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ABSTHACY
FTCHTER, WILBUR BRYAW. Stress Concentrabtions in Filament-Stiffened
Sheets. (Under the direction of EDWARD DEWITT GURLEY).

An influence-function technigue is employed to analyze the stresses
and deformations due to flaws in an idealized composite material com-
posed of parallel, equally spaced, tension-carrying filasments embedded
in a shear-carrying matrix. Static Lensile stress concentratzon factors
are obtained for the cases of two equal-length transverse collinear cuts
across varicus numbers of filaments, and for the case of a periodic
array of transverse collinear cuts. In addition, a stabtic shear stress
concentration factor is obtained for a single cut across an arbitrary
number of consecutive filaments. Dynamic stress concentration factors
are cobbained for two cases in which two collinear cuts are suddenly
introduced into a stretched filamentary sheet. Matrix shear loads are
investigated and their variatfon in the longitudinal direction 1s studied
for several cases involving single and double cuts. In addition, loads
in broken filaments are calculated for some single-cut cases, and their
implications for an ex1st1ﬁg statistical tensile failure analysis for
composite materials are briefly discussed. '

In the cage of two collinear cuts 1t 1s found that interaction
between the two cuts is significant only when the distance between the
cuts is no greater than the cut length and, hence, that more widely
spaced cuts may, for all practical purposes, be treated as isolated
cuts. The interaction between closely spaced cuts, however, i1s pro-
nounced. It is found that two closely spaced cuts can cause higher

stress concentrations than a single cut across a comparable total



number of filaments. This result suggests that a design criterion
based on the residual strenghth of a composite weakened by a single cut
of prescribed length can be unconservative, even though only cuts of
lesser length are present.

The stress concentration factors for a periocdic array of collinear
cubs, which for the present model are equivalent to the stress concen-
tration factors for a transverse cut in a strip of filament-stiffened
material, are found to agree c¢losely with resulfs of an earlier approxi-
mate analysis, except for cut lengths approaching the width of the
strip. This indicates that in the practical range of interest of the
cut-length to strip-width ratioc, the approximate stress concentration
factor is sufficiently accurate for engineering purposes.

The matrix shear stress concentration factor for a single cut of
arbitrary length is seen to increase with cub length somewhat more
rapidily than the tensile stress concentration factor, particularly for
the shorter cuts. This suggests that scme filamentary composites
might be primarily susceptible to tensgile fazilure when weakened by
small flaws, but might be more susceptible to metrix shear failurg
when larger flaws are present.

Results of limited calculations of filament dynamic stress con-
centration factors for two collineer cubts are in agreement with earlier
results for a single cut, and support the previous conclusion thab
dynamic effects are of secondary umporitance for the type of model

nvestigated.



Calculations of the longitudinal variation .of matrix shear forces
show that they decay less rapidly with increasing cut length. Broken
fi1laments are seen to recover load less rapidly with greater cut length,
a result which suggests that btensile failure analyses for imperfect
composites, depending strongly on the ineffective lengih of broken
filaments, should account for the varigtion of ineffective length with
flaw size, rather than employ a single value of ineffective length

regardless of the distribution of inatial imperfections.
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INTRODUCTION

Composite materials are finding increasingly wide application in
aerospace structures. For exsmple, many solid-propellant rocket motor
cases are constructed by winding resin-coated glass filaments on a
mandrel. Coated fabrics, because of their great flexibility, have been
used in applications reauiring the temporary packaging of large, low-
density structures into small storage volumes Currently, much effort
18 being aprlied to the development of laightweaght composite materials,
whach typically are composed of high-modulus filaments embedded in
plastics or mebals of relatively low density and modulus.

The rational design of a structure reguires knowledge of the
stresses which it is likely to experience. However, because of their
Inhomogeneity, composite struchbures often do not lend themselves Ho
representation by tractable mathematical models, For example, the

.

walls of filament-wound rocket motor cases are constructed of numerous

-

layers of windings, with the windaing direction varymn% from ?ne group
of layers to another. A structure of such complexity presents
formadable analytical difficulties. However, if attention is focused
on a single layer of composite material, it is possible to obtain
analytical results which may be applicable ultimately to more complex
arrangements.

The problem of stress concentration 1n aerospace structures is one

of continuing importance. In reference 4, a stress concentration

problem for a plane of parallel, equally spaced filaments embedded in



a matrix was formulated and solved by Hedgepeth. The principal results
of the anslysis were the static and dynamic stress concentration factors
caused by a single cut across a number of adjacent filaments. In
reference 5, this enalysis was extended by Hedgepeth and Van Dyke to
problems involving some special two-dimensional distributions of
parallel failaments.

In this thesis, the analysis of reference % is extended Lo the
cases of two collinear cuts and of periodic collinear cuts of equal
length. Also, the single-cut problem of reference 4 is re-examined
for the purpose of more fully exploiting the potential of the model ¢
for the study of some composite materials. Specifically, matrix shéér

]
forces, and the decay of matrix shear forces and filament tensile

forces with axial distance from the cut are studied. In additaon,
k]

N

an expression for maximum shear force, analogous to the filament stress
concentration factor, 1s determined for the case of a single cut.

In the case of a double cut, static stress concentratron factors
are compubted and compared with some related single-cubt results. In
additron, dynamic stress concentration factors are calculated for two
of the simplest double-cut cases.

For the problem of periodic collinear cuts, which is related to
the problem of a finite-width sheet weakened by a central cut, static
stress concentration factors are calculated for various combinations
of cut length and distance between cuts, and are compared with results

of an approximate analysis for an isotropic elastic sheet



REVIEW OF LITERATURE

An extensive survey of research in composite materials, with
particular emphasis on fibrous or filamentary composites, is contained
in reference 6, where numerous additional references are cited.
Particularly relevant to the present work are references 4 and 5.

In reference ¥, an analysis s presented of the stresélcon:
centration around a single straight cut across an arbitrary number of
filaments in an idealized composite composed of a single infinite
layer of parallel, equally spaced, tension-carrying filaments embedded
in a shear-carrying matrix. A closed-form expression was obtained for
the stress concentration factor (defined as the ratio of the highest
load in an unbroken filament to the far-field applied load) as a
function of the number of broken filaments. This result was substan-~
tizated experimentally by Zender and Deaton in reference 9. In' ’
reference 4, other phenomena of interest, such as matrix shear forces,
and the variation of filament and matrax loads in the filament
direction, were not investigated.

In reference 5, the influence function technique introduced 1n
reference 4 was extended to the problem of stress concentration in a
composite material composed of two-dimensional arrays of filaments
embedded i1n a shear-carrying matyrix. Because of the difficulty of
obtaining closed-form inversions for various transformed quentities,
extensive numerical computation was required. It was found that, in

general, the breaking of a given number of neighboring filaments causes



greater stress concentration in the single layer than in the two-
dimensional array. An additional analysis of a single layer, in which
the matrix material around a single broken filament was assumed to
undergo 1deal plastie deformation over a portion of the filament
length, indicated that the anclusion of matrix plasticity mitigates ‘
the falament stress concentration effect predicted by the'elastic
analysis. However, it appears that the results are too limted for
sweeping conclusions to be drawn regarding the effects of plast%c
deformation in an imperfect filamentary composite. Experimental
verification of the results of reference 5, in V1ew*éf the necessarily
more complicated nature cof the mathematical models, 1s likely to prove

much more difficult than was the case with the single-layer elastic

model



LIST OF SYMBOLS

filsment spacing

filament diameter

extensional stiffness of a filament

Weber function

shear stiffness of the matrix

effective thickness of the matrix

modified Bessel function of the first kind
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damensionless matrix shear force between nth and

(n#1) B Pilaments, Pn, [EAd
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matrix shear force per unit length between ntt angd

