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ABSTRACT
 

One of the major functions of the National Aeronautics and Space
 

Administration's Langley Research Center Computer Complex is to provide
 

computational support for real time flight simulation investigations.
 

For purposes of efficiency, several real time simulation applications
 

programs operate concurrently in a single Control Data Corporation 6000
 

series computer. To perform "man in the loop" digital simulation
 

requires that the computer operate as part of a closed loop, time
 

critical system where precise problem solution rates must be guarabteed
 

in order to maintain the integrity of the simulation..
 

In an effort to simplify the programing and operation of digital
 

simulation applications, a "real time digital simletion supervisor,"
 

hereinafter referred to as "the supervisor," has been developed. Its,
 

major function is to perform all real time input/output control, timing
 

synchronization, communication and control, and other system oriented
 

functions peculiar to real time operation.
 

The major objective of this work is to simplify the programing
 

and planning tasks associated with flight simulation investigations to
 

the level of conventional Fortran programing without sacrificing the
 

interactive flexibility required to perform digital simulation.
 

A general description of the computer complex with particular
 

emphasis on the digital simulation subsystem is presented. 'The general 

requirements and structure of the supervisor are discussed, along with 

an overview of its implementation. The stiuctre of a ,simulation 
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applications program is discussed and the man-machine control interface 

through the supervisor is described.
 

Special problem areas and special techniques developed to solve 

the problems are presented. The areas discussed are real time program 

control, real time data recording, time critical supervisor operation, 

-and error recovery and diagnostics. This discussion illustrates the 

manner in which the simulation applications program is able, through a 

series of single subroutine calls, to form a unified code structure 

that will perform the task of real time digital simulation. 
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CHAPTER I 

INTRODUCTION 

One of the major functions of the National Aeronautics and Space 

Administration's Langley Research Center Computer Complex is to provide 

computational support for real time flight simulation investigations. 

For purposes of efficiency, several real time simulation applications 

programs operate concurrently in a single Control Data Corporation 

6o0o series computer. To perform "man in the loop" digital simula­

tion requires that the computer operate as part of a closed loop, 

time critical system where precise problem solution rates must be 

guaranteed in order to maintain the integrity of the simulation. 

In an effort to simplify the programing and operation of digital 

simulation applications, a "real time digital simulation supervisor," 

hereinafter referred to as "the supervisor," has been developed. Its 

major function is to perform all real time input/output control, timing 

synchronization, commuication and control, and other system oriented 

functions peculiar to real time operation. 

The major objective of this work is to simplify the programing 

and planning tasks associated with flight simulation investigations to 

the level of conventional Fortran programing without sacrificing the 

interactive flexibility required to perform digital simulation. 

A general description of the computer complex with particular 

emphasis on the digital simulation subsystem is presented. The general 

requirements and structure of the supervisor are discussed, along with 
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an overview of its implementation. Areas vhich required special 

techniques are discussed along with a description of the techniques 

enoloyed. 



CHAPTER II 

SYSTEM HARDWARE AND SOFIWARE 

The National Aeronautics and Space Administration Langley Research 

Center Computer Complex consists of four CDC 6000 series digital com­

puters with associated subsystems of peripheral equipment. As seen in 

the Appendix, several different types of computer subsystems are 

integrated into the complex. It is in this environment that real time 

digital simulation mst-be performed. Time synchronization and problem 

solution rates must be guaranteed while allowing other functions of 

the complex, auch as batch, conversational CRT, and remote terminal 

processing,, to be performed' on the same computer at the same time. 

To perform digital simdfation, two special Real Time Simulation 

Hardware Subsystem (RTSS) are employed to perform the real time input/ 

output and timing that are necessary. Each RTSS consists of a real 

time clock, an analog-to-digitl input subsystem (ADDIS), and a 

digital-to-analog output analog system (DADOS). Each RTSS has m 

complement of analog-to-digital (ADC) and digital-to-analog (DAC) 

converters and a set of discrete input and output channels for event 

sensing, control, and status indications. 

An integral part of each RTSS is a set of program control stations. 

Each station consists of a simulation control console, a CRT inter­

active display console, a typewriter for printing short messages, and 

associated analog recording devices. Figure 1 illustrates the control 

panel of a simulation control console. Each panel has a set of 
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switches which are connected to discrete input channels. The set of 

function sense switches are used for programer inputs to the simulation 

program while the set of ,mode control switches are for specific flow 

control and functional requests. The data entry keyboard with the 

digital decimal display comprise a means of data entry into the com­

puter and a means of displaying values to the programer. At the left 

of the figure, the white and red indicators are used to denote logical 

status and event occurrence in the simulation program. In the lower 

right are potentiometers that are connected to ADC input channels to 

give a "twiddle" capability. With this complement of switches and 

indicators, the programer is able to control the simulation inter­

actively. 
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CDC 6000 Couter Organization 

Figure 2 illustrates typical CDC 6000 computer organization with 

the SCOPE (Simultaneous Computing and Operation of Peripheral Equipment) 

operating system. Central memory is partitioned by software into eight 

areas called control points. Each control point can function indepen­

dently of the others and one job occupies one control point which gives
 

a multiprograming capability. Control point 0 is reserved for the use 

of the operating system and contains tables and pointers for the SCOPE 

system.
 

Associated with central memory and the central processor is a bank 

of ten peripheral processors (PP) which run independently of the central 

processor. PP 0 contains the PP monitor which coordinates and controls 

activities in the computer system. PP 9 contains a display and com­

imunication program which supports console operation. Twelve half­

duplex dat4 channels are controlled by the PPs and all channels may be 

active at once.
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Real Time Control 

Figure 3 shows the internal computer organization employed to 

support digital simulation. Illustrated are three digital simulations 

running concurrently. An additional central memory monitor is added 

to control point 0 to give faster monitor response to time critical 

demands for service. When real time simulations are running, a sche­

duling program (SKED) is always in control point 1. SKED allocates 

real time equipment and schedules the timing cycles for real time 

operations.
 

A dedicated pP with a dedicated data channel connected to ADCON 

(Analog-to-Digital Controller) and the real time clock comprise ADDIS. 

ADDIS places the outputs of ADCs and discrete inputs into the control 

points indicated by SKED. A second dedicated PP with a dedicated 

data channel connected to DACON (Digital-to-Analog Controller) and 

the real time clock comprise DAIXS. DADOS removes data from the 

control points as indicated by SKED for output to the real time world. 
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Figure 4 illustrates the allocation of central processor time 

with three simulation jobs rining at different sampling rates. Note 

that a job does not necessarily compute the response of one frame 

continuously, but may be interupted to allow another job to finish. 

