiéﬁ are discussed by Potter and Whitfield
(ref. 63).

It would be prohibitively time consuming to obtain a detailed
stability analysis for each of the test cases considered in the present
-paper (see Chapter IX). Furthermore, even if such an analysis were
completed the transition l‘ocation would not be obtained. Consequently,.
in the present analysis the location of transition will be determined
by one of, or é'combination of, the following three methods.“ These

\ .
methods are (1) a stability index or vorbicity Reynolds number first

proposed by Rouse (ref. 64), (2) correlations based upon a collection
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of experimental data over a‘br@a& range of téét:conditibnsyﬁépg (3) by
using the measured experimental 1dcatiqn of transition as é,diréct
inpwt into the analybical solubion. One might imhediately assume that
the latter of the three methods would be the most accurate; however,
caution must be exercised in interpreting and applying the results of
experimental transition mea§urements since data on all paremeters that
may affect_transition are seldom availasble. Also, the transition
location may very well be a funchtion of the method used 4o obtain the
experimental data. There are a numbéx of ways to experimentally
measure the transition location which often yields different location;
for the identical 50undary layer. This fact has contributeé to much of
the current confusicn and scatter that results when attempts are made
to correlate a great number of experimental trénsition data obtained
in a namber of different investigations withéut congldering how t?ansition

was determined.

T.5.2.1 Stabllity Index
Hunter Rouse (ref. 64) nearly 25 years ago obtained through a
process of dimensilonal analysis combined with observed fluid motion that

a stability index could be expressed as Ffollows:

x:ﬁ%

ol (7-78)

This Index has the form of a vorticity Reynolds number which 1s
obtalned from the ratio of the local inertial stress :p*y*e(Bu*/By%)2,

to the local viscous stress p*¥(Jdu#*/dy*). Rouse assumed that in order
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for transition to occur the stability index should reach ‘some limiting
value which was assumed invariant. He was ;blé to further show that
this invariant value, '(Xmax)cr sﬁou%d beron %he order gf 560 for
incompressible flows. o ‘ o -

.

Ll

The use of Apgy a% a étabiiity index iqjin principle. similar
to the basic reasoning whichlleq‘o. Reynolds (réf.‘ 7) in 1883 to
posbulate that the nondimensioﬁal parameter ud/v . could 'be used to
define a critical value (ud/vycr gt which tranéition“woﬁid oceur in
a circular pipe of diameter, d. Uhfortuﬁétely, (Xmax) er is a function
of the transition parameter phase space in much the same fashion as the
eritical Reynolds nuwber, and cannot in reality be a true invariant
of the flow as suggested by Rouse (see Seeﬁion 9.8; fig. 19). The
stability index does, however, possess a numbér of important character-
istics which can be directly related to the stability of laminar flows;
for example, the position of the critical layer can be obtained directly
from equation (7.78). . - . ‘

A typical transverse distribution of X for a compressible
lawinar boundary layer is presented in figure 6. The étability Index
has a zero value at the wall and approaches zero as the outer edge of
the layer is approached. The meximum value of X, Xpgx, Will occur
at some transverse location, (y/ﬁ)xmax. The values of Xmax and
Cy/a)xm are of importance in the usage of the stability index as a

ax
guide to boundary layer stability amd transition..
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Figure 6.~ Vorticity Reynolds number.
As the laminar boundary layer develops over a surface, X
inereases monotonieally until the critieal value (xmax) er 1s reached

at which point trensition is assumed to occur; that is, the location of

} is not an invariant. In the

x, .. For compressible flows (X o

t,1

_present study (Xmax)

op WaS found %o vary from approximately 210@ to

values on the order of 4000. The variation of (Xpapl)er L5 2 strong
function of unit Reynolds mumber for data obbtained in air wind tunnel -
facilities (see Section 9.8) as would be expected from the previously
mentioned transition studies. However, while not invariant the
stablility iﬁdex does exhibit the same dependence on various parameters

as results from the more complicated stability theory. TFor example, at
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a given streamwise location, . 'x, the value.of Xpax 18 found to decrease

“(which implies a more stable flow) with wall cooling, wall suction, an

14 E
LAY

favora.'ble‘pressux;e grad":i.en;cs ; whereas it increasez.; (wh:ijch:impli:es 2 movre
munstable flow) with wall‘héatiqg, mass injedtion (franspiratien), and
adverse pressure gradients. To %he author's knowtedge therétability
index has been usé& as a boréelati%n parameter in only'two‘boundary-
llayer transition studies. A modified formﬁof.éhe-paramétef wass used o
correlate the effeqt of free=gtream turbulence on transition by Van Driest
and Blumer (ref. 65). Correlation attem@ts, using Rouse's original
invariant assuﬁptions, were made in reférence 66; however, the results
were only fair.

One of the most important characteristics of the vorticity'
Reynolds number is that the value of (y/ﬁ)xmax is in excellent
agreement -with the eﬁperimental location of the critical layer which
represents the distance normal to the wall at which the first high
frequency burst i'epresen‘ting laminar flow breakdown Wj...l'l oceur.
-Stainback (ref. 67) recently obtained the Rouse stability index for
similar laminar boundary layer flows over a broad range of wall-to-total
Ltamparatu:e ratios for Mach numbers up to 16. The numerical calculations
were made for both air and helium boundary layers. The‘agreement between
gy/ﬁ)xmax and ‘the experimental critical layer position was excellent

over the entire range. (See Section 9.3.)
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T.5.2.2 Empirical Correlations

iﬁ most insténces the design engineef has to rely on empirical
correlations of experimental transition data Iin order to fix the most
probable transition location for a design configuratioﬁ. However,
caution should always be used when cbbtaining the most prcbable location
of transition from such correlations, since any given correlation is
based upon a specific .collection of data which will not be completely
general. TFurthermore, the transition process may not be unique;. for_

example, the blunt-body transition paradox (see refs. 9 and 68).
There curvently exists a large nurber of empiricalpcorrelatiOns
3 : . »

3

Tor predicting the pxobasble locatioh of tramsition. Some of_thefe

+ B
correlations are of gquestionable value; EQWever, some can be used with

confidence providing it is realized that bné is pieaiéting'a precbable
range of locations and not an exact fixed ﬁoinf. Qoﬁe of the mQﬁe
e - { ! Y

successful correlations Waé‘dﬁtainéd.by Beclorith (ref:-699-ét:the

5 *

Langley Research Center. The correlation developed by Beckwith is

Y . . -

based on experimental transition data obtained over a wide range of
test conditions in air wind tunnels, ballistic ranges, and free Tlight.
The correlation can be expressed as follows:y

Reg) ( )o.Texp(-o.osmg) (7.75)
— =1+ M (® 7.79
RélB | e’ w

loglo
where R} denotes the unit Reynolds mumber per foot, u#/v¥. The
constants T and J are functions the enviromment in which transition

was measured and are given in the following table.
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Facility I J
| Adr wind tunnel 0.95 0.167"
‘Ballistic renge | 1.00 | 0.125
Freeﬁflight 1.32 0.130

Equation (7.79) can be expressed in terms o the transition Reynolds

number, Re. | ‘as follows (see ref. 69):
5,1
- ’ 2
0. ~0.05M_ )
506 0[21 + 2g(ay)” TR0 M
.~
Rexy 3 == - — ('7.80)
2 1y (0.00% M2 + 1.22 @)

For an in-depth review of the problems associated with transition the
reader is referred to the results of the Boundary Layer Trahéition Study
Group meeting held in San Bernardlno, Callfornla, in 196Z (refs. 69, Cn

70, TL, and 72).

7.5.2.3 Ixperimental Transition

L

Much of the confu51on that exlsts today concern;ng bounaary
layer transition may be attributed to one of, or a comblnatlon of, the
following three factors.. The first factor is thattln’many instances theJl
investigator who made the experimentallstuaf may-nof'have carefullyl=
measured or recorded the exact conditions unde; Which:thg data were -
obtained. The second-factor is that the experimentally observed transition
location depends on the experimental teéhnique used %6 cbtain its

location. The third, the most pessimistic factor, is that transition

may not be a unique process under all conditions (ref. 9).
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The importance of carefully measuring the environment under
which the experiments are made cannot be overstressed. In the past,
many of the factors which may influence.transition such as free-stream
turbulencg and: acoustic radiation from tﬁe tunne% side wall bouddzry -

layer were not measured. (See references 69 o 72.) The ocation of

trensition as obtained experiﬁentélly is a strong function -ef the method

-
.

used to determine 1ts location. Theré‘are cgrééntly a nﬁmber of
techniques used to obtain the trangitiéq location. , Some é? these
methods are hot-wire traverses, p;totttubé sﬁrv@ys ne%r‘éhe wall,
visual”indication froﬁ«échlieren phbtog?éphs; and heat transfer
measurements at the Wall%‘*Eaéh of thesé me?pods basicéily measures a
different flow process. Conserently? %tfwoul& be misle;ding to believe
that each technique would yield the saune location fo; transition if
simultanéously applied to the same boundary layexr. Of course, the
concepf of a transition "point" is misleading in itself since transition
does not oceur at a "ﬁoin " but instead.over some finite size region.'
For the test cases,preseﬁted in the present analysis the
-experimental transition location will be determined from heat transfer
measurements at the wall whenever possible. The main reason for this
choice is that it is the method most often used in the literature.
However, it should be noted that %he actual nonlinear transition

process begins somevhat upstream of the location where the heat transfer

at the wall deviates from the laminar trend.
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7.5.3 Transitional Flow Structure

Assuming that the transition location has been fixed for a
given pr&blem one muét next consider the following two impo;tant
factors; first, the length of the transition region, g ¢ - Xg.i
(sometimes referred to as transition extent), and secondly, the mean
flow characteristics within the region. Once appropriate medels are
obtained for these two factors it i1s possible to smoothly connect all
three flow regions such that one'set of governing equations may be
used.

The classical laminar boundary layer equations should yield
’ reasongbly accuraté profiles and wall fluxes in the linear region of
transition; that is, prior to the turbulent spot formation. The
'intermittent_appearance of thé turbulent spois and the process of
crosstcontamination is not well understoédo“The spots orlginate in a
more or less random fashion and merge with one'éﬁother,as they grow
and move downstream. Eyventually, -the entire leyer is céptaminated
which marks the end of the btransition proseész g, The process by

+

which cross-contamination occurs aﬁpears to have been studied in detbail
. -y .

only by Schubauer and Klebanoff (ref. 73) since ibs discoqe%y'by

Charters (ref. T4) in 194%3. As the tufbulqnt‘spéts move over a Fixed

. -

[ '

point in the transition :egioh, the point ékperiencesfah alternation
- . N L v -

of fully laminar flow when mo spot is present to fully turbulent flow

when engulfed by a spot. These alternations can be deberibed by an

intermittency factor vhich represents the fraction of time that any

point in the transition region is engulfed by fully turbulent flow.
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?he distribution of spots in time and space in Gaussian for,
low speed, natural transition. However, very little is known about.
the ;pot distribution in high speed compressible flow. Furthermore,
there is no assurance that the spot formation and distribubion in:
hypersonic flows will be analogous to the lov speed model. However,
in the absence of a move satisfactory theory, the author has chosen:
the approach of Dhwan and Nerasimah (ref. T5) which was obtained
mainly from low speed data. In reference 75 the source density
function of Emmonds (ref. 46) was used to obtain the probability
distribution (inbermittency) of the furpulent spots. Dhwan and

Narasimah (ref. 75) obtained an intermittency distribution of the form

(&) =1 - exp(- 0.412 £2) (7.81)
Whére
- (=- i)
Fo el (7.82)
A

for *t,4 Sx & x4, The term E. in equation (7.81) represents a
normalized streamwise coordinate in the transitioh zone, and A is a

measure of the extent of the transition region; that is

A=(x), - (=) . - (7.83)
r=5/4 vyt : .
In the present analysis the transition egte?t, Xg,p - ¥, (see
Section T.5.4) is first calculéted; ngﬁt, the in%egmi?%ency funetion
v ! " ’

is determined such that T = 0;9999*at % = Xt,f'
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For low speed transition, Dhawan and Narasimah éﬁow that all
transition regions may be correla?ed to form a universal intérmittency
distribution. fotter and Whitfield (ref. 63) have shown that similarity
exists in the transition process fér subsonic, supersonic and hypersconic
flows. Although the effect of pressure gradients on the intermittency
distribution has not been studied in detail, it is believed that the
distribution will be affected primarily in thé region of the initial
spot generation.

The intermittenp& distribution aéfoss the layer at a given.
streamvise location in the transition rééion 1s a function of the
shape of the turbulent spots. In reference 73 it is shown that the
spots have a nearly constant cross sectional area close to the surface.
The intermittency distributions in the transverse direction (y-direction)
are similar to those observed by Corrsin and Kistler (ref. 76) for fully
developed turbulent boundary layers (see ref. 77). Corrsin énd Kistler
found that the transverse intermittency varied from a msximum of unity
near the wall to a near zero value‘at the outer edge of the layer. The
transverse intermittency disyribﬁtion it of gecopdaryaimportance in
relation to the streamvise distribution 'in debermining the fhean profiles
and wall fluxes. In thé present énalysis the ogly intermittency
distribution applied in the transvérééiﬁirectioﬁ (y~diréction) is that
of Klebanoff (ref. 36) in ﬁhe:oﬁfer‘layer as applied to tﬁg fully

developed turbulent layer; thet is, equdtion (7.68).
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7.5.4 Transition Extent

The assumption of a universal intermittency distribution implies
that the transition zone length (treumsition extent) can be expressed
as a function of the transition Reynolds number, u:xﬁ,i/v:. In
reference 75 it is shown, for the transition data considered, that the

data are represented on the average by the equation

Repe, aReEtJi (7.8)

where Ox, = x:,f - x.';’i. The coefficlents « and B are found o

assume -values of 5.0 and 0.8, respectively. The location of the

completion of transition, ‘xﬁ g can then be obtained directly from
2

equation (7.84) as follows:

% * #L Ne
Xy g =Xy i + oRE (Rext,i) (7.85)

where Re* 1is the local unit Reynolds number, ug/vg. . Moxrkovin

(ref. 9) found that only about 50 percent of the experimental date he

considered could be fitted to the low speed universal curve of Dhawan
and Narasimah; that is to equation (7.8¥). This was o be expected,

since the data considered in reference 75 coversd orly a very limited

’

Mach number range. o : -

Potter and Whitfield (ref. 63) measured .the .extent of the
, .
. 3 -
transition zone over a rather broad Mzch nuwber’ range (3 f Mo <5 3

M, = 8)." They observed that the transition region) when defined in
4 . i « Y

terms of RQAxt is basically independent' of the.uniﬁ_Reynol&s numbex”

and leading edge geometry; that is
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4

R?Axt = QB(Rext’i, M&)“n‘; h . {7.86)

They noted (ref. 63) that the extent of the transition region increased
with incredsing transition Reynolds number over the Mach number range
® <M, <8 for adiabatic wells. The extent of the transition
region was also observed to increase with increasing Mach numbers for
a fixed transition Reynolds number.

In the present analysis, due to the. lack of general correlations
* for the extent of transition this quantity will be obtained directly
from the experimental data unless otherwise noted. In particﬁlar, if
heat transfer data are available the transition zone will be assumed
to lie betweeﬁ the initial deviation from fthe laminar ﬁeat transfer
digtribution and the final pesk heating location. The transition
region defired on the basis .of the Stanton number distridbution is
presented in figure 7. The design engineer does not have the advantage
of experimental data which vere obtained under the actual Tlight
conditions. Consequently, the most probable location of transifion
would be obtained from a correlation such as presented in equaticn (T.Té)
and (7.80). The extent of transition could then be obtained from
equation (7.85) or en approximate relation such as follows:

ReX_b,f

- 2 ~ (7.87)

14

e
it,1
Since the main obJective of the design engineer is to obtain estimates

of the heat protection reguirements or viscous drag, for example; the

¢

errors involved in using equation (T.Bf) would be negligible for a full
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35

scale vehicle. However, inaccurate estimates of the transition

¥
i

location, .1 could lead to significant errors. .

i 1

' -, ot

i
2
'

7.6 Boundary Layer Parameters

Certain bouqdary layer parameters are of interest to Tthe design
engineer as well as to those interested infthe general development of
the béun&ary'layer for arbitrary boundary condltions. A number of
these parameters, %hich are used in chapter IX, are presented in this
section for the physical plane as well as for the %ransformed plane
where meaningful.

7.6.1 Displacement Thickness

The displacement thickness is a measure of the distancé by
which the external streamlines are shifted because of the development
of the viscous boundary léyer. If in the prdblem_undér coﬁsideratién
interaction is important, the displacement thickness may be used %o
determine a new effective body (ref. 15). The bounﬁary layer displacement

thickness for compressible flows is defined as

- Ve . .

5% = [ wir - ey (7.88)
o Pele

where &% is defined as the nondimensional displacement thickness,

Sﬁ/L*. In the trsnsformed plane the nondimensional displacement

thickmess becomes

o= 2 V2 \/ne(@ :-‘F)dn (7.89)

peuerg ‘O
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It should be noted that the definition of 5% for axisymmetric
flows with transverse curvature 1s not the same as the definition of the
nondimensior-;al displacement thickness for two-dimensional flovs, 5;2]3.
The displacement thickness with transverse curvaturg is related to ;ts

two-dimensional counterpart by the following relation (ref. 78)

. (7.90)

>

The incompressible displacement ,t]:p‘.ckﬁess used in the outer

region model for the eddy viscosity is presented in equation (7.66) and
- r " é "
(7.97) for the real and transformed planes, respéchively.

v <

7.6.2 Momentum Thickness oL e

1

N
’

' » . v
The momentum thickness is 'used in a number of ‘solution techniques

. ; : .
as well as in current transition correlations.’” The nondimensional

v

momentum thickness for the physical plane is definéd as fof;l.ows:

0 Pele Ug

- Ve . ' ‘ :
) =f etJ\g_u(l - -.E)dy (7.91)

The nondimensional momentum thickness in the transformed plane may

then be expressed as follows:

J
PelleTs

9 = _“V‘?__&_,fne (1 - Pay ' (T.'92)
o]
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7.6.3 Shear Stress
The viscous drag of a body moving through a fluid is dependent
upon the shear stress at the well. For turbulent boundary layers the
shear stress distribution across the layer is also an important

parameter. The total nondimensional shear stress may be divided into

two components, laminar and turbulent; that is

Tp = Ty b Ty (7.93)

or, in terms of the current notation

Tp = pE Su (7.94)
oy
‘The nondimensional total shear stress, wp 1s .defined as
et Ures
Tp = T _EEE_Eéa (7.95).
I*
BEquation (7.95) becomes in the transformed plane
f Ejj _—
PebelleTot ¢ € BF) (7.96)
Tp = = 7.9
. o \2E (aﬂ

where € is defined in equation (7.15).
As the wall is approached, mr- approaches T, and equation (7.96)

becomes at the wall

' 2.d »
RPalalat
_ __e__é BF) (7:97)

Ty = —1
v :w\f2§ - aﬂ'w
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7.6.4 Skin Friction Coefficient

The skin friction coefficient is usually of more interest to the
design englneer than the actual magnitude of the shear stress. The

friction coefficient is defined as

- . L2 ‘
Ce_ = T;/(% 0ale ) (7.98)

which becomes in the nondimensional physical plane

. 2
- 20 T .
Cp_ = . (7.99)
e 2 .
Pele .
or : :
-_ . Ewgug L -
Cp. = —@) " (7.100)
2 .
| P2\ :

In the transformed plane equation (7.100) becomes'

B

S 3 3o ; :
G = Papert” 1E(BF) : (7.101)
Te “‘: \{EE o "

or,»when evaluated at the wall

("7.102)
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7:6.5 Heat Transfer

The heat transfer hetween the boundary layer and the wall is
required for aerodynamic heating énalysis. The heat transfer at the
wall is related to the temperature gradient at the wall in the

dimensional physical plane through the following equation:
¢ ) ‘

. (KI :i:) - (7.105)

4m

t

or in nondimensional form- ag

' w om\ ¢ Y
= - [= = L0k
qu ‘ (0‘ BY)W o , (7 )
where
o u*g .
q, = g¥ (—f—e;e——x;e-{) : o (7.105)

Equation (7.10%) becomes in the transformed plane

(7.106)

Gy = -

pep‘eueTero ( a’:‘))
woyf2t o

7.6.6 Heat Transfer Coefficient

The heat transfer coefficient is defined by the following

relation:

/(T* - T% ) (7.107Y
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‘where Tgﬁ denotes the dimensional adisbatic wall temperature. In

the present analysis the adigbatic wall temperature is defined as

T¥, = vp(T§ - T¥) + T* (7.108)

Equation (7.107) can be written in nondimensional form as follows:

h = ___EE___

Ty - Tay

(7.109)

where the nondimensional heat transfer coefficient h is défined as

CHu% .
h = hf//T}E_Eii_) § . " (7.110)-
L* A
The recovery factor rp used in equation {7.108) has the .following
. & r
.7 t . 1
form ; . ’ R
VTE )

R | s .

t
This relation was developed by the author and 1s based o the concept

that the flow within the turbulent spot has the ‘Same. structure ak that g
of the fully turbulent regien of the boundary 1ayé¥. It ecan be ‘seen

+

from equation (7.111) that the recovery factor assumes the accepted

1/2 and

mean values for pure laminar or fully turbulent flows of .0
61/5, respectively. Within the transition region the recovery factor
is a function of the turbulent spot distribution through the inter-

mittency factor, I. (See eguation (7.81).)



7.6.7 Stanton Number

A convenient nondimensional parameter often used in the
literature to describe the heat transfer at the wall is the Stanton

number which is defined as follows:

Oy = n*/(cHpkug) (7.112)

7.6.8 Friction Velocity
The velocity .scale most often used for turbulent flows is the

friction velocity. This important parameter is defined as

(7.113)

which becomes in the transformed plane "

' e 2.3 ‘
DlePTs [
u, = | —=2°f B_F o (7.11k)
\| \N2E T\ o/ h

where ‘ B
H o */{* - f: (7.115)
.FT = /u - (T :

/ refl
L . ) !
7.6.9 Law of Wall Coordinates . T .

. v . . ¥
The law-of-the-wall coordinates used in turbulent flow

(see egs. (7.48) and (7.49)) are definedin the“physicai plane as

i

y* o= y*ui v (7.116a)
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and

ut =.u*]u$ . (71.126p)

. 1
Equations (7.116) may be written in the. transformed variables as

3
&

OAU v B
Cyt 2 __.e_T_e o (7.1172)
ap 1 @
and '
3 fe
+ CeTo [ R

ut = F (1 5-) o - - (7.1170)

\f2g T w | .

7.6.10 Defect Law Coordinates

The defect law coordinates used in turbulent flow {see
eg. {7.50)) are y/& and u. The coordinate U is defined as

follows:
o * * *
F=(u -u )/JT (7.118)
or
EENCIRS O N (7-119)

T.7 Pitot Pressure Profiles

The tétal pressure is one of the mean profile values that can
be measured directiy in experimental studies. -cénsequently, it is
advantageous to calculate the total pressure distribution across the
layer for .comparison to experimental data when availabie. The total

pressure distribution is often encountered in the experimental
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literature in one of two forms; (1} the local isentropic total pressure
distribution referenced to the isentropic value of the total pressure
at the boundary-layer edge (the term isentropic aé used here means that
the flow is locally brought to rest isenbropicelly), and {2) the actual
pitot tube measurement of the total pressure referenced to the pitot
tube vglue at the edge of the boﬁnaary layer. TPFor subsonic flows the
two methods are identical; however, for supersonic flows caution must
be exercised in interpreting the experimental results.

If the static pressure is constant across the boundary layer,
the local isentropic total pressure referenced to the isentropic value

at the edge of the layer may be expressed as

7/7-1

2
Pt {? + (7 - 1) ] (7.320)

P 2
t, L2+ (7 - 1M

The local Msch number, M, may be expressed in terms of the mean

temperature and velocity profiles as follows:
M= ——— . {7.121)

which becomes at the outer edge

M (7.122)

SN

In the case of subsonic flows the experimental profiles can be

»

directly compared to the distribution obtained from eguation (7.120);
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however, for supersopnic flows it is necessary to divide the boundary

t

layer into a subsonic and a supersonié region. ‘The boundary separating

LR

these two regions occurs where the local Mach number'jgs unity and is
obtained from equation (7.121).. In the subsonic r_egiori of the boundary

layer the pitot tube measures fhe.local‘fsentfépic total pressure;

* - *
a - * & i
however, it is usually referenced to the measured pitot value at the
: e ‘o
.edge of the boundary layer where the flow is supersonic. 'Then the
\ , vt i !

3 " ’ g ' - > ! . +
correct expression for the subscnic region becomes . oot

7/7"'1 i . ) '.
{2 <o - )]

7.123)
. ‘

L/r-1

Pe 2+ (- 1)M2J

P 2
tme (r + )M

In the supersonic region of the lajer the ratio camn be written as.

P, 27/7-1 - q-Lfr-1,

_m o (_M) 2 - (7 - 1) : (7.12%)
Ptme Me o2 - (7 - 1)

In the present analysis the total pressure distributions will be
obtdined from equations (7.123) and ('T.lELL') Por the subsonic region and
supersonic region of the boundary layer, respectively. The boundary
between the two regions will be cbtained from equation (7.121); that is:,

where the local Mach number is unity.

7.8 Bxterior Flow

The following quantities will be specified in order to describe

the exterior flow and fluid properties

* * ¥* * ¥
P‘t,oo’Tt,oo M2 P 0,50457, CP)S
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Reference Values

The reference valuss are evaluated for an isentropic, perfect

gas as follows!

) * *
(7 - 1)CpT¢ w

| Uer = 3 (7.125)

J1 il 1172

I (e

~1/y-1
ref = i 7 T R Mi) - (7.126)
(7 - 1yckes ) 2
e,
xR g |
Tres = ref/cp (7.127)
. 2.270(T* )3/ x 1078 : |
Hrep = ‘ — (air omly) | (7-128)
{T§ef _+ .S* T 5 '

The reference values are independent of body geometry and are used to

form the dimensionless variables (see eqs. (7.20)).-
Edge Values ) ’ .. '

0 1 [
1 . - . -

' The inviseid pressure distribution mist be specified,for a
{ - e, ' L.
given flow geometry in Qréer to dbtaih‘afsolutiqn of the governing
differential equations (egs. (7.38) to,(f:ho)). This distribution can

be cbtained from either experimental dafé or'from an exact solution of
the full invisclid Euler equations. In the.éase‘of supéfsonic flows
where shock wave curvature may have a first order effect on the
boundary layer structure, the effect of variable entropy should be

taken into consideration (see Section 7.9). The total pressure behind



66
the shock wave, Pt can be dbtalned from the obllqpe shock relations
(ref 79) provided the shock wave, angle, Qs(rs,zs) is sPecxfled;

that is A_ SR .

] [

o (7 -+ l)M& sin 2 (rs,z )3 y o+ 1" V't
ts T {7 - l)Mm sin”e s(rg:zs) + 2/ 27M» 51n295(rs,zs)'—(7;-l)

(7.129)

where Pts is the diwensionless total pressure behind the shock wave
evaluated locally at the shock wave coordinate (rs,zs). For ‘cases
where the effect of variable entropy is either neglected or negligible,
Pts is evaluated at r, =0 (see fig. 1) and is invariant along the
streamline ¥ _(o0,x). For cases where the flow is eitﬁer subsonic
everywhere or supersonic shock free flow, P%S = E%;w.

The edge conditions can then be calculated from the specified

static pressure distribution and the known value -of Py, as follows
y=1 1/2

2 1Ttg\ 7
Me = 7_-1(1:?) -1 (7.130)

e/

- A
To =Ty oL + —— M _ (7.131)

u, =1\ (7 - U, O (71%2)

~ P
¥ e
E— S— L
o, (7 ; 1) (7.133)
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32k v s .

= 2) (air onl 134

e - (?e) | (Te +‘s) (a:;u_' only) (7.134)
. =

where S = ,S*/Tief- i

t

7.9 Varisble Entropy

One of the important factors that should be taken into con-
sideration for slender bluﬁted or sharp-tipped bodies in supersonic
flow s the effect of the variabELe entropy introduced by shock wave.
curvature on the boundary layer characteristics. The basic problems
assoclated with inecorporating varieble entropy into the boundary
layer solution are (1) to obtain the entropy distribution along the
boundary layer edge as a function of x, and (2) to develop an
iterative solutioﬁ technique with Whichlthis distribution can be
efficiently included in the solution of the governing boundary layer
equations (egs. (7.38) to (7.40)). iﬁ the present analysis the shock
wave coordinates and inviscid pressure distribution are obtained from
an exact inviscld f:low field solubtion. The boundary layer equatlons
are tlf‘len solved by the method presented in chapter VILI. At each x-
solution statioh a mass balance is obtained between the total mass
" contained in the boundary layer at the particulsr x-station and the -
mass passing through a streamtube of radius r: (see £ig. 1). From -
this the entropy distribution as a function of. % can be obtained.
The resulting total pressure at each x-station is stored for future

use in the digital computer. The actual equations and procedures



&8

utilized in the process are discussed In the remaining portion of this
section.

The shock wave coordinates and inviscid pressure distribution
can he directly obtained from the solubion developed by Loma?{ and Inouye
(ref. 80) for -either sharp~tipped or blunt axisymmetric or planar
geometries. The mass balance eguation which eduates the mass of the

fluid passing through a streambube of radius ¥

see Pig. 1) To the
s

total mass entrained in the boundary layer at a given x-station can be

expressed for elther axisymmetric or planar flows as follows

. * ..

[3

. Yo 0 . .
% g% gopxdtl _ g f dpxd Jyx .
p¥_puk oar? (3§ + 1) /. p¥u*ge % Ay (7.135)

L

or in berms of the dimensi_onless varisbles as
% h :" ! Y

'J'+l—(-'+1 'y‘"F‘jd - - (7.136)

rg o =43 T Lleghg , 5o 7.13

. 7 » K e N .

! ¥

Equation {7.136) can then be expressed in the tramsformed plane &s

Pollows:: T L

3

"1

Ty = b[:(j .—I- l)cu\/_é-g ‘_f"]e F dﬂ‘jﬂ- (7.137)

" Bauation (7.137) is locally solved for rg 'at each x-station
along the body surface. The shock wave angle, (rg,2g) 1is then
obtained from the known shock wave coordinates at the shock wave

streamline intevsection point, (rs ,ZS). The total pressure behind
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the shock wave on the streamline Vo (rg,2g) is then cvaluated from
equation (7.129). These values are stored in the computer for sach
X-station. This process is continueﬁ un%ii the soiution at the Tfinal
x~station (maximum x-value) is completed. The boundary layer solution
is then known for the,condiﬁion 6f constanﬁ entropy. This is called

the first iteration and if variable entropy 1is to be neglected it
- 5 . *.

represents the final solubtion. In .order to include %ariable entropy

i .
4

effects the solution ;suthenvresfarted at &£ =0 (x =0) and the

* . + v

solution recalculatedfusing the previously stored values of =Pts

to caleulate the new local values ‘of Mg, Tos Vg, Pgr 8nd pg (see

egs. (7.130) to (7.13%)); this'is defined as the seéoﬁd itdration. It

i

should be noted that ‘Pts is ‘independent of. £ for the Tirst

W

iteration cycle; howevér, for subsequent iteration!c§cles Psg iz a
funetion of &. The nevw Peg values for the 1 + 1 Aiteration arel
calculatedl@uring the 1 diteration. The (Pe distribution as a function
of x isan invafiant for all iteration cycles.

The convergence criteria used at each x-station is as follows:

. - < . .,
Ve, Uy S0 (7.138)

where 41 is the iteration index and @ denotes the specified
convergence requirement. fbr engineering calculations three iterations
are generally sufficient for a-one percent or smaller change in wu, at

each x~sgtation; that is, for @ = 0.01.



VITI. NUMERTCAL SOLUTTION OF THE GOVERNING EQUATTIONS

The governing eguations for the compressible laminar, transitional,
and turbulent boundary layers form a fifth-order system. Three of the
equations are nonlinear partiasl differential equations (see egs. (7.38)
to 7.40)) and the remaining two are algebraic relations (see egs. (7.31)
and (7.32)). The most important feature of this system is that it is
parabolic and, as such, can be numeiically integrated in a step-by-step
procedure along the. body surface. In order to cast the equations into
a form in which the step-by-step procedure can be efficiently utilized,
the derivatives with respect to £ and 7 are replaced by Finite
difference guotients.

The method of linearization and solution used in the present
analysis closely parallels that of Flugge-Lotz and Blottner (ref. 15)
with modifications suggested by Davis and Flﬁgée—Loﬁz (ref. 16) to
improve the accuracy. Thesevmodificamions involvé tﬁé use of three- ‘
point implicit differences in the E-direction qhich produce truncation
errors of order (Afy Af,) rather than (4x) as in reference 15. The
primary difference between the presené”development aﬁd_théﬁ of refgr—
ence 16 is that the solution is obtained in ‘the trensformed plane for
arbitrary grid-point spacing in‘fhe Efdireétion»and for a~spaéing in:

L .

the 7~direction such that the spacing between any two successive grid"

1

H
points is a constant. To the author's knowledge,; this numerical solu-
tion technique has not been previously -applied to either transitional

or turbulent. boundary-layer flows.

e
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The three-point implicit difference quotients are first developed
for the particular grid-point spacing ubilized herein. Thesge results
are then substituted into the governing egquations for'the c;nservation
of momentum and enefgy in order %o obtain a system of difference equa-
tions. The most important_éharacteristic of the system of differgnce
equations, other than the facht that they are linear, is that the tfans»
formed normal component of velocity, V does not appear explicitly as
an gnknown at the solution stabion. Consequently, the N-1 linear
difference equations can be simulbtaneously solved to yield ther N-1
unknown values of ¥ and ©. Having obbained the N-1 values of F
and ©, the WN-1 values of V can be obtained by a numerical integra-
tion of the continuity equation: Some details of the implicit method
have been purposely omitted; for these the reader is referved to

Flugge-Lotz and.Blottner {ref. 15). The reader interested in a thorough

1

discussion of the various schemes thal could be utilized to obbtain either

pure difference equations, as in the Qfesen% paper, ‘or différence-

3

differential equations such as used by Smith‘anﬁiClu$ter (refs. 81 and

k4 .
82) is referred to Davis and Fllgge-Totz (ref. 16). ‘The- advantages and
disadvantages of implicit differencés in relgtioﬂ‘to explicit differ-

ences are discussed by Flﬁgge-Lofﬁ and Blottner (ref. 15)>an&.will not

be discussed herein.
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8.1 The Tmplicit Solubion Technigue

8.1.1 TFinibke Difference Mesh Model

It has been shown for laminar boundary layers that equally
spaced grid points can be utilized in the normal coordinate directidn
(for example, see refs. 14 and 15).. However, for transitional and
turbulent boundary layers, the use of equally spaced grid points is
not practical for the present solution method. As previously mentioned
in Section '7.1!-7.1, the viscous sublayer thickness is on the order of
0.0018 to 0.015. In order to obtain a convergent (valid) solution tol
the governing equations, it is necessary to h.::u'r‘e‘ s number of grid
points within the v;ls’cous sublayer. The viscous sublayer problem is
discussed in detail in Section 9.1 wheré the errors resv.l‘ti‘nig from
improper grid-point spacing ‘in‘ the wall region.are demc;nstrated‘ with
a numerical example. S:ane a number of gr:_d points must be positioned
within this relatively thin layer in relation to 'the total thicknegs,
6 , one cannot afford to utilize sequail.J.y“ spa.ced‘ griq points from t"ilez_-
viewpoint of cémputer storage reéuirements‘ azid ;proce'ssin:g time per test
case. For example, if the tota.l thlckness o:E‘ the n strip vas 100 for
g particular problem -of 1nterest s Ghen the requlrement of eg_ua.]_'l.y
spaced grid points would mean on the order of l,OOO points in relation
to 200 for variable spacing. In order to avold the necessity of using
an inefficient number of grid points, a variable grid-point scheme
must be utilized.

The grid-peint spacing in the :q-dir,ection used in the present

analysis assumes that the ratio of any two successive steps is a
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constant, that 1s, the successive ANy, form a geometric progression.

There are any number of schemes that could be empoyed to;distributeu‘ ‘
the points across the 7-strip; however, the predent ﬁethod has been

»

found to be flexible and of ubility. e

»
3
¥ f .

The desirability of having variable gridnpoiht spacing in ‘the

t

. ‘
E -coordinate has previously been mentioned in Sgction T:3. The

importance becomes clearly apparent for probléms iﬁ Whigh‘eithér the
rate of change of the edge conditions is large or diScontinuoﬁs bound-
ary conditions oc;ur, or in the transition region where the mean pro-
files are changing rapidly. A good example of the former case would
be a slender, blunted cone in ;upersonic flow. Variable grid-point
spacing in the £-direction could be utilized by having very small steps
in the stagnation region where the pressure gradient is severe

{favorable) and in some downstream region where transitional flow exists.

A good example of the case of discontinuous boundary conditions would
be a sharp-tipped cone with a porous insért at some downstream station
through which a gas is being injected into the boundary layer. -Rela-
tively large step sizes could be utilized upstream of the ramp injec~
tion; however, small steps must be used in the region of theé ramp
injection. Downstream of the porous region, as tﬁe flow relaxes,
larger step sizes could be used. It is very important that small grid-
point spacing be utilized in the transi?ion region wﬁere the mean pro-
files are a strong function of the intermittency distributign. Typical
examples of the above-mentioned cases are shown schematically in

figure 8. Therefore, because of the requirements imposed by a
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completely general problem where the possibility exists for abrupt or
rapidly cha.né;ing edge conditions and boundary values, as well as the
particular problem associagted with the transitional and turbulent
boundary layers, variable grid-peint spacing is utilized in the present
technigue in both the £ and 10 diréétions. Thea grid-:pai-'n‘t sz')é.cing
in the £-direction is completely a.rbj'_tlzarym The grid-point spacing-in
the n-directior}- is such that the An; (i =1,2,:..,N) " form a geo-

metric progression. . .
¢

In censtructing the difference quotients, the skefch of the .
grid-point distribution presented in figure 9 is use‘iﬁ‘dl1 foi' reference.
The dependent variables F and © af,rga assumed known‘a‘t each of the
N érid points along thé mwm-1 and wm stations, but unknown -at ‘
station 1r}+1. The AE.l and A§2 values, not Ispec;ified to be équal
are obtained from the specified x-values (xm—l«’xm’xzml) and equa-
tion (7.33a). The relationship between the An; for the chosen grid-

point spacing is given by the following:equation:
(8.1)

In equation (8.1), X is the ratio of any two successive steps, A‘r]_l
is the spacing between the second grid point and the wall (note that
the first grid point is ab the wall), and N denotes the total number
of grid points across the ch‘osen n-strip. The geometric progression
spacing of the gri;i points defined by equation (3.1) is but one of any
number of pogsible schemes. Thie particular approach has been found to.

be satisfactory by a number of investigators; for example, Bushnell and
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Beckwith (ref. 31) and Cebeci (ref. 78). The total thickness of the
n-strip can then be expressed as follows:

£

N-1 S
BV i I RS (8.2)
1l -~-K : .

Another particularly important and useful relatien is
¥ ) .

. -
r . i

Ny = &M

o i S T (8.3)
Mg AN “

3 - »
v, M . *

The spacing of the grid points is..completely -detérmined :E‘or“a. specified

set of Ty, X, and W wvalues. l?ﬁé éélecéién o%fﬁ%é éptﬂmmn;i& and .
' N wvalues for a specified T}N‘ depen_ds upon: the‘ pa;rtfié;:llé.r I;vxaobfliem‘
under consideration. The main objective in the selection is to obtain
the minimum‘nﬁmbe: of grid points with which a convergent solution mey
be obtained. That is, in order to minimize the computer;é;cessing
time per test case, it is necessaxy to minimize the total number of
grid points across the boundary layer and to maximize the spacing be
between the solution sta%ions along the surface. The lamina¥ lgyer -
presents no problem since a K value of unity is acceptable; however,,
for transitional and turbulent 1&yers,‘the value of K will be &
nuzmber slightly grester than unity, say 1.0k. ~

8.1.2 Finite Difference Relations

Three-point implicit difference relations sre used to reduce the
transformed momentum and energy equations (egs. (7.39) and (7.40)) to

finite difference form. As previously mentioned in Section 8.1.1, it



78

is assumed that all daté. are known at the stations m-1 and m (see

fig. 9). We then wish to obtain the wiknown quantities at the grid

points fer the m+l sbation. The notations G and H are

utilized in the following development to represent any typical variable.
| Taylor' series expansions ‘are fireh written about the unknown grid

point (m+l,n) in the E-direction as follows:

3

2 - 3,

- A, AE .
‘ D, D, . L
G,n= Gl ,m ~ 28p(Ge dpay,n + ?(G‘QE)'m-{-l,n - —6-(Gggg)m+1,n LIRS
S © §8.4a)
and . - l
Co ] - ~(A§l + A§2)2 .
Gm-:l.,n = Gm+l,n- - (Agl + &:’.32,).(% )m-l-l,n * > (Ggg )m-l-l,n
. 3 ' » ' l I - [
(AEq + Ako) ¢ . .
- —--.-——6-—-—-——-—-(G-§§g )m'[‘l,n + . s - (8-1|-'b)

4

where subscript notation has been utilized to denote differentiation;

. aG\
that is, Gg = (a—§>, ete.

»

Equations (8.hka) and (8.4b) can be solved to yield

pYe _ XlGID.‘[‘l,Il - XZGIII,IJ. + X3Gm-l,n

Neo(DEy +.AEp)Y
-+ 6 Gggg + o . . (8.5)

DELAE L. AP, i
Gni1,n = FyCGp,n - XﬁGm—l,n + 12 é_ + Agl)(i'rg,g +... [(8.6)
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The Xy,Xp;..+,X5 coefficients appearing in equations (8.5) and (8.6)

are defined as follows:

Xl = ‘(80?)
Agl + AEQ
NEL + AR
X, =2 L 2 (8.8)
Agl
AENE '
Xy = 2 12 (8.9)
£Eq (D8 + £0E)
}(lF = é.%.l_t_ﬂ_gg (8,]_0)
and
Agg
= — 8.
%5 AL (8-11)

Taylor series expansions ave next written aboul the unknown grid

point (m+l,n) in the 7-direction as follows:

2
A'I]n
Crtl,n+1l = Gmil,n *+ At (G dL,n + —E—'(Grm il ,n

3
FA\
Ml 7

and
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L3 o

An
n-1 ’
- (GT}"!]‘)m-I-‘l,n

G131-%-:I_,n--l = G"J:tH-ZL,n - Ann-ZL(Gj{l')m+1,n."'

ATln---.l(G_ * - T T

) miln T . ' (8.12Db)

Equations (8.12a) @nd (8.12b) can be solved to yield

8712 mHl,n

Y1641, 041~ Yolbyad ,n + ¥z0mit,m-1

+ (‘A“n-lz)‘ = ”n)gmm N (6.13)
and
3G .
l(ﬁ)m-l—l,n = ?lp Gmtd,n¥l = ¥5CGm+i,n = Y6Gmil,n-1
- ﬂ?_g"i& Gy + + - - . (8ak)
The Y

1,’1’2,... g coefficients appearing in. equations (8.13) and (8.1k)

are defined as follows:

2

Y, = . . (8.1%)
Any (A, + ANy 5 )
¥, = 2 (8.16)
Aﬂn Aﬂn-l
2
T3 . (8.17)

&y g (Any + AU o | )
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AY
-1
- n

v an (an +an o)

¢ < A

. 2 AT]n Ann--l
and

. A

T, = n

An, g (A +an 4 )

For the case of equally spabed; grld points in
. Lo Lo
coordinates, -equations (8.7) to (8.11)and (8.15) to

the following relations:

]
g\

and

— 1 -
(2 an

(8.18)

(8.19).

(B.éO)

the €~ and ‘7 -
4

(8.20) reduce to

Ts

(8.211)
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Y5=O

where Af and AN represent the spacing between the grid points in
the £ and 71 coordinates, respectively.
Equations (8.5), (8.6), (8.13), and (8.1h) can then be written

for constant grid-point spacing as Tollows:

§§_ - Cpti,n - LLGm:n * Gua,n + 3@2 G ..
SE 1, N ER
(8.22)
G ,n = pyn - Gm~l;n + AL Geg * - - - (6.23)
agG‘ _ Gm+l ,I'.H'l - 2Gm+13 nﬁ + Gm'["l.’n_l - AT]E G +
e/ m+l,n AP 12 W
(8.2k )
and,
. G - 2 "
(%) _ Umtl,n+l mti,n-1 _ A1 o ... {8.25)
S/mtl,n 2 A 6 M

+

Equations (8.22) to (8.25) are recognized -as the standard relations for
equally spaced grid points. (See, for example, ref. 16.)
- Quantities of the form G(%%) 'tha? appearfin the governing

-equations must be linearized in order to obtain a system of linear

b
.
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difference -equabtions. Quantities of this type are linearized by

utilizing equetions (8.5) end (8.6); that is,
( 'a'g') = (0,6 p - ¥obine1,n) %18z, n - Xo%n,n + ¥30p-1,n)

+ 0(n8 Afp) (8.26)

The procedure used to linearize nonlinear products such as

(%f})(%) is the same as that used by Flugge-lotz and éBlé‘btner (ref: 15)

and is as follows:

£

-

... -G, BLE,
?q sﬁ on m,n on m+l,n an,m,n on ;11;n :

mEl,n |
B .. e
' M/, 1\ 11,0 o _ Lo
where the  terms éG— B_H are evaluated from equé.-‘
o1 fm,n - on/m,n.

tion (8.14), but at the known station, m. Equating G to H in
equation (8.27), the Linearized form for quantities of the type

2
(éc'_) is obtained; that is,

an
s » -
o e @) e
n 1,0 1 m’,n T/ m+l,n N/m,n )

where (éG— is obtained from equation (8.1k).
OM/m+1,n
The preceding relations for the difference quotients produce

lineay difference equations when substituted into the governing
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differential equations for the conservation of momentum (7.39) and
energy (7.0}, These linear difference equations mey be written as

Cfollows:

+

'AlnFm+l sl * BlnFm-!-l el + ClnFim-l sntl + Dln@m-l-l so-1
+EL®ny mt Pl o+l T Gly . ,(‘8' 29)
! 1 *
. ® (S
AenFm+l, n-1 t BenFmﬂ.,n * GZnFmH; sl + Dzn, m+l,n-1 . <
+ Egn@m+1,n + an@m+l,n+1, = G2, ° (8.30)

The coefficients A1,,Bl ,...,0L,,A2.,...,G2, are functions of gran-
tities evaluated at stations m and m-1 and are therefore known.

These coefficients are presented in the appendix.

8.1.3 Solution of Difference Equations

The proper boundary conditions to be used with the difference
equations for the specific problem under consideration are specified
in equations (7.45). The system conbains exactly 2(N-1) motbually
dependent equations for 2(N-1) unknowns since the boundary conditions
are specified at the wall (i = 1, see fig. 9). This system of equations
can theﬁ be simuttaneously solved for the 2(N-1) unknowns at the n+l
-station. The system is of a very spec;ial type, since a large number
of the coefficients in the system are zero. The simultaneous solution

technique has been discussed in detail by Flugge-Lotz and Blottner
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(ref. 15). A discussion of the technique as applied to the incom-
pressible laminar boundary-layer equations is also presented by

Schlichting (ref. 2, pp. 181-184). {See, also, Richitmyer, vef. 83.)

8.1.4 Solution of Continuity Egquation

It is imporbtant to nobice that the transformed normal component
of vélocity, V does not appear as an unknown at station mil in the
difference equations (‘eqs. (8.29) and (8.30)). This arises because of
the way gquantities of the type V(%%) are linearized (see eq. (8.26}).
Consequently, equation {7.38) can be numerically solved for the N-1
unknown values of V at station m+l once the values of ¥ and @

are known at station m+l. Equation (7.38) can be integrated to yield

the following relation for V at the grid point {(m+l,n):

T oF
Vm—f—l,n - Vm—i—l’l "J; (25 g'g" + F)dﬂ (8.231)

where vm+l,l represenlts the bc.xundary condition at the wall and is
defined in eguation (7.4t7) as a function of the mass transfer at the
wall, (p*v%)W The integral appearing in equation (8.31) eanﬁ the;l be
mmerically integrated across the n-strip to obtain th;a D{Ll values
of V. In the present analysis the trapezoidal. rule of inftegration was
utilized. However, any sufficiently .accurate nu;nericai"prgcéd;re 'C(;Uﬁ_d

be used (see, for example, refs. 8% or 85).



86

8.1.5 Initial Profiles

*

Initial profiles for sta.rtlng 'the fln:l.te d:l.fference scheme are
reqm.red at two stations since three—po:;.nt dlfferences are utll:i.zed ‘
(see fig. 2). The initial profiles at the S'ba.gnartaon pOl{.’lt or line for .
blunt bedies, or at x = 0 for sharp-'t:ipped 'bodiesl‘,_are ;J'btained byran
exact numerical solution of the similar boundax:y—layer_equatjfer;s: The
equations are solved by a fourth-order Adams-Bashfox:th-Moulton fixed-
step size integration msthod with a fourth-order Runge~Kutta Hechnigue
(ref: 85) used to start the integration. The N-1 velues of F, O,
and V which are now known at the N-1 equally spaced grid points
are numerically redistributed te NW-1 grid points whose spacing is
determined from equations (8.1) to (8.3) if a variable spacing is
required. The sécond intitial profile located =b shtation m is assumed
to be Identical to the one located at station rm-l. Anyﬁ errorg that
might be incurred because of this assumphbion are minimized by wsing an
extremely smell A&, that is, an initial .s.'t:ep gize in the physical
plane on' the order of Ax =1 X‘10'5. The solution at the unknown
station, m+l, is t]gen obta:i:ned by the finite difference method. One
advantage of variable step size in the t-coordinate is clearly demon-
strated for blunt body flows. Davis and Flligge-Lotz (ref. 16) found
that from the standpoint of accuracy and compuber processing time
step sizes on the order of 0.005 in the physical plane were required.
Howe{rer, in the present solution, extremely small, equaliy spaced step
sizes can be utilized in the stagnstion region and then increased to

more realistic velues once the errors due to the starting procedure
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have approached zero. Davis and Flugge-Lotz (ref. 16) w:are primarily
interested in obtaining solutions for only a few nose radii downstream;
consequently, equally spaced but sufficiently small grid-point spacing
in the 'x—coord.in;a.te could be utilized. However, Ffor engineering ca.icu—
lations where solu‘l;ions may be reg_uitt:ed as far downstream as 1,000 or
more nose radii, one cannot afford to use equally spaced grid,poin’tsp.

Tt is also advantageous to have the capability of starting the
solution from experimentally measured profiles, .especiaj_‘i_y in the case -
of turbulent flow. This capability has alsc been incorporat;ad into
the digital computer program used in the present anslysis. This capa-
'biliky is extremely useful for cases where one -cannot easily locate the

origin of the boundary layer, for example, nozzle walls.

8.1.6 Evaluabtion of Wall Derivatives

*

The éhea.r gtress and heat transfer gt the wall (eqs,— (7.97)
and (7.106)). are directly pr;)portional to the igg;x‘a,dient of T v and , ®
evalua%:ed‘ at the wall, respectively. Using G to, represent "a. gfenexra.l“. .
quantity, where Gm—l-l,l is not specif'ifad to be zero, the four-poin;: \‘
difference scheme used to evaluate derivatives at the wall is aé

follows:

m . ) t »
(-B—n.)in-l-l,l = T70miL,r Y.eGm"‘l:E * Yobnia,3 * Yrelme,h - (8.32)

where the coefficients YT"" ’Y.'LO are defined by the following

equations:
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@k +E)F[R@ +K) - 1)+ @+ E)

Yo = 8.3%a)
T (1 + K1+ K+ KR any ( 2
1+ X+ K°) K 8
- .33b
YB. % o (8.35b)
.“. - + ¢ 4
1+ K : ’ )
Ty = - @+ +3 o . {(8.33¢)
1+ KX An, b -y
and (38!
= l 4 ) .
Y0 ‘(8.53(1) .

(l+K+K2:)I<;5Anl ot o K

For the case of equally spaced grid poiﬁts ih the n-direction ’

(K = 1), equations (8.33) become

1 5

R Ty

18
Y8 =

( "9) ) (8.34)

95T @M |

2
Y =
L G

and equation (8.32) reduces to the familiar four-point relation;‘ that is,

oG 1
W = - ——(116G, - 186, + 9G - oG
(37])m+1,1 6 /—\11( w1 mil,2 T Fmel, 3 1, )

(8.35)
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8.1.7 Eddy Viscosity Distribution

The major advantege of the present solution technique in rela-
tion to Cebeci, Smith, and Mosinkis (ref. T78) and Beckwith and Bushnell
(ref. 86), for example, is that the momentum and energy equations
(eqs. (8.29) and -(8.30)) are simultaneously solved without iteration,
whereas in the above two references the momentum and energy equations
are eacl'; individually solved and iterated for convergence. ‘The eddy
viscosity function distribution € and < (see' egs. {7.15) and (7.16)\)
and their derivatives with respect to 17 represent somewhat of a prob-
lem unless extreme care is used.‘. in the initial extrapolation of the
known values of €p.),p and €y p  to the unknown station, mtl,n.

During the development of the digital compubter program, the
numerical method would freguently 'b’ecome unstable in either the tran-
sitional or turbulent flow region (see Section 8.1.8 for discussion of
convergence and stabili‘tyj. This problem would always occur in one of
two ways. In some instances an apparently converged solution would be.
cbtained, but the distribution of boundary-layer thickness would not
'be smooth. In other instances, where the transition was abrupt or
where boundary conditions were abruptly changed, the solution would not
converge. The problem was finally traced back to its origin, which was
a nonsmooth or "rippled" eddy viscosity distributien across the ;Layeri
These "ripples" first occurred in the regic!m where. the ii}n_e’r and outer.
eddy viscosity models were me;tcéhed.. If Athe initial "ripples” were

. , . - '

below a certain level, the solution would . apparently cohverge, bub

slightly nonsmooth boundary-layer thickness,diqtribﬁtions woulid‘.o.ccur.,
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If the initial "ripples" were above a certain level, the disturbance
would érow very rapidly as a function of £ and propagate throughcut
the layer as the solution proceeded downstream. Vhen this occurred,
no valid solution .could be obhained d‘owns—tream ‘of the initial
disturbance. ‘

Te initial extrapolation of the known values of Em,n and
Em—l,n to the unknown grid point (m+l,n) is obtained as Ffollows (see

eq. (8.6)):

*

'Em—i-l,n = Xl!«-ém',n - X5Em-;,,n L {8.36)

However, there is no assurance that the distribution of the extrapolated
values at. station whkl will be snfgoth across the layer for all posaible

flow conditions. If "ripples” occur in the extrapoiated T aistribu-

tion and if these "ripples" are of gufficient magnitude to cause the

gign of the defivative of € with reé&;eet to . 'Q. to alternate, then

1

the method becomes highly unstable. .
The requirement of small grid-point spacing in the law of the
wall region contributes to the insgtability problem in that the size of
an "g.ccepta,ble ripple"” is a function of the grid-point spacing being
utilized in the n-di(rection. For turbulent layers where the viscousi
sublayer is relatively thick, the grid-point spacing in the ouber
porticn of the law of the wall region will be large in comparison to:
cases where the viscous sublayer is relatively thin. Consequently,

the former case can tolerate a "larger ripple” in the region of the
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match point than can the latter case withoutb acperiencing an alterna-
tion in the sign of the derivative of € with respect to 7.

There are two possible ways to eliminate the problem caused by
the "ripples" in the eddy viscosity distribution. The Tirst approach
is to develop an iteration scheme in which case the present solution
technique has no adventage in relation to the technique used in
referenge 86; that is, the advantage of @he unique simultaneous solu-
tion would be lost. The second approach is to mmerically SI;IOOth- the
extrapolated eddy viscosity distribution prior to the matrix solution.
Both approaches were tried by the author during the development phase
of the digital cﬁmputer program. The second approach was incorporated
into the solution and will be discussed in the remaining poxrtion of
this section.

The problem posed by the "ripples" in the eddy visépsity dis-

tribution, 4f they exist, can be avoided by ubilizing a three-point

mean value for € at station m+l,n, that is,

Em-:~1,n-1 + i ,n Em+1,n-z~-1
(Cav)mea,n = % : (8.37)

where Eavr denotes the three-point mean of the eddy v:.i.s;:osity func-
tion. In the present analysis the eddy viscosity func‘bionsf,appearir;g
on the right-hand side of equation (8.37) ;,re f:li.rst obtained ab ea_.clglli*
grid point aecross the m+l station from equation (8.36). . Having ‘

obtained these values, the three-point mean is -evaluated at each of

the N-1 grid points from equation (8.37‘5. The natrix solution is
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then obtained for equations (8.29) and (8.30). Having obtained the
N-1 walues for F, @, and ¥V at station mtl, the eddy viscosity
distribution is recalenlated at the mil shation prior to moving to
the next £ grid-point station. This procedure hasg been found to 'Ee
stable under all ciremmstances and to yielé con%ergent solutions for.'

transitional and fully turbwlent boundsry layers.

8.1.8 Conversence and Stability

The implicit difference scheme ftilized iﬁ theﬁpresénﬁ:aﬁalysia‘
is consistent; that is, it may be congidered as s form?l approximatibn
to the governing partial differentialiéquations. A Tinite di%ference
scheme is consistent if the difference betyéen the paffial'differential
‘equation and the difference equation goes to zero as the grid-point
spacing approaches zero. That 1s, a scheme is consistent if the
tfuncation error éoes to zZero as the grid-point spacing approaches
Zero. The difference guotients used in the present analysis satisfy
this regquirement. However, the fact that a system is consistent does
not necessarily imply that the solution of the difference equations as
the grid-point spacing approaches zero convérges to the actual solution
of the partial differential equations. In order for convergence to be
assured, the differegce equation system must be convergent. Unfortun- _
ately, for the boundary-layer equaﬁions‘as used hersin there is no
completely satisfactory mathematical analysis with which the conver-
gence or divergence of the present scheme can be demonstrated (ref. 15).

The convergence of the system can best be studied numerically by vary-

ing the grid-point spacing. This approach is used in Chapter IX of
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the present paper. Convergeflce problems ecari "become vexy critical in
the turbulent region of the boundary layer when the‘vilscous sublayer is
not. properly treated. Of coursze, one should keep in m:l_nd that there
are no exact solutions of the mean turbulent boundary-layer equations
against which comparisons for convergence may be made:

The gtability of the finite difference scheme, as opposed to the
convergence, can be carefully studied mathema.tically.‘ The three-point
implicit scheme used. in the present method is stable regardleés of
the grid-point spacing (ref. 15, pp. 4h-k9). The stability of the
method is the major advantage of the implicit. difference scheme in
rela.'ti;)n to the explicit approach where it is necessary to control the
grid-point spa;:ing through a stability parameter. (See, i"or example,

refs. 87 to 91.)

8.1.9 ¥Yiscous Sublayer:

‘The relative thinness of the viscoué sublayer {Section 7.1)
a:nd its importance in determining the correct shear stress and heat
flux at the wall requires that véry small grid-point spacing in the
n-direction be'ubilized in the wall region for the prevsent mumerical
procedure. Although a careful study of .either the minimum number .of
grid pointe That must be located in the viscous subla;y"er'qr the ;thimum
spacing of the grid points across the entire boundary layer has not
heen :completed, it has been found by the author that at least 5 to L0
grid peints in the viscous subla;{rer at each x-solution station ﬁll

yield a convergent solution. (This study is currently being completed _'

£
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and will be reported in a subsequent NASA publication conteining the
digital computer program. ) ‘

Preliminery data obtained from cxperimental studies and a
thorough literature survey by the Gas Dynamics Section at the Langley
Res:aarch Center indicates Lthat the viscous sublayer thickness, yf”

Sele
ranges from approximately 8 to 14 over the Mach number range from 3

2

to 17 for adisbatic to cold wall conditions and for air -or helium flow
4 3

mediums. (These data are currvently being processed for public_a.tl':'i_on by

T

W. D. Harvey 'and F. L. Clark at the I_gangley"Re,searc}f Center.) (onse-

quently, a mean value of y'; = 10 and equabion (7.11635),51101.{5 a

2.-

reasonable estimate of y-g ;. @s follows: ' T -
M o L ! . . ' - . -

[

+

“ . .
X

10y , _
o > W L . . |
S.1. T T R . (8.38)

l e \ 3

pv*f R F ) f. ; fl.
where the locdl values of V¥ and p¥% in equation (7:116a) have been

. . . ’ L s

replaced with the known wall values In eguation (.8.38); An accurate
estimate of the value of T% for a particular case can be obtained
from a punber of current -correlations, for example, Spalding and Chi

(ref. 92). Therefore, an estimate of ¥

.., can be obtained from

equation (8.38); however, the numerical solution is obtained in the
transfoxmed plane. The sublayer thickness in the transformed plane can
then be obbtained directly from equations (7.33b) and the estimated v o
value, The final step is to estimabte The boundary-lasyer thickness and
the op.tiﬁnun total number of grid points across the boundary layer.

Having reasconegbly accurate estimates of the wviscous sublayer thickness,
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the total boundary-layer thickness, and the coptimm number of grid
points, equations‘ (8.1) to (8.3) can then be used to obtain the spacing
parameter, K, in order to place frogn 5 to 10 grid points in the vis-
cous sublayer. An example of the effect of grid-point spacing on the

- eonvergence of the numerical method is presented in Section 9.1.

8.2 Digital Computer Progrém

The repetitious. nature of the implicit finite-difference scheme
makes the Iriethod well suited for digitael computers. The present solu-
tion techrique was progfamed by the author for the €DC (Gontrol. Data
Corporé.tion) 6000 series cemputer opersting on Scope ‘3.‘ The coded:
program will not be presented herein since it is quite lengthy aé well
as currently being. documentedifor publication by the Wational Aeronautics
and Space Adminisbration.

The main objectives in the development of the computer program
used in the present study we‘re accuracy, minimum computation process .
time, flexibility, and simplicity. The accuracy requirement is, of
course, of parasmount jmmporta;lce in any numerical proceduure.— The
~coe 6000 series machines cost on the order &f $1 thousand per hour to
opérate.' Con'sequen‘tly', the computer process time per test cas:a mist
be held to a minimum by optimum p;:ograming propeciures. Both of these
requirements should be carefully cc;nsidered‘ in any digital computer
program. However, flexibility and s_:i.mp(li’.ci’cy a.re;" often overlooked x'«rhen
the primary objective of the stufiy is to obtain golu‘tions for one

particular class of flows ir order 0 satlsfy one specific requirement.
. 4 e 4 - a
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The importance of simplicity in input requirements is also often neg-

lected when the needs of other personnglkassociated wi%h the research

center, university, or aerospace industry are not taken into considera-

¢ top

tion. These objectives were necessary in_ the presént paée‘since the ‘?
¢ i
program was developed by the anthor for general use a,t the Natio'na.l“ (
Aeronautics and Space Administration, Langley Research Ceﬁter\. Some of
the more important points concemi’ngﬁhe flexibility of ‘i:he program
will be discussed in the remaining portien of this seetion.
The input reguirements that must be gpecified in oxder to obtain

the externgl flow -are dilscussed in Section 7._8. The input values for

P¥

t,07

T%E:,m, Mo;, 0s  Op» Vs C;, and 8% are dependent upon only
the free-stream test conditions and flow medium. However, Pg which
must be specified as a function of the houndary-lsyesr coordinate, x¥*,

is a function not only of the test conditions and flow mediuvm, bub slso

body geometry. The pressure distribution, P¥%, as a function of the
boundary~layer coordinate, x¥%, is obbained from experimental data when
possible cr from the method presented in reference 80, when applicable.
A very useful opbion for engineering studies of the boundsry-layer
characterigtics has been provided‘by Programing Modified Newtonian
pressure relations (ref. 93) directly into the program for blunt-body

flows; that is,

: \=%/7-1
P = Pt’w(l P 222 Mf,) (1 + e Cy cos2¢> (8.39)

2 max
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where the maximum pressure coefficient, ch may be expressed as
ax

Y *rA .2 ' 8.k0
“Pnex ?’*l[l nﬁ(wz)] E-40)

This option is particularly useful for cases where engineering design
data are reguired for.a particular class of configurations over &
broad range of flight conditions. ‘A good example would be the class
of power-lew bodies for which equation (8.39) will yield an accurate
representation of the true pressure ai§triﬁution at hypefsonic,speég% T
{ref. 94). This class of bodies may be described mathegaticaily as

v A

follows:
T - a ' N
.._O.. =(E) . . (8.41)
rb L) - . ) ‘ o

where 1, designates the base radius for a body of léngth L., For

this particular example, the power-law exponen%, a, could be varieq

to study the viscous drag over a range of flight conéitipné with &
minimum of input requirements. Another very useful application would
be to study the heat transfer to the vehicle over a givén flight trajec-
tory. Tn this case the variable input required for the solution would
be specific values of Pﬁ}m, Ti’m, and M, at points along the tra-
jectory. The most probable Iocation of transition and the extent of
the transition region would be obtained from empirical correlation
relations (see Section 7.5).

It should be noted that the above-mentioned class of bodies

(eq. (8.41)) presents somewhat of a problem in that the boundary-layer
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coordinate, x, cannot be obtained in closed form as a function of the

body coordinates, z and r,. This presents no problem in the

present program, since the program contains an iteration subroutine
which will obtain x as a function of the body coordinates for any

geomatry vwhere r_ can be expressed as a function of 2.

o]



IX. EXAMPLE SOLUTIONS FOR THE SYSTEM OF EQUATIONS

The finite difference -solution technique developed in Chapter VIII
together with the transition criteria, transitional flow structure, and
transition extent discussed in Chapter VII is applied in the present
chapter to a number of typical supersonic and hypersonic configura:i.:ions
oi: -current interest. In all cases the gas is BSS‘U.I'Iled. to be perfect air
with a constant ratio of specific heats, 7, equal to 1.4, a constant
Prandtl number, o, equal to 0.72, and a constant static turbulent
Prandtl number, Oy 5 equal to 0.9. The molecular viscosity, W, is
evaluated from Sutherland's viscosity law feg. (7.32)). The external
Pressure distributions used are either experimental or were obtained by
1;he suthor from an exact .solution of the full dinviscid Euler equations
obtained at the Langley Research Center (ref. 80).

The selection of a ty‘pic;al set of 1;est cases always pfesents a
problem since there are so many possibilities from which to. choose.
However, the cases considered in the present chapter should serve as an
indication of the merits of the solution technique as well as the

validity of the system of equations.
9.1 High Reynolds Number Turbulent Flow

The accurate prediction of bounda.;ty-léyer characteristics for
high Reynolds number turbulent fiow is. important Iin the design of high-
gpeed vehicles.- In particﬁlar, it is important  to be. able to px"e}iict

with accuracy the skin Friction drag. An excellent comparison case of

99
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high Reynolds number turbulent flow is the data of Moore and Harkness
(ref. 95). The experimental skin fricbion data were measured with a
floating element type balance. The test model was a 10-Poot-long,
L-foot-wide sharp (0.002 to 0.00F inch thick) leading-edge flat plate.

The test conditions were as follcows:

M, = 2.8

P = 2.088 x 10% 10/£t°
£

¥ ., = 5.6 x 102 %R

=

L = 9.7 x 1071
L

The experimental transition location was not reported in
reference 95. Consequently, for the numerical calcwlations, the tran-
sition locgtion was determined by the stability index (—Section 7:5.2.1)
and was assumed to occur at the x-station where X .. achieved a value
of 2,500. ' The extent of +the transition region was automatically calcu-
lated from equation (7.85). The intermittency distribution was calcu-
lated from equation (7.81). The selution was started at the leading
edge of the sharp flat plate (x = 0) by 'oﬁtaining &n ‘exact ‘numerical
solution of the similaxr 'boﬁ.xnda.r,y"‘-la.:ver equations (egs. (A-il-'r) to (A-49))
by the method discussed in Sec‘bion. 8.’1.5.’ ’The‘ gric'i-.-p:):‘un.t‘ spécing wa.s

varied in both the & and 10 directions in order to theck for conver-
gence. It should be neted that the sélection of (Xygy)op = 2,500
o et

was based partially on experience angd pé.ftia:lly :ofl It}le results presented
L ¢ .
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N - . . . - ¥ . -
in Section 9.8 where the variation of (_Xmax)cr with RY is dis-
cussed. The location of transition ranged from 0.8 t6 1.4 inches

L]

from the leading edge for (Xma.x)cr between 2{500 and- 3,500, respec-
tively. This variation in"t.ranéii:ion *locatric_mr had r}eglig:i:ble effect on
the skin friection coefficiégts‘ ‘in.the “fu.l:fy turbulent reé;lon. of f.'L'c:w.
The numerical results for the skin frict:f.ci'n, coefficieélt .~distri-
bution are compared to the ex‘pe.:finién‘?a.l ‘da.jga'ir% Figure J.:O(a). The
agreement is excellent over the entire Rey‘nold‘s‘ mmber fa.née of the
experimental data for K = 1.0%; however, for K = 1.0l, convergence
was no‘t; atbtained. It should be noted at this point that the terms
convergence and stability, as used in relation to the numerical method,
are defined herein as in reference 15 and a.re.discussed in Section 8.1.8.
The divergence (fga,ilure to obtain a convergent solubion) for K = 1.01
is atbtributed to an insufficient number of grid points in the wall
region; in particular, in the thin viscous sublayer region. This
particular problem is discussed in Section 8.1.9. The effect of the
grid-point spacing parameter K on the numerical solution was studied
for additionel values of 1.02, 1.03, 1.05, and 1.06. The solution was
found to diverge for K < 1.02 and converge for K'>1.02. The Cf,
results for K > 1.02 ‘(other than 'K = 1.04) are not presented . since
the variation of Cfe with K +would nobt be discernible if plotted to
the scale of figure lota-). The convergence criteria used in this
particular. example was :to decrease the grid-point spacing until any
change which cccurred in cfe at a given x-solution station was beyond

the fourth significant digit. The laminar curve shown in figure 10(=a.)
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was obtained by'suppressing transition (I" = 0). Grid-point spacing

in the E-direction was varied from &Ax = 0.001 to 0,04, and convergence
to the accuracy of the e}@‘erimenta_ﬂ_ data was obta.in.ed for all values.
Because of the abruptness of transition, step .sizes greater than

&% = 0.0 were not studied. ‘

A comparison to an e:cpex::iﬁnental velocity prof’:i:le is presented
in figure 10(b).  The pmfﬁe was obtained at an Re, value of
8.45 x 107, No experimental data were aj%a,ilé.'b]:le for y'+) values less
than 102'.. The agreerﬁent between the nume'x::_lca.l ;;'és‘ults_; and ;chg experi-
mental profile is seen to ‘bg véry good. | T o

. L. '

Typical profiles ofrﬁF, Q, IPtI-n/,Rtnal,‘eé anci M/Me ‘jus{: prior
to transition (Rex = 1.b6 X 106) , midway thrpﬂgh't_he trans’:i’_'tioh region
{Rey, = 1.96 X 106) 5 a:nd at th'e c-ompletion‘ of trz;nsition (Rex = 3.1k X 106)
are preSen‘ted- 1n figures 10(c) to 10(F), résp'eci':ive:lyl o’ experimental
data were avallable in this region; however, the results are, in
general, typical of any transition region (see Section 9.8). The
intermittency distribution and boundary-layer thickness distrﬂ;u_tion
in the transition region are presented in figures 10(g) and 10(h),

respectively.
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Figure 10.- High Reynolds number turbulent flow.
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9.2 Tripped Turbulent Boundary Layers

In many of the current supersonic wind-tunnel facilities it is
often necessary to trip the J.am;i_nar boundaxy layer artificially in
order to obtain turbulent data. A good eiample of turbulent data
obtained in tripped boundary 1a.5,rers -is that of Coles (ref. 9€). These
data were obtained in the Jet Propu.ls:l.on Laboratory 8 EO—mch super-
sonic wind tunnel. The test model was a. sharp lead:.ng edge flat plate.
The free-stream Mach number was varied from 1. 966 to. Lok, . Test
numbers 30, 20, and 22 (see page %3 of ref. 96 ) were: selected ‘as typical

1

comparison cases. For these three cases the lamlnar boundar,sm layer was
.

tripped by a fence 1oce:bed at the leading edge of the flat. pla,te (see

fig. 40 of ref. 96). The skln friction was measured at three surface

locations with a floating element balance. Bourlldaryr-layer\ profiles

were measured at x* = 21.48 inches.

The test conditions for the three comparison cases are listed

in Gabular form below.

| coles test Wo.| M, Pj;)m 1b/£t2 T’é,; R | /T oo
30 1.9821 1977.%k 1 shk5  10.8295
ee 3.70L| 2868.5 . 561 . 7152
22 b.550 | 8132.2 55k 676

Trensition was assumed to occur near the leading edge -of the

plate for the numerical calculabtions.,. xf; ;1 = 0.605 ££, and to be
>
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completed (T = 1.0) at x”é’ g = 0-010 ft. Twenty equally spaced
x-solution stations were used in the region 0 < x* < 0.010 £t; the
x-solution stabions were then equally spaced 0.0l £t apart over the
remainder of the plate. The total nuwmber of grid points in the '
-direction and the grid-point spacing parameter K were assighed
values of 301 and 1.0k, respectively. The compuber processing time

per test case was approximately 3 minutes. The numerical results are
compa;r‘eq to the experimental velocity and Mach number profile data in
figures 11(%5 to 11(f) for the three test cases. The agreement between
the numerical results and the a@eriﬁental data is very good for all
-'ﬁhreé t;st cagsas. In particnlar, it should be noted that the experi-
mental skin'friction coefficients (see figs. 11(a), 11(c), and 11(e))

T were pre}dictedf to within 1 percent, which is well within the accuracy
;"an’ge of 2*pe_ercent as quoted for the dat?, in reference 96.

Numerical results obtained by Pletcher™ (ref. 97; see, also,
ref. 98) are also presented on figures 11(a) to 11(£). A three-layer
mixing lengtia concept was used in reference 97 to model the turbulent
transport terms. The resulting equations were solved by an explicit
finite difference technique using the DuFort-Frankel (ref. 99) differ-
ence scheme. The agreement between the numerical results of refer-
snce 97 -and those of the present solution is very good for the three
test cases. To the author's knowledge, the method used in reference 97

is the only explicit finite difference technique currently being used

to solve the mean flow turbulent boundary-layer equations.

1Mhe author would like to thank Professor R. H. Pletcher,
Department of Mechanical Engineering, and Engineering Research
Institute, Towa State University, Ames, Towa, for permission to use
these dats.
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(a) Velocity profile and skin friction coefficient For M, = 1.982.
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boundary layers.
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9.3 Laminsr Flow With Mass Injection

In some instances it may become necessary to protect high-
performance vehicles by transpiration cooling (mass injection at the
wall). An example of laminar data that may be used for comparison is
presented by Marvin and Akin (ref. 100). The data were obbtained over
a range of injection rates for a sharp-tipped 5° cone. The cone was
solid for x* < 3.75 inches; the remaining portion of the cone was

porous. The test conditions were as follows:
My = 74

8.6 x 10% 1b/£t?

1.5 % 107 °R

= 3,8 x 107L

The.'@ir‘injection rate ranged from 1.056 X lO'lF slugs/ (£t°-sec) to a

~ mazcimm value oaf 3,84 x 107% slugs/ (££2-sec).

‘ A compaé'ison of the heating rate at the wall normalized by the
heating rate at the wall just prior to the ramp injection (x = 1) is
presented in figure 12(a). The mass injection distribution was not
u;l‘:ifom, a8 can be seen from the plot of the actual injection distribu-
tion normalized by the ideal injection rate. The non-uniform distri-
bution of mass injection was utilized in the numerical solutions. The

agreement between the numerical results and the experimental heat trans-

fer data is excellent over the entire injection range.
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(a) Comparisons to heat-transfer data.

Figure 12.- Hypersonic laminar boundary layer flow
with mass injection.
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For the maximum injection rate ((p*v¥) = 3.8: slugs/fta/sec),
the boundary layer separated from the cone surface at x = 1.92. The
calculated velocity and Mach number profiles at x = 1.92 are presented

for the four test cases in figures 12(b) and 12(c), respectively.

I-O— ) * * f12
Present solutions  (p"v"),, , slugs/s5.
O . ’/,
-
_ 1.056%x10°4 _ -7
-
of — - e | T
““““““ 3-840 // /
-
P
/

O .2 4 6 .8 1.0
F

(b) Velocity profiles.

Pigure 12.- Conbtinued.
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Figure 12.- Continued.

The vorticity Reynolds number distribution for (BH*VT“.)W = 0 is pre~-
sented in figure 12(d). The maximum value of the vorticity Reynolds
number, X qvs 18 seen to increase with increasing x. In particular,
the y/ 5 +value abt which xmax occurred is in excellent agreement with

the location of the critical layer position (see ref. 67). The effect
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of mass injection on the vorticity Reynolds number distribution is
presented in figure 12(e). Increasing mess injection is seen to
increase the va;ue of  Xnax at a given x-station as well as move the
location at which the maximum occurs, (y/s )Xma.x toward the outer
edge of the boundary layer. To the author's knowledge no data are
currently ava;.ilable for the critical layer position with mass injec-
tion at the wall.

This particular example is a2 case where variable step size must
be utili;ed in the region of the ramp injection {x = 1.0). For this
test case, the Ax values (grid-point spacing in x-direckion) were
consﬁant and equal to 0.0L up o x = 0.99 &t which point +the step
size was aecreased to a value of 0.001 through the ramp injection
region. The step size was then progressively increased up to a value
of 0.01 at x = 1.5. The flow was laminar; consequently, K was set
to unity and 101 equally spaced grid points were utilized in the
N<direction. The digital compuber processing time per test case was
approximately 2 minutes.

It should be noted that the test conditions as listed in
references 100 and 101l are not correct. The conditions given herein
are correct and were obtained by the suthor from Mr. Joseph Marvin at

the Ames Research Cenber.
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9.} Blunt Body Flow

The numerical procedure ag presented in the puesent paper has
been applied to a number of blunt body supersonic and hypersonic flows.
A typical case is presented in figure 13 for hypersonic flow. The
pressure distribution was obtained by the author at the Langley Research

Center {ref. 80). The test conditions were as follows:

M, = 10.4 ¥ = 2.2 x 107 °R
s >
T‘X‘
¥, = 2.219 x 107 1b/ft? M= 2.5 x 107t
2
T} e

Solutions for this particular example have been obtained by Marvir and
Sheaffer (ref. 101) and Clubter and Smith (ref. 102). The distribubions
of the heating rate at the wall’referenoed to the vdlue at the stagna-
tion point (x = O) and the. shear stress at the‘wall are compared to
the results presented in references 101 and 102 and are presented in
figure 13.

Equally spaced grid points were used in yhé E-direction. Solu-
tions for Ax +values of 0.001 to‘0.02 were obtained‘to check for con-
vergence. Osciliastions in the qw due to the startlng procedure
approached zero afber spproximately lO to 15 steps along Tthe surface.
The data shown in figure 13 were obtalned'u31ng fx = 0.005, although

‘much larger sbeps could be used for englneerlng calculatlons, say,

&x = 0.0L. The grid-point spacing in the n-dlrectlon Was constant '

(K

1) with a value of 0.0L. The computation time per body station:

" -3 .(
wag. about 3 geconds as compared bto- 42 seconds.in reference 102,
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d © Ref 102
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Figure 13.- Hypersonic blunt body flow.
9.5 Highly Nonsimilar Flow With Transyerse Curvature

Turbulent boundary layer data “fdr f:}.éws where variable Dpressure

i .. .
gradients exist are few in number. 'A good example of a case where

both favorable and adverse pressure gradients occur‘as well ag where

transverse curvabure effects are impor‘ta:rft"‘isi the data of: Winter,

T

I A H L
Rotta, and Smith (ref. 103). Thie model uséd in the Study was anm &xi-

symmetric piecewise continuous. confighration and is presented in

i
+ \_" ® = % 7

figure 14 (a). )

Experimental data are pres'epfted‘ in refetrence 103 only fo_i- the

region where the boundary layer is turbulent; however, the ‘soluticns
presented herein were obtained by starting the calculations at the tip
- of the sharp cone forebody (x = 0). This particular configuration has

received considerable attention over the past 2-year period.
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Calculations have been made by Herring and Mellor (ref. 10k), Cebeci,

Snith, and Mosinskis (ref. 78), and Bushnell and Beckwith (ref. 31).

*

However, the above-mentioned solutions were all started by uwtilizing

the experimentally measured profiles gt station z'= 2. To the author's
o

knowledge the solutions presented in the present paper are the first to

be obtained without any d_epen'dencé {rha:[':soever- on. experi}ller}tal prefile

or skin friction data. .

e ] . o 3 :
The test conditions Tor, the two cases considered are as.follows:

Case l e ; Case 2°
M, = 1.398 M, = 1.70
P¥ = 9.21 x 102 Ib/ft° F* = 9.92-x 10% 1b/ft2
1, ty
™ = 5,36 x 10 °R ™ = 5,36 x 10° °R
t’m t’m
s -1 g -1
Y =0,76 X 10 = Q.71 X 10
T T
t;m " t’m

The experimental Mach number distributions are presented 1n figure 14(b).
The edge Mach mmber distribution was used as an input to the digital
computer program instead of P:. Equations (7.131) to (7.13%) ang
(7 .31) were used to calculate the regquired edge conditions from the
specified edge Mach number distribubion. The initial conditions behind
the conical shock wave were obbtained from reference 105.

The initial profiles required to start the finite difference
solution were obtained by an exact sclution of the similar boundary-

layer equations (egs. (A-47) to (A-49Q)) at =x = 0. Transition was
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(b) Experimental edge Mach mumber distribution.

Figure 1li4.- Continued.
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initiated at the solutionstation, X, where Xmax 2chieved a value
of 2,500. The transition extent t;ra.s then automatically computed from
equation (7.87). The grid-point spacing in the t-direction varied
from a maximum Ax velue of O.Ql to a minimmm value of 0.001 in the
regions of large pressure gradients. Variable grid-point spacing in
the n-direction was required with a K value of 1.04. Calculations
were made for K values of 1.03 and 1.05 to insure convergence. The
compuber processing time per test .ca.se wes approximetely L m:i:nutes.

The numerical results are compared .'with the experimental data
for momentum ‘i;hickness and skin friction coefficient distributions in
figures 1k (c) to 14(f).

The agreement between the numerical -and exper:hnenta.lﬂ momentum
thickness and skin friction coefficient distributions is wery good for
‘both téét cases. In particular, note the agreement with the minimum
Cr, data point in trensition (fig. 14 (f)) and the erratic behavior
of the data in the region x <1 (figs. 14(e) and 14(F)). Tt is also
of interest. to nobte that while the E‘lolutions with transverse curvabure
were in closeab agreement with the © wvalues for x < %:.5, the solu-
tions without transverse curvature agreed best with the Cfe values

in the same region. A similer trend is presented in reference 78.
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9.6 Adverse Pressure Gradient Turbulent Flow.

The &esign enginéer is often required to make estimetes of the
skin friction, heating rate, and other boundary-layer characteristics

for turbulent boundary-layer flows in. adverse pressure gradient regions.

Good examples of such flows would be the boundary layer over a deflected
control surface (compression surface) and over thc—_z centerbedy of a
supersonic engine inlet. An example of turbuilent data obtained in an.
adverse pressure gradient is presented by McLafferty and Barber

(ref. 106). One of the test configurations was a flat plate with a
single-radius curvature compression surface at the rear of the plate.

The test conditions were as follows:

Mo = 3.0 ™ = 6.10 x 10° °R
‘t’m *
* -3 2 T -1
PT = 2.116 x 107 1b/%% M = 9.28 x 10
L, . 5[1e n o
’oo

For this particular example the pressure gradient across the

4

boundary layer was significant. However, for the'p.resen'b numerical

1

calculations, this factor was neglected since the ~sysbem of: equatfon"s‘

as used herein does not contain the y-momentum equation. The experi~
) ' ]

mental Mach number at the edge of the boundary layer was used ‘5o obkain

I

the required edge conditions. This distribubion is pres;_anted in
figure 15(a). The station x = 0 marks the beéinn:‘ung of the comn-
-pression surface. No experiﬁenta;l megsurements of the skin friétiém
were made.

For the present solution the calculated momentum thickness

Reynolds number at the beginning of the compression, x = 0, was
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Figure 15.~ Comparisons to experimental data for adverse pressure
gradient supersonic turbulent flow.
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¢

matched to the experimental value of Reg =2,5’+0 }Eq;la:l]y épace;d
x=-solution stations were used; AJAx = 0.001. Tl;e total numb:az_' of grid
points in the n-ﬁirection and’ the grid-point ';IA)E;.c:Llng para:.néte;r K weré». .
assigned values of 201l and 1.04%, respectively. The computenl:' érol:;assing
time was approximately 2 minutes. For this particular test case it was
necessary to increase the value of K, from 0.0168 to 0.0672 in the
outer region eddy viscqs'ity model. 'This increase in K2 was necessary
in order to obtain attached flow throughout the compression. It should
be noted that this particular example is the only case in the present
paper where the value of K2 is different from that given‘in

Section 7.4.1; that is, X, = 0.0168. The numerical solution results
for momentum thickness and form factor are presented in figure 15(b).
The calculated momentum thickness distribution agrees well with the
experimental data for -2 <x < 0.5; however, the numericfa.l results
fall somewhat below the data throughout the remaining comp?ession. The
agreement bebween the solution and the experimental form factoxr distri;
bution is good throughout the compression.

The eddy viscosity model as used herein (see Section Tl ) was
developed from dsta obtained in zero pressure gradient flows. The
effect of streamline curvature has been studied by Bradshaw (ref. 107).
Bradshéw found that streamline curvature (centrifugal effects) had a
strong effect on the turbulence structure for flow geometries where the
ratlo of the boundary-layer thickness to the radius of curvatqre of ﬁhe(

body surface was on the order of 1/300. For concave. streamliﬁes s such
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as in the present case, it was shown (ref. 107) that the mixing length
should be increased in order to account for the effect of curvature on
the turbulence structure.

This particular test case has also been studied by Beckwith
(ref. 14). Beckwith avoided separation in his solutions by computing
the velocity gradient, due/dx, from the stgs.tic pressure distribubtion

at the edge of the boundary layer, P, rather than PW, as used in

the present solution; however, u, and P, were calculated from PW

as in the present solution. It éhould be recalled that ‘sepa.ra.tion. was
avoided in the present solubion by ir;creasing the eddy viscosity in
the outer region. It was suggested in reference 14 that the prematuré
sépara.‘tion problem should be cbrrected Py the inclusion of the
y=momentim eq_uati;an and that more data should be obtained in adverse
pressure gradient flows in order to develop appropriate mixing length

or eddy viscosity models.

9.7 Flow Over Sharp-Tipped Cones

Fisher (ref. 56) studied the effect of the unit Reynmolds number,
Ri, on transition for a 10° ‘half-angle cone at a free-~stream Mach
number of 7. These data provideu an excellent case for cr‘ampa.rison‘a.s
well as to exhibit the flexibility of the digital computer program.

The test conditions were as follows:



+13h

My =7

P = 2.89 x 10 to 8.77 x 10% 1b/£t
’ -

™ ¥1.0%5 x 10° °R

T 5.2 x 1071

T o0

2

The bmmdaxy-l-aye; édge va.lﬁes were obtained from reference 105. The
-experimental location of transition and the extent of transition were
used in the numerical calculations. The computer proces,sing time per
test case was approximately 2 minutes. ‘
Comparisons of the numerical results to the exper:‘menté.l .
Stanton number distributions are presented in figures 16(_3.) through
16(£). The velue of (Kpay)op is noted on each figure: The agree:r‘nér;‘ﬁ
between the numerical results and the ex'perimenta.il data is ve:gjr ;good
for all six 'ﬁes’c cases. In particular, note that the’ numerica.l_.gsolu— l
tion predicted the correct peak heating and overshoot Lzl;lara.c%eristi:cs

of the two highest unit Reynolds number cases .(Lsée figs, 16(:é) and

16(£): A

Two cases similar to the above ones are présented in :E_‘iguxie'hs i6(g) ’
and 16(h). These data were obtained by P. Calvin Stainback (unpublished) '
at the Langley Research Center on a 1.0° sharp cone model. - The test

conditions for these data were as follows:
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Case 1 Cage 2

:MOO = 8 M00 = 8 , .
PE. = 2.91 x 100 1b/et? ¢ = 3.63 X 107 1b/2t°

2 > . .
% = 1.458 x 10° °R ™ = 1.367 x 107 %R

2 > ¥

: b -

‘i* = k.0 x 207% = k.2 x 307k
t,0 T‘i(‘: o )

oy “_1

) ’; i d
These two cases are typical of approximately 15 dases calculated by

the author from the same source. Results from these remaining’céses
will be presentedhin a. future publication. They are ﬁ%eéeq%gé herein
because of the length of turbulent flow in relation to that ob%éinéd
by Fisher (ref. 56). The (Xpayxler velue is indicated on the figures.

The agreement in the peak heating region is éxcellent; in particular,

note the overshoot characteristic and its agreement with the data.

9.8 Flow Over Planar Surfaces

0'Domnel (ref. 108) studied laminar, transitional, and turbulent
boundary-layer flows over a hollow cylinder. Velocity profiles were
measured at variocus stations along the cylinder. The test conditions

were as follows:
M, = 2.4

P* = 1.95 x 10% o 8.49 x 107 1b/£t°

t,



™ = 5.60 x 10° °R
£,
2
gd._. = 9. ¥ lo-l
i
£ 00

For this particular set of-calculations, the experimental tran-
sition locabion was utili;ed‘; however, the extent of transition was
calculated from equation (7.85). Cc;n‘sequently, the only variable
inputs to the cc;mputer program were the specific values of the total
" pressure, Pf"é,m, and the transition location, Xt,i'

The velocity profile compsrisons are presented in figures 17(a)

through 17(e). For a unit Reynolds number of 0.672 >_<106, the boundary layer

vas laminar throughout the measured area. The velocity pfoﬁles are
similar and the agreement between the mumerical results and e:cpgrimenta:i
data isqvery gc;od (see fig. 17(a)). For a un'_!.t Reynolds number of

2.88 x 106, laminar, transitional, and turbIJ_:I'_ent £ow occ‘:urre'd .(..sée
fig. 17(b)). Similar results were obtained £or a unit Reynolds ﬁﬁﬁbei:

of 5.76 X :I.O6 (see fig. 17(c)). For unit Reynolds numbers of 8.@-}5(1@6

and 11.5 X 106, the flow was turbulent as i)l:ef‘;en‘ted in figure lT(d) and -
i7{e), respectively. The profiles are seen t'o _'be' s:i.m:'l.la:r for the tux"-'*l ,-
bulent region. Comparisons with the experimental n}ome;:ltwn ‘bhi‘ck,nesses
are presented in figure 17(f). The agreement is se‘en,to be excdellent
over the entire u.n.it Reynolds number range. -

A further example of laminar and transitional boundary-layer

flow for hypersonic test conditions is presented in figuve 18.
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These data were obtained by Johnson (ref. 109) on a sharp leading-edge

flat plate model. The experimental test conditions were as ~:§'ollows:

R

M, = 7.8

¥ = 8.827 x 10* 10/£42
,n

¥ = 143 x 107 °R

T*
“E. = 3.88 x 1073
T o ,

The agreement between the numerical résults and the e;cperimental
Stanton number distribution is very good.

The experimental transition location, X_}_é’i, was used in the
ca;’__i_cula’fsion; howe“v.'er, the transition extent was calculated from equa~-
tion (7.87). (Note that the transition from laminar +to tur‘r;ulent flow

was not completed; that is, was not reached.) The tobtal number

%8
of grid points in the n-direction and the grid-point spacing parameter,
K, were assigned va.i‘ues of 201 and i..O'lL, respectively. The computer
processing time was approximately 2 minutes.

This particular test case is presented to emphasize that the
stability index, (xmax) or is not an inveriant as suggésted by Rouse
(ref. 64) but is, in fach, a strong function of the unit Reynolds
number, Ri. For all of the previous test cases, (Xpo)er has
varied over a relatively small range 2,500 < (Xma.x)_ca:: 543, 000

vhich might lead one to assume that, while not invariant, (xmafx)c‘r

varies only slightly. However, the present test case value of 4,000
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considerably extends this range from 2,500 to 4,000. The numerical
results cobtained by assuming that transition would occur at thé
x-station where Xp,,. was equal to 2,500 is shown'dn figure 18. Ehig
calculation. clearly indicates that no assumptions c;oncerning- the loca-
tion of experimental transition should be mgﬁe on the basis of 'bhe
magnitude of the stability index as being an invariant or a néax:
constant.

The stability index is presented as a function “of w;lit_ Refmold‘s
number for a number of experimental studies in figure 19. These values
were genersted by obtaining the boundary-layer solutions corresponding
to the experimental-test conditions and plotting the value of Xmax
at the experimental transition location as a function of the unit
Reynolds number of the experiment. Some of these cases have been pre-
.sented. as test cases in the present paper (refs. 109, 56, 108, and
two Stainback cases). A number of points of interest concerning the

sbability index are apparent in figure 19. For examﬁle, these data can

be represented by the general equation

(Xmex)or = U logio Ra + O , (9.1)

where QlL and 95 represent functional relations of the transition
parameter phase space. It should be noted at this point that all of
the data presented on figure 19 represent similar boundary-'layer flows

and that nonsimilar effects such as pressure gradients might consider-

ably alter these trends.
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The limited experimental -data presented 'on‘figure "1,9‘:i:’n@.:i:ca:b‘e
that &, is invariant, at least, for similar Jé‘iow_:nrs since the slopes of
the curves for the data from references 56, 108, and the daba frc;m
Stainback are identical., However, 1_:he coefficient 95 is definitely
not an invariant for these data. The data from reference 56 and
Stainback (unpublished) were obtained at nearly equal edge and wall

boundary conditions; however, the value of . is considerably

5

different. This suggests that & is a strong funchbion of the test

>
environment since the data were obtained in different wind-tunnel testi
facilé.ties; that is, perhaps the acoustic environment would appear in
5. The data presented for the ediabatic cylinder (ref. 108) exhibits
the same dependence on '94 as that of reference 56 and Sta.iﬁ'back
(unpublished); however, sincé these data were ob't-ained. for adiabatic
wall conditions and at a much lower Mach number than that for the 10°
sharp cone, 95 would appear to~be a function of &t lea.s?. Me’ Tw/Te’
and the test enviromment. The test enviromment would include the
effect of acoustic radiation, free-stream turbulence, and temperature
spottiness of the flow.

The author is currently studying transition data obtained over
a 'b:c:oa.d range of test conditions for both similar and highly nonsimilar
fiows. .T.he basic Iapproac‘:h being folléwed is simple in concept; that is,
obtain highly accurate bounda.ry-.-layer solutions wsing the present solu-
tion technique for the test conditiohs under which the ex_perimental
data were obtained. However, while simple in concept, the process is

guite lengthy since care must be exercised in the select:.on of the
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test cases. It is important thait only well-documented data he studied
in which the local test conditions as well as 'i:he test environment are
carefully reported. This represents a problem in itself since in, much
of the currently existing transition data no attempt was n}ade by the

experimenter to measure the basic charactgristics o:t;‘ the» test facility
in which the data were obtained (test enviromment). The eventual goal

of this study is to obtain nobt only more transition correlations but

also more insight into the actual transition process.



X. DISCUSSION.AND CONCIMSIONS

A systeﬁ of equations which describe the laminar, transitional,
and turbulent compressiblé boundary ‘layers for either planar or axi-
symmetric flows as well as a numerical method by lwh—:i.ch the system can
be accurately.solved has been presented.

THe transitional boundary layer structure was developed frem the
poin%: of view of the sta.tisticlal produqtion and growth of turbulent
spots. The passage of these spots over points on the surface resulis
in an alteration of laminar and fully developed turbulent flow. -These
alternations are described by an intemittency factor which represents
the fraction of timg any-point spends in turbulent flow, or the prob-
ability at any given instant of time that a specific point will be
engulfe:cl' in a turbulent spot. ﬁe intermittency fa,ctor’ was used 1o
modify the turbulent transport models developed for fully turbulent
flow.

Stability :theoxy and its relation to experimental transition has
been briefly reviewed. Txperimental transition data were discussed
and methods were suggested that should allow reasonable estimates to
be made for the most probable location of transition and the extent of
the transitional flow region. fhe primary objective 'o;i: the present
paper was to present a system of eguations and a so‘J;ution technique
with which the boundary-layer characteristj:cs could be obtair‘ied.;'regé,i'dn
less of vhether the Tlow was laminar, transitional; “or tu:_c"bu.lent. .

¥

Consequently, it was necessary to discuss_, in some detail, the

%

150 °
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trransition problem singe the location. of transition for a particular
flow geometry must be either specified from experimental data or calcu-
" lated from some correlation equation. A complete treatment of the
transition problem would be g stﬁdy in itself that would regquire many
years to complete. The treatment of the transitional flow structure,
ag used in the analysis, is nobt exacht in the sense of obtaining a sys-
tem oﬁ time-dependent eguations from the full Navier-Stokes. system,

but is instead ba:sed upon existing experimental data. A thorough treat-
ment of the transition location and the transitional fiow structure
81311l remains as one of the major unsolved problem areas in fiuid
medlanic§. ‘However;, the method as presented herein does provide
accurate predictions of the mean flow profiles and wall Values of heat
transfer and skin friction in the transition region. To the best .of

the author's knowledge, this represents the first time this procedure

has been incorporated into a solution technigue for the comp;l.e‘te non-

similar boundary-layer equations. ' ’ N - .
]
N +

The turbulent boundary layer was breated by a two-layer concept -

with appropriate eddy viscosity models being develop.ed,f_oi' each ﬂl@ye_x:

to replace the Reynolds stress terms in the méan :turbﬁlent boundax:;':-

layer eguations. A specifiable static turbdlent Prandtl number was

used to replace the turbulent heat flux term. A constant turbulent

#

static Prandtl number was utilized. However.‘;. any mociel ‘coild be

r

directly employed once developed from experimental data.

¢ *

N ’

The numerical method used to solve the generalided .system of

equations is a three-point implicit difference scheme for varilable
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grid~point spacing in both spatial coordinates. The method is self-
sbarting; that is, 1t requires no experimental data inpulb. The method
has been found to be highly efficient with regard to flexibility,
digital compuber processing time, and accuracy. The method is
inherently stable; that is, no constraint is placed on the grid-point
spacing by .a step size stability parameter such as in the case of
explicit finite difference schemes. However, the grid-poin”u'sp‘acing

is restricted by the maximum truncation error that can be accepted for

a

a given test ca‘s“e. To the best of the author's knowledge, this repre-
gents the first bime this pariiculaxr solution techhique- has been
applied to transitional and turbulent boundary-layer flo"ws.\

A mumber. of test cases have been presented and compared witﬁ
‘exper'imental data for supersonic and hy‘_pers'ériic flows over planar ‘ancl
axisymmebric geometries. These tes’cq cases hs:ve :I.ncluded. lamix-la.r,
transitional, and turbulent boundary-layer flows with boﬁh :E:avorable
and mild adverse pressure gradient l;istor_ies as well as a case of
highly adverse pressure gradient flow. Mass injection at the wall and
transverse curvature effects were also considered. The agreement.
between the nwn‘erica.l results and the experimental data was very good
for all of the test cases considered with the exception of the case for
high adverse pressure gradient turbulent flow. The agreement for this
particular case was falr; however, much more work needs to be done in
this particvlar area. In particular, for adverse pressure gradient
flows approaching separation, the ncrmal wmomentum eguation must be

inciuded in the governing system of eguations. There is also a current
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need for well-documented experimental deta for transitional and turbu-
lent boundary-layer flows with pressure gradient histories. These data
are needed to develop mixing length and eddy viscosity models for
pressure gradient flows. One of the more important parameters that
should be measured is the intermittency as a function of both spatial
coordinates. One of the main advantages of the present numerical
method is the .conceptual simplicity that can be utilized in the formu-
l;ation of the turbulent flux terms. (This advantage would be true for
all implicit finite difference techniqu_es-. )_ This advantage allows the
use of "numerical experimentation" through which mixing length and
eddy viscosit'y'models nia.;s} be ef;‘iciently studied in relation to experi-
mental daba. Through this "yumerical experimentation” procedure the
knowledge:of basic t{J:rbu_]_ent mechanis'ms could ultimately be improved.

v . & ¥ N o
However, well-documented data must be available for this process to be

successful.
": , In co,nc]:'l:l:ding_, it.has been shown that the system of equations
o . ’ + : v )
pregented herein and the solution technique by which they are solwved
L . Lo § ' -

*® - -

can be used to obtain accurate solutions for laminar, trensitional,

and turbulent compressible ‘boui{dary-laye'r flows. -
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XITTI. APPENDIX

Equations (8.29) and (8.30) are the difference equstions used to
represent the partial differential equaltions' for the conservation of
momentum -and energy, respectively. These equations are repeated for

convenience as follows:

+ ELCnig ,n + Flp®pei nea = Glp (a-1)

A2nFm+l yn=1 + B%anﬁ-l,n + CenFm-t-_TL Sntl + D 2n@m+l sh=1
+ E2n®m+l,n + F2n@m+l Sk T Gep (A-E)

These equations are obtained from equations (7.39) and (7.40) and the
difference gquotients presented in Section 8.1.2. The -coefficients Aly,
Bl,, efc., in equations (4-1) and (A-2) are functions of quantities
evaluated at stations m and m-1 (see fig. 9) andsare therefore

known: These coefficients are as follows:

Ay =I5 = I, (a-3),
Bl = Ky - Yy - Yoy +Hs o o (ak)
- 0 b i .
Cln = Y1H3 + YJ-FH].J_ 5 H . (A'5)
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n ¥
Y

B2n=§z:A2n
i

02n=-Y—6A%1

D2n = Y3H10 -NYQ6H12

B2, = %y - Y9 - Yelyp

Fo, = Ll + )l

(a-6)
(A~7)
(a-8)
(4-9)
(A~10)
(A-11)
(A-12)
(&-13 )
(A-1k)

(4-15)
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and

G2, = BT + Hg(Fy )" + H9(T—Y)2 (A-16)

The coefficients Yl’YE""’Y6’ X , ete., are functions of

1e s
the grid-point spacing and are defined in eguations (8.15) to (8.20)
and (8.7) to (8.11), respectively. The coefficients H,, H,, ete.,

are defined as follows:

Hy = Siafm _(E?Te)' (A-17)
Hy =V, - L. (E cl + En’]l ml) (4-18)
H = -E 1501 G - (A-19)
H, = H3 i (Aizo)
ol
5 = Ppa'm . (a-21)
. H6 = B (A-22)
H7=le -1 (Emch;l+EI;]l ml) (a-23)
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Hg = = b B O (A'Elf)
H9 =-E L' C. (A-25)

R
H = H9 - (A-26)

'ml
Hyy = By + B T, (a-27)

and

Hi, = H,Z + 2H9TY (a-28)

The undefined quentities

are defined as follows:

Ty = Xll-Fm,n -
T = XlLGm,n -
Vil = XMvm,n "
Fao = %ofpm,n ~

appearing in equations (A-17) to (4-28)

XsFud,n (A-29)
X 5®m-l, u {A-30)
x5vm_l,n {&-31)
XFrn (a-32)



’Te .
Ly = ; (Air omly)
Tml + (—S-) .
Te/mL
(0
1, T .
Ll;ll = _mljA Sl (Air only) .
I
\T, T |
| Vv &/mit _
Eq = Caylpa,n  (See Section 8.1.7, eq. (8.37))"

By = ) Sn,ne1

B

Fy

Ty

ﬁ _ (Eav )m+l,n

mlL o
- Y5 1 = Y6 n1 (See eq. (8.1%))
= Yltem,n+1 - Y5=€m,n - Y6‘53111,11—1

- Yll-Fm,n-kl - Y5F:rn,n - Y6Fm,n-.'l_

- Y#Qm,nﬂ. - Y56)111,11 - Y‘-6®m,n-_"j_

(A-33)

(a-34)

C (a-35)

(a-36)

(a-37)

(2-38)

(A-39)

(a-40)

(A-41)



170

a . f
By = (EE _EE) (See egs. (T.41)) {A-h2)
u, dé
e m+l
an;i
.2
= | a— A-

L1, ( Te )m-i-l (A-43)

The transverse curvature terms are contained in the quantities
' - - - ‘ . N " )
le and le which appear explicitly in the HE’ I-I3, H7’- 1?8’ and
H9 coefficients. The transverse curvature term in the transformed

plané (see eq. (7.43)) may be written as follows:

(A-dl )

2j _ EmJ(W)J_.E,cosS?f/" & an

1+
P

where + represents the ratio r/ro and is a known quantity for the
N-L grici points at station m-1 and wm. Then, the extrapolated values
at m+l,n are obtained as follows where the parameter ¢ is used to

represent £24 :

Cot, = thm’n - X5Cm-l,n , (A-b5)

C!

ml Ylkcm,nﬂ " Y501;1,n " el n-1 (‘A-l’L6_)
v Vo '

Two guantities (symbols) as of now remain undeflned., ‘These are
FT and W which appear in eq_ua.t:-.ons (A-l'?) and (A-hl), respec‘t:.vely

These are code symbols used in tl;e d:l.g:l.ta.l program. ‘'The code symbol W
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appearing in equation (A-4l) is used o either retain"or neglect the
transverse curvature terms for axisymmetric flows; that is, W =1 or O,
respectively. For planar flows, the transverse curvature term does not
appear since j equals O.

The code symbol FT (flow type) aﬁpearing in equation (A-17) is
used to either retain or neglect the nonsimilar terms in “the .governing
differential equations; that is, FI'=1 or O, respectiye}y. I PP
is assigned a vdlue of unity, the solutien to the rrlonsimi;:ar equations .
(egs. (7.38) to (7.40)) is obtained. If FT ié.‘é.ssigned a.kv‘a.];%e of

A

zero, the locally similar solution is obtained; that is, the following

system of equations are solved.

Continuity
g-% +F =0 . (A-lw)
_ Momentum | ‘
v -g-% - -a—aﬁ(tgj 1€ %]’;.) + B(F° - ;)) =0 ' (A-48)
Energy ‘

1

The governing equations for the locally similar system are
obtained from equations (7.38) to (7.k0) by neglecting derivatives of

the dependent variables F, ©, and V with respect to the streamwise
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coordinate, £. The capability of obtaining locally similar solutions
is desirable in that for a given test case the locally similar and
complete nonsimilar solutions can be obtained for the identical pro-
gram inputs and numerical procedures. Consequently, the effects of
the nonsimilar terms on the boundary layer characteristics can bhe

determined by direct comparison of the results.





