DISCRETE CONTROL OF LTNEAR DISTRIBUTED SYSTEMS WITH APPLICATTION
TO THE DEFOEMABLE PRIMARY MIRROR OF A LARGE
ORBITING TELESCOFE
BY

JEREMIAH F. CREEDON

o Ak az,
8 {ACCESSION NUNBER) ¥ =" ~ 77 THRD)
g /1 /
‘; {PAGES) (CODE)
= - =~ ’
= — -~ G - / :{Jf
§_ {NASA CF OR TMX OR AD NUMBER) {(CATEGORY)

A THESIS SUBMITTED IN PARTTAT, FULFILIMENT OF THE
REQUIREMENT'S FPOR THE DEGREE OF
DOCTOR OF FHLLOSOPHY
IN

ELECTRICAT, ENGINEERTING

o UNIVERSITY OF RHODE ISLAND

1970

Fepradused by the
CLEARINGHOUSE
for Fedaral Sciznhfic & Techaice
Infermzkon Sgrngficld Va 22151



DISCRETE CONTROL OF LINEAR DISTRIBUTED SYSTEMS WITH APPLICATION
TO THE DEFORMABLE TRIMARY MIRROR OF A LARGE

ORBITING TELESCOPE
ABSTRACT

One of the more significant techinological problems associated with
1
the orbital operation of large astronomical telescopes is the fabrication
and maintenance of the primary mirror surface to the tolerance required

L

for diffraction-limited performaﬁce. An Qntéresting approach to the
solution of thi:s prcblem involves contiﬁuausly measuring and automa-
tically correcting the optical surfgpe df a thin deformégle mirrcr by
means of discrete actuators located on it§ rear-suffacei The real-
ization of diffraction-limited performance from a telescope in'space

3 * '
by this method rests on the ability of the designer to achieve extremely
accurate control of & highly complex, interacting, multivarisble system.
This paper presents the results of a deballed study of the discrete
contbrol of linear distributed systems with specific application to
the design of a practiecal controller for a plant representative of a
telescope primary mirror for an orbiting astronomical observatory.

The problem of controlling the distributed plant is treated by
employing modal technigues to represent variations in the optical
figure. Distortion of the mirror surface, which arises primarily from
thermal gradients, is countered bj actuators working against a backing

structure to apply a corrective force distribution to the controlled

surface. Each displacement actuator is in series with a spring attached

ii



to the mirror by means of a pad intentionally introduced to restrict
the exeitation of high-order modes. Control is then exerted over

a Pinite number (equal to the number of actuators) of the most
significant modes. ' .

Through tile application of the modal expansion Lechnique the mirror
equation of motion is transformed t‘ol a set of uncoupled, linear, ‘;:.:T.me—
invariant, ordinary differential eguatiéns. The desired dynamic
response and static accuracy may, then be %chieved by the'application of
classical single-varigble des‘ign technigques. The formulation of a !

gquadratic performence index vhich incorporates a measure of image quality

permits determination of the trade-off between the number of actuators

: [

and optical purity. A criterion for defining actuatorlplacemént and
ped size is presented which minimizes the tendency of the controller to

excite the unmonitored modes.
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I. INTRODUCTION

The class of distributed plants considered in this paper is
restricted to those described by linear, time-invarianrt, separeble
operators where control is derived from a finite number of discrete
inputs. Application of the modal expansion approachcl) converts the
distributed-parameter problem to one of a multivariable nature which
readily yields to decoupling techniques.cg) Classical single-varisble
control methods are applied to decoupled system dynamics defined in
terms of the eigenvalues of the linear operator whose eigenfunctions
are assumed to form a complete orthonormal set. While the results
are applicable to the general problem of controliing linear distributed
gsystems, the mobtivation for the study is a direct result of its
relevance to one of the central problems of large orbitiig teléscope
technology.

Elimination of the effects of the earth's atmosphere give orbiting
telescopes significant advantages relative to earth-based telescopes.
Figure 1 displays percent transwission of the incident radiation
through the earth's atmosphere as a Pfunction of wavelength.(3) In
the portion of the spectrum shown, the earthfs atmosphere is opaque
to radiation shorter then 3 x 107 cm and longer than 3 X 10~7 em, with

A

numerous gaps between these extremes. Since the entire spectrum of
5 ¥

radiated energy becomes avallable for study in an atmosphere-free

¢

environment the additional spectral coverage would permit studies

(%)

[

involving galactic nebulae and cool stars (stellar evolution).
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Figure l.- Transmission of incident radiation through the earth's atmosphere.
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Secondly, refraction anomalies associated with the turbulence of the

earth's atmosphere limit the resolving power of earth-based telescopes;
consequently, the 200-inch (508 cm) Hale telescope at Mt. Palomar has
no better resolution than a high quality telescope of approximately

15 inches (38 cm) diameter.(5) Placing a 120-inch (3 meter) telescope
in orbit would yield an increase in resclution of at least a factor of
T relative to land-based telescopes and 3 relative to present space
telescopes. This significant improvement is useful in studying double
stars and in planetary photography.(h) Figure 2 shows two views of

the same portion of the lunar surface. The photograph on the right

was taken by the 120-inch (3 meter) reflector at the Lick Observatory
and represents about the best resolution available from an earth-based
telescope. On the left is a Lunar Orbiter photograph of the same area
which has been selected to show the resolution available from the same
size telescope outside of the atmosphere. Further, elimination of the
background glow associated with the atmosphere would permit longer
exposure times in celestial photography, effectively enabling astronomers
to see deeper into space. Realization of these advantages is contingent
upon solving-several technological problems.

One of the more significant of these problems and the one which
motivated the present investigation is the fabrication and maintenance
of the primary mirror surface to the tolerance reguired for diffraction-
limited performance. For the purpose of this paper, diffraction-limited

performance is defined as being obtained when the rms- figure error

over the mirror surface is less than a fiftieth of a wavelength, which



Figure 2.- Two views of the lunar surface indicating the increased
resolution availsble from an orbiting telescope.



o 8 Ll
at 6328 A is 1/2-p inch (1.27 x 107° cm). It is extremely difficult

to achieve this accuracy with the monolithic mirror normally used in
telescope applications as uncorrected thermal gradients, fabrication in
a cne "g" and operation in a zero "g" environment, and material reaction
to stresses introduced during figuring all tend to cause distortion of
the mirror surface.

An interesting approach which has been investigated as a means of
solving the problem involves measuring the deviation of the mirror
figure from the desired shape, generating the necessary control signals,
and applying these signals to physically align the mirror to the desired
shape. This concept, which is shown schematically in Fig. 3, has been
investigated with both a segmented and a thin deformable mirror. The
segmented mirror consists of a number of individual pieces or segments.
This approach was selected because many of the effects causing surface
deformations are reduced on mirrors of small size. In g Cassegrain
telescope the incoming light is reflected by the primary and secondary
mirror to focus behind the primary. In this case, the primary is also
illuminated by monochromatic light which is returmed to the mirror
figure error sensor. The error signal is then processed and applied
to the actuators which correct each segment in tilt and focus.

This concept has been successfully applied to a small segmented
mirror.(6’ T). However, the construction of large segmented primary
mirrors from individually fabricated off-axis portions of a paraboloid

(matched in focal length) would require new techniques of fabricating



Primary mirror

Actuators

— __ Incoming Jigh

Secondary mirror
4 Mirror figure-

error sensor

~

Figure sensor

e A
Control
electronics Q

Figure 5.~ Schematic representation of a system for controlling the
optical surface of a telescope primary mirror.




diffraction-limited aspherics. In addition, the segmented mirror

consists of a number of monolithic mirrors each subject to the same
limitations as a monolithic mirror. While these limitations are
reduced in the relatively small segments, they are still of sufficient
magnitude to require that the segments be fabricated from a substance
which exhibits a very high degree of material stability. This is
because the segments are corrected in tilt and focus only and any
warping of a segment cannot be completely corrected.

An alternate apprcach involves a thin, continuous -surface,
deformable mirror that can be stressed into the desired shape by means
of a large number of actuators arrayed across its rear surface. The
greater control flexibility inherent in this approach shows promise
of relaxing the material stability and fabrication tolerance require-
ments. A laboratory model of a thin mirror is shown in Fig. 4 alongside
a conventional monolithic mirror. The thin mirror is 30 inches (76.2 cm)
in diameter and 0.5 inches (1.27 cm) thick. Actuators were located
every 3-3/4 inches (9.46 cm) over the rear surface of the mirror and
were used to apply a corrective force distribution.(S) Preliminary
operation of the system indicates that the actuators were able to
reduce the initial figuring error to acceptable_levels. This is
illustrated in Fig. 5 which displays photographs of the diffraction
pattern of the mirror before and during control.

While this application appears to demonstrate the ability of the
thin mirror approach to enhance the telescoée performance, a number of

areas exist in which an improved design technique would be of significant
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| Monolithic mirror with a thickness-to-diameter (N
ratio in the normal range

Figure 4.- Comparison of a thin deformable mirror with a mirror of
normal thickness-to-diameter ratio.




d Diffraction pattern of Diffraction pattern of
; uncontrolled mirror mirror during control

Figure 5.~ Comparison of the diffraction pattern of the uncontrolled
mirror with that of the mirror during control.
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value. In present design efforis the dynamice of the plant have been
largely ignored. This is a significant factor in the control of larger
mirrors which have very lightly damped low frequency resonances. i
Selection and placement of the actuators is presently done on an
arbitrary basis as a result of the present 1imited,afility to relate
the effects of these design declsicns to system performance. Tn: .
addition, the &bility to more completely iﬁcorpo%ate,informatioq on
the di:sturbance characteristics, Lo the extént that it!becomesr

1

available, is desir&?le. ‘
The purpose of this paper is to present a géneral theory for the
discrete control of a distributed-parameter system and extend the modéf
expansion technique to completely specify system performance.
In the past little research effort has been devoted to the problem of
obtaining discrete control of distributed-parameter systems and the
results which have been obtained by Gould and MurryuLasso(l) are limited
to plants which have finite modal content. In this thesis the entire
modal structure of the plant is considered for the problem of obtaining
a specafied level of performance while minimizing the number of control
inputs to the plant. The method is demonstrated with examples and
r?sults are presented for a plant represenbative of a thin deformable

mirror.



