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ON THE INTEGRABILITY CASES OF THE EQUATION

OF MOTION FOR A SATELLITE IN AN AXIALLY

SYMMETRIC GRAVITATIONAL FIELD

Abohghassem Ghaffari

ABSTRACT

The projection of an axially symmetric satellite's orbit on a plane perpen-

dicular to the rotation axis (z = const.) is given by the second-order differential

equation

N

y 
2 

= ^
_

y _ y I  TX	 (1)
i+y

where the prime denotes the derivative with respect to x and 7 (x, y) is a known

function. Two integrability cases of (1) have been investigated and it has been

shown that for these two cases the integration of (1) can be carried out either by

quadratures or reduced to a first-order differential equation. Analytical and

physical properties of (1) are expressed, and it is shown that equation (1) can be

derived from the classical plane eikonal equation of geometric optics.



SUMMARY

This paper discusses the integrability cases of a special equation of motion

recently presented by H. Knothe* in his article "Satellites and Riemaniann

Geometry". The importance of this equation (equation 1) is its close connection

with the plane eikonal equation of geometric optics. The e quation under dis-

cussion is given by
N

Y	
= ^y - Y , `^'X 	 (1)

1 + Y^ 2

y(x) represents the projection of the satellite's orbit on a plane z = const.,

prime denotes the derivative with respect to x, and ^k (x,y) = log 4, (x,y) , where

tp (x,y) is being interpreted* as the speed with which the projection of satellite

moves in the two-dimensional space (x,y) .

Knothe* has shown that for a given potential (^(u p u 2 ) in an axially symmetric

three-dimensional Riemaniann space (u 1 , u 21 u ^ there exists a function

q)(u 1 , u 2) by means of which the equations of motion for all point-masses with

equal total energy and equal angular momentum can be reduced to a single

ordinary second-order differential equation. Considering the special case of

the motion of a satellite around a rotationally symmetric body in three-

dimensional Euclidean space (x,y,z) , Knothe* has shown that the projection of

a satellite's orbit about a body of revolution on a plane orthogonal to the axis of

rotation (z-axis) is a geodesic curve given by equation (1) . Equation (1) can also

be considered as the autonomous equation of motion of a point-mass moving in

a field of force with a force function ^, (x,y) = J ( X - y ) •

In this paper two integrability cases of equation (1) are considered and it is

shown that for these two special cases the integration of (1) has been reduced to

quadratures and to an ordinary first-order differential equation. Analytical and

physical interpretations of this equation as well as its connection with the classical

plane eikonal equation of Geometric Optics are also expressed.

*Celestial Mechanics 1 (1969), pp. 36-45; D. Reidel Publishing Company, Dordrecht -Holland.
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ON THE INTEGRABILITY CASES OF THE EQUATION

OF MOTION FOR A SATELLITE IN AN AXIALLY

SYMMETRIC GRAVITATIONAL FIELD

Abohghassem Ghaffari

1. Introduction

This paper has been devoted to the investigations of the two integrability

cases of the ordinary second-order differential equation

YN 	 Y , ^x	 (1)
I } y02

which defines the projection (on a plane z = const.) of the motion of a satellite

around an axially symmetric body in the three-dimensional Euclidean space

(x, y, z ). Prime denotes the derivative with respect to x.

Recently H. Knothe (ref.) showed that for a given potential (k(u l , u 2 ) in an

axially symmetric three-dimensional Riemannian space (u I , U2' u3 ) there exists

a function ip (uV u 2 ) by means of which the equations of motion, for all point-masses

with equal total energy and equal angular momentum, can be reduced to a single

ordinary second-order differential equation.

Considering the special case of the motion of a satellite around a rotationally

symmetric body in three-dimensional Euclidean space (x, y, z) , Knothe (ref. p„ 45,

formula 65) has showed that the projection of satellite ' s orbit on a plane z = const.



is a geodetic curve given by the equation (1), where
V

= log ^ (x, Y)	 (2)

The function kk (x, y) has been interpreted by H. Knothe (loc. cit.) as the

speed with which the point-mass moves in a two-dimensional Euclidean space

(x, Y) ► i.e.,

= at	 (3)

where o- is the arc length of the orbit's projection on the plane z = const.

Equation (1) is a special case of the general equation

(zx +Z2  + 1 ) Y N = Zx 
z YY Y,3 + (2 zx zxY - z Y ZYY) y1 2 t (Zx - 2 z  zxY ) y' Z Y Z xx	 (4)

giving the geodetic curves on a given surface

z = z (x, y).

The second-order equations (1), (4) are of the third degree in y' and there are

no general rules for solving nonlinear differential equations, and skill and ingen-

uity are essential. The purpose of this paper is to show that there are (besides

the trivial case in which the variables in T can be separated), at least, two cases

in which the integration of equation (1) can be carrifA out either by quadratures

t

.
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or reduced to an ordinary first-order differential equation. These cases are

deduced from the form and structure of the function ^ expressed in both rec-

tangular and polar coordinates.

