- |
N7 Q"“3 N4 85
(ACCESSION NUMBER) {THRU)
&
{PAGES) (CODE}

T . " 3
\\\X “! ,QCS (‘—1 ! .
{NASA CR OR TMX OR AD NUMBEK) {CATEGORY)

A REAL TTIME DIGITAL SIMULATION SUPERVISOR

FACILITY FORM 602

by

Jeff Ira Cleveland IT

B.S.E.E. Texas College of Aris and Industries, 1963

A Thesis submitted to the Faculty of
School of Engineering and Applled Science
of The George Washington University in Partial Fulfillment
of the Requirements for the Degree of Master of Science

April 1970

Thesis directed by
Maurice K. Morin

Professorial Lecturer in Engineering

Reproduced

by
TIONAL TECHNICAL
lﬁ?ORMATION SERVICE

Springfietd, Va. 22151

ABSTRACT

One of the major functions of the Mational Aeronautics and Space
Administration's Iangley Research Center Computer Gompiex is to prowvide
computational suppor{: for real time flight simmlstion investigations.
For purposes of efficiency, several real time simulation applications‘
programs. operate concurrently in é gingle Control Data Corporation 6000
series computer. To perforn "men in the loop" digitel simulation
requires that the computer operate as.part of a closed loop, time
eritical system where precise problem solution rates must be guaranteed
in ordexr to maintain-the integrity of the simulation.. |

In an effort to simplify the programing and operation of digitél
simlation applications, a "real time digital simulatiog‘superviso:,"
hereinafter referred to as "the supervisor,” has be:en developed. Its
ma.jor function is to perform all real time input/output.control, timing
synchronization, communication and control, and other Systém oriented
funetions peculiar to yreal time operation.

The major objective of this work is to simplify the programing
and planning tasks assoclated with flight simulation investigations £o
the level of conventional Fortran programing without sacrificing the
interactive ‘flexibili'by required to perfdrm digji‘ﬁal similation.

A general description of thq{cbmputér complex with particular
emphasis on the digital simglatigqfﬁuégystem is presénted. ;Thg general
requirements and structure of the Supeiﬁ?sor are:discussed,:gloné with

an overview of its implementation. iThé stfuctﬁré.of'a.simulation

Jdi

applications program is discussed and the man-machine control interface
through the supervisor is described. .
Special problem areas and special techniques developed to solve
the problems are presented. The areas discussed are real time program
control, real time date recording, time ;:i'itical syp;erviso;f_ operation,
and error recovery and diaénostics. This discussion illustrates the
manner in which the simmlation applica:‘tions program is.able, tﬁmgh a
series of simple subroutine calls, to form a unified code structure

that will perform the task of real time digital simulation.

iii

5
PRECEDING PAGE,‘SLANK NOT FILMED,

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Mr.
George C. Salley of National Aeronautics and Space Administration,
Iangley Research Center, who wrote the first version of the real time
digital simlation supervisor and without whose assistance this project
could not have been completed. The author would also like to thank
Mr. Meurice K. Morin for his guidance and patience in the preparation
of this work. Iast, but certainly not least, a debt of gratitude is
owed to the author's wife, But’h, who patiently waited as this work

wag completed.

iv

TABLE OF CONTENTS

PAGE

ACKNOWIEDGEMENTS « o o o o o o o o o o o o o 6 o ¢ o o o o o s« iv

LIST OF FIGURES « o « o » o o o o o o s o o o o o o s o o o o s Vi

LIST OF SYMBOLS o o « o o o o o o o o s o o o o o o o o » o « o viii

TEXT,

Chapter
T. INTRODUCTION « « « ¢ ¢ o« o o o ¢ s s s o ¢ o s o 0« 1
IT. SYSTEM HARDWARE AND SOFTWARE « o o o s o o o s o s « o 3
III. REQUIREMENIS OF A REAL TIME DIGITAL SIMULATION

SUPE’RVISOR 12

IV. GENERAL OVERVIEW OF IMPLEMENTATION « +» « « o o « o + « 18
v \sm}mwiqn APPLICATION PROGRAM STRUCTURE. « « o + « + & 21
VI. MODE CONTROLS .+ o« o o o o o o s o o o 0 o o 06 s o o s 26
VII. REAL TIME DATA RECORDING o « « « » + « o « o o o o & o 32
VITI. TIME CRITTCAL CPERATIONS o « « o o o o o o o o o o o o 36
TX. ERROR RECOVERY AND DIAGNOSTICS + « o o o o o o o o« o b1
X. CONCIUDING REMARKS o o o o o = o o o s o o o o « o o o M7

AFPPENDIX

Chapter
I. HARDWARE CONFIGURATION o o o + o « o o o o o o o o + » k9
IT. OPERATING SYSTEM SOFTWARE ae o o « o = o o o o « o o o 6B

BIBIJ%RA-HH L] L] - - L] . - L] » L - L] * L] L] L] * - L] L] L] L] - L] v L] 72

LIST OF FIGURES

FIGURE PAGE
1. Program ContTol Panel o o « o =« ¢ 3 5 ¢ o o s o s s & & o 5
2. CDC 6000 Computer Organizabion « « o o o o o o o s o & » 7
3» Computer Organizetion with Real Time Digital

Simlabtion o ¢ ¢ + ¢ ¢ o 0 2 8 8 4 o 8 2 e+ o ek o+ 9
4. Central Processcr Time Allocation with Three Real Time

Simlation JObS « + « 2 o 4 o 0 4 2 s s s e e s a0 .. 117
5+ TReal Time Simmlation Supervisor Block Diagram . « « + o » 19
6. Simulation Applications Program Block Structure 22
7. Simlstion Applications Program Initislization Section . 2b
8. Typical Program Flow for Real Time Modes + o o« o o o o o 27
9. Typical Block Sequences during Real Time Operation . « o 29
10. Linkage Diagram of Block Dispatcher . + v o o o v o « o » 31
. Typiesl File Enviromment Teble and Date Buffer 33
12, Use of Masks for Packed Discreté Msnipulation « o « » » . 38
13. Supervisor Special Execution at Lost Time Synchroniza-

TLON TOEEITUDE « ¢ « o o o o o o o o6 v o o o o o o o o k2
Al. Iengley Research Center Computer CompleX .« « « o &« « « » 50
A2, Batch Processing Subsystem and Decentralized Operation . Sk
A3, chiliary‘ S;corage? SUbSYSTEM o o« o o ¢ ¢ & ¢ ¢ o o o 2 o » 55
Alb, Real Time Simulation SubsysStems « « o o « o o s ¢ « o o « 358
A5, Remote‘EMinal’Su;Bsysterﬁs e 3 &

- A6O T On-Li;_-ne Sﬁbsb’stem L] - * - * - L] L] - L] - -* - L - L] » [] L - 65

vi

FIGURE PAGE
AT. Operating System SOPLWETE o+ « ¢ o ¢ + ¢ » ¢ s s ¢ o s o » 65
A8. m System L] * » [] - [] [L] L] » L] - » * L] L L] L] * L] - - L] 68

A9, Operational Environment « « « ¢« « o« ¢ o o s o o s ¢ o 2 = 70

vii

LIST OF SYMBOLS

ACD Iangley Research Center Analysis and Computation Division
ADC analog-to-digital converter
ADCON anslog-to~digital contreller
ADDIS snalog~to-digital and discrete input system
CDC Control Data Corporation
CFO central processing unit
CRT cathode ray tube
DAC digital-to-analog converter
DACON digitel-to-analog controller
DADOS digital-to-analog and discrete ocutput system
FET . file environment table
T/0 input /output
IRC Isngley Research Center
MOFS miliion operations per second
P peripheral processor
RCT ;-eques-bed compute time
RIM - real time monitor
RTSS . real time simlation subsystem
SCOFPE ':éimlté.necus- computing and operation of peripheral
equipment
{

SKED | real time scheduling program

viii

CHAPTER 1
INTRODUCTION

One of the major functions of the National Aeronautics and Space
Administration's langley Research Center Computer Complex is to provide
computational support for real time flight simmlation investigations.
For purposes of efficiency, several real time simlation applications
programs 0pérat.e concurrently In a single Control Deta Corporation
6000 series computer., To perform "man in the loop" digital simula-
tion requires thet the computer operate as part of a closed loop,
time critical system where precise problem solution rates must be

" guaranteed in order to maintain the integrity of the simulation.

In an effort to simplify the programing and operation of digitel
simulatioﬁ applications, a "real time digital simlation supervisor,”
hereinafter referred to as "the supervisor," has been developed. Its
mejor function is to perform all resl time input/output control, timing
synchronization, communication and control, and other system oriented
functions peculisr to real time operation.

The major objective of this work is to simplify the programing
and plaming tasks associated with flight simlation investigations to
the level of conventional Fortran programing without sacrificing the
interactive flexibility required to perform digital simmlation.

