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i
FOREWORD

This volume of Convair Report No. GDC-DCR 69-046 constitutes a portion
of the final report for th-1 "Study of Integral Launch and Reentry Vehicles."
The study was conducted by Convair, a division of General Dynamics Cor-
poration, for National Aeronautics and Space Administration George C.
Marshall Space Flight Center udder Contract NAS 9-9207 Modification 2.

The final report is published in -ten volumes:

Volume I	 Condensed Summary

Volume II	 Final Vehicle Configurations

Volume III	 Initial Vehicle Spectrum aid Parametric Excursions

Volume IV	 Technical Analysis and Performance

Volume V	 Subsystems and 'Weight Analysis

Volume VI	 Propulsion Analysis and Txadeoffs

Volume VII	 Integrated Electronics

Volume VIII	 Mission/Payload and Safety/Abort Analyses

Volume IX	 Ground Turnaround Operations and Facility
Requirements

Volume X	 Program 'Development, Cost Analysis, arid,Tecl-urology
Requirements

Convair gratefully acknowledges the cooperation of the many agencies and
companies that provided technical assistance during this study:

NASA-MSFC	 Aerojet-General Corporation

NASA-MSC,	 11oc:ketdyne

NASA--I RS^	 Pratt and Whitney :.._

NASA-LaRC	 Pan American. 'W'orld Airways

The study was managed and supervised by Glenn Karel, Study Manager,
C. P. Plummer, Principal Configuration Designer, 3'ild Carl E. Crone,
Principal Program Analyst (all of Convair) under the `direction of
Charles M. Akridge and Alfred J. Finzel, NASA study co-managers.
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Volume III

ABSTRACT

A study was made to obtain a conceptual definition of reusable space
shuttle systems having multimission capability. The systems as defined
can deliver 50, 000 pound payloads having a diameter of 15 feet and a
length of 60 feet to a 55-degree inclined orbit at an altitude of 270 n. mi.
The following t;;pes of missions can be accommodated by the space shuttle
system: logistics; propellant delivery; propulsive stage delivery; satellite
delivery, retrieval, and maintenance; short-duration missions, and
rescue missions.

Two types of reusable space shuttle systems were defined: a two-element
system consisting of a boost and an orbital element and a three-element
system consisting of two boost elements and an orbital element. The ve-
hicles lift off vertically using high pressure oxygen/hydrogen rocket
engines, land horizontally on conventional runways, and are fully reusable.
The boost elements, after staging, perform an aerodynamic entry and fly
back to the launch site using conventional airbreathing engines. Radiative
thermal protection systems were defined to provide for reusability. De-
velopment programs, technology programs, schedules, and costs have
been defined for planning purposes.

During the study, special emphasis was given to the following areas:
System Development Approaches, Ground Turnaround Operations, Mis-
sion Interfaces and Cargo Accommodations/Handling, Propulsion System
Parameters, and Integrated Electronics Systems.
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SUMMARY

The vehicle configurations are summarized in the figure below. The three-
element systems have elements of identical size and shape. The two-
element vehicles are optimized for minimum weight and have larger booster
elements. Section 2 contains a description of each vehicle.

PAYLOADS-

SIM. BURN
(FR-2)

50,000 -1,13.

THREE-	 5EQ, BURN

ELEMENT I	 (FR-3)

(F11-1)

- 25, 000-1,B.

THREE-

ELEMENT
(Flt-1-25K)

PAYLOADS
TWO-3TA ^E
SEQ. BURN

it-H-3-25K)

LTrTOFF WT. 1106 1. B.) 4.53 4.00 3.53 3. '36 2.81 2.76

THRUST, ENG. {106 LB.) 1.070 0."10 0.497 0.681 0.670 0.48e

COMMON HERO SHAPE YE S NO NO NO YES NO

CROSS-FEED YES NO YES NO YES NO

Performance trade studies were conducted using the two-element, sequen-
tial-burn vehicle (second from left in the figure) as a baseline. The results,
discussed in Section 3, indicate that the vc-hicle will stage at approximately
11 9 000 ft/sec. The booster element has a thru.,t-to-weight ratio of 1.45
and the orbiter 1.30 for optimum performance. Orbiter engine failure con-
siderations, however, indicate that the thrust-to-weight ratio should be in-
creased to approximately 1.60 to achieve a once-around abort capability.
Development costs make it attractive to use a common rocket engine for
both stages of the two-element system. The program costs follow the weight
trends. The nonrecurring costs follow the total dry system weight trends,
and the recurring costs follow the gross weight trends (see Section 3.1.3).