The scheduling of compute and idle time is done by SJED according to 

timing information supplied by the simulation program. 

This, then, illustrates the hardware and software environment in 

which real time digital simulations are performed and in this same 

environment the supervisor must perform its functions. 
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CHAPTER III
 

REQUIREMENTS OF A REAL TIME DIGITAL
 

SIMUIATION SUPERVISOR
 

The supervisor is a set of subroutines integral to each simulation 

job. The supervisor performs all real time input/output control, 

timing synchronization, comunication and control, and other related 

functions that are system dependent. This allows the simulation 

program to be coded in Fortran with little regard to the computer 

interface with the real time world. 

The real time digital simulation supervisor must perform the 

following functions: 

A. Real Time System Initialization 

B. -Real Time Timing Control 

C. Real Time Central Memory Input/Output Control 

D. Control after Lost Time Synchronization Interrupt 

E. Mode Control 

F. Real Time Data Storage and Retrieval 

G. Print Output Control 

H. Error Recovery and Diagnostics
 

I. Batch Job Compatibility 
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A. Real Time System Initialization 

When a real time job enters the computer system, the only special 

characteristic that it has is the priority. Once the job begins to 

execute, it runs like a high priority batch job. Through a series of 

initializing calls, the simulation applications job communicates cer­

tain real time data that is required for real time operation. At this. 

point, the supervisor must communicate to the operating system infor­

mation for execution of the real time portions of the job. 

The supervisor must communicate to SED the addresses where the
 

ADC, DAC, discrete, real time clock, and other real time information 

for this job reside., The supervisor must construct an interrupt table 

to the real time monitor. In addition, the supervisor must set up 

internal flow control, data areas, and perform other functions neces­

sary to prepare for real time operation. 

B. Real Time Timing Control 

A real time simulation job may execute in one of two states. It 

may execute in real time, where strict time synchronization is held 

and real time responses are calculated. It may also execute in non­

real time where time synchronization is not maintained and the job 

executes like anythigh.priority batch job. A real time simulation job 

may change readily from real time to non-real time or vice versa. The 

supervisor must perform the necessary monitor functions to perform the 

transition described. The Mpervisor must also perform the necessary 

systei functions to gua antee time synchronization while the job is 
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operating in real time. The supervisor also computes the maximum CPU 

time per frame for programer information. 

C. Real Time Central Memory Input/Output 

The supervisor controls the transmission and distribution of 

input/output from the RTSS. ADCs andlDACs are packed four channels 

per word and the supervisor provides the pack/unpack capabilities so 

that these quantities appear in normal floating point numbers in the 

Fortran program. Discretes are packed sixty per word and may be 

unpacked into normal Fortran logical variables if that mode of 

operation is selected. 

D. 	 Control after Lost Time 

Synchronization Interrupt 

A simulation job requests of the system two time increments that 

are pertinent to real time execution. The first increment requested 

is frame time--this is the time between samples and defines the itera­

tion rate. The second is requested compute time. Since more than one 

simulation can use a computer, each simulation must have an allotted 

time slice in which to compute a response. This time slice is the 

requested compute time (RCT). 

In order to preserve time synchronization of all real time jobs, 

the system guarantees that no job will be allowed to compute more 

than its allotted RCT per frame for that job. When a job does attempt 

to exceed the ROT, a lost time synchronization interrupt is issued by 

the real time monitor and the central processor is given to another 
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job. It is the task of the supervisor to control and coordinate 

activity of a simulation after lost time synchronization interrupt 

occurs. A more detailed discussion of lost time execution is given 

in a later chapter. 

E. Mode Control 

The process of real time digital simulation requires an inter­

active imn-machine control capability. By using the mode control 

keyboad, a simulation programer is able to control the flow and 

function of his program. This manual control is called mode control 

and is interpreted and coordinated by the supervisor. A detailed 

description of mode controls and implementation follows in a later 

section. 

F. Real Time Data Storage and Retrieval 

During the course of a simulation, it is necessary to store 

information about the simulation such as values of state variables, 

external disturbances, and event status for later analysis. Because 

of real time simulation timing constraints, Fortran input/output cannot 

be accomplished during real time operation. It is also unfeasible in 

a multiprograming system to have extensive storage of data in central 

memory. Therefore, it is the task of the supervisor to control and 

coordinate the storage on disk of data generated during real time 

operation, without interfering with the timing and synchronization of 

the simulation. 
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G. Print Output Control 

With the standard batch operating system, information to be 

printed is routed to the printer only after the job has completed 

all processing and has left the system. The supervisor by special 

communication with the operating system, can route information directly 

to the line printer upon command without relinquishing the central 

processor. This allows the programer to supplement the analog data 

on recording equipment with printed data at his request. 

H. Error Recovery and Diagnostics 

During the execution of a program, many different errors can 

occur. The supervisor must provide the error recovery and diagnostics 

necessary to maintain the integrity and effectiveness of a real time 

simulation job. In a batch environment, when an error occurs, the job 

aborts. In real time, because of the large quantity of resources 

(i.e., computer, A-D conversion equipment, cockpits, etc.),and person­

nel required, it is best to capture the error and allow the programer 

the chance to fix the program, if possible, and to continue operation. 

It is desired that the programer not be required to provide for all 

contingencies, e.g., if the solution goes unstable, the supervisor 

will trap the error, allowing the programer to access his stored data 

and to reset and to begin anew. 

I. Batch Job Compatability 

Real time digital simulation is expensive in terms of machine 

resources and execution time. Therefore, it is undesirable to do 
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/computations in real time then it is not necessary, such as during 
t 

early coding checkout and purely analytic studies where real time 

input and control is not needed. An additional requirement of the 

supervisor is the capability of operating the simulation job as a 

real time job or as a normal batch job with minimum change necessary 

for the program. 



CHAPTER IV 

GENERAL OVERVIEW OF IPLEMENTATION 

The supervisor was designed and implemented with the following 

objectives: (1) to provide a high-level dialect of the Fortran 

language that would be used as a digital simulation language, (2) to 

make this dialect easy to use but still maintaining the complete cap­

abilities of the real time digital simulation subsystem, and (3) to 

make the operation of the supervisor as efficient as possible commen­

surate with the time available for development. To this end, the 

folowing sections discuss some of the processes and techniques used 

to develop the supervisor. A general description of the structure of 

a real time simulation program is presented with emphasis on the impact 

of supervisor on programing. The implementation of mode controls and 

real time data recording is discussed with descriptions of special 

techniques developed. A discussion of techniques used in mode controls, 

time critical operations, and error recovery are presented to illus­

trate the varied programing procedures used to implement this real 

time digital simulation supervisor. 