A general description of the computer complex with particular
emphasis on the digital simmlation subsystem is presented. The general

requirements and structure of the supervisor are discussed, along with

an overview of its Implementation. Areas which required special

techniques are discussed along with a deseription of the techniques

employed.,

CHAPTER II
SYSTEM HARDWARE ARD SOFIWARE

The National Aeronsutics and Space Administretion langley Research
Center Computer Complex conéists of four CDC 6000 series digital com-
puters with assoclated subsystems of peripheral equi?ment. As seen iﬁ
the Appendix, several different ﬁypes of computer subsystems are
integrated into the complex. It is in this environment that real time
digit?l similation mustjbenéefformed. Time synchronizetion and problem
solution rates must'be guaranteed while ellowing other funetions of
the~coﬁ?1ex,Ts?qhgas bateh, conversational CRT, and remote terminal
processﬁhg, to gélperforﬁed‘on the same computer at the same time.

o pe:‘;'forjm digital 'sinmia'bi;:n; two special Real Time Simmlation
Hardwere Suﬁsystem%j(ﬁ?85) are employed to perform the real time input/
oufput‘and timihé tﬁa% ;re neegséary., Each RTSS consists of a real
time clock, an analog:-to-digitq.-}: input subsystem (ADDIS), and a
digital-to-analog output enslog system (DADOS). Each RISS hes =
complement of anslog-to-digital (ADC). and digital-to-snalog (DAC)
converters and a set of discrete input and output chamnels for event
sensing, control, and status indications.

An integral part of each RTSS is a set of program control stations.
Each station consists of a simmlation control console, a CRT inter-
active displey console, a typewrliter for printing short messages, and
asssocliated analog recording devices. Figure 1 illustrates the conbrol

panel of a simletion control console. Each panel has a set of

switches which are connected to discrete input channels. 'The set of
function sense éwi't:ches are used for programer inputs to the simlation
program while the set of mode control switches are for specific flow
control and functional requests. The data entry keyboard with the
digital decimal f!.ispla.y comprise a means of data entry into the com-
puter and a means of dispiaying values to the programer. At the left
of the figure, the white and red indicators are used to denote logical
status and event occurrence in the simulation program. In the lower
right are potentiometers that are connected to ADC input channels to
give a "twiddle" capasbility. With this complement of switches and
indicators, the programer is able to control the simumlation inter-

actively.

R AT s

90000000000000000000
2000000000000 0000000
000000000000000
‘9000Q000000000000¢
Q0000000000000 00GK

Figure 1. - Program control panel.

CDC 6000 Computer Organization

Figure 2 illustrates typieal CDC 6000 computer organization with
the SCOPE (Simultaneous Computing and Operation of Peripheral Equipment)
operating system. Central memory ie partitioned by software into eight
areas called control points. Each control point can function indepen-
dently of the others and one éob occuples one control point which gives
a maltiprograming cepability. Control polnt ¢ is reserved for the use
of the operating system and contains tables and pointers for the SCOFE
systen. '

Associated wiﬁh central memory and the central processor is & bank
of ten peripheral processors (PP) which run irdependently of the central
processor, FP O contains the PP monitor which coordinates and controls
activities in the computer system. PP 9 contsins s display and com-
munication program which suyport;a console operation. Twelve half-
duplexldata; channels are controlled by the PPs and all channels may be

. active at once.

Y
o

Hz=>Ha . 2 Eey

¥

¥

w b

PERTPHERAL

PROCESSORS . CENTRAL MEMORY
FFO e
PP MONTIOR CONTROL POINT O
FP1 CONTROL FOINT 1
ﬁ ‘< —pr
) ,)
P9 CONTROL POINT 7

Figure 2. - (DG 6000 computer organization.

Real Time Control

Figure 3 shows the internal computer organization employed to
support digital simuilation. Illustirated are three digital simulations
running concurrently. An additional central wemory monitor is added
to control point O to give faster monitor response to time critical
demands for service. When real time simlations are running, = sche-
duling pz_';)gram (SKED) is always in control point 1. SKED allocates
real time equipment a:nd schedules the timing cycles for real time
operations,

A dedicated PP with a dedicated date channel connected to ADCON
(Anelog-to-Digital Controller) and the real time clock comprise ADDIS.
ADDIS places the outputs of ADCs and discrete inputs into the control
points indicated by SKED. A second dedicated PP with a dedicated
date channel connected to DACON (Digital-to-Analog Controller) and
the resl time clock comprise DADOS. DADOS removes data from the

control points as indicated by SKED for output to the real time world.

PERIPHERAL
PROCESSORS . CENTRAL MEMORY

CPO

PPO
_ CENTRAL MEMORY
il MONI".I;OR MONTTOR

CP1
SKED

cpe -
REAL TIME JOB 1

. CP3

ADCON DATA CHANNEL | apps | 1" RearrivE JoB 2
I - N - - N -

T _ o . CPhk
S | .-~ REAL TIME JOB 3

REAT, TIME CLOCK

BATCH

DACON k DATA_CEANNEL _ DADOS -

JOBS-

Figure 5. - Computer organization with real time digital simlation.

10

Figuré L iliustratés thé aellocation of central processor time
with three simidation jobs irunning st different sampling rates. Note
that a job does not necessarily compute the response of one frame
continuously, but may be interrupted to allow another job to finish.
The schéduling -of compute and f!.drle time 1is done by SKED according to
timing information supplied by the simulation program.

This, then, illustrates the hardware and software epnvivonment in
which real time digital simlstions are performed and in this same

environment the supervisor must perform its functions.

n

REAL TIME
JOB 1

€4
n

REAL TIME
JOB 2

n
0
n

REAL TIME |
JoB 3

BATCH ' : C
JOBS . B |

s
l - INDICATES SAMPIE TIME-FOR THE REAL TIME JOB

Figure 4. - Central processor time allocation with
three real tiwme simlation jobs.

1z

CHAPTER III

REQUTREMENTS OF A REAL TIME DIGITAL

SIMUIATION SUPERVISOR

The supervisor 1s a set of subroutines integral to sach simulation

jobs The supervisor performs all real time input/output control,

timing synchronization, communication and control, and other related

functions that are system dependent. This allows the simulation

program to be coded in Fortran with little regard to the computer

interface with the resl time world.

The real time digital simdation supervisor must perform the

following functions:

A.
B.
C.
De
E.
F.
Ge
He

I.

Real Time System Initiglization

-Real Time Timing Control

Real Time Central Memory Input/Output Control
Control sfter Lost Time Synchronization Interrupt
Mode Control

Real Time Data Storage and Retrieval

Print Output Control

Er‘ror BecOviazy and Diagnesties

Batch Job Compatibility

13

A. TFReal Time System Initialization

When a real time job en‘l?ers the computer system, the only special
characteristic that it has is the priority. Once the job begins to
execute, 1% runs llke & high priority batch ;']ob. Through a series of
initializing calls, the similation applications Jjob commnicates cer-~
tain real time data that is required for real time operation. At this.
point, the supervisor must communicate to the operating system infor-
matior.x for execution of the real tin;e portions of the job.

The supervisor mist communicate to SKED the sddresses where the
ADC, DAC, discrete, real time clock, and other real time information
for this job reside, The supei-visor mist construct an interrupt table
to the real time monitor. In addition, the supervisor must set up
internal flow control, data areas, and perform other functions neces-

sary to prepare for real time operation.

B. Real Time Timing Control

A real time simulation job may execute in one of two states, It
may. exeeute in real time, where strict time synchronization is held
é.nd rea.l‘time responses are calculated., It may also execute in non-
real time where time synchronizetion is not maintained and the job
executes l:!:ke ‘eny-high.priority batch Job. A real time simlation job
may éhange reaaily frozﬁ real time to non-real time or vice versa. The
' sizpérvisoi' must périforin the necessary monitor functions to perform the

Y

transition described. ' The supervisor mst also perform the necessary

ays'ﬁe’m; fupétions to Egua.'ra.ntee time synchronization while the job is

ik

operating in real time. 'The supervisor also computes the maximum CPU

time per frame for programer informstion.

Cs Real Time Central Memory Input/Output

The supervisor controls the transmission and distribution of
input/output from the RTSS. ADCs and DACs are packed four chennels
per word and the supervisor provides the pack/unpack capsbilities so
that these guantities appear in normal floating point numbers in the
Fortran program. Discretes are packed sixty per word and may be
unpacked into normal Fortran logical varisbles if that mode of
operation is selected.

D. Control after I1ost Time
Synchronization Interrupt

A similation job requests of the system two time increments that
are per‘i;inent grel ;z'ea.l time execution. The first increment requested
iz frame {ime--this :i..s the time between samples and defines the itera-
tlon rate, e second is requested compute time. Since wore than one
simlstion ce.n use a ccn@u't-:er, each simulation must have an allotted
time slice in which to compute & response. This time siice is the
requested compute‘timel (RCT).

In order to preserve time synchronization of all real time jobs,
the system guarantees that no job will be allowed to compute more
than its allotted RCT per frame for that job. When a job does attempt
to exceed the RCT, & lost time synchronization interrupt is issued by

the real time monitor and the central processor is given to ancther

15

Job. It is the task of the supervisor to contrel and coordinate
- activity of a similation after lost time synchromization interrupt
occurs. A more .detailed discussion of lost time execution is given

in a later chapter.

E. Mode Control
' Thé p_rocesés of real time digits]l simulation regquires an inter-
-active m—mchim control capability. By using the mode control
keyboaid, a simulation programer is able to control the flow and
function of his program. This manual control is called mode control
and is interpreted and coordinated by the supervisor. A detailed
description of mode controls and implementation follows in a lster

seectlon.