xv
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Section 4 provides a summary of the FR-1 (three-element with crossfeed) developed
during the study period. As shown in the vehicle spectrum, this vehicle has a higher
gross weight than any of the two-element configurations; however, it has the basic ad-
vantage of a common stage shape, which can substantially reduce development costs.
A sensitivity comparison shows the three-element (FR-1) gross liftoff weight more
sensitive to orbiter weight and AV maneuver requirements when compared with a two-

element vehicle.

In Section 5, vehicles with and without propellant crossfeed are compared. It was deter-
mined that for a given vehicle configuration, (such as "common" elements) the use of
crossfeed reduces launch weight six to nine percent. However, if the vehicles are op-
timized for either crossfeed or no crossfeed, differences in weight are minor.

Section S contains a preliminary comparison of fixed and deployable-wing space shuttle
configurations. It was concluded that the weight difference was small. The fixed wing
is inherently simpler in concept; however, the fixed wing needs to satisfy subsonic,
transonic, and hypersonic entry flight conditions, including entry heating. Deployable
wings eliminate entry wing problems at some expense in structural complexity. The
deployable-wing cross-.range capability is also greater.

Section Z contains studies of space shuttle configurations with the gross liftoff weight
fixed at 3.0 and 3.5M pounds. It was necessary to relax the basic study ground rules
(contingency) to meet the 50, 000-pound payload requirement.

xvi
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SECTION 1

INTRODUCTION

This volume contains the initial definition of the vehicle spectrum defined by NASA and
evaluated by Convair in this study. This spectrum is shown in Figure 1-1 and includes
the following concepts.

The term "element" is used to denote a complete "flyable" entity. All configurations
studied have either h,o or three elements. The two booster elements of the three-
element FR-1 are simultaneously staged from the orbiter element.

500	
50 1 000-LB PAYLOADS

	
251 000-LB PAYLOADS

400

300wv

z
w 200

100

0

I

3-ELETAENT; SEq.	 1Sim B'T7MI D	 3. EMENT
(FR-1.)	 _(FR -3)	 ('R-2)	 (3-A)	 (1'`Et-1-25K)

TWO-ELEMENT SYSTEMS

Figure 1-1. Vehicle Spectrum
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a. Two-element systems:

1. 50, 000 pound payload vehicles:

a) Parallel staged, sequential burn concept (Vehicle FR-3)

b) Tandem staged concept (Vehicle 3A)

c) Parallel staged, simultaneous burn (with crossfeed) concept (Vehicle FR-2)

2. 25, 000 pound payload vehicles:

a) Parallel staged, sequential burn concept (Vehicle FR-3-25K)

b. Three-element systems:

1. 50, 000 pound payload vehicle (with crossfeed) (Vehicle FR-1-25K).

2 25,000 pound payload vehicle (with crossfeed) (Vehice FR-1-25K).

All of the vehicles were sized to satisfy the following requirements (see Figure 1-2).

a. A 55-degree, 270-n. mi. orbit; launch from ETR.

b. An on-orbit AV capability of 1800 fps using the main propulsion system suitably
throttled.

c. An orbital and entry attitude control subsystem &17 of 200 fps.

d. A 3/4 of 1 percent contingency on the ideal AV to orbit including backpressure
losses.

e. A 10 percent contingency on dry weight across the board.

f. An orbit staytime of 7 days maximum.

g. A 3g axial load limit:.

h. Payl -,ad size: 15 feet diameter and 60 feet long (50, 000 lb),
15 feet diameter and 15 feet long (25, 000 lb).

A typical two-stage flight profile is summarized in Figure 1-3. A major problem in
examining the large number of vehicle configurations listed was to derive meaningful
and consistent supporting data on the characteristics of each stage. The approach used
to solve this problem was to establish a baseline stage configuration compatible with
the basic requirements. This baseline stage was then sized and modified as required
for each of the above arrangements. The baseline stage is described in Section 2.