(n+1)*P f1laments
time

daisplacement of nth filament

D



dimensionless displacement of nth filament, g%ﬁFﬂgﬁg

displacement of nth filament for influence-function
solution

coordinate parallel to filaments

complex variable

mass per unit length associated with a filament

dimensionless coordinate parallel to filaménts, Ch

EAd
variable of integration

dimensionless time, tJ%%

transform variable



GOVERNING EQUATTONS

As far as is practical the notatiron employed in reference 4 3e
retained i1n the present analysis. The configuration is shown in
figure 1, along with the coordinate system énd some notation. The
analytical model 15 one which is commonly used in “sh;ar:lag" analyses.
It 18 composed of an infinite single layer of para%;el tensioh—ca;rylng
members (filament) embedded in a matélx which ;ar;ies only shear. The
filements are separated by a conétap? distance d and are numbered
from -~ %o o from the botitom upward. The coordlnake along the
filsments 18 x and the displacement of the nt®  f1ilament at location
e

x is up(x,t). The force in the b filament 15 denoted by Pn{x,t)

and is given i1n terms of up by

where EA 1s the extensionsl stiffness of the filament. The shear
force per unit length between the n®! and (n+1)™ filaments 1s
defined here by s, = %?(un+l - u,). Conservation of momentum of the

nth  £ilament then requires

2
%Py + s s = %
D45y - sy = —2

where the assumption has bsen made that the mass per unmit length ¥
associated with the bl Pilsment is concentrated at that filament. In

terms of displacements, the equation of motion becomes
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Coordinate and notation systems



(2)

In fagure 1, filaments -2, -1, 2 and 3 are shown broken at x =0,
with the remaining filaments intact. In general, for two collinear cubs
(at x = 0) through q and s fileaments, let - (m+g) Sn S~ (m+ 1)
and r + 1 § n 5 r + s, respecbively, denote the broken filaments, the

two cuts being separated by r + m + 1 inbact filaments. Then the

boundary conditions are

u,(0,t) =0, -mSnSr, -(m+q+1)2n, nZr+s+l

(3)

and
P, (0,t) =0, -(m+q@ SnS-(m+1), r+1SnSr+s

For x large, the force in each filament approaches the uniform applied

force, denoted by p; that is

Pn(i.m:t) =P (ll’)

For the time-dependent problem, the following initial conditions are

required:

Pn(X;O) =

|
ke

(5)

|
<

T2
—(x,0) =
SE0)



For convenience, let

Pn =PPn
d
= U,
Yn = P\[aan B
Gh _ -
S = ————
n =P FAQ Sp
% = E._é'.d.'.g
Gh
TR i
Gh

Then the equilibrium equation becomes

02U, 3%,
—— +Upyy =2y + Uy = —
BEE dr°

with boundary condibions

(m+q+1) 2n,

|
L

!
]
A
B
iA
3

]

Un(O,'r) =

Pn(O:T) —(m+q)§n§—(m+1),

i
<
e

Pn('i'w,'T') =1

r+l§n§r+s

10

(6)

(7

n2r+s+l

(8)
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and initial conditions

P (£,0) =1
(9)
ou,
—(£,0) =0
oT
The dimensionless forces and displacements are related by
JU,
Po(E,7) = ==
ok
and (10)

Sy = Upgr = Up
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SCLUTIONS

Stress Concentration Factors

The boundary value problem for static loading is defined by
equation (7) with the right hand side set equal to zero, and boundery
conditions {8). The solution is complicated by the fact that the
boundary conditions at £ = 0 are mixed., This difficulty was overcome
in reference 4 by use of an influence‘function technique. TFor a
thorough discussion of this technique, the reader is referred to
reference 4. The influence functions V(&) and N, (&) = av,(&)/de
are, respectively, the nondimensional displacement and force in the

nth  filament when the filament sheet is completely cut along £ = O

and the zeroth filament i1s displaced sxially a unit amount at & =0
while all other filaments are held faixed at £ = 0. In terms of V(&)

and Np(&), the dimensionless force and displacement are given by

[ea)

Ph(E) =1 + Z W4 (&)U (0)
d==c0
w (11)
Up(E) = & + Z V-1 (€)U;(0)
A==-c0
In reference &, V,(&) was found to be
Tt : .
Vp(g) =1 f cos noe~2552 ©/2;4, (12)

o]

Application of boundary conditions (8) to equations (11) yields al?irst
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-(m+L) T+s
P (E) =1 + z m, 5 (£)U;(0) + Z N, _;(£)u;(0)

=-(m+g) 1=+l

- {m+1) s (13)
U () = & + Z V- (YU, (0) + Z Vy.q (8)U, (0)

1=-{m+q) 1=r+l.

since U,(0) = 0 for other values of i, and second

-(m+;ll_) ri+s -(m+q) §n§-(m+1)
0=1+ N,.4(O)u, (0) + Z W4 (0)U;(0), and
i=-(m+q ) s | r+13nSr+s

(14)

which expresses the condition of zero load on the ends of the broken
f1laments.

Equations (14) constitute a set of q + s ;linear algebraic
equations in the ¢ + & unknowns, Un(0). Théar solution set can be
substituted into equations (13) to obtain expressions fpr load and
displacement in any fileament. However, before this can be done, the
1ntegral representation of the influence functionsﬂ ﬁh(g) ‘and Nn(ﬁf
must be evaluated. Only N,(0) = qfﬁ(o)/dg was evaluated in |
reference 4 because the computation of\stress concentration factors,
which was the main purpose of that 1nves%igation, does nct require tﬁe
evaluation of the influence functions for non-zero values of &,
Equation (12) can also be written as
v, () = % L/ﬁﬂ cos 2n8e-2§Sined9 (15)

(o]
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Integration of this expression has been carried out in Appendix A. The

result is
n-l - 2n-2k-1
r(x+4 )¢
Va(8) = (+1)%|Tpn(28) - Ton(2t) - L Z (-1)¥ ( %) , nZo
k=0 I‘(En +.:.]2: - k)
(16)

in which I,, 1is the modified Bessel function of the first kind, Lo,
is the modafied Struve function (see reference 1), and the finite sum
mist be taken to be zero for n = 0. A similar expression for Vn(ﬁ)
can be derived for n < 0; this is not necessary, however, since it can
be seen from equation (15) that V_;(&) = V,(&). Differentiatzon of

equation (16) yields

N (8) = (-1)%|Tppuq (28) + Tny g (28) = (Tppyg (28) + Ly g (26)

¢2n L (- 2k - 3.)1‘(1«. + %)gem?k“z
" 1/2 3y © - 1 ’
El I‘(en + 'é) ¥=0 I‘(En + 5" k)
nzo (1)

in which the finite sum again is to be omitted for n = 0. From

equation (17) it is found that
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4

—_ 8
a(bn? - 1) (18)

N,(0) =

in agreement wath reference L.

With substitution of the sppropriate values from equation (18),
equations (14), which are merely linear algebraic equations for the
displacements of the ends of the broken filaments, can be solwed.
Then the solutions to eguations (1), along wirth the influence functions
given by equations (16) and (17), can be substituted into equations (13)
to obtain the load and displacement of any filament in the sheet.

Tensile stress concentration Tactors for two collinear cuts.- In

the case of a single cubt in a filamentary sheet, the stress concentra-
taon factor depends only upon the numwber of consecutive filaments
traversed by the cut. In reference 4, the stress concentration factor

for a cut across n consecutive filaments was found to be

_ bee8ece(on + 2)
T 3e5efers(2n + 1)

n n=1,23%... (19)
where Ky is the ratio of the maximum load in either of the two inbact
filaments directly adjacent to the cut, to the load at infinity.

In the case of two cubs, two additzonal parameters appear: (1) the
number of broken filaments in the second cut, and (2) the number of
intact filaments separating the twe cuts. TIn genersl, each cut may
sever any number of filaments and any mumber of intact filsments may

separate the two cuts. Hence the general case of two collinear cuts 2s
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without symmetry, and calculations covering reasonably wide variations
of the three pertinent parameters would entall a considerable computa-
tional effort. However, if the problem 1s simplafied by requaring the
cuts to be of equal length, then the most essential features of the
two-cut problem are retained while the computational effort i1s greatly
reduced through consideration of the resulting symmetrzes.