II. MODAT, EXPANSION TECHNIQUE

»

A schematic vepresentation of the plant vnder consideration;fs
shown in Fig, 6 where I is a linear, time-invar;ant, sepérabie opé;ator.
A typical example of a distributed system is the thin reétangular plate-
of Fig. T, where the deflection normal to the midplane of the plate

w(x,¥,t) results from the application of a itransverse load density

p(x,¥,t). The equation of motion of the plate is given by(g)
52
VP8 Pulx,,t) + 0 — wlx,y,t) = 2(x,5,5) 1]
a_t2

vhere V° is the Ieplacian in Cartesian coordinates, p the mass per unit
area, and S= YnJ/12(1 - v2) is the Flexural stiffness modulus of the

plate. The deflection, w(x,y,t), is assumed separable, i.e.,

w(x,7,%) = oy (8)u; (%) - (2]

Substituting [é] into the homogeneous form of [i] yields, for a

homogeneous. plate of uniform thickness,

2
a Ci(t) o .
.._...._...._._....+c1).c.('b) =0 38.
dt2 R [ ]
and
3 ; 2
- thi(X:Y) - au, (x,5) =0 B

11
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Plant

p(x,y,t) ——— 3 wix,y,1)

Figure 6.- Operator representation of the plant.

/< b 7
>y
Y = Young's modulus
v = Poisson’s ratio
/ h

/ wix,y,t)
a
Figure 7.~ Flat rechbangular plate.

/ 1‘ plx,y,1)




where cn§ is a constant whose value is spec;ified by the boundary

\

conditions. PFor the simply supported plate, wh:'.'c_h has boundary

conditions(lo) R ‘

u;(0,¥) = u;(a,¥) = u{x;0) = u;(x,b) =0,

=
<
o
1]
(=]
»

and

3 3°

v S w2 = 0,

axg ER aygl

(11)

there exists a denumersbly infinite sequence

o35 6

wherem, n =1, 2, ... are the mode indices corresponding to the

eigenfunctions
= vy (x,y) = X (sinm L x)(sin n 2 y)
+ ab a b

which form a complete orthonormal set (Appendix A). Consequently,

the general solution to Eq. [l:] is

15

(a)

(]

(2]

E

(5]



1k

WCeyt) =) o (Ehug(my) = ) ep(BeiGey); + (63
1= =) |

¥
L
%

and since the u; form a complete set the loading mey 'pe_ expanded in a

uniformly convergent series of the form

[e2]

p(x,7,%) =Zai(t)uj_(x)Y) = amn(-t)umn(x’y-) Ega

i=l m,n=

where

ay(8) = [ fP B2, 5 ), (3, 5)ax dy [6q)

and I’ is the spatial region in which the plant is defined.
Subsgtituting [68;:]‘, [6b] ,» and [:51)] into El] and taking the Laplace

. i:ransform with respect ©to time yields
0
2 2 _1 )
) (P ey (o () = L) ay(dagloe®) (7]
i=1 ] i=1

where s is the Iaplacian operator and, for convenience, the same symbol
is used to denote a varigble and its Laplace transform. Since the

ul(x,y) are independent the coefficients may be equated yielding

ci(8) = n(s)a;(s) EBa—_]

Ai(e) = e (]

82 + of
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Based on Egs- E6a-c:| and EBa-b] , the plant shown in Fig. 6 may be

redrawn as shovn in Fig. © which is a modal expansion of the distributed

plant.
- 8 s MR
Modal decomposition () *(S) ¢1(s) e 5
of p(x,y,5) = M Recomposition .
p(x,y,s) a (S) c (S} ‘ ~ wWiX,¥,5
—_— 3-1(5) = 2. > AZES) - 2= > fo,Y,S) (x.3.5)
Sp(x,y,s)u.l(x,y)dxdy a.n(s) N (S) Cn(S) ol = Ci(S)ui(X,}l’)
r . n . E, ¢1=1 *,
Analyzer P ' Synthesizer
Figure 8.- Modal re‘px_‘eéen’pa’cj.on‘ of: the pl:an't' .,
L] ) ‘ . ‘ s
More generally, Fig. 6 represerts the functional fequa;tion' !
rl } . N
w(z,t) = Lp(z,%) L AR [:9:'

where 7 represents a general spatial variable (in one or more
dimensions) and the operator I operates on functions of time and

distance. Iaplace transforming Eq. [9] with respect to time yields
w(z,s8) = Lp(z,s) [:l(ﬂ
where the eigenvalues of L satisfy
Lug{z) = A;(s)uy(z). El]j

Since the ui(z) are assumed to form a complete seb, the separable

functions w(z,s) and p(z,s) can be expanded as
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o«

w(z,s) =Z e; (s)u;(z) @_293

i=1
and

oo

p(z,s) =Z ai(s)ui(z). [12‘0]
i=1

Substituting [ll:[, [lEa] , and [lEb] into [10] yields

Z c;(s)u;(z) = L Z a (s)u;(z) =Z a; (8)2; (s)u; (2) [1353
i=L i=1 i=1

¥

and consequently,

e;(s) = A;(s)ay(s) [130)

with ai(s) defined by the transform of Eq. [6(3]. Figure 8 is then
thfa general model representation of the .class of dis‘tri:b'uted plants
under investigation. TIn a function space Wher‘e the eigenfuxictions of
L are used as the coordinates‘ ithe ‘system is refresente,d by the _infinite
Gziagonal matrix . ' L )
N LS

Als) =[?x;-[_(s):]. . y

i ~
In this reference frame, control of the plant output can be readily

4 ! l T ’ " .
achieved by individually compensating each element of the diagonal

matrix, as shown in Fig. 9.
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r,(s) e.(s) a.(s) c.(s)
: — sl dy(s) |——f 2y | ——

Figure 9.- Decoupled compensation of A;(s).

The significance of the modal controlkindicated in Fig. 9 is that

.

it is relatively easy toc express the system least squares performence

4

in terms of the orthonormal %odes of a vibrating structure. This is a

v

vhenomenon of particular interest in the mirror application since the

* -

. K
integral square error is the desired performance index of an optical

surface.(lE) With the error in the optical surface wg represented by
: ; L

.t : .
the modal coefficients e; the-image index {expected integral square

error) is given by . . v :
. ‘ .
1

2] ¥

-k ) | l
Iy =E[ﬁ Wg(z,‘:b)azz_] = E fr Z ei(t)ui(z)' 'edz

i=1
[»] 0 ' - ) ‘ ’

_ 2 _ 2

=E Z e2(t) -z %, (35]
i=1 i=1

where E denotes the expectation and cg. is the variance of the error

i
in the i°B mode which is assumed to have a zero mean. The last steps
result since ui(z) is a member of an orthonormsl set. Thus, the measure

of image qualaty, JI, ig a simple function of the variance of the mode
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error which can be reduced by appropriate control one mode at a time

ags indicated in Fig. 9. Belatiné the original signals in the system
to those of the decoupled reference frame, the control system structure
becomes that shown in Fig. 10 vhere e and a are column mabrices whose

elements are the modal coefficients e.

; and 85 » respectively. In

practice the esituation illustrated in Fig. 10 can only be approximated.
The function of the analyzer is to determine the modal content of the
optical surface error. The decoupled controller dynsmics, represented
by the matrix D(s) = diag [di(s)], is detezﬁiﬂéd on the basis of
standard design techniques (sse Fig.,9 )_to achiere a satisfactory
performance level. For a well-ground mirror the need for corrective
action diminishes as the mode"number,li, increases and controi can be
reascnably be restricted to the sigeificanf modes .’ fhe N con#rolled

) ‘ N N

modes are denoted by the output and error N vectors ¢ and e” in Fig. 1ll.

The Pinite (N X N) controller matrix, is represented by DN The

L 3 &

function of the load syntheszzer is to place an- approprlate force

¥ * £
distribution on the plate to corregt Por the modal errors in V. since

L) L} ] F * - ‘ L) '
the remaining modes are unmonitored (no corrective action taken), the

ideal force distribution applied by the loading mechanism is

N

Pigea1l®s%) =z a; () u;(z) [16]

i=1

with none of the uncontrolled modes excited. Physically this correchtive

loading is applied by finite number of control manipulators which, in



w.(2,8) we(z,s)h

e(s)

D(s)

“a(s)

—)

i

3 a(s)y ()
=1

p(z,8)

w(z,s)

Diagonal

controller

Synthesizer

(Loading Mechanism)

Plant

' TFMigure 10.~ Controller

-

representation in the original reference frame.

6T
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the mirror problem, are comprised of displacement actuatora;: in series
with a spring acting against a backing structu;e. The spring is attached
to the mirror by means of a pad intentionally introduced to restrict

the excitation of uncontrolled modes (a point discussed in detail later

in the paper). The actual (non-ideal) force density applied by these

N actuators is given by

N i)
B(z,6) =) Bylmb) =) ay(t)ey(2) (7]

J=L J=L

where pj represents the force distribution resulting from the ,j‘l"h
actuator, and the last step results under the assumpbion -that each
applied force distribution is separable in time and distance. Expanding

each of the Bj(z) in terms of the elgenfunctions, uy(z), Eq. [;f]'becomes

w ] W
p(2,%5) =z Z hija’j(t)' u, (2) [18&9‘
i=1|j=l
where ]
b, 5 =J; Bj(z)ui(z)dz [18b:|

and comparison with [6b] reveals

N
as () ?2 b3 s65(t) - [292]

J=1
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In matrix form this relation between the mode force- coefficients and
the actuator signals becgmes

a = Hol [159]

r

where H is an o x N matrix and of is an N vector. Equation [?9?]

indicates the control elements excite all modes. Since only N of the

more significant modes are controlled, ﬁﬁ. [i9§] is partitioned ss

N =l
|-l ol

where HN is an N X N matrix, HB an « x N matrix, aN an N vector
corresponding to the controlled modes, and aR accountts for the remaining
modal force coefficients. To provide the desired corrective vector

aN'the actuator inputs are given by ‘ I

ol = [E}L &F E3

where it is assumed that the actuator locations insére HN is non-
gingular - this point is discussed in detalil in a subsequent section.
Partitioning the mabtrix representing the plant dynemics into components
corresponding to the controlled and uncontrolled modes, the overall
system becomes that showm in Fig. 11 where disturbances qm and q3 acting
on the plant are included as egquivalent displacements. When ﬁhe mode
number, i, is ordered with increasing frequency of vibration, w; = Wy,

the plant inherently performs modal filtering which attenuates the
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higher modes so that their contribution to the error (mirror distortion)

rapidly becomes negligible as the mode number increases.

>

Consequently,

it is often assumed that only the first N modes are presen@; i.2.,

R R

¢ and a are ldentically zero, and considerable éimplifica@ion results.

For example, let W be an N vector defined by the output at’' N different

points. That is,

N

W

where Zj represents a measurement point.

digplacement coefficients

where

-~

u]_(zl)
u, (2,)

LP‘].( Zy)

col w(zj,t)

Wl = gl
us(z) - o . ouglzy)
uz(ze) .. uN(Z2)

. -
. .

up(zg) -+« ()]

(22]

In terms of the mode

=3

Under these conditions the mode analyzer becomes simply an operation

on the N measurements; specifically

N
¢

]

(24]

where the sensorg are located at positions to insure U'N is nonsingular.

The control structure of Fig. 1l then reduces to the N X N multivariable
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System(g) shown in Fig.12. This idealized reprgsentation, valid when

the effects of the higher modes can be safgl& néglec%e?, was derived

by Gould and Murray-ILasso and ig treated in detail in refér?nce 1. N

Control of the low-order high-amplitude modes as indicated in Fig. 12,
FI =

or in the decoupled form of Fig. 'O, presents the classic problem(l5)

of controlling a resonant plant-with a_ limited conbrol effort (restricted

actuator throw). While for large primafy mirrors with low resonant

¢ . : . !

frequencies this may be a suﬁgtaptiélrprdb}em,'in the present paper

it is assumed that the disturbances g(+) afq slowly ﬁaryiné:and of
sufficiently small amplitude that ény desired degree of cpﬁtrolican

be realized. Negligible conbribution frqﬁ'the ﬁncontrolléﬂamodes can
generally be assured by permitting N to be arbitrarily large. However,
in the present problem extremely accurate control of the opbieal surface
of the thin deformable mirror for diffraction-limited performsnce is
required with a minimum nonber of actuators. Under these conditions
the effects of ef and aR are not negligible, but, in fact, represent

the most significant system errors and the most imporiant factors in

evaluating design tradeoffs.
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Figure 12.- Idealized W X N multivarisble system resulting from
a finite modal expansion of the distributed system.
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ITT. ACTUATOR PAD STIZE AND LOCATION AS DESIGN FACTORS

The uncontrolled modes enter the problem in two major ways. First,
the actuators excite not only the controlled meodes but, in general,
all modes. To demonstrate, first separate the image quality index

into two parts, i.e.,

Ip = Iy * Jg (254]

where

Tw=) o, [250)

Re) & 9

accounts for the remnant error of uncontrolled modes. As larger

actuator digplacements are commanded in order to reduce JN-to smaller

and smaller values Jy increases due to the effect oﬁfaR. Secondly,

unless direct measurements of the modes are made, a limiﬁétion on the

ability of the displacement sensors to obtain an uncorrupted estimste
R

of the N controlled modes results from the presence of e . '

Actuator Pad Size .

The function of the actuators, as indicated in the previous
section, is to apply forces to reduce eV vhile minimizing the

excitation of the uncontrolled modes, i.e., ideally

26
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N
H = [Z—]-i--— , H¥ nonsingular. [26]
0

In the mirror problem the conbrol manipulators are modeled by a
displacement actuator working against a backing plate and a relatively
soft spring which is attached to the mirror by means of a pad. The
ability to approach the situation on Eq. [26] is governed by pad size
and location, which are factors under the influence of the designer.
To illustrate the effect of pad size, consider the rectangular plate
of ¥ig. 7. The pads are assumed %0 be rectangular in shape and

located as shown in Fig. 13.

7]
0 > Y
w.
X] |+ (Ax)j .
9(Ay)j4-

Figure 13.- Pad shape, size, and locabtion.
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The smount of force applied by the ,jth actuator is determined by the
product of the spring constant XK and displacement actuator position.

This force loads the plate as :‘Lné.icated by Eq. [l?] with

K£;(x,¥)
By(%,7) = - (27]

S #sene e

vhere fj(x,y) is the distribution of the force and cx.j('h) is the control

input. Considering a force distribution that is constant over the area

of the pad, Egq. [le] yields

hij.—___IE—-_f fisin——sinn—jf-y-dxdy
(Ax)j(Ay)j - ab a b
J

i pad
area

sin m——&]—ﬂ(m) ) sin __“_‘lmt(A;y') ]

I Ik nxy. 2a b
= — gin J gin J . [:28]
ab a b | mx nx
—{&x) 3 —(&v) 3
L 2a 2b _

where i indexes the mode m,n. For this special case with constant pad

size (i.e., (&x); = (Ax)j =4, and (&y); = (Av)J =4&), Eq. [28:' may

bhe rewritten in matrix form as

" = cut Ezgaz] .
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where U is the N x « mabrix,

-

Lu.l(zl) ue(ﬁl),:-. . ui(zl? .. ]

L E)

« b
ill(ZN) ug(zm) R ui'(zN) e

the prime denotes the transpose of a matrix, z; denotes the . point xi,

]

Yis
G = dlag g, (A,,0,) » [29¢]
and
r'_ i, - nad )
sin sin
2a 2{e] ) [ j
g = &m =K . 30
m:r&a nrrAb
2a 2b
. ’ -

Figure 1Lt contains a plot of (sin £)/t. Assuming the controlled modes

are m = o and n S L F and pad dimensions are A < E;x and
Fi. < —-‘E——, the maximum value of the argument for cne of the controlled

~ Dmax
modes is £ = :m/2 which occurs when adjacent pads touch. The attenuation
of the higher order modes by the pad is apparent from this diagram as

the elements of G decrease rapidly for 1 > N and, in turn, decrease

the ocwntput levels of HR approaching the idealized condition of Eq. E26].
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sn@ 1O
3 8
6 —— Minimym ‘{‘r‘cmsmission level
| for a conirolled mode
i
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i
I
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|
r 2:;,/"‘*\\3?r
0 } ) 1 \ 1T
/2 \\\\“4,/// A T ¢
-2 -

Figure 14.- Plot of sin (£)/t 1llustrating the filtering action of pad.

The prefilter action of the pad is complemented by the bransmission
properties of the plate itself. For the rectangular plate of Fig. 6

the relation between the applied loading and displacement output for

the ith mode 1is

a.(s)/p
ey(s) = 5= 5 (1]

55 + €8s + o

where a small amount of dawmping has been included. In response to a

step input the steady transmission is

f o er s (2]
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where ag is given by Eq. Eﬁé]. Assuming a 0.5 inch (1.27 cm) thick,
30-inch {76.2 em) square plate with a Young's modulus of 107 pounds
per square inch {70.3 x 10 gm/cm?) and a Poisson's ratio of 0.2,

this factor is

lim ©1  T7.73 x 10~2
== 2= . 33
Tt o g, (m? + n2)2 [’ j

L

A byproduct of the pad!s desired effect on HB is a decrease in the
transmission properties of HN. As a conseduence, an increased effort
is required to deflect the surface. This is readily demonstrated for

the simply supported rectangular plate where

7 = ¢ | [3%]

and with appropriate actuator placement UI\T is orthonormal—{see
Appendix B). C(Consider the expected value of the norm of the actuator

displacement vector given by

El

N o, .2
N' W NI N -1 N 1
o o ——-[a jEG }lEG] & =Z(——-—) . [55]
N\ &
i=1
n / .
Thus, as the elements of G are decreaged, the reguired control
displacement and force increases. Since the plate itself was shown
to perform substantial filtering, a,comprdhise on the final ped shape

and size is normally employeds
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Actuateor Location

Ancther critieal factor on the HN and H% matrices 1s the placement

of the actuators. The actuator locations must be selected to prevent
the occurrence of a singular HN matrix. Since the actuator locations
most directly affect The UN matrix, knowledge of the mode shapes will
generally permit the selection of the location of the actuators. This
situation is detailed in the examples. Evaluation of the determinant
may be used to verify the invertibility of HN. In addition, if a row
of HR is zero, the mode corresponding to that row cannot be excited.
This is approximately achieved for most plants by locating pads at the
zeros (nodes) of the mode in question. For the rectangular plate, this
is exactly achieved since the influence of pad location of H is
delineated by U‘,'see Eq. [éé]. When the modes are ranked in order of
importance, the desired goal is to control the first N and null the
next highest modes; however, this is not usually possible and trade-
offs are required. For example, it may be possible to conbrol a set
of modes that are not the N most significant but be able to preclude
excitation of the next highest modes or, alternatively, control the N
most significant modes but not have the ability to preclude excitation
of the most dominant uncontrolled modes. Since the controlled modes may
be reduced to any desired level at the cost of some increase in the
amplitudes of the unmonitored modes, the rcontribubion of these higher
modes to system error represents the most criticif factor in system

design. Determination of the trade-offs in actuator size and placement



is obtained through evaluation of the systeﬁ performance.ipdex, JI’

which is discussed below and illustrated later in two examples.
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IV. STATIC PERFORMANCE

X The design;dbjective is to minimize the image index defined as the

expectatioh of the integral square surface error. As shown in Eq. [15]
this is a functién of the mean square values of the modal error
«coeffitcients, Détermination of Ji as given by Eqs.[:25a-é] is depeident
on the nature, particularly the spectral content, of the disturbances.
For the application to the control of a deformable primary mirror of

an orbiting teléscope, it is anbicipated that the primary error sources
will be initial figuring errors and relatively slowly bime-varying
thermal gradients. In this context it is reasonable to expect that tle
system will generally be performing at or near its static values.

In Fig. 11 the surface deformation due %o the disturbances is
defined in terms of its displacement modal expansion ccefficients, (.
Wo loss in generality results from considering the distu;g;;ces %o be
displacements since egquivalent force distributions could be assumed.

With reference to Fig. 11, and with a&(z,s) Zero, the error in the

control modes is given by

Mo EI + ANDN]-:L . [356]

Foxr the statice situstion this reduces to

o) = ;lKi G 0<i =W (37]

3h
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vhere K; is the loop gain (type O system) for the 10 mode.  When the
loop transmission contains a pure integration (type 1 system), Ky = .
Thus the error in the controlled modes can theoretically be reduced %o

any arbitrarily small value. The expected value for Jy then becomes

2

N =i (1 +1Ki) %, (58]

i=1

where Ogs is the rms value of the static (or slowly varying) disturbance.’

The error in the uncontrolled modes is given by

-

il

- &+ ARHR[E{N]_ Mz + ANDN:]—qu (39)

]
which under static conditions becomes

N

lIC. .