0'	 A flow diagram of the Initial vehicle design process is shown in Figure 1-4. An initial
vehicle Is synthesized to the given groundrules using Inputs to the synthesis program
(Volume IV) based on preliminary design layouts and experience. The results of this
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Figure 1-2. Mission Profile

synthesis, based on a selected geometry, are packaged in terms of preliminary weight
bogies, initial trajectory, and a vehicle layout with preliminary dimensional data.
This package is analyzed by the various technical groups as indicated on ae schE-matic.
The results of these investigations result in inputs to a new iteration from which the
"final" vehicle layouts are made. Sensitivies and vehicle mass properties are then
generated. This is a very simplified flow diagram, there being in fact many internal
iterations; the entire loop must be traversed mor- than once or twice, depending o,1
the degree of iteration closure in performance, loads, weights, and vehicle balance
required.

By agreement with MSFC a two-element and a three-element system without propellant
crossfeed and with a 50, 000 pound payload capability were selected for a more detailed
definit}.on. These systems are described in Volume II.
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SECTION 2

VEHICLE DESIGN AND DESCRIPTION

This section contains a general description of the baseline element configuration.
Paragraphs 2.1 through 2.7 then describe the two- and three-element arrangements
shown in Figure 1-1.

All vehicles have the following common characteristics: high performance, bell
type, L02 /LH2 engines, flyback air-breathing propulsion systems, and vertical
takeoff and horizontal landing (VTOHL).

Vehicle staging arrangements and operations were investigated for all candidate
systems. The aerodynamic configuration was optimized considering the overall

flight regime and performance requirements.

Figure 2-1 shows the general arrangement of the baseline element with stowable
wings. The cross-section has a flat bottom and semicircular upper surface. The
flat bottom improves hypersonic lift/drag ratio and provides convenient stowage
for the wings. The sides are sloped slightly, both to improve the hypersonic lift/
drag ratio and to reduce entry heating. The semicircular upper surface is com-
patible with circular propellant tanks. The nose of the body is parabolic in both
the side and plan view. The Vee tail is attached high up on the aft body for sub-
sonic stability and to provide adequate hypersonic directional stability.

The element shown was modified as required for specific applications. Overall size
varied as a result of propellant requirements. The payload'. bay and subsystems
require modification when used as a boost element. Specific arrangements of booster
and orbiter elements are described further in subsequent paragraphs.

2.1 SEQUENTIAL BURN 50K POUND PAYLOAD, VEHICLE FR-3

The two-stage sequential burn baseline vehicle is shown in Figure 2-2 in the mated
(launch) configuration. The booster and orbiter stages are shown separately in
Figures 2-3 and 2-4.

The vehicle shapes are derived from the baseline configuration. All stages have
variable geometry stowable wings. The vehicle size was based on a series of runs
made on the Convair weight/volume/performance synthesis program as were all the
vehicles in the spectrum. The objective was to treat all the vehicles on the same
basis and to the same ground rules so that the comparisons would be valid.

2-1
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The staging velocity for Vehicle FR-3 was selected from the following synthesis
results:

.r.	 .	 ..

r

Staging Veloci
(fps)

10,642

11,089

11,617

Gross Liftoff Weight
(1b)

3,996,000

4,007,000

4, 030, 000

Total System Dry Weight
(lb)

712,830

711,420

711,011

F

The design point was selected at 11, 089 fps - a compromise between gross liftoff
weight and total hardware weight.

The boost trajectory adopted was one where the second stage was injected at an
altitude of 260, 000 feet (43 n. mi. ), representing the perigee of an elliptical orbit
whose apogee was at 100 nautical miles. Thus, the vehicle has approximately 100 fps
excess velocity above the circular velocity requirement at the 260, 000 foot altitude
initial boost burnout injection point. Alter approximately 45 minutes of coast time
the orbit is circularizod at 100 n. mi, by reigniting a single main engine and provid-
ing a circularizing "ki@k" of approximately 105 fps.

A staging dynamic pro@t oil ►4' 50 pat was adopted for all vehicles in the spectrum.
This was show at tho ti *#re W W tho miniimuin system gross liftoff weight value for
the Fit-1. serive, of vobi@:e , "# wont woc k reported in Volume II, Section 4
indicates that a aowwhAt iowor staging dynamic pressure, in the order of 40 psf,
would minimizo GLOW but t1w diftronees are not grew.

The synthesis summary run is shown in Table 2-1. (Only the summary run is shown
here.) In Paragraph 6.7 of this volume a more complete weight, dimension, and
trajectory printout is given for an updated version of the two-stage sequential burn
50K pound payload vehicle.