F. Real Pime Deta Storage and Retrieval

During the course of a simulation, it is necessary to store
information about the simlation such as walues of state variables,
external disturbances, and event status for later analysis., Because
of resl time simlation timing comstraints, Fortran input/output cannot
be accomplished during real time operation. It is also unfeasible in
a mltiprograming system to have extensive storage of data in central
memory. Therefore, it is the task of the supervisor to control and
coordinate the storage on disk of data generated during resl time
operation, without interfering with the timing and synehronization of

the simlation.

16

G. Print Output Control
With the standard tatch operating system, information to be
printed is routed to the printer only after the job has completed
all processing and has left the system, The supervisor by special
commnication with the cperating system, can vowte information directly
to the line printer upon command without relinguishing the central
pror;essor. This allows the programer to supplement the analog data

on recording equipment with printed data at his request.

H. Error Recovery and Disgnostics

During the execution of a program, many different errors can
occur. The supervisor must provide the error recovery and disgnostics
necessary ‘to maintain the integrity and effectiveness of a real time
similation Job. In a batch environment, when an error occurs, the job
aborts. In real time, because of the large quantity of resources
(i.e., computer, A-D conversion equipment, cockpits, ete.) and person-
nel required, it is best to capture the error and allow the programer
the chance to fix the program, if possible, end to continue operation.
It is desired that the programer not be required to provide for sll
contingencies, e.g., if the solubion goes unstable, the supervisor
will trap the error, allowing the programer to access his stc;red data

and to reset and to begin anew.

I. Batch Job Compatablility
Resl time digital similation 1s expensive in terms of machine

resources and execution time. Therefore, it is undesirable to do

17

,/&cmpu‘bations in real time when it is not necessary, such as during
early coding checkout and purely analytic studies where real time
input and control is not needed. An additional requirement of the
superv:!.:.?.or is the capa'r:\ility of operating the simiation Jjob as a
real time job or as a normel batch job with minimum change necessary

for the program.

18

CHAPTER IV
GENERAL OVERVIEW OF IMPLEMENTATION

The supervisor was designed and implemented with the following
objectives: (1) to provide a high-level dialect of the Fortran
language that would be used as a digital simlation language, (2)-to
make this dialect easy o use but still maintaining the complete cap-
abilities of the real time digital simlation subsystem, and (3) to
make the operation of the supervisor as efflclient as possible commen-
surate with the time available for development. To this end, the
following sections discuss some of the processes and techniques used
to develop the supervisor. A general deseription ¢f the strueture of
a real time simlation program is presented with emphasis on the impact
of supervisor on programing. The implementation of mode controls and
real time data recording is discussed with descriptions of special
techniques developed. A discussion of techniques used in wmode controls,
time ecritical operstions, and error recovery are presented to illus—
trate the varied programing procedures used to implement this real
time digital simlation supervisor.

Figure 5 s-hows the -supervisor in functional block diagram
form. The supervisoy is basically comprised of two sections,
'initislization and real bime combrol. During initialization, the
shpervisor obtains certain information from the simlation program
through declarative subroutine calls. From these calls, the super-

visor initializes certain internal tables for use during real time

DECTARATIVE APPLICATIONS

PROGRAM CALLS
-
DECODE
FLOW RECORDING { REAL TIME | INTERRUPT
CONTROL TABLE I/0 TARLE TABLE
TABIES
RETURN o=

TMPERATIVE APPLICATIONS

PROCRAM CALLS

DECODE

PERFORM FUNCTION

v

RETURN .

-F—‘ﬂ

PSEUDO |
CONTROL |

el

INTERRUPTS

DECODE

ERROR | REAL TIME 10T
RECOVERY 1/0 TIME
SYNC.

Figure 5. - Real time simulation supervisor block diagrem.

6T

20

execution. These tables include (1) addresses for the flow control

of the simulation program, (2) variable table for recording of data,
(3) real time I/0 table for communication with the real time subéystem,
{4) interrupt table for control of execution when lost time synchroni-
zation occurs, and (5) a set of pseudo control inputs for controlling
the similation if it is a normal bateh Jjob.

During real time operation, the supervisor must respond to
imperative calls from the simulation progrsm as well as respond to
interrupts. "The imperative calls from the simdation program cause
the~;ﬁpervisor to"process the requested function. Tﬁere are three
types of interriupts that effect the supervisor during real time
operation. The real tiﬁe I/0 interrupt causes the supervisor to
start execution after the sample time for the simalation occurs.
Theferror interrupt; may.come Lrom the hardware, if an arithmetie
error occurs, or from the software, if any other errors occur. ILost
time synchron;zatlon interrupt is issued by the monitor for action

H

by the supervisor.

21

CHAPTER V
SIMUIATION APPLICATION PROGRAM STRUCTURE

To meet the requirements set forth earlier, a real-time digital
similation application program is written enéirely in Fortran. Al
real time functions are provided by the supervisor’and are activated
by the use of the subroutine call,’ Figure 6 shows 'bhe block structure
of a simlation program. The unique feature ' of the aimulation program
is that the various blocks are not linkedr-the interblock linkage is
done by the supervisor un&e; the contfoluof the prOgramer at his -
similation control consoie. Except for the. initiaslization sectidﬁ,
there may be more than one éaalch of the O'é_her bic;c}cs. The following

paragraphs describe the function of each seétion.

INTTTATIZATION

REAL TIME

CALOULATIONS

PRINT.

‘OPTIO!

"

Figure 6. - Simulation spplications progrem block structure.

22

23

Initialization Section

Figure 7 shows the structure of the initialization section of the
sirmla:bi;m program. The normal non-executable statements are first,
followed by initialization of the supervisor. The supervisor is
initialized by & series of Fortran calls ﬁ:hé:t pass the necessary
sddresses for cOmmnication and control of the gimulation program.
The ;simlation program then initlalizes program vaﬁables ‘and parame-
ters by reads, equalities, and/or su‘brbhtine_s. . | B

At the end of the init:.alization sec’cion, the s?inmlation program '
executes a CALL READY. This gives con‘brol to the superv:isor ami sig-

nels that the program is ready for rea.]. -Eime 0pe-a.tion. A'b this ti;ue »

supervisor completes the initialization of certe.in tables a.na sets up
error recovery code. The supemsor "ahen indicates to thie system that
real time initialization is necessga.ryv After 'l:he system has inltia.l-
.ized, the supervisor requests real time operation. From this _;goint -

forward, control of the program is done from the simulation comtrol

console.

Real Time Section
In this section, the equations of mobtion are solved in synchroni-
zation with time, .so that real time responses to input signals are
seen in the ;Jutside world. During this time, the supervisor is wain-
taining the time synchronization as well as performing f;unctional ta:sks
requested by the program and by the simulation programer at the simala-

tion console. A more detailed deseription of the flow control done by

Fortran Non-Executables

COMMON

DATA
EQUIVALENCE
DIMENSTON:
TYPE

-
-

Supervisor Initialization

CATI, OFERAYE 2
CALL HOID

‘CALL RESET E
CALI, THOUT

e

Initislization of Program Variables
READ ALPHA, BETA, . . .

A = 0.0
B = 1"05
CALL READY

Figure 7. - Simulstion applications program

initislization section,

2L

supervisor is found in the next chapter.

Print Section

When th"a programer at the similation coﬁsole requests the print
function, the supervisor returns control in non-real time to the
simuilation program in the Print Section. Here, the program mey "play
back" the data '.that was previously recorded in real time. Data may be
analyzed, plotted on a plotiing deviece, or ;prin'l;ed st the control of
the prog;'am. When the necessary processing of the Print Seetion is
complete, control is returned to the supervisor for further reel time
processing.

Option Section

i
i

When the programer at the simlation console requeots the opiion

't

function, the supemsor returns coq’crol in non—res.l time to the simu-

lation program. The similation program then may make any‘analysis‘

“or initimlization that is required. Pé;haps:phe.eon@itiopg'for the
next- run might be read from a ca.rd'd.ecﬁ or: the crond?iﬁ':.ionsj may be .
calculated from s cowplex set- -of error equa.tions. There i‘s hcr sPeci:E'ic
function of this section--it ,jusﬁ\: gives the prOgra.mer a *sectj.on that
can be executed in non-real tinme e.'b the pragramer’s request. At the'
end of the section, control is returned to the supervisor for further

real time processing.

CHAPTER VI
MODE CONTROLS

‘Mode woﬁtroi for real time digital simuﬁatioﬁ is defined as the
sensing of change of status*of ‘the mode control keys by the s&pervisor
and the supervisor performing the requested fiow control and/Or ‘
function. Figure § illustrates the flow of a typical simulatzon
indicating the £low -control done in response 'ho' mode control.

In RESET mode, the initial conditions are applied to the state
varisbles to initialize for a new run. In OPERATE mo&e, the complete
dynamic equations are solved and the simulation is computing real time
regponses. In HOLD mode, the values of the state variables are held
at their last calculated wvalue, thus giving a static deseription of
the simulation at the point the HOID mode wa.s; en'bered; These three
basic modes, RESET, HOID, and OPERATE, form.the p?imary mode control
system that the supervisor must provide. In addition to .these three
primary mr..;:des s there is a get of secondary modes which are functions
rather than flow controls. These functions include idle, erése real
time file, process printing, clear output channels, continuous frame
record and single frame record. These éecorzdary modes are subordinate
to the primary modes and there is a definite hilerarchy of operation of

the modes-and this is employed in the supervisor.