. = - Qe ce — 9 . < 3

il_ ql+z quJl—l-qu'J N+135i DlOa]
Ty T a=t

w‘here inj is an element of the matrix

= ARER EANEN]-]-- (o0 )

’ Assf‘uming«.the modal ccoefficients of the disturbance are uncorrelated, i.e.,

Bayy) = { , _ ()
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the expected exror in the unconbtrolled modes becomes

- 2 1 -
we ) At L) “’si(Iﬁg) AR RL LS
i=N+1 j:N"I"l i=1

where JRO is the value of the disturbance error in the higher modes
without control.' The second term Jg, is clearly positive and represents
the increase in Jg thataresults from the actuator displacements
required to comtrol the errors in the first N modes. Since JR, is

finite, the series converges and the order of summation may be reversed,

yielding
N X pa)
_ 2 i 2
i=1
where

9; = z ‘l%i (0]

is & constvant dependent on the design factors of actuabtor pad size and
location as well as the natural modal filtering performed by the plant.

'Coﬁbiging Eqs. [?5a—c] R [53] , and [ﬁﬁ] yields as the imaging index

.
&

N G 0Ky \2
2 M) 2
Jr-= Jg .+ ;; dg, * 0g. | » bl
1" “Ro : (1 n Ki) 93 (1 + Ki) % ]

i=1
[
*

The first term is unaffected by the control action, the second decreases

:as‘a result of the control action and the third increases.
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_Sin'ce J‘RO is consgtant, minimization of Eq. [:ll-la with respect to

.Ki yields optimum performance when

oA

i
K== (5]
P5
and
N N o
1 o D5 2
J = Z on + Jp = z g, + J t 46
Topt; (1 " Kl) 94 "o 192 4 o (ve]
i=1 i<l i

with the controlled and uncontrolled components given by

J =§( l, )0'2 =§(_?32'—) o2 [1;7:}
Nopt L+K;/ 4 l+cp§ 4y

i=1 i=1
and
N K, N cp2
J: =Z---———--—-—~02 + =Z———-——-—§'—-———-—-0'2 + Jy . DLS]
R Qs R ds R
opt 1+ 2 "84 o] 1 4+ eyl (o}
i=l( K:i.) i=l( CPi)
N
Recalling that without comtrol Iy = z Ggi s 1t is seen that for large
o}
i=1

loop gain the error in each term of Jg opt due to control is approximately
1/K; vhile each term in JNopt is reduced by an additional 1/K;.

Thus, if significant improvement is to be gained in the optical surface
by the ebove method, N must be selected sufficiently large and the

1

actuator.size and placement such that cpg = l/f[{i << 1. In the mirror



38

situation JBo is negligible and JR represents the major source of
c
concern.

Because Ky is large, a type 1 system is normally employed and

Z ‘Pl"%l + Jp - E@]

The required value of N to achieve the desired mms figuring error can
be minimized by the selection of pad size and location whose effect

is manifest through the parameters @%.



V. MODE ESTIMATION ERROR

The preceding analysis assumed ideal measurement of the controlled
modal variables e;; however, in many applications it is neither
practical nor possible to cbtain direct measurements. In these cases
an estimate is often derived from a spatial sampling of the distributed
output. This is the case in the mirror problem where the most commonly
used measurement of the optical surface is performed by the interference
method illustrated in Fig. 15. This wmirror figure error sensor is
a modified form of a Twyman-Green interferometer. In this interéerometer
two plene wavefront beams are formed from a common coherent source.

One beam is reflected from a reference flat while the second is con-
verted to a spherical wavefront whose center of curvature is that of

the mirror. This wavefront is reburned by the mirror and forms an
interference pattern with the reference beam which is focused on the

N discrete individual sensors. Periodic motion of the reference flat
produces a sine wave of identlcal frequency at each detector. This
converts the error determinaetion FTrom an amplitude to a phase measure-
ment and permits the required sensitivity to be achieved. .
Under conditions where no modes except the first N exist, the

relation of the modal coefficients to the N measured values is given

i
+

by Eq. [é%] which for the mode error is’

L ]
eﬂeas = [: WbeI . [50:]
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Figure 15.- Schematic of the mirror figure ex'x:or sensor
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However, the presence of the high-order modes detericrates this

measurement since the actual measured vector is defined by
N _ NN R
Ve = UNe + URe [51:'

where UB is the N x « matrix

r"uN_[_l(z]_) v e . uN+j(zl) el
Y : [54)
_uN+l(ZN) v e uN'{"j(ZN) Y

Consequently, the estimate of the modes in Eq. [:50:' becomes

N [T e [ R < e T (5]

meas

The manner in which the measurement error eN, defined in Eq. [53],
evolves is shown in Fig. 16. The disturbance error in the first N
modes can be controlled to an arbitrarily small value (see Eq. [:_38] ),
while errors in the remalning modes cannot be counteracted. A major
effect of the measurement error in Eg. [55] :i:s‘to introduce an
additional error in the controlled modes. To illustrate R the v:eétor

N

e" is seen from Fig. 16 to be givén by

o o NN _ N [5431]

] I'
where s

t

ot = () ouew + i), ED
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Figure 16.- System configuration including measurement errors.
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+

-

and substituting E5ll-b] into [5’-1-8.] and- rearranging yields

T £ 1
eN = - CI + ANDN —lc%N £ [I + A?IDNI]-AN éN.

8

&

For a type 0 system under statlc conditions,.Eq. [:55] becomeé;

di Kj .
ei=—l+f£_l+lKiei iSN [563]
or, for a 'byjpe:l system
e = - el = . I:Ulﬂ—l[]ReR. E561€’

Attention is now given to the error defined by Eq. [56'b] since, as
previously established, most practical systems would possess an

infinite loop gain. Two distinet cases are now considered: one where

el is dominated by the disturbances acting on the plant, i.e.,

f = - ¢ [57]

and, secondly, where the error in the higher-order modes contributed
by the disturbance vector, qR, is negligible but the error introduced

by the control effort is significant, i.e.,
R R R ReRGNNT L N _ N
e =-AH@N=+AH[AHI‘(‘1’-E)

(L + \Jr[:UN]_lUR)_ltlqu- (2]

L o .
For ease in later caleulations it is assumed that Ilrl:UN_T R is negligible

compared to I and that UN is nearly orthogonal permitting the contributim
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to JN arising from eN 0 be determined from the norm of the measurement

error at the N measurement points Wg = UReR = UNEN. That is,

J-
Npeas

= (M ] - s WY (599

where

- ‘UR:;LR case I

ng = C. [590]

- Ungqu " case I

If the modal coefficients of the disturbances"are uncorrelated then

f . + +
Eq. r_-59§ for cage I 'bec:cm;ues7 ‘, ‘ ’

i

. B , N 3> 0 N .
' ) h} ' L]
JNin ;’E[wEN ng = z z u_f(zn) Gﬁi' [60]
eas T iAnEl
N
2
The sensor locations are chosen to minimize z ui(zn) for as meny of
n=1

the more significant high order modes as possible. This result is
consistent with that concluded with regard to actuator placement and,
consequently, the criteria for actuator and sensor placement are
identical. Since increasing the nunber of sensors is relatively
inexpensive, in many cases it will be desirable to have more sensors
than actuators {or controlled modes). If M > Nrsensors are used, &

parallel development indicates that with increased measurements

oo N

JNmeas = Z Z u?(zn) Ggi [613

i=M+l | n=1 ’
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yielding an expected improvement of

M N

AT = u?(zn) o . 62
Npeas i;l ”nZZ:L aQ; [: ]

For the second case, of which the mirror problem is Lypical, the

distortion in the higher modes is caused by the conbtrol action and the

measurement error at the nﬁh sample point 1s

oo N
ve(z,) = Z Z ui(zn)llfij Q3. [63]
1=m+1 =L

From the propertles of the disturbences, the expected value of wg(zn)

can be determined and is given by

2

N o
E[Wg(zn)] = z z us(zn)¥sg 0‘31 [:64&]

i=1 i j=el

and

Tg . S Z va(z) = Z z z w2, ¥y elaii. (o]

n=.L i=l| n=L J =N+1

This error is on the order of magnitude of the error in the uncontrolled

modes Ji and represents the effect of estimating the modal coefficiente

from output measurements. Incréasing the number of sensors, as suggested,
. y

will substantially reduce this error if the remnant Jyp is dominated by

the first few higher modes.



VI. SUMMARY OF DESIGN CONSIDERATTICNS

The performance index for the system 1s broken into two parts:
(1) thet comtributed by the controlled modes, and (2) that due to the
uncontrolled modes. Application of active control reduces the error in
the controlled modes to any arbitrary level while the disturbances
producing errors in the (uncontrolled/unmonitored) higher modes cannot
be counteracted. PFurther, the correckive forces applied by the finite
number of discrete actuators excites additional errors in the higher
modes. When mode estimation is employed, errors due to measurement
uncertainty are introduced into the first W modes. Thus, the total
system error is given by

I = Iy .. * IR, T IR, (6]

meas
’

where JNmeas’ JRo’ and JRc ate defined in Egs. [59%] and [ﬁé]. It was
cbserved that thése errors may be minimized by factors under the
designer'sicqnﬁrol. These factors are éptuatop_lécation, pad size,
and sensor lodation. Sq}?ction of &?tuat;r location permitied
minimization of thé exéitatign of the more sign;ficant uncontrolled
modes. The pad size ﬁés éeen to éct as a fllter which attenuates the

effect of the control inpgﬁ in exciting the higher modes. The pad

size is selected fo cause th;t%o?al'content of the applied force loading

to drop off quickiy above the Nth mode. Combined with actuator locations
that minimally excite thé Pirst few (most’significant) higher modes, the

pads together with the plant provide the desired modal filtering for the

46



bt

remaining high-order medes. Finally, if estimetion errors are o be
minimized, sensor iocation reaquirements become the same as those for
actuator placement. In some instances, additional sensors may be used
1o reduce the errors in estimating the modal. coefficients.

The sbove peints are illustrated most clearly by the exzmple of

a simply supported, thin, sguare, flat plate with the following

parameters:
Thickness 0.5 inch (1.27 cm)
Length 30 inches (T76.2 cm)
Width ' 30 inches (76.2 cm)
Young's modulus 107 psi (70.3 x 100 gn/cn®)
Polsson's ratio 0.2

Table 1 contains values of m",i which gre inversely proporticnal to
mode transmission as given by the steady values of the A matrix. The
modes are ranked, from most to least significant, in terms of decreasing
(:L/mi)2 and control of the low-order modes 1s desired. With the modes
ordered with m on the ordinate and n on the abscissa, contours cf equal

(cuj_)2 become circles in the n,m plane. These circles may be approxi-

mated by sguares; for example, if 25 modes axe to be controlled they
wonld include 1 Sn < 5and 1 Sm =5 as shown in Fig. 17a. The next

highest mode in each direction is m = 6 and n = 6 which has 25 mrbual

-

nodes equally spaced over the plate, see Fig. 1Tb. Actuator placement

at these nodes (which can always be achieved since the m + 1 mode has

* -

m nodes) ma.kes ol orthogonal and precludes excitation of any mode for

which mor n equal 6. Altemaﬁlvely, the first N most significant
i
modes may be conmbrolled as'illustrated in Fig. lTc. This is achieved

by the actuator placement of Fig. }Td. The unexcited modes in the
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1 2 3 4 ] 6 7 8 9 10
0.508 3.17 12.7 36.7 85.8 173.9 317.5 536.6 853.9 1295.5
3.17 8.13 21.5 50.8 106.8 203.2 356.7 587.2 917.5 1373.6

12.7 21.5 41.2 79.4 146.8 257.2 427.2 676.8 1028.7 1508.8
36.7 50.8 79.4 130.0 213.5 343.4 536.5 812.7 1194.9 1708.9
85.8 106.8 146.8 213.5 317.5 472.6 695.4 1005.9 1426.9 1984.3
173.9 203.2 257.2 343.4 472.6 658.3 917.5 1270.0 1738.5 2348.9
317.5 356.7 427.2 536.5 695.4 917.5 1219.7 1621.6 2146.2 2819.4
536.6 587.2 67;.8 812.7 1005.9 | 1270.0 1621.6 2080.7 2670.1 3415.7
853.9 917.5 1028.7 1194.9 1426.9 | 1738.5 2146.2 2670.1 3332.9 4160.5
1295.5 1373.6 1508.8 1708.9 1984.3 2348:9 2819.4 3415.7 4160.5 5079.8
Table 1.- Values of w2 in 106 radlansz/seconds2 for a flat square plate.
mn

gt
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and unmonitored mecdes of a flat rechangular plate.



latter case are those with m = 8 or n = 8. 1In any case, final"
determination of the opbimal trade-off requires detailed evaluation
of the performance index.

Since data regarding the disturbances to which a primary mirror

surface is subjected are not presently available, a disturbance profile

characterized by a modal force coefficient with & sbtandard deviation of

plate

_ °q; _ \Jarea [56:}
%a; = N 386.%

in pounds per sguare inch, for all i, was assumed. This profile yields

an rms Pigure error of

Jr

5 - )
0 x 10 nehes 6

plate =2 * [ 7:]
area

for the uncentrolled surface which is in reasoneable agreement with the
figuring errors of the mirror whose diffraction pattern is given in
Fig. 5. Pad size was selected to be 0.5 inches (1.27 em) X 0.5 inches
(1.27 em). Fig. 18 displays the rms figuring error for a type 1 servo
versus the number of actuators for placement of the type illustrated in
Fig. 1Tb. The type O error was evalusted for optimal gain but did not
1
provide a significant improvement for the error profile considered.

The details of the procedure used to obtain Fig. lg‘gre contained in

Appendix C.



1.6

1.4
F=vJ I/ PLATE AREA

RMS FIGURE
ERRORIN 1.
M INCHES

ECH N - - =)
i

SRS TR T R R A R B B
0 4 8 12 16 20 24 28 32 36 40
NUMBER OF ACTUATORS ’
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The preceding sections contain the development and summary of
design considerations for the discrete control of a distributed-
parameter system. A simply supported flat rectangular plate has been
used as an example because it possesses unigue properties which clearly
reveal the results of design decisions which are obscured in most
distributed system conbrol problems. The followlng section presents
the application of the design technigue to a plant which is representative
of a thin deformable mirvor and whose complexity is more nearly

commensurate with that of plants generally encountered in practice.



VII. MODAL CONTRCL: OF A FREE CTIRCULAR FPLATE

Modal Representation

The equation of motion of the free circular plate of Fig. 19 under
forced vibration is
%w(r,0,t) _

vE S Vew(r,e,t) +p RS- p(r,e,t) [68]

+

where w, p, and 92 are expressed in cylindrical coordinates. As%uming
solutions separsble in r, 8, and & |i.e., w(r,08,t) = ci(t)fi(r)vi(gi],

the analysis follows that of the rectangular plate to yield

2 )
a%e; (%) : C
—— +afe (%) =0 ¢ (692)
dt
2 .
d<v_(8e) .
1 2 ak
— 25— +n v.(8) =0 =y
2.2 : .
r°a [?i(rxj df,(r) . .
. CELI >
where
2 8.b . ‘
o= kj . [70]

Since the mode shape glven by [69@) is periodic in 9, n is an integer and
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uj:(r,e) = AE]'n(kir) + B’iIn(kir)Jcos (n8 + 0y) I:?l]

where A and Gn are arbitrary constents, J a and I are the n®l order
Besgel and modified Bessel functions, respectively. The values of kj
and B; are determined through substitution of ['?1] into the toundary
conditions, which for the free plate, arise from the sbsence at the
free edge of both the bending mement in the radial direction and

(10)
vertical shear; l.e.,

2 2.\ '
d v 4 n%v ’
——-]——-——-.—h—-—f.(r) i = 0 72&
(dre r dr rE) i o . E:I
free esdge .
and O,
oo . ;
2 2 () : : .
df & d - d ;
S T I - el Y e = 0. (2]
drge2 7T dr .2 r dry T,
free edge ".

Under these conditions there exists a denumersbly infinite sequence

of eigenvalues

k= B _ (=]

for which the assoclabted elgenfunctions form a complete orthogonal set
permitting both p(r,8,t) and w(r,9,t) to be expended in a uniformly
convergent series as assumed in Bgs. ElEa] and E.E’b] .

Table 2 contains velues of km for several modes. Because of the

importance of the mode shapes relative to design decisions, the radial



0 1 2 3 4 5 6 7 8 9
0.0 0.0 0.158 0.241 0.318 .393 0.467 . 540 .611 .683
.197 .301 .396 487 .574 .659 .742 .823 .904 .982
412 .515 .612 .706 .796 .884 .973 .057 .141 .225
.623 .762 .825 921 1.014 . 105 1.195 . 283 .369 455
.834 .937 1.036 1.134 1.228 .321 1.413 .503 .591 .680
1.045 1.148 1,249 1.346 1.442 .535 1.628 722 .810 .900
1.254 1.357 1.458 1.557 1.655 .750 1.843 .937 .028 .117
1.463 1.568 1.669 1.769 1.866 .962 2,055 .152 . 243 .335
1.675 1.776 1.878 1,977 .2,078 .174 2.270 .363 458 .55
1.883 1,988 2.089 2.189 2.286 .385 2.482 .578 .670 .765
Table 2,- Values of kmn in 1nches"2 for a fr;e circular plate.
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components of the first 21 modes, ranked in order of increasing
frequency, ®;, are plotted in Fig. 20. As a result of the nature of

the 8 variation in Eg. E’Tl], each pair m,n is associated with two

-

distinet wmodes given by

£ (r) cos né ‘
mode pair m,n = o [ﬁhj
£n(r) sin ne . '

for n # 0. For n = 0 a single distinct mode exisﬁs £or &ach pair of
m,n. To minimize the expectation of the square surface error, the
actuators should affect control on the most significanﬂ m;des as
determined by the transmission factor l/pwE and the disturbance profile.
For the purposes of this paper, and as in the case of the rectangular

plate, a force distribution with Ugi = dgj is assumed such that an

6 inches (1.27 X 10‘1* cm)

uncontrolled rms figure error of 50 X 107
results. With this white modal disturbance the system objechive is to
exert control on those modes with the smaller values of kp, in Table 2.

Actuator Size and Placement

The actuators are again modeled as displacement actuators in
series with a spring which is attached to the plate by means of a pad.
The springs are relatively soft to make the effects of mirror
displacement feedback negliglble as discussed in Appendix D. The pad
shape i1s a portion of an annulus bounded by constant increr-aen"os in

radius and angle. The elements hij are evalueted as



m = o rigid body mode

}58

n=3
m=0
n=4
m=70
n=5

Figure 20.- Modes of free vibration of a free circular plate.
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Arj ABJ
r. e —d 0, + —3
J 3
by 1 2 2
= [ - AlT r)
T ;| %h oog f f (™)
3% pad  §*% pa Ar, A9,
area area o ot 0. m sl
d o d o
+ B,T (k_r)] cos (n6 + 6 )r dar as (75]

for which the 8 dependent. component is

sin (mej/a) (
aX: N cos (mb. + 0_)
J (nney/2) J B

where normally the increment AP i1s econstant over all j permitting -the

¥
inclusion of this compcnent in the decoupled plant dynamics. The v

>

component is somewhat less tractable. Under the substitution

3

0= o (7]

the r dependent portion of By becomes

kmn(rj + -
- ALT (n) + BT (n) |0 an
2 ’
b

which is integrable if n is an even integer, but requires numerical
integration or use of tdables if n is odd. The effect in eifther case

is that the radial component of hij decreases as kj, increases.
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In determining the placement of the actuatox:s note from Fig. 20
that each modes m,n has nodes at m distinet locatiods éﬁSng lines,;f
constant © and 2n nodes circularly. The placing of 2n actuators
circularly at equal inbervals results in their position coinéiding
with the nodes of one of the modes described by Eg. [7%]. Consequently,
this mode is not excited while the one spatially shifted 90° is.

To determine the desired actuator placement a knowledge of the
disturbance profile is regquired. Under the earlier assumption of a
white modal disturbance spectrum (agi = cga), the objective is to
control the modes with the smallest values of Ky Iospection of
Table 2 indicates that lines of constant kmn tend to form triangles

connecting m to n where

Ite

n

2m . Kl

If the controlled modes are n = Dy and m < Wyoy the controlled area
of m,n plane is a rectangle (see Fig. 2la) which should approximate
the region of the first N significant nodes. Actuator placement would

£all at the nodes of the next highest modes which require

Nactuator - 2(nx:aa.x + l)(mmax +1) [78]

actuators corresponding to the mutual (mmax + 1) nodes radially and
2(tpayx + 1) circulariy. The controlled modes are the (2n,,. + 1)

(o, + 1) bounded by the rectangle Doasr O

ax plus the My + 1

exclted modes for which n = n . + 1. Thus, the total number of »

controlled modes is N = 2(nmax + 1) (mmax +1) =N

actustor ?he modes
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not excited by this actuator placement are those at n =np .. + L
whose nodes fall on the lines cof constant © whe;e ‘the actuators are
placed (those at n = Doy + 1 spatially shiftéd 90O are the ex%rg '
M. + 1 modes included in the N controlled modes). Additionally,
the mode whose radial nodes are selected as actuatqg 1ocati§ns ig not
excited. The pertinent controlled and unexcited régions of‘th; m,n
plane are illustrated in Fig. 2la along with theﬁcorresponding
actuator placement in Fig. 21b. Hewever, because of the tendanéy»f
of the lines of constant kmn to form triangles as indicated in Eq. [7{}
control of an arca in the m,n plane as indicated in Fig. 2le is
generally desired. This can be accomplished by the actuator placement
shown in Fig. 214. Note that in the latter comtrol scheme while the
N most significant modes are cénbtrolled, it is not possible to preclude
the excitabtion of the next wmost significant modes. The trade-off must
be made on the basis of actuator location effect on the imaging index
Jy-

While, at the present time, the imaging index has been detailed
only for the rectangular control scheme illustrated in Fig. 2la,
preliminary results indicate that conbtrol of the N most significant

modes (e.g., see Fig. 2lc) is preferred. The rms figuring error

F =,J JI/plate area based on the rectangular conbrol scheme of Fig. 2la
is plotted in Fig. 22 versus number of actuators for a plate with the

following data:
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0 1 23 45 67 89
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Z

controlled
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unmonitored
unexcited modes
nmiodes

(a)} The m,n plane for (b) An actuator
the aectuator placement of b. . .configuration ubilizing
twenty-four actuators.

0 1 23 456 7 8 9
a’{ﬁ{?ﬁ’l’é’é’////////
modes 7

\'\ unexcited /

L modes

. unmonitored
modes

(c) The m,n plane for the (4) An alternate actuator

actuator placement of d. configuration wtilizing
twenty-four actuators.

Figure 21.- The location in the m,n plane of the controlled, unexcited,

and unmonitored modes of a free circular plate.
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Thickness . 0.5 inch (1.27 cm)
Diameter ' 30 _inches (76.2 Cm%
Young's modulus 10! psi (70 3 x 10 gm/cme)
Poisson's ratio 0.2

These results indicate satisfactory control, yielding diffraction-
limited performance, as defined by an rms figure error of less than
0.5u inches, is achieved with less than 24 actuators. This is
significantly less than the 61 actuators used in the rresent laboratory
model(lh)'which was determined by sectbioning the mirror inte equilateral
triangles 3.75 inches on a side (the 3.75" x 3.75" x 3.75" x 0.5" thick
triangles represent a thickness-to-area ratic near that normally Lound

in monolithic telescope mirrors).



VIIX. CONCLUDING REMARKS

The modal expension techniqpe'has'been applied to the .probilem of’
correcting and maintaining, to the éoleraqce reqﬁiréd)for,diffraction—
limited performance, the optical fiéure of a plént representatiwe.bf
the primary mirror of an -orbiting astronomical observatory. The modal
technique has been shown to be particularly appropriaté for this prcblem
by virtue of its relevance to a useful measure of image quality, its
ability to decouple the system dynamics permitting simple control
technigques to be applied, and by the extent of the insight the technigque
affords into engineering design declsions.

For distributed plants subject to extremely accurate control, it
is necessary to consider the effects on system performance of all of
the modes - not just those which are subject to control. In fact, with
the error in the modes under conbrol reduced to any desired level, the
major system error was shown to reside in the uncontrolled higher-
order modes and this ls increazed by the contrel effort applied to the
lower modes. For this veason the most significant design decisions
are those related to the effects of the corrective control forces on
the higher-order modes. The analysis presented in this paper describes
the effect of actuator size and location on system performance, factors
most critical to efficient design. The requisite conditions for
wminimizing the number of discrebs contrel inputs required to achleve
satisfactory performance were outlined and then illustrated in two

design examples. The results for hoth the rectangular plate and the
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free circular plate indicate that the thin deformahle mirror can prowvide
diffraction-limited performence; further, that this performance can be
achieved with considerably less actuators than that required for a
segmented mirror where the thiclmess-to-elxrea ratio for each siegmen-&
approaches that normally used in monolithic mirrors.’

The disturbance profile (if data on the effects of ’t;h;amai
gradients, spontaneous release of materiai stresses, or other facﬁdrs
producing distortion of the optical surface become eavailable) can be
readily incorporated into the design procedure. This is achieved by
using the profile along with the transmission properties of ‘the vlant
(plate) to determine the modal errors and the N modes yielding the
largest errors contyolled. BExtension to more complex plants (e.g.,

shells), while requiring considerable computing effort, is direck.
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APPENDIY A

Determination of the Eigenfunctions and Eigenvaluss of
a Simply Supported Flat Rectangular Plate

The equation of motion of & uniform plate in forced Vibration(9) is

Pu(x,y,t)
V%3V2W(x,y,t) +p —“—5;5“"“ = p(*,y,1t) [%ij

consider first the homogeneous equation. The modes of free vibration
will be determined throngh the separation of variables technique by

assuming

Ww(x,y,t) = Wl(t)w2(x,y) [AED

Substituting [A2:] into E&l:l
()87 (%,7) + o Wplx,) f"’a—%ﬂ -0 (3]
¥

dividing both sides by p ¥ (t)wo(x,y) yields

s Piplry) ) 0]
o walx,y)  wi(t) o2 i

Since each side of E’-&’-l-] is a function of different variables, both

sides are set equal to m? - a positive constant. This yields the

following equations

5 5 &
";)"" vhwa(x)y) - wiWQ(X:Y) =0 [A5]
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2
o v, (t) aw, (t)

1 2 1 2

+ wow (5) = + atw, (8) =0 A6
atg il at 17 E ]
Rearranging [A5] yields
o ,(7)
%\-IE(X)Y) - —--—----é—-—-—- =0 ‘[A-Tj

or

(ve ¥ “’i\’ s ng - 4"1\} %)W2('X’?’ ) =0 )

The solution to [AB] is the sum of the solu‘qioné %0, each o'f the products

of [AB] or therefore %o

(v2 + “ﬁ\]g) wo(x,y) =0 (29}

V2 is the Laplacian in Cartesian coordinates. Equations I:A9] and

E%lo] are therefore

2 < ’ P
'a-a—e wio(x,y) + . wo(x,¥) T oy w3 wo(x,¥) = 0 [Alg
¥

54



L
A further assumpticn is made that

wo(x,y) = w(=)n(y) [222]

In this case (:All] becomes

a“u (x) a%w (v)
() —Z— + ws() "Eyl%‘ * mi\f Sy =0 [a13]

Dividing by Wi(x)wh(y) and rearranging yields first

1 d?w5(x) 1 d2Wj_l_.(y) . 0
: . ’-- - i
WE(X) ax2 N wi(¥) ay2 -4 8 ° [:Al]
then
L gl ’ o 1 @)
wz(x) g2 TeNT T wi(¥)  gy2 EA15]

Since the left side is equal to a function of x, and the right a
function of y both sides muist be equal to a constant + p°. (The
choice of sign on ue is arbitrary since choosing as the constant - ug

will yield the same answers.) Egquation EAlﬁ] becomes

2.
i_é_(;.).. + (_ L2 ¥ miJ?%-_)wjgx)' =0 [21€]

dx

‘and

&), (3)

-—dy2—- —_ w(y) =0 . l:Al'?]



T2

The solutions to these eguations are

ws(x) = A, sin ( \/— e * W - -Se X+ gl) [AlB]

1

vy (y) =Aysin(py + 'gg),, [Al9]

respectively.

From equations [AJ.Q] » [A18] > and tAl9] 't]i:le jsolirti.on to equa{:ioﬁ‘ Eljj

i
1

We(x,y) =A5 sin \I- ue _-.!: wi\ "—pg X gl gin (Uy + §2) [AEO]

where Az is the product of Ay eand Ap. In oxder to evaluate the constants

in @20] the boundary conditions must be specified. For a simply

supported flat plate they are(lo)

0,a [AQ:I:]

wo(x,y) =0 for x
- ¥

%W, %, % (x,
My =0=-8 i2w+v g(ey) =3
ay =0
x=a

and



>

Puglr,y)  DFuy(xy)
M =0l 2, DT (23]
dy° x2
y=0
y=b

In light of [AEl:] the equations [Aee:] and [AE;’-}:] may be written as

3P, (x,7)
2" -0 [a2t]
ox® |
x=0
x=a
and
RACRY
2 7
N 5 =0 @25]
Y
y=0
y=b

Using the conditions for x = 0, y = 0 from equation @21] in [A_Eo:l

yields
1=8=0 * [A%j
Using the condition of equation [Aeg for y = b yields

sin gb =0 [AET]
and therefore

w=22" an=0,1,2 .. [428]



T

From the condition for x = a

sin (- u2 + Ubi\!jps )a =0 [A29]

or

(- ue:l:a)i _g_)=n_££ m=0, 1, 2 EABO]

Substituting [}28] and [Aso] into (A20] gives in [AB];] the shape of ‘the

modes of free vibration, or eigenfunctions, of the plate

we(x,y) =A35j.nn% sin -r-l-? n,m=1=1, 2, 3, ... , [AZ;]ZI

The resulting mode shape 1s identically zero for elther m or n zero,

consequently, equation A3l |is valid for the range of m and n
q

andicated.

That equation [ABJ] satiafies @2@ and. [A25] may be verified through

substitution. Purther, Az may be chosen to satisfy the requiremens
253

fb fam?(x,y)dx dy = 1 Eajg]
o Yo *t

which yields

&l

(23]
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We(X:Y) = 5_,%' sin m—;E sin E‘%JE [A5)+]
Vh'w (X )
. S o\X,¥
Since from [Alaw]e_ =5 wgix,yj
sl @ ¥ At
5 S =
s =
1 Wg(xyy)
bk 22 22
2.5 1 [ w7 ot 6
s - We(x,y)l_aj-l- WQ(X’Y) + 3 'b2 W2(X:Y) @‘5]
L
+ ']-:1-_5%-[,4- WE(X:Y;J
L. o 2 ¢
o 2
mi = §1pr— 1-:2- -+ ;-1—2- = wmn EABT]

This could also have been obtained from [AB?], [A.QS], and @5({].

Since the solution to (6) is

Wl(t) =4 cos(wit + Ej) : EA58]
oo

The most general solubtion to the homogeneous form of [A]:] is

C,
(¢ ] s ' . ¢ Lr
., nxx | mAy )
w(x,¥,t) —Z Amn cos(wmn + gmn) sin — sin 5 En@é]
m,n=1 . L. -

14

' . i

Thus the eigenfunctions or modes of free vibration and their
associated eigenvalues have been determined for a siiﬁply-supported,
flat, rectangular plate and are given by equations ,[A51¥] and [ABT]

respectively.



APPENDIX B

Determination of a Set of Actuator Locations for Which UN For
a Simply Supported Flat Rectangular Plate is Otrthogonal
The purpecse of this appendix is to indicate, for a sﬁ'.mply suppqr‘ted,

flat, rectangular plate a set of actuator locations whic¢h make the i

matrix (eq. BLB) orthogonal. The equation of motion'of a beam(l5) is

4 o '
2 o w(x,t)  O7w(x,t) -
T Bxi o ate [Bl]

The method of separation of varliables is used, consequently,
w(x, %) = v (%) wy(b) [32]
Substituting []:32:] into E?,lj gives, after dividing both sides by w(x,t),

2 dl*wa(x) B de—we(t)
W@ ad | w(b) P (=]

Both sides are set equal to a constant 71'“

i
—dx-r - 7’th(}§) =0 [Blta]
2
avp(t)
L
+ 7 wo(t) =0 Bib
= k)
The solubion to [:Bkb] 1s

wz(t) = €, sin 72‘13 + G, cos ¥ [B5]

76



T

The solutlon to the remaining equation, [Blta:l, will yield the modes of
free vibration of the beam. Since the exact solution will be used in
the sequel this information will be cbtained first.

Equation 63%9 is factored as

2 2\ /42
(:‘L - L)(L + Z-?)wl(x) =0 E3)

and the solution is the sum of the solutions to

(-d—x(zg 72 l(x) = 0 [:BT]

(_‘.1_ + -’Ti)wl(x) =0 (8]

Thus

+Cg sinh L [139]

=

wy(x) = Czcos J-; x +Cj sin —= +Cx cosh ~==

¥
NEA
at this point the boundary conditions are brought in. For a simply

supported bean (10)

1
o

[B10a)
[Brob]

Wl(D) =

I
o

wy(D)
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and there are no moments at either x =0 orx =D

3% (x)
— =0 (z104
dx %x=0
x=b
These conditions require
0= C3 +C5 (p114]

0 =03cos —-7-b +Gusin Lb +C5cosh Lb +0651nh—7-b@11'la
T

\f‘r \l-r \"r \]
e i
0= 7C+ T % [Bu1e)
72 ¥ 7 7° y Ly
0 = = ¢ —— b 4+ L _ Dbl + Y—j¢ h —~—— Db + nh —/—h
= 5 oS = ) sin - = 5COS = 5 si -

[:Bllaj

From equations @311{] and [Bllé_] it is determined that

C3 =C5 =0 [12)

leaving

<
I

Cy sin —YE +Cg sinh

v
= =" [p13]

b

--Chsinﬁ+06sinh—\]7:-?b [B:LLE]

O
1

A nontrivial result reguires the determinant of the coefficients of

Cy and Cg in eguations {_313]. and [:Bllg to be zero. Consequently,



3

2 sin -2 sinh 2P

: ED

or

e [1€]

=1 (317]

The eigenfunction of the homogeneous simply supported beam is

wy(x) =C)sin o .

= (18]

The solution to the problem is now considered through the method
of Pinite differences. A number of sbtatlons are located at equal

intervals, %, along the beam as shown in the following sketch

]
Jee T s ‘7
1 1 !

Xl o aeuns

and the equation

aly b
—r - W = 19
ax 72 ° [B ]

is written at each point, where W = col w(xl) yoes 0(x)). The fourth

derivative approximation used can be obtained by first obtaining the
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Taylor series expansions aboub X, of W(Xr-l-l)’ w(xT +2), w(x_r_l) R

W(xy,_p). These expressions are

w(x, g) =w(x,) + wi(x, )l + W"(Xr)éE + 0. . w(n)(xr)ﬁ @20&3
! nl

w(x, 1) = w(x,) - W'(xr)l + W"er)-g-? e (_l')nw(n)(xr)}_r_l
! C n!

E - [Beot]

(2 z)2 (n)(x) GO

W(Xr+2) = W(xr) + W (xr)EZ + W"(xr) "

i ’ EBEOQ

w(}cr_e) = w(x.) - w'(x,)2i + "(x_r)(gi) . b et ‘(.'j]j)]f'w(n),@f{;r) —

L3 f 1 3 Y 1

13

subtracting four times (EBEOa:] + [BEOb] )2 from [:ézwj + .tBEOd] ;;ri;elds

b L
- L}Ef(xr-l-l) + W(xr_lﬂ-l- w(x,,0) = - 6w(x,) + 2 %;i(é)_ ]%T (2lL - i)
XKy,
(%) m 52m
+-..+2—52;1"—' (em)'( -,-!-)
Xy

e (B21)

APter rearrvanging equation [B2]:] becomes
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W(Kr_,g) - lL"’(5“51._]_) + 6W(Xr) - lF"1’(}%_,._,_1) + w(xr+2)_ a.uw(x)

b PP
1 axc™
X=Xy
‘o dsz[x) Ia(m.-e) 52(m-1)
4zl (2m)! "o

X=Xy
[1322]

The term on the left will be denoted L.E‘d‘ The finite difference method

approximates the plant equabtion as

T

Collecting the expressions for each point and arranging them as

indicated by the definition of W yields the matrix equatlon.

W(Xl) i W(Xl)
o :
. ya .
Legu | - = _3:_}1 s : (2]

Ll
s

Lw(xn) N _W(;cn).

i~ — -

The solutions to this equation are the eigenvectors of the finite

difference - matrix representation of the plant, Lpgy,. The mabrix
&7 LI * + .
is a real symetric mabrix and consequently, has orthogonal

eigenfuncticns.
t

If the right-hend side ‘of equation [3223‘ is used instead of he

left it is possible to obtain’ an analytic expression for the numerically



82

obtained finite difference answers. That is, consider the eguation

)

2
= dhw(x) - za w(x) +. . .32 dzmw(x) le(mﬂfg) L(u-1) ..

axt T N EY

(525]

The answer to this equation evaluated at x = x,, is equal to the finite
difference answer.

Consider the function uj =Cy sin 7 X which, from [BlB], is seen

Ve~

to be the exact eigenfunction. Substitubing this expression into EB25:]

yields, after cancelling uy

_ 74 Yeq of 7 e 12(m—2) o(m-1
o_:z—--_+...+(-1)(\j:-;) —@)—!2( D k... [326:]

Thus vy (x) is the solution to [3253,, and vy (x1) = w(xy), when

(527}

1 is the separation between adjacent stations on the beam and it can

be made as small as desired. Consequently, equation EBET] indicates

g
the resultant convergence of —339. $0 —e

VTN

purpcse of this appendix is the fact that the 1

More sagnificant for the

{
th component of the

jth eigenvector of the finite difference solutioq is e:quivalen“g to

the jth eigenfunction of the beam evaluated at_ a location’ corre_spt:mdipg
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to the 1th point in the finite difference representation of the beam.

Since the matrix UM of Eq. [3%] is

B ]
vy (=) « - . uglxg)

R s : [ﬁeé]
L..1.1.1(;}c1\1) R U'N(XNZ'

each column corresponds to one of the orthogonal eirgenvectors of I‘fd_m
and the matrix UN is itself orthogonal.
To this point the proof has concerned the solution for a beam,

while it is desired to show H

N 4

R PO IR

k=1 o - .

I
<

for the plate. For the plate, Appendix A shows that’

i b

.
- ‘

o i My A R

u; (%) C; sin — §1n = . EBBO]

3

consequently, Bd. [3829] may be written

N N
Y gyl =) gy G (g o G ()
k=1 k=1
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Consider an array of locations

N =XY (32}

with ¥ locations in the X direction and Y in the y direction. Thus

EBB]:] becoues

X ¥
ux:.(xk)uyi(yk)uxg (xk)uyj (xy) = E Z Ui (2p )0y (YB)uxj (XA)uyj’(yB)

1=

k=) A3=l B)_l_‘-—'-l
)
X ' Y . o
or =) g Crduggleg) ) g G ()
A5=l B)_l_=l . ’

Each component in the second expression for thr? right-hand side of @353]
18 equivalent to the beam, conseqﬁeh%ly, eithe]; the first or second
'
summation will be zero unless i = jJ.
Egually spaced points will provide an othhogbnal matrix .fgr ‘the

purpose of relating performsnce specifica‘i‘;ion in the original and

transformed systems.



APPENDIX C
Evaluation of the BMS Figuring Error for a Simply
Supporited Flal Rectangular Plate

The purpose of this sppendix is to deseribe in detail one of the
procedures used in determining the results contained in Figure 18. As
indicated in equations DLE] and [67] the exact determination of Jy would
require the evaluation of an infinite number of terms. In using a
finite number of terms P to approximate Jy and, therefore the rms error,
it is desived to select such a P, if possible, which would place a bound
on the amount by vwhich the gpproximate value of*JI would giffer from
the true value.

The value of P which should he used is a func’cio.n of the individual

terms xn the sequences

Ay, Bpy eee B A [:Cl]

and

a%, mg, uﬁ et [02]

Since

)

v [
one procedure might be, for monotonikcally decredgsing values of ‘CiS 57

to observe values of ¢j .. in E}j] for increasing i until values of

clsS are obtained which are significantly less than the accuracy desired.

85
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The value of Jy may be determined for two values of P in this neighbor-
hood to determine whether or not J;y has been obtained accurately enough.

While such a procedure would be adequate the specific nature of
the present problem permits the selection of P on a more rigorous

basis. For a square plate the expression contained in Appendix A for

4 2 ‘
2 _ Bx 2 2
‘“i“;rEni.*ni] (¢)

From BEgs. [2], [15]’ a nd [05:]; -and [Cla

A

. o a 2

a b, z g%
L _/; st (x,¥,6)dx dy *i_lEs"u v 2T (5]

the eigenvalues becomes

Dince m and n each take on the values of ‘aq_l Tthe positive integers

the right-hand side of [05:[ mey be rewritten .

t
[2+]

8.8 2+ c
L bl g ZZ g - [

L
5

In order to remove one of the infinite summations, use 1s madeof the

synmetry of the eigenvalues by writing [06] as

[,#hr Z Z 32 + Jaju [: ;ﬁiz z (= - 32]4 [c7]

=1 j=l
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where aj 4 is considered a constant as has already been zssumed (see

Bq. [663). The terms i° + j© in the series

ZL ;,Zl 2 j;@]& (c8]

are placed into correspondence with the positive integers in the order
indicated by [8). It is desired to indicate for the i and j

corresponding to the ktR value in [:08] that

2 ]

N

24

ﬁJ

In the first n values of 1 ‘there‘ are

e -
ey (2]
j_:l
g
terms where T is ‘
“ T'*z’ n(n £ 1) [tn]
: -

32

)

The J = 1 term is the minimum value of ?.2 + for any value of 1i.