The booster is about four times the weight of the orbiter and about three times the
volume. Typical planform loadings are 61 psf for the booster and 59 psf for the
orbiter elements. The rocket engines have common thrust chamber and primary
nozzles. The nozzles are compromised to give the orliter vehicle the additional
expansion ratio. The booster expansion ratio is 35/80 (two position) and the orbiter
is 150. Four flyback engines are used in the booster and two in the orbiter.

2-6
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Table 2-1. FR-3 Two-Stage Sequential, 50K Pound Payload Vehicle Synthesis Sumnury

WEIGHT

FUEL
OXIn17.ER
PROPELLANT
FLYBACK FUEL
PAYLOAD
STRUCTURE

TOTAL

IN OPRI F

RETURN CONDITION
ENTRY

r: LANDING

' VOLUME

FUFL
OXIDIZER
PROPELLANT
PAYLOA9
OTHER
TOTAL

GEOMETRY

LENGTH
' BODY WETTED AkEA

BODY PLANFGkM AREA
ENTRY PLANFORM LOA(IING

PROPULSION
THRUST-10-WEIGHT

_ N0. OF ENGINLS
THRUST PER ENGINE	 (SL)
THRUST PER ENGINE	 (VAC)
SPECIFIC ImPULSE	 (SL)
SPECIFIC	 IMPULSE	 (VAC)

TRAJFCTOPY
MASS RATIO

. MAXIMUM DYNAMIC NRESSURF
y" STAGING nnvAMIC PRESSURE

STAGING VELOCITY	 (kFLATIVE)
STAGING AL1IIUuE

_ STAGINO FLIGHT PATH ANGLE	 (RELATIVF)
INJECTION VELOCITY	 (INERTIAL)
INJECTION ALIITVUE
INJECTION fLIGMI PATH ANGLE	 (INERTIAL)
INJECTIUN INCLINATION
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2.2 TANDEM 50K FOUND PAYLOAD, VEHICLE 3A

71m tandem two-stage baseline vehicle, sized to a staging velocity of 10, 977 ft/sec,
is shown In Figure 2-5. The staging velocity was selected on the basis of the follow-
ing synthesis results:

Staging Velocity
(fps)

10,474

10,987

11v485

Gross Liftoff Weight
(lb)

3,877,000

3,860,000

3 9 870, 000

Total System Dry Weight
(lb)

6899810

684,140

682,250

Vehicle sizing is based on the synthesis run summary shown in Table 2-2. Since the
•

	

	 overall vehicle is performance optimized, the first stage is larger than the orbital
stage (booster weight/orbiter weight = 3.56). As a result, the sizes of the major
structural components (tanks, wings, etc.) are not similar. Commonality of the
rocket engines was obtained by using the same basic engine on both stages with dif-
ferent expansion ratio nozzles. A weight summary is shown in Table 2-3.

The truss ac upter shown in Figure 2- i was selected as L baseline due to its inherent
simplicity and reliability. Stage separation is accomplished by releasing four ex-
plosive bolts attaching the truss adapter to the orbiter base. The truss is permanently
attached to the booster in this concept and is recovered with it.

The two-stage tandem concept is well over 400 feet high in the launch configuration.
Because of this, the configuration was not considered acceptable by NASA and was
discontinued on 19 August 1969.

2.3 SIMULTANEOUS BURN 50K POUND PAYLOAD, VEHICLE FR-2

The simultaneous burn two-stage ILRV baseline is shown in Figure 2-6 in the launch
configuration. The booster and orbiter stages are shown separately in Figures 2-7
and 2-8.

The relative staging velocity of 11, 050 ft/sec was selected on the basis of synthesis
runs with the following results:

Staging Velocity	 Gross Liftoff Weight	 Total System Dry Weight
	( fps)	 (1b)	 (lb)

	

10,546	 39581,000 	 598,080

	

`	 11 046	 39533j000
	

588,510

	

"	 11, 533	 3, 513, 060	 582,890
M
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Table 2-2. 3A Two-Stage Tandem Vehicle Synthesis Summary
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Table 2-3. 3A Two-Stage Tandem Summary Weight

SPACECRAFT SUMMARY WEIGHT STATEMENT

"^ • f	 a ='I "