Figure 5 shows the supervisor in functional block diagram 

form. The supervisor is basically comprised of two sections, 

initialization and real tithe control. During initialization, the 

supervisor obtains certain information from the simulation program 

through declarative subroutine calls. From these calls, the super­

visor initializes certain internal tables for use during real time 
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execution. These tables include (I) addresses for the flow control 

of the simulation program, (2) -variable table for recording of data, 

(3) real time I/O table for communication with the real time subsystem, 

(4) interrupt table for control of execution when lost time synchroni­

zation occurs, and (5) a set of pseudo control inputs for controlling
 

the simulation if it is a normal batch job. 

During real time operation, the supervisor must respond to 

imperative calls from the simulation program as well as respond to 

interrupts'. 'The imperative calls from the simulation program cause
 

the- supervisor to process the requested function. There are three 

types of interrupts that affect the supervisor during real time 

operation.- The real time I/b interrupt causes the supervisor to 

start, ex-ecution after the sample time for the simulation occurs. 

'The error interrupts may, come from the hardware, if an arithmetic 

error occurs, or from the software, if any other errors occur. Lost 

time synchronization interrupt is issued by the monitor for action-

by the supervisor.
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CHAPTER V 

SIMULATION APPLICATION PROGRAM STRUCTURE 

To meet the requirements set forth earlier, a real time digital 

simulation application program is written entirely in Fortran. AU 

real time functions are provided by the supervisorand are activated 

by the use of the subroutine call.' Figure 6 shQws the block structure 

of a simulation program. The unique feature of the simulation program 

is that the various blocks are not linked&--the interblock linkage is 

done by the supervisor under the contl of the programer at his 

simulation control console.. Except, for theinitialization section, 

there may be more than one each of the other blocks. The following 

paragraphs describe the function of each section. 
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INITIAUZATION
 

REAL ME
 

CALCUlTIONS
 

PRINT-

OPTION 

Figure 6. - Simulation applications program block structure. 
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Initialization Section
 

Figure .7 shows the structure of the initialization section of the 

simulation program. The normal non-executable statements are first, 

followed by initialization of the supervisor. The supervisor is 

initialized by a series of Fortran calls that pass the necessary 

addresses for c6mmnication and, control of the simulation program. 

The siulation program then initializes program variables and parame­

ters by reads, equalities, and/or subroutines. 

At the end of the initialization section, the simulation program
 

executes a CALL READY. This gives cotrol to the supervisor and sig­

nals that the program is ready for ral time operation. At this time, 

supervisor completes the initialization of 'certain tables and sets up 

error recovery code. The superisor then indicates- to the system that 

real time initialization is necessary. After the system has initial­

ized., the supervisor requests real time operation. From this'point 

forward, control of the program is done from the Aimulatiba control 

console. 

Real Time Section 

In this section, the equatibns of motion are solved in synchroni­

zation with time, so that real time responses to input signals are 

seen in the outside world. During this time, the supervisor is main­

taining the time synchronization as well as performing functional tasks 

requested by the program and by the simulation programer at the simula­

tion console. A more detailed description of the flow control done by
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supervisor is found in the next chapter. 

Print Section 

When the programer at the simulation console requests the print 

function, the supervisor returns control in non-real time to the
 

simulation program in the Print Section. Here, the program may "play 

back" the data that vas previously recorded in real time. Data may be 

analyzed, plotted on a plotting device, or printed at the control of 

the program. When the necessary processing of the Print Section is 

complete, control is returned to the supervisor for further real time
 

processing. 

Option Section
 

When the programer at the simulation console requests the option 

function, the supervisor returns contiol in nion-real time to the slmu­

lation program. The siTmlation program then may mke any analysis­

or initialization that is required.- Perhapa the conditions for the 

next run might be read from a card deck or, the conditions, may be, 

calculated from a complex set-of error equations. There is no-specific 

function of this section--it just gives the programer a sectio that 

can be executed in -non-real time at the programer's request. At the­

end of the section, control is returned to the supervisor for ,further 

real time processing. 
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CHAPTER VI 

MODE CONTROLS 

Mode control for real time digital sinxtlation is defined as the 

sensing of change of status 'of the mode control keys by the supervisor 

and the supervisor performing the requested fiow control and/or 

function. Figure 8 illustrates the flow of a,typical sim'lation 

indicating the flow control done in response to mode control. 

In RESET mode, the initial conditions are' applied to the state 

variables to initialize for a new run. In OPERATE mode, the complete 

dynamic equations are solved and the simulation is computing real time 

responses. In HOLD mode, the values of the state variables are held 

at their last calculated value, thus giving a static description of 

the simulation at the point the HOD mode was entered. These three 

basic modes, RESET, HOLD, and OPERATE, form-the primary mode control 

system that the supervisor mast provide. In addition to •these three 

primnry modes, there is a set of secondary modes which are functions 

rather than flow controls. These functions include idle, erase real 

time file, process printing, clear output channels, continuous frame 

record and single frame record. These secondary modes are subordinate 

to the primary modes and there is a definite hierarchy of operation of 

the modes-and this is 'employed in the supervisor. 
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Figure 3. - Typical program. flow for real time modes. 
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Block Programing
 

A simulation program may be easily broken up into logical program 

blocks as shown in Figure 9. These blocks are executed in different 

sequences for the different primary modes. It was required that the 

supervisor provide the necessary linking and deliriking in order to 

perform the proper block execution sequence.- The major technique 
II 

developed for primary mode control was the block dispatching-code 

generator.
 

Block Dispatching Code Generator
 

The block dispatching code generator is initialized by a series 

of -calls that indicate the blocks that are to be executed for a given 

mode and the order in which they are to be executed. For example, 

CALL oPfATE (loS, 15s, 20S, 258, 10S, 15S) 

indicates a sequence of blocks to be executed in OPERATE mode., (In 

CDC 6000 Fortmn!, an "S" following a- number in a subroutine parameter 

list indicates that the number is a Fortran statement number and the 

location of that statement number ispassed to the called subroutine.) 

In the example above, program blocks are to be executed in the following 

order: Block 10-15, Block 20-'25, Block 10-15. 

This illustrates the manner in which the starting and ending addresses 

of code blocks and their sequences are transmitted to the block 

dispatching code generator. 