[

Since, for i =n :

n2 + 32 > n ‘ [012:]
if
ne > M [:(}3_3]

2
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inequality[C@j will be obbained. Sixfce_[CI?’__‘] is valid for

n Z 1 : EClla

then [09] holds and the right side of [CT] may be written

i
!
"

[Srt“]e Z z (2 + Jejk' i Z iu [015]

i=l j=1i

The advantage of the last series is that its sum has a bound. The

partial sum for the first ob _ 1 terms is

1 1 1 1
g =——Ft-——+ S F . .. Fe—— Cls

which is less term by term than

! = -]I—- + [ — + + -:1'— + + L + 1 - )
Vgt TIF AR SR T I (2D)* (251
[ou]
which is
2 L1
L 1 1 L
thus
-E L 37
2 3 2
2
1 = = - & 1
@ oty 5 _1 25-1 (2]
1.2 '
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i The secénd of the two berms is always negative and goes to zero as

2% _ 1 increases. Thus the sum of the primed series from the 2t - 1

term 0 the end, §, is less than the second term on the right side

ot [

[c2d)

Since the primed series is greater than by term than the k series, the

sum of the k series over the same terms must also be bound by the same

1
S (2_5)
k=0t I?I ) 22 -1 [021:]

amount.

-1

The original series is smaller than the k series term by term,

therefore, since

'182

R R D) Z @,ﬂg@g}
[e22)

‘then

" 43
8 3
2
f v2(x,v,b)ax &y < Z o =

(:gxl* 2 Eﬂ + ne]u [s:rujz 23 .1

[c23]
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and
-t a? ...l_ t-l

27-1 i
asag 8 23

a rb
O \LY, - S =
‘/;h/(; (%,y,t)ax dy iZl ESJT”]EEILE + niju [:Sﬁh]e o3 _ 1

[ca]

The inequality may be used either to pla.c:e a bound on the error
for a fixed number of modes considered in the evaluation, or conversely,
it may be used to select the number of modes which must be considered
to keep the error below a certain level. ﬁ It should be noted that the
value of a; in [024] is the result after control and must be chosen
congervatively enough to reflect the imduced error as well as that
already present. Once the bound on the error has been selected t may
be determined from E}Elg This equation was based on the use of ot _ 1
terms in the series, consequently a sguare n X n arvay of modes cannot

be used for which

n(n + 1)
2

>2t-l

) Finally; the tightness of the bound ig dependent on how closely -
the k series approximates the true series for the terms after the ot _ 1
term. The bound may be tightened by cobserving actual deviations and

adjusting the inequality [021#] by the appropriate amount.



APPENDIX D

Mirror Displacement Ieedback
The actuators considered in this appendix are modeled as types

6-8)

vwhich are being considered for actual usage‘( This model consists
of a pure displacement actbuabor acting agdinst a spring and a backing
plate which is stiff relative to the spring. To obtain a specified
force the displacement actuator is commended to a new location relative
to the undeformed mirror.

If the mirror has deformed, the displacement of the mirror will alter

the magnitude of the applied force. It is assumed, arbitrarily, that

one form of this displacement feedback might take is

Pi(X:.V;t) = o ()B4 (x,7) - Kw,(x,7,%) [D]_:I

where pi(x,y,t) is the foree density applied by the i%h actuator » and

where

Wy (%,7,) = w(x,y,t) [pea)

over: the ith pad ‘area , and

¥

Wi(x,y,t) =0 I:DE’D]

, elsevhere, and

K1, (t)

o () = (5]

JCjP By (x,¥)ax dy

91
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wi(x,y,t) may be expanded as

o]

wy (1) =) el (8ay(x) [ov]
J=L
where
¢ 5(%) =fﬁ Wi(x,y,t_)uj(x,wdx ay [o5]

Since wi(x,y,t) iis zero except over the pad area of the ith pad [D5]

can be written

ef () = f f w(2,y,t)u(x,y)ax dy [26]

‘ith pad
aresa

1

substituting the modal expansion of w(x,y,t) yields

%

= [ f Zick(t)uktx,y)uj(x,y)ax a  [07)

1th pag &=
area

Interchanging the order of summation and integration yilelds

=}

cj'_j =Z ¢, () f fuk(x,y)uj(x,y)dx dy [338]

k=1 ith pad
area
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The total feedback force, fg(x,y,%) is

N

2 ey) = - K ) v (erb) [23)
i=l
Substituting [:Dlr] into [Dg:]
N ©
elrat) = - K ) ) ofy(Ehuyla) EN
i=1 j=1
Interchanging the order of summation
© )
£4(%,y,t) = - K Z u; z ci;(+) [p11]
j=L 1=l
By comparison with equation [lEbj £4(%,7,%) can be expressed modally as
r(e3,t) = ) af (€)uy(y) [024)
J=1
where
N
1 —
al(t). = - K Z o1 () | (03]
i=l

Equations [Dlﬁ] and [DBJ can be used to put the expression for aj(t)

into a different form

¢, (t) f f‘uk(x,y)u:j(x,y)dx ay ok}



ok

Interchanging the order of summation

0 |
_ajg‘;) =ch(t)z / f w(x,)uy(x,y)ax ay  [p15]
k=1 i=1 a1th gad
are
thus
- a'(t) = +XZ c(%) [516]

vhere 7 is an o X o matrix which bas individual elements of

251 T ii u/\ Jr uj(x,y)uz(x,y)&x Ebljj

+=L 481 pag
area

and where the spring constants are all assumed equal.
The matrix Z is located in a loeal feedbac% loop around the
diagonal plant matrix since it describes applitudés in the force modes
as a function of the displacement’mode amﬁlitudes. Since, in general,
the elements of Z are non—zero; this feedback cé;ses the system to
become coupled. In this particular appliéati?n the coupling exists but
can be made to have negligib;e amplitﬁde.l Since the éisplacement of
the mirror is on the order of microinches the spring constant is adjusted
50 that the actuator throw required.is on%ﬁe ogaer of inche%.
Alternatively, a form of spring feedback maj oceur whibh-cah be

treated without introducing coupling. Suppose that the expression for

p; (x,¥,%8) 1s
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Pi(XJYJt) = « z:di - Zmi) Bi(x,y) [DlSj

I Bi(X:Y)d-X dy

which would bhe obtained by decreasing the pad area until the mirror
displacement over the pad area is coanstant. This, depending on the
maenner in which the pad is bonded to the mirror, appears to be a
r:easonable assumption. Fxpanding ED].B] yields

Kiz, B: (x,¥) Klp. Bilx,y)
Pi(x:y:t) = = = - [Dlsa-

fﬁﬁi(x,y)w dy f\/;Bi(x,y)djg ay

This eguation can be analyzed by a procedure similar to the preceding

paragraph, or equivalent results may be determined from an inspection
of the appropriate block diagram. Proceeding as previously, the second

term in [:Dl9] is

fsi(x:YJt)' = - szi.Bi(XJY)/f r ﬁi(X:Y)dx dy . EDECa

vwhere %, is the constant value of Aw(x,y,t) over the pad area. It is

desired to express fg(x,y,t) in a modal expansion

5

oo

fsi(X;Y;t) ‘= Z af_;_sj(t)uj(x,y') |:D2]:|

]

n

where

aj'_,_J(t) = - /[rlﬁi(x:y)dx dy ‘[‘/.;'\Wi(x’y',-t‘;)Bi(x:ﬁr)uj(x’y)d}:‘dy[Dgaj
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Since w;(x,y,t) is constant over the pad area and B;(x,y) i‘rs’ ZEY0

!

elsevhere [D22] becones . \

¥

13
= Klmi(t)

aj'_j('t) = f f fii(}i,y')uj(x,y)dx dy -[D25:]
ith pad
B;(x,¥)ax &y ~ ayEa
I

The integral hae been previously evaluated as h j; (Bq. [18‘0:'), therefore

- Kip, (t)

hji
ffﬁi(XJY)dx dy
T

and if the integral of Bi(x,y) is equal to that of ﬁj(x,y) then

(D2t

1 —_
a5 (t) =

- K

fj;ﬁi(X:Y)dx dy

- N -
al(t) = 12 (4) » [p25]
where
~ .
. W(xj:Yj:t)

M) = . = w1(t) [p2€]

LW(XJ;YN:t)__‘

In this case the general result indicates that there is coupling in the
system. If the system is assumed to have only finite eigenfunction
i

content then



N
H ) (e ly)

i=l

it [DET] is placed in matrix form

wvhere

W= @ ()
(U1 (x,91) « - - Uyl,y1)]
Lpl(xm’yn) e e UN(XNJyn)_J

97

[21)

[pe8]

[p29]

The spring feedback locp as described by ED].’B] and @25:] is shown in

Figure D1
K
| p) K la(t) o o) | [NCE)
15(%) _ﬂ B;(x.y) dx dy )
at(t)
K -
ffB.1xy)dx dy &
- Ty Feedback to .
,Controller
Figurée D-1 ' ‘

The

Spring feedback loop.



98

As indicated previously, under appropriafe.conditicrs, the matrix can

' ?

be written as the produect of a dlagonal matrix and a nondlagonal matrix

i Fr

as in 34 . In this case the spring feedbaek loop becomes that shown in

Figure D-2
g —1 UN' | ¢ 1V I il
f B; (x,y)ax dy
1
ol il
Figure D-2
1
_The spring feedback loop for HN = GNUN .
Both GV and K

are diagonal elements. Consequently,

f ﬁi(x:Y)dx dy

-1
when UN! = UN the system is decoupled (see Fig. D-3) and the effects

of the spring fPeedback can be readily included in the system design.

iy

K
U e
- fjr By (x,¥)ax dy A

Teedback to
Caontroller —<

Figure D~3

The éecoupled spring feedback loop.
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In summary, under a specific set of assumptions, the effects of
the mirror displacement feedback can be treated without introducing
coupling effects into the system. In general, coupling effects are
present, however, the mirror displacement feedback is rendered negligible

through an appropriate choice of spring constant.
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