3A Two Stage Tandem
8V DATE

CODE SYSTEM
ITEM 00 MODULE SPACECRAFT

B C 0 E F M U

1.0 AERODYNAMIC SURFACES 6

2.0 BODY STRUCTURE Ax 1 6 6

310 INDUCED ENVIR PROT SNOB

4.0 LNCH RECOV & DKG 11696

5.0 VAIN PROPULS ION /	 / B S	 3

6.0 ORIENT CONTROL SE P i	 ULL S

7.0 PRIME POWER ROURCE 3A

8.0 POWER CONV & DISTR

9.0 GUIDANCE 6 NAVIGATION p p

10.0 INSTRUMENTATION d

11.0 COMMUNICATION a2 Q

12.0 ENVIRONMENTAL CONTROL 3 616
13.0 (RESERVED)

14.d PERSONNEL PROVISIONS

15.0 CREW STA CONTRL b PAN ,Z^ p

16.0 RANGE SAFETY h ABORT

SUBTOTALS (CRY WEIGHT) 6 5

17.0 1 PERSONNEL 900 7

18.0 CARGO OGeO
19.0 ORDNANCE

20.0 BALLAST

21.0 RESID PROP 6: SERV ITEMS q

SUBTOTALS (INERT WEIGHT)

22.0 RES PROP 6 SERV ITEMS

23.0 INFLIGHT LASSES d5
24.0 THRUST DECAY PROPELLANT

2S.0 FULL THRUST PROPELLANT 2,V1i6!597 5 3

26.0 THRUST PROP BUILDUP

27.0 PRE- IGNI I &Z" IASSQS -

TOTALS (GROSS WEIGHT)	 (LB) 8a 4 8	 6

DESIGN ENVELOPE VOLUM! 	 (FT) /B

PRESSURIZED 'VOLUME 	 (FT3)

DESIGN ENVEL SURF AREA 	 (FT 3 /e& 36po

PRESSURIZED SURF AREA	 (FTI)

DESIGN q. MAX (L8/FT ) 5^

DESIGN a. MAX

DESIGN POWER. MAX (KW)

DESIGN NO. MEN/DAYS

A113 , NOTf6 a	 3MFrCHE51

Thrust decay propellants are included
in residual weights.
Tanks are over-sized to account for
thrust build-up and pre-ignition losses.

CODE, SYSTEM: REF. MIL-M-38310A OR sP - 6004

ITEM OR MODULE

A	 - Booster
e
C
D

E

F

SPACECRAFT

MANNED tkpicm	 -

U	 UNMANNED LAUNCH

sac turn 1o[j tju p o111
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Here the minimum weights at staging were not reached since a constraint of 11, 000
fps was held for aerodynamic heating reasons, as explained later in Paragraph 3.6.
Future iterations could, however, allow an increase in staging velocity with some
minor thermal protection subsystem modifications.

At liftoff both orbiter and booster engines are operating; therefore, the bases of the
two stages are aligned to minimize plume impingement. The engines of the orbiter
are being fed with propellants from the booster tanks so that at staging the tanks of
the booster are empty while the tanks of the orbiter are full. After staging, the
booster separates from the orbiter, which then accelerates to orbital velocity using
propellants from its own tanks. As in all the other vehicles in the spectrum, both
stages are equipped with subsonic wings, turbofan engines, and landing gear to per-
mit conventional airplane -type landing.

Since the overall vehicle was performance optimized, the booster is much larger
than the orbital stage (booster weight/orbiter weight = 3.5). As a result, the size
of the major structural components (tanks, wings, etc.) are not similar.

Commonality of all rocket engines was obtained by using the same engine on both
stages. A two-position nozzle is used to increase expansion ratio and minimize
performance losses.

Table 2-4 shows the synthesis summary for the FR-2 vehicle. A summary weight

statement is shown in Table 2-5.

This vehicle employed an 8-2 system, that is, eight engines in the booster and two
in the orbiter. This led to a deficiency of thrust in the orbiter element for the
once-around abort case. Therefore, a 7-2 arrangement was run as summarized in
Table 2-6. The indications are that this is probably still marginal and that, had
crossfeed been pursued, a 6-2 arrangement or a 9-3 arrangement would have been
logical candidates for future examination.