When a primary mode (OPERATE, OILD, or RESET) is entered, the
 

code generator must delink the program blocks from the previous mode
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and then must link the block together for the new mode. Figure 10 

illustrates the mnner in which the application program blocks and 

the Fortran portion of the supervisor are linked.. The code generator 

must insert code at the end of each code block so that the block
 

dispatcher in the supervisor can direct the block execution sequence,., 

The code generator inserts code into the block dispatcher so that the 

proper sequence is executed. This results in a unified code structure 

that will rapidly execute in the requested order. 

It should be noted that a maximam of seven distinct code blocks 

are allowed for each primary mode giving -the programer a great deal 

of latitude in constructing a simulation application program. New­

initialization calls are allowed at any time so that block program 

flow can be modified "on the fly." Thus •by using this. block 

dispatching code generator,. the supervisor is able to provide a block 

link-delink capability that results in a unified code structure. 



CALL OBERTE (10S, 15S, 20S, 25S, IOS, 15S) 

F-- 1-- I . . . . 
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PRGRAM' SECTION
 

*INDICAf CODE BY THE BLOCK DISPATCHING CODE GEERAORT INSERTED 

Figure 10. - Linkage diagram of block dispatcher. 
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CHAPTER VII
 

REAL TIME DATA RECORDING 

One of the major capabilities of the supervisor is the storage 

of data generated during real time operation. Normally, Fortran 

input/output (READ, PRINT, WRITE) is performed by Fortran library 

subroutines that interface with the operating system. Unfortunately, 

each time a file action request is performed the central processor 

is relinquished until the file action request has been completed. 

Thus, if Fortran input/output is attempted during real time operation, 

time synchronization will be lost, compromising the validity of the 

simulation. Therefore, a specialized output procedure was required 

to perform this function. 

The objectives in the implementation of this capability were 

threefold: (1) to provide the functional capability, (2), to implement 

the function in a manner that would give rapid execution (this function 

is done in real time), and N' to provide a simple means of programing, 

the function in the simulation application program. 

To examine the implementation of the first objective, the -nethod 

of central memory output in CDC 6000 computes must be examined. With 

each file that a program uses, there are two areas in, core storage 

used, as shown in Figure 11. The file environment table (FET) 

contains the necessary information for communication to the external 

input/output (I/O) peripheral processor..' The buffer area contains the 

data to be transmitted in the 1/0 operation. The first word of the 
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Figure 21. - Typical fileenqironment 'table 
and data buffer. 



FET contains the file name and the code and status of the-file. File 

action requests are placed in the code and status position and status 

is returned by the I/0 processor. FIRST and LIMIT indicate the 

beginning and ending addresses of the buffer and IN and OUT indicate 

where data can be put in and taken out of the buffer. 

To implement the storage of real time data, a Fortran callable 

subroutine was written that creates an FET and a data buffer in the 

Fortran section of the supervisor. This enables the Fortran section 

to directly make file action requests in the file name portion of the 

FET, to interrogate status of the I/O operation, and to manipulate 

the data buffer and the buffer pointers. This satisfies the second 

objective, in that simple Fortran replacement statements and simple 

-conditional transfer statements can be used to contol. the I/0. 

In addition to the above, the data buffer was partitioned into 

two segments that operate as seperate buffers by the control of 

FIRST and LIMIT. This allows- the supervisor to fill one buffer while 

the I/O system empties the other buffer, enabling, the supervisor to 

continue the storage process while output to the physical file is 

taking place. 

There isan inherent problem inthis scheme. If the supervisor
 

fills the buffers too fast or if the output system response time 

becomes large, the supervisor may need to fill a buffer before the
 

output system has emptied it. If this occurs, the supervisor mist 

discard data until the output is complete. The supervisor stores two 

extra code words each time a frame is recorded and 'this allows 
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missing data to be detected when the file is "played back." In order 

to provide faster response to real time data recording demands, the 

operating system has provided a means for requesting a high priority 

read or vrite. The use of this capability is limited to the supervisor 

and the supervisor uses this function only when necessary, so that 

the response of other real time Jobs is not unduly affected. 

Program Interface 

The simulation. program interface has been designed so that the 

program, through a series of subroutine calls, specifies a list of 

variables to be recorded. This list is normally specified during 

program initialization -but may be respecified during any non real time 

processing. The supervisor sets up an address table to direct the 

storage of data. This allows the recording to be made without the 

passing of an extensive parameter list or forcing the simulation 

program to use a fixed array for recorded data variables. This 

program interface accomplishes the third objective; a simple means of 

yrograming has been provided. 
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CHAPTER VIII 

TIME CRITICAL OPERATIONS 

The central processor time used by the supervisor during real 

time operation is strictly overhead which restricts the time that is 

available for the simulation program to calculate real time results. 

An objective of the supervisor was to shorten this overhead time as 

much as possible. The following sections describe some of the techni­

ques and methods used to shorten execution during time critical 

ope ations. 

Discrete Handling
 

Discrete inputs and outputs are placed in and taken out of central 

memory in packed form; that is, sixty discrete channels per word. The 

first version of the supervisor unpacked inputs and packed outputs so 

that discretes were available to the simulation program and the super­

visor as logical variables, one discrete channel per word. This 

unpack/pack operation consumes a 'considerable amount of time each 

frame. A technique was developed to prtvide discrete manipulation in 

packed form within the supervisor as well as. the simulation program. 

This technique for handling discretes vas developed to allow 

in-line Fortran testing which isfast and .easy to use. As shown in 

Figure 12, two arrays are set up_,in COMMON/MASKS/. The -1ASK array 

has only one bit set in each word, the particular bit being set 

depending on the array element. The FMASK array has all but one bit 
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set in each word and again the bit that is not set is dependent on the 

array element. The use of these masks for discrete manipulation is 

illustated in the figure. By using other masks, a simulation program 

can set or reset a number of discretes with one Fortran statement. 

Fortran Usage 

Special usages were developed to speed up the Fortran section and 

to,reduce the overall core storage requirements. Compilations were 

made and the object code was analyzed to find the most efficient 

Fortran coding techniques for the real time'sections,. Some of the 

techniques found and used are described below. 

Extensive use is -mde of the "GO TO WAME" statement where NAME is 

variable name normally defined by an asdign statement. However, CDC 

6000 Fortran will allow the variable to be defined in any manner. By 

communication through parameter lists and COMMON, - these -variables can 

be used by any routine. This allows this type, of GO TO statement to 

interconnect various routines by direct transfers rather than indirect 

subroutine linkage. Arithmetic operations are allowed sihce the con­

tent of the variable is simply an address. This allows the supervisor 

to compute addresses where necessary without having to use. an assembly 

language routine. 

