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DISCRETE CONTROL OF LINEAR DISTRIBUTED SYSTEMS WITH APPLICATION
 

TO TE DEFORMABLE PFIMARY MIRROR OF A LARGE
 

ORBITING TELESCOPE
 

ABSTRACT
 

One of the more significant technological problems associated with
 

the orbital operation of large astronomical telescopes is the fabrication
 

and maintenance of the primary mirror surface to the tolerance required 

for diffraction-limited performance. An interesting approach to the 

solution of this problem involves continuously measuring and automa­

tically correcting the optical surface of a thin deformable mirrdr by
 

means of discrete actuators located on its rear surface. The real­

ization of diffraction-limited performance from a telescope in space
 

by this method rests on the ability of the designer to achieve extremely 

accurate control of a highly complex, interacting, multivariable system.
 

This paper presents the results of a detailed study of the discrete
 

control of linear distributed systems with specific application to
 

the design of a practical controller for a plant representative of a
 

telescope primary mirror for an orbiting astronomical observatory.
 

The problem of controlling the distributed plant is treated by
 

employing modal techniques to represent variations in the optical 

figure. Distortion of the mirror surface, which arises primarily from 

thermal gradients, is countered by actuators working against a backing
 

structure to apply a corrective force distribution to the controlled
 

surface. Each displacement actuator is in series with a spring attached
 

ii
 



to the mirror by means of a pad intentionally introduced to restrict
 

the excitation of high-order modes. Control is then exerted over
 

a finite number (equal to the number of actuators) of the most
 

significant modes.
 

Through the application of the modal expansion technique the mirror 

equation of motion is transformed to a set of uncoApled, linear, time­

invariant, ordinary differential equations. The desired dynamic 

response and static accuracy may. then be achieved by the application of 

classical single-variable design techniques. The formulation of a
 

quadratic performance index which incorporates a measure of image quality
 

permits determination of the trade-off between the- number of actuators 

and optical purity. A criterion for defining actuator placement and
 

pad size is presented which minimizes the tendency of the controller to 

excite the unmonitored modes.
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accordance with the University of Rhode Island Statement of Thesis
 

Preparation and Thesis Defense. The manuscript will be published by
 

the International Federation of Automatic Control (IFAC) in the September
 

1970 issue of their journal AUTOMATICA.
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I. INTRODUCTION
 

The class of distributed plants considered in this paper is
 

restricted to those described by linear, time-invariant, separable
 

operators where control is derived from a finite number of discrete
 

inputs. Application of the modal expansion approach(l) converts the
 

distributed-parameter problem to one of a multivariable nature which
 

readily yields to decoupling techniques.(2) Classical single-variable
 

control methods are applied to decoupled system dynamics defined in
 

terms of the eigenvalues of the linear operator whose eigenfunctions
 

are assumed to form a complete orthonormal set. While the results
 

are applicable to the general problem of controlling linear distributed
 

systems, the motivation for the study is a direct result of its
 

relevance to one of the central problems of large orbiting telescope
 

technology.
 

Elimination of the effects of the earth's atmosphere give orbiting
 

telescopes significant advantages relative to earth-based telescopes.
 

Figure 1 displays percent transmission of the incident radiation
 

through the earth's atmosphere as a function of wavelength.(3 ) In
 

the portion of the spectrum shown, the earth's atmosphere is opaque
 

- 5
to radiation shorter than 3 x l0 cm and longer than 3 x lO- 3 cm, with 

numerous gaps between these extremes. Since the etitire~spectrum of 

radiated energy becomes available for study in an atmosphere-free
 

envionment the additional spectral coverage would permit studies
 

involving galactic nebulae and cool stars (stellar evolution).(4 )
 



0 

"I£A
 

4.t £tw>! 

&A 

a 2 !.=~~4 f af . noe: ........... =. . . . . . . . . . . . . . . . . .
 
.=.. . 

4
 

44
L 



-w z-,qp .,ku=. M. . 
&44 

4 4_ 

4=i (Ai 4 er 1 %mi 

. . . . ... ....... . ... . ...... .. .. .. ... =i . .. .. . . . ... . . . . . ... . .. . . ... .% .
.. ... . .. ... . . ~± . . .. 
==1 f= to= = t. . 

)VI~ al LAatk 4el'a3 

=** 

404 

t~ o 

t..,kJA4.. 

"k. "s 04 <4 

= I = i i 
ii ii ! ii ii ii.. . ...i ii !ii iii~i i i ii ii . . .. i ii=i •Q •i ii ==!iili .. i .. . . ....ii ] .. i . = . i . ii ... ii . i ii.... i i i ....-0 

-47 t.t.:! ii.. .. . . . . .. . i i i + i iii = i.. . .. ii ilii~ . . .. i .. ! i i . i ..i!ii i i i i i{.. . . . . .... .. . i iil .. .
 

4 :. N i i i * i~ i i i i i i i i i i = = i l i i i i i =i i l i i i ! =i % =i i i i i l i i i i i i i i i i ! =~ 
!i •i ! i ii i i ii ! i* i i i] i ii i!iil i ii i =i i =i i ii i= iii iiii Y w= 

trpoar d i$l~i t ar I.- 1n 

.. .........
....... 


p'in 44. 

M,% VIA 

444 

t4l.44i­

404 



t.A 

4~kt .. 

A.... !..*~ a 



6$ z 

4 .. .... . . . ... . . .. . 

W..4$ 

4$X> 

~U< >%ri.KIVA 

to,aetteew 4 oinw~ 
Wsea~pyp1MtW~b ~ 

thicmraz......... 
t4 gr21nt 

tOs4i$e4,t . .4 0 4 .4 .. 

, . . ..... 

$teW4 e-w it 

0dr;-nb~sto b tf<.Lnt 

WUb~ 

gf 4t4Lpt&or 

-A '<Vl 

$4~~~~-Ih 

4$ . 
<j4$$$4>4<>4$44$<ov 11' 

4$ 4. 4>04

4A 4$r 

4$4 

N 

ti4 

tn.z# sth P 
f~j 4$* 4$l**~A 

7 

It$ 

3. axW,4 

44 

A, 

4$~~~~V 

N. 

4$-4$* 

4$$$$$44 

44$. 

.4j$ 
4$ 

V N, 3 .. 4N,44 

u4 

W , 

V4 

4t 



4 % 

.~4... . . ..... i7 k..> . V.. ... 

A.-", I 
>i 4... 

... 
x7\ 

'iJ =-p',4 

I-4ii 4=
 

V q Y , V;: 'F 

£

•i! ~~~~~~~~~~ • •i !!i ~~~ = ! i i~ i ii= ~ A W A !Ii ~ A=i i


I
 

A4 

siIN MY, ifOA zi4
 
I 


ii i' i i iiiriiAl li i i i i = i iil l. AVi= ii l i ii i i I i ! i,! ii i!i
 

!i! i iiii~ili ii iiiiii iiiil! iiilil ii i ii i i ii i!iii i iiiiii i i i i ! i i i i ii • ii il i I ]i ii ! iiI!i i i! i i ii!iiii i ii i i l ii ii liii i i liii i
i iii i i ii~ liii i4i
 
i % 1 i 1 11 1 i 1 % ii i i! • iil i i~iiii i= i I i = ii!i i i 1ii i i iii i~i i i i i i = ! . i i ii i ii i i ii i !i i iil i=i i i i


i 
 I 
i~~A~i i iii] ~ i i i !i i i * iiii i l!i i =iiI i iii i i ~ = i i i liii= i i i iii i! i i i i i iVIP i i i! !i iiii i i ii i ii ii i= i ==i ii i i ! iii =i =ii~ii i i i 

I 
ii i i i ii i
 

w i i i i i iii i= i i ii ll~i! iii i i i ! ! li il~ l~i~1 i i i iii ! i !i ii ! ! i ii i ii i ! i i ii i i i ii~!i ii ii i Aii.iii 

V .. . .. +. .
 