2.4 SEQUEN'T'IAL BURN 25K POUND PAYLOAD, VEHICLE FR--3-25K

The two-element sequential burn baseline vehicle is shown in Figure 2-9 in the launch
configuration. The booster and orbiter stages are shown separately in Figures 2-10
and 2-X1. This is the only two-element candidate with a 25K pound payload. The pay-
load is shown in the 15-foot-diameter by 30-foot-long payload bay of the orbiter. The
booster 'rehicle is still large in dimensions. The Saturn V is shown for comparison.
While a nose-to-nose arrangement of booster and orbiter is shown here, alternate
arrangements have been investigated, as indicated in Figure 2-12, for the 50K pound

.y	payload vehicle.

'	 2-15
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Table 2-4. FR-2 Two-Stage Simultaneous Burn Vehicle Synthesis
Summary (Eight Engine Booster)

8005TER	 ORBITER	 VEHICLE
ELEMENT

1E'IGHT
FUEL.
OXIDIZER
PROPELLANT
FLYBACK F11EL
PAYL.040
STRUCTURE

TOTAL

IN ORH1T
R ETUR N CnND T T I'1'J
ENTRY
LANDING

OOLUME

FUEL
OXIDIZER
PROPELLAMT
PAYLOAD

OTHER
TOTAL

uEnmETRY
LENGTH
BODY W F TTFo ARE A

HODY PL ANFOP P4 t,.REA

ENTRY P LANFORM L 061IN G

'Rr, P1 iL S I0N
r ►4RUS T-TO +E T O o l T
NA. OF ENGINES
THRUST PER ENG II F. (SL)
THRUST PER ENGINE  I VAC 1
SPECIFIC I4PULSE (SL)
SPECIFIC I" PUL S E: 01AC)

'RAJECTOKY
MASS RATIO
MAXIMUM OYNAHIC P i4 SS0RF

STAGING nY f , a +I C P4FSSq,KE
STAGING VWC17 Y 14ELATIVEI

STAGING ALTITtJ )E
STAGING, FLI GHT PA 1 -+ AiJ GLE ( 'IkL A T I VE )
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Table 2-5. Two -Stage Simultaneous Burn (Eight Engine
Booster) Summary Weight

SPACECRAFT SUMMARY WEIGHT STATEMENT

CCN F ICIi p AT 10%	 By

2-Stage Simultaneous($ Eng. Boos er)
GATE

CODE SYSTEM ITEM OR MODULE SPACECRAFT
I C D E F M U

1.0 AERODYNAMIC SURFACES 5 5 !

2.0 BODY STRUCTURE d 6

3.0 INDUCED ENV1R PROT A " a
4.0 LNCH RECOV h DXG 37//

5.0 MAIN PROPULSION 4:2649-71 $ Q3
6.0 ORIENT CONTROL SEP d	 ULL /2951

7.0 PRIME POWER SOURCE $ D A473

9.0 POWER CONV h DISTR -4431 /

9.0 GUIDANCE & NAVTGATION

10.0 INSTRUMENTATION 4 d

11.0 COIOIUNICATION 'A Ave
17.0 ENVIRONMENTAL CONTROL 3G 6
0.0 (RESERVED)

14.0 PERSONNEL PROVISIONS

15.0 CREW STA CONTRL fr PAN O

RANGE SAFETY h ABORT

SUITOTALS (DRY WEIGHT) 465 pd

17.0 PERSONNEL Od

1e-0 CARGO 5a a
19.0 ORDNANCE

20.0 BALLAST

21.0 RESID PROP i SERV ITEMS S	 S

SUBTOTALS IIMERT WEIGHT)

22.0 RES PROP k SERV ITEMS

73.0 INFLIGNT LOSSES o

24.0 THRUST DECAY PROPELLANT

25.0 FULL THRUST PROPELLANT 5

26.0 THRUST PROP 9UILDUP

27.0 PRE - IGNITION LOSSES

TOTALS	 DROSS WEfOHT	 U } A1D

DESIGN ENVEIAPE YOLUME	 tP'E G 5

PRESSURIZED VOLUME	 (FT 3)

DESIGN ENYLL SURF AREA	 (FT", 2 Z Z

PRESSURIZED SURF AREA	 (FTI)

DESIGN 4. MAX fL81FT ) p

DESIGN a. MAX

E_ _ttDESIGN POWER. MAX (991

DESIGN NO- MEN/DAYS ./ 1 = -
NOTES 4	 50IESCNEf1

''.,rust decay propellants are included
in residual weights.
Tanks are over-sized to account for
thrust build-up and pre-ignition loses.