It was found that some forms of IF statements are more efficient 

than others and it was also found that single replacement as more 

efficient than multiple replacement. (Multiple replacement: 

A = B = C= = 0.0) 
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The techniques above result in faster executing code. In investi­

gating subroutine linkage, a CALL SUB (0,0,0,0) would cause references 

to four different words of zero which is redundant and wasteful of 

central memory. This same call would be implemented as CALL SUB 

(IZIZ,IZIZ) where IZ is a data zero. Wherever practical, in-line 

Fortran code is used instead of using subroutines to conserve execution 

time. Such special techniques give small gains in execution time and 

core storage, but when added together provide significant overall gain. 

Subroutine Linkage
 

The supervisor consists of two lengthy subroutines, one in Fortran 

and one in assembly language. The investigation of pbject code from 

Fortran compilations showed that the use of'a parameter list and 

multiple entry points was inefficient, both in terms of execution 

time and memory usage. Therefore., all AlternAte ntry points and 

the parameter list were removed from the Fortransubroutine. Entry 

points were added to the assemblj language routine and parameters were 

then passed to the Fortran routine' through COMMON. About 10098 loca­

tions were saved in a Fortran routine whose executable code was about 

4500 8 locations. The resulting savings in memory 'and °execution time 

were significant. 

Deferred Execution 

Time remaining is defined as the scheduled compute time minus the 

actual compute time. The value of time remaining can vary over a wide 

range depending upon demand of the application program. It is required 
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that supervisor make effective use of time remaining so that the 

maximum actual compute time is not increased by supervisory functions. 

In order to accomplish this, a technique for deferred execution was 

developed. During frames when the simulation program has heavy demands 

for computation, certain supervisor flags are set and execution of some 

supervisor functions are not done. When the computation demand of the 

simulation program becomes light, then these functions are executed. 

In the same view, the supervisor performs any lengthy operations 

in non-real time that do not require real time- operation. Care is 

taken so response to programer inputs is not unduly affected.' 

These various techniques have been used to make the supervisor 

more efficient in the use of central memory and the central processor. 

This allows the simulation program to have a bigger, slice ot time and 

allows either more or longer jobs to reside in central memory. 



CHAPTER IX 

ERROR RECOVERY AND DIAGNOSTICS 

Recovery from error is one of the important features of a simula­

tion supervisor. In a normal batch processing mode, when an execution 

error is detected, the program being executed is aborted. This mode 

of operation is undesirable for real time digital simulation since 

this can lead to loss of expensive data and machine execution time as 

well as lost manhours. .One of the objectives of the supervisor was to 

capture certain classes of execution errors in order to enable the pro­

gram to fix the simulation and to continue real time operation. If the 

program could not be fixed on-line, then at least the current data 

could be recovered for later analysis. Areas to be discussed are:
 

(I) recovery from lost time synchronization interrupt, (2) non-real 

time execution attempted in real time, (3)Fortran execution errors,
 

(4)arithmetic errors, and (5) supervisor dialect errors.
 

Lost Time Synchronization Interrupt 

When the simulation program attempts to exceed the time allotted 

for a real time response to be calculated, the monitor issues a lost­

time synchronization interrupt. At this point, the central processor 

is taken away from the simulation program and given to -another job 

as shown in Figure. 13. On the next frame, real time control of the 

simulAtion job is returned to the supervisor as specified by the 

supervisor during program initialization. The supervisor then uses 
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Figure 13. - Supervisor special execution at lost time synchronization Interrupt. 
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a special routine to save the operating registers so that the program 

may be restarted at the exact point that interrupt occurred. 

The supervisor must now determine what the operatio of the simu­

lation program wilI be. There are severfl options available to the 

programer. 

A. 	 The supervisor will stop execution; print the program address 

at which interrupt occurred and wait for programer a'ction at 

the control console. Programer action may be 

(1) 	Selection of a different mode 

(2) 	 Advance frame command--one more frame of computation 

will be allowed at which time the program will again 

stop. 

(3) 	 Any functional request (print, idle, erase, etc.) 

followed by (1) or (2) 

B. 	 The supervisor will restart the program in real time and 

allow a specified number of cycles of lost time operation to 

occur before stopping the program. 

C. 	 The supervisor will restart the program in real time and allow 

it to finish the current iteration only, stop the program and 

(1) allow any option under A, above, or (2') transfer to a 

specified point in the simulation program. 

D. 	 The supervisor will restart the simulation program indicating 

that lost time is occurring and continue real time operation. 

E. 	 The supervisor will stop the execution, print the program 

address at which interrupt occurred and return control to a 
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specified point in the simulation program. 

In the event that the simulation program specifies D as the 

lost time option to be performed, supervisor perfoiT a short register 

save-restore--only enough registers are saved to test a flag and return 

to real time.
 

Figure 13 illustrates operation of a program using option D where 

lost time synchronization interrupts have occurred three times during 

one real time solution. The program has taken four frames to calculate 

one response so that real time synchronization has been delayed and the 

solution can no longer be guaranteed. 

It should also be emphasized that when supervisor returns control 

to the program, the program may request real time operation at the 

.point at which interrupt occurred. 

Real Time Errors 

There are certain functions such as Fortran input/output that 

cannot be attempted in real time with the guarantee that time synchroni­

zation will be maintained. Therefore, it was required that supervisor 

detect this type of error and provide the necessary recovery capability. 

Code modification techniques were used' to insure detection of these 

errors. Code is inserted at the entry point of each potential error 

generating routine. When the routine is called) control is transferred 

to the supervisor. The supervisor, then, is able to check for real 

time operation each time one of these routines is called and is able 

to capture the error before it occurs.
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Fortran Execution Errors
 

A central subroutine called SYSTEM is called by any system Fortran 

subroutine that detects an error .(like attempting to take the square' 

root of a negative number). The subroutine issues an error message to 

the print file and aborts the program if the error is fatal. It is 

required, therefore, that supervisor detect- such errors and' insure that. 

the program does not abort.
 

The supervisor performs three modifications to SYSTEM: (I)the, 

error table internal to SYSTEM is modified so that al errors are 

processed as non-fatal so that no aborts occur, (2) code at the entry 

point is modified so that control is returned to the supervisor rather 

than the error detecting routine, and (3) the output section of SYSTEM 

is modified so that diagnostic messages are relayed to the typewriter 

rather than the standard line printer. 

The Fortran functions of STOP, E1D, EXIT are serviced by entry 

points in SYSTEM. By modification of code, these entry points are 

"locked out" and entry is made to the supervisor when one of these 

functions is attempted. Program termination is initiated by the 

supervisor only and requires a positive request. from the program 

control console. 

Arithmetic Errors
 

An important function of the supervisor is the recovery from 

arithmetic errors. Arithmetic errors occur when the hardware detects 

an operation that it cannot perform, that is, address range error, 
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division by zero, etc. When an arithmetic error is detected, transfer 

is made to the operating system for abort. However, a special routine 

was put in the operating system that will return control to supervisor 

when an arithmetic error is detected. The supervisor then prints out
 

the contents of the operating registers and appropriate memory loca­

tions for analysis by the programer. The programer still has full 

control of his simulation program after an arithmetic error has 

occurred. 

Supervisor Dialect Errors 

Since subroutine calls to the supervisor form a simulation 

language, there can be sequences of calls that would comprise "syntax" 

errors. These errors, as well as. illegal parameter errors, are 

detected by the supervisor. If an error occurs during initialization, 

the program is aborted, since real time execution had not been 

initiated. If, however, any of these errors occur after real time 

operation has begun, the supervisor will capture control and give the 

programer a trace back of the error causing procedure. 
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CHAPTER X 

CONCLUDING REMARKS 

The objective of this work has been to develop a supervisory 

system to support "man In the loop" real time digital flight simila­

tions. To this end, a set of routines called "the supervisor" was 

developed that enable a simulation applications programer to program 

very large simulations entirely in Fortran without sacrificing the 

flexibility, control, and interactive features required to perform 

digital simulation. A basic simulation dialect consisting of simple 

Fortran subroutine calls has been developed and will provide a base 

for later extensions or the supervisor. 

Continued research and development work will be undertaken as 

the need arises. One of the areas of future development is the'cap-. 

ability of coordinated real time inputs from computer-Sased storage 

systems. This would allw coordinated inputting of information such 

as recorded wind gusts and other predetermined measured variables. 

This and continued development work will keep the supervisor abreast 

of the needs of the real time digital sdmulation community. 



48 

APPENDIX 

The following discussion is an abridged version of Volume I,
 

Section 2.1, of the Langley Research Center Programing Manual. 

This section was vritten by Mr. Maurice K. Morin, Head, Programing 

Techniques Branch, and edited by the thesis author. The hardware 

and software resources of the langley Research Center Computer
 

Complex are described as a reference for the paper. 
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CHAPTER I 

HAREhfARE CONFIGURATION 

The system configuration is represented schematically in Figure 

Al. It can be divided into three main subdivisions: the communica­

tion and control section, consisting of a large shared core memory; 

the processing section consisting of four independent computers; and 

the input/output section containing all peripheral equipment organized 

into a shared peripheral pool. 

Communication Section 

The shaded block at the center of Figure Al represents the
 

shared core memory. It will consist of one million 60-bit words of 

core storage equally accessible to all computers in the processing 

section. This component will serve as the focal point of the con­

figuration by providing for all inter-system communication. It is 

scheduled for delivery in 1970. The remaining elements of the 

hardware configuration are currentl instaLled and are in productive 

use.
 

Processing Section 

The processing section, surrounding the shared core memory on 

Figure A-1 consists of four independent computer systems.- The first, 

a 6400A, has a unified central processor capable of executing .5 

million operations per second (MOPS), which is approximately i.4 

times the speed of our previously installed IBM 70941T. A unified 
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central processor means that instructions are executed one at a time 

in the sequence dictated by the algorithm being solved. Its memory 

consists of 65,000 60-bit words. The memory cycle time is 1 micro­

second; however, through the use of inte'-leaving, an effective acdess 

time of 100 nanoseconds can be achieved.
 

The next computer, the 6600B, has a multiple functional unit, 

central processor capable of executing 1.5 million operations per 

second, which is approximately five times faster than our previodsly 

installed IBM 70941[. The multiple functional unit central processor 

provides the ability to execute numerous instructions sjimutaneously 

without altering the intent of the algorithm being solved. This 

feature is the main difference between the 6400 and 6600 series of 

computers. The 660OB-, 6600C, and 6600D each have a central memory 

capacity of 131,000 words. 

The A, 'B, C, and D designators have been established by local 

convention, and do not represent manufacturer's models. They are 

used simply to distinguish among the machines. 

Each of these 6000 series computers has ten peripheral proces­

sors, each of which, in effect, is a stored program computer with a
 

processor and 4096 12-bit words of memory. These ten peripheral 

processors, together with twelve half duplex channels, serve as the 

link for input/output communication and control, and overall system 

operation control for each 6000 series computer. 



52 

I/o section 

The third subdivision of the computer configuration, surrounding 

the central processors in Figure Al, 'isthe shared peripheral pool. 

Communication between the central computers and peripheral equipment 

isaccomplished through a battery of multi-access switches, which
 

allow the computers to communicate with any peripheral device. Thus, 

the peripheral equipment is shared among the computers. These 

switches operate under program control. A central display with 

manual lockout controls is also available to accommodate system 

partitioning. With this feature, a computer and selected peripheral 

equipment can be physically partitioned off from the complex and used 

for development work or maintenance without endangering the continued 

reliable use of the remaining portion of the computer complex. 

Shared Peripheral Pool Subsystems 

The functional capability of the equipment comprising the shared 

peripheral pool will be described beginning with the equipment shown 

at the bottom right-hand corner of Figure Al and proceeding clockwise 

around the chart. 

Batch processing subsystem
 

The first major subsystem of the shared peripheral pool is the 

batch processing subsystem. It consists of a battery of conventional 

types of unit record equipment, located in the computer complex. The 

major elements comprising this subsystem and their performance are,
 

listed in Figure A2. Of particular interest here is the 
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decentralization of operation of this equipment. This is accomplished
 

through a message switching and response polling software system,
 

using six low performance CRT/keyboard inquiry type devices, each of
 

which is associated with small groupings of peripheral equipment.
 

For example, one CRT/keyboard is associated with a reader, punch, and 

printer. Its function is to provide the operator of this equipment 

with all the information and control necessary to effectively operate 

these particular pieces of equipment. This concept has been imple­

mented throughout the peripheral pool, and has proved extremely 

effective in decentralizing operations into smaller self-manageable 

groups. As a xatter of fact, the major portion of our peripheral 

equipment is located in different rooms from the main systems' 

operation consoles.
 

Auxiliary storage subsystem
 

The auxiliary storage subsystem consists of three main elements:
 

data cell drives for permanent storage of programs; disk storage
 

drives for high speed transient storage; and magntiic tape drives
 

for data storage and communication with off-line devices. Figure
 

A3 lists the major characteristics of the eguipment in this subsystem
 

The total capacity of the four disk drives is 524 million 6-bit char­

acters. The average access or head positioning time is 60 mflli* 

seconds; the average rotational delay is 25 milliseconds. These 

performance features, coupled with the fact that as many as 128 

files of 32,000 characters each are available at each access position 
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of each disk drive, has greatly improved system throughput in compari­

son with previously available :disk' systems. 

The software controlling disk operation utilizes a centr2lized 

stack processor. In processing d4sk requests, the stack processor
 

first selects all requests associated with real-time applications, 

all other requests are then selected, primarily, on the basis of 

minimizing head movement. The system provides for both sequential
 

and random processing for files stored on disk. 

The data cell drives provide for a total on-line storage volume 

of 2.2 billion 6-bit characters of alphanumeric or binary information. 

This information volume is equally divided over forty removable 

wedges, ten wedges per data cell drive. It ia estimated that this 

storage subsystem will provide adequate storage for 1000 application 

programs on-line to the computer systems. 

A data management software subsystem rigidly controls the 

cataloging, storage, and retrieval of allprograms stored in data 

cells. Usage statistics such as date of entry, number of times 

ace seed, date of last use, etc. and a descriptive label for each file. 

are maintained by the system. The unit of information on the data 

cells is a file consisting of a source program and its compiled binary 

object program. Because of the need for extreme care in maintaining 

the continued reliability and integrity of the entire permanent 

storage information base, the user is not permitted to gain direct 

access to the content of his files in the data cells during his pro­

gram's execution. Instead, upon comnand, an entire file will be 
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accessed and transcribed from data cell to disk in one continuous 

operation. Once the file is transcibed to disk, the user can
 

manipulate it in any way he chooses. The converse is also true. 

Before a new file will be cataloged into permanent storage; ,iti must 

exist in its entirety on disk. As an example, assume a user has a
 

program cataloged in the data cells. With, a sinle set of control 

cards, he can FETCH his program, MODIFY selected statemerjts; compile 

and execute, and, if desired, REPIACE the original program with the 

new modified version. 

Real-time simulation subsystem
 

One of the major requirements of the LRC Computer Complex is
 

the ability to perform multiple real-time digital flight simulations 

in a single 6000 co4uter (see Figure A4) . To perform "man in the 

- loop" digital simulation requires that the computer operate as part 

of a closed loop, time critical system where precise problem solution
 

rates must be guaranteed in order to maintain the integrity of the 

simulation. These requirements have necessitated the design -and 

implementation of a hardware and software subsystem with unusually 

high performance characteristics. Figure Ak lists the major elements
 

that comprise the hardware subsystems.
 

A real-time clock, accurate to 100 nanoseconds provides timing
 

control for both the input/output subsystems and computing algorithm. 

The input subsystem consists of eighty analog channels and 960 dis­

cretes for external event sensing. Each analog channel converts to 
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fifteen bits, fourteen data bits plus sign, and through a series of 

multiplexors can achieve a conversion rate of 1.25 microseconds per
 

channel. The output subsystem contains 192 digital output channels 

and 960 discretes for external event control. Each output channel 

has fifteen bits of precision and operates at an effective rate of 

1.25 microseconds per digital-to-analog conversion. 

In order to maintain sufficient communication and control during 

the progress of a simulation,- a high performance CRT (cathode ray 

tuke), with keyboard, function switches, etc. and a' central hardcopy 

recorder will be available to the test conductor. The CRT will be 

used to provide a dynamic display of selectable key parameters in 

graphic and/or tabular form for monitoring purposes. 'It will also 

provide real-time control features which will allow the test conductor 

to START, STOP, or HOLD the simulation, perform detailed analysis of 

historical information collected during the course of the simulation 

and resume or reinitialize the simulation at various selectable times. 

Development activity is currently underway in ACD which will 

provide a more general purpose use of CRT's. Our objectives are to 

provide, through software development, the necessary communication, 

control, and graphic tools to support interactive problem solving and 

analysis via the GRT. 

Remote terminal subsystem 

Remote batch processing services are provided through two inde­

pendent remote terminal systems (see Figure AS). The first, a low­
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speed system, supports twenty terminals, each terminal consisting of 

a fifteen character-per-second card reader and typewriter printer, 

operating over voice grade telephone lines. The IBM 7740 teleprocess­

ing computer provides for the collection of jobs from the remote
 

terminals and/or dissemination of results back to the terminals. All 

job processing is performed in the 6000 computer, to which the termi­

nal system is connected. We are currently processing approximately 

120 jobs a day through these terminals. 

A 'medium-speed remote terminal system called EXPORT/IMPORT, 

consisting of four terminals, comrises the second part of the remote 

terminal subsystem. Each terminal consists of a 300 card-per-minute 

reader and 300 line-per-minute printer, operating over voice grade 

telephone lines. Each remote terminal has a stored program buffer 

controller, which communicates with the central computer for the
 

transmission of a job. or the receipt of computer results, in blocks 

of approximately 600 characters per transmission. 

Jobs submitted from remote terminals proces in the dentral
 

computer in the same fashion as Jobs submitted at the center. In
 

order to more effectively expedite output, a route feature is avail­

able to the remote terminal user. This dapability, invoked through 

the use of a control card, allows the user to selectively,direct out­

put files by name to his remote terminal or, to high-speed printers at 

the computing -center. 
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REMOTE TERMINAL SUBSYSTEM
 

LOW SPEED 

IBM 7740 TELEPROCESSING COMPUTER 

20 - IBM 1050 TERMINALS 
CAR READER 15 CH/SEC. 
TYEPRITER, PRINTER 15 CH/SEC. 

MEDIUM SPEED 

CDC EXPORT/IMPORT SYSTEM 

4 MOTE TERMINALS 
CARD READER 300 CARDS/MIN. 
LINE PRINTER 500 LINES/MIN. 

Figure A5. - Remote terminal subsystem. 
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On-line subsystem
 

Input paths for on-line ,data reduction applications are ptovided
 

through direct interfaces between the, computers and fiv digital 

recorders in our Central Data Recording System (see Figure A6). The 

central recorders are connected through patchboard switchifi.nd 

underground cables to twenty-two test sites at the Langley Research 

Center. In normal operation, the digitized recorder outputs from 

100 analog inputs are recorded on magnetic tape. When on-line ser­

vices are required, data from as many as five test sites, in addition 

to being recorded on magnetic tapes, will be transmitted from the 

central recorders directly into a 6000 computer, where they will be 

decomrutated, labeled as to origin and time, and stored into the disk 

subsystem. At the same time, operating in a multi-program environment 

at a lower priority level than the storage and decommutation program, 

reduction programs will perform whatever calculations are required 

upon the data and will route the output back to the remote research 

facility using the remote terminal subsystem. This subsystem thus 

far has supported on-line computation requirements for three research 

facilities at langley Research Center. 

http:switchifi.nd


ON-LINE SUBSYSTEM 

INPUTS FROM4 

5 RECORDING SYSTEM INTERFACES 15KC EACH 

OUTPUTS USE: 

LOW SPEED REMOTE TERMINALS 

REAL-TIME DATA DECOM AND STORAGE 
QUASI REAL-TIME DATA REDUCTION 

Figure A6. - On-line subsystem. 



CHAPTER II 

OPERATING SYSTEM SOFTWARE
 

General Description
 

Figure A7 provides an overview of the operating system software 

which supports the use and operation of the Langley Research Center 

Digital Computer Complex. It is called the LRC SCOPE operating system, 

SCOPE being an acronym for Simultaneous Computing,and 2peration of 

Peripheral Equipment. 

The Application Programer's Tools, indicated at the top of
 

Figure A7, represent the software elements which should be most
 

familiar to the user or application programer. They provide the
 

languages and procedures by which the -user communicates or interfaces
 

to the Computer Complex. The capabilities and use of these programing
 

tools are documented in the "LRC Computer Programing Manual" and
 

related reference material.
 

The Operation and Control and Special System control software 

comprise a large quantity of modular system elements-which perform 

numerous functions associated with controlling the orderly flow of 

jobs through the computer, and operating the various devices contained 

in the peripheral pool. Most b± this software is not directly invoked 

by the user in the development of his Fortran program, bit is implied 

or called at various levels of communication and control by the perat­

ing system as it processes jobs through their various stages. 

The Real-Time Monitor, at the center of Figure A7, is the heart
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Figure A7.- Operating system software.\3T 
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of the entire operating system. Its primary function is to provide 

orderly and responsive comunication, control, and resource -allocation 

functions for the entire operating system.' Its function is somewhat
 

analogous to that of a dispatcher, where the frequency Ifoccurrence
 

of events to be processed is in the range of thousands per second. 

The most critical requirement of real-time monitor is the ability to
 

maintain a response time which is minimal,, nearly constant, and 

definable under all possible conditions of system operation. This 

is the cornerstone upon which digital simulation is based. We have 

recently completed the implementation of a third version of the 

monitor portion of the operating system, and with it have achieved 

a response to time critical events which at no time exceeds 130
 

miscroseconds. Considering the size and complexity of the LRC 

Operating System, the current monitor represents a significant achieve­

ment in system design and performance.
 

Overall Design 

The IRC SCOE Operating System has been built around two key 

design techniques; Multiprograming, and Multiprocessing. Multiprogram­

ing can be defined as a mode of computer operation whereby the computa­

tional capability of a computer is directed to intermittently support 

one of a number of different applications which reside in the memory 

of the computer simultaneously. The distributive allocation of 

computational power among the various applications is controlled in 

a variety of ways depending on the nature of the individual jobs 
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currently being processed. In general,- a priority number determines 

the preferred sequence.
 

canMultiprocessing in the case of the LRC Operating System, be 

defined as a mode of computer operation whereby all input/output 

operations as well as the logic and manipulation associated with them
 

are performed in parallel with the multiprograming mentioned above. 

In addition, numerous (10-15) input/output operations can be proceed­

ing in paraflel with one another. 

The purpose of these features, which have been incorporated 

system software, is to dynamicallythroughout the entire operating 

allocate the numerous resources of the computer hardware to a con­

tinuously changing workload requirement in an attempt to optimize 

the performance of the entire computer. The objective, of course, 

is not to just keep the machine busy, but to provide the best possible 

service for all users of the computer complex. 

can bestThe operation of multiprograming and multiprocessing 

be explained by diagramnatic example. Figure AS depicts a typical 

6000 system. On the right, we have the central processing unit, 

which operates only on programs stored in the central memory located 

to its left. The ten peripheral processors (PPU's), each of which in 

effect is a separate computer with 4096 words of memory, communicate 

through half-duplex channels with all input/output equipient in the 

peripheral pool and with central memory.
 

of LRC SCOPE is' as follows (see
The operational environment 

Figure A9). As many as seven different application programs, -resident'
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Figure A8. - 6000 system. 
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in central memory, can operate in a true multiprograming mode, 

depicted here by Program 1, Program 2, etc. The r~al-time monitor 

(HTM), permanently resides in a peripheral processor and.a small 

portion of central memory.. Also, a display driver permanently' 

resides in a second peripheral processor -to provide continual dynamic 

display and coitrol for operator communication. The remainhg periph­

eral processors constitute a pool of capability which, upon command 

from monitor, will perform various input/output and controi tasks 

necessary to support the execution of application programs in central 

memory, as well as numerous system functions such as reading in jobs, 

printing results, communicating with remote terminals, etc. The 

operating system uses a small portion of central memory for job 

queues, tables, and other passive support and communication require­

ments.
 

Let us assume that Program 1 is in execution and that it is 

the highest priority job in central memory. It wil2l remain in execu­

tion as long as its priority remains highest, until it requires 

external input/output activity. At this point, it will request that 

input/output be performed. When the request is recognized, monitor 

will imediately redirect the CPU to the next highest priority job 

in central memory that is ready to execute and will command a pool 

peripheral processor to perform the appropriate input/output operation 

required by Program 1. When the outstanding input/output operation is 

complete, monitor will place Program 1 in a "waiting for central 

processor" status which, in effect, places the program in contention
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Figure A9. - Operational environment. 
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for subsequent use of the central processor. This allocation of the
 

central processor among the various programs in central memory (multi­

programing) occurs hundreds of times per second. Each occurrence is 

created by the need of the application program for support activity 

from the operating system, such as input/output operations. The 

handling of these support activities by peripheral processors is 

accomplished in parallel vith the central processor and in parallel
 

with one another (multiprocessing).
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