•••'I .
 ~~~ ~ i ~. . ....~ . ~ ~.. ~ ~.. ~ ~ V 

rval I Z 
= 


.. . . .• .• .... =# 1 ii= . .. A.4A% . 

!ii = i 
4~ 

ii iiiiiAi i i! i~ ~~ 7 1. i i i i ii 
.- A 

i i ii i ii i 

i 


I i i i i i i i I ] I I i 

Iii ~~ iil~ i 6 i lii imi iiii/ ii iii l ~ ii ~~ * i iiii [i ii 

i
i = ii iii !~ ii ii= i ii !i i
l l i
o, i ili ! i i ih i i ! i !!iii=iiii!~ ]!iill ~ ~i iii~ i~i lli i! ii
] !!i vi i ~ ii =iI !!i)i=ii i ii!i~i. 1iii ii '% - 'Aiiii!iiiiiliiii i iiii ii ii i ii~ii 

= %, I = * = >= = i i % == i i i<] = ==== • • .=, I =J. 
i~ Xi iii =i ik i = i i i i ii i ;i i ] i ii ! ii i ii ii i i = i ii 

4V ~ ii ~I AM N~iiiii~u ii~ i iii" i i iiii!! iiiii!ii~ I iiiil i~ liiiiiiliAiiiii~Iliii1,~~i1;ii= =i1iiiiiIi ii! :=!ii " = lli !ii ii iii ii i£ ii~li!=i 1il!ii 

I 

!i i= !!! i:- " l=i i ii i i i iii i ~i i~1111! 1ii!1ii i1iili i ~ i ~== ;F. = li iii llii ii i ~i!i i! ii~ ii iiiIili iili ii~ i ] I ] 4 i 
ii i ii i i . ii ii i~== i i• I ii i i] i = i i =i i i=i i i /=i I ii iiii i l iil i
i ii * ii~Wi =
 

A I. 
A' i i 1 i ii! i . = •i iiiiIi i ! i i il ~ * ii i i= = i I • i ii i i I ~i 

ii!.iiAp> ii i l i! = i i ! ii i i= ; !i~ii! i i i I i = = i i.... ... . .. AA c .... .... ..
A..... .... .. ... = =...... .. ....... ........... ... . .... . .
 
A' A . '-4i~ i ii ii i = i i iiii ii= =i ii i! ii i= i i i =ii i i i i~ i i i ii i !!ilii i ! ii • i !i i i= iliA- i

lllii~ VpA . +ili .. ii ~i~ iiiii~l~iiii il~liiiiiii~liiiiii==iii~ i!!! ii i ii~ i ilili~ ii iii~ iiiii iliIi:V ~ ii~ iii i . I IIi!II] i 

A.4 
.....0.. ..,
 

4Z 

A ! i] ! i i ii iili i i i i £ I ! i lii V !ii~% i 

iii~-i!i~ i ] ! i~ i . .. . .i k = i i i ll iI i i ii ] i! iA k i l i~i!i i iii !li i = i i i ~ i i i i ! i i i i i i i ii i i iP= i
= =
 
A i!l i iliii~i! !i i i~i li il ii i ~~li!! ~ d !ii~ii%1 1! i i~ iii i = i!i i ii !
=%i11 4!11i i 7! i i!= iiiiii i ! iii~i1iiliii~liiili ii ~< ! = = i~ liii !iiA,,=i ; i i i~i i i: !ii ~~i, ! ! ! i !i ]i ii ii~ ]=,=,=== ===.= 
 === , ;==RV 



4~•~ • ~4 4 • " 4 . tA 

i It i tWnolt 

Ii i74 W-i sI 
j,3 4tbAil 

'Ai 
4 44v vm 

.. ...
aiti i .
 
4 = ;= .= += =,i!... 4. " ... .... ,... ....... #= 4 == to== 44 


il~iii~...iili i.t ii.i".1! .. i <.iii ..t 

4 
... 

.......... i ,iOi
 
. . . . .o 

. . of suneof 9
 
, 4 
 4> =.=F 

X! 

4 
7 Elk 

i
 
CLii i 7i7i 


44.v4...
 

>44 

1 1 i iili i il i i i iii
i 111 =1 11 i i i i $ = i = i=i-iiu=ll~i i i i 

i i i i i 
 lii
 

i~iiil~ii~l i= iQl ~ii iii ii!14A] 111 

iiii i i i1= ~ii 1 11 Ii i i ii i ~iii i i] ~i i liiliil i! i ii iiWiiiiili~ iili i iiliiiil ! i ! 


i= iii :i i!i~i i= i ! i~ iii! ii ii liiiiii i i i ! != )iii: iilii i i!i 
=i 
£ ii~ ,i i~ I"i=1ii i !iiii 


i ii~
i iI iiiii-iii ii1111 JAKI i iiI
A 01 , i i i il i iii i ii i 1
 

i~ i6,4 Pi 4iiil=i= .. i = = = i== i ii <i ...i • i..•= •...i i =......= i i i= ..i = ..... 
= . . . ii P :iii i i i i iiii l 
i= =i i p 2 = i . . ii i = • .........= ii......
i- i i i ....i .... i =. ... ! i ....... 


........- i =!i • i= ==w... i l ..= = ....s v-iii.....= ] .... i• ==. = = Ei.....= i i 


= .......!= .. . == N4 . ..... . == = =.......• =.. .=........... ..........
•'== =•.. ..........= ===== ....... =.......= = = == = , =............. ......... . . ... ..... . . .

. ,= =&,m AAL = 

.
_I ?=[I;I
 
i ! i i ) iilii~ii;i !!ii ii~&
_ " 

iiiiili!ii i i !ii~illiii! ! i~iiIii ii !i ~ ii i i =:...............................
... . .
.............== ..... .. .
i=== ........= ..... ....... ... ..4....... . . :. . . • 

! vl l o =i i i 

= • i i • i I= A "• i • ! i = 


x-Ii > 
i l! !ii¢i !i~ !!i i~~ii = <ii ! ! i i i ! i i ii!ili ii! i = i i i !~ iii¢ i i ii i= 


iii i ! li%! ii!>~liii! ii ] !iii 1=!iiiliii 1 ii ! A~ ii !
!~ii iiiii~i ili i i 


.. !i i= ==.... =.== =====
 I FW+=...
... .....
..............­
ii i iii ..M iAT =iiii iii{ #,i i ii 

iii i 
l i 

!i
iiiii i i iiii = i ii i lii iii!ii•ii ii ii~Mili=£il i!i iiiiiii~i ~ i • ii W i5 =iiiiii i •i iii~ ~i il~i==i ii i! i= = • iii • i ii ]iii= il iiii ii 


.... .. == = = .. . = = = ,=. = = = ===................
 .... =~ = ,...= ...] i....... = ...... , = = .......= = = = .......
= i =,I .... .....
= :=== 

ii i iili!il ii i~ iiii~l!ili !] iii~ i i liii~i ii i i'Ai i! 

4- I 79.l ili !i~iii~iii i = iiiiiliililiii i i lii* t­
iiii iI~ i

iii i i~ ii
ilyiili* !ii!iii iiiliiiilii i li] 

Ii i i~i ii i~i !£ i, iA. 

= i iii;!ii ii~i

i~ii ii i ilii
ii[ii iiiii~i liiiiiiiliiiii =i !iiiii! !iiiii@ .i=i]1i~ i= ii [ilii i ! I ii 

!ii!ii i il * iiilii=li
i l. iy
ilii ~iiIii~ iii ~ ~!ii!i o ,4v .1 i i 

• 

i i• = i I l [ i 

y l i >i= =ii•= = i i 

I=i]I£A~i ] ' ii~ i iil~ ii~iiiii i !! !!i t i ii~ :]i ii i i i !iiii i i! S ! i !ii i! !i iI~~ i i i~i iiiiF il ! 

iiii=~~~iiE ii!iii£i i lI~l=~= ii 11i ='iiiiIii1Ii i£! i~!=i i~ii . i I i i lwi*ibie iiI~ii8iiiiiii!iiiili!] iii~iiliiiiiiiili!iii~iliiiiiiil~ iiI"i ii ! ~ ~ ' ii ! [iiii~ii
l~ !li~iiiiiiii!illi iI i i~i ]li i ii = iii! iii>i ii iil iil = !I ~ 

! i i= i [ 1
 
W -40 

ii liii~! i!iiii ii~ i~= =lii~l~ liiiiiill~l[I®Qii iiikiiiiiiiii~l~~iiiiil~~~~~i~i~ = i~i!ii)!iiii.i~lil~i +ii 2 ~liiiiii i • i i !i 

i i i~!i i 
:i ; U i£ 1 4ii i Ii l iii i liI <
l i l ii 49.iiViiiii iiIi i ] i iii i i ii ! li ii i i iiil i i i ~l~I" ii ii i i i i 


ii i ! 


= i iiA •
 
.. .• ii•i•
I i iI I, ii i i 

N kA g 2 
n 

= = = 7;i % i i ! li

i iii£i!i A iiii


!ii = £Iii ~ iiiIii ~ iii iii ~Emii=i ~ == l i 

ii iil i i ill i
il~i ii~~li~ ii i i i ii i i iq i i i i i !i
ili li M" _ ii......... 
! 

2:1.......11=.,=
=
 
= ! i 


iiviri i ii i i = 111 l i1i ! i i ]= i i4 i i £ ii ! i i i i =ii 3i i = 0 i i i£ 0 -=ii: i i i A= .......
 
U=
 

=i=;==•= = 
=••= 

I=! ! 


= 
 ]= i = I = I= I ,% .... ,i = 


l ii
~iii R i i~Wi~ii ii~lii!i~l£i=i ! i i !]• 4£ =i : i iii 
= 

= il ii~ 
, 

ii iiii & i=iiiii.. 
i=A
 

= U 2 iiiili = <
' {!i! ii i i...i~..i ii~ i iii ..!i=6i:1111 i;.i . i i i i=]iiiiliiiiii!iiiiiiii;ii2 Ii :i!2ii!~£ ii <!i?iii[ i==iiliiii =l ii i i i! i!i i ii~ ii.iii .iii iii!il~ ii G i !i~ iiii!~..~i.. ! = . ii iilii I-liiiiiII Ui~llii 

http:2:1.......11


VP 49= " W- 3,x 

VKV = >==== ..............
,========= = .............
= . ======= =.==i =.= = .=;i.> .. 

=% 1 = ! i
 
4li 4iiiiii~iii iii i~ ii21i llli ii !iI 
 iii i ! ii i lii iii=i~ lllii Iiiiliii iii ii6 I 

= 
!i!iil!iii1 i!!=== iliii!iiilii i iliIii iiiii i! i ili!ililiI~i! i ! iii~iiiili ~ i iliiiiil iiii iE V

i ii ii ii i !i! i !11 i! i i ! i ~ F!! ii ii iii ili! 

i i i I = i i 
lil~ li iI i" ii illi! iiiI ii iiiii!i... i ii i iiiii!ii iii!ii..........iii~~
i ii i 4 !1 iii I ii lli...... i ! = i=!i ii 1. 

V V iii = i i i# i ~ iiii % i ii i i iii i!i i! Ii i i i!ii~ =. i. ~i i i i !iiiiiii 4 i ii ii 
i ~ ' i 2 iii i i ii i i~ i 

iiVili il i i! ii i i i ! 1! i ii i ii ill!ii i =l ii i li i il ii i i i 1i iii i ii i i= ii i i g 1l! i i =!li 
4=i!ii i i iiii i i i i i~ ii iiiii iii i ii7iii ili i ! i i ili i~i i i !i i i ilii i iiiii i! ! iii i i i i ii 

i ii ili ii! =i i 
Vt !4=0I 

i i11!i i i i i i ii iii i i i i i i == I iii ii ! ii == ii i =, Vi iii!% ii!iliiili~i~ !i ii=iii ii~i!!i iiii ! iiiliil~ii iililii i~i iii iiiii !i ii i !i~ iili i~ i i! i!1 1iiiiiii iii iiiiiii~i i i ii i~li ,i~ iii i~i i! ii i ii i iiiili Q Iii i i i =i! i ii i ii !i i =i %*iii == i •iiiii ili~ii~i i ii !iiii I 

• • . ..... . .. ... . ..... i 
!ii i ii i!!li~iil!!1 ili iili i QiiiI *>=iiil~ l i ii l iii Iiii iiilii l i ili ilii!i i ~i!ii!ii ii~i l ii iii i ! iliii!I i i lii~i i i i i il ii! I iiii i lii iii! ii!7 i .. . . . . . . . . . .~ii ] 

4= 
..... ......i!i i !~ i!! +~i i=% 11i i!i i ii£t iiV i 

.. ii i i i]il i i 1 ii i! iiliiili i =ii • i li i i i ii i .. ili i i !6 1 = i~ !ii!i lii i ..i .. iii [ii i iliii !i ! ii ~ i 7 i!! 1! ii ii ii 4 

ilii iiiiiiI~ i i ii ii il I iii 1 =i =ii~i ii• iiii 

Viiiiiiii!i!i£i7!!Q ~ii1iiiiii i iiiiii! 
iiliii~ii ii iiii iil i!~iiiiiiii ! Qiiiii!iiii!£iiiiiii ilii!iii!iiiii ~ 

40 

= =V~l£ii ... 

Q 1 J= 000A.U- ' '== ; = f=ki =,= !+ ==== = ! i~
IT•i 

Vii! 

I ! I I i i l i iIi I 4 ' = 
ili i iiIi! !!lili~ iiii iiil!=iilii i~ ii~iiiI 17! E+iiii i~iii I ii ilii !ii• ' i i~ iii ii i ii ! ili~iii illi i =I i i i! ...i i= iiil i10, =iii il 

! 
iii !ii~i "4

V4iiii ,>i" 111!i}ii~i1! iiii4 <4Vi ' iii liii li ii~i~iiiiii ii iii li i i i ii! ii! i !! =!ii ii 11 iii ii V4iii!4 4i=iii!i~i~i ii
I~j iI~i li~lilR iliI~iiD=iiiii~iilI~liiiii. Ii~ilI~i!Iiiiiiiiii i~ll iiii ii it!i" ! 4. .. . . : 1i! 

V444i4 
= iiii
i iii11iliiiii Vt 

i:iiFii~
V===i 

.................................. 


I A' 
4 

40 ili V> I
. . ...
i i i[i iii i i044= Vi 



44•4>4*
4 iz 4 *I4 


<... 44>4ay . 4444744
 
AAA >4 =i-) *,i 

;N-V V v4 4i4 i<4 i~i4iiK<~<4~44 !i A i4 

<AA% 4. 

.... . . ........ . . . . . .. .. .. .. .
"A lzliii i :At 
iii ..
. j i 4i ilii=AM 

%7VP Id.4
 
*... X.
 

A . ... .=...... 

.. .. - a A ... . ..... .. 

4p4., ei 

i i=!i .. :Ai =• A it; i 
4% 4iaa 

S.ii ww
 

4 i 4i4iat
 

4i3 4i
 

Iv 

444 

............
 

q A4> 4444 a444444444444 >44.4.4> 44> 44 4A, 444544444 
644

R44 4 44 444 4 4 4 4 4 4 44 
-AA4.iiii.44 AAA>4>4444 i44 

AAAI Iii~iii I=....... 1i t * 1 t...................... Aqii 
i l 

d ,ii~ii
....iiili. ,====...
444 4 

41.!i52 ii1i iAf.li~ii i .............................................. iii £
ii!lI ... 
F 

mAii* iii ....
 

at N NW- A.... ... 


AAi N, 4tl £i; ii
 
.... "Is= !!i]] i [ii I=== == 

i~~~~~=== A'.ii•i -'Aili 



10 

value. In present design efforts the dynamics of the plant have been
 

largely ignored. This is a significant factor in the control of larger
 

mirrors which have very lightly damped low frequency resonances.
 

Selection and placement of the actuators is presently done on an
 

arbitrary basis as a result of the present limited ability to relate
 

the effects of these design decisions to system performance. In
 

addition, the ability to more completely incorporate information on
 

the disturbance characteristics, to the extent that it becomes
 

available, is desirable.
 

The purpose of this paper is to present a general theory for the 

discrete control of a distributed-parameter system and extend the modal
 

expansion technique to completely specify system performance.
 

In the past little research effort has been devoted to the problem of 

obtaining discrete control of distributed-parameter systems and the 

results which have been obtained by Gould and Murry-Lasso (1 are limited 

to plants which have finite modal content. In this thesis-the entire 

modal structure of the plant is considered for the problem of obtaining 

a specified level of performance while minimizing the number of control 

inputs to the plant. The method is demonstrated with examples and 

results are presented for a plant representative of a thin deformable 

mirror.
 



II. MODAL EXPANSION TECTIQUE 

A schematic representation of the plant under considerationis 

shown in Fig. 6 where L is a linear, time-invariant, separable operator. 

A typical example of a distributed system is the thin rectangular plate­

of Fig. 7 , where the deflection normal to the midplane of the plate 

w(x,y,t) results from the application of a transverse load density
 

p(xy,t). The equation of motion of the plate is given by
(9 )
 

[1]
V2 s V2w(x,y,t) + p - w(x,yt) p(xyt) 

where V2 is the Laplacian in Cartesian coordinates, p the mass per unit 