In what follows, then, it is assumed that the two cuts traverse
the same number of filamentg. TIn the analysis of this reduced problem
one of two cases arises, depending on whether the number of intact
f1laments between the cuts (henceforth called "interior filaments") is
even or odd. The analysis of these two cases is presented in
Appendix B.

The double-cut stress concentration factor Ky g 18 defined as the
ratio of the greatest load in the most highly stressed unbroken filament
to the load at infinity, for two collinear cuts, each across n fila-
ments, and separated by m interior filaments. For an odd number
(2r + 1) of interior filaments, the stress concentration factor for

two collainear cuts, each scross n filaments is found in Appendix B

to be

rin
Kn,opa = 1 * Z {Nm(O) + Nr-l(o)} u; (0) (20)
i=r+l

where each U, (0) is calculated from eguations (B4). For an even

number (2r) of interior filaments,
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rtn-l

Bn,op =L * Z {Nﬁi(o) + Nr_i_l(O)} U, (0) (21)

i=r

where each U;(0) dis calculated from eguations (B10).

The stress concentration factors, given by equations (;O) and (21),
have been computed for two equal-length coll;i.nea;r cuts, each triavers:r_ng'
from one to eight filaments and separat!ed by intact filaments ranging in
number from one to 16. The results are presented in Table l,' and are
plotted in figure 2 for the various val}lps of mn, the number ‘?f‘ fila-
ments severed by each cut. Although the curves ‘é.re meangmgful only for
integral values of n, they sre plotted as, cor;tinuous:cu;'vqs' ft‘o%"illﬁg-
trative purposes. Alsgo shown in figure 2 ?aré ‘the single~&:ut stress
concentration factors K,, which are the asymptotic values of Kn,m
Tor large m.

As can be seen in figure 2, the interaction between cubs is
essentially a local phenomenon, being confined to separation distances
(values of m) on the order of the cut length. The results indicatbe
that cuts which are separated by distances greater than their length
may, for all practical purposes, be treated as isolated cuts.

For closely spaced cuts (small m), however, the interaction i1s
pronounced. Hence, the values of Kj 5 for small m are of particular
interest, since they are associated with states of high stress concen-
tration. In order to present a comparison of the severities of single

and double cuts, the stress concentration factors for two cuts of

length n geparated by one and two intact filaments, Kn,l and Kn,z’
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Table 1. Filament stress concentration factors
for two collinear cuts of egual
length
No. of No. of filaments in each cut, n
falaments
e | 2l 2|3 | x| 5|6 | 1|8
1 1.7k | 2.359 | 2.96k [3.543 | 4,102 [ b.646 | 5.177 | 5.698
2 1.2 1.7881 2.1k2 [2.481 | 2.808 | 3.126 | 3.436 | 3.7h0
3 1.368] 1.690 ] 1.989 |2.272 | 2.543 | 2.805 [ 3.061 | 3.310
L 1.3535 | 1.654 | 1.928 (2.185 | 2.430 | 2.666 [2.895 | 3.118
5 1.346 | 1.636 | 1.897 | 2.140 | 2.370 | 2.590 | 2.803 | 3.009
6 1.342 | 1.626 | 1.879 {2.113 | 2.333 | 2.542 | 2. 745 | 2.940
7 1.3450 | 1.620 | 1.867 {2.095 | 2.308 | 2.510 | 2.705 | 2.893
8 1.338 | 1.615| 1.859 |2.082 | 2.200 | 2.488 | 2.677 | 2.859
9 1.612| 1.854 (2,073 { 2.278 | 2.471 | 2.655 | 2.833
10 1.849 [ 2.066 | 2.268 | 2.458 2.639 | 2.813
11 1.846 |2 061 | 2.261 | 2.448 | 2.626 | 2.798
12 2.057 ] 2.255 | 2.4h0 | 2.616 | 2.785
13 2.054 | 2.250 | 2,434 | 2.608 | 2. 775
1k 2.246 | 2.428 [ 2.601 | 2 766
15 2.2h3 | 2.hok [ 2.595 | 2.759
16 2.420 } 2.590 | 2.753
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Stress
concentration

factor,

I Y O ! PO U DO O I
l 2 5 7 9 1 i3

Number of interior filaments, m

Figure 2. TFilament stress concentration factors for two equal-length
collinear cuts



20

are compared with Kon, Ko,47, and Kopypo in figure 3. These parti-
cular wvalues of the single-cut stres:g concentration factor have been
chosen because they represent either the, same total number (2n) of
broken filaments as does Kp p, or the mmber (2n +1 or 2n + 2)
which would be broken if the pair of cubs separated by one or two intact
filaments, cheracterized by Kn,l or Kn,e: were to coalesce. In
figure 3 1t can be seen that the greatest stress concentration factor
is not necessarily associlated with the greatest total number of broken
filaments. This is especaally true in the case of the longer cuts,

due to the fact that the stress concentration factors for double cuts
increase more rapidly with cut length than do the factors for single
cuts across a comparable mmber of filaments. The results suggest that
a design criterion based on the residual strength of a structural
component weakened by a single cut of prescribed length can be uncon-
servabive, even though only cubs of lesser length are present.

Shear force concentration factor for a single cut.- A result which

was not presented in reference 4, but which can be extracted from the
analysis i1s the magnitude of the most severe matrix shear force due to
a single cut of arbitrary length. In the case of a single cut the most
severe matrix shear force occurs in the neighborhood of each end of the
cut. From reference 4, for a cut which starts abt the zeroeth filament
and severs n filaments, the load and displacement of the th

filament are given by
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and double cuts
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n-1
Py(€) =1+ >: Ny _..(8)u.(0) (22)
r=0
n-1
Uy (k) = ¢ + Z Vi.p(8)UL(0) (23)
=0
with
n-1
0=1+ z N;_,(0)U,(0), 052Sn-1 (24)
r=0

The most severe (nondimensional) shear force is given by S,_.3(0) (see

equation (23) and the second of equations ‘(16)) , which is merely

Sp-1(0) = -Up_1(0)

since Up(0) = O because the n®h filement is intect, and Uy_;(0) 1s

¥

the nondimensional displacement of the end of, the (n-l)'th filament.

[}

- i

From symmetry consideratiohns Jthis can be written as
Sp-1(0) = ~U?(0)
or
Smex = |Uo(0)] - ' \=2)

where Sp., is defined as the peak magnitude of the most severe matrix

shear force. Of course, U,(0) varies with the number of broken
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filaments and is found by solution of equations (24) for the appropriate
value of n.
Solution of eguations (ah) for the firsgt six values of n yields

the following values of Spae.

n %smax

L

15/8
35/16
315/128
69%/256

A i B

Inspection of the first six velues indircates that they conform to the

expression

% § = (2D . on 1,03, (26)
o2n-2 [:(n - l)l:]e

This formula has been shown in Appendix € to hold for all positive
values of n. The quantity -i{-;- Smax 1s seen to be the ratio of the
maximun shear force for n > 1 to the maxummm shear force for a

singla broken filament. Hence, it can be viewed as a mabrix shear

' 1n the sensethat it describes

force 'concentration factor,’
the growth of the maxamum sheer force with inereasing cut length.
In this context, 1ts comparison with the filament stress concentration

factor for a single cut (see equatzon (19)) 1s appropriate. Therefore,

these two quantities have been plotted in figure & for values of n
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Figure 4. Single—cut concentration factors for filament stress and matrix
shear force
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up to 13. Both factors are unbounded as n approaches 1nfinity.
However, their relative magnitudes for large n can be determinéd by

wrating equation (19) in the form

k 2% nin +1)!
n (en + 1)t

and forming the ratio

2 Smex _n(en + 1)[(2n)'J2
En o phele gyt

(27)

By the use of asymphtotic formulas for the factorial fumctions, 1t 1s

found that

—=2 5], as n - (28)

Equations (27) and (28) indicate that the dimensionless maximum matrix
shear force and tensile force in the filaments are of comparable
megnitude for all values of n; however, as seen in figure b, the shear
force initially increases more rapidly with cut length than does the
Tilament tensile force. This result suggests that some composites
might be more prone to tensile failure when weskened by small flaws,
but more susceptible to matrix shear failure when lzrger flaws are
present.