‘BEGIN [ITERATION

l INPUT FORMATTING [

s

| INPUT SGALING 1§

INPUT ALGEBRAIG AND
DERIVATIVE EQUATIONS

{OPERATE) Yss,/l\ NO '

OPERATE

N~

¥ (HOLD}

[-DATA‘ STORAE;EJ .

4

'F N0 (RESET}

| _IN-TEjGRATION:_[1’ . l INITIAL

- - 1
LI N

CONDITIONS

v
¢

% r ' -

 OUTPUT ALGEBRAIC -AND -
DERIVATIVE EQUATIONS
: T

RS

OUTPUT SGALING I

foutPut FoRmaTTING|

END ITERATION

Figure 8. - Typlcal program flow for real time modes.

28

Block Programing .

A simlation program may be easily broken up into lbgica..'l:. prog.ram
blocks as shown in Figure 9. These blocks are eJ;ecu:t'.edt in d‘:z.fferént :
sequences for the different primary moa.es: It was requife& thar.,t the
supervisor prov;l.de the necessary linkin'é and dela:iriléings in order to
perform the proper block execution sequencé.* f’l'ne n:é.;jox" 'techniqué

:

developed for primary mode control was the block dispatching code

generator.

Block Dispatching Code Generator

The block dispatching coﬁe generator is ini‘bia-lized: by a series
of -calls that indicate the blocks that are to be executed for a given
.mode and the order in which they are t0 be executed. For example,

CALL OFERATE (10S, 155, 20S, 255, 108, 155) L
indicates a sequence of blocks 0 be executed in OPERATE mode. {In
CDC 6000 Fortran, an "S" following a number in & subroutine parameter
list inﬁi_ca.tes that the number 1s a Fortran statement ‘ﬁumber and the
location of that sta.:hement number is passed to the called subroutine.)
In the example above, program blocks are to be executed in the following
order: Block 10-15, Block 20-25, Block 10-15.
This illustrates the manner in which the sterting and ending addresses
of code blocks -and their sequences a;re transmitted to the block
dispatehing code geﬁemtor.

When a primery mode (OPERATE, HOID, or RESET) is entered, the

coﬁe generator must delink the program blocks from the previous mode

PROGRAM
BIOCKS IN
REAL TIME

SECTION

BIOCK 1

_ BLOCK
SEQUENCE
FOR
OPERATE

29

BIOCK 2

BLOCK 2

BIOCK 3

BIOCK k.

BLOCK. 3

BIOCK &

BLOCK
SEQUENCE
FOR

HOLD

© BIOCK 2

BLOCK b

BIOCK 3

BIOCK 2

Figure 9. - Typical block sequences during
' real time operation.

30

and then must iink the block together for the new mode. Figure 10
illustrates the manner in which the application program blocks and
the Fortran portion of the supervisor are linked. The code generator
must insert code at the end of each code block so that the block
dispatcher in the supervisor can direct the block executiorx sequence. .
The code generator inserts code into the block d:,spatcher s0 that the
proper sequence is executed. This results in a unified code structure
that will rapidly execute in the requested order. . i

It should be noted ths.t 8 maximum of s;even distinct code ~blOcks
are allowed for each primary mode .giving the prOgramer a greal dea.l
of latitude in constructing a sim:.‘iation application prOgram. New
initializetion calls are allowed at any time ‘s0 that block progit‘am
flow can be modified "on the fly." Thus, by using this. block - ‘ .
dispatching code generator, the supervisor is able to provide & bloek

4 i

link-delink capability that results in a unified codf.- strudture.

CALL QFERAT® (108, 158, 208, 255, 105, 158)

r—— 77 r—-———"—=—==7

BLOCK DISPATCHER

|] |
| » 500 I=1+1
l ’\. v GO T(6) (1, 2, 3, k4
15 GO TO 500% — 5, 6, 7, 8} 1
| - S [T—1 00 0 10%
2 GO TO 20%
! ><5 go 10 10%
| I CONTINUE*
5 CONTINUE*
| : — | | 6 CONTINUEX
| 0 7 CONTINUE*
| | 8 1=0
I ' -
|]
| L= cow oo | I
l
Lo e i I
STMULATION APPLICATTON SUPERVISOR FORTRAN
PROGRAM- SECTION

*INDICATES CODE TNSERTED BY THE BLOCK DISPATCHING CODE GENERATOR

Flgure 10, - Linkage diagram of block dispatcher.

%

32

CHAPTER VII
REAL TIME DATA RECORDING

One of the wajor capabilities of the supervisor is the storege
of data generated during real time operation. Normally, Fortran
input/output (READ, PRINT, WRITE) is performed by Fortran library
subroutines that interface with the operating system. Unfortunately,
each time a file action request ;ls performed the central processor
is rrelinquished until the file action request has been completed.

Thus, if Fortran input/output is attempted during real 'l?ime operation,
time synchronization will be lost, compromising the walidity of- the
simulation. Therefore, a specialized output procedﬁre vas required
10 perform this function.

The objectives in the implementation of this capability were
threefold: (1) to provide the functlonal capability, (2) to {mplement
the function in a manner that would give rapid -execution (this function
is done in real time), and (5)"1:0 provide a simple means of programing,
the function in the simlation application program.

To exenine the implementation of the first objective, the method
of central memory output in CDC 5000 cqmputef"s mst be examined. IW{ith
each £ile thet & program uses, there .a.re 'jbwp-areé,s in core storagé
used, as shown in Figure 11. ‘The file environment table (FET)

- ¢ . '
conbains the necessary information for commlqication to the. e:f:t{arnal
input/output (I/0) peripheral proc:'s-.ssozr-..lh ﬁ[‘he buf‘fe;- area contains the

data to be transmitted in the 1/0 operationy 'The First word of the

CODE

AND STATUS

FIRST

DATA

. BUFFER

-

Figure 11, - Typical file environment table

and deta buffer.

33

3k

FET contains the file name and the 'c‘odela.mi status of the file. | File
actlion requests are placed in the code and status pOSitioﬂ and status
_is returned by the I/0 processor. FIRST end LIMIT indicate the
beginning and ending addresses of the buffer end IN and OUT indicate
where data can be put in and taken out of the buffer.

To implement the storage of real time data, a Fortran callable
subroutine was writien that creates an FET and s dats buffer in the
Fortran section of the supervisor. This enables the Fortran section
to directly meke file action reguests in'the file name portion of the
FET, to interrogate status of the I/O operation, and to manipulate
the data buffer and the buffer pointers. This satisfles the second
objective, in that simple Fortran replacement statements and simple
conditional transfer statements can be used to contol the I/0.

In addition to the above, the data buffer was partitioned into
two segments that operate as seperate buffers by the control of
FIRST and LIMI'T. This allows the supervisor to £ill one buffer while
the I/0 system empties the other buffer, enabling the supervisor o
continue the storage process while output to the physical file is
taking place.

There is an inherent probleum in this scheme. If the supervisor
£ills the buffers too fast or if the ocutput system response tinme
becomes large, the supervisor may need to £i11 a buffer before the
output. system has emptied it. ‘Ifithi;qo;curs, thé;supervisor mast
discard dats until the output is c;mpiete. The superviéor stores two

extra code vords each time s frame is recorded and this allows

35

missing data to be detected when the file is "played back.” 1In order
t0 provide faster response to real time d.ata recording demands, the
opersting system has provided a means for requesting a high priority
read or write. The use of this -capabllity is limited to the supervisor
and the supervisor uses this function only when necessary, so that

the response of other real time jobs 18 not unduly affected.

‘ Program Interface

The simulation.program interface has been designed so that tiae
program, through a series of subroutine calis, specifies a 1ist of
variables to be recorded. This list is normally specified during
progrem initislization but may be respecified during any non real time
processing. The supervisor sets up an address table to direct the
storage of data. This allows the recording to be made without the
passing of an .extensive parameter list or forcing the simlation
program 10 use g fixed array for recorded gia.a.t*a variables., This
program interface accomplishes. the third objective;.a sin;ale means of

pro@aming has been provided.

36

CHAPTER VITI
TIME CRITICAL OPERATIONS

The central processor time used by the supervisor during real
time operation 1is strietly overhead which restricts the‘ time that 1is
available for the simulation program to calculate real time results.
An objective of the supervisor was to shorten this overhead r*bime as
mich as possible. The following sec£ions describe some of the techni-
ques and wmethods used to shorten execution during time critical

o;oefe.tions .

Discrete Handling

Discrete inputs and outputs are placed in and taken out of central
memory in packed form; that 1s, sixty discrete channels per word. The
first version of the supervisor unpacked inpixté .and packed outputs 0
that discretes were available to tlhe, sirulation png:;am and the ‘super-
. visor as logicel variables, one disezjet;e c'hannel pe“r‘ word. "This.‘
mmack/pack operation consumes a:'c;c‘)n‘side':_:‘able é.moup:b of time eachﬁ

“ ¥ i . . .

frame, A technique was develop‘éq. to prbvidg“discréte menipulation in
packed form within the supervisor as well a5, the $4milation program.