area, and S = yh3A/2(l - v2 ) is the flexural stiffness modulus of the 

plate. The deflection, w(x,yt), is assumed separable, i.e., 

w(x,y,t) = ci(t)ui(xy). [2]
 

Substituting [2] into the homogeneous form of [1] yields, for a
 

homogeneous,plate of uniform thickness,
 

d2ci(t ) 2
 

+ cuici(t) =0 [3a] 

and
 

S iu(xy) cui(xy) = 0 [3b] 
P 
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p(x,y,t) L w(x,yt) 

Figure 6.- Operator representation of the plant. 

/ 
y- h 

-T,/ 

Y = Young's modulus 

\7 = Poisson's ratio 

Figure 7- Flat rectangular plate. 
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2i 

where m0 is a constant whose value is specified by the boundary 

conditions. For the simply supported plate, which has boundary 

conditions
 

ui(O,y) = ui(a,y) = ui(x'O) = ui(x,b)= Oa, f4aj 

+ V U- o, 
 [4b]
 

x = 0,a 

and =0 4c 
- 1 +v u i 

v--u. + Lu. =o, Lo2 Wx


y = O,b 

there exists( l l) a denumerably infinite sequence 

(rip a[5a] 

where m, n = 1, 2, ... are the mode indices corresponding to the
 

eigenfunctions
 

ui = un(xy) (sin m I' x)(sin n b y) [5b]
ab a b 

which form a complete orthonormal set (Appendix A). Consequently,
 

the general solution to Eq.'l] is
 



--
W(xyt) 
 cmttti4jx)Y)M12 

1=l m, n JI
 

and since the ui form a complete set the loading may be expanded in a 

uniformly convergent series of the form
 

p(x,y,t) aitu~~)=Y .tu(~)[6b) 
i=l m~n=l 

where
 

aj(t) =ff p(x'yt)ui(x,y)dx dy [6c] 

and r is the spatial region in which the plant is defined.
 

Substituting [6a]', [6b], and [3b] into [i] and taking the Laplace 

o transform with respect to time yields
 

(s2 + o )c.i(s)u.(x,y) = a1 (s)ujfxY) '[7] 

i=l i=l 

where s is the Laplacian operator and, for convenience, the same symbol
 

is used to denote a variable and its Laplace transform. Since the 

u,(xy) are independent the coefficients may be equated yielding
 

ci(s) = 7i(s)ai(s) [Sa] 

\i(s) =sBb
 



Based on Eqs. [ 6a.-c] and [Ba-b], the plant shown in Fig. 6 mnayt'e 

redrawn as shown in Fig. 8 which is a modal expansion of the distributed
 

plant.
 

Modal decomposition Recomposition 'X(s) 

p(x,y,s) 
of p(x,y,s) 

.(s) 

aeces)st 

i,s) 

oS. , 
w(x,y,s) 

S p(x,y,s)ui(xy)dxdy c n(S) ' T(s) , 
r 

Analyzer Synthe'izer 

Figure 8.- Modal representation oft the plant. 

More generally, Fig. 6 represents the functional equation ­

w(zt) Lp(zt) [9] 

where z represents a general spatial variable (in one or more
 

dimensions) and the operator L operates on functions of time and
 

distance. Laplace transforming Eq.[9] with respect to time -yields
 

w(z,s) = Lp(zDs) [o] 

where the eigenvalues of L satisfy
 

Lui(z) = (s)ni(z). [114 

Since the u1 (z) are assumed to form a complete set, the separable
 

functions w(zs) and p(zs) can be expanded as
 



oo 

i=a
 

and 

±i=1
 

Substituting [nj, [12a], and [12b] into [1O] yields 

CO Co Co 

cijs)uijz) = L a,(s)u±(z) aj(s)?.j(s)nj(z) [13a) 

and consequently,
 

c:(s) = i(s)aI(s) 

with ai(s) defined by the transform of Eq. [6c]. Figure 8 is then 

the general modal representation of the class of distributed plants 

under investigation. In a function space where the eigenfunctions of
 

L are used as the coordinates the system is represented by the infinite
 

diagonal matrix
 

A(s) =[A.~ ,(d1 

In this reference frame, control of the plant output can be readily
 

achieved by individually compensating each element of the diagonal
 

matrix, as shown in Fig. 9. 
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r( e () d() a s)Xi(s) ci(s) 

Figure 9.- Decoupled compensation of ?i(s ) . 

The significance of the modal control indicated in Fig. 9 is that 

it is relatively easy to express the system least squares performance 

in terms of the orthonormal modes of a vibrating structure. This is a 

phenomenon of particular interest in the mirror application since the
 

integral square error is the desired performance index of an optical
 

surface. (12) With the error in the optical surface we represented by
 

the modal coefficients ei the-image index (expected integral square
 

error) is given by
 

= 
=,EL f_ we (z;b) E ei(t)ui(z •-d 

=E[ e (t] 2-[5
 

where E denotes the expectation and u2ei is the variance of the error 

in the ith mode which is assumed to have a zero mean. The last steps
 

result since ui(z) is a member of an orthonormal set. Thus, the measure
 

of image quality, JI, is a simple function of the variance of the mode
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error which can be reduced by appropriate control one mode at a time 

as indicated in Fig. 9 . Relating the original signals in the system 

to those of the decoupled reference frame, the control system structure
 

becomes that shown in Fig. 10 where e and a are column matrices whose
 

elements are the modal coefficients ei and a,, respectively. In
 

practice the situation illustrated in Fig. 10 can only be approximated.
 

The function of the analyzer is to determine the modal content of the 

optical surface error. The decoupled controller dynamics, represented 

by the matrix D(s) = diag d,(s)], is determin d on the basis of 

standard design techniques (see Fig. 9 ) to achieve a satisfactory 

performance level. For a weil-grcund mirror the need for corrective 
4 

action diminishes as the mode number, i, increases and control can be 

reasonably be restricted to the significant modas., The N controlled 

modes are denoted by the output and error N vectors cN and eN in Fig. 11. 

The finite (N x N) controller mati"xis representedby -. 'The 

function of the load synthesizer ib to place an~appropriate force 
"N 

distribution on the plate to correct for the modal errors in e . Since
 

the remaining modes are unmonitored (no 'corrective'action taken), the 

ideal force distribution applied by the loading mechanism is 

N 

Pideal(Z"t) a i(t) ui(z) [16] 

i=l 

with none of the uncontrolled modes excited. Physically this corrective
 

loading is applied by finite number of control manipulators which, in
 



(z'su1z~dz
Wrws ezs~

w(z,s)r e(s) a(s) p(zs) w(z,s) 

".-d = D(s) Ia.(s)u.(z) 

Mdde Diagonal Synthesizer Plant 
analyzer- controller '(Loading Mechanisrh) 

-

Figure 10,. Controller representation in the original reference frame.
 



Wr(ZS) - w(z s) .eNs Ns(s) s) HN s H N 3NNs{s 
w(xzyt)=
Desired Surface , a. s---H - A 

R Rz(s) Zs)
mirror distortion R R c(s) u1 (z) Irorsu e (eror) (s) 

surface
 

Figure ll.- Partitioned representation of the controller and lant.­
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the mirror problem, are comprised of displacement actuators in series
 

with a spring acting against a backing structure. The spring is attached 

to the mirror by means of a pad intentionally introduced to restrict
 

the excitation of uncontrolled modes (a point discussed in detail later
 

in the paper). The actual (non-ideal) force density applied by these
 

N actuators is given by
 

N N 

p(z,t) =3p 3 (z,t) = jt)03 (z) [17] 
j=1 =I
 

where pj represents the force distribution resulting from the jth 

actuator, and the last step results under the assumption that each
 

applied force distribution is separable in time and distance. Expanding
 

each of the Pj(z) in terms of the eigenfunctions, ui(z), Eq. [17] becomes
 

P(z,t) : hhijmj(t uiNz [18a], 

where
 

hij f f.(z)u(z)dz( [l]
 

and comparison with [6b] reveals
 

N 
ai(t) Thij~j,(t ) . [19a) 
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In matrix form this relation between the mode force,coefficients and 

the actuator signals becomes
 

a HdN [L19b 

N 
where H is an x N matrix and a is an B velctor. Equation [19b] 

indicates the control elements excite all modes. Since only N of the
 

more significant modes are controlled, Eq. [19bi is partitioned as
 

H RNI[ Fa] =[ [20] 

where RN is an N x N matrix, H an - x N matrix, a an N vector 

corresponding to the controlled modes, and aR accounts for the remaining
 

modal force coefficients. To provide the desired corrective vector
 
N 
a the actuator inputs are given by
 

= [HNll aN [21] 

where it is assumed that the actuator locations insure HN is non­

singular - this point is discussed in detail in a subsequent section.
 

Partitioning the matrix representing the plant dynamics into components 

corresponding to the controlled and uncontrolled modes, the overall
 

system becomes that shown in Fig. l where disturbances qN and qE acting 

on the plant are included as equivalent displacements. When the mode
 

number, i, is ordered with increasing frequency of vibration, w! = %M, 

the plant inherently performs modal filtering which attenuates the
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higher modes so that their contribution to the error (mirror distortion)
 

rapidly becomes negligible as the mode number increases. Consequently,
 

it is often assumed that only the first N modes are present; i.e.,
 

cR and aR are identically zero, and considetabie 'simplification results.
 

For example, let wN be an N vector defined by the output at N different
 

points. That is,
 

= col w(z.,t) [22] 

where z. represents a measurement point. In terms of the mode
 
eJ
 

displacement coefficients
 

w= UNcN [25a]
 

where
 

u1 (z1 ) u2 (zl) - uN(zl
 

[2 ]
 
u2(z2) . .(21. .
UN 1l(z 2) 

ul(zN) u2 (ZN) .. . uN(zN )
 

Under these conditions the mode analyzer becomes simply ,anoperation
 

on the N measurements; specifically
 

N = [rW] N" [24] 

where the sensors are located at positions to insure UN is nonsingular. 

The control structure of Fig. 11 then reduces to the N x N multivariable 
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system(2) shown in Fig.12. This idealized representation, valid when
 

the effects of the higher modes can be safely neglected, was derived
 
{ . 

by Gould and Murray-Lasso and is treated in detail in reference 1.
 

Control of the low-order high-amplitude modes as indicated in Fig. 12,
 

or in the decoupled form of Fig. 9, presents the ciassic problem
 

of controlling a resonant plantwith 'alimited control effort'(restricted
 

actuator throw). While for large primary mirrors with low resonant 

frequencies this may be a substantialrproblem, 'in the present paper 

it is assumed that the disturbances qN(t) are slowly tarying'and of 

sufficiently small amplitude that any desired degree of control can
 

be realized. Negligible contribution fro! the uncontrolled modes can
 

generally be assured by permitting N to be arbitrarily large. However,
 

in the present problem extremely accurate control of the optical surface
 

of the thin deformable mirror for diffraction-limited performance is
 

required with a minimum number of actuators. Under these conditions
 

the effects of eR and aR are not negligible, but, in fact, represent
 

the most significant system errors and the most important factors in 

evaluating design tradeoffs. 



qN(S) 

N N N N N) N N N
w(S) ww(S) ~)N as)~ as(s) T N (s)+ (S 

re UN 1 D q(s) S HN - a S) HN a ) AN(s) + UwN s 

Figure 12.- Idealized N x N multivariable system resulting from 
a finite modal expansion of the distributed system. 



IIl. ACTUATOR PAD SIZE AND LOCATION AS DESIGN FACTORS 

The uncontrolled modes enter the problem in two major ways. First,
 

the actuators excite not only the controlled modes but, in general,
 

all modes. To demonstrate, first separate the image quality index
 

into two parts, i.e.,
 

= J, JN + JR [25a 

where
 

N 

jN = 2[2q]

i l
 

accounts for the error in the controlled modes and
 

to 

ja [25c]
 

i=N+l 

accounts for the remnant error of uncontrolled modes. As larger
 

actuator displacements are commanded in order to reduce JN to smaller
 

and smaller values JR increases due to the effect of aR. Secondly, 

unless direct measurements of the modes are made, a limitation on the
 

ability of the displacement sensors to obtain an uncorrupted estimdte
 

of the N controlled modes results from the presence of eR.
 

Actuator Pad Size
 

The function of the actuators, as indicated in the previous
 

section, is to apply forces to reduce eN while minimizing the
 

excitation of the uncontrolled modes, i.e., ideally
 

26 
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a 1 11 HN nonsingular. [26] 

In the mirror problem the control manipulators are modeled by a 

displacement actuator working against a backing plate and a relatively 

soft spring which is attached to the mirror by means of a pad. The 

ability to approach the situation on Eq. [26] is governed by pad size 

and location, which are factors under the influence of the designer. 

To illustrate the effect of pad size, consider the rectangular plate 

of Fig. 7. The pads are assumed to be rectangular in shape and 

located as shown in Fig. 13.
 

Ni 

0 >
 

x 

Figure 15.- Pad shape, size, and location.
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The amount of force applied by the jth actuator is determined by the 

product of the spring constant K and displacement actuator position. 

This force loads the plate as indicated by Eq. [17] with 

pj(xy) = Kfj(x,y) 	 [27] 

ffr fj(x,y)ax dy 

where ff(xy) is the distribution of the force and aj(t) is the control
 

input. Considering a force distribution that is constant over the area
 

of the pad, Eq. [-8b] yields
 

hij (a P b ah. 	 ) f sin---sin-z b dy 

jth pad 
area
 

sin sin
 

ab a 	 b m zt) 
2a 	 2b 

where i indexes the mode mn. For this special case with constant pad
 

size (i.e., (Ax)i = (Zvc) = Aa and (,y)i = (Zny)j = Sb) , Eq. [28] may 

be rewritten in matrix form as
 

H = GU' 	 [29a] ­
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where U is the N x c matrix, 

ul(z:) u2(z). u.(..z ) . 

U [29b] 

Ul(Z.) u2(z,,) . . .niu, . 

the prime denotes the transpose of a matri, !i denotes the :point xi,
 

Yi,
 

G = diag gi(Aat) ' [29c] 

and
 

sin a sin 

2a 2b 

gi gm K - -a [50] 

2a 2b
 

Figure 14 contains a plot of (sin / Assuming the controlled modes 

are m mma x and n.- nmax and pad dimensions are Aa - a and 

<b 
- b the maximum value of the argument for one of the controlled
--max
 

modes is = /2 which occurs when adjacent pads touch. The attenuation 

of the higher order modes by the pad is apparent from this diagram as 

the elements of G decrease rapidly for i > N and, in turn, decrease 

the output levels of HR approaching the idealized condition of Eq. [26]. 
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sin(C) E 

E .8 

.6 .... .	 Minimum $transmission 'level
 
for a confrolled mode
 

.4 

.2I
 
21 377
 

-.2-0 T2/'3F
 

- 7-/ 	 7 

Figure 14.- Plot of sin ( )/2illustrating the filtering action of pad.
 

The prefilter action of the pad is complemented by the transmission
 

properties of the plate itself. For the rectangular plate of Fig. 6 

the relation between the applied loading and displacement output for 

the ith mode is 

ct(s) 2ai(s)/p 	 ,[31]
 
+ es + -2
 

where a small amount of damping has been included. In response to a
 

step input the steady transmission is
 

lir c _ ±t Wa [32] 
ai pm 
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-where is iven by E. [5a]. Assuming a 0.5 inch (1.27 cm) thick, 

30-inch (76.2 cm) square plate with a Young's modulus of 107 pounds 

per square inch (70.3 x 10 gm/cm2) and a Poisson's ratio of 0.2, 

this factor is 

x 10 - 2  lir ci = 7.73 [33 
t -> ai (m2 + n2)2 

A byproduct of the pad's desired effect on H is a decrease in the
 

transmission properties of H N . As a consequence, an increased effort
 

is required to deflect the surface. This is readily demonstrated for
 

the simply supported rectangular plate where 

H= GNP? [34]
 

and with appropriate actuator placement UN is orthonormal (see
 

Appendix B). Consider the expected value of the norm of the actuator
 

displacement vector given by
 

NN
 

Thus, as the elements of GN are decreased, the required control
 

displacement and force increases. Since the plate itself was shown
 

to perform substantial filtering; acompromise on the final pad shape
 

and size is normally employed.
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Actuator Location
 

Another critical factor on the H" and HR matrices is the placement 

of the actuators. The actuator locations must be selected to prevent 

the occurrence of a singular HN matrix. Since the actuator locations 

most directly affect the UN matrix, knowledge of the mode shapes will 

generally permit the selection of the location of the actuators. This 

situation is detailed in the examples. Evaluation of the determinant 

may be used to verify the invertibility of H". in addition, if a row 

of HR is zero, the mode corresponding to that row cannot be excited. 

This is approximately achieved for most plants by locating pads at the
 

zeros (nodes) of the mode in question. For the rectangular plate, this
 

is exactly achieved since the influence of pad location of H is
 

delineated by U', ,see Eq. [29]. When the modes are ranked in order of
 

importance, the desired goal is to control the first N and null the
 

next highest modes; however, this is not usually possible and trade­

offs are required. For example, it may be possible to control a set
 

of modes that are not the N most significant but be able to preclude
 

excitation of the next highest modes or, alternatively, control the N
 

most significant modes but not have the ability to preclude excitation
 

of the most dominant uncontrolled modes. Since the controlled modes may
 

be reduced to any desired level at the cost of some increase in the
 

amplitudes of the unmonitored modes, the',contribution of these higher
 

modes to system error represents the most critical factor in system
 

design. Determination of the trade-offs in actuator size and placement
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is obtained through evaluation of the system performance index, Ji)
 

which is discussed below and illustrated later in two examples.
 



IV. STATIC PERFORMANCE 

The design objective is to minimize the image index defined as the
 

expectation of the integral square surface error. As shown in Eq. [:5] 

this is a function of the mean square values of the modal error 

tcoefficients. fDetermination of J, as given by Eqs. [25a-c] is dependent 

on the nature, particularly the spectral content, of the disturbances.
 

For the application to the control of a deformable primary mirror of
 

an orbiting telescope, it is anticipated that the primary error sources 

will be initial figuring errors and relatively slowly time-varying
 

thermal gradients. In this context it is reasonable to expect that tie
 

system will generally be performing at or near its static values.
 

In Fig. 11 the surface deformation due to the disturbances is
 

defined in terms of its displacement modal expansion coefficients, q.
 

No loss in generality results from considering the disturbances to be
 

displacements since equivalent force distributions could be assumed. 

With reference to Fig. 11, and with co(z,s) zero, the error in the
 

control modes is given by
 

eN + qN [56] 

For the static situation this reduces to
 

-1 
ei q= O< i [37] 
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where Ki is the loop gain (type 0 system) for the i
th mode. When the 

loop transmission contains a pure integration (type 1 system), Ki -e '. 

Thus the error in the controlled modes can theoretically be reduced to 

any arbitrarily small value. The expected value for JN then becomes 

N 2 

where aqi is the rms value of the static (or slowly varying) disturbance.' 

The error in the uncontrolled modes is given by 

R _ I RR 

RR N
=RAR 

--g1 + ARHR[Hfl N I + ADlq7 59 

whichcunder static conditions becomes
 

N 

q j  <ei = - qi ij I + Kj N + 1 ia [ 

"j=l 

where. j is an element of the matrix 

= ARE [AN.HNJ [40b] 

Assumingithe modal coefficients of the disturbance are uncorrelated, i.e.,
 

S ,2 : j 
CCi 
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the expected error in the uncontrolled modes becomes
 

2 

02 +*j,:_LL[42] 
JRq X4+l I( -ri)2 - JR

i =N+l _]i 

where JR is the value of the disturbance error in the higher modes 

without control. The second term JRc is clearly positive and represents
 

the increase in JR that results from the actuator displacements
 

required to control the errors in the first N modes. Since JRc is 

finite, the series converges and the order of summation may be reversed,
 

yielding
 

JR = JRo + N , 'P iyi/ 2 2 
~ 1 (li)+ a2 E[3a)=R 0 i=l 

where
 

2P [45b]
 

j=N+1 

is a constant dependent on the design factors of actuator pad size and
 

location as well as the natural modal filtering performed by the :plant.
 

'Co ining Eqs. [25a-c] , [38] , and [43] yields as the imaging index 

N l + ' i \2 ] . FL 
+ Ki2q 

) 

Te first term is unaffected by the control action the second decreases
 

-as a result of the control action and the third increases.
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.Since JR is constant, minimization of Eq. with respect to 

Ki yields optimui performance when 

K. = ­ [4-5]
1 2 

and
 

N N 2 
+Jlopt -- "= J. aci =.i + .2 ci + Jo ' Tot Lli ji JRC Pi r R [46] 

with the controlled and uncontrolled components given by 

N N 2 

JNopt ( I~ K (+P?) 2 [47-]+-~ a2& 
i=l "=1 

and
 

N N 2 
i~q, 

2 
iJR 02i +i 


JRopt (+ + L o 1 + ) 0 []
 

Recalling that without control >§ aN= a., it is seen that for large 
K9 qi=l 

loop gain the error in each term of JRopt due to control is approximately 

1/Ki while each term in JNopt is reduced by an additional 1/ki. 

Thus, if significant improvement is to be gained in the optical surface 

by the aboye method, N must be selected sufficiently large and the 

actuator-size and placement such that = 1/iC 1.ip In the mirror1­
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situation JRo is negligible and JRe represents the major source of
 

concern.
 

Because Ki is large, a type I system is normally employed and
 

N
 

J I ~ cdcipi + JRo ] 
i=l 

The required value of N to achieve the desired rms figuring error can 

be minimized by the selection of pad size and location whose effect 

is manifest through the parameters cp. 



V. MODE ESTMATION ERROR 

The preceding analysis assumed ideal measurement of the controlled 

modal variables ei; however, in many applications it is neither 

practical nor possible to obtain direct measurements. In these cases 

an estimate is often derived from a spatial sampling of the distributed 

output. This is the case in the mirror problem where the most commonly 

used measurement of the optical surface is performed by the interference 

method illustrated in Fig. 15. This mirror figure error sensor is
 

a modified form of a Twyman-Green interferometer. In this interferometer
 

two plane wavefront beams are formed from a common coherent source. 

One beam is reflected from a reference flat while the second is con­

verted to a spherical wavefront whose center of curvature is that of 

the mirror. This wavefront is returned by the mirror and forms an 

interference pattern with the reference beam which is focused on the 

N discrete individual sensors. Periodic motion of the reference flat 

produces a sine wave of identical frequency at each detector. This 

converts the error determination from an amplitude to a phase measure­

ment and permits the requirsd sensitivity to 'be achieved. 4 

Under conditions where no modes except the first N exigt, the
 

relation of the modal coefficients to the N measured values is given
 

by Eq. E24] which for the mode error is'
 

emeas !N
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Figure 15.- Schematic of the mirror figure error 
sensor. 
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However, the presence of the high-order modes deteriorates this
 

measurement since the actual measured vector is defined by
 

[si]WNe ne" + oRe? 1 -1 ­

where FR is the N x matrix
 

u- N+,(zl) ...uN+j(zl ) - - 7 

[52].R 


U1N+(ZN) . . . u+j(zN) 

Consequently, the estimate of the modes in Eq. [5] becomes
 

eN = [XuNeN + [UI\]UReR = eN + GN [53]
meas
 

The manner in which the neasurement error E defined in Eq. [53], 

evolves is shown in Fig. 16. The disturbance error in the first N 

modes can be controlled to an arbitrarily small value (see Eq. [38] 

while errors in the remaining modes cannot be counteracted. A major
 

effect of the measurement error in Eq. [53] is to introduce an
 

additional error in the controlled modes. To illustrate, the vector
 

eN is seen from Fig. 16 to be giv6n by
 

eN - ANHNJ gN [54a] 

where
 

aN + e_,. 



w1(z,s)J w (Z,s)Be~)U- es () N aN(SSN -7l() 1 A 

- ' O------,7 I U ( - _ As r I oxIHNH Rl-"--l o: ,IA o -'Q -

I~~N~N=WI 
Sensor q (s) 

Figure 16.- System configuration including measurement errors.
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and substituting [54b] into [54a] an - rearranging yields 

eN -I + ANJJ] q L[ + AUl N. E55] 

For a type 0 system under static conditionsI. Eq. L55j becomes; 

S +K +Ki 1 i -N
 

or) for a type 1 system 

e - GN - - [,NVT#eR. [b] 

Attention is now given to the error defined by Eq. E56b] since, as 

previously established, most practical systems would possess an 

infinite loop gain. Two distinct cases are now considered: one -where
 

eR is dominated by the disturbances acting on the plant, i.e.,
 

eR =- e [57] 

and, secondly, vhere the error in the higher-order modes contributed
 

by the disturbance vector, qR, is negligible but the error introduced
 

by the control effort is significant, i.e.,
 

eR = - ARHRc = + AZRRAHN7 (q- EN) 

(I+ N[u]-lT)-lq. [58] 

For ease in later calculations it is assumed that (fMU UR is negligible 

compared to I and that UN is nearly orthogonal permitting the contribution 
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to JN arising from eN to be determined from the norm of the measurement 

error at the N measurement points wN = uReR = uNeN. That is, 

JNmeas =.ECN N = E[WgE] [59a] 

where
 

U case I 

1JRtqN case II 

If the modal coefficients of the disturbances are uncorrelated then 

Eq. E9a for case I becomes 

N
 

w wD] i / uIEZn) . [6o]eas 

N 

The sensor locations are chosen to minimize ui(zn) for as many of
 

n=l 

the more significant high order modes as possible. This result is 

consistent with that concluded with regard to actuator placement and,
 

consequently, the criteria for actuator and sensor placement are 

identical. Since increasing the number of sensors is relatively
 

inexpensive, in many cases it will be desirable to have more sensors 

than actuators (or controlled modes). If M > N sensors are used, a 

parallel development indicates that with increased measurements 

JNmeas u. n] q,

i=M+ Ln=l 
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yielding an expected improvement of
 

2 To.(Zn= mi a u(Zn)]aq "62] [+ 

For the second case, of which the mirror problem is typical, the
 

distortion in the higher modes is caused by the control action and the
 

measurement error at the nth sample point is
 

we(Zn) = y ui(Zn)ij qj" [63] 
i=N+l _j =l 

2 

From the properties of the disturbances, the expected value of we(zn)
 

can be determined and is given by
 

N 2 
" [E~e(Zn)] uj(zn)*ji [64a] 

i=l -j=N+l 

and
 

.d= 1 (zn)*j 
4
TNmeas E a ]q.
~&n) UiZ,
n=l i= n=l j=N+l 

This error is on the order of magnitude of the error in the uncontrolled 

modes JR and represents the effect of estimating the modal coefficients 

from output measurements. Increasing the number of sensors, as suggested, 

will substantially reduce this error if the remnant JR is dominated by 

the first few higher modes.
 



VI. SUMMARY OF DESIGN CONSIDERATIONS 

The performance index for the system is broken into two parts:
 

(1) that contributed by the controlled modes, and (2) that due to the 

uncontrolled modes. Application of active control reduces the error in 

the controlled modes to any arbitrary level while the disturbances 

producing errors in the (uncontrolled/unmonitored) higher modes cannot 

be counteracted. Further, the corrective forces applied by the finite 

number of discrete actuators excites additional errors in the higher 

modes. When mode estimation is employed, errors due to measurement 

uncertainty are introduced into the first N modes. Thus, the total
 

system error is given by
 

I = Nmeas + JRo + J [65] 

where J , Ro , and JR. at.e defined in Eqs. 59a] and [4a]. It was 

observed that these errors may be minimized'by factors under the 

designer's 'control. These factors are aCtuator location, pad size,
 

and sensor lodation. Selection of actuator location permitted
 

minimization of the excitation of the more significant uncontrolled
 

modes. The pad size was seen to act as a filter which attenuates the
 

effect of the control input in exciting the higher modes. The pad
 

size is selected to cause the modal'content of the applied force loading
 

to drop off quickly above the Nth mode. Combined with actuator locations
 

that minimally excite the first few (most significant) higher modes, the
 

pads together with the plant provide the desired modal filtering for the
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remaining high-order modes. Finally, if estimation errors are to be
 

minimized, sensor location requirements become the same as those for
 

actuator placement. In some instances, additional sensors may be used
 

to reduce the errors in estimating the modal coefficients.
 

The above points are illustrated most clearly by the example of
 

a simply supported, thin, square, flat plate with the following
 

parameters:
 

Thickness 
Length 

0.5 inch (1.27 cm) 
30 inches (76.2 cm) 

Width 
Young's modulus 

30 inches (76.2 cm) 
107 psi (70.3 x l07 gm/cm) 

Poisson's ratio 0.2 

Table 1 contains values of which are inversely proportional to 

mode transmission as given by the steady values of the A matrix. The 

modes are ranked, from most to least significant, in terms of decreasing
 

(1/a) 2 and control of the low-order modes is desired. With the modes
 

ordered with m on the ordinate and n on the abscissa, contours of equal
 

(a,)2 become circles in the nm plane. These circles may be approxi­

mated by squares; for example, if 25 modes are to be controlled they 

would include 1 S nS5 andlI m Ss as shown in Fig. l7a. The next 

highest mode in each direction is m = 6 and n = 6 which has 25 mutual 

nodes equally spaced over the plate, see Fig. 17b. Actuator placement 

at these nodes (which can always be achieved since the m + I mode has 

m nodes) makes UN' orthogonal a-d precludes excitation of any mode for 

whichm or n equal 6. Alternatively, the first N most significant 

modes may be controlled asiillustrated'in Fig. 17c. This is achieved 

by the actuator placement of Fig. 17d. The unexcited modes in the 



mn 

1 

1 

0.508 

2 

3.17 

3 

12.7 

4 

36.7 

5 

85.8 

6 

173.9 

7 

317.5 

8 

536.6 

9 

853.9 

10 

1295.5 

2 3.17 8.13 21.5 50.8 106.8 203.2 356.7 587.2 917.5 1373.6 

3 12.7 21.5 41.2 79.4 146.8 257.2 427.2 676.8 1028.7 1508.8 

4 36.7 50.8 79.4 130.0 213.5 343.4 536.5 812.7 1194.9 1708.9 

5 85.8 106.8 146.8 213.5 317.5 472.6 695.4 1005.9 1426.9 1984.3 

6 173.9 203.2 257.2 343.4 472.6 658.3 917.5 1270.0 1738.5 2348.9 

7 317.5 356.7 427.2 536.5 695.4 917.5 1219.7 1621.6 2146.2 2819.4 

8 536.6 587.2 676.8 812.7 1005.9 1270.0 1621.6 2080.7 2670.1 3415.7 

9 853.9 917.5 1028.7 1194.9 1426.9 1738.5 2146.2 2670.1 3332.9 4160.5 

10 1295.5 1373.6 1508.8 1708.9 1984.3 2348.9 2819.4 3415.7 4160.5 5079.8 

Table I.- Values of W2 
mu 

in 106 radians2/seconds 2 for a flat square plate. 

4r"O 
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n 
n 1 2 3 4 5 6 7 8 9 10 

2 
controlled unexcited 0 0 0 0 0 

3 modes modes
 
4 0 00/30 0 3
 
5
 

6 00 00 0
 

7 00 00 0 
8 unmonitored
9 modes 0 0 0 0 0
 

10
 

(a) The m,n plane for the (b) An actuator
 
actuator placement of b. configuration utilizing
 

twenty-five actuators.
 

1\ 2 3 4 5 6 7 8 9 10 

2 3 contolled 0 0 0 0
modes 

1 0 0 0 0 

4l 0 0 06 unexcited
 
7 modes El 0]O[
50 0 0

8 13 [ 0
 

9 unmonitored 03 0 0 0 
10 modes 

(c) The ±n plane for the (d) An alternate actuator
 
actuator placement of d. configuration utilizing
 

twenty-five actuators.
 

Figure 17.- The locations in the m,n plane of the controlled, unexcited,
 
and unmonitored modes of a flat rectangular plate.
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latter case are those with m = 8 or n = 8. In any case, final'
 

determination of the optimal trade-off requires detailed evaluation
 

of the performance index.
 

Since data regarding the disturbances to which a primary mirror 

surface is subjected are not presently available, a disturbance profile 

characterized by a modal force coefficient with a standard deviation of
 

= _ [66]i i 386.4 

in pounds per square inch, for all i, was assumed. This profile yields 

an rms figure error of 

F 50x 10-6 inches [67]
plate
 
area 

for the uncontrolled surface which is in reasonable agreement with the 

figuring errors of the mirror whose diffraction pattern is given in 

Fig. 5. Pad size was selected to be 0.5 inches (1.27 cm) x 0.5 inches 

(1.27 cm). Fig. 18 displays the rms figuring error for a type 1 servo 

versus the number of actuators for placement of the type illustrated in 

Fig. 17b. The type 0 error was evaluated for optimal gain but did not 

provide a significant improvement for the error profile considered.
 

The details of the procedure used to obtain Fig. 18 are contained in
 

Appendix C.
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Figure 18.- J1 /plate area for a simply supported flat square plate.­
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The preceding sections contain the development and summary of
 

design considerations for the discrete control of a distributed­

parameter system. A simply supported flat rectangular plate has been
 

used as an example because it possesses unique properties which clearly
 

reveal the results of design decisions which are obscured in most
 

distributed system control problems. The following section presents
 

the application of the design technique to a plant which is representative
 

of a thin deformable mirror and whose complexity is more nearly 

commensurate with that of plants generally encountered in practice. 



VII. MODAL CONTROL OF A FREE CIRCULAR PLATE 

Modal Representation
 

The equation of motion of the free circular plate of Fig. 19 under
 

forced vibration is
 

2 2 P2w(r,8,t) r 
V S V W(r,6,t) + p t2 p(rEt) [68] 

where w, p., and '2are expressed in cylindrical coordinates. Assuming
 

solutions separable in r, e,and t Ci.e., w(r,G,t) = cj(t)fi(r)vi( )] 

the analysis follows that of the rectangular plate to yield 

2 

at
d2vi + n~vi(t) =-0 I~] 

+ce+n'v.( =0 [6gb] 
2
de


r2 d2 [f i(,7)] dfi(r) 

dr22 + r drV + (+k~r 2 - n2 )fi(r) _ o [69) 

where
 

a =PS 4 [70j' 

Since the mode shape given by [69b] is periodic in e,n is an integer and
 

53
 



54­

z 

Fw(r,, t) e 

Figure 19-- Free circular plate.
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uijrG) = A[Jn(lcir) + Biln~kirflcos (no + on) [71] 

where A and en are arbitrary constants, Jn and i n are the nth order 

Bessel and modified Bessel functions, respectively. The values of ki
 

and Bi are determined through substitution of E71] into the boundary 

conditions, which for the free plate, arise from the absence at the
 

free edge of both the bending moment in the radial diredtion and 
(iO) 

vertical shear; i.e., 

2 v d n22a\
d2 

+ r r 2fi(rj ' [o2 

free edge
 

and 

__1 -__ +o__ d 

,drkdr2 r r2/ r dr 
free edge 

Under these conditions there exists a denumeratlyinfinite sequence 

of eigenvalues,
 

i= [b73] 

for which the associated eigenfunctions form a complete orthogonal set
 

permitting both p(r,O,t) and v(r,,,t) to be expanded in a uniformly 

convergent series as assumed in Eqs. [±2a] and [a] 
Table 2 contains values of kon for several modes. Because of the 

importance of the mode shapes relative to design decisions, the radial 



0 1 2 3 4 5 6 7 8 9 
m 

0 0.0 0.0 0.158 0.241 0.318 0.393 0.467 0.540 0.611 0.683 

1 .197 .301 .396 .487 .574 .659 .742 .823 .904 .982 

2 .412 .515 .612 .706 .796 .884 .973 1.057 1.141 1.225 

3 .623 .762 .825 .921 1.014 1.105 1.195 1.283 1.369 1.455 

4 .834 .937 1.036 1.134 1.228 1.321 1.413 1.503 1.591 1.680 

5 1.045 1.148 1.249 1.346 1.442 1.535 1.628 1.722 1.810 1.900 

6 1.254 1.357 1.458 1.557 1.655 1.750 1.843 1.937 2.028 2.117 

7 1.463 1.568 1.669 1.769 1.866 1.962 2.055 2.152 2.243 2.335 

8 1.675 1.776 1.878 1.977 2.078 2.174 2.270 2.363 2.458 2.55 

9 1.883 1.988 2.089 2.189 2.286 2.385 2.482 2.578 2.670 2.765 

Table 2.- Values of k in inches -2 for a free circular plate.
 
mn \JO 
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components of the first 21 modes, ranked in order of increasing 

frequency, aen, are plotted in Fig. 20. As a result of the nature of 

the 8 variation in Eq. [7j each pair mn is associated witli two 

distinct modes given by 

fm n (r )
mode jn= cos n@ 74
air 

mode pairfmn(r) sin mO [74] 

for n 0. For n = 0 a single distinct mode exists f6r each pair of
 

mn. To minimize the expectation of the square surface error, the
 

actuators should affect control on the most significant modes as
 
determined by the transmission factor /pand the disturbance profile. 

For the purposes of this paper, and as in the case of the rectangular 

plate, a force distribution with a2 = a2 is assumed such that ani aj
 
uncontrolled rms figure error of 50 x 1076 inches (1.27 x 10-4 cm) 

results. With this white modal disturbance the system objective is to 

exert control ,onthose modes with the smaller values of kmn in Table 2.
 

Actuator Size and Placement
 

The actuators are again modeled as displacement actuators in
 

series with a spring which is attached to the plate by means of a pad.
 

The springs are relatively soft to make the effects of mirror
 

displacement feedback negligible as discussed in Appendix D. The pad
 

shape is a portion of an annulus bounded by constant increments in
 

radius and angle. The elements hij are evaluated as
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m = o rigid body mode 

, •,. , ni=O 

m=22 

mm0 

n =2 
zI n= 3 

n2 

Fmo 

n =4 

Figure 20.- Moaes of tree vibration of a free circular plate. 
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hij 1 2o 2 

An(kmr)
jth pad = th pad JI 


area area 
 rj 2­

+ Biln(knr)] cos (nO + n)r dr d [75] 

for which the 9 dependent component is 

sin (rAEj/2)
AO. eos ('n9. + n 

C (whntA/2) o ) 
where normafly the increment AB is constant over air"j permitting the 

inclusion of this component in the decoupled plant dynamics. The r
 

component is somewhat less tractable. Under the substitution
 

T= kinr [76] 

the r dependent portion of hij becomes 

km (ri + 4) 
A[Jn( ) + Bta(Ci)]n di 

~k,(ri A2" 
which is integrable if n is an even integer, but requires numerical
 

integration or use of tables if n is odd. The effect in either case
 

is that the radial component of hij decreases as kmn increases. 
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In determining the placement of the actuators note from Fig. 20
 

that each mode mn has nodes at m distinct locatiois along linesof
 

constant e and 2n nodes circularly. The placing of 2n actuators 

circularly at equal intervals results in their position coinciding 

with the nodes of one of the modes described by Eq. [74]. Consequently, 

this mode is not excited while the one spatially shifted 900 is. 

To determine the desired actuator placement a knowledge of the 

disturbance profile is required. Under the earlier assumption of a 

white modal disturbance spectrum (La2 c2), the objective is to 
a a
 

control the modes with the smallest values of kmn. Inspection of
 

Table 2 indicates that lines of constant kmn tend to form triangles
 

connecting m to n where
 

n L . [77] 

If the controlled modes are n -- nmax and m -- mma x the controlled area 

of mn plane is a rectangle (see Fig. 21a) which should approximate
 

the region of the first N significant nodes. Actuator placement would
 

fall at the nodes of the next highest modes which require 

Nactuator 2(nma + l)(m + 1) [78] 

actuators corresponding to the mutual (mma x + 1) nodes radially and 

2(,nma x + 1) circularly. The controlled modes are the (2nmax + 1) 

(mmax + 1) bounded by the rectangle mmax, nma x plus the mma x + I 

excited modes for which n = nma x + 1. Thus, the total number of 

controlled modes is N = 2(nmax + 1)' (mma x + 1) = Nactuator. The modes 
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+ l
not excited by this actuator placement are those at'n =nax


whose nodes fall on the lines of constant e where the actuators are 

placed (those at n =nmax + 1 spatially shifted 900 are the extra 

mmax + 1 modes included in the N controlled modes). Additionally, 

the mode whose radial nodes are selected as actuator locations is not
 

excited. The pertinent controlled and unexcited regions of the m,n
 

plane are illustrated in Fig. 21a along with the',corresponding
 

However, because of the tendency I
 actuator placement in Fig. 21b. 


of the lines of constant kmn to form triangles as indicated in Eq. [77] 

control of an area in the m,n plane as indicated in Fig. 21c is
 

generally desired. This can be accomplished by the actuator placement
 

shown in Fig. 21d. Note that in the latter control scheme while the
 

N most significant modes are controlled, it is not possible to preclude
 

the excitation of the next most significant modes. The trade-off must
 

be made on the basis of actuator location effect on the imaging index
 

i"
 

While, at the present time, the imaging index has been detailed
 

only for the rectangular control scheme illustrated in Fig. 21a,
 

preliminary results indicate that control of the N most significant
 

modes (e.g., see Fig. 21c) is preferred. The rms figuring error
 

F = Ji/plate area based on the rectangular control scheme of Fig. 21a
 

is plotted in Fig. 22 versus number of actuators for a plate with the
 

following data:
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n 
m 0 1 2 3 4 5 6 7 8 9 

0 
controlled 

modes 

3 

4 unmonitored f o3 0 
5 unexcited modes 

6 nmodes 
7 

(a) The mn plane for (b) An.actuator: 
the actuator placement of b. .con'figuration uttlizing 

twenty-four actuatori. 

n
In 0 1 2 3 4 5 6 7, 8 9 

31
 

2\
 

S unmonitored 
I modes 
9 r 

(c) The m~n plane for the (a) JAn alternate actuator 
actuator placement of d. configuration utilizing 

twTenty-four 	 actuators. 

Figure 21.-	 The location in the mn plane of the controlea, unexcited, 
and unmonitored moaes of a free circular plate. 
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Thickness , 0.5 inch (1.27 cm)
 
Diameter 30 inches (76.2 cm4
 
Young's modulus 1O7 psi (70.3 x 10" gm/cm2 )
 
Poisson's ratio 0.2
 

These results indicate satisfactory control, yielding diffraction­

limited performance, as defined by an rms figure error of less than
 

0.51 inches, is achieved with less than 24 actuators. This is 

significantly less than the 61 actuators used in the present laboratory 

model which was determined by sectioning the mirror into equilateral 

triangles 3.75 inches on a side (the 3.75" x 3.75" x 3.75" x 0.5" thick 

triangles represent a thickness-to-area ratio near that normally found
 

in monolithic telescope mirrors).
 



VIII. CONCLUDING REMHKS 

The modal expansion technique has been applied to the problem of' 

correcting and maintaining, to the tolerance requird for.diffraction­

limited performance, the optical figure of a plant representative bf 

the primary mirror of an orbiting astronomical observatori. The modal 

technique has been shown to be particularly appropriate for this problem 

by virtue of its relevance to a useful measure of image quality, its 

ability to decouple the system dynamics permitting simple control 

techniques to be applied, and by the extent of the insight the technique 

affords into engineering design decisions. 

For distributed plants subject to extremely accurate control, it 

is necessary to consider the effects on system performance of all of 

the modes - not just those which are subject to control. In fact; with
 

the error in the modes under control reduced to any desired level, the 

major system error was shown to reside in the uncontrolled higher­

order modes and this is increased by the control effort applied to the 

lower modes. For this reason the most significant design decisions 

are those related to the effects of the corrective ceontrol forces on 

the higher-order modes. The analysis presented in this paper describes
 

the effect of actuator size and location on system performance, factors 

most critical to efficient design. The requisite conditions for
 

minimizing the number of discrete control inputs required to achieve
 

satisfactory performance were outlined and then illustrated in two 

design examples. The results for both the rectangular plate and the
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free circular plate indicate that the thin deformable mirror can provide 

diffraction-limited performance; further, that this pet foimance can be 

achieved with considerably less actuators than that required for a 

segmented mirror where the thickness-to-area ratio for each segment 

approaches that normally used in monolithic mirrors. 

The disturbance profile (if data oathe'effects of thermal 

gradients, spontaneous release of material stresses, or other factors 

producing distortion of the optical surface become available) can be 

readily incorporated into the design procedure. This is achieved by 

using the profile along with the transmission properties of the plant
 

(plate) to determine the modal errors and the N modes. yielding the 

largest errors controlled. Extension to more complex plants (e.g.,
 

shells), while requiring considerable computing effort, is direct.
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APPENDIX A 

Determination of the Eigenfunctions and Eigenvalues of 
a Simply Supported Flat Rectangular Plate 

The equation of motion of a uniform plate in forced vibration( 9 ) is 

fV 2 w(,y,t) + &(xyt) = p(x,y,t) []
2
t


consider first the homogeneous equation. The modes of free vibration 

will be determined through the separation of variables technique by 

assuming 

w x,y,t) = wl(t)w2(x,y) [A2] 

Substituting [A2] into Al]'
 

W,(t)8S71w2 (x,y) + p w2(xy) - o [A3]
2
 

8t
 

dividing both sides by powl(t)w2(xy)yields
 

__ VIw2 (xly) = - lw(t) [A4] 
p w2 (xy) ww(t) t2 

Since each side of LA4] is a function of different variables, both
 
2'

sides are set equal to ei - a positive constant. This yields the
 

following equations
 

S,vCw(xy 2 
= o+ ' 2(xy2(,y) 
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S+w(t) wt) 0 6]
 

dt 2 -tWItt 
t2 + W 

Rearranging [A5] yields
 

-412xy 0 IA7]
wip w2 (xly) 


or 

(2+ - tW2xS)IA =0x0w 

The solution to [A8] is the sum of the solution' to,each of the products 

of [A8] or therefore to 

+ ci -)w2 (x~y) =0 'EA9]' 

(7/2 - 01 j£9)w2(x)Y) = 0 [I] 

is the Laplacian in Cartesian coordinates. Equations EA9] and 

[Ao are therefore 

±c2u2,F w2(~ ) [Al] 
2 w2 (x,y) + - w 2 (xly) ± c S 2(xy) = o 

x2 6ya r-3 
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A further assumption is made that 

w2 (xly) = 173 (x)w4~(y) [Al2] 

In this case FAll] becomes
 
-- '] --

ak5 (x) d2w4(y)+3()w4(y) o 
w4 (y) x2 +w3(x) 2 s-w 

Dividing by w3(x)w4(y) and rearranging yields first 

1 d2 wj3x) + d2w4 (Y) + L -L 0Al 
W5(X) dx2 w4(y) dy ­

then 

1 dw 3(x) + y) Edk]5

-Iw5 (x) dX2 S wi(y) ay2 

Since the left side is equal to a function of x, and the right a 

2
function of y both sides must be equal to a constant + g . (The 

constant ­choice of sign on p2 is arbitrary since choosing as the 

will yield the same answers.) Equation [AM5 becomes 

2a (x + p ± mi.F w3(xy, 0 &6 

'and 

d+ w=4(y)
73-+L W4(y) =o A17] 

2 



72 

The solutions to these equations are
 

w3 (x)= Ksis[Al]_ p2 ± cn fx +.( 
and 

wjjy) =A2 sin'(pLY,+ 92)' [A19s] 

respectively. 

From equations [A12], [A8], and [An9] the solution to equalion'A5] 

w2 (x~y) =Axsin g2 + 2 x+ sin (y + 2) 

where A3 is the product of A1 and A2. In order to evaluate the constants 

in o] the boundary conditions must be specified. For a smply 

supported flat plate they are(lo) 

w2 (x,y) 0 for 	 x = oa [A21] 
y = 0b 

(2w 2 (x;y) +V 	 2 [A2] 

x=a
 

and
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\ y=O, 

y=b
 

in light of' [A21] the equations [A22] and EA23] may be-written as
 

2
w2(xy) 0 [ A2] 
6x2 

x=O 
x=a
 

and
 

~2w2(xy) -0 

A25]
 

6Y
2 Iy=E
 

y=b 

Using the conditions for x = 0, y 0 from equation EA] in [A2o] 

yields 

l =
0[A26] 

Using the condition of equation [A21] for y = b yields 

sin pb = 0 [A2] 

and therefore
 

=
 n O
 pn a=0, 1, 2, . [A28] 
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From the condition for x = a
 

sin( k2±tCO~j )ao [A29] 

or
 

(.v2 ±t m_ m =O, 1, 2 [A3] 

Substituting [A28] and [30] into [A20] gives in A3] the shape of the 

modes of free vibration, or eigenfunctions, of the plate 

w2(x~y) = A3 si Sin n,m 1, 2, 33,1 

The resulting mode shape is identically zero for either m or n zero, 

consequently, equation EA3] is valid for the range of m and n 

indicated. 

That equation [A3] satisfies A24] and [A25] may be verified through 

substitution. Further,A3 may be chosen to satisfy the requirement 

bf f
mxydxdy 
= 
 [A32]
 

which yields
 

14 
A = 4 A35]

3 at 
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[A34]
2xy) Tsin m-x sin nay 

2(xy)
= S +w
Since from [A4] a 

P 

S4 2 2 2)4 

c02 = K--7 w w(XY [A35]
a26Y 2 (xy)
 

VXy
m22
4+
W21
Sm4 

[A3 6]W m r+ (Xfln2J]
+ 4 w2(x,y)
 
112C
+ 

This colals hav been [2 + i [A37] 

Ts could also have been obtained from CA27], [A28], and [3o]. 

Since the solution to (6)is
 

w1(t) = A4 cos(oit + g.i [iA] 

The most general solution to the homogeneous 
form of [A] is
 

00 

w~xy~t=) A co(~~+ nzKx m3TY , - A os( + sin - sin -[ 

m~n=l 

Thus the eigenfunctions or modes of free 
vibration and their
 

associated eigenvalues have been determin~d 
for,a simply.supported,
 

are given by equations,[A34] and [A37]
flat, rectangular plate and 

respectively.
 



APPENDIX B 

Determination of a Set of Actuator Locations for Which UN For 
a Simply Supported Flat Rectangular Plate is ,rcthogonal 

The purpose of this appendix is to indicate, for a simply supported, 

flat, rectangular plate a set of actuator locations whidh make the UN 

matrix (eq. [3]) orthogonal. The equation of motion of a beam(15 ) is 

2 t 4w(x,t) -
22w(xt) [1
 

2
at


The method of separation of variables is used, consequently
 

ow(x,t ) = 'w(x)w [B2]2(t) 


Substituting P2] into [Bi] gives, after dividing both sides by w(x,t),
 

T2 d 2 (x) 2 2(t ) [ B] 
wj(x) dx4I w2 (t) dt2 

Both sides are set equal to a constant 74
 

T2 ~rr(X 'Yu±(X)O [B'Ia] 

d2w2(t) 
+ Y w2 (t)=0 [B4b]

2
dt

The solution to [B4b] Is 

w,2 (t) = Cl sin At + C2 cos 72t [B5] 
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The solution to the remaining equation, [Bi , will yield the modes of
 

free vibration of the beam. Since the exact solution will be used in
 

the sequel this information will be obtained first.
 

Equation [B4a] is factored as 

(d2 2. [BE]2 

and the solution is the sum of the solutions to
 

[B7](-42-)w(x) = 0 


and
 

a+ tw±(x) =0 [B8] 

Thus 

wl(x) =C3cos -Lx+ C sin -Z-+ + C 5 coshZ +C6 sinh -1- [B9] 
\4- \fT-r\ ­

at this point the boundary conditions are brought in. For a simply 

(10)supported beam 

Wl(O) = 0 [BlOa] 

wl(b) = 0 [BlOb] 
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and there are no moments at either x = 0 or x = b
 

d~w1(x) =0[Blo] 

x=b 

These conditions require 

0 = + C5 [BlaC3 

b +C4 sin -Lb + 5cs Lb+C 'h- b[Bllbo c3cos _Y 
\17 F 

0D- b 2- + bcosh -Zb+ 6sh-Z [Bil
03 0os-b + C4sin - b +f05 


4+ CIFT biT +±I0c
-

that [.ii]
[Ba] and [Bllc it is determined 

From equations 

3= 05 =0 [B12] 

leaving
 

0 -C4 oin T-r+o 6 sinh -Z_ b [B13]V-I 

[B0 -044sin + 

A nontrivial result requires the determinant of the coefficients of 

C4 and 06 in equations [fl3J and [Bi] to be zero. Consequently, 
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2 " -2 sinh b_ 0 [BIS] 
\FrT 

or
 

= [Bl6] 

Substitution of [B16 into [Bl] indicates that 06 0 and 

\qw b 

The eigenfunction of the homogeneous simply supported beam is
 

w1(x) =aj4sin mx [B18] 

The solution to the problem is now considered through the method
 

of finite differences. A number of stations are located at equal
 

intervals, Z, along the beam as shown in the following sketch
 

0 x I x2 ..... Xn- 1 xn b 

and the equation
 

&fwN 7F 

is written at each point, where = col (Xl),... o)(). The fourth 

derivative approximation used can be obtained by first obtaining the 
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Taylor series expansions about xr 
of W(xr+l), w(xr+2), w(xrl),
 

These expressions are
W(xr_2). 


' 
w1x1 ) = w(x,) + w'(xr)2 + w"(x,) +2 () [2 

2
 1n
 

'
 + (-n (n) ( 

- W,'(xr) + Wt"(Xr)- - • 

w(xrl) = w(xr) ni 

" + w') (,,)

+ w(xr) , 2 + . . c - ,w(Xr+2) = + V'(xr)22 ,, .

w(X,) .(2Z,)
nI2! 

+B2,)n 
= w(xr) w'(XJr2; + w 

+ 
) 

w(xr2) ­

([B20a] +.]B20d] yieldssubtracting four times + IB20b]), from[B20cb 

- ) + 2 d4 w(x) 4 (24 - 4) 
+ w(x+2 ) 6w(xr


- 1{WXr+l + W(Xj ! 

ix--xr
 

2m--4)++ +2 d2(x) (12m (22m.. -( I 


x(2m)(
X~Xr 

+. [B21]
 

B2! becomes
After rearranging equation 3
 



i(Xr-2) - 4w(x,-) + 6W(Xr) - 4w(x,+l) + w(xr+2) d4F(x) I 
dx~x
 

X--Xr
 

+ 	2 d [x) I 2 (m-2) 2 2(m-1) 

dx m I(2m)! 

EB22] 

The term on the left will be denoted Lf. The finite difference method 

approximates the plant equation as 

LfdW(xr) - Wx 0 	 [23] 
T 

Collecting the expressions for each point and arranging them as
 

indicated by the definition of wN yields the matrix equation. 

W(Xl) w(x ) 

2
7fd[B] 

Lfdm - = T 
. 

w(xn	 w (Xn)
)
 

The solutions to this equation are the eigenvectors of the finite
 

difference - matrix representation of the plant, Lfdm . The matrix
 

is a real symmetric matrix and consequently?, has orthogonal,
 

eigenfunctions.
 

If the right-hand side of equation LB2J is used instead of.the 

left it is possible to obtain'an'nalytic expression for the numerically 
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obtained finite difference answers. That is, consider the equation
 

0 w(x) w(x) +. . + w(2m(x) ?(m-2) 2(m-l) +
 
dx2 (Pm) !
 dx 


[B2] 

The answer to this equation evaluated at x = xr is equal to the finite
 

difference answer.
 

Consider the function u i = C4 sin 2 x which, from [BiB] is seen 

to be the exact eigenfunction. Substituting this expression into [B25] 

yields, after cancelling ui 

o 2+- + _I~m 2m Z(6-) 2 2(m-l) + [B2. 
T2 2 (-l ) (2m):
 

Thus ui(x) is the solution to[B25,,and u (xl) = w(xi), when 

Y4 L_4 • + 12 7Y 2 (2Z)2m1)2(m-1) + .. m> 

T2 2 (2) \ -T) 12
 

Sd _+ M 


[B27] 

Z is the separation between adjacent stations on the beam and it can
 

be made as small as desired. Consequently, equation [B27] indicates
 

the resultant convergence of Ifd. to Y Mor6 significant for the 

purpose of this appendix is the fact that the . component of the 

jth eigenvector of the finite difference solution is equivalent to
 

the jth eigenfunction of the beam evaluated ata location' correspondin
 



to the 1th point in the finite difference representation of the beam.
 

Since the matrix UN of Eq. [34] is
 

ul(xl ) . . u(x ) 

UN [B28] 

ul(XN) • N(XN
 

each column corresponds to one of the orthogonal emgenvectors of Lfam 

and the matrix UN is itself orthogonal. 

To this point the proof has concerned the solution for a beam, 

while it is desired to show 

ui(x,)ujxk) =0 i [B29] 

k=l
 

for the plate. For the plate, Appendix'A shows that'
 

7 

I. fliiYk
 
ui(xk) =e sin m sit 0

[30
a b 

consequently, Eq. [B29] may be written 

N N 

[B-']

ux(xk)wJ±(ykm
Xu =k(xk)ujCzk) y 

k=l k=l
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Consider an array of locations
 

N = ZY [B32] 

with X locations in the x direction and Y in the y direction. Thus
 

[B31 becomes 

N X Y 

ux1(xk)uyi(Yk (xk j(xk) = TZ I (xi(XA)uyi±B)uxj(xA)uyt(YB) 
k=l 

A5 =l31B 4=[B33] 

X I, Y. 

or j xi(XA)utj(XA) 7 uyi(xB)u1j(xB)
 

A3=1 B4=1
 

Each component in the second expression for the right-hand side of [B33]
 

is equivalent to the beam, consequently, either the first or second
 

summation will be zero unless i = j. 

Equally spaced points will provide an orthogonal matrix for the
 

purpose of relating performance specification in the original and
 

transformed systems. 



APPENDIX C 

Evaluation of the EMS Figuring Error for a Simply 
Supported Flat Rectangular Plate
 

The purpose of this appendix is to describe in detail one of the 

procedures used in determining the results contained in Figure 18. As 

indicated in equations [42] and [67] the exact determination of JI would 

require the evaluation of an infinite number of terms. In using a 

finite number of terms P to approximate J1 and, therefore the rms error, 

it is desired to select such a P, if possible, which would place a bound 

on the amount by which the approximate value of Ji would differ from 

the true value. 

The value of P which should be used is a function of the individual 

terms in the sequences
 

a, a2 , ... [C 


and
 

2 M 2 &2] 

Since
 

°i -ais,
 

one procedure might be, for monotonically decreasing values'of"Ciss, 

to observe values of cis s in [as] for increasing i until values of 

Cis s are obtained which are significantly less than the accuracy desired. 
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The value of J1 may be determined for two values of P in this neighbor­

hood to determine whether or not J, has been obtained accurately enough.
 

While such a procedure would be adequate the specific nature of
 

the present problem permits the selection of P on a more rigorous
 

basis. For a square plate the expression contained in Appendix A for
 

the eigenvalues becomes
 

pa u
 

From Eqs. [2], [15], and [05], and [c4]
 

2
 
1ajb wlx yAt)ax dy 
 8± [as]-5

i=lE EY 

'Since m and n each take on the values of all the positive integers
 

the right-hand side of may be rewritten
 

a
2+ [2[ ] [a8] 
i~~l L-yc i=l j=l i I 

In order to remove one of the infinite summations, use is maaeof the
 

symmetry of the eigenvalues by writing [C6] as
 

[a{ 2 7i <<2 a84ja [c 
j=:IL[1 2 + j2]4 s 7'J2,= 1~[i2 + j2}4 
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where aij is considered a constant as has already been assumed (see
 

Eq. [66]). The terms i2 + j2 in the series
 

i=1 -j= i [2 ++ 2]4, [a8] 

are placed into correspondence with the positive integers in the order 

indicated by [08]. It is desired to indicate for the i and j 

corresponding to the kth value in [C8] that 

.2+ *2>k [ 9 

In the first n values of i there are
 

i=l
 

terms where T is
 

n(n +iT 2 

The j = I term is the minimum value of 12 + for any value of i. 

Since, for i = n 

n 2 + i2 > n 2 [C12] 

if
 

n 2 > n(n + i) [01-]2 



inequality[9] will be obtained. Siace,[C13] is valid for 

then [09] holds and the right side of [C7] may beL written 
8a~a2 

2 aaaij -
ZJ~ I 

s8 4 C15S;,] 2 < 2D2 a Ly L4 
i=l j=l [I2 + i= 

The advantage of the last series is that its sum has a bound. The
 

partial sum for the first 2t - 1 terms is 

1 1 1 1 [o6]
t 4 * 24 (2t 1)4 

which is less term by term than
 

( + + *+ * + .*4) . +Q'2 1 =9 
2t-I= T4 (Tk4 47T [17] 

which is
 

1 1/f 2 t­

Q'2t-l= 1 + 7 * * " 

thus
 

I - (2)t 23 (23) 

Qf 2 t-1 23 - 1 23 - 1 161911 273 
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The second of the two terms is always negative and goes to zero as
 

2t - I increases. Thus the sum of the primed series from the 2 - 1 

term to the end, Q, is less than the second term on the right side 

of 19 
or[11-]
 

Q < [C20] 
23-

Since the primed series is greater than by term than the k series,the
 

sum of the k series over the same terms must also be bound by the same 

amount.
 

t-l 

I < 21[21]
t 3w1
 
k=2t k 


The original series is smaller than the k series term by term, 

therefore, since
 

ab2 -1 a8a2 a8a2 

W2 (x,y,t)dx dy =+ 
0 ~i=l [S jr4] 2 [q + 2" i=2+ ]x2 jnaj 

[C22] 

then 

2-a 2, t-­

,a b a8a? 1 8 ai 
J E w2 (xyt)dx dy - I + + [

i=l n. a4]2 23- I 

[023]
 



9o
 

and 
21t-1
 

at a.ai
 
jab -1 a8a2 8 23

1 < a _ _ 

0 [s4]2[ + ni [Sv4]2 23- I
-zx~~ta 


[C24]
 

The inequality may be used either to place a bound on the error, 

for a fixed number of modes considered in the evaluation, or conversely, 

it may be used to select the number of modes which must be considered 

to keep the error below a certain level. It should be noted that the 

value of ai in [C24] is the result after control and must be chosen 

conservatively enough to reflect the induced error as well as that 

already present. Once the bound on the error has been selected t may 

be determined from [C24]. This equation was based on the use of 2t - 1 

terms in the series, consequently a square n x n array of modes cannot 

be used for which 

nn+ )> 2t - 1 
2 

Finally the tightness of the bound is dependent on how closely 

the k series approximates the true series for the terms after the 2t - I 

term. The bound may be tightened by observing actual deviations and 

adjusting the inequality [C24] by the appropriate amount. 



APPENDIX 1D 

Mirror Displacement Feedback
 

(6 8)


The actuators considered in this appendix are modeled as types
 

which are being considered for actual usage - . This model consists
 

of a pure displacement actuator acting against a spring and a backing 

plate which is stiff relative to the spring. To obtain a specified 

force the displacement actuator is commanded to' a new location relative
 

to the undeformed mirror.
 

If the mirror has deformed, the displacement of the mirror will alter 

the magnitude of the applied force. It is assumed, arbitrarily, that
 

one form of this displacement feedback might take is
 

p,(x,y,t) = ci(t)pi(xy) -Kwi(x,y,t) [D1] 

where pi(xyyt) is the force density applied by the ith actuator, and
 

where
 

wi(xyt) = w(xyt) [D2a] 

dyer the i
.th

pad 'area and 

wi(xyt) - 0 LD2b 

elsewhere, and 

mj(t) = K2(t) [3] 

dy
f Pi(X9y)1' 
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wi(xyt) may be expanded as
 

Co 

j=l
 

where
 

w,(x,y,t)u.j(x,y)dx dy [r3]
=11~t 
Since w,(x,y,t) is'zero except over the pad area of the ith pad [D5]
 

can be written
 

C!1 t w(i,y,tjuujCx,y)dx dy [D6] 

ith pad
 
area
 

Substituting the modal expansion of w(xyt) yields
 

Co 

C!(t) P P7 kt)kxYj(x~y)dx dy [D7] 

ith pad k=l
 
area
 

Interchanging the order of summation and integration yields
 

C! = f fuk(xY)uj(.x)ax dy%(t) 

k=l ith pad
 
area
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The total feedback force, fs(xy~t) is
 

fjx,y,t) 
N 

- K 7,w~,t [P9] 

i=l 

ubstituting [n-] into [P9] 

3 3
fs(xyjt) = K cj(t)u(xy) [rO] 

i=l j=1 

Interchanging the order of summation 

t N 

fs(xyt) K Uj c t 

j=- n1 

By comparison with equation [12b] fs(xy,t) can be expressed modally as 

f(xy) a!~ (t)uj(x,y) [D12]
3 

.,3(x~,jt =17j=l
 

where
 

N 

a! (t) K Z C!1 t [D13] 

Equations [FP3] and [D8] can be used to put the expression for al(t)
 

into a different form
 

K LL ck(t) f ady'/u(xYuj'~x [D14] 
i=l k=1 ith pad
 

area
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Interchanging the order of summation
 

N
aj(t) 

f J Uk(X~y)uj(xy)dx dY LD15JK 

k=l i=l 1th pad 
area
 

thus
 

- a'(t) + KZ c(t) [D11] 

where Z is an - x m matrix which has individual elements of 

N 

Zjt = X f f uj(x,y)u2 (x,y)ax [D17] 
i=l ith pad 

area 

and where the spring constants are all assumed equal. 

The matrix Z is located in a local feedback loop around the 

diagonal plant matrix since it describes amplitudes in the force modes 

as a function of the displacement mode amplitudes. Since, in general, 

the elements of Z are non-zero, this feedback causes the system to 

become coupled. In this particular application the coupling exists but 

can be made to have negligible amplitude. Since the displacement of 

the mirror is on the order of microinches the spring constant is adjusted 

so that the actuator throw required is onthe order of inches. 

Alternatively, a form of spring feedback may occur which can be 

treated without introducing coupling. Suppose that the expression for 

Pi(xy~t) is 
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p1(xyt)= K(Zd i - Imi)Pi(N)Y) [rD8] 

jfPx y)x dy 

which would be obtained by decreasing the pad area until the mirror
 

displacement over the pad area is constant. This, depending on the
 

manner in which the pad is bonded to the mirror, appears to be a
 

reasonable assumption. Expanding [JYL8] yields
 

pi(x y~tt) = K~diOi(x~y'l K7.mii(iC,Y) [n:9]­

dy
Kff i di(xy fJ i(x y) 

This equation can be analyzed by a procedure similar to the preceding
 

paragraph, or equivalent results may be determined from an inspection
 

of the appropriate block diagram. Proceeding as previously,the second
 

term in [D9] is 

=i - K ipi(x,y)dx dy [D20] 

2
where m is the constant value of w(xy,t) over the pad area. It is
 

desired to express fs(x,yt) in a modal expansion 

fsi(X;y,t) 7aij(t)uj(x,y) [D21] 
,j=l
 

where
 

a!(t) = - ( i'(x,y)dx dy)ff w(xyt)13(x,Y)u ('x,y)ax dy
Ii (t = - / r[rI2I] 
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Since wi(xy~t) is constant over the pad area and pi(x,y) ifs zero
 

elsewhere [D22] becomes
 

a ~Ktt) 	 ( )u2(x]y)d dy [Dtf
= 	 23] 

ft ith pad
Ji(x,y)dx dy area 

The integral has been 	previously evaluated as hji (Eq. [18b]), therefore 

a M)- KZmi(t) [D2] 

ffP (x,y)dx dy 

and if the integral of Ji(x~y) is equal to that of fj(x,y) then ­

%(t) = -K HN(t) [D25] 

fP(xy)dx dy 

where
 

w(xpyj t)
 

ZN(t) = -	 wN(t) [D26] 

w(xj,YN,t). 

In this case the general result indicates that there is coupling in the
 

system. If the system is assumed to have only finite eigenfunction
 

content then
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NIN
ci(t)u1 (x,y) [r2y]
 

i=l 

If [D27] is placed in matrix form 

WN =A c(t) 

where 

U1(xlyl) ...uN(xl,7!T 

[D28] 

UN 

ul(xNYf) . . N(, n 

The spring feedback loop as described by [D18] and 

Figure D-i 

[r25] is shown 

[D29] 

in 

zd(t)OiS.f ydxd _ 

a(t) 

- Feedback to 
Controller 

Figure D-1 

The spring feedback loop. 
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As indicated previously, under appropriate,c6nditiods, the matrix can
 

be written as the product of a diagonal matrix and a nondiagonal matrix
 

3 4 as in . In this case tie spring -feedback loop becomes that shown in 

Figure D-2 

iNW 

Figure D-2 

The spring feedback loop for = 

Both GN and K are diagonal elements. Consequently, 

dy
fJP(Xjy)dx 

when I = I the system is decoupled (see Fig. D-3) and the effects 

of the spring feedback can be readily included in the system design. 

+K 

i
d f i0(x,y)dx ay 

Feedback to
 

Controller
 

Figure D-3 

The decoupled spring feedback loop.
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In summary, under a specific set of assumptions, the effects of
 

the mirror displacement feedback can be treated without introducing
 

coupling effects into the system. In general, coupling effects are
 

present, however, the mirror displacement feedback is rendered negligible
 

through an appropriate choice of spring constant.
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