2. Integrability Cases

a. Equation (1) can be written

dye 
= d arct y' = TY dx - Tx dy.

1 + y12

The integration of (5) would be easy if the right-hand side of (5) is also an exact

total differential of a function U (x, y) such that

	

iY dx	 x dy=dU=U.dx+U Y dy-

The integrability conditions of (6) leads to the Cauchy-Riemann differential

equations

Ux = 4y

r	 UY

provided a C Z and Ucc2 in a domain D of (x, y) of the space R2.

The infinite number of functions U (x, y) are given by the two following

quadratures

	

r
x 	 Y

U (x, Y) = 
J 

^'y (x , Y) dx - fy ^x (xp , Y) dY + a	 (8)

0 	 0

4

(5)

(6)

(7)



t

where xo and yo are arbitrary nu.nerical values of x and y respectively, and a

is an arbitrary constant. The particular function U corresponding to a = 0 is

X

	 YU (x, Y) = 

J 
7y (x ^ Y) dx - ^ 

tkx (x O , Y) d Y,	 (9)

x	 JyG	 0

and the integration of equation (5) gives

arctg y' = U (x, y) + C,	 y' = tan ( U + C) = tan w

or

U+C =w
	 (10)

where the angle w has been defined by H. Knothe (ref.) such that the tangent vector

of the trajectory x(t), y(t) has the components cos w and sin w respectively, and

C is an integration constant.

Analytic and physical interpretations.

The Cauchy-Riemann conditions (7) state that there exists an analytic

function W of the complex variable z = x + iy such that

W (x + i Y) = U (x + Y) + i ^ (x , Y) ,	(11)

where the two harmonic functions U and T satisfy Laplace equations

6U=0,	 6T=0.	 (12)



e

From the Cauchy-Reimann conditions (7) one can alb .- deduce that

U.2+ iJ 2̂, = TX + qy	 (13)

or the expression

22 + Z 2, 	 (14)

is an invariant (in terms of x and y) on either surfaces

z = J (x, Y)
(15)

z = (x, Y)

There is a close relation between equation (1) and the classical plane eikonal

equation of geometric optics

(OZ) 2 = ZX + Z 2 = r^ (x, y)
	

(16)

where n is a function of x and y. In fact, equation (1) can be derived, for a special

form of n (x, y), from equation (16). The form of equation (16) suggests to

write

n (x, y) = e4 ,	 (17)



and setting

z	 e4' cos w
X

	

_	 (18)
,z = e `^ s in w,

one finds that wx and wy satisfy the first -order partial differential equation

	

Cos a) • wX ? sin w • wy = y•y cos , -7. s in w	 (19)

with the corresponding characteristic differential equations

	

dx = dy =	 dw	 (20)
tgw ^y -^

x 
t CO

whi :-h give

dY=
	

dW	 ,

	

Y , =tg w, and dz =w = 41y -fix tgw.	 (21)dx

Taking the derivative of the first equation of (21) with respect to x and

considering the second enuation of (21) we get exactly the equation (1).

The case n = Cont. corresponds to the developable conoid surfaces whereas

n as a function of x and y corresponds to the plane wave fronts of light in an

inhomogeneous medium with a variable index of refraction n (x, y).

t
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If n is a function of z alone, equation (16) can be integrated by classical

methods and represents the well -known parallel (moulding) surfaces.

Equation ( 1) can also be considered as the plane autonomous equation of

motion of a point-mass moving in a field of force with a force function
(x, y) = eqj(x-Y),

b. If (x, y ) is an homogeneous function of degree zero, that is to say if

	

^b (x , Y) _	 I1, X )	 f (-Y) = f( U )	 (22)

where	 \

U = Y 	 (23)
x

then the equation (1) will be reduced to an ordinary first-order differential

equation. The new variables are x and u.

In fact, equation (1) becomes

N

	

x y	 _ f, 
(U) 

(1 + U y'),	
(24)

1 + y02

and the substitution (23) gives

Y, =U'x+U=t +u

(25)

Y
N

= uNx+2u'=u' 
(dt+11

`	 \ -1

and equation (24) becomes

t I dt + 1^ = f' (u) [1 + u ( t + U)] [1 + (t + u) 2 ]	 (26)

which is of the first order in u and t.

7



E

If, in polar coordinates, T is a function of the argument

B = arctg Y
x

alone, the substitution (23) leads to the same equation (26).

It may exist, besides the two above mentioned cases, other ca-es in whic'_i

the integration of (1) can be carried out by quadratures or reduced to as ordinary

first-order differential equation.
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