This technique for hendling discretes vas developed ‘T,o s.l].ow N
- in-line Fortran ‘teéting which 18 'fast and ;és.gyi to: use. As sl;'mm’ in
Figure 12, two arrays are set gp.,ill'l COI-R-DN/IB&SKS‘/:.’ The"ﬂ!hél{, é.r;ay
has only one bit set in each word, the particufle:;- "bit belng set

o ;
depending on the array element. The FMASK array has all but one bit

37

set in each word and agsin the bit that is not set is dependent on the
array element. The use of these masks for diserete manipulation is
illustrated in the figure. By using other wasks, a simalation program

can set or reset .a number of discretes with one Fortran statement.

Fortran Usage

Special usages were developed to speed up the Fortran section and
to reduce the overall core -storage requirements. Compilations were
made and the object code was analyzed to find the most efficlent
Fortran coding technigues for the real time’sec'.tionsu Some of the
teqhniques found and used are described below.

Extensive use is made of the "GO fo NAME" steterent where NAME is
variable name normeidly defined by an assign statement. However, CDC
6000 Fortran will allow the variablé 0 be de’finf-:él in any wanner. By
commnication through parame't:,er' lists é.nd« COMMON, - the;;é variables can
be used by any routine, 'I’his‘ allows this type, of GO TO statement to
interconnect various -rcutf;nes by direct tyansfers rather than ind'i_.reé:t
:;,ubroutine linkage. Arithmetic operé.tions' are allowed si;icg the con-
tent of the verisble is sit@ly‘a.n .aé.dres;a. This‘allows the supervisor -
to compute addresses where necessary without having to use an assemnbly

language routine.
1 It was found that some forms of IF statements are more efficient
than others and 1t was also found that single replacement was more
efficient than wultiple replacement. (Multiple replacement:

A=B=(C=D=0.0)

comom/msxs/mxc(&), FMASK(60)

BIT BIT
60 59 . 21 60 59
1 : [— L
T™ASK(L) o _ | Pask(1) o
1 , : 1
- TMASK(R) 4 T ' » _ l I FMASK(2) o

*

M

=3

‘mx(‘”-’ i - _ PasK(59) i"LF "

Tﬁhé:g(é_o}_.ij K . - FMASK(60) ;__I

~

TESTING DISCRETES ‘
IF (IDIS(L).AND: TMASK(30)) GO TO 100
. JESTS THIRTIETH BIT IN FIRST WORD OF DISCRETE INPUT ARRAY

SETTING I)ISCREI‘ES

opis(2) = 0])18(2) OR. TMASK(43)
SETS BIT 43 TRUE IN SECOND WORD OF DISCRETE OUTPUT ARRAY

O0DIS(1l) = ODIS(1).AND.FMASK(22)
SETS BIT 22 FALSE IN FIRST WORD OF DISCRETE CUTPUT ARRAY

Figure 12. - Use of wasks for packed discrete manipulation.

8¢

http:ODIS().AM.DM

39

The techniques above result in faster executing code. 1In investi-
gating subroutine linkage, a CALL SUB (0,0,0,0) would cause references
to Pour different words of zero which is redundsnt and wasteful of
central memory, Thisz seame call would be implemented as CALL SUB
(12,17,17,17) vhere 17z is a data zeroc. Wherever practical, in-line
Fortran code ls used instead of usiné subroutines to conserve execution
time. Such special techniques give small geins in execution time and

core storage, but when added together provide signifieant overall gain.

Subroutine Linkage
The supervisor consists of two lengthy subrﬁut?nes, one in Fortran
and one ln.asseuwbly language. The investigation of. object code froﬁ
Fortran compilations showed that the use of ’é,' parameter list a.nd
muiltiple entry points was 1nefficient, both in terms of execution
time and wmemory usage. Therefore, all,alternate entry points and

%

the parameter list were removed frOm the Fbrtrannsubroutiue.. Entry
points were added to the assembly language routine and parameters were
then passed 10 the Fortran routine through COMMDN. About 10008 loca-
tions were saved in a Fortran routinedwﬁose executable code was about
h5008 locations. The resulting sav?ngs,in memory and_execution time

were slgnificant.

Deferred Execution
Time remaining is defined as the scheduled compute time minus the
actual compute time. The value of time remaining can vary over a wide

range depending upon demand of the gpplication program. It is required

1O

that supervisor make effective use of time remsining so that the
maximm actual compute time 48 not incressed by supervisory functions.
In order to accomplish this, a technique for deferred execution vas
developed.i During frames wlr;en the simulation program has hesvy demsnds
for compuibation, certain supervisor flags are get and ex-ecution‘ of some
supervisor functions are not done. When the computation dema.nd of the
simalation progrem becomes light, then these functions are execu‘hed

In the same view, the supervisor perf'orms any lengthy ogeratious -
in non-regl time that 4o not require rea.l time opera.t::.on. Care is
taken so response to programer inmputs is not unduly affected. * -

These various technigues have been used 'bo mke the supervisor
more efficient in the use of central memry anﬂ the cen'l:ral processor.

Thls allows the similetion program to have = bigger sl:l.ce of" 'bime and

allows either wmore or longer jobs to reside in central memory. .

41
CHAPTER IX
ERROR RECOVERY AND DIAGNOSTICS

Recovery from error is one of the important features of a simmis-
tion supervisér. In 8 normsl batch processing mode, whén an execu'ﬁion
error is d;atected, the program belng executed is aborted. This mode
of operation is undesirable for real time digital simlation since
this can lead t0 loss of expensive date and machine ‘execution tine as
well as lost manhours. .One of the cbjectives of the supervisor was to
captuz:e cerbain classes of execution errors in order %¢ enable the pro-
gram to fix the simmlation and' to continue real time operstion. If the
© program could not be f:n.xed on-line, then at least the current data
could be recovered for leter analysis. Areag to. be discussed are:

(1) recovery.from lost time synchronization. interrupt, (2) non-real
time execution attempted in real time, (3) Fortran exeeution errors,

(4) arithmetic errors, and (5) supervisor dlalect errors.

Iost Time Synchronization Interrupt
When the similation program atitempts to exceed the tlme allotted
for & real time response to be caleulated, the monitor issues a lost
time synchronization interrupt. At this point, the central procéssor
is {taken away from the simmiation progrsm and given to -another job
as shown in FPigure 13. On the next frame, real time control of the
similation job is returned to the supervisor as specifiled by the

supervisor during program initialization. The supervigor then uses

Exj »

B | /I T

l SAMPIE TWME FOR THE SIMULATION

T 1081 TTME SYNCARONIZATION INTERRUPT
L

; SUPERVISOR PROCESSIIN
4

FiguPe 13. - Supervisor special execubion st lost time synchronization interrupt.

an

b3

a special routine to save the operating registers so that the program
may be restarted at the exsct point that intem"zptj oacurr,é@..

The supervisor must now determine what the operatior of ‘the slimu—'
lation program will be. There are several optioné aveilable to the
DTORTEMEY . o ;‘ i I ‘
A. The supervisor will stop execution, '_orint the progra.m address

at which interrupt occurred and waig for programer action at

the control console., Programer action may be l

{1} Selection of a different mode

{2) Advance frame command--one more frame of computation

will be allowed =t which time the program will agadin
stop. ‘
"(3) Any functional request (priat, idle, erase, ete.)
followed by (1) or (2) |
B. The supervisor will restart the program in real time and
allow a specified number of cycles of lost time operation to
oceur before. stopping the progré.m.
C. . The _supervisor will restart the progrem in real time and allow
it to finish the current iteration only, stop *'bhg prografu and

(1) allow any option under A, above, or (2) transfer to =

specifigd point in the simdation program.

‘D. The supervisor will restart the simulation program indicating
that lost time is occurring and continue real time operation.
E. 'The supervisor will stop the execubion, pr‘int the progranm

address at which interrupt occurred and return control to a

Wy

specified point in the simulation program.

In the.event that the simulation program.speclfles L as the
lost time option to be performed supervisor performs a short register
save-restore--only enocugh reglsters are saved to tes; a flag and return
to real time. ‘ ‘ . B

Figure 135 illustrates operation of a prograﬁ using option D where
lost time synchronization interrupts have occurred three times during
one real time solution. The program has taken four frames to calculste
one response s0 that real time synchronization has been delayed and the
solution can no longer be guaranteed.

It should alsc be ewphasized thet when supervisor returns control

to the program, the program may request real time operation at the

- point at vhich interrupt occurred.

Real Time Errors

There are certain functions such as Fortran input/output that
cannot be attempted in real time with the gusrantee that time synchroni-
zation will be maintained. Therefore, it wea required that supervisor
detect this type of error and provide the necessary recovery capability.
Code modification teehniqueS‘were used to insure .detection of these
errors. Code is inserted at the entry point of each potential error
" generating routine. When the routine is called, control is transferred
- to the supervisor. The supervisor, then, is able to check for real
+ime operation each time one of these routines is celled and is able

to capture the error before it oecurs.

Fortran Execution Errors
A central subroutine called SYSTEM i.és called by .any _s}stem Fortran
subroutine that detects an error (like attequ'bing.:to take the square
root of & negative number). The subroutinemissues an er:r:ar message to

the print file and aborts the program if the error is fatal, It is

required, therefore, that supervisor detect such errors ‘a.nd'-inspré that

i
.

the program does not abort.

The supervisor performs three modifications to SYSTF.:M (l) the
error table internal to SYSTEM is modified 580 -bha:b e.ll errors are
processed as non-fatal so that no sborts occur, (2) code at 'bhe .entry
point is modified so that conirol is returned to the supervisor rather
than the errdr detecting routine, and (3) the output section of SYSTEM
is wmodified so that diagnostic messages are relayed to the typewriter
rather than the standard line printer.

The Fortran functions of STOP, END, EXIT are serviced by entry
points in SYSTEM. By modification of code, these entry points are
"locked out" and entry is made to the supervisor when one of these
funetions is sttempted. Program termination is initisted by the
supervisor only and requires a positive reguest. from the program

control console.

Arithmetiec Errors
An important funcition of the supervisor is the recovery from
arithmetic errors. Arithmetic errors occur when the hardware detects

an operation that it cannot perfora, that is, address range error,

ho
division by zero, ete. When an arithuetic error is detected, transfer
is made to the operating system for abort. However, & special routine
was put in the operating system that Tfzri].:l. return control to supervisor
when an arithmetlic error is detected. The supervisor then prints out
the contents of the operating registers and appropr’ia'i;e ‘memory loca-
tions for analysls by the programer. The programer still has full

control of his simlation program after an arithmetic error has

oceurred.

Sui)ervisor Dialeect Errors
Since subroutine calls to the supervisor form a simulatlon ,

language, there can be sequences of calls that would comprise "syntax"
errors. These errors, as well as.illegal psrameter errors, are
detected by the supervisor. If an erxror occurs during initialization,
the program is aborted,. since real time execubion had not been
initiated. - If, however, any of these errors occur after real time
operation has begun, the supervisor 7:111- capture control and give the

programer a trace back .of the -error causing procedure.

CHAPTER X
CONCLUDING REMARKS

The objective of this work has been to develop a supervisory
system t0 support "man in the loop” real time digite;l'flight simia -
tions. '.Eo‘this end, a set of routines called "the silpervisor" ves
developed that enable a simulation applications programer to program
very large simuilations entirely in Fortran without sacrificing the
flexibility, control, and interactive features required to perform
digital simulation. A basie simmlation dialect consisting of simple
Fortran subroutine calls has been developed snd will provide a base
for later extensiong of the supervisor. |

Continued research and development work will be undertaken as

“the need arises. One of the areas of fubure developuent is fﬁg’ca.p;-.

47

ability of coordinated real bime inputs from computer-based storage

systems. This would allow coordinated inputting of information such
as recorded wind gusts and other predetermined measured vq.riab]_.es._
This and continued development work will keep the supervisor, abreasst

of the needs of the real time digitsl similation coimunity.

APPERDIX

The following discussion is an abridgéd version of Volume I,
Section 2.1, of the Langley Research Center 'PrOgramiﬁg Menual.
'L
This section was written by Mr. Maurice K. Morin, Head, Erogr‘aming
Techniques Branch, and edited by the thesis author. The hardware
and software resources of the Iangléy’ Research Center Computer-

Complex are described as a reference for the paper.

L8

k9
CHAPTER I
HARIWARE CONFIGURATION

The system configuration is represented schematically in Figure
_Al. Tt can be divided into three main subdivisions: the communica-
tion and control section, consisting of a large shared core memory;
the processing section consisting of four independent computers; and
the input/output section containing ?ll reripheral equipmént organized

into a sharsd peripheral pool.

Communication Section
The shaded block at the center of Figure Al represer_xts the

shared core memory. It will consist of one million 60-bit words of
core storage equally accessible to all compubters in the processing
section. Thf:s component will serve as the focal point of the con-
.figura‘bioﬁ by providing for all inter-system coxmma.r;ica.tion. I‘t is
scheduled for delivery in 1070. Thé remsining elements of the
hardware configuration sxe currenti? installgd and ;re i& productive

use.

Processing Section
The processing section, surrounding :phe shared 'coxje"\memc;z“*f on
Pigure A1l consists of four ind‘epepde%:b c:f'ampu;cér= sz;'s};enis.', The first,
a 6LOOA, has a unified centrsl processor éépabie of *executi.n%gé ‘
million operations per second (MOPS), which :i:s approximately EL".LL

times the speed of our previously installed IBM TO9LIT. A unifiéd

SIMULATION
FACILITIES

E--—-FEEE

LOW-5PEED REMOTE TERMINALS

SIMULATION LINE
SUBSYSTEM SUPERVISOR
NO. I 1740

SIMULATION
SUBSYSTEM
NQ. 2

[cR] pul]
UNIT RECORD
INPUT OUTPUT

MEDIUM-SPEED TERMINALS

M-~

LINE
SUPERVISOR

8130

6400 A
65 K MEM.
0.5 " MOPS.

" 6600 €
3L K MM,

L5 MOPS,

3 CRY I | |
CONTROLLERS

16 MAGNETIC TAPE UNITS 4 DISK STORAGE UNITS
’ 524 % 108 CHARACTERS

Figure Al. - Iangley Research Center cowputer complex.

4 DATA CELLS
22 % 107 CHARACTERS

RESEARCH
FACILITIES

3 DATA

CONTROLLERS “ | o Iﬁ

[ce[pu]er] o
[ca[eu[er]ee]. .
[cx[puler[ee]

. CENTRAL
UNIT RECORD
INPUT QUTPUT

CR - CARD READER
PU = PUNCH
PR - LINE PRINTER

0%

51

central processor means that instructions are executed one at a'time
in the sequence dictated by the slgorithm being solvéd. Its memory
consists of 65,000 60-bit words. The mewory cycle ti;;le is 1 mi"cro-
second; however, through the use of inteﬂleaving, an -effective ac‘ééss
time of 100 nanoseconds can be achiéved. :

The next écmputer, the 6600B, haé g maltiple functj:or‘ial unit.
central processor capable of executing 1.5 million operations *pei'
second, which 1‘s ‘approximately five 'I:;imes.nfaster than our pre\fioiisly‘
instelled TBM TOS4IT. The multiple functionsl wnit central processor
provides the ability, to execute numeram;s instructions s;iﬁmltaneousiy
without alteriné; the intent of the algorithm being solved. This
feature is the main difference between the 6&66 and 6600. s;ries. of
computers. The €600B, 6600C, ani 6600D each have s central memory
capé.ci‘by of 131,000 words.

'The A&, B, C, and D designators have been established by local
convention, and do not represent manufacturer's models. They are
“uséd simply to distinguish among the machines. ‘

Eech of these 6000 series computers has ten peripheral proces-
sors, each of which, in effect, is a stored program computer with a
processor and 4096 12-bit words of memory. 'Th’ese ten peripheral
processors, together -with twelve ﬁalf duplex channels, serve as the

link for input/output communication and control, and overall system

operation control for each 6000 series computer.

52

1/0 Section

The third subdivision of the computer configgration{ sur:;'ounding
the central processors in Figure Al, is the shared pér'if)heral pool.
Communication between the central computers and peripheral equipment
is -a.cconiplished through a battery of multi-access switches, _which
allow the computers to communicate with any peripheral device. Thus,
the peripheral equipment 1s shared among the compubers. These
switches operate under program control. A central display with
manual lockout controls is also available o accommodate systenm
parﬁitioniﬁg. With this festure, 8 computer and selected peripheral
equipment can be physically partitioned off from the complex and used
for development work oy wmeintenasnce without endangex:ing the continued

rellable use of the remaining portion of the computer complex.

Shared Peripheral Pool Subs&stems
The i‘unctioﬁal capability of the equipment comprising the shared
peripheral pool will be d;ascribed beginning with the eguipment sllqown
at the bottom right-hand corner of Figure_Ai ani proceeding clockwise

around the chart.

Batch processing subsystenm

The first ;.na.jor subsystem of the shared peripheral pool is the
‘bateh processing subsystem. . Tt consists of e bvattery of conventional
types of unit record equipment, located in the computer complex. The
ma.jor elements comprising this subsystem and their performance are,

listed In Pigure A2. OFf partioular interest here is the

53

decentralization of coperation of this equiément. This'is«accomplished
through a message switching and response polling software system,
using six low performance CRT/keyboard inguiry type devices, each of
which is associated with small groupings of peripherzl equipment.

For example, one CRT/keyboard is associated with & resder, punch, and
printer. TIts function is to provide the operator of this equipment
with all the information and control necessary to effectively operate
thesé'pa;ticuiar pleces of equipment. This concept has been imple-
mented throughout the peripheral pool, and has proved extremely
effective in decentralizing operations into smaller self‘-mnageable
EIOUpS. A5xé matter of féct, the ﬁajor portion of our peripheral
_equipment is ocated in different rooms from the main systems!

operation consoles.

Auxiligry storage subsysteﬁ

The auxilisxry storage subsystem coﬁsists of three main elements:
data cell drives for permanent storage of programs; éisk stérage
drives for high speed transient storage; gnd magnéﬁic tape drives

£l

for date storage and communication w%.’t;a off-Lline devices. Figure

A3 lists the wajor characterigticé of the eguipméﬁt in this suﬁsystem
The total capacity of the four disk drives is 524 million 6-bit char-
acters. The average sccess or head positioning timé %s 50 éilli-
seconds; the average rotationsl delay is 25 milliseconds. ‘These -
performance festures, -coupled w;tth'the fact that as’ Iinnya.s 128

files of 32,000 characters each are avallable at éébﬁ-accesé position

4 CARD READERS
3 CARD PUNCHES

6 LINE PRINTERS

1. PAPER TAPE PUNCH

6 CRT/KEYBOARD
(PERTPHERAL CONTROL STATIONS)

6400 A
6600 B
6600 C=
6600 D

6400 A
6600 B

6600 C
6600 D

5k

1000 CARDS/MIN.
250 CARDS/MIN.
1000 LINES/MIN.
150 CHAR./SECOND

12 INCH
1000 CHAR. SCREEN

EXAMPLE OF DECENTRALIZED OFERATION

I
/

| REaDER| [PuNcH| [PRINTER]
{ cxe)

BUFFER

CONTROLLER

Flgure A2. - Batch processing subsystem and decentralized operation.

P

AUXTLYARY STORAGE SUBSYSTEM

% DISK STCRAGE DRIVES (TRANSIENT STORAGE)
524 M CHARACTERS
60 M3 AVG. ACCESS TIME
25 MS AVG. ROTATIONAL DELAY
128 FILES AVAIIABLE AT 1 ACCESS POSITION
(FIIE = 32,000 CH)
'
L DATA CELL DRIVES (PEBMAM:NT STOI‘?AGE)
2.2 BILLTON CHARACTERS
Lo REMOVABLE WEDGES

DATA MANAGEMENT SOFIWARE FCR FROGRAM

AND STORAGE STASH, FETCH AND MODIFY,
REPIACE

16 MAGNETIC TAPE DRIVES

MAX. DATA TRANSFER SPEED 120,000 CHAR./SEC.
BURST RATE AT 800 BPI (BITS/INCH)

TRANSPORT SPEED 150 INCHES/SECOND
LONGITUDINAL DENSITY 200,556 AND 800 BPI
DATA CODE 7 TRACK -~ EVEN PARITY BINARY CODED

DECIMAL
OR T TRACK ~ ODD PARITY BINARY

Pigure A3, - Auxiliary storage subsystem.

56
of each disk drive, has grea‘cl.l.y :f.mproved ‘systemAthrnghput in campar-i'—
"son with previously available ‘disk: s‘ystem;s.

The software controlling disk operation ’u‘tilizmes a cen‘t%x'alizéd
stack processor. In processing disk requests, the stack p;oce,s‘s'or
first selects all requests associated wi-l;,h real-time 'a.‘_pplica.‘-t‘.ié)ns;
all other requests are then selected, primarily, on the basis of
t_ninimiziné héad movement., The system provides for both se-qnentiai
and random processing for files stored on disk.

The date cell drives provide for a total on-line storage volume
of 2.2 billion 6-bit characters of alphanul;leric ‘0 bingry informsation.
This information volume is equally -divided over forty removable
vedges, ten wedges per date cell drive. Tt is estimated ‘that this
storage subsystem will providé adequate storage.for 1000 application
programs on-line to the computer systems.

A data menagement software subsystem rigidly controls the
ecateloging, storage, and retriewml of aﬂ,pmémms stored in data
cells., Usage statistics such as date of entry, number of times
ace sged, date of last use, ete., and a descriptive label for esch file
are maintained by the system. The unit of information on the data
cells is s file consisting of a source program and its complled binary
object program. Because of the need for extreme care in maintaining
the continued relisbility and integrity of the entire permanent
storage information base, the user is not permitted to gain direct
access to the content of .his files in the data cells during hils pro-

gram's execution. Instead, upon commsnd, an entire file will be

>7

accessed and transcribed from data cell to disic in one continuous
operation. . Once the file is transcfibed to ddiek, the user can’
manipulate it in any way he chooses. The bonver§e’;s alsoutrueg
Before a new file will be cataloged into permaﬁené s%orage;.it}mu;t
exist in its entirety on disk. As an‘éxample, aséume a user has s
program cataloged in the data celis.r?W%th*a-s;mp;e set of éopé;él{
cards, he can FETCH his program, MODIFY selected stafzgmerits‘; com-?i,lf;“-
and execute, and, if desired, REPTACE the original ﬁfogm{n with the

new modlfied verslon.

Real-time simmlation subsystem

One of the major'reﬁuirements of the IRC Computer Complex Is
the ability to perform mltiple real-ﬁime digital flight simuletions
in a single 5000 computer (see Figure AlL). . To perform "msn in the
- loop” digitel simulation requires that thé computer operate as part
of a closed loovp, time critical system whe.:c'e‘ precise problem solution
rates must be guaranteed in order to maintain the integrity of the
simuletion. These requirements have ﬁecessitated.the design and
implementation .of s hardware and software subsystem with unusualiy
high ﬁerformance charscteristics. Figure Al lists the major elements
that comprise the hardware subsystenms.

A feal-time clock, accurste to 100 nanoseconds provides timing
control for both the inpgt/output subsystems and computing algorithm.
The inpuﬁ subsysten consists of eighty analog channelshand 960 dis-

cretes for external event sensing. Each anslog channel converts to

58

REAL-TIME STMUIATION SUBSYSTEMS

FACH OF THE TWO SIMUIATTON SUBSYSTEMS CONTAIN THE FOLLOWING

REAL-TIME CLOCK

INPUT SUBSYSTEM

80 A/D CHANNELS 15 BIT 1.25 US/CHANNEL
960 DISCRETES
OUTPUT SUBSYSTEM
192 D/A CHANNELS 15 BIT 1.25 US/CHANNEL
950 DISCRETES
CRT SUBSYSTEM
6 CRT CONSOLES HIGH PERFORMANCE

1 HARD COPY RECORDER

Figure Al. - Real time simiation subsystems.'

59

fifteen bits, fourteen data bits plus sign, and through a series of
multiplexors can achieve a conversion rate of 1.25 microseconds per
channel. The output subsystem contains 192 digital output channels
and 960 discretes for external event control. Each.output channel

has fifteen bits of precision and cperates at an effective rate of

1.25 mieroseconds per digital-to-analog conversion.

In order t0 maintain sufficient commmnication and control during
the progress of a simulation,-a high performence CRT (cathode ray
fuhe), Wwith keyboard,.function switches, ete. and a central hardcopy
" recorder will be aveilable to the test conductor. The eRT will be
used %o provide.a dynamic display of seleétqblelkey paramete£; in
grephic and/or tabular form for monitoring purposes. It will also
‘provide real-time control features which will allow the tes? conductor
to START, STOP, or HOLD the simlz;tion’, perform de’da.'ilgedv analysis of |
historicsl information collected during the course of the simulation
and resume or reinitialize the simulation at various sélegéable times.

Development activity is currently underwayiin‘ACD which will
provide a more genersl purpose use of CRT’S.P Our objebtives are to
provide, through software development, the neceszary communication;
control, and graphic tools to support interactive problem solving and

analysis via the CRT.

Remote terminal subsystem
Remote batch processing services are provided through two inde-

pendent remote terminal systems (see Figure A5). The first, a low-

60

speed system, supports twenty terminsls, each terminel consisting of
a fifteen character-per-second card reader and typewriter printer,
operating over voice grade telephoné lines. The IBM 77h0 teleproce‘ss-
ing computer provides for the coédllection of jobs from the remote
termﬁnals and/or dissemination of results‘back to the terminals. All
job processing is performed in tiae 6000 computer, to which the ter_:mim
nal system is connected. We are currently processing approximately
120 jobs a day through these terminals.

A medium-speed remote terminal system called EXPORT/IMPORT,
consisting of four terminals, comprises the second part of the remcte
+terminal subsystem. Each terminal consists of & 300 card-per-minute
reader and 300 line-per-minute printer, operating over voice grade
telephone lines. Each remote ‘termiral has. a stored program buffer
controller, which communicates witﬁ the central computer for the
transmission of & job or the receipt of computer results, in blocks
of approximately 690 chgracters per transmission:

Jobs submitted from remote terminals process in the dentral
computer in the same fashion as jobS'submittedlat the - center. fﬁ
order to more effectively expedite output, s routée feature is avail-
able to the remote terminal user. Thiszéafgbiiity,‘;nvokeé tﬁrough .
the use of a controi card, allows the user to selectively direct out-

put. files by name to his remote terminal or.to hiéﬁ-,speed printers at

the computing -center,

6L

REMOTE TERMINAL SUBSYSTEM

LOW SPEED
IBM 7740 TELEPROCESSING COMPUTER
20 - IBM 1050 TERMINALS

CARD READER 15 CH/SEC.
IYPEWRITER PRINT'ER 15 CH/SEC.

MEDIUM SPEED
CDC EXPORT/IMPORT SYSTEM
4 REMOTE TERMINALS

CARD READER 300 CARDS/MIN.
LINE PRINTER 300 LINES/MIN.

Figure AS. - Remote terminal subsystem.

ol
ny

On-line subsystenm

Input paths for on-line 'data reduction applications ar91§fovided'
through direct interfaces between thegcomputgré and five &igit;i
recorders in our Central Date Recording System (see Figure Aé). Tn;
central recorders are connected through ﬁatchbéajrd, "swi:t:(;h-iﬁg‘ and
underground cables to twenby-two test sites at the Iangley.];lesearch ;
Center. In normal operation, the digitized recorder o;tpgts from .
100 snalog inputs are recorded on magnetic tape. When on-line ser-
vices are required, date from as many as five test sites, in addition
to being recorded on magnetic tapes, will be transmitted from the
central recorders directly into a 6000 computer, where they will be
decommutated, labeled as to origin and time, and stored into the disk
subsystem. At the same time, operating in a multi-program environment
at & lower priority level than the storage and decommutation program,
reé.uction progra:ms will perform wh.a.'tt;zver caleulations are required
upon the data and will route the output back to the remote research
facility using the remote terminal suﬁsystem. This subsystem thus
far has‘suppqrted on-line éomputation requirements for three research

facilities at Iangley Research Center.

http:switchifi.nd

63

ON-LINE .SUBSYSTEM

INPUTS FROM:

5 RECORDING SYSTEM INTERFACES 15KC EACH

OUTPUTS USE:

10W SPEED REMOTE TERMINALS

REAL-TIME DATA DECOM AND STORAGE
QUAST REAL-TIME DATA REDUCTION

Figure A6. - On-line subsystem.

6l

CHAPTER II
OPERATING SYSTEM SOFTWARE

General Description

Figure AT prOVide; an overview of the operating system software
which supports the use and operation of the Langley Research Center
Digital Computer Complex. Tt is ealled thé IRC SCOPE 0pera£ing systen,
SCOPE being an acronym for Simultaneous Computing snd Qperation of
Peripheral Equipment.

The Application Programer's Tools, indicated at the iop of
Figure Af, represent the software elements which should be most
familiar to the user or application programer. They provide the
languages and procedures by which the -user communicates Br interfaces
to the Computer Complex. The capsbilities and use of these programing
tools are documented in the "IRC Computer PrOgraming,Maﬁﬁal" aﬁd ’
related reference material.

The Operation and Control and Special S&stem cogtxol softvare
comprise a large,qpantity of modula; s&stem élementg—which\pefform'
numerous functions associated with controlling‘fhé prderlx‘f1;qué.
Jobs through the computer, and operating @he vgiiou; deviceg ;ontained
in the peripheral pool, WMost of this éoféwa;e is_ngt diqecély {nvoked
by the user in the development of hisqiogtrahhprggrém,;EQ$ is:;yplied '
or called at various levels of cowmuﬁication énﬁ,qontrol by ‘the operat-

ing system as it processes jobs th;bugh their warlous stages.

The Real-Time Monitor, at the center of Figure AT, is the heart

%‘Fﬁﬁm‘““ e
COMPILER
D

ROUT [NES

RIS

2] s

et)
INPUT
CUTRUT

ERET

MONETOR
(REAL TIME)

S TEM
f ConMUNICATION

l 6| wa |

vy 1
QA AND SYSTEMSf' B
PERFORMANCE :
LR A

T o th

% | o000

P
‘tﬁ-EAL-TI:‘AE A
P Slg'\ULAT ONZ 75

#, el

TOTAL PROGRAMS - 641

TOTAL INSTRUCTEONS - 925,792

Figure AT. - Operating system software.

E.""“"""‘W
5

Pe|

T Dk bt
e + e sl % it

SYSIEM
SURVIVAL

L3730

hEA

s o2 stk c o
ading Represents

B b o 0

o of oat
Broprangs fualru e

reent NonslandardJ

<9

o
(83N

of the entire operating system. TIts prima:ry' furiction is %o iarouide
orderly and responsive communication, control, and Tesource gllocation
functions for the entire operating system.“ Its fuﬁction ie; somevhat
analogous to that of a dispateher, whére the frequency of c;ccurrence
of events to be processed is in the range of thousands per geconé.
The most critical requirement of real-time wonitor is the abilijby to
maintain o response time which is winimal, nearly constant, and
definable under all possible conditions of system operation. This
is the cornerstone upon which digital simulation is based. We haye
recently completed the implementation of & third version of the
wontitor portion of the operating system, and with it have achieved

a response to time critical -events which at no time exceeds 130
miscroseéondal. Considering the size and complexity of the IRC

Operating System, the current monitor represents a significant achieve-

ment in system design and perfo:::mance.

Overell Design

The IRC SCOFE Ops;rating System has been bullt around two key
design techniques; Multiprograming, end Multiprocessing. Multiprogram-
ing can be defined as a mode of: corllputer operation vhereby the computa-
tional capability of a computer is directed to intermittently support
one of & number of different s.pplica.tio-ns which reside in the memory
of the computer simulianeously. The distributive allocation of
computational power among the various applications is controlled in

a variety of ways depending on the nature of the individual jobs

67

currently‘being processed. In general, s priority number &eterminqé
the preferred sequence. |

Multiprocessing in the case of- the IRC Operating System, can bq
defined as a mode of computer operation whereby all input/output
operations as well as the logic and manipulation associated with them
are performed in parallel with the multiprograming mentioned above.
In addition, numerous (10-15) input/output operations can be proceéd-
ing in parallel with one another.

The purpose of these features, wﬁiqh have been incorporated
throughout the entire operating system software, is to dynamically
allocate the numerous resources ;f the computer hardware to a con-
tinuously changing workload requirement in an attempt to optimize
the performance of the entire computer. The objective, of course,
is not to juet keep the machine busy, but to provide the best possible
service for all users of the computer complei.

The operation of multiprograming and multiprocessing -can best
‘be explained by diagrammstic example. Figure A8 depicts a typical .
6000 system. On the right, we have the central processing unit,
which operates only on programs stored in the central memory located
to its left. The ten peripheral processors (PPU's), each of which in
effect is a separate computer with k096 words of memory, communicate
through half-duplex channels with ell input/output equipment in the

peripheral pool and with central memory.

1
bl

The operationsl environment of ILRC SCOPE is as follovs (see
]

Figure AQ). As umany as seven different spplication programs,-resident’

I EACH HAS LK WORDS OF HEMORY

PERTPHERAI PROCESSORS

68

T YH YR

Ho oW

PO

PPL

FP3

E)

Q.

L 12 HALF DUPLEX CHANNELS

Figure A8. - 6000 system.

69

in central memory, can operate in a tru§ mltiprograming mode,
depicted here by Progrem 1, Program 2, etc. The réal-time monitor
(RTM), permanently resides in a peripheral proceésor a;1d,‘a~small
portion of central wemory. Also, a display driver permanently:
resides in a second peripheral proceséér %? prévid; ééhtinual dynamic
display and control for operator comunicai;i:pn. The :femainixig Teriph-
eral processors constitute s pool of capability ‘which', upon command
from monitor, willﬂperform various input/output and control tasks
necessary to support the execution of spplication programs in ecentral
meMmory, as Weil as numerous system functions such as reading in Jjobs,
printing results, commumicating with remote terminals, etc. The-
operating system uses -a small portion of central memory for job
queues, tables, and other passive support and comminication require-
ments.

Iet us assume that Program 1 is in execution and that it ig

the highest priority job in céntral wemory. Tt will remain in execu-
tion as long as its priority remains highest, until it requires
‘external input/output activity. At this point, it will request that
input/output be perfOrme&. When the request is recognized, wonitor '
will immediately redirect the CPU to the next highest priority'job

in central wmemory that is ready to execute and will command a pool
peripheral processor to perform the appropriste input/output operation
requfi.réd by Program 1. When the outstanding input/output operation is
complete, monitor will place Program 1 in a “waiting for central

processor" status which, in effeect, places the program in contention

70

PERTPHERAL N
PROCESSORS CENTRAL MEMORY
RTM OPERATTNG SYSTEM TABLES
DISPIAY '
- PROGRAM 1 PRIORITY 7
PROGRAM 2 PRIORTTY 6
'8 - -
POO .
PERTPHERAL .
PROCESSORS .
PROGRAM 7 PRIORITY 2

Figure A9. - Operatlional environment.

TL

for subsequent use of the central processor. Tais allocation of the
central processor among the various programs in central memory {multi-
programing) occurs hundreds of times per second. Each occurrence is
created by the need of the application program for support activity
from the operating system, such as input/output operations. The
handling of these support activities by peripheral processors is
accomplished in parallel with the central processor and in parallel

with one another (multiprocessing).

T2

BIBLIOGRAPHY -

l. Eckhardi, Dave E., Jr.: Description of langley Research Center
Computer Complex and Specilal Femtures for Real Time Simulation
Applications. (Paper presented at the: Eastern Simulation Council
Meeting, Hawpton, Virginia, September 26 1968.) ’

2. Cleveland, Jeff I., IT: Description of Software Features for
Program Control. (Paper presented at the Eastern Simulation
Council Méeting, Hampton, Virginia, September 26, 1968.)

3, Computer Progreaming Manual. (Internal wanual for National Aero-
nautics and Space Administration, langley Research Center
Digital Computer Complex.)