CW1. SYSYSM7 RV. 041L •0-36310A OR OF-6004

ITEM 
On 

IML1

A -
 Boo ate r

9
C

D

e

/PACECSAFr

- Orbiter
V UNNAMM LAUHCM

Mii Porn r7i.7 (lil t GWj

ax
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Table 2-6.	 FR-2 Two-Stage Simultaneous Burn Vehicle Synthesis
Summary (Seven Engine Boaster)

ROOSTER ORBITER VEHICLE

ELEMENT

WEIGHT
F 11EL 309 794 63651
OxTi,TICH 1982681 445560
PROPELLANT 2292474 Si09211
FLYnACA FUEL 35897 2883
PAYLOAU 50000
STRUCTURE 360134 172121 532255

CONTINOENCY dT513 17212
OT Mt1~ 16436 44500
TOTAL 2742455 795928 3538363

IN	 Uk ii [ T 2c' 1164

RETUR N CO N UITIO N 449982 283146
ENI PY 0 244474
LANUTNv 396526 240261

VOLUME
FUFL 76987 12SIS
U A 11) 1 IL H 29368 6597
PkOWE LLANT 146355 19412
PAYI OAU 1063A

OT H't fi 6b406 43014
TOTAL 174761 73064

GEOMET14Y
LEN67m 23200 173.5
ROOY we TTL0 ANEA 23556.0 131700 +
1400Y ft4kFuR4 AkEa 859501 4?52.R
FNT#%Y WLAN0014M LuAvING 50.6 5745

PROPUL ti 11' "1
E -- 35/100	 4 = 35/150

TwauST• 10-wEIG"T 109476 1.39196
NO * 6F CNt1isAb 7 2
T"QuST PEN EnGlNi ISO 551300 UPRATED
THWUST REh ENOINk. 	 IVAC) O/F T 6.4 555676 NOMINAL
SPECIFIC IM046SE	 (50 330•x' 31 7 0 7 O/F 7.0	 38906
SPECIFIC	 I+'VuL%	 IVAC) 453.5 455.0 45409

TRAACTVAT
MASS QAIIU 2073195 2.84000
MA! I0•t1 w ouDAMIC OWESSUPE 69905

STJ%6jNU OYAAMIC P14ESSURE s0

STAGINty VtLOCITY	 INEL4TIVE) 11027

ST A014u ML 1 11 UUL 187959
STAtSYN I ► FLIG"I	 PAIN ANGLE	 (RELATIVE) 2.613
INJf CT Iur, wELUCI TY	 ( INERTIAL) 25897
1NjtCT1u+4 ALTITVUE 259975
1 r+j1 Cf 1UN FL1(sMT PATH ANGLE	 IINgRYTAL) -9000

T NJEC `I 10 k	I NCL I NA I I ON 54.93
FLYBACA RAN41 28509
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The major factors that must be considered are:

a. Booster/orbiter cg and geometric relation.

b. Engine thrust vector/gimu' sling angle.

c. Stage separation.

The interrelationship of these influential design factors determines the magnitude of

drag forces, stability, control, aerodynamic heating, and structural design. Figure
2-12 illustrates three different geometric relationships of the booster/orbiter vehicles

relative to their longitudinal axes.

Location A in Figure 2-12 is considered the maximum that the orbiter should be for-
ward, and although it requires the minimum of thrust vector angle it also requires
the maximum structural support length when mounted on a launch pad. Location C is
the maximum aft position of the orbiter considering booster engine burn. The range
of these extreme locations is 43 feet. The combined cg of each of the three concepts
is approximately 5 feet below the booster eg W/L, and varies longitudinally according
to the orbiter vehicle's location. This is approximately 6 feet forward for the A
location, 2 feet for B location, and 2 feet aft for the C location.

Considering booster thrust line performance relative to all three locations, although

location A requires the minimum gimbal angle, between location A and B the resultant
cg's are within 10 minutes of arc. This = oints to the fact that longitudinal location of
the orbiter is not sensitive regarding engine thrust line performance.

The staging velocity was selected from a series of synthesis runs, namely:

Staging Velocity
(fps)

10,369

10,862

11,343

Gross Liftoff We-'ght
(lb)

2o765,000

2,788,000

2,823,000

Total System Drag Weight
(lb)

531,210

5320424

535,700

The selected run was at 10, 369 fps staging velocity, with the indication that it might
be slightly lower.

