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Abstract 

An analyt ical  study was conducted t o  determine the  feas i -  
b i l i t y  of using an isotope Brayton power system t o  supply both 
the  e l e c t r i c a l  and thermal needs of an integrated l i f e  support 
system. 
members of the  NASA-Lewis and NASA-Langley Research Centers. 
Enphasis was placed on studying the steady-state and t rans ien t  
interact ions t h a t  would r e s u l t  from thermal integrat ion of the  
two systems. 

The study was  conducted as a j o i n t  e f f o r t  by s t a f f  

Results of the  study show t h a t  thermal integrat ion can be 
accomplished most f lexibly by extract ing heat i n  the Brayton 
power system's waste heat  loop through t h e  use of an auxi l iary 
liquid-to-liquid heat exchanger. Thermal t rans ien t  e f fec ts  on 
both systems a r e  within operating tolerances. 
provide the life-support-system process heating temperature 
requirement w i l l  necessi ta te  operating the  power system com- 
pressor i n l e t  temperature about 40' F above the  exis t ing de- 
s ign point of 80° F, thereby reducing the  calculated power 
system conversion eff ic iency from 0.29 t o  0.27. 

However, t o  

Hardware modifications t o  permit integrat ion were examined 
and found t o  be minor. 
compatible by the  addi t ion of a frequency converter. 

Both systems can be made e lec t r ica l ly  

Introduc t.ion 

For the  long duration manned space missions now being 
planned by NASA, regenerative l i f e  support systems and multi- 
kilowatt e l e c t r i c  power generating systems w i l l  be needed. 
NASA-Langley Research Center has been engaged i n  advanced 
technology t o  develop long-l i fe  regenerative l i f e  support sys- 
tems su i tab le  for  such missions. Similarly, NASA-Lewis Re- 
search Center has been engaged i n  advanced technology t o  de- 
velop long-l i fe  multi-kilowatt space e l e c t r i c  power generating 
systems. 

The Langley-integrated l i f e  support system (ILSS, Ref. 1) 
and the Lewis-Brayton power system (BPS, Refs. 2 t o  4) ,  cur- 
ren t ly  being evaluated i n  separate ground t e s t s ,  contain con- 
cepts and hardware which could be used for  these advanced 
missions. 

This report  summarizes the method and results of a Lewis- 
Langley study conducted t o  determine the  f e a s i b i l i t y  of mating 
the  ILSS and BPS thermally and e l e c t r i c a l l y  f o r  integrated op- 
eration. The exis t ing BPS and ILSS a r e  described. Poten t ia l  
methods of integrat ion were examined by means of steady-state 
(Ref. ll) and t rans ien t  (Ref. 12) computer analyses. Results 
of these analyses are summarized, and required hardware 
changes for  t h e  selected integrat ion method are described. 

!Phis study was  based upon two exis t ing systems. 
t i c a l l y  mating two exis t ing systems and using experimental 
data  was beneficial  i n  es tabl ishing collfidence i n  the accuracy 
of the resu l t s .  Factors such as  thermal capacitance of compo- 
nents, in te r face  requirements, and integrat ion penal t ies  could 
be more c lear ly  evaluated than if  the  two systems had been 
only concepts. 

Analy- 

Experimental performance data  f o r  the  ILSS and expected 
performance data  f o r  t h e  BPS were used during the study. The 
BPS was being i n s t a l l e d  for  t e s t i n g  i n  t h e  NASA-Space Power 
Faci l i ty ,  Sandusky, Ohio, a t  the  time of t h i s  s t u Q .  Testing 
of the BPS is  now i n  progress and performance resu l t s  covering 
2042 hours of operation a re  reported i n  Refs. 3 and 4. 

Systems Description 

Life  Support Syst.em 

The Langley integrated l i f e  support system (Ref. 1) i s  
housed i n  a t e s t  chamber approximately 18 f e e t  i n  diameter by 
18 fee t  long. 
quarters for  a crew of four men on the upper leve l  and the  l i f e  
support subsystems arranged i n  a f l ight- type fashion mainly on 
the lower level .  
support subsystems i s  provided by t e s t  support equipment out- 
s ide  of the t e s t  chamber. The ILSS is  designed t o  support four 
men for  one year with a resupply of food every 90 days. It was 
b u i l t  t o  evaluate regenerative l i f e  support concepts. 

The chamLer i s  divided in to  two leve ls  with 

Thermal and e l e c t r i c a l  power t o  the  l i f e -  

Major subsystems of the ILSS axe: thermal control, at- 
mospheric control, water management, waste management, personal 
hygiene, food management, and instrumentation and control. 

Figure 1 shows the  three primary thermal control  c i r c u i t s  
i n  the  ILSS. The process heat  and primary cooling c i r c u i t s  use 
Dow-Corning 331 and Propylene Glycol l iqu id ,  respectively. 
Thermal interfacing with the  Brayton power system occurs zt t h e  
l i f e  support heat source i n  the  process heat c i r c u i t .  

A schematic of the process heat c i r c u i t  flow d is t r ibu t ion  
and thermal requirements is shown i n  Fig. 2.  The average pro- 
cess heat  load i s  6.2 icWt.  The function of the f l u i d  pumping 
and heating uni t ,  sham i n  Fig. 2 ,  would be replaced by the  
BPS and a f l u i d  circulat ing pump i n  an ac tua l  integrat ion.  The 
actual  process heat  load var ies  i n  a cycl ic  nature from 4.4 t o  
7.9 kWt over a period of 40.2 minutes (Fig. 3) .  

Electr ical ly ,  the  ILSS uses 120/208 Vac 3-phase 400-hertz 

The ac and dc load 
and 28-volt-dc power. The average t o t a l  power requirement is 
5.2 kilowatts with peaks t o  5.8 kilowatts. 
p rof i les  a r e  shown i n  Fig. 4. 

Brayton Power System 

T"ne Ez-ayton power system consis ts  of a heat source, power 
conversion system (engine), and heat re jec t ion  system as shown 
s c h e m t i c a l b  i n  Fig. 5. Working gas, a helium-xenon mixture 
a t  the  molecular weight of krypton, i s  heated i n  the  heat- 
source heat exchanger. It then passes through the turbine, re -  
cuperator, waste heat exchanger, compressor, recuperator and 
back t o  the heat source. Within the  engine, the  e l e c t r i c a l  
power producing component is  the Brayton Rotating Unit (BRU). 
It consis ts  of a turbine, a l ternator ,  and compressor mounted on 
a common shaf t  which is  supported by gas lubricated journal and 
thrus t  bearings. The a l te rna tor  produces 120/208 vol t s ,  3- 
phase e l e c t r i c  power at a frequency of 1200 hertz .  
output of the  engine can be set within the  range of 2 t o  15 
kilcrwatts by varying the inventory of working gas within the  
system. Variations i n  the  user 's  load, below t h e  selected 
power output of t h e  engine, a re  accommodated by using an elec-  
t r i c a l  speed control  system. 
r e s i s t o r  t o  absorb excess power. ZLectrical housekeeping 
needs, i n  addi t ion t o  the  speed control, includes power t o  run 
the heat re jec t ion  system pump, operate the  engine control  sys- 
tem, and charge the  engine ba t te r ies .  The e l e c t r i c a l  system 
supplying these functions is  shown i n  Fig. 6. 

The power 

This system uses a paras i t ic  load 

Waste Brayton-cycle heat is  re jec ted  t o  a l i q u i d  cooling 
loop through the  gas-to-liquid waste heat exchanger (Fig. 5 ) .  
Liquid cooling i s  a l so  provided t o  t h e  a l te rna tor  i n  the  BRU 
and through a series of cold plates .  E lec t r ica l  system compo- 
nents are mounted on these cold plates .  
cooling loops a r e  provided. However, during operation, circu- 
l a t i o n  i s  required i n  only one l iqu id  loop. A s i l i cone  l i q u i d  
(DC-ZOO) is used. 
simulator heat exchanger i n  place of a space radiator .  

Two redundant l iqu id  

Present ground t e s t i n g  uses a radiator-  

More de ta i led  descriptions of the  components of the  Bray- 
ton power system are  given i n  Refs. 5 through 9. 

Study Assumptions 

For the  purpose of the  study, t h e  following assumptions 
and ground ru les  were established. 

llsS Assumptions 

(1) Use t h e  experimentally determined values for  e l e c t r i -  
c a l  and thermal requirements. 

(2)  Assume a l l  exis t ing subsystems and components (i.e.,  
no product improvements). 

(3) All e l e c t r i c a l  and thermal power w i l l  be provided by 
the  Bray-ton power system. 

(4) Thermal cooling of the ILSS w i l l  be provided by a 
space radiator  (or radiator  simulator) separate from the  Bray- 
ton radiator .  
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Brayton Power System Assumptions 

(1) Assume a long-lived isotope heat source. The source 
heat exchanger and isotope array w i l l  be s ized t o  provide 
working gas a t  1600' F t o  the  turbine i n l e t .  

( 2 )  Wor.Ang gas w i l l  be a mixture of helium and xenon 
having a molecular weight of 83.8. 

(3) Assume only the  e l e c t r i c a l  and thermal loads of the 
ILSS plus a 1 .5  kilowatt e l e c t r i c  margin for  es tabl ishing the  
net power output of the  Brayton engine. 

(4) The method of heat t ransfer  t o  t h e  ILSS should be con- 
s i s t e n t  with minimizing 'the s i z e  of the isotope heat source. 

Interface and Integrat ion Assumptions 

(1) Thermal power w i l l  be t ransferred t o  the ILSS from 

1 ids  w i l l  be assumed on the hot en& of 
the  BPS by using an auxi l iary heat exchanger. 
a ture  drop between 
the heat exchanger. 

A 50' F temper- 

( 2 )  An efficiency of 80 percent w i l l  be assumed for 
equipment t o  convert the  1200 Hz BPS power t o  400 Hz and dc 
for the  ILSS. 

(3) Use of 1200 Hz power d i rec t ly  i n  the  ILSS w i l l  be in-  
vestigated. 

(4 )  The study should seek t o  minimize hardware changes t o  
both systems. 

Discussion 

The power system was examined f o r  possible methods of 
supplying the  ILSS thermal requirements. 
two methods investigated for removing waste power system heat; 
namely, e i ther  a gas-to-liquid or liquid-to-liquid auxi l iary 
heat exchanger. 
would replace the  heat exchanger port ion of the ILSS f l u i d  
heating and pumping uni t  shown i n  Fig. 2. 

Figure 7 presents the  

I n  concept e i ther  of these heat exchangers 

To provide the  lLSS average power reqvirement of 5.2 kWe, 
the  BPS was assumed t o  be ra ted  f o r  9.4 kWe a t  the a l te rna tor  
terminals. 

Distribution t o  the  integrated systems would be: 

BPS a l te rna tor  gross output, kWe . . . . . . . . . . . . 9.4 
BPS in te rna l  housekeeping power, kWe . . . . . . . . . . 1.4 
BF'S margin, kWe . . . . . . . . . . . . . . . . . . . . . 1.5 
Gross average power avai lable  t o  ILSS, kWe . . . . . . . 6.5 
Power conditioning loss a t  0.80, kWe . . . . . . . . . . 1.3 
Net average power avai lable  t o  ILSS, kWe . . . . . . . . 5.2 

The BPS thermal conditions shown i n  Fig. 7 a r e  f o r  a 
gross a l ternator  power output of 9.4 kWe. 
16.6 kWt i s  rejected in to  the waste heat exchanger. 
there  was enough waste power for ILSB needs, it was at a lower 
temperature than needed by the  exis t ing ILSS (342' F waste 
heat exchanger gas i n l e t  temperature, Fig. 7; compared t o  
425' F required a t  the  same point t o  del iver  f l u i d  t o  the  ILSS 
at  the  required 375O F, Fig. 2, allowing for  the  SO0 F assumed 
auxi l iary heat exchanger temperature drop). 

A t  this condition, 
Although 

The Langley s t a f f  conducted bench t e s t s  on components of 
the  ILSS process heat c i r c u i t  t o  examine changing the  heat 
t ransport  f lu id .  Water, ra ther  than the or ig ina l  Dow-Corning 
331 s i l icone  f lu id ,  was found t o  be acceptable. The use of 
water reduced the  required i n l e t  temperature from 375' F t o  
300' F while maintaining the  or ig ina l  flow rate. Using the  
assumed 50' F At across an auxi l iary heat  exchanger resul ted 
i n  a required Brayton power system supply temperature of 
350' F. These changes were adopted f o r  the  study as a reason- 
able  compromise t o  make the  systems more compatible. 

Steady-State Integrat ion Analysis 

By using exis t ing Brayton d i g i t a l  computer programs, two 
steady-state thermal integrat ion analyses were performed. 
These programs simulate the  Brayton power system configuration 

of Ref. 2 and a r e  based on measured component data. The pro- 
grams are described i n  Ref. 10. 

Higher BF'S temperature. - The f irst  analysis  parametric- 
a l l y  invest igated two methods t o  r a i s e  the  power system waste 
heat temperature t o  the  required 350' F; namely, ra i s ing  t h e  
compressor i n l e t  temperature above design along with lowering 
l iqu id  coolant mass flow ra tes ,  or  reducing the  recuperator 
heat t ransfer  effectiveness. 

Figure 8 shows the extent t o  which the  compressor i n l e t  
temperature must be raised above t h e  design point of 80' F t o  
achieve a 350' F i n l e t  temperature t o  e i ther  auxi l iary heat ex- 
changer concept. Use of an auxi l ia ry  liquid-to-liquid heat ex- 
changer w i l l  require  operating the  compressor i n l e t  nearly 
40' F above design, while the  use of an auxi l ia ry  gas-to-liquid 
heat exchanger w i l l  require  about a loo F increase. The d i f -  
ference is  due t o  the higher i n l e t  temperature avai lable  t o  a 
gas-to-liquid heat  exchanger (Fig. 7 ) .  

Figure 9 examines the  parametric e f fec ts  of compressor in-  
l e t  temperature on other power system operating conditions for  
both auxi l iary heat exchangers. In each case, changes i n  power 
system conditions a re  greater  when operating with a l iquid- to-  
l iqu id  auxi l iary heat exchanger. 
being a 0.02 drop i n  conversion efficiency coupled with a r e -  
quired 2 kilowatt increase i n  gas thermal input. 

The more important effects  

Reducing recuperator heat  t ransfer  effectiveness a f f e c t s  
operating conditions as shown i n  Fig. 10. 
fectiveness were evaluated with 0.94 being the  effectiveness of 
the  present recuperator. 
perature  on the  conversion eff ic iency curve show that while re -  
ducing effectiveness from 0.94 t o  0.90 has a s igni f icant  e f fec t  
on compressor inlet temperature it has l i t t l e  e f fec t  on conver- 
s ion  efficiency. 
ciency t o  j u s t i f y  the change i n  hardware t h a t  would be required 
t o  lower recuperator effectiveness, t h i s  approach was discarded 
i n  favor of simply operating the compressor i n l e t  a t  a higher 
temperature. 

Three values of ef-  

Croes p l o t s  of constant coolant t e m -  

Since there  i s  no gain i n  conversion e f f i -  

Power system excursions. - The second analysis  examined 
excursions i n  a simulated space version of the BPS caused by 
changes i n  t h e  3TSS heat load. 
f i r s t  established assuming the ILSS operating at i t s  average 
6 kWt heat load. 
then invest igated by assuming the  average steady s t a t e  ILSS 
heat load had changed from 6 kWt t o  f i r s t  0 kWt, then 4 kWt, 
and f i n a l l y  8 kWt. 
mit t h e  assumption of e i ther  gas-to-liquid or l iquid- to- l iquid 
heat removal from the BPS. 

BPS operating conditions were 

Changes t o  the BPS operating conditions were 

The computer program was mcdified t o  per- 

Figure ll presents power system excursion limits when a 
liquid-to-liquid auxi l iary heat exchanger is  assumed. All  
power system temperature excursions would be l e s s  than 120' F, 
for variat ions from 4 t o  8 kWt, about an average 6 kWt ILSS 
load. Gross a l te rna tor  power output would vary l e s s  than f0.5 
percent. 
resents  power system excursions if t h e  ILSS heat  load were re -  
moved. 
creasing 40° F. 
system operating conditions might be a l te red  somewhat t o  l i m i t  
the  turbine i n l e t  temperature excursion from operating above 
design (Ref. ll) . 
t o  demonstrate t h e  parametric e f fec ts  t h a t  would be present i n  
a r e a l  integrat ion.  

The dashed portion of the  curves from 0 t o  4 kWt rep- 

Turbine i n l e t  temperature shows the  grea tes t  change in-  
In  a real appl icat ion the  se lec t ion  of power 

For t h i s  study, t h e  conditions chosen served 

In Fig. 12 power system excursion limits a r e  presented 
when a gas-to-liquid auxi l iary heat exchanger is  assumed. The 
resu l t s  a re  very similar t Q  those presented i n  Fig. ll. Maxi- 
mum var ia t ions were s l i g h t l y  grea te r  being about +25O F, due t o  
the 12 kWt change i n  average ILSS heat  load. 

Steady s t a t e  resu l t s .  - Several r e s u l t s  were reached r e -  
garding the  a b i l i t y  of the  Brayton Power System t o  supply ILSS 
needs : 

(1) ILSS e l e c t r i c a l  requirements a r e  well within the  power 
range of the  Brayton Power System. I n  addition, s e t t i n g  t h e  
a l te rna tor  gross power output t o  s a t i s f y  the  ILSS e lec t r ica l ly ,  
r e s u l t s  i n  suf f ic ien t  power system waste heat being avai lable  
t o  s a t i s f y  the ILSS thermal power requirements. 

lAlternate  means of t ransferr ing thermal power t o  the  ILSS from the  BPS were considered ear ly  i n  t h e  study. These a l te rna te  
methods included using e l e c t r i c  heaters  powered from the  Brayton al ternator ,  t ransferr ing heat d i rec t ly  from the  isotope package 
t o  the ILSS, and c i rcu la t ing  the  Brayton cooling f l u i d  d i rec t ly  through t h e  ILSS process heat c i r c u i t .  
found t o  be e i ther  l e s s  e f f i c i e n t  (required a la rger  isotope heat source) and/or had potent ia l  safety and/or r e l i a b i l i t y  problems 
associated with them. Therefore, these methods were not invest igated fur ther .  

Each of these options were 
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(2) Since the  ILSS requires heat  a t  300° F, some of f -  
design operation of the  power system w i l l  be required. 

( 3 )  Reducing recuperator effectiveness t o  r a i s e  heat re -  
ject ion temperatures i n  the power system of fers  no r e a l  ad- 
vantage over increasing compressor i n l e t  temperature. 

( 4 )  Use of a gas-to-liquid auxi l ia ry  heat exchanger would 
require only about a 10' F increase i n  compressor i n l e t  t e m -  
perature and cause about a 0.Ollower conversion efficiency. 
Ins ta l la t ion  would require  extensive hardware changes t o  the  
present power system recuperator and waste heat exchanger 
which a re  combined t o  form a s ingle  uni t .  

(5) Use of a l iquid- to- l iquid auxi l iary heat exchanger 
would require  about a 40' F increase i n  compressor i n l e t  t e m -  
perature and cause a 0.02 reduction i n  power system conversion 
efficiency. Ins ta l la t ion  would be extremely f lex ib le  s ince it 
would be inser ted i n t o  t h e  piping of the  power system heat re- 
jec t ion  system. 

(6) The l i m i t s  of power system excursions when t h e  ILSS 
heat load is  varied a r e  reasonable and within operating to le r -  
ances of the  power system. 

From these r e s u l t s  it was concluded t h a t  using a l iquid-  
to- l iquid auxi l iary heat  exchanger best  s a t i s f i e d  the guide- 
l i n e s  established for t h e  study. The l iquid- to- l iquid heat 
exchanger offered the  most f l e x i b i l i t y ,  and was f e l t  t o  be jus- 
t i f i e d  i n  s p i t e  of an addi t ional  one point drop i n  conversion 
efficiency. 
steady-state analyses may be found i n  Ref. ll. 

Detai ls  and addi t ional  information concerning the 

Fransient Analysis 

An analog computer simulation of the  power system heat re -  
ject ion loop, including a conceptual auxi l iary liquid-to-liquid 
heat exchanger core, was developed. This was  coupled t o  an 
exis t ing analog simulation of t h e  Brayton gas loop described 
i n  Refs. 12 and 13, respectively. The conceptual l iquid- to-  
l iqu id  auxi l iary heat exchanger core was designed and is  shown 
i n  Fig. 13. 

Steady s t a t e  e f fec ts  f r o m  t h e  analog computer simulation 
of varying the  ILSS heat load on parer system operating condi- 
t ions and ILSS water supply temperature are shown i n  Fig. 14. 
ILSS water i n l e t  temperature decreases with increasing heat 
load. Compressor i n l e t  and turbine i n l e t  temperatures follow 
the  same t rend but do not cause a change i n  power system con- 
version eff ic iency o r  output s ince  the  At between compressor 
and turbine i s  r e l a t i v e l y  constant. 
closely with the  steady s t a t e  d i g i t a l  analyses. 

These resu l t s  compare 

To determine t rans ien t  var ia t ions i n  ILSS process water 
temperature, power system output, and power system compressor 
i n l e t  temperature during integrated operation, three consecu- 
t i v e  ILSS thermal load cycles were applied t o  the analog simu- 
l a t  ion. 

Results were ident ica l  and are presented for  one cycle i n  
Fig. 15. 
the  300' F average value. 
perature varied between 106' and 1 1 8 O  F. 
put remained nearly constant. 
ceptable operating limits for  both systems. 

ILSS process water temperature varied f17' F about 
Power system compressor i n l e t  tem- 

Elec t r ica l  power out- 
These var ia t ions a re  within ac- 

To determine t h e  e f fec t  of s t a r t i n g  t h e  TLSS on the  Brw- 
ton Power System, a thermal load of nearly twice the  rate en- 
countered during normal operation (Fig. 3), was invest igated 
using the  analog simulation. Star tup assumptions were: 

(1) The Brayton Power System is s t a r t e d  and a w e d  t o  
s t a b i l i z e  a t  i t s  operating condition. 

(2) The ILSS process heat water flow is adjusted t o  its 
design value and t h e  water temperature allowed t o  s t a b i l i z e  
with no heat being withdrawn by the  l i f e  support subsystems. 

(3) The lLsS equipment is turned on creat ing an assumed 
thermal load which increases uniformly from 0 t o  8 kWt i n  100 
seconds. The thermalL load then is assumed t o  remain constant 
a t  8 kWt u n t i l  a l l  t rans ien t  e f fec ts  are completed. 

Figure 16 shows the  r e s u l t s  of t h i s  investigation. Ef- 
f e c t s  on both systems were well within operating limits. 

The t rans ien t  analysis confirmed that an auxi l iary l iqu id-  

Coupling between the  two systems i s  weak and both should 
to- l iquid heat exchanger could be used t o  supply heat t o  the  
ILSS. 

operate within acceptable limits during s ta r tup  and normal op- 
eration. 
is  presented i n  Ref. 12 .  

Hardware Changes 

Additional information concerning the  t rans ien t  study 

I f  an ac tua l  integrat ion of the  present l i f e  support and 
power system hardware were t o  be made, the  study has shown t h a t  
modest changes would be required. 
System process heat c i r c u i t  would be converted t o  operation 
with water. 
s i l i cone  heat t ransport  f l u i d  with water and converting the  
carbon dioxide concentrator and water recovery uni t  heat ex- 
changers t o  water operation. 

The Integrated Li fe  Support 

This would involve replacing the  Dow-Corning 331 

An auxi l ia ry  liquid-to-liquid heat exchanger would have t o  
be designed and fabricated.  The redundancy of t h e  Brayton heat  
re ject ion loop would have t o  be considered i n  the  heat ex- 
changer design and ins ta l la t ion ,  so  that the  ILSS thermal needs 
could be furnished from e i ther  Brayton cooling loop. The power 
system heat re jec t ion  system piping would be eas i ly  interrupted 
t o  accept the aiuxiliary heat exchanger at a point  immediately 
downstream of .the l iqu id  out le t  s f  the  waste heat exchanger. 

A power converter would be required t o  convert the  Brayton 
1200 her tz  e l e c t r i c a l  output t o  400 her tz  and dc for  use with 
the  ILSS subsystems. During the study, the  Langley staff in-  
vest igated the  possible use of 1200 her tz  power d i rec t ly  i n  t h e  
ILSS. It was concluded that it would be feas ib le  for  cer ta in  
l ight ing,  e l e c t r i c a l  heating, and motor applications. However, 
t o  incorporate 1200 her tz  power i n  t h e  present ILSS t e s t  
chamber would require  procurement and i n s t a l l a t i o n  of su i tab le  
1200 her tz  components. 
niques of parer conversion was not p a r t  of t h i s  study. 

The consideration of specif ic  tech- 

Conclusions 

The results of the study indicate  t h a t  it is feasible  t o  
use the 2 t o  15  kWe Isotope Brayton Power System t o  supply both 
the  e l e c t r i c a l  and thermal needs of t h e  Langley Integrated Life  
Support System. Moreover, the  integrat ion can be accomplished 
without major modifications t o  e i ther  system. Steady s t a t e  and 
t rans ien t  interact ions between the two systems a r e  within the  
operating limits. Elec t r ica l  integrat ion required only the  ad- 
d i t ion  of a power converter t o  adapt the  1200 her tz  output of 
the  power system t o  the 400 hertz  and dc power required by t h e  
l i f e  support system. 
f lex ib ly  by i n s t a l l i n g  an auxi l iary liquid-to-liquid heat ex- 
changer i n  the  Brayton heat re jec t ion  loop. This approach re -  
sults i n  a power system conversion eff ic iency about 0 .Ollower 
than would be expected i f  a gas-to-liquid auxi l ia ry  heat ex- 
changer were assumed between the  recuperator and waste heat ex- 
changer. Hwever, major a l te ra t ions  t o  the  recuperator-waste 
heat exchanger assembly would be required t o  incorporate t h e  
gas-to-liquid heat  exchanger. 

Thermal integrat ion can be performed most 

While suf f ic ien t  power system waste heat i s  avai lable  t o  
meet l i f e  support system needs, the  power system must be oper- 
a ted at higher than design compressor i n l e t  temperatures t o  
meet ILSS temperature requirements. To minimize the  amount of 
off-design power system operation required the  ILSS thermal 
'power temperature requirements can be lowered from 375' t o  
300° F by changing the  heat  t ransport  f l u i d  from Dow-Corning 
331 t o  water. 
A t  
simply operating the  compressor i n l e t  temperature about 40' F 
above t h e  design point of 8 8  F. Reducing recuperator effec- 
t iveness  t o  accomplish the  same r e s u l t  offered no advantage i n  
power system conversion eff ic iency and would be d i f f i c u l t  t o  do 
with t h e  exis t ing hardware. A tradeoff of weight against ef- 
fectiveness i n  a f i n a l  design of t h e  auxi l iary l iquid- to- l iquid 
heat exchanger might reduce t h e  assumed 50' F At ,  which would 
allow a corresponding reduction i n  t h e  amount of off-design 
compressor inlet  temperature operation. 
s ion eff ic iency would be improved as w e l l .  

R a i s i n g  the  Brayton waste heat t o  350' F (SO0 F 
assumed across auxi l ia ry  heat exchanger) can be done by 

Power system conver- 

The t rans ien t  study a l so  indicated t h a t  t h e  BraJrton power 
system and ILSS would remain within operating limits during the  
s ta r tup  t rans ien t  of the  l i f e  support system. 
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Time, sec 

Figure 3. -Thermal power requirements of life-support system. 
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Figure 3. -Thermal power requirements of life-support system. 
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Figure 6. - Electrical system components. 
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Figure 7. - Schematic diagram of Brayton power system showing life-support-system integration methods. Dashed 
lines denote new equipment required for electrical and thermal mating of systems. 
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Figure 11 - Steady-state effects of coolant heat removal on fixed-power-system operating conditions. 
Ideal gas-thermal-input, 30 kilowatts thermal; prime radiator area, 260 square feet; coolant mass- 
flow rate, 0. 15 pound mass per second; working-gas inventory, 1.035 pounds mass. 
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