Tengile stress concentration factors for periodic collinear cuts.-

The pericdic collinear cut configuration i1s illustrated in faigure 5.
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Bach cut is across n filaments. The period of the cuts, that is, the
distance (in number of filaments) between the first broken filsments in
succeeding cuts, is denoted by the integer R. The periodic configura-
tion is of interest because, within the limitations of the present
model, the periodic-cut problem is equivalent to the problem of a
central transverse cut across n filaments in a failamentary strip which
iz R filsments wide. Of course, for the problem to be meaningful,

R must be greater than n. The expressions for load and displacement

are given by equations (11) subject to the mixed boundary conditions

P,(0) =0, 1 =Rr, B* +1, «v., Re +n -1, r = 0, #1, *2, ..,

(29)
and
Ui(O) =0 for all other 1

where, for convenience, one of the cuts 1s begun at the zeroeth fila-

ment. Application of boundary conditions (29) to equations (11) yrelds

P;(E) = 1 + Z {Ni-Rm(g)URm(o) + W; _pm-1. (& YUpp+ (0)

M==c

+ ... F Ni_Rm_n-[-l(E )Umm_l(o)} '(30)
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Uj_(g) = £ + Z {vi_m(g)um(o) +vi_m_l(§)URﬂl+1(o)

M=

Foaer + Vg g oo ( g}URm+n_l(o)} (31)

since U;(0) = O for other values of i, and

0=1+% Z {Ni_Rm(O)Um(O) + N1 Rn-1.(0)URp+1 (0)

N==0

I':O, il, ﬂ, e

(32)

which expresses the condition of zero load on the ends of the broken

filaments. Replacing 1 by Rr + 3 in equabtions, (32) yields

0=t Z {NR(I"‘m)"‘j (0)Ugy(0) + NR(r-m)+j_3_(0)URm+l(0)

M=

$3%

+ ... +NB(r-m)+j-n+1(o)Uﬁn+n-l(0:)k}’ 0=3=n-1

Now letting k =r - m gives

0=1+ z {NRI{.'}‘J (O)UR(r-k) (0) + NRk+j-l(0)UR(r-k)+l(O)

k=-x

Faeo ot NPli+j-n+l(O)UR(r-—k)m-l(o)} , 0535n-1 (33)
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However, due to the periodicity of the displacements,

UR(r-k)(O) = U, (0), UR(p-k )41 = U, (0), ete., so that equations (33)

beccme

0 =1+ z {NRH& (0)U,(0) + Wgyty-1(0)U1(0)
k-0

tael t NBk+j_n+l(o)Un_l(o)} , 0535n-1

which can alsc be written as

5]

Q=1+ UO(O) Z NR].{-I-j(O) + Ul(o) Z NRk'Fj—l(O)
k=-m k=0

+ oene "]‘Un_l(O) Z NRk+j~n+l(O)’ O g j gn - 1 (5"")
k==co

which are merely n linear algebraic equations for the Uj (0)'s.
It remains to evaluate the coeffilcients given by the infinite series.

This has been done in Appendix D, and the resulits are

oo

Z Npiery (0) = & {cot %(j - %) - cot -g(j + %)} (35)

K==

A further slight simplification of eguations (30), (31), and (3k4) is
afforded by noting the symmebry of the displacements’in each cut, which

gives U,(0) = U,_1(0), UL(0) = U, o(0), ete. This simplification
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reduces the order of the system by roughly half (actually, by n/2

-1
equations for n even, and by = for n odd).

The filament stress concentration factor is obtained by calculating
the maxamm load in the first intact filament at either end of any of

the cuts. For this purpose, the ntE  rilament is chosen; thus the

stress concentration factor i1s given by

n even.

K§ =P, (0) = 1 +U,(0) Z {Nn-Rk(o) + Nl-Rk(O)}

=0

0

+ Ul(O) Z {NII*Rk*l(O) + N2-Rk(o)} + oaes

* U/ 1(0) z {Nn/z rer(0) + Ny -Rk(o)}

(36)

k-:-.oo
cee +TU 0 W 0) + N 0
' +_:2()Z{n—+§--3k() EZ—-Rk()}
5 k=-wo * 7o
tU,, (0) Warl o (0)
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where it should be noted that Nj py(0) = Vg ;(0), and whére the
U,(0)'s have been calculated from equations (34) for specified values
of n and R (cut length and period).

The stress concentration factor KE has been calculated for
values of n from 1 to 6, and for values of R up to 36. The results
are presented in Table 2. The results are plotted in figure 6, for a
limited range of R - n, in terms of net section load (average load in
the unbroken filaments) rather than average load at infinity, in
keeping with customary engineering practice. Ageain, although the
regsults are meaningful only for integral velues of R - n, they are
plotted as contimuous curves for ease of illustration. Also plotted in
figure 6 are results of an approximate analysis by Dixon (see refer-
ence %), which were employed by Zender and Deaton in reference 9 to
convert the infinite-sheet results of Hedgepeth (reference &) to a
form usable for analyzing their experimental data on strips of fila-
mentary material. As can be seen in figure 6, the results of the
approximate analysis of Dixon are in close agreement with the present
results except for cuts whoss length approaches the width of the strip.
In this range, the predictions of reference 3 are seen to underestimate
the stress concentration factor. However, in the range of cut length
to strip width ratios of practical interest, Dixon'’s approximate
formula, although slightly uncongervative, is quite sufficiently
accurate to Jjustify its use. For example, although the comparison is

not shown here, Dixon's results, when applied to the data of Zender



Table 2.

Filament stress concentration factors for

periodic collinear cuts (based on net
section load)

Net Cut length, n
RS > 3 " 5 | 6
1 1.000 | 1..000 | 1.000 |1.000 |1.000 |1.000
2 1..000 | 1.000 | 1.000 |1.000 |21.000 |1.0C0
3 1.06L | 1.085 |1.098 {1.105 [1.110 |1.113
b 1.106 | 1.155 | 1.182 [1.199 |i.210 {1.218
5 1.138 | 1.209 [1.250 |1.277 |%.295 |1.308
6 1.163 | 1.251 11.305 | 1.34%2 | 1.367 |1.386
7 1.182 | 1.285 {1.35L |1.396 {Ll.hk29 |1.453
8 1.198 | 1.31% |1 390 |1.443 71482 [1.512
9 1.210 | 1.337 |l.k22 | 1.483 |1.529 [1.563
10 1.221 | 1.357 | 1.b50 |1.518 |1.569 }|1.609
11 1.229 | L.374 | 1.k75 |1.549 {1.606 |1.650
12 1.237 | 1.380 | 1.ho7 |1.576 §11.638 |1.687
15 1.25k | 1.k2h 11.548 | 1.642 {1.717 |L1.778
20 1.272 | 1.h62 |1.605 |1.718 |1.810 |1.886
25 1.28k | 1.487 | 1.643 | 1.769 1;873 1.961°
30 1.201 | 1.50% |1.670 1:8b6 1.919 2.016

32
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Figure 6. Filament stress concenbration factors for periodic collinear
cuts



34

and Deaton (reference 9), were found to be indistinguishable from the

present results.

Dynamic stress concentration factors for two collinear cubs.- In

reference 4, dynsmic stress concentration factors were found for cases
in which a cut is suddenly introduced in a stretched filament sheet
and, in a separate analysis, an apparent upper limit of 1.27 was found
for the dynamic response factor (ratio of maximum dynamic to static
stress concentration factor). Investigated were cuts across one, two,
and three filaments, and the limiting case of a finite-length slit in
a so-called continuous stringer sheet which 1s an orthotropic mediim
with Tinnate extensional stiffness in the longitudinal direction,
infinite extensional stiffness in the trensverse direction, and finite
shear stiffness.

In order to investigate the possibility of a departurs from the
trend for a single cut, the analysis of reference 4 has been extended
to two of the simplest double-cut cases., In each case the two cuts are
separated by a single intact falament, with totals of two and four fila-
ments being broken in the two cases. The dynamic resulis have been
obtained by extending the single-cut dynamic analysis of reference 4 in
the same way that the static analysis is extended. The Laplace trans-
form is applied to equations (7) and (8), and initial conditions (9) are
employed to obtain an expression for the trausformed siress concentra-
tion factor. Then a tem-by-term inversion of the transformed stress
concentration factor is carried out to obbain a series expression for

the dynamic stress concentration factor which can be made as accurste
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as desired by the retention of a sufficient rnumber of terms. The
dynamic analysis is presented in Appendix E. The reader is referred
to reference 4 for a complete discussion of the analyticel technique.
The resulis are plotted in figure 7, where some of the results
from reference & are reproduced for purposes of comparison. By
comparison of the peak dynamic double-cul values with the appropriate
static values from Table 1, it 15 found thet the dynamic response
factors for the cases of two and four broken filaments are 1.22 and
l.23, respechtively. This resulb is 1n keeping with the trend noted
in reference 4 for single cuts. The fact that additional double-cut
caleulations have not been made because of their rapidly increasing
camplexity precludes the drawing of sweeping conclusions concerning
the overall behavior of the double-cut dynamic response factor,
nevertheless, radical departure from the s.ingle-»cut trend appears to
be unlikely. At the least, the present resulis do z'aothang 0 contradzed
the conclusion reached in reference L that dyneamic effects appear to be

of secondary imporbance in composite materizals of the type investigatbed.

Filament and Matrixz Loads
In this section, expressions are obtained for the most severe
matrix shear forces for some single-cut and double-cut cases, in order
to illustrate their behavior in the neighborhood of the cuts, and how
they vary along the filaments. In addibion, loads in broken filasments
are calculated for some single-cut cases, and with the aid of an

idealized model their load-recovery characterisitics are examined in
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connection with a current composite btensile failure model (see

reference 8).

Mabtrix shear loads.- The dimensicnless shear force per unit length

between the n°l and (n#1)"R filsments is given by

Sp(E) = Upyq (&) - UL(E) (37

In either a single-cut or double-cut configuration, the grestest matrix
shear load 1s between a broken filament and an unbroken one. In the
case of a double cut, the unbroken filement 1s en interior one. To
find the matrix shear forces in a single-cut problem, the solutions to
equations (24) for s specified mumber of broken filaments are subsbituted
into equation (23), yielding the displacements of the filsments. Then
the appropriate displacements are substitubed inbo egquation (5?} to
obtain the matrlx shear load as a function of the longitudinal daistance
from the cub. For = double cut either equations (A4) or (A10) are
solved, depending on the number of interior filoments, and thelr
solutions are substitubted into the second of eguaticns (A3) or (49),
respectavely, to obtain dasplacements which, in turn, are substituted
inbo equation (37) to obtain the matrax shear load of inberest. The
influence functions V, (&) reqmred in equations (23), (43), or (49)
are given by equation (16).

The results for single cubts across one, two, and three filsments

are;
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Single cub ascross one filament:

S,(8) = %@% + 2{T,(28) - I (28} - %{L_l(eg) - Il(ag)}] (38)

. 7
where $,(0) = - Y

Single cut across two filaments:

5.(8) = 38“ [;{Io(eg) Locas)} * %(2 - fé){l,_l(zg) - 11(2;% . i?](
39)

!
where 83.({} = -5

Single cut scross three filsments:

So(8) = - 32[(1+ * ‘2; 3Zi){10(2§) - Lo(eg)} g(zo * ﬂig

+ 201 (et) -1 (25)} Sk ;o) (x0)
54){ -t L xtd :t§5
where S5(0) = - —;—g .

The results for double cukbs are:

Two cubs, cach across one filament; with one intericr filament:

5.(2) = 12;‘{(2 + *55){30(2@ - Lo(zs} - %(1 ¥ -55)%-1(2@) - I:L(?Eé%

L __l?_} (k1)

where 50(0) = %g e
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Two cuts, each across two filaments, with one interior Pilswment:

8 (¢) = -é%g-%’% 2(2 + é){zs(zg) - LO{2§§+ %(1 + ?}é_l(eg} - zl{eg)}

k12 3 2, 30 - & 18
-3 55(1;(1 =5 g){zc(zg) LO(E’E& + g(a 3
20 b 56 240
+ S Knog(28) - 1 (25)} ————— S (42)
EL){j t * wE gl w&ﬁ)

where §5(0) = EfggggT 1, and the bars are used to denote double-cut
shear loads. A comparison of eguations (41) and (42) will indicate
how rapidly the complexaty of double-cut shear force calculations
inereases with cut length.

These most severe shear loads are plotted in normalized form in
figure & Also shown in figure 8 for easy reference is a table of
thelr maximum amplitudes. As can be seen, the normalized shear loads
are distinguished from one another mainly by their retes of deecay with
drstance elong the filaments, the decay being more gradual for longer
cubs. It might also be noted that the peal shear loads for double cuts
are less severe than those for single cubts across comparzble or even
smaller numbers of filaments. This would appear to be due to the fact
that double cuts are directly adjacent to larger nmubers of intact
filaments (three or four) than are single cubs {(always two); hence,
the load lost by the broken filaments 1s distributed over a larger

nunber of intsct filamenis in the case of double cubs.
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Loads in broken filaments.~ The calculation of loads in broken

filaments 15 of interest because it facilitates an examnation of the
ab1lity of the composite matrix to transfer the load back into the
broken filaments and, hence, gives a meagure of the degree of local-
1zation of the perturbed stress state.
For a single cut across n consecutive filaments (startlng with
the zeroeth filament), the load in the iR £ilament is given by
n-1

Pi(g) =1+ z Ny ( £)0(0)

m=0

where the broken filaments are rdentified by 1 =0,1, +.., n - L. Each
Um(O) 1s one of a unidque set associated with a specific value of n.
The influence function Nj(g) is given.by equation (17). TLoads in the
broken filaments have been calculated for a single cut across one, two
and three filaments. The results are:

One broken filament:

Po(E) =1 - g@_l(zg) - Iﬂ%} (43)

where P,(0) = 0.

Two broken filaments:

P, (&) = By() = 1 - %:l %éo(eg) - Io(eg}- 556"1(2‘3)

- Il(ag)} + = (%)
ng

where Po(0) = P1(0) = 0.
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Three broken filaments:

Py(8) = By(8) =1 - 2% (2 ¥ 22 ¥ i’%}{n_geg) - Iﬁeg%

- %(? + %g)%b(:eg) - 10(259 - ;;%é- - :i% (45)

o -2+ fen -10)

+ 2% (2¢) - T (2g9 22 ﬂ(%)
eL° ° t2

where P,(0) = Pl(Q) = P,(0) = 0.

fhe results ars plotted in Pigure 9. .The 90 percent load-rehévery
level 1s noted on Figure 9 for later reference. It cen be seen that
the longitudingl distance regquared by & broken filament to recover a
given fraction of its far-field load increasés congaderably with cut,
length. This result is of interest in connection with the statistical
failure analysis of reference 8, in which & significant parameter is
the so-called "ineffective length' of a broken filament. The ineffective
length 1s defined there as that portion of the length of a broken
frlement over which it supports less than 90 percent of i1ts share of
the load. In the next section, an idealized model is employed for
caleulating ineffective lengths with the ald of figure 9, and the
iamplications of the results for the stataistical failure analysis of

reference 8 are briefly discussed.
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Ineffective length calculation.- Studies cited in references 6

and 8 suggest that the ineffective length, based on a load-recovery
fraction of 90 percent of a single broken filament embedded in a matrix,
can vary from one up to several hundred filament diameters, depending
on the geometry of the composite and the mechanical properties of its
constituents. Calculations have been made in reference 8, for example,
of ineffective length as a function of filament volume fraction (ratio
of filament volume to composite volume), vp, and E/G, the ratio of
filament Young's modulus to matrix shear modulus. The resulis are
presented in the form of a family of curves, each member of which
corresponds to a particular volume fraction.

In the case of a composite containing a cufb, an additional parameter
which would be expected to influence the ineffective length i1s the
number of broken filaments. With the aid of an idealized model, the
present results can be used to cbtain an indication of the influence
of this parameter. A typical cross section of this model is shown in
the sketch. For the present calculations, it is assumed that the
thickness of the sheet 1s egual to the filament diameter. Then for
this model the filament volume fraction is given by vp = fgg’ where
de 1s the filament diameter and 4 1s the filament spacing.

In terms of the pertinent mechanicel and geometrical parameters,
the axial distance from the cut i1s given by

d
Gh :
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= I\t (47)

In order to cbtain estimates of ineffective length changes due to the
breaking of addaitional filaments, 1t 18 necessary to determine the
values of &, denoted by &', at which the broken filaments of interest
have recovered 90 percent of their far-field load. These values of &,
along with the appropriate values of E/G and vg, are then substituted
into equation (47) to obtain values of the nondimensional ineffective

t
length, denoted by ;C—f
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This procedure has been carried oubt for two values of Ve and a
range of wvalues of E/G. The cases of cubs across one, two and thres
filaments have been considered 1In the case of a cut across three
filaments, the 90 percent recovery figure applies to either of the
outer filaments in the cut rather than the middle filament, which would
have yirelded even greater values of ineffective length. The results
are presented in faigure 10

The mathematical model employed in reference 8 consists of a sangle
filament encased in a thin layer of shear-carrying material (binder)
which, in turn, 18 embedded in an infinate body to which are assigned
the average stiffness properties of the composite material. Hence,
interaction between neighboring filaments is i1gnored. In addition,
shear stresses in the average material are assumed to decay in a
negligible distance from 1ts interface with the thin layer of binder
material. Because of these basic differences, the results of
reference 8 are not included in figure 10.

It should be noted, however, that the results of reference 8 yield
a single curve for each filament volume fraction, whereas the present
results yreld a family of curves, each member of which corresponds to
a drfferent number of broken filaments. As can be seen, large changes
in 1neffective falament length can result from varying the munber of
broken filaments The failure analysis of reference 8, however, depends
on a fixed value of ineffective length, regardless of the number and

distrabution of breaks in the composites. The present results suggest
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that changes in ineffective length due to flaw size should be accounted
for in statistlical studies of the ultimate strength of filamentary

composites. It might also he noted that the preseﬁt results predact

}
a more gradual recovery of load by broken filaments than does the

analysis of reference 8.
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CONCLUDING REMARKS

Analyses have been conducted of the loads and deformebions in a
filament-st;ffenea sheef weakened by two collinear cuts and by periodic
collinear cuts. Also, some results have been obtained for the case of

a single cut in addition to those previously repcrted. It has been

- N ]

found that signiflcanf interaction between collinear cuts 1s largely
; [
restricted to cases in whaich the distance between cubts 1s no greater
ty

than the cut length. Tt is seen that two closely spaced cuts can cause
greater stress concentration than a single cub across a comparable total
number of filaments. In the case of periodic collinear cubs, exact
results indicate that a stress concentration factor derived for a
transverse cut in an elastic strip in an earlier approximate analysis
by Dixon (reference 3) is adequate Ffor practical applications, although
1t 1s somewhat unconservative for cut lengths which approach the strip
width.

Lamited calceulstions of dynamic strese concentration factors for
suddenly introduced collinear cubts support the eariier conclusion that
dynamw.c effects are not of great i1mportance in filamenbtary composites
of the type investigated. )

Maximum shear force calculations for single cuts of various
lengths, which show that maximum shear forces grow mcre rapidly with
cut length than maximum tensile forces, might be useful in determining

whether a damaged composite material is more susceptible to shear

failure or tensile failure.
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Calculatlons of loads in broken filaments show significant changes
in wneffective filament length with cut length, indicating that
statistical strength analyses of composite matexaals should consider
the incorporation of a flaw-size parsmeter.

The present analyses are based on linear, small-deflection theory

of a single filamenbary sheet, whereas filamentary composites usually

L] r "

are many filaments thick, and are subject to various nonlinear effects,

-~

such as plastic deformations, large deflections and straighbtening of
13

the filaments. Therefore, it appears that fubure analybical studies

z

might be fruitfully directed toward analysis of better models of

) * -
composite materials.
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APFENDIX A
EVALUATION OF INFLUENCE FUNCTION V(&)

The influence function V,(£) 1is given by
s .

¥

b
v, (&) = -jif cos no e-2& sin /2 49 (A1)
o

which can be changed tc

i18
v () = lf cos 2no e~25 511 © 39 (a2)
n 7 g

Let & = e"j"’:/‘2 ®; then (A2) becomes

19
Vy = ..l_f (821119 + e-21n8)e21.t13 sin € gp
2nv g

or

7
Vy = 51_ [cos(E@ sin 8+ 2n0) + cos{20 sin® - 2nd) d{l}
wv o

I
+ .21_ [sin(E(IJ sin @ + 2n8) + sin{2® san 6 - 2n8) d9]
"0



23

which becomes

;
vV, = .35 {;r_Qn(aqa) + J2n(2¢§
i % r
* A= f sin(2n6 + 26 sin 8) - sin(2n6 - 20 sin 9){de  (A3)
0

where Jo, 18 the Bessel function of the first kind. The remaining

integral. may be evaluated to give

v, = %{]’_gn(ail’) + Jan(EQ)} + %{Egn(-@) - Een(aq% (ak)

where By, s the Weber function (see reference 1). Now
BEo,(-20)= -E_o,(20); also, E_o,(20) = Ep,(20) for integer values

of n, and J.2,(20) = Jon(28). Then equation (A4) becomes

Vy = Jop(20) - iBo,(28) (a5)
Nobing that ¢ = £el™/2, it 15 seen that

Iop(28) = (-1)°I,,(28) (46)

where 1211 is the modified Bessel function of the first kind From

reference 1, for n an integer,



5k

-
- H(2®), n=0

1 2
=. - Hy, (20), n

T 1
_ I'len + = - k
L k=0 g ( o )

v

vwhere Hop 1s the Struve function. Making the change of variable gives

Cang2t), n=o

e 1T/2
Een( 2§e ) - < Il—l

kl{k + l) §2n—21':-l
1(-1)%r (ee)+ X S 2
2n T Lo

k=0

1

-

where Lo, is the modified Struve function (see reference 1).
Substitution of (A6) and (AT) anto (A5) gives
n-1 kP(k + %{)§2n-2k-1

T(8) = (013,020 - Ip2t) - ) (1) -
* 120 I'(En * 2 1;)

(48)

where the finite sum is to be omitted for n = 0.
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APPENDTY B

STRESS CONCEWTRATICN FACTORS FOR TWO

EQUAL-LENCTH COLLINEAR CUTS

In this appendix attention is restricted to problems in which the
two collinear cubts are of equal length. This restrachbion i1s effeckted

by setting q equal to s in equations {11) and (12), which yields

=(m+1) r+s A
B(8) =1+ ) (80,00 ¢ ) K,y (6)0,00)
i=-(m+s) L=r+l
> (B1)
-{m+1) )
U(E) = & + Z v (&)1, (0) + Z v (£)U,(0)
1= (mts) 1=r+l. J
and
_(m*l) s
C=1x ). H U ¢ ) m (00,
ime(us) i=r+l
(m+.s)§n§—(m’+l), r+13aSr+s (B2)

One of two cases arises, depending on whether the number of intact
filaments between the cuts (inberior filaments) is odd or even. The

case of an odd number of interior filaments is treated first.

0dd number of interior filaments.- When the twe cuts are of equal

length, the displacements are symmetric with respect to the line whach
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equally divides the group of interior filaments. In this case it 1is
convenient to take the zeroth filament as the line of symmebtry, so that
m =71 in eguations (Bl) and (B2), and the tobal number of interior
filaments 1s 2r + 1. With U (0) = U_,(0) beceause of symmetry,

equations (BL) and (B2) become after some manipulatron

s
‘\
By(E) =1 + 2 {Nm(g) + N, ;3_(&)} U, (0)
1=r+l .
r+s > (B3)
U (t) = '+ Z %.rm_i(g) +V _l('g)} U, (0)
\ i=ral g
and
s
0=1+ Z N4, (0) + l\fn;l(O)} 0,0, r+1Zinlrts
L=+l

(B4)

The meximum load will occur adjacent to the cuts (& = 0) an the two
outermost interior filaments (n = ¥r). Hence, from the first of
equations (B3), the stress concentration factor for two cubs across

s filaments separated by 2r + 1 Tilaments 1s
s
Ks,2r+'l = Pr(o) =1+ Z 611'4-5_(0) + Nr-i(o)} Ui(o) (35)
i=r+l

where the U;(0)'s are calculated from equation (BM) for specified

values of r and s.
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Even number of interior filaments.- In this case, the interior

filaments are assumed to be identified by - m S n € r, vhich with

r=m-1 becomes -mSnSm-1. Equations (BL) and (B2) take the

form
~(m+1) mts-1 R
P (E) =1+ Z Ny—q (E)U; (0) + Z N,_, (&)U, (0)
1=-(m+s) i ' 1=m
) (B6)
~(m+1) N wts-1
Up(E) = & + Z Vn-2(€)U,(0) + Z V-1 (£)U,(0)
. < f y=-(mbs) . 1=m J
and
-(m+1) mhs-1
0=1+, ;; N,.,(0)u, (0)+ E: N,.,(0)u; (0),
1=-(m+s) ' r o =m .
~(m+s)Sns- (m+1), n<nSm+s-1 (BT)

For this configuration, the axaial line of symmetry is located between

the filaments numbered O and -1, which means that
U_;(0) = U, ;7(0) (B8)

After substrbution from eguation (B8) and some manipulation,

equations (B6) and (B7) become
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ra-1 N\
1=
) (89)
r+s-1
U8 = 5+ ) {vn+l+l(§) + vn_l(g}vl(o)
i=r -
and
r+s-1
0 =1+ E: {§h+1+l(o) + N _l(OE}Ui(O), rSnSr+s-1
1= ) (BLO)
In this case the maximum load occurs for n = - r, - 1. Then with

n=7r -1 1in the first of equations (BY), the stress concentration
factor for two cuts across s filaments, separated by 2r filaments,

is
r+s-1

Ky pp = Prop(0) =1 + z {Nﬁl(o) + Nr_l_l(0§Ul(O) (BL1)

, L=y

where the Ul(o)'s are calculated from eguations (Bl1O) for specified

values of r and s.
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APPENDIX C
GENERAL PROOF OF FORMULA (26)%

From the system of linear algebrailc equations

n-l

<
z N; (0)U.(0) =-1, o=z
=}

IA

n -1 (c1)

1t 1s desired to cobtain an expression for Ub(O) which is wvalid for

all positive values of n. It 1s convenient to let

I

- . r __1
Hk(o)"hNk(o) 2(21:-1 2k+1>

and.

Then the system (CL) becomes

m

Z H (0} =-1, 0
k=0

A
H
nA
=)

*Communicated to the author by W. J. Harrington, Professor of
Mathematics, North Carolina State University.
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or, in an eduivalent form

!

1
o
-

i 1 1
((-1eL)Wy + {1 - =Wy + . . .+ - Wy =
° ( 3)1 (2m-l 2n+l)m

] 1 1 L
1-= =1~ « s e - = -
( 3)?4‘0 + (-1-1)w + + ( npialrves l)wm 2

(m1”3_2ml_l>wo+...+(-1-1)wml+(1-—)wm~-2
\(Eml_l-ami])%+. . '+(1'_)Wm-l+(’l“l)wm=‘2J

The system (C2) can be replaced by a new system composed of the
equations of ((2) linearly combined 1n the following manner:

(1) Pirst equation multaplied by (- %) 3

(2) Bum of farst two eguations multiplied by (- Il:) ;

(3) Sum of first three equations multiplied by (- é‘-);

1

(wtl). Sum of first (m+l) equations multiplied by (- TS

Y. DNow let

, and the new system has the form

W
Rl e

3
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— ....E—- — e
l —l --2: "'“}:' - - l WO RA
3 5 2m - 1

l i

— l “'l "“‘}“' - a0 l wl l

3 5 am - 3

L 1 L

—_— —_ 1 «ltcc w l

5 3 2m - 5|1 °

éEE . = - ({:3)

1 1 -

&n.‘l&;“}.‘ atol‘-l .W‘nl—l l
l l “.‘.E l Wm 1-

_&n—l—lﬁm-l 3 1

The object is to caleulate wp. To this end 1t would be advantageous
o have a row vector which’ig orthogonsl to all column vectors of the
mabrix A except the first. On page 102 of reference 7 1s given the

adentity

il
2k\f2m - 2K 1
il = ) (k)( " k)m

o fE\fem -2 4
‘=‘ k m -k ="8mo (Glf")

where Opy 15 the Kronecker delta. With m Z1 (J_ e., n 2 2), thas

LI

provides a row vector,

@EEE:. e @
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which is orthogonal to the second column of the matrix A. It can be
shown that this vector i1s orthogonal to all the columns of A except
the first. The proof i1s by induction By way of example, it will be

shown that the identity (CY) implies that

B fo\fom - 2k 1
Gj(m)EZ k/)J\m-%k =0 if mg2 (c6)
k=0 Bk -2

Bquation (C6) can be written

). S ()

e} = - = cr
s = -5\ 2% - 1 (en
k=
Also,
2k + 2 ok ok
E+lj=2\k/+2k+1
£k 2k 1
=k [f~2lk |- =
- , k + 4
Thus

' ¥

ok + 2 oK ok
ok + 1 ~1Lk*\ 2l k

2k -1 2k -1 (2 -r1)(k + 1)
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Thersefore, (C7) becomes

m-l

“m 2k\ fom - 2k ~ 2)
GB(m) z-%‘-(ﬂl)-i'%Gl(m-l)‘*‘%Z(K)(m-k~l )'kil (c8)
k=0

On page 12L of veference 7, problem 1l(a), appears an identity such

that

2 o\ fon - o 1 Lfen + 8
z<k) n~k)k+lm—2—n+l) (0o}
k=0

Thus 2f m > 1, then Gy(m - 1) =0, and from (C8) and (£9) ¥here

2m
G5(m) =-}n@13)+-2—.}<m)=0, m
3 3 2

Samiigr results can be cbhtained for Gﬁ(m}, G7(m} , ebe., from which the

results

AV

1

pattern of the anduction proof can be recognined.
Thus, for each m :: 1, the row vector (C5) 1s orthogonal to all
column vectors of the matrix 4 except the farst., Premmlitaplication of

(0%) by the row vector (C3) yrelds

B, fok\ fom - 2k = ok fow -
Z(k)(m-k)'&}—;—l ""ozz (k)(m-k) {c10)
k=0 k=0

+

In problem 10(=a), page 121, of reference 7, the summation on the left-

hand side of (C10) is evalusted; the result iLs
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= /2k\ /om - 2k\ 1 Shim ) gkm(mz)g
lgb(k)(m'k/gk+l=(&n+l)(%n)”_ (em + 1)! (ci1)

Also, on page 130 of reference 7 the right-hand side of (C10) is

evaluated as

m

Z(ik)(ei - ik) - o (c12)

k=0

By use of (C11) and (Cl2), the solution to egquation (ClO) 1s found to be

L + 1)1
W o= = Uo(o) = (_‘Q_IL__J;)_
O x 22ﬂ1(m1)2
or, replacing m by n - 1,
by (en - 1)2
= Un(0) = — n = 1,2,3
x 0 220-2(n - 1){]% e

which is equivalent to equation (26).
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APPENDIX D

SUMMATTION OF THE INFINITE SERIES :E: N3k+j(o)

~= =03
. e
The anfinite series to be summed 1s given bf

[xe]

ME2) =) gy 0) (o1)

k=00

where Nﬁk+3(o) 15 given by

b
as(Re + 3)% - 1)

Npieq5(0) =

and vhere R 1is a positive integer, k 1s an integer, and j 18 an

integer such that R > J . Then equation (D1) can be written as

o0

s e

which can be changed to

co

Awa) =L ) . (v2)
S
R 2 R 2

Therefore the problem is equivalent to summng the series
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[25]

. 1.
?(a,B) = Z TSI (D3)

K==

R 2 R 2

The problem is emensble to a method presemted an reference 2. We

where o = - }—(;j - E), B =~ E(J + }_)’ a and B not integers.

investigate the contour integral

7t cot 7z
Bq = fcq I dz (D)

2m+l ) /i
where Cq ils the square contour with corners at z = (q + %)elﬂ( )/

where m =1, 2, 3, and 4, and g 18 a positive integer. The presence

2

of cot #z 1n the integrand of (BY) provides a pole at each integer
value of z. On each side of the contour cot =%z is bounded, so that

lum By = 0. Calculation of residues at the poles enclosed by the
g

contour then yields
><]

cot s ~ coct =P 1
1 By == + + =0
e L (ch ﬁ—a) Z (k - @)(k - 8)

= w0

so that

©

5‘ 1 T {cot np - cot :n‘cr.) (D5)
k I (

k—a.)(k-ﬁ)=on-.3



67

Substitution of (C5) into (C2), noting that o = - %('3 - Jg-) and
1 1 .

B =-=|g+ =], yields
R(J 2)’

MR,3) = néé-(ﬂR){cot g( - %) - cot %(J + -';_'-)}

or

Z NBk+J(0) = %{:o’c %(}- -Jé'-) - cot g—(a + %)}

k=00
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APPENDIX E

CALCULATION OF DYNAMIC STRESS CONCENTRATION FACTORS

In dimensionless form the governing equations are

Conservation of momentum:

v, 3%u,
+ Upgp - 2Uy + Upoy = + (E1)
dE2 dr2
Boundary conditions: ! \
s 1
Un(O,'r)=0, -mSnSo, - (m+ g+ 1) 2n, nZr+s+1
p (0,7} = 0, -(n+q)Sns- (m+1), r+1SnsSr+s (E2)
P (¥,1) =1 (E3)
Initial conditions:
P (6,0) =1
(Bl)
U,
__..ri(g,o) =0
oT

Applacation of the Laplace transform to equations (EL) to (E3) and use

of equations (B4) yield

+ U - (2+ 82 Ul = - Lk E&5)
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with
Uh(0,¢) = 0, -nsnlr, -(m+ q) 2n, nZr+s+1
PA(0,8) = 0, -m+g)Ens-(m+1), r+1S%aSr+s (86)
%%(ib,c)=%

where the first of equations (EY) has been converted to the condition
U (&,0) = &, and the asterisks denote transformed quantities.
Following the procedure of reference 4, use can be made of the

unit solution to write the transformed loads and displacements in the

form
-(m+1) .
P¥(e,8) =L+ w¥ 5 (£,6)0%0,0)
§ =-(m+q}
™S
+ Z Nz_i(g,z)Uf(o,é) (ET)
1=+l
~{m+1.)
ul(E,8) = -g- = Z v, L (8,8)U5(0,8)
1=-(m+q)

r+s
+ Z Vi1 (£,8)U5(0,8) (E8)

1=r+l
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with the remailning boundary conditirons (ES) teking the form

-(m+l)
0=l ) T80
=—(m+q_)
s
-(m+ @) SnS- (m+1),
+ Z Np.3(0,£)U;(0,8), (E9)
T r+1SnsSr+s

Here the investigation is restricted to the cases of two equal-
length collinear cuts separated by a single intact filawment, which for
convenience is taken to be the zeroeth filament. Thus, wath m =r = 0,

qa = s, and symmetry of displacements accounted for, equations (B7) and

(E9) become

Pa(E8) = ¢ +) {mzﬁ(e,g) * N::-l(g,_c.}ui(o,s) - (mo0)
i=1

and.

{FaY

0 =

ure} -

s (E11)

)
+Z {N;_G(O:g) + Nfl(o,é‘» U;(-(O,g), 1 § n
1=l

so that the cuts are separated by the zeroeth Ffilament, and each cut
severs s filements. The transformed load in the zeroeth filament,

which is the most highly stressed, is given by

S
PX(£,8) = % + z ﬁrf(g,g) + Nfl(e,ﬁﬂuj.f(o,i) (E12)
1=l
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The stress concentration factor 1s the maximum valuve of this load, which

occurs at £ = 0. Hence, the transformed stress concentration factor

for two cuts across n Tilaments and separated by a single intact

filament 1s given by

Ky 1(6) = Ba(0,6) = £ +Z G«f(o,g) + Nfi(o,gﬁvi*(o,f;)
a=h

(EL3)

The transformed influence Punction was found in reference % tc be

i
N:;(O:Q) = - -::-'t- f cos me\/h s1n° -Z— + (;2 dse
0

(E1d)

From equation (ELY¥) 1% can be seen that N;(O, &) = I\Ifm(o, £), so that

equations (E13) and (Ell) can be written as

el

n
Kp,1(8) =5+ 2 z N;(0,6)U;(0,¢)
i=1l

0 =

=

* 2 @;‘i(o’g) + N;J.(O?égUf(O;C); *LSrsn
1=k

For the cases in whaich each cut 1s across one and two filaments,

solution of equations (El6) for n =1 and n =2 yields

-]:l _‘___‘j:_._'
* %[
‘g N0+N2‘\

K} 1(€) =

(E13)

( E16)

(E17)
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and

*, * * %, % *. * % % *
L-2 * ¥y ¥ * * *\ 0 (E18)
(No + Ng)(NO +Ny) - (0 + N3)

where, for brevity, the functional dependence of the transformed
influence functions has been omitted.

The inversion integral for the stress concentration factor is

1 €+l % Er
a0 =g [ e o (B19)
A series evaluation of this integral can be made by use of the method
employed 1n reference 4 for the single-cut problem. Briefly, the
method employs a conformal mapping function given by £ = z - l/z to
transform the inversion integral (EL9) 1mto an integral around a

conbour € Just inside the unit circle in the z-plane, given by

1 * |22 +1 {=z-1/z)7 dz
Kn,l(T) = - -2—-:5 , [QICDJJ;]—Z-‘—Q—-—I e ";" (EEO)

This integral 1s evaluated by finding the coefficient of the zeroeth

power of z 1in the expansion of

% |22 +1 -1/
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The term in brackets in (E21) can be expanded in a power series in 2
by using equation (E17) or (E18) in conjunction with the series

expansion for I\T;g(o,z) , which was found in reference 4 to be

N, (0,2} = - %.ZEI (142)(k}42%)(-z2)2k+m (E22)
k=0

1£2 162
where is the binomial number given by = 1, and

(%2):%(%-1)(%_2)...(%-“1)

%! 2 k=1,2,3, ..

Jance the expansion for gKg,l involves only positive even powers of
z, only the negative even powers in the expansion of the other part

of (B21) need be sought. It was found in reference 4 that if

o

2
2= + 1 _(z-1/z)7 _ g k
- T e = CI:Z

1{:-00

o

then

Cy = dgl2T) + 23x(2r) + . . . 29 _p(2r) + g (er) -1, (B23)
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after considerable manipulation, the results are found to be
= L L -1
Kljl(’r) =1 - Cy(r) + n Cglm) + 3 Cy(T) 5 Cyy (1)
2

1 L
+ 2—9 018(1') + —2-—]—-:% 022(1') + . . . (EE’-!-)

and

3 1 3 11
Kg,l('l') =1 - Co(7) - i Cy(r) - 5 cglT) + 73 Cg(r) + n CiplT)
5 Lo 81 L7
+ géclE(T) + ;IS 014(7) + gﬁ 016(1-) + ;fe— ClS(rr)

Good convergence is chtained for the range of T 1investigated.



