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AN INVESTIGATION OF THE FINE-POINTING CONTROL SYSTEM 

OF A SOFT-GIMBALED ORBITING TELESCOPE* 

By Frederick R. Morrell 
Langley Research Center 

SUMMARY 

The fine-pointing control system of a telescope coupled to a manned service module 
through a gimbal and soft-spring suspension system is investigated, and the rigid-body 
equations of motion of the vehicle a r e  presented for the planar case. The control system 
for the telescope consists of a single-axis, twin-rotor control moment gyroscope (CMG) 
as the momentum-exchange device and a high-gain pointing loop including a star sensor. 

The rigid-body equations of motion of the vehicle for five degrees of freedom and 
the control systems for the telescope and the manned service module have been simulated 
on an analog computer. Also included in the simulation were crew-motion disturbance, 
environmental torques, nonlinearities in the CMG a d  suspension system, and noise in  the 
telescope star sensor. The results of the simulation indicate that the telescope pointing 
requirement of approximately 0.01 second of a r c  can be achieved when a dither signal is 
applied to the CMG nonlinearity to reduce the effect of limit cycling in  the telescope con- 
trol  system. 

INTRODUCTION 

One scientific field that can benefit from the proper use of space technology is 
astronomy. It has been estimated that a large orbiting telescope with a resolution equiv- 
alent to a diffraction-limited aperture of 120 inches (3 m) would provide significant 
improvement over the best  ground-based facilities (refs. 1 and 2). Various sources have 
indicated that such a telescope should be designed around the basic Cassegrain configura- 
tion (refs. 1 and 2). 

Figure 1 is an artist's concept of such a large telescope coupled to a manned service 
module. Because of the nature and complexity of the telescope, man's presence may be 
required for the assembly, initial alinement, and calibration of the telescope in  space. 
There may be periods of time, therefore, during which the telescope will be required to 
operate while coupled to the manned service module. 

*The information presented herein was included in a thesis submitted in partial f u l -  
fillment of the requirements for the degree Master of Electrical Engineering, University 
of Virginia, Charlottesville, Virginia, March 1968. 



Since the angular resolution of a telescope with a diffraction-limited 120-inch- 
diameter (3-m) aperture is approximately 0.03 a r c  second, its pointing accuracy should 
be maintained at about 0.01 a r c  second to take full advantage of this resolution. The 
object of this investigation is to determine whether this pointing accuracy can be achieved 
when the telescope is coupled to the manned service module through a gimbal and soft- 
spring suspension system and subjected to the disturbances created by crew motion and 
the environment of a 300-nautical-mile (555.6-km) orbit. This study is an analog com- 
puter simulation of the rigid-body planar equations of motion of the vehicle, the telescope 
control system, the service-module control system, and nonlinearities in the suspension 
system and control system of the telescope. 

SYMBOLS 

damping of telescope control moment gyro (CMG), lb-ft-sec/rad 
(N- m - s e c/r  ad) 

damping of main gimbal, lb-ft-sec/rad (N-m-sec/rad) 

distance from service module center of mass  to spring attachment point 
(see fig. 2), f t  (m) 

radius of service module, f t  (m) 

radius of main gimbal, f t  (m) 

center-of-mass offset between main gimbal and telescope, in. 

force applied to translational degrees of freedom of vehicle (see fig. 2), 

(m) 

1b (N) 

momentum of CMG, lb-ft-sec (N-m-sec) 

moment of inertia of telescope CMG gimbal, slug-ft2 (kg-m2) 

roll-axis moment of inertia of telescope, slug-ft2 (kg-m2) 

yaw-axis moment of inertia of telescope, slug-ft2 (kg-m2) 

pitch-axis moment of inertia of service module, slug-ft2 (kg-ma) 



pitch-axis moment of inertia of telescope, slug-ft2 

pitch-axis moment of inertia of main gimbal, slug-ft2 

spring constant, lb/ft (N/m) 

equivalent X-axis lower spring constant, lb/ft (N/m) 

equivalent X-axis upper spring constant, lb/ft (N/m) 

equivalent Z-axis lower spring constant, lb/ft (N/m) 

equivalent Z-axis upper spring constant, lb/ft (N/m) 

position-sensor gain, volts/arc second 

compensation network and torque motor gain, lb-ft/volt (N-m/volt) 

mass  of space station, slugs 

mass of telescope, slugs (kg) 

mass  of main gimbal, slugs (kg) 

generalized force, lb (N) 

generalized coordinate 

Laplacian operator, sec-1 

torque applied to CMG gimbal, lb-ft (N-m) 

disturbance torques applied to telescope, lb-ft (N-m) 

dither torque, lb-ft (N-m) 

torque motor output, lb-ft (N-m) 

(kg-m2) 

(kg-ma) 

(kg) 
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T1,T2,T3 torques applied to service module, telescope, and main gimbal, respectively, 
lb-ft (N-m) 

time, s ec  

kinetic energy of vehicle 

potential energy of vehicle 

potential energy of lower spring se t s  

potential energy of upper spring se t  

translation of vehicle center of mass  (fig. 2) 

service-module translation (see fig. 2), f t  (m) 

telescope translation (see fig. 2), f t  (m) 

main-gimbal translation (see fig. 2), f t  (m) 

CMG gimbal angle, rad 

incremental displacement, f t  (m) 

star-sensor time constant, sec  

service-module pitch angle, rad 

telescope pitch angle, rad 

main-gimbal pitch angle, rad 

spring mounting angle, rad 

orbital rate, rad/sec 
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Subscripts : 

1 service module 

2 telescope 

3 main gimbal 

Dots over symbols indicate derivatives with respect to time. 

DESCRIPTION OF THE VEHICLE 

A schematic of a soft-gimbaled orbiting telescope is shown in  figure 2. The vehicle 
consists of three rigid bodies: a manned service module, a passive suspension system, 
and a 120-inch-diameter (3-m) telescope. The purpose of the suspension system is to 
isolate from the telescope any disturbances caused by man and his supporting facilities. 
The suspension-system concept analyzed here consists of an open t russ  connecting the 
service module to the telescope through a se t  of soft springs and a two-axis gimbal (see 
fig. 3). In the ideal case the centers of mass of the gimbal and the telescope coincide, 
since this decouples the rotational modes of the telescope from torques generated by the 
manned service module. 
the center of mass  of the telescope to shift as indicated by d4 in  figure 2. As a result  
of this shift, complete rotational decoupling of the telescope from the manned service 
module would not occur. 

M a s s  expulsion and equipment changes, however, would cause 

FUGID-BODY PLANAR EQUATIONS OF MOTION 

The inertial reference frame x,z from which the rigid-body planar equations of 
motion a r e  derived is located at the center of mass  of the entire structure as shown in 
figure 2. The dynamics of the soft-gimbaled vehicle can be determined by considering 
the motion of each of the three rigid bodies. For the planar case, the vehicle nine degrees 
of freedom a r e  reduced to seven by the bearing constraint between the telescope and the 
gimbal; this results in the following expression for kinetic energy of the vehicle: 



To find the expression for the potential energy of the vehicle, the equivalent spring 
constants must be determined for the planar case. A schematic representation for the 
spring suspension system is shown i n  figure 3. The spring sets are separated by 120' 
and attach the crew-module t russ  structure to the gimbal. If the upper spring se t  is given 
a small  displacement Ax, the resulting total force Fu generated by the spring set is 

Fu = 2K COS + AX (2) 

The x-component of this spring force Fx,u is 

Fx,u = 2K cos2@ AX (3) 

The z-component of force for the upper spring set  in  this case is zero. Similarly, if  the 
gimbal is given a small  displacement Az, 

Fz,u = 2K sin2@ Az (4) 

The spring constants for the upper se t  of springs are taken from equations (3) 
and (4) as follows: 

KX,, = 2K cos2@ 1 
Kz,u = 2K 

For  the two lower se t s  of springs the inclination in  the Z-axis  must be taken into 
account. The equivalent spring constants for the two se ts  of lower springs a r e  

(6) 

6 1 Kx,i = 4K COS 2 

Kz,z = 4K si$@ sin2 2 

The potential energy of the vehicle caused by the spring se t s  can be found by refer- 
ring to figure 2. For the upper spring set ,  

2 Vu = K cos2+(xg - d3 sin cP3 - x1 - d l  cos cP1 + d2 sin cP1) 

+ d3 cos cP3 - z 1  - d l  sin G I  - d2 cos cP1 

- (dg - d 2 j 2  
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For the lower se t s  of springs, 
2 

Vz = 2K cos2+ s in  $3 - x1 - d l  cos $1 - sin $1) 2 

d2 cos $3 - z1 - d l  sin G 1  +- cos $1 2 
2 +(!$-;I 

If the bearing constraint between the gimbal and the telescope is taken into account, 
the total potential energy V 

V = K C O S ~ + ( X ~  - X I  

+ 2K cos2+ x2 - ( 

of the vehicle in the planar case is given by Vu + Vz: 
2 + d4 cos $2 - d3 sin $3 - d l  cos $1 + d2 sin $1) 

n 

d2 
2 sin $1 

d3 x1 + d4 cos $2 + - sin $3 - d l  cos G 1  - - 
2 

+ K sin2+ z2 - z 1  + d4 s in  42 + d3 cos $3 - d l  sin $1 - d2 cos $1 

r 
c 

- (d3 - d2y2 + f  sin2+lz2 - z 1  + d4 sin $2 - - d3 cos G 3  - dl  sin G1 
2 

2 
d2 +- cos $1 + (; - 
2 (9) 

The dissipation energy D of the system caused by viscous friction in the bearing 
connection between the telescope and the gimbal is 

where D, is the gimbal damping. 

Equations (l), (9), and (10) represent the basic energy expressions of the vehicle 
When these expressions a r e  substituted into Lagrange's equation for  the planar case. 

(ref. 3) 

7 

I 



the expressions for the seven degrees of freedom become 

IFx ,1  = ml%l - 6K c0s2$(x2 - x1 + d4 cos G2 - dl  cos $1) (124 

(124  

- z1 + d4 s in  G2 .. * 2  
x F z , 2  = (m2 + + m3d4$2 cos $2 - m3d4$2sin $2 + 3K sin2+ 

d2) 
d3 d2 - d l  s in  $1 + - cos $3 - - cos G1 - -(d3 - ] 
2 2 2 

I T l  = 1161 + 6Kd1 cos2+ s in  41(x2 - x1 + d4 cos $2 - d l  cos $1) 

- 3Kd2 cos2+ COS $l(d3 s in  $3 - d2 s in  $1) - 3Kdl sin2+ cos $1 

d3 d2 1 + d4 s in  $2 +-  cos $3 - - cos $1 - d l  s in  $1 - -(d3 - d 2 i  
2 2 2 

3 
2 

3 
2 

+ - Kd2 sin2+ s in  $1 - z 1  + d4 s in  G2 + - d3 cos $3 - dl s in  $1 

3 3 - - 2 d2 cos $1 - z(d3 - d2] 

8 



I T 2  = (12 + m3d;)J2 - m3d4X2 sin @2 + m3d422 cos @2 - 6Kd4 cos 2 + sin "(x2 - x1 

c 

+ d4 cos @2 - d l  cos + 3Kd4 sin2+ COS G2 22 - z1 + d4 sin $2 - d l  sin @1 
Y 1 

d3 d2 +-  cos $3 - - cos @1 - 2 2 

[: 3 
I T 3  = + 3Kd3 cos2* cos G3(d3 s in  @3 - d2 s in  ~$1) - - 2 Kd3 sin @3 22 - z1 

3 3 
2 2 

+ d4 s in  $2 - dl sin @1 + - d3 cos 5b3 - - d2 cos - 

Although the equations of motion (12) a r e  complicated and nonlinear, the vehicle 
would be stabilized to small  angles; hence the first-order approximations sin 8 -. 8 and 
cos 8 -c 1 a r e  made and second-order products of rotational variables dropped. The 
simplified equations of motion are 
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In the translational modes, it is apparent that the X-axis degrees of freedom a r e  
not influenced by the other modes; hence, the x1 and x2 degrees of freedom were 
dropped from further consideration. Since there is no form of natural damping in  the 
translational modes, artificial means must be provided to limit oscillations. 
must be provided for the pitch-axis rotation of the telescope Cp2 and the service module 

Cpl by their respective control systems. 
torque Dm of 10 lb-ft-sec/rad (13.6 N-m-sec/rad), which might be achieved by passive 
means, was assumed to limit gimbal motion. 
mise between damping the gimbal highly and increasing the disturbance torques coupled 
to the telescope. 

Damping 

For this analysis, a value of viscous damping 

This value of damping torque is a compro- 

Table I indicates the major design values assumed for the parameters in  this anal- 
ysis (ref. 4). 

External Disturbances ,, ' I[. .. 
$,- r 

At an assumed orbit of 300 n. mi. (556 km), the predominant environmental distur- 
bance acting on the vehicle is the gravity-gradient torque. This torque is a function of 
the yaw and roll moments of inertia of each body; it becomes a maximum value when the 
vehicle pitch axis is tilted 45' from the local vertical (ref. 5). The expression for the 
gravity- gradient torque is 

where w is the orbital rate and Ix and Iz 

I cos 2wt (14) 4 
a r e  roll  and yaw moments of inertia, 

respectively. The maximum magnitude of this environmental torque was calculated to be 
0.25 lb-ft (0.34 N-m) acting on the telescope and 2.0 lb-ft (2.7 N-m) on the service 
module. 

To simulate the maximum disturbance level created by crew motion, the torque on 
the manned service module was assumed to be 1200 lb-ft (1627 N-m) acting for 0.5 sec. 
This level would a r i se  from a 193-lb (87.5 kg) man accelerating to 5 ft/sec (1.5 m/sec) 
in 0.5 sec  at a 20-ft (6.1-m) moment arm.  This motion was directed parallel to the 
Z-axis,  since this generates the maximum disturbance to the telescope. 
profile of the crew-motion disturbance is shown in figure 4. 

The torque-time 
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Control System 

To take advantage of the resolution capability of the telescope, $2 should be 
pointed to 0.01 a r c  second or better and maintained to this accuracy for long periods of 
time. A control system having large momentum storage and large torquing capability 
would thus be required to counteract both the long-period gravity-gradient disturbances 
and the short-period disturbances such as crew motion. The momentum-exchange device 
selected for this analysis was the twin-rotor, single-degree-of-freedom control-moment 
gyroscope (CMG) with passive gimbal dampers. 

A simplified block diagram of the telescope-attitude control system, including a 
position sensor and compensation network in  its attitude loop is shown in  figure 5. The 
sensor in  the attitude loop must operate from the main optics of the telescope and must be 
an inherently high-resolution device; typical requirements would be a gain 
per 0.01 a r c  second and a bandwidth of 5 Hz. To provide the necessary steady-state 
pointing accuracy for the telescope, the gain of the attitude loop, including the star-sensor 
gain, the compensation-network gain, and the torque-motor gain, was established as 
lo5 lb-ft/rad (1.4 X 105 N-m/rad). The momentum H of each rotor of the CMG was 
chosen as 300 lb-ft-sec (407 N-m-sec). The ratio of CMG rotor momentum to gimbal 
inertia was assumed to be 2000, and the passive damping of the CMG gimbal was se t  at 
0.5 Ib-ft-sec/rad (0.7 N-m-sec/rad). Therefore, the damping ratio for the minor loop 
is 0.6 for CMG gimbal angles of 00 and the resulting expression for the closed-loop 
attenuation, in  a r c  second/lb-ft, is 

K, of 0.5 V 

1.7 x 10-3(+ + 
+ 1)[% + + 1) 

where the gyro gimbal angles have been se t  at Oo and the telescope considered as a pure 
inertia. A plot of frequency response for the closed-loop 'case is shown in  figure 6. 

Since there are no stringent attitude-control requirements for the manned service 
module (e.g., 0.25O maximum attitude e r ror ) ,  its control system was greatly simplified. 
It consisted of a twin-rotor, single-axis CMG and a position-loop gain of 75 lb-ft/rad 
(102 N-m/rad). It was assumed for this study that the attitude and position of the service 
module relative to the telescope would be continuously updated to reduce disturbance to 
the telescope. 

11 



Allocation of Pointing E r r o r s  

An estimate of the telescope pointing e r r o r s  which result  from major sources can 
be obtained from the frequency response of the telescope control system shown in  figure 6. 

To obtain the telescope pointing e r r o r s  listed in  table 11, the following assumptions 
were made: center-of-mass offset d4 of 6 inches (0.15 m) between the main gimbal 
and the telescope, maximum main-gimbal velocity 6 3  of 7.5 X loW3 rad/sec, transla- 
tional offset 22 - z 1  of 1.5 inches (0.04 m), service-module pointing e r r o r  of 0.25', and 
maximum gravity-gradient disturbance toyque on the telescope of 0.25 Ib-ft (0.34 N-m). 
The predominant pointing e r r o r  is caused by the main-gimbal damping since there is a 
relative lack of attenuation at that disturbance frequency (0.342 rad/sec). Table II indi- 
cates that in  the linear case, the required pointing accuracy of 0.01 a r c  second for @2 
can be met for the worst-case conditions considered here. 

Nonlinearities 

Because of the stringent accuracy specification on the telescope control system, the 
effect of nonlinearities on system stability and response becomes important. Two major 
nonlinearities have been considered: bearing friction in  the CMG gimbals and bearing 
friction in  the connection between the main-gimbal ring and the telescope. 

References 4 and 5 have reported that for the s ize  CMG being used here, the bearing 
static friction could be as low as 0.025 oz-in. (1.77 X 

purpose of this analysis a static friction of 0.05 oz-in. (3.54 X 10-4 N-m) and a running 
friction of 0.025 oz-in. (1.77 x 10-4 N-m) per gimbal were assumed. The breakaway rate 
of the bearings was set  at 4 X 10-5 rad/sec. Any viscous damping inherent in  the gimbal 
bearings can be included in the passive gimbal damper Dg on the CMG. The CMG fric- 
tion characteristics a r e  shown in figure 7. At CMG gimbal ra tes  below breakaway, the 
static friction prevents the gimbals from responding to torque motor inputs. During these 
periods the telescope is in effect uncontrolled and will  drift  until the attitude e r r o r  is suf- 
ficiently large to provide the required torque to the gyro through the control-system high- 
gain attitude loop; therefore, a limit cycle will exist in  the telescope control system. 

N-m) per gimbal. For the 

Since the telescope control-system response should be linear for relatively low 
values of disturbance torque, adequate means must be provided to reduce the effect of the 
CMG static-friction dead band. There a r e  several  ways in which this reduction might be 
accomplished. 
limit-cycle frequencies would reduce the amplitude of the telescope-attitude limit cycle 
and would extend the bandwidth of the control system. This method would provide mar- 
ginal performance, a t  best, for reasonable values of gain in  the feedback loop. A second 
method, which would effectively eliminate the static-friction dead band, would be to apply 
a dither signal to the CMG gimbal axis. This technique is reported in the literature 
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(ref. 6). The frequency and amplitude of the dither torque Td must be determined 
from the frequency response of the telescope control system shown in figure 6 and con- 
sideration of dither torque necessary to maintain zero crossing of the CMG gimbal 
velocity. 

For the purpose of this investigation, the static friction in  the bearing connection 
between the main-gimbal ring and the telescope was assumed to be 0.192 oz-in. 
(1.36 x 10-3 N-m), and the Coulomb friction was set at one-half this value. 

The effect of the static-friction dead band causes jerks in  the relative velocity 
between the main gimbal and the telescope. When operating within the static-friction 
dead band, the telescope and the main gimbal move together. The motions of the tele- 
scope will be confined to 0.01 a r c  second; beyond this range the telescope control system 
would develop the torque necessary to break the static-friction dead band. 

RESULTS OF ANALOG COMPUTER SIMULATION 

Linear System 

The equations of motion and the control systems were  simulated on an analog com- 
puter. To provide a basis on which to judge the response of the vehicle, the simulation 
results for the linear system are considered first. Figure 8 shows the real-time 
response of significant variables for the telescope-linear control system to a step input 
of 0.25 lb-ft (0.34 N-m) with the control moment gyro (CMG) gimbal set  at 0'. 
steady-state attitude $2 of the telescope for this condition is 0.0004 a r c  second. The 
effective applied torque Ta to the gyro in the steady state is approximately 0.04 oz-in. 
(2.8 X 10-4 N-m), and the steady-state velocity of the CMG gimbal d! is 
4.16 x 10-4 rad/sec (0.024 deg/sec). 

The 

Figure 9 illustrates the response of the entire vehicle to the crew-motion distur- 

between the telescope and gimbal centers of mass  in  this case and all cases to follow 
bance of 1200 lb-ft (1627 N-m) torque (fig. 4) and 60 lb (267 N) force. 

d4 
is 6 inches (0.15 m). The telescope CMG gimbal was se t  at Oo, and no environmental 
torques were considered. After the initial overshoot of 0.0012 a r c  second of the tele- 
scope as a result of the crew-motion disturbance, the telescope control system followed 
the coupling torques of the main gimbal and translational degrees of freedom. The over- 
shoot of the service-module attitude angle $1 to the crew-motion disturbance was  
6 X rad  (0.035"). The main-gimbal velocity $3 achieved a maximum of 
1.5 X 10-4 rad/sec, and its motion was completely damped in  approximately 240 seconds. 
The translational difference 22 - z 1  was a maximum of 0.244 inch (6.2 x 10-3 m) and 
was lightly damped. This translational-mode damping resulted from a fortuitous choice 

The displacement 
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of parameters in the vehicle design; this damping can be predicted from a root locus of 
the characteristic equation of the vehicle (ref. 5). Other means of providing effective 
damping for the vehicle should be investigated. 

For the run shown in  figure 10, the conditions were the same as those in  figure 9 
except that an initial condition of 1.74 X 10-2 rad (l.Oo) was imposed on the main-gimbal 

attitude 43.  The crew-motion torque was delayed to show more clearly its effect on the 
telescope response. The peak overshoot of the telescope attitude 4 2  to the crew-motion 
disturbance in  the service module was 0.0023 a r c  second, and the peak torque input to the 
telescope caused by the main gimbal was 3.0 x lom2 lb-ft (4.07 x 
final run made under linear conditions, shown in figure 11, the initial conditions were a 
service-module attitude 41 of 4.3 X rad (0.25O) and a main-gimbal attitude $3 
of 1.74 x 10-2 rad (l.Oo). The crew-motion disturbance was  applied when the service- 
module attitude reached 1.74 X 

tude for this run was 0.0022 a r c  second. 

N-m). For  the 

rad (0. lo). The peak overshoot of the telescope atti- 

Since the response of the telescope to the imposed conditions was within specifica- 
tions, the feasibility of the soft-gimbaled mode of operation under idealized conditions has 
been established. It should be noted, however, that only one crew-motion disturbance was 
considered in  this analysis. It is evident from figures 9 to 11 that unrestricted frequency 
of crew motion may increase the amplitude of oscillation of the lightly damped transla- 
tional mode to unacceptable values. For this reason, some additional form of damping 
should be provided for this degree of freedom. 

Nonlinear System 

To provide a more realistic appraisal of vehicle performance, the nonlinearities of 
the telescope control moment gyro bearings and the main gimbal bearings were also 
included in  the analog simulation. 
lated at 0.05 oz-in. (3.5 X lom4 N-m), and the Coulomb friction, at 0.025 oz-in. 
(1.77 x 
at 0.192 oz-in. (1.36 x 10-3 N-m), and the Coulomb friction level, at 0.096 oz-in. 
(6.8 X N-m). 

For the CMG bearings, the static friction was simu- 

N-m). For the main-gimbal bearings, the static-friction level was simulated 

Figure 12 illustrates the limit cycles which occur in  the telescope control system 
when no external torques a r e  applied. The drift in attitude $2 is caused by a small  
telescope rate. When this rate  causes the attitude e r r o r  to increase to a sufficiently 
large value to cause the torque motor to break the static-friction dead band, a control 
torque will be applied to the telescope. Because there is insufficient attitude e r ro r  to 
maintain the gyro free of the static-friction dead band, a limit cycle results. For the 
gyro gimbals set  at 0' with no applied torques, as in  figure 12, the limit-cycle frequency 
is 1.29 rad/sec at an amplitude of ~t0.026 a r c  second. Figure 13 shows that when an 
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external torque is applied to the telescope, the frequency of the limit cycle increases 
while the amplitude of the telescope attitude decreases. The highest frequency attained 
(fig. 13) is 5.45 rad/sec and the amplitude is 0.0035 to -0.002 a r c  second for a step input 
of 0.0455 lb-ft (6.2 X 10-2 N-m) and with the gyro gimbals s e t  at 0'. 

The effect of the main-gimbal nonlinearity is shown in figure 14. The disturbance 

N-m) on the telescope and 0.1 lb-ft (1.36 X 10-1 N-m) on the service mod- 
on the vehicle was caused by crew-motion and environmental torques of 0.01 lb-ft 
(1,36 X 

ule. The gimbal remained at a constant offset of 5 X 

motion ceased; this provided a constant torque input to the service module of 
1.5 X 10-3 lb-ft (2..03 X 10-3 N-m). It is apparent that no deleterious effects are encoun- 
tered for the nonlinearity of the main-gimbal bearings at the friction levels specified. 

Figure 14 also indicates the limit cycle in the telescope resulting from the CMG 

rad (0.0029') when gimbal 

static-friction dead band and the low torque levels. The CMG gimbal was se t  at 45'; 
therefore, the effective attitude-loop gain was  reduced by 0.707 for this run. The ampli- 
tude of the telescope-attitude limit cycle reached a peak value of 0.034 a r c  second. To 
correct this situation, a dither signal with a torque amplitude of 0.75 oz-in. 
(5.30 X 10-3 N-m) and a frequency of 38 rad/sec was applied to the CMG and the result  
is illustrated by figure 15. The conditions for this case a r e  identical with those in  fig- 
ure  14. After the initial overshoot caused by the step function and dither signal, the tele- 
scope responded to the crew-motion disturbance with an overshoot of 0.0025 a r c  second. 

The vehicle response indicated by figure 16 was for the following conditions: 

rad (0.25O) on the 
(1) environmental torques of 2.0 lb-ft (2.71 N-m) on the service module and 0.25 lb-ft 
(0.34 N-m) on the telescope; (2) initial conditions of 4.3 X 

service module and 1.74 x rad (1.00) on the main gimbal; and (3) telescope CMG 
gimbal se t  at 45O. The crew-motion disturbance was applied when the service-module 
attitude was 2.3 x 10-3 rad (0.130). After the first overshoot of the telescope response 
to the initial conditions and the environmental torques, the telescope-attitude e r r o r  did 
not exceed 0.005 a r c  second. The corresponding case with the addition of a dither signal 
of 0.75 oz-in. (5.3 x N-m) at 38 rad/sec is shown in figure 17. In this case the 
maximum overshoot of the telescope after the initial response was 0.008 arc second. 
The additional e r r o r  of 0.003 a r c  second in the telescope attitude occurred because the 
CMG gimbal velocity d! was close to the breakout velocity of 4 X rad/sec for a 
short  period of time. This increased overshoot, however, was  within the pointing specifi- 
cation of the telescope of 0.01 arc second. 

The final three figures are used to illustrate the effects of noise in  the output of the 
star-position sensor of the telescope. 
tude was equivalent to 0.003 arc second rms  and was inserted at the input of the filter 

For the cases  considered here, the noise ampli- 
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representing the star-sensor transfer function. The noise source was provided by a low- 
frequency Gaussian noise generator which produced a flat relative spectral  density from 0 
to 35 Hz. Figure 18 indicates the response of the vehicle with noise added to the condi- 
tions of figure 14. The dithering effect of the noise maintained the attitude $2 of the 
telescope within 0.01 a r c  second; however, the performance was marginal. The addition 
of a dither signal of 0.75 oz-in. (5.3 X N-m) at 38 rad/sec in  the presence of this 
noise dramatically improved the telescope pointing accuracy, as illustrated by figure 19. 

The final case considered illustrates the addition of 0.003 a r c  second r m s  noise and 
a dither signal of 0.75 oz-in. (5.3 X 10-3 N-m) at 38 rad/sec to the case shown in fig- 
ure  16. These conditions represent the most severe case encountered for this analysis. 
The resulting system response is shown in figure 20 and indicates that the pointing speci- 
fications can be met when the telescope, with its major nonlinearities included, is sub- 
jected to a severe disturbance environment. 

C ONC LUDING REMARKS 

Analysis and computer simulation have demonstrated that the attitude control of a 
space telescope coupled to a service module through a suspension system appears feasi- 
ble. The simulation of the rigid-body planar equations of motion of the vehicle indicates 
that the pointing accuracy of the telescope can be maintained within the prescribed 
0.01 arc second when the vehicle is subjected to severe disturbance torques. 

Since the closed-loop attenuation of the telescope control system is minimal at the 
main-gimbal frequency of 0.342 rad/sec, it is advisable to redesign the attitude-loop 
compensation network or to increase the attitude-loop gain to reduce the effect of distur- 
bance at that frequency. 

The results indicate that some form of damping should be provided for the transla- 
tional modes of the vehicle, because unrestricted crew motion could increase the lightly 
damped oscillations to intolerable levels. 

The disturbances applied to the telescope represent the worst-case conditions 
expected. The center-of-mass offset between the main-gimbal ring and the telescope in  
all cases was 6 inches (0.15 m). In practice this distance may be reduced to less than 
1 inch (0.025 m) by means of manual or automatic control. The crew-motion disturbance 
of 1200 lb-ft (1627 N-m) torque and 60 lb (267 N) force which is .coupled to the telescope 
through the suspension system is considered by previous studies to be the most severe 
level expected. 

The static-friction dead band caused by the bearings of the control moment gyro 
creates a limit cycle in  the telescope control system when low torque levels a r e  experi- 
enced. This situation can be corrected by employing a dither signal whose amplitude is 

16 



sufficient to prevent the control moment gyro gimbal from dwelling near zero velocity and 
whose frequency is sufficiently attenuated by the closed-loop response of the control sys- 
tem to limit the resulting periodic variation in  the telescope pointing angle to small  levels. 

The main-gimbal damping may be varied depending on the response of the telescope 
control system to the frequency of its disturbance. A more meaningful appraisal of this 
damping could be accomplished i f  more adequate information concerning crew-motion fre- 
quency were available. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., April 6, 1970. 
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TABLE I.- ASSUMED PARAMETERS FOR TELESCOPE COUPLED 

TO A MANNED SERVICE MODULE 

Manned-service-module mass,  m l  . . . . . . . . . . . . . . .  3835.1 slugs (55 969 kg) 
Telescope mass,  m2 . . . . . . . . . . . . . . . . . . . . . .  673.9 slugs (9835 kg) 
Gimbal mass,  m3 . . . . . . . . . . . . . . . . . . . . . . . .  8.695 slugs (126.9 kg) 

-Service-module pitch-axis inertia, I1 . . . . .  6.09 X 105 slug-ft2 (8.26 X 105 kg-ma) 
Telescope pitch-axis inertia, I2 . . . . . . . .  1.58 X 105 slug-ft2 (2.14 X 105 kg-ma) 
Gimbal pitch-axis inertia, I3 . . . . . . . . . . . . . . . .  221.7 slug-ft2 (300 kg-ma) 

attachment, dl . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42.8 f t  (13.1 m) 
Radius of service module, d2 . . . . . . . . . . . . . . . . . . . . . .  8.15 f t  (2.48 m) 
Radius of gimbal, d3 . . . . . . . . . . . . . . . . . . . . . . . . . .  7.13 f t  (2.17 m) 
Spring constant, K . . . . . . . . . . . . . . . . . . . . . .  0.5088 lb/ft (7.425 N/m) 

Distance from c.m. of service module to spring 

Spring mounting angle, . . . . . . . . . . . . . . . . . . . . . . . .  0.955 radian 

TABLE II.- ALLOCATION OF TELESCOPE POINTING ERRORS 

FOR DETERMINISTIC DISTURBANCES 

Source 

Main-gimbal damping 
Translational coupling 
Service-module pointing error 
Gravity gradient 

- .  

Torque Pointing e r r o r  
~ I contrikution. 

lb-ft 

0.075 
.064 
.095 
.25 

N-m 

0.102 
.087 
,128 
.339 

arc second' 

0.005 
_ _  

.0004 

.0002 

.0004 
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c.m. of telescop 

Figure 2.- Schematic of soft-gimbaled telescope. 

Telescope 1 
Figure 3.- Schematic of soft-gimbaled suspension system. 
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