The synthesis summary printout for the system is shown in Table 2-7. The vehicle
sum mary weight statement is shown in Table 2-8.
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Table 2-7, Two-Stage, Sequential Burn, 25K PoLind
Payload Vehicle Synthesis Summary

4 00STER	 ORBITER
	

VEHICLE,
ELEMENT

WEYGHT
FUEL
OXIDIZER
PROPELL AN T
FLYBACK FUEL
PAYLOAD
STRUCTURE

TOTAL

IN ORHI1
RETVpN CONUITION
ENTRY
LANDING

VOLUMF

FUEL
09,DTZFH
PROPELLANT
PAYLOAD
OTHEk
TOTAL

GEOMETRY .
LENGTH
BODY WETTED AREA
BODY PLANFORM AREA
ENTRY PLANFOHM LOAPIN6

PROPULSION
THRUST-70-wE:16HT
NO, OF ENGINES
THRUST PER ENGINE (SL)
THRUST PEk ENGINE (VAC)
SPECIFIC IMPULSE (50
SPECIFIC IMPULSE (VAC)

TRAJECTORY
MASS k4TI0
MAXIMUM DtNAM1C PRESSIJ497
S1AG1N6 DYNAMIC PRFSSUQE
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Table 2-8. FR-3-25K Two-Stage, Sequential Burn
25K Pound Payload Summary Weight

S

SPACECRAFT SUMMARY WEIGHT STATEMENT

'9s'1 ' p 1*6 Stage,	 Sequential Burn ev

25K Pa load
DATE

CODE SYSTEM
ITEM OR NODULE SPACECRAFT

8 0 E F M U

1.0 AERODYNAMIC SURFACES ^^/x, /	 $

2.0 BODY STRUCTURE /6E74^S ^J3

3.0 INDUCED ENVIR PROT bU

4.0 LNCH RECOV h DKG 7AI38
5.0 MAIN PROPULSION O

6.0 ORIENT' CONTROL SEP 6;	 ULL /e /^ $3
7.0 PRIME POWER SOURCE q) 1S6a
8.0 POWER CONV h DISTR 9 /

9.0 GUIDANCE & NAVIGATION p 31a
10.0 INSTRUMENTATION D 275

11.0 COMMUNICATION

12.0 ENVIRONMENTAL CONTROL 33(J 6

13.0 (RESERVED)

14.0 PERSONNEL PROVISIONS

15.0 CREW STA CONTRL & PAN Q 5

16.0 RANGE SAFETY R ABORT

SUBTOTALS (DRY WEIGHT) p

17.0 PERSONNEL 9,00 "O

18.0 CARGO S d4

19.0 ORDNANCE

20.0 BALLAST

21.0 RESID PROP 6 SERV ITEMS / 27 D

SUBTOTALS (INERT WEIGHT) 0 6 A
22.0 RES PROP & SERV ITEMS

23.0 INFLIGHT LASSES 3

24.0 THRUST DECAY PROPELLANT

25.0 FULL THRUST PROPELLANT /767/2/ 3SrT 1,

26.0 THRUST PROP BUILDUP

27.0 PRE-IGNITION LOSSES

TOTALS (GROSS WEIGHT)	 (LB) N/ -Z

DESIGN ENVELOPE VOLUME	 (FT ) G '
PRESSURIZED VOLUME 	 (1''T3)

DESIGN ENVEL SURF AREA	 (FT I ) (,

PRESSURIZED SURF AREA 	 (FT3)

DESIGN q. MAX (LWFT ) 6^S (o

DESIGN t. MAX

DESIGN POWER, MAX (KWI

DESIGN NO. MEN/DAYS ,Z	 ,

T NOTES A	 SKETCHES,

Thrust decay propellants are included
in residual weights.

Tanks are over-sized to account for
thrust build -up and pre-ignition .losses.

CODE. SYSTEM; REF, MIL-M-39310A OR SP-6004

ITEM OR MODULE

A - Booster
a
c
D

E

F

SPACECRAFT

M	 MANNED LAUNCH	 - Orbiter
U	 UNMANNED LAUNCH

MSC FQfn T313 (1111 09)
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2.5 STAGING CONCEPTS

This seo-tion documents the alternate staging concepts considered for the two-element
integral launch and reentry vehicle (ILRV) baselