
(THRU)(ACCEZSIONQU MBER)

(CODE)(PAGES)

(CATEGORY)(NASA CR OR OR AD N

A REAL TIME DIGITAL SIMULATION SUPERVISOR

by

Jeff Ira Cleveland II

of Arts and Industries, 1963B.S.E.E. Texas College

A Thesis submitted to the Faculty of
School of Engineering and Applied Science

Partial Fulfillmentof The George Washington University in
of Scienceof the Requirements for the Degree of Master

April 1970

Thesis directed by

Maurice K. Morin

Professorial Lecturer in Engineering

Rop.Oduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

springfo~d. Va. 22151

ABSTRACT

One of the major functions of the National Aeronautics and Space

Administration's Langley Research Center Computer Complex is to provide

computational support for real time flight simulation investigations.

For purposes of efficiency, several real time simulation applications

programs operate concurrently in a single Control Data Corporation 6000

series computer. To perform "man in the loop" digital simulation

requires that the computer operate as part of a closed loop, time

critical system where precise problem solution rates must be guarabteed

in order to maintain the integrity of the simulation..

In an effort to simplify the programing and operation of digital

simulation applications, a "real time digital simletion supervisor,"

hereinafter referred to as "the supervisor," has been developed. Its,

major function is to perform all real time input/output control, timing

synchronization, communication and control, and other system oriented

functions peculiar to real time operation.

The major objective of this work is to simplify the programing

and planning tasks associated with flight simulation investigations to

the level of conventional Fortran programing without sacrificing the

interactive flexibility required to perform digital simulation.

A general description of the computer complex with particular

emphasis on the digital simulation subsystem is presented. 'The general

requirements and structure of the supervisor are discussed, along with

an overview of its implementation. The stiuctre of a ,simulation

'ii

applications program is discussed and the man-machine control interface

through the supervisor is described.

Special problem areas and special techniques developed to solve

the problems are presented. The areas discussed are real time program

control, real time data recording, time critical supervisor operation,

-and error recovery and diagnostics. This discussion illustrates the

manner in which the simulation applications program is able, through a

series of single subroutine calls, to form a unified code structure

that will perform the task of real time digital simulation.

lii

5
WRECE)ING PAGEBLANK NOT FILMED.

ACFKOWIEDGEMENTS

The author wishes to express, his sincere appreciation to Mr.

George C. Salley of National Aeronautics and Space Administration,

Langley Research Center, who wrote the first version of the real time

digital simulation supervisor and without whose assistance this project

could not have been completed. The author would also like to thank

Mr. Maurice K. Morin for his guidance and patience in the preparation

of this work. ast, but certainly not' least, a debt of gratitude is

owed to the author's wife, Ruth, who patiently waited as this work

was completed.

iv

TABLE OF CONTENTS

PAGE

ABSTRACT ii

ACNOWLEDGENTS. iv

LIST OF FIGURES vi

LIST OF SYMBOIS .". viii

Chapter

I. INTRODUCTION 1i..

II. SYSTEM HARDWARE AND SOFBIARE 3

III. 	 REQUIRIM S OF A REAL TIM DIGITAL SIMULATION

SUPERVISOR 12

IV. GENERAL OVERVI94 OF IMPLEMENTATION 18

V. 'SIMULATION APPLICATION PROGRAM STRUCTURE... 21

VI. MODE CONTROLS 26

VII. REAL TIME DATA RECORDING 32

VIII. TIME CRITICAL OPERATIONS 	 36

IX. ERROR RECOVERY AND DIAGNOSTICS. 41

X. CONCLUDING R2MARfM 47

APPENDIX

Chapter

I. HARDWARE CONFIGURATION 49

Il. OPERATING SYSTEM SOFIARE 64

BIBLIOGRAPHY 72

V

LIST OF FIGURES

FIGURE 	 PAGE

1. Program Control Panel 	 5

2. CDC 6000 Computer Organization 	 7

3. 	 Computer Organization with Real Time Digital

.
Simulation .. . 9

4. 	Central Processor Tine Allocation with Three Real Time

Simulation Jobs 11

5. Real Time Simulation Supervisor Block Diagram 19

6. Simulation Applications Program Block Structure 22

7. Simulation Applications Program Initialization Section . 24

8. Typical Program Flow for Real Time Modes 27

9. Typical Block Sequences during Real Time Operation . . . 29

10. Linkage Diagram of Block Dispatcher 31

11. Typical File Environment Table and Data Buffer 33

12. Use of Masks for Packed Discrete Manipulation 38

13. 	 Supervisor Special Execution at Lost Time Synchroniza­

tion Interrupt 42

Al. Langley Research Center Computer Complex50

A2. Batch Processing Subsystem and Decentralized Operation 54

A3. Auxiliary Storage Subsystem. 55

A4 Real'Time Simulation Subsystems 58

A5,. Remote Terminal'Subsystems 61

A6.,, On-Line SubsIpstem 63

vi

FIGURE PAGE

A7. Operating System Software 65

A8. 6000 System 68

A9. Operational Environment 70

vii

LIST OF SYMBOLS

ACD Langley Research Center Analysis and Computation Division

ADC analog-to-digital converter

ADCON analog-to-digital controller

ADDIS analog-to-digital and discrete input system

CDC Control Data Corporation

CI central processing unit

CRT cathode ray tube

DAC digital-to-analog converter

DACON digital-to-analog controller

DADOS digital-to-analog and discrete output system

FET file environment table

I/0 input/output

IRC Langley Research Center

MOPS million operations per second

PP peripheral processor

RCT requested compute time

RTM real time monitor

RTSS realtime simulation subsystem

SCOPE simultaneous computing and operation of peripheral

equipment

SEED !real time scheduling program

viii

CHAPTER I

INTRODUCTION

One of the major functions of the National Aeronautics and Space

Administration's Langley Research Center Computer Complex is to provide

computational support for real time flight simulation investigations.

For purposes of efficiency, several real time simulation applications

programs operate concurrently in a single Control Data Corporation

6o0o series computer. To perform "man in the loop" digital simula­

tion requires that the computer operate as part of a closed loop,

time critical system where precise problem solution rates must be

guaranteed in order to maintain the integrity of the simulation.

In an effort to simplify the programing and operation of digital

simulation applications, a "real time digital simulation supervisor,"

hereinafter referred to as "the supervisor," has been developed. Its

major function is to perform all real time input/output control, timing

synchronization, commuication and control, and other system oriented

functions peculiar to real time operation.

The major objective of this work is to simplify the programing

and planning tasks associated with flight simulation investigations to

the level of conventional Fortran programing without sacrificing the

interactive flexibility required to perform digital simulation.

A general description of the computer complex with particular

emphasis on the digital simulation subsystem is presented. The general

requirements and structure of the supervisor are discussed, along with

1

an overview of its implementation. Areas vhich required special

techniques are discussed along with a description of the techniques

enoloyed.

CHAPTER II

SYSTEM HARDWARE AND SOFIWARE

The National Aeronautics and Space Administration Langley Research

Center Computer Complex consists of four CDC 6000 series digital com­

puters with associated subsystems of peripheral equipment. As seen in

the Appendix, several different types of computer subsystems are

integrated into the complex. It is in this environment that real time

digital simulation mst-be performed. Time synchronization and problem

solution rates must be guaranteed while allowing other functions of

the complex, auch as batch, conversational CRT, and remote terminal

processing,, to be performed' on the same computer at the same time.

To perform digital simdfation, two special Real Time Simulation

Hardware Subsystem (RTSS) are employed to perform the real time input/

output and timing that are necessary. Each RTSS consists of a real

time clock, an analog-to-digitl input subsystem (ADDIS), and a

digital-to-analog output analog system (DADOS). Each RTSS has m

complement of analog-to-digital (ADC) and digital-to-analog (DAC)

converters and a set of discrete input and output channels for event

sensing, control, and status indications.

An integral part of each RTSS is a set of program control stations.

Each station consists of a simulation control console, a CRT inter­

active display console, a typewriter for printing short messages, and

associated analog recording devices. Figure 1 illustrates the control

panel of a simulation control console. Each panel has a set of

4

switches which are connected to discrete input channels. The set of

function sense switches are used for programer inputs to the simulation

program while the set of ,mode control switches are for specific flow

control and functional requests. The data entry keyboard with the

digital decimal display comprise a means of data entry into the com­

puter and a means of displaying values to the programer. At the left

of the figure, the white and red indicators are used to denote logical

status and event occurrence in the simulation program. In the lower

right are potentiometers that are connected to ADC input channels to

give a "twiddle" capability. With this complement of switches and

indicators, the programer is able to control the simulation inter­

actively.

F-1.~ .--
W-4

544A44 ~ <

4A444 4&44

LV"
wi.4

A-
,,MiA4

.i- -,

"Gi

, Wr ,N T IW.,.

In-4444#44

4444
s

N~t&v4
W

4AY'

,-V- E l-_Eigp

Atuv;<..................

4

404

op Vi r l ,4A?*

N4.

oM "A-44g4k

AM 1

w

.4 y

No -In

Q!4I.

I

t ,T

4

014444
SEE 4oVW

l .n o : In
R %4 :4:: .

44444o

'A~ ~no4,i. ~

t

Vo 444
4n4

D4«4<

V,

; i4W 4<lk.itj,­
4 4

"no,4

01

Ei 4.1

1-
Ws "

S

4 3,

'Ap,
-

0:

, IV4

,i

>44

n

4

d t

<4

V

4<... _44 0 <.

MV ni 1 444 <444

6

CDC 6000 Couter Organization

Figure 2 illustrates typical CDC 6000 computer organization with

the SCOPE (Simultaneous Computing and Operation of Peripheral Equipment)

operating system. Central memory is partitioned by software into eight

areas called control points. Each control point can function indepen­

dently of the others and one job occupies one control point which gives

a multiprograming capability. Control point 0 is reserved for the use

of the operating system and contains tables and pointers for the SCOPE

system.

Associated with central memory and the central processor is a bank

of ten peripheral processors (PP) which run independently of the central

processor. PP 0 contains the PP monitor which coordinates and controls

activities in the computer system. PP 9 contains a display and com­

imunication program which supports console operation. Twelve half­

duplex dat4 channels are controlled by the PPs and all channels may be

active at once.

PERIPHERAL

PROCESSORS

PP MONITOR

12

D
A

A'

C-

AU

PPI

N
E,

S.

PP9

Figure 2. - CDC

CENTRAL MEMORY

CONTROL POINT 0

CONTROL POINT 1

CONTROL POINT 7

6000 coputer organization.

8

Real Time Control

Figure 3 shows the internal computer organization employed to

support digital simulation. Illustrated are three digital simulations

running concurrently. An additional central memory monitor is added

to control point 0 to give faster monitor response to time critical

demands for service. When real time simulations are running, a sche­

duling program (SKED) is always in control point 1. SKED allocates

real time equipment and schedules the timing cycles for real time

operations.

A dedicated pP with a dedicated data channel connected to ADCON

(Analog-to-Digital Controller) and the real time clock comprise ADDIS.

ADDIS places the outputs of ADCs and discrete inputs into the control

points indicated by SKED. A second dedicated PP with a dedicated

data channel connected to DACON (Digital-to-Analog Controller) and

the real time clock comprise DAIXS. DADOS removes data from the

control points as indicated by SKED for output to the real time world.

PERIPHERAL
PROCESSORS CENTRAL MEMORY

CPO
PpO
CENTRAL MEMORYPP MONITOR MONITOR

Cp1

SEED

CP2
REAL TIME JOB 1

ADCON DATA CHAINEL ADDIS REAL'TIME JOB 2
~cP4

-- REAL TIME JOB 3REAL TIMECIOCKC

DACONDATA CHAflNEL 'DADOS BATCH-

iBSre

Figure 3.- Computer organization with real time digit i simulation.

10

Figure 4 illustrates the allocation of central processor time

with three simulation jobs rining at different sampling rates. Note

that a job does not necessarily compute the response of one frame

continuously, but may be interupted to allow another job to finish.

The scheduling of compute and idle time is done by SJED according to

timing information supplied by the simulation program.

This, then, illustrates the hardware and software environment in

which real time digital simulations are performed and in this same

environment the supervisor must perform its functions.

IOB 1 r-iREAL

JOB3 2Fl

S S S

ML T I 1
BATC: II -

S

I-INDAITES SAPLS TIM -FOR THE MEAL TIME JOB

Figure 4. - Central processor time allocation with

three real time simulation jobs.

12

CHAPTER III

REQUIREMENTS OF A REAL TIME DIGITAL

SIMUIATION SUPERVISOR

The supervisor is a set of subroutines integral to each simulation

job. The supervisor performs all real time input/output control,

timing synchronization, comunication and control, and other related

functions that are system dependent. This allows the simulation

program to be coded in Fortran with little regard to the computer

interface with the real time world.

The real time digital simulation supervisor must perform the

following functions:

A. Real Time System Initialization

B. -Real Time Timing Control

C. Real Time Central Memory Input/Output Control

D. Control after Lost Time Synchronization Interrupt

E. Mode Control

F. Real Time Data Storage and Retrieval

G. Print Output Control

H. Error Recovery and Diagnostics

I. Batch Job Compatibility

13

A. Real Time System Initialization

When a real time job enters the computer system, the only special

characteristic that it has is the priority. Once the job begins to

execute, it runs like a high priority batch job. Through a series of

initializing calls, the simulation applications job communicates cer­

tain real time data that is required for real time operation. At this.

point, the supervisor must communicate to the operating system infor­

mation for execution of the real time portions of the job.

The supervisor must communicate to SED the addresses where the

ADC, DAC, discrete, real time clock, and other real time information

for this job reside., The supervisor must construct an interrupt table

to the real time monitor. In addition, the supervisor must set up

internal flow control, data areas, and perform other functions neces­

sary to prepare for real time operation.

B. Real Time Timing Control

A real time simulation job may execute in one of two states. It

may execute in real time, where strict time synchronization is held

and real time responses are calculated. It may also execute in non­

real time where time synchronization is not maintained and the job

executes like anythigh.priority batch job. A real time simulation job

may change readily from real time to non-real time or vice versa. The

supervisor must perform the necessary monitor functions to perform the

transition described. The Mpervisor must also perform the necessary

systei functions to gua antee time synchronization while the job is

14

operating in real time. The supervisor also computes the maximum CPU

time per frame for programer information.

C. Real Time Central Memory Input/Output

The supervisor controls the transmission and distribution of

input/output from the RTSS. ADCs andlDACs are packed four channels

per word and the supervisor provides the pack/unpack capabilities so

that these quantities appear in normal floating point numbers in the

Fortran program. Discretes are packed sixty per word and may be

unpacked into normal Fortran logical variables if that mode of

operation is selected.

D. 	 Control after Lost Time

Synchronization Interrupt

A simulation job requests of the system two time increments that

are pertinent to real time execution. The first increment requested

is frame time--this is the time between samples and defines the itera­

tion rate. The second is requested compute time. Since more than one

simulation can use a computer, each simulation must have an allotted

time slice in which to compute a response. This time slice is the

requested compute time (RCT).

In order to preserve time synchronization of all real time jobs,

the system guarantees that no job will be allowed to compute more

than its allotted RCT per frame for that job. When a job does attempt

to exceed the ROT, a lost time synchronization interrupt is issued by

the real time monitor and the central processor is given to another

15

job. It is the task of the supervisor to control and coordinate

activity of a simulation after lost time synchronization interrupt

occurs. A more detailed discussion of lost time execution is given

in a later chapter.

E. Mode Control

The process of real time digital simulation requires an inter­

active imn-machine control capability. By using the mode control

keyboad, a simulation programer is able to control the flow and

function of his program. This manual control is called mode control

and is interpreted and coordinated by the supervisor. A detailed

description of mode controls and implementation follows in a later

section.

F. Real Time Data Storage and Retrieval

During the course of a simulation, it is necessary to store

information about the simulation such as values of state variables,

external disturbances, and event status for later analysis. Because

of real time simulation timing constraints, Fortran input/output cannot

be accomplished during real time operation. It is also unfeasible in

a multiprograming system to have extensive storage of data in central

memory. Therefore, it is the task of the supervisor to control and

coordinate the storage on disk of data generated during real time

operation, without interfering with the timing and synchronization of

the simulation.

16

G. Print Output Control

With the standard batch operating system, information to be

printed is routed to the printer only after the job has completed

all processing and has left the system. The supervisor by special

communication with the operating system, can route information directly

to the line printer upon command without relinquishing the central

processor. This allows the programer to supplement the analog data

on recording equipment with printed data at his request.

H. Error Recovery and Diagnostics

During the execution of a program, many different errors can

occur. The supervisor must provide the error recovery and diagnostics

necessary to maintain the integrity and effectiveness of a real time

simulation job. In a batch environment, when an error occurs, the job

aborts. In real time, because of the large quantity of resources

(i.e., computer, A-D conversion equipment, cockpits, etc.),and person­

nel required, it is best to capture the error and allow the programer

the chance to fix the program, if possible, and to continue operation.

It is desired that the programer not be required to provide for all

contingencies, e.g., if the solution goes unstable, the supervisor

will trap the error, allowing the programer to access his stored data

and to reset and to begin anew.

I. Batch Job Compatability

Real time digital simulation is expensive in terms of machine

resources and execution time. Therefore, it is undesirable to do

17

/computations in real time then it is not necessary, such as during
t

early coding checkout and purely analytic studies where real time

input and control is not needed. An additional requirement of the

supervisor is the capability of operating the simulation job as a

real time job or as a normal batch job with minimum change necessary

for the program.

CHAPTER IV

GENERAL OVERVIEW OF IPLEMENTATION

The supervisor was designed and implemented with the following

objectives: (1) to provide a high-level dialect of the Fortran

language that would be used as a digital simulation language, (2) to

make this dialect easy to use but still maintaining the complete cap­

abilities of the real time digital simulation subsystem, and (3) to

make the operation of the supervisor as efficient as possible commen­

surate with the time available for development. To this end, the

folowing sections discuss some of the processes and techniques used

to develop the supervisor. A general description of the structure of

a real time simulation program is presented with emphasis on the impact

of supervisor on programing. The implementation of mode controls and

real time data recording is discussed with descriptions of special

techniques developed. A discussion of techniques used in mode controls,

time critical operations, and error recovery are presented to illus­

trate the varied programing procedures used to implement this real

time digital simulation supervisor.

Figure 5 shows the supervisor in functional block diagram

form. The supervisor is basically comprised of two sections,

initialization and real tithe control. During initialization, the

supervisor obtains certain information from the simulation program

through declarative subroutine calls. From these calls, the super­

visor initializes certain internal tables for use during real time

DECYLRATIVE APPVEC:ATIONS
PROGRAM CALLS

DECODE

tNTEHRPTS

DCD

I

FLW
CONTROL
TABLES

RECORDING
TABLE

REAL TIME
I/O TABLE

INTERRUPT
TABLE

jPSEUDO
CONTROL

I
I

ERROR
RECOVERY

REAL TIME
I/o

ILST
TIE

SYNC.

IMPERATIVE APPLICATIONS
PROGRAM CALLS

SDECODE

PERFORM FUNCTION

Figure 5. - Real time simulation supervisor black diagram.

20

execution. These tables include (I) addresses for the flow control

of the simulation program, (2) -variable table for recording of data,

(3) real time I/O table for communication with the real time subsystem,

(4) interrupt table for control of execution when lost time synchroni­

zation occurs, and (5) a set of pseudo control inputs for controlling

the simulation if it is a normal batch job.

During real time operation, the supervisor must respond to

imperative calls from the simulation program as well as respond to

interrupts'. 'The imperative calls from the simulation program cause

the- supervisor to process the requested function. There are three

types of interrupts that affect the supervisor during real time

operation.- The real time I/b interrupt causes the supervisor to

start, ex-ecution after the sample time for the simulation occurs.

'The error interrupts may, come from the hardware, if an arithmetic

error occurs, or from the software, if any other errors occur. Lost

time synchronization interrupt is issued by the monitor for action-

by the supervisor.

21

CHAPTER V

SIMULATION APPLICATION PROGRAM STRUCTURE

To meet the requirements set forth earlier, a real time digital

simulation application program is written entirely in Fortran. AU

real time functions are provided by the supervisorand are activated

by the use of the subroutine call.' Figure 6 shQws the block structure

of a simulation program. The unique feature of the simulation program

is that the various blocks are not linked&--the interblock linkage is

done by the supervisor under the contl of the programer at his

simulation control console.. Except, for theinitialization section,

there may be more than one each of the other blocks. The following

paragraphs describe the function of each section.

22

INITIAUZATION

REAL ME

CALCUlTIONS

PRINT-

OPTION

Figure 6. - Simulation applications program block structure.

23

Initialization Section

Figure .7 shows the structure of the initialization section of the

simulation program. The normal non-executable statements are first,

followed by initialization of the supervisor. The supervisor is

initialized by a series of Fortran calls that pass the necessary

addresses for c6mmnication and, control of the simulation program.

The siulation program then initializes program variables and parame­

ters by reads, equalities, and/or subroutines.

At the end of the initialization section, the simulation program

executes a CALL READY. This gives cotrol to the supervisor and sig­

nals that the program is ready for ral time operation. At this time,

supervisor completes the initialization of 'certain tables and sets up

error recovery code. The superisor then indicates- to the system that

real time initialization is necessary. After the system has initial­

ized., the supervisor requests real time operation. From this'point

forward, control of the program is done from the Aimulatiba control

console.

Real Time Section

In this section, the equatibns of motion are solved in synchroni­

zation with time, so that real time responses to input signals are

seen in the outside world. During this time, the supervisor is main­

taining the time synchronization as well as performing functional tasks

requested by the program and by the simulation programer at the simula­

tion console. A more detailed description of the flow control done by

Fortran NOn-Executables

COMMON
DATA

EQUIVALENCE

Df4NSION
TYPE

Supervisor Initialization

CALL~ OPERATfE)

CALL HO()

CALL REE ()

CALL TROUT

Initialization of Program Variables

READ ALPHA, BETA, . .

A = 0.0

B = 4.5

CALL READY

Figure 7. - Simuation applications program
initialization section.

supervisor is found in the next chapter.

Print Section

When the programer at the simulation console requests the print

function, the supervisor returns control in non-real time to the

simulation program in the Print Section. Here, the program may "play

back" the data that vas previously recorded in real time. Data may be

analyzed, plotted on a plotting device, or printed at the control of

the program. When the necessary processing of the Print Section is

complete, control is returned to the supervisor for further real time

processing.

Option Section

When the programer at the simulation console requests the option

function, the supervisor returns contiol in nion-real time to the slmu­

lation program. The siTmlation program then may mke any analysis­

or initialization that is required.- Perhapa the conditions for the

next run might be read from a card deck or, the conditions, may be,

calculated from a complex set-of error equations. There is no-specific

function of this section--it just gives the programer a sectio that

can be executed in -non-real time at the programer's request. At the­

end of the section, control is returned to the supervisor for ,further

real time processing.

26

CHAPTER VI

MODE CONTROLS

Mode control for real time digital sinxtlation is defined as the

sensing of change of status 'of the mode control keys by the supervisor

and the supervisor performing the requested fiow control and/or

function. Figure 8 illustrates the flow of a,typical sim'lation

indicating the flow control done in response to mode control.

In RESET mode, the initial conditions are' applied to the state

variables to initialize for a new run. In OPERATE mode, the complete

dynamic equations are solved and the simulation is computing real time

responses. In HOLD mode, the values of the state variables are held

at their last calculated value, thus giving a static description of

the simulation at the point the HOD mode was entered. These three

basic modes, RESET, HOLD, and OPERATE, form-the primary mode control

system that the supervisor mast provide. In addition to •these three

primnry modes, there is a set of secondary modes which are functions

rather than flow controls. These functions include idle, erase real

time file, process printing, clear output channels, continuous frame

record and single frame record. These secondary modes are subordinate

to the primary modes and there is a definite hierarchy of operation of

the modes-and this is 'employed in the supervisor.

27

-BEGIN ITERATION

INPUT FORMATTING

--INPUT SCALING

INPUT ALGEBRAIC AND

DERIVATIVE EQUATIONS

(OPERATE) YES. NO
OPERATE

'DATA STORAGEHOL
,N (RESETF)

INTEGRATION, INITIAL CONDITIONS

OUTPUT LGEBRAIC ANd

DERIVATIVE EQUATIONS

OUTPUT SCALING

OUTPUt FORMATTING

END ITERATION

Figure 3. - Typical program. flow for real time modes.

28

Block Programing

A simulation program may be easily broken up into logical program

blocks as shown in Figure 9. These blocks are executed in different

sequences for the different primary modes. It was required that the

supervisor provide the necessary linking and deliriking in order to

perform the proper block execution sequence.- The major technique
II

developed for primary mode control was the block dispatching-code

generator.

Block Dispatching Code Generator

The block dispatching code generator is initialized by a series

of -calls that indicate the blocks that are to be executed for a given

mode and the order in which they are to be executed. For example,

CALL oPfATE (loS, 15s, 20S, 258, 10S, 15S)

indicates a sequence of blocks to be executed in OPERATE mode., (In

CDC 6000 Fortmn!, an "S" following a- number in a subroutine parameter

list indicates that the number is a Fortran statement number and the

location of that statement number ispassed to the called subroutine.)

In the example above, program blocks are to be executed in the following

order: Block 10-15, Block 20-'25, Block 10-15.

This illustrates the manner in which the starting and ending addresses

of code blocks and their sequences are transmitted to the block

dispatching code generator.

When a primary mode (OPERATE, OILD, or RESET) is entered, the

code generator must delink the program blocks from the previous mode

29

PROGEAM BLOCK 3BLOCK
BLOC13 IN SEQUENCE SEQ'ENCE
REAL TDF TOR FOR

SECTION BESET OPEMTE1

BlBOCKK1

BOCK 1 BLOCK 1 B

BLOCK 2 BOCK

BLOCK 3

BlOCK 4- BLOCK

SEQUENCE
FOR

HOLT)

BLOCK 2

Figure 9'. - Typical block sequences during
real time operation.

30

and then must link the block together for the new mode. Figure 10

illustrates the mnner in which the application program blocks and

the Fortran portion of the supervisor are linked.. The code generator

must insert code at the end of each code block so that the block

dispatcher in the supervisor can direct the block execution sequence,.,

The code generator inserts code into the block dispatcher so that the

proper sequence is executed. This results in a unified code structure

that will rapidly execute in the requested order.

It should be noted that a maximam of seven distinct code blocks

are allowed for each primary mode giving -the programer a great deal

of latitude in constructing a simulation application program. New­

initialization calls are allowed at any time so that block program

flow can be modified "on the fly." Thus •by using this. block

dispatching code generator,. the supervisor is able to provide a block

link-delink capability that results in a unified code structure.

CALL OBERTE (10S, 15S, 20S, 25S, IOS, 15S)

F-- 1-- I

I BLOCK DISPATCHE

I I 5 - I+
I To (1,2I 3 4,

I . 1 GO TO i0­

3GO TO i0­

2e 5 CONTINUE*
I I8-­/I

, II

2)5 COITO OQ*

LI

SMULATION APPLICATION SUB lSOR FORMAN

PRGRAM' SECTION

*INDICAf CODE BY THE BLOCK DISPATCHING CODE GEERAORT INSERTED

Figure 10. - Linkage diagram of block dispatcher.

32

CHAPTER VII

REAL TIME DATA RECORDING

One of the major capabilities of the supervisor is the storage

of data generated during real time operation. Normally, Fortran

input/output (READ, PRINT, WRITE) is performed by Fortran library

subroutines that interface with the operating system. Unfortunately,

each time a file action request is performed the central processor

is relinquished until the file action request has been completed.

Thus, if Fortran input/output is attempted during real time operation,

time synchronization will be lost, compromising the validity of the

simulation. Therefore, a specialized output procedure was required

to perform this function.

The objectives in the implementation of this capability were

threefold: (1) to provide the functional capability, (2), to implement

the function in a manner that would give rapid execution (this function

is done in real time), and N' to provide a simple means of programing,

the function in the simulation application program.

To examine the implementation of the first objective, the -nethod

of central memory output in CDC 6000 computes must be examined. With

each file that a program uses, there are two areas in, core storage

used, as shown in Figure 11. The file environment table (FET)

contains the necessary information for communication to the external

input/output (I/O) peripheral processor..' The buffer area contains the

data to be transmitted in the 1/0 operation. The first word of the

33

SCODE
FILE NAME ANDE"TAT'T

FIRST

IN

OUT

FIRST

IN DATA

BUFFER

OUT

Figure 21. - Typical fileenqironment 'table
and data buffer.

FET contains the file name and the code and status of the-file. File

action requests are placed in the code and status position and status

is returned by the I/0 processor. FIRST and LIMIT indicate the

beginning and ending addresses of the buffer and IN and OUT indicate

where data can be put in and taken out of the buffer.

To implement the storage of real time data, a Fortran callable

subroutine was written that creates an FET and a data buffer in the

Fortran section of the supervisor. This enables the Fortran section

to directly make file action requests in the file name portion of the

FET, to interrogate status of the I/O operation, and to manipulate

the data buffer and the buffer pointers. This satisfies the second

objective, in that simple Fortran replacement statements and simple

-conditional transfer statements can be used to contol. the I/0.

In addition to the above, the data buffer was partitioned into

two segments that operate as seperate buffers by the control of

FIRST and LIMIT. This allows- the supervisor to fill one buffer while

the I/O system empties the other buffer, enabling, the supervisor to

continue the storage process while output to the physical file is

taking place.

There isan inherent problem inthis scheme. If the supervisor

fills the buffers too fast or if the output system response time

becomes large, the supervisor may need to fill a buffer before the

output system has emptied it. If this occurs, the supervisor mist

discard data until the output is complete. The supervisor stores two

extra code words each time a frame is recorded and 'this allows

35

missing data to be detected when the file is "played back." In order

to provide faster response to real time data recording demands, the

operating system has provided a means for requesting a high priority

read or vrite. The use of this capability is limited to the supervisor

and the supervisor uses this function only when necessary, so that

the response of other real time Jobs is not unduly affected.

Program Interface

The simulation. program interface has been designed so that the

program, through a series of subroutine calls, specifies a list of

variables to be recorded. This list is normally specified during

program initialization -but may be respecified during any non real time

processing. The supervisor sets up an address table to direct the

storage of data. This allows the recording to be made without the

passing of an extensive parameter list or forcing the simulation

program to use a fixed array for recorded data variables. This

program interface accomplishes the third objective; a simple means of

yrograming has been provided.

36

CHAPTER VIII

TIME CRITICAL OPERATIONS

The central processor time used by the supervisor during real

time operation is strictly overhead which restricts the time that is

available for the simulation program to calculate real time results.

An objective of the supervisor was to shorten this overhead time as

much as possible. The following sections describe some of the techni­

ques and methods used to shorten execution during time critical

ope ations.

Discrete Handling

Discrete inputs and outputs are placed in and taken out of central

memory in packed form; that is, sixty discrete channels per word. The

first version of the supervisor unpacked inputs and packed outputs so

that discretes were available to the simulation program and the super­

visor as logical variables, one discrete channel per word. This

unpack/pack operation consumes a 'considerable amount of time each

frame. A technique was developed to prtvide discrete manipulation in

packed form within the supervisor as well as. the simulation program.

This technique for handling discretes vas developed to allow

in-line Fortran testing which isfast and .easy to use. As shown in

Figure 12, two arrays are set up_,in COMMON/MASKS/. The -1ASK array

has only one bit set in each word, the particular bit being set

depending on the array element. The FMASK array has all but one bit

37

set in each word and again the bit that is not set is dependent on the

array element. The use of these masks for discrete manipulation is

illustated in the figure. By using other masks, a simulation program

can set or reset a number of discretes with one Fortran statement.

Fortran Usage

Special usages were developed to speed up the Fortran section and

to,reduce the overall core storage requirements. Compilations were

made and the object code was analyzed to find the most efficient

Fortran coding techniques for the real time'sections,. Some of the

techniques found and used are described below.

Extensive use is -mde of the "GO TO WAME" statement where NAME is

variable name normally defined by an asdign statement. However, CDC

6000 Fortran will allow the variable to be defined in any manner. By

communication through parameter lists and COMMON, - these -variables can

be used by any routine. This allows this type, of GO TO statement to

interconnect various routines by direct transfers rather than indirect

subroutine linkage. Arithmetic operations are allowed sihce the con­

tent of the variable is simply an address. This allows the supervisor

to compute addresses where necessary without having to use. an assembly

language routine.

It was found that some forms of IF statements are more efficient

than others and it was also found that single replacement as more

efficient than multiple replacement. (Multiple replacement:

A = B = C= = 0.0)

CONMN/MASKS/TMSK(6o) FMSK(60)

BIT BIT
60 59 21 60 59 2 1

'SASK(1) 0 MSK(1)

1
TMASK(2) 0 FMASK(2) -0

IMSK(59) fl4ASKC59)1

0 0

TESTITG DISCH'ES

IF (IDIS().AVDMAnSK(30)) GO TO io
TESTS THI TmH BIT IN FIRST WORD OF DISCREM INPUT ARRAY

SETTING flISC S
oDIs(2) 6-0IS(2).oR.TwK(45)

SETS BIT 43 m IN sECOND WORD or Diso R OUTPUT ARRAY
a22)

0DIS(1) = ODIS().AM.DM.

SETS BIT 22 FALSE IN FIRST WORD OF DISCRET OUTPUT ARRAY

Figure 12. - Use of masks for packed discrete manipulation.
Co

http:ODIS().AM.DM

39

The techniques above result in faster executing code. In investi­

gating subroutine linkage, a CALL SUB (0,0,0,0) would cause references

to four different words of zero which is redundant and wasteful of

central memory. This same call would be implemented as CALL SUB

(IZIZ,IZIZ) where IZ is a data zero. Wherever practical, in-line

Fortran code is used instead of using subroutines to conserve execution

time. Such special techniques give small gains in execution time and

core storage, but when added together provide significant overall gain.

Subroutine Linkage

The supervisor consists of two lengthy subroutines, one in Fortran

and one in assembly language. The investigation of pbject code from

Fortran compilations showed that the use of'a parameter list and

multiple entry points was inefficient, both in terms of execution

time and memory usage. Therefore., all AlternAte ntry points and

the parameter list were removed from the Fortransubroutine. Entry

points were added to the assemblj language routine and parameters were

then passed to the Fortran routine' through COMMON. About 10098 loca­

tions were saved in a Fortran routine whose executable code was about

4500 8 locations. The resulting savings in memory 'and °execution time

were significant.

Deferred Execution

Time remaining is defined as the scheduled compute time minus the

actual compute time. The value of time remaining can vary over a wide

range depending upon demand of the application program. It is required

40

that supervisor make effective use of time remaining so that the

maximum actual compute time is not increased by supervisory functions.

In order to accomplish this, a technique for deferred execution was

developed. During frames when the simulation program has heavy demands

for computation, certain supervisor flags are set and execution of some

supervisor functions are not done. When the computation demand of the

simulation program becomes light, then these functions are executed.

In the same view, the supervisor performs any lengthy operations

in non-real time that do not require real time- operation. Care is

taken so response to programer inputs is not unduly affected.'

These various techniques have been used to make the supervisor

more efficient in the use of central memory and the central processor.

This allows the simulation program to have a bigger, slice ot time and

allows either more or longer jobs to reside in central memory.

CHAPTER IX

ERROR RECOVERY AND DIAGNOSTICS

Recovery from error is one of the important features of a simula­

tion supervisor. In a normal batch processing mode, when an execution

error is detected, the program being executed is aborted. This mode

of operation is undesirable for real time digital simulation since

this can lead to loss of expensive data and machine execution time as

well as lost manhours. .One of the objectives of the supervisor was to

capture certain classes of execution errors in order to enable the pro­

gram to fix the simulation and to continue real time operation. If the

program could not be fixed on-line, then at least the current data

could be recovered for later analysis. Areas to be discussed are:

(I) recovery from lost time synchronization interrupt, (2) non-real

time execution attempted in real time, (3)Fortran execution errors,

(4)arithmetic errors, and (5) supervisor dialect errors.

Lost Time Synchronization Interrupt

When the simulation program attempts to exceed the time allotted

for a real time response to be calculated, the monitor issues a lost­

time synchronization interrupt. At this point, the central processor

is taken away from the simulation program and given to -another job

as shown in Figure. 13. On the next frame, real time control of the

simulAtion job is returned to the supervisor as specified by the

supervisor during program initialization. The supervisor then uses

L

s SsS

SL L

IJSAMPLE TIME FOR THE SIMIATION

t l0ST TIME SYNCMONIZATION DRBUP'

S sumvisoR V'ROCESSf

Figure 13. - Supervisor special execution at lost time synchronization Interrupt.

43

a special routine to save the operating registers so that the program

may be restarted at the exact point that interrupt occurred.

The supervisor must now determine what the operatio of the simu­

lation program wilI be. There are severfl options available to the

programer.

A. 	 The supervisor will stop execution; print the program address

at which interrupt occurred and wait for programer a'ction at

the control console. Programer action may be

(1) 	Selection of a different mode

(2) 	 Advance frame command--one more frame of computation

will be allowed at which time the program will again

stop.

(3) 	 Any functional request (print, idle, erase, etc.)

followed by (1) or (2)

B. 	 The supervisor will restart the program in real time and

allow a specified number of cycles of lost time operation to

occur before stopping the program.

C. 	 The supervisor will restart the program in real time and allow

it to finish the current iteration only, stop the program and

(1) allow any option under A, above, or (2') transfer to a

specified point in the simulation program.

D. 	 The supervisor will restart the simulation program indicating

that lost time is occurring and continue real time operation.

E. 	 The supervisor will stop the execution, print the program

address at which interrupt occurred and return control to a

4

specified point in the simulation program.

In the event that the simulation program specifies D as the

lost time option to be performed, supervisor perfoiT a short register

save-restore--only enough registers are saved to test a flag and return

to real time.

Figure 13 illustrates operation of a program using option D where

lost time synchronization interrupts have occurred three times during

one real time solution. The program has taken four frames to calculate

one response so that real time synchronization has been delayed and the

solution can no longer be guaranteed.

It should also be emphasized that when supervisor returns control

to the program, the program may request real time operation at the

.point at which interrupt occurred.

Real Time Errors

There are certain functions such as Fortran input/output that

cannot be attempted in real time with the guarantee that time synchroni­

zation will be maintained. Therefore, it was required that supervisor

detect this type of error and provide the necessary recovery capability.

Code modification techniques were used' to insure detection of these

errors. Code is inserted at the entry point of each potential error

generating routine. When the routine is called) control is transferred

to the supervisor. The supervisor, then, is able to check for real

time operation each time one of these routines is called and is able

to capture the error before it occurs.

45

Fortran Execution Errors

A central subroutine called SYSTEM is called by any system Fortran

subroutine that detects an error .(like attempting to take the square'

root of a negative number). The subroutine issues an error message to

the print file and aborts the program if the error is fatal. It is

required, therefore, that supervisor detect- such errors and' insure that.

the program does not abort.

The supervisor performs three modifications to SYSTEM: (I)the,

error table internal to SYSTEM is modified so that al errors are

processed as non-fatal so that no aborts occur, (2) code at the entry

point is modified so that control is returned to the supervisor rather

than the error detecting routine, and (3) the output section of SYSTEM

is modified so that diagnostic messages are relayed to the typewriter

rather than the standard line printer.

The Fortran functions of STOP, E1D, EXIT are serviced by entry

points in SYSTEM. By modification of code, these entry points are

"locked out" and entry is made to the supervisor when one of these

functions is attempted. Program termination is initiated by the

supervisor only and requires a positive request. from the program

control console.

Arithmetic Errors

An important function of the supervisor is the recovery from

arithmetic errors. Arithmetic errors occur when the hardware detects

an operation that it cannot perform, that is, address range error,

46

division by zero, etc. When an arithmetic error is detected, transfer

is made to the operating system for abort. However, a special routine

was put in the operating system that will return control to supervisor

when an arithmetic error is detected. The supervisor then prints out

the contents of the operating registers and appropriate memory loca­

tions for analysis by the programer. The programer still has full

control of his simulation program after an arithmetic error has

occurred.

Supervisor Dialect Errors

Since subroutine calls to the supervisor form a simulation

language, there can be sequences of calls that would comprise "syntax"

errors. These errors, as well as. illegal parameter errors, are

detected by the supervisor. If an error occurs during initialization,

the program is aborted, since real time execution had not been

initiated. If, however, any of these errors occur after real time

operation has begun, the supervisor will capture control and give the

programer a trace back of the error causing procedure.

kr

CHAPTER X

CONCLUDING REMARKS

The objective of this work has been to develop a supervisory

system to support "man In the loop" real time digital flight simila­

tions. To this end, a set of routines called "the supervisor" was

developed that enable a simulation applications programer to program

very large simulations entirely in Fortran without sacrificing the

flexibility, control, and interactive features required to perform

digital simulation. A basic simulation dialect consisting of simple

Fortran subroutine calls has been developed and will provide a base

for later extensions or the supervisor.

Continued research and development work will be undertaken as

the need arises. One of the areas of future development is the'cap-.

ability of coordinated real time inputs from computer-Sased storage

systems. This would allw coordinated inputting of information such

as recorded wind gusts and other predetermined measured variables.

This and continued development work will keep the supervisor abreast

of the needs of the real time digital sdmulation community.

48

APPENDIX

The following discussion is an abridged version of Volume I,

Section 2.1, of the Langley Research Center Programing Manual.

This section was vritten by Mr. Maurice K. Morin, Head, Programing

Techniques Branch, and edited by the thesis author. The hardware

and software resources of the langley Research Center Computer

Complex are described as a reference for the paper.

49

CHAPTER I

HAREhfARE CONFIGURATION

The system configuration is represented schematically in Figure

Al. It can be divided into three main subdivisions: the communica­

tion and control section, consisting of a large shared core memory;

the processing section consisting of four independent computers; and

the input/output section containing all peripheral equipment organized

into a shared peripheral pool.

Communication Section

The shaded block at the center of Figure Al represents the

shared core memory. It will consist of one million 60-bit words of

core storage equally accessible to all computers in the processing

section. This component will serve as the focal point of the con­

figuration by providing for all inter-system communication. It is

scheduled for delivery in 1970. The remaining elements of the

hardware configuration are currentl instaLled and are in productive

use.

Processing Section

The processing section, surrounding the shared core memory on

Figure A-1 consists of four independent computer systems.- The first,

a 6400A, has a unified central processor capable of executing .5

million operations per second (MOPS), which is approximately i.4

times the speed of our previously installed IBM 70941T. A unified

SIMULATION
FACILITIES LOW-SPEEDREMOTETERMINALS MEDIUM-SPED TERMINALS

W WF-E i ------ E" --- RESEARCH
FACILITIES

F3] NO 10n [70
4]]

SUBSYSTEM
NO.2 CENTRAL

RECORDING

UNITRECORDINPUTOUTPUTI - MOPS.

6 A " 60 CONTROLI.ERSD'i

65 K MEM, COR_" 131 K IEM.

PERFORMA&NCE
CRT'S - 6600 D

1.5 LMOPS.

[UNIT RECORD

3ICRY j CONTRENTRAL
INPUTOUTPUT

CR- CARDREADER

CONTROLLERS PU- PUNCH

16 MAGNETIC TAPEUNITS 4 DISK STORAGEUNITS 4 DATACELLS
524X 105 CHARACTERS 2 2 x 109CHARACTERS

Figure Al. - Langley Research Center computer complex.

central processor means that instructions are executed one at a time

in the sequence dictated by the algorithm being solved. Its memory

consists of 65,000 60-bit words. The memory cycle time is 1 micro­

second; however, through the use of inte'-leaving, an effective acdess

time of 100 nanoseconds can be achieved.

The next computer, the 6600B, has a multiple functional unit,

central processor capable of executing 1.5 million operations per

second, which is approximately five times faster than our previodsly

installed IBM 70941[. The multiple functional unit central processor

provides the ability to execute numerous instructions sjimutaneously

without altering the intent of the algorithm being solved. This

feature is the main difference between the 6400 and 6600 series of

computers. The 660OB-, 6600C, and 6600D each have a central memory

capacity of 131,000 words.

The A, 'B, C, and D designators have been established by local

convention, and do not represent manufacturer's models. They are

used simply to distinguish among the machines.

Each of these 6000 series computers has ten peripheral proces­

sors, each of which, in effect, is a stored program computer with a

processor and 4096 12-bit words of memory. These ten peripheral

processors, together with twelve half duplex channels, serve as the

link for input/output communication and control, and overall system

operation control for each 6000 series computer.

52

I/o section

The third subdivision of the computer configuration, surrounding

the central processors in Figure Al, 'isthe shared peripheral pool.

Communication between the central computers and peripheral equipment

isaccomplished through a battery of multi-access switches, which

allow the computers to communicate with any peripheral device. Thus,

the peripheral equipment is shared among the computers. These

switches operate under program control. A central display with

manual lockout controls is also available to accommodate system

partitioning. With this feature, a computer and selected peripheral

equipment can be physically partitioned off from the complex and used

for development work or maintenance without endangering the continued

reliable use of the remaining portion of the computer complex.

Shared Peripheral Pool Subsystems

The functional capability of the equipment comprising the shared

peripheral pool will be described beginning with the equipment shown

at the bottom right-hand corner of Figure Al and proceeding clockwise

around the chart.

Batch processing subsystem

The first major subsystem of the shared peripheral pool is the

batch processing subsystem. It consists of a battery of conventional

types of unit record equipment, located in the computer complex. The

major elements comprising this subsystem and their performance are,

listed in Figure A2. Of particular interest here is the

53

decentralization of operation of this equipment. This is accomplished

through a message switching and response polling software system,

using six low performance CRT/keyboard inquiry type devices, each of

which is associated with small groupings of peripheral equipment.

For example, one CRT/keyboard is associated with a reader, punch, and

printer. Its function is to provide the operator of this equipment

with all the information and control necessary to effectively operate

these particular pieces of equipment. This concept has been imple­

mented throughout the peripheral pool, and has proved extremely

effective in decentralizing operations into smaller self-manageable

groups. As a xatter of fact, the major portion of our peripheral

equipment is located in different rooms from the main systems'

operation consoles.

Auxiliary storage subsystem

The auxiliary storage subsystem consists of three main elements:

data cell drives for permanent storage of programs; disk storage

drives for high speed transient storage; and magntiic tape drives

for data storage and communication with off-line devices. Figure

A3 lists the major characteristics of the eguipment in this subsystem

The total capacity of the four disk drives is 524 million 6-bit char­

acters. The average access or head positioning time is 60 mflli*

seconds; the average rotational delay is 25 milliseconds. These

performance features, coupled with the fact that as many as 128

files of 32,000 characters each are available at each access position

54

4 CARD HEADERS 1000 CARDS/MIN.

3 CARD PUNCHES 250 CARDS/MIN.

6 LINE hINTEsRs 1000 LINES/MIl.

1 PAPER TAPE PUNCH 150 CHAR./SECOND

6 CRT/EEBOAXD 12 INCH
(PERIPHERAL CONTROL STATIONS) 1000 CHAR. SCREEN

EXAMPLE OF DECENTRALIZED OPERATION

6600 A

66oo B

66oo c­

6io Dst Figre 42.- Btchproessngsubystm ad dcenrzlzedopRaTin

AUXILIARY STORAGE SUBSYSTEM

,4 DISK STORAGE DRIVES (TRASIENT STORAGE)

524 M CHARACTERS

6o mS AVG. ACCESS ThME

25 MS AVG. ROTATIONAL DELAY

128 FILES AVAILABLE AT' 1 ACCESS POSITION

(FILE = 32,000 aH)

4 DATA CELL DRIVES (PMANENT STORAGE)

2.2 	BILLION CHARACTERS

4O REwOVABLE: WEDGES

DATA MANAGEMENT SOiWABE FOR PROGRAM
AND STORAGE STASH, FETCH AND MODIFY,
REPLACE

16 MAGNETIC TAPE DRIVES
MAX. DATA TRANSFER SPEED 120,000 CHAR./SEC.

BURST RATE AT 800 Bpi (BITS/3CH)

TRANSPORT SPEED 150 INCHES/SECOND

LONGITUDINAL DENSITY 200,556 AND 800 BPI

DATA CODE 7 TRACK - EVEN PARITY BINARY CODED
DECIMAL

OR 7 TRACK - ODD PARITY BINARY

Figure A3. - Auxiliary storage subsystem.

56

of each disk drive, has greatly improved system throughput in compari­

son with previously available :disk' systems.

The software controlling disk operation utilizes a centr2lized

stack processor. In processing d4sk requests, the stack processor

first selects all requests associated with real-time applications,

all other requests are then selected, primarily, on the basis of

minimizing head movement. The system provides for both sequential

and random processing for files stored on disk.

The data cell drives provide for a total on-line storage volume

of 2.2 billion 6-bit characters of alphanumeric or binary information.

This information volume is equally divided over forty removable

wedges, ten wedges per data cell drive. It ia estimated that this

storage subsystem will provide adequate storage for 1000 application

programs on-line to the computer systems.

A data management software subsystem rigidly controls the

cataloging, storage, and retrieval of allprograms stored in data

cells. Usage statistics such as date of entry, number of times

ace seed, date of last use, etc. and a descriptive label for each file.

are maintained by the system. The unit of information on the data

cells is a file consisting of a source program and its compiled binary

object program. Because of the need for extreme care in maintaining

the continued reliability and integrity of the entire permanent

storage information base, the user is not permitted to gain direct

access to the content of his files in the data cells during his pro­

gram's execution. Instead, upon comnand, an entire file will be

57

accessed and transcribed from data cell to disk in one continuous

operation. Once the file is transcibed to disk, the user can

manipulate it in any way he chooses. The converse is also true.

Before a new file will be cataloged into permanent storage; ,iti must

exist in its entirety on disk. As an example, assume a user has a

program cataloged in the data cells. With, a sinle set of control

cards, he can FETCH his program, MODIFY selected statemerjts; compile

and execute, and, if desired, REPIACE the original program with the

new modified version.

Real-time simulation subsystem

One of the major requirements of the LRC Computer Complex is

the ability to perform multiple real-time digital flight simulations

in a single 6000 co4uter (see Figure A4) . To perform "man in the

- loop" digital simulation requires that the computer operate as part

of a closed loop, time critical system where precise problem solution

rates must be guaranteed in order to maintain the integrity of the

simulation. These requirements have necessitated the design -and

implementation of a hardware and software subsystem with unusually

high performance characteristics. Figure Ak lists the major elements

that comprise the hardware subsystems.

A real-time clock, accurate to 100 nanoseconds provides timing

control for both the input/output subsystems and computing algorithm.

The input subsystem consists of eighty analog channels and 960 dis­

cretes for external event sensing. Each analog channel converts to

PEAL-TIME SIMUIATION SUBSYSTEMS

EACH OF THE TWO SIMULATION SUBSYSTEMS CONTAIN THE FOILOWING

REAL-TIME CLOCK

INPUT SUBSYSTEM

80 A/D CHANNEIS 15 BIT 1.25 US/CHANNEL
960 DISCRrTES

OUTPUT SUBSYSTEM

192 D/A CHANNELS 15 BIT 1.2 Us/CEANNE
960 DISCRTEES

CRT SUBSYSTEM

6 CRT coNsoLEs Hin PERFORMANCE
1 HARD COPY BECORDER

Figure Ai. - Real time- dimulation subsystems.

59

fifteen bits, fourteen data bits plus sign, and through a series of

multiplexors can achieve a conversion rate of 1.25 microseconds per

channel. The output subsystem contains 192 digital output channels

and 960 discretes for external event control. Each output channel

has fifteen bits of precision and operates at an effective rate of

1.25 microseconds per digital-to-analog conversion.

In order to maintain sufficient communication and control during

the progress of a simulation,- a high performance CRT (cathode ray

tuke), with keyboard, function switches, etc. and a' central hardcopy

recorder will be available to the test conductor. The CRT will be

used to provide a dynamic display of selectable key parameters in

graphic and/or tabular form for monitoring purposes. 'It will also

provide real-time control features which will allow the test conductor

to START, STOP, or HOLD the simulation, perform detailed analysis of

historical information collected during the course of the simulation

and resume or reinitialize the simulation at various selectable times.

Development activity is currently underway in ACD which will

provide a more general purpose use of CRT's. Our objectives are to

provide, through software development, the necessary communication,

control, and graphic tools to support interactive problem solving and

analysis via the GRT.

Remote terminal subsystem

Remote batch processing services are provided through two inde­

pendent remote terminal systems (see Figure AS). The first, a low­

6o

speed system, supports twenty terminals, each terminal consisting of

a fifteen character-per-second card reader and typewriter printer,

operating over voice grade telephone lines. The IBM 7740 teleprocess­

ing computer provides for the collection of jobs from the remote

terminals and/or dissemination of results back to the terminals. All

job processing is performed in the 6000 computer, to which the termi­

nal system is connected. We are currently processing approximately

120 jobs a day through these terminals.

A 'medium-speed remote terminal system called EXPORT/IMPORT,

consisting of four terminals, comrises the second part of the remote

terminal subsystem. Each terminal consists of a 300 card-per-minute

reader and 300 line-per-minute printer, operating over voice grade

telephone lines. Each remote terminal has a stored program buffer

controller, which communicates with the central computer for the

transmission of a job. or the receipt of computer results, in blocks

of approximately 600 characters per transmission.

Jobs submitted from remote terminals proces in the dentral

computer in the same fashion as Jobs submitted at the center. In

order to more effectively expedite output, a route feature is avail­

able to the remote terminal user. This dapability, invoked through

the use of a control card, allows the user to selectively,direct out­

put files by name to his remote terminal or, to high-speed printers at

the computing -center.

61

REMOTE TERMINAL SUBSYSTEM

LOW SPEED

IBM 7740 TELEPROCESSING COMPUTER

20 - IBM 1050 TERMINALS
CAR READER 15 CH/SEC.
TYEPRITER, PRINTER 15 CH/SEC.

MEDIUM SPEED

CDC EXPORT/IMPORT SYSTEM

4 MOTE TERMINALS
CARD READER 300 CARDS/MIN.
LINE PRINTER 500 LINES/MIN.

Figure A5. - Remote terminal subsystem.

.624

On-line subsystem

Input paths for on-line ,data reduction applications are ptovided

through direct interfaces between the, computers and fiv digital

recorders in our Central Data Recording System (see Figure A6). The

central recorders are connected through patchboard switchifi.nd

underground cables to twenty-two test sites at the Langley Research

Center. In normal operation, the digitized recorder outputs from

100 analog inputs are recorded on magnetic tape. When on-line ser­

vices are required, data from as many as five test sites, in addition

to being recorded on magnetic tapes, will be transmitted from the

central recorders directly into a 6000 computer, where they will be

decomrutated, labeled as to origin and time, and stored into the disk

subsystem. At the same time, operating in a multi-program environment

at a lower priority level than the storage and decommutation program,

reduction programs will perform whatever calculations are required

upon the data and will route the output back to the remote research

facility using the remote terminal subsystem. This subsystem thus

far has supported on-line computation requirements for three research

facilities at langley Research Center.

http:switchifi.nd

ON-LINE SUBSYSTEM

INPUTS FROM4

5 RECORDING SYSTEM INTERFACES 15KC EACH

OUTPUTS USE:

LOW SPEED REMOTE TERMINALS

REAL-TIME DATA DECOM AND STORAGE
QUASI REAL-TIME DATA REDUCTION

Figure A6. - On-line subsystem.

CHAPTER II

OPERATING SYSTEM SOFTWARE

General Description

Figure A7 provides an overview of the operating system software

which supports the use and operation of the Langley Research Center

Digital Computer Complex. It is called the LRC SCOPE operating system,

SCOPE being an acronym for Simultaneous Computing,and 2peration of

Peripheral Equipment.

The Application Programer's Tools, indicated at the top of

Figure A7, represent the software elements which should be most

familiar to the user or application programer. They provide the

languages and procedures by which the -user communicates or interfaces

to the Computer Complex. The capabilities and use of these programing

tools are documented in the "LRC Computer Programing Manual" and

related reference material.

The Operation and Control and Special System control software

comprise a large quantity of modular system elements-which perform

numerous functions associated with controlling the orderly flow of

jobs through the computer, and operating the various devices contained

in the peripheral pool. Most b± this software is not directly invoked

by the user in the development of his Fortran program, bit is implied

or called at various levels of communication and control by the perat­

ing system as it processes jobs through their various stages.

The Real-Time Monitor, at the center of Figure A7, is the heart

LRC '!R
PROORAMERS A R LIBRARY
APPLICATION

TOOLS

OPERATION 0 SYSEM
AND , I i;oA UVVAL

CONTROL OUTPUT JOBCONTROL I

30 2315 4 21.551 SU 4213-1 1 6 10.9 21 3,3

SPCAL 4PEIL REMOTE REAL-I "I FILEr;THDRAM
TERMINALS A E$ TOE RIPAYShSSEM ITEFCE / go-,,s tTA 1'stEMEMOE,

-CONTROL
SPECIALSTOTALL PROGRAMSER-64B,

52. 3 2z22 9- 63.864 36 47,775L

, TOTAL -925,192 ShadengINSTRUCTIONS Repesents I
PERFORV~NC'IPercent NonstardardI

1I0. Figure85 -

Figure A7.- Operating system software.\3T

66

of the entire operating system. Its primary function is to provide

orderly and responsive comunication, control, and resource -allocation

functions for the entire operating system.' Its function is somewhat

analogous to that of a dispatcher, where the frequency Ifoccurrence

of events to be processed is in the range of thousands per second.

The most critical requirement of real-time monitor is the ability to

maintain a response time which is minimal,, nearly constant, and

definable under all possible conditions of system operation. This

is the cornerstone upon which digital simulation is based. We have

recently completed the implementation of a third version of the

monitor portion of the operating system, and with it have achieved

a response to time critical events which at no time exceeds 130

miscroseconds. Considering the size and complexity of the LRC

Operating System, the current monitor represents a significant achieve­

ment in system design and performance.

Overall Design

The IRC SCOE Operating System has been built around two key

design techniques; Multiprograming, and Multiprocessing. Multiprogram­

ing can be defined as a mode of computer operation whereby the computa­

tional capability of a computer is directed to intermittently support

one of a number of different applications which reside in the memory

of the computer simultaneously. The distributive allocation of

computational power among the various applications is controlled in

a variety of ways depending on the nature of the individual jobs

67

currently being processed. In general,- a priority number determines

the preferred sequence.

canMultiprocessing in the case of the LRC Operating System, be

defined as a mode of computer operation whereby all input/output

operations as well as the logic and manipulation associated with them

are performed in parallel with the multiprograming mentioned above.

In addition, numerous (10-15) input/output operations can be proceed­

ing in paraflel with one another.

The purpose of these features, which have been incorporated

system software, is to dynamicallythroughout the entire operating

allocate the numerous resources of the computer hardware to a con­

tinuously changing workload requirement in an attempt to optimize

the performance of the entire computer. The objective, of course,

is not to just keep the machine busy, but to provide the best possible

service for all users of the computer complex.

can bestThe operation of multiprograming and multiprocessing

be explained by diagramnatic example. Figure AS depicts a typical

6000 system. On the right, we have the central processing unit,

which operates only on programs stored in the central memory located

to its left. The ten peripheral processors (PPU's), each of which in

effect is a separate computer with 4096 words of memory, communicate

through half-duplex channels with all input/output equipient in the

peripheral pool and with central memory.

of LRC SCOPE is' as follows (see
The operational environment

Figure A9). As many as seven different application programs, -resident'

68

PERIPHERAL PROCESSORS
A1 CH HAS 11K WORDS OF MEMORY

P PI'0

E "
 R 'P P 1

I
'p
H
E CENTWAL

P,R
A MEMORY
L

U:n

P
0
0'4
L

12 HALF DUPLEX CHANNEIB

Figure A8. - 6000 system.

69

in central memory, can operate in a true multiprograming mode,

depicted here by Program 1, Program 2, etc. The r~al-time monitor

(HTM), permanently resides in a peripheral processor and.a small

portion of central memory.. Also, a display driver permanently'

resides in a second peripheral processor -to provide continual dynamic

display and coitrol for operator communication. The remainhg periph­

eral processors constitute a pool of capability which, upon command

from monitor, will perform various input/output and controi tasks

necessary to support the execution of application programs in central

memory, as well as numerous system functions such as reading in jobs,

printing results, communicating with remote terminals, etc. The

operating system uses a small portion of central memory for job

queues, tables, and other passive support and communication require­

ments.

Let us assume that Program 1 is in execution and that it is

the highest priority job in central memory. It wil2l remain in execu­

tion as long as its priority remains highest, until it requires

external input/output activity. At this point, it will request that

input/output be performed. When the request is recognized, monitor

will imediately redirect the CPU to the next highest priority job

in central memory that is ready to execute and will command a pool

peripheral processor to perform the appropriate input/output operation

required by Program 1. When the outstanding input/output operation is

complete, monitor will place Program 1 in a "waiting for central

processor" status which, in effect, places the program in contention

70

PERIPHERAL

PROCESSORS CENTRAL MEW)HY

RTM OPERATING SYSTEM TABLES

DISPIAY
PROGRAM 1 PRIORITY 7

PROGRAM 2 PRIORITY ,6 C

.8. P
POOL

PERIPHERAL
PROCESSORS U

PROGRAM 7 PRIORITY 2

Figure A9. - Operational environment.

71

for subsequent use of the central processor. This allocation of the

central processor among the various programs in central memory (multi­

programing) occurs hundreds of times per second. Each occurrence is

created by the need of the application program for support activity

from the operating system, such as input/output operations. The

handling of these support activities by peripheral processors is

accomplished in parallel vith the central processor and in parallel

with one another (multiprocessing).

72

BIB TLIOGRAPH

1. 	 Eckhardt, Dave E., Jr.: Description of langley Research Center
Computer Complex and Special Features for Real Time Simlation
Applications. (Paper presented at the Eastern Simulation Council
Meeting, Hampton, Virginia, September 26, 1968.)

2. 	 Cleveland, Jeff I., II: Description of Software Features for
Program Control. (Paper presented at the Eastern Simulation
Council Meeting, Hampton, Virginia, September 26, 1968.)

3. 	 Computer Programing Manual. (Internal manual for National Aero­
nautics and Space Administration, Langley Research Center
Digital Computer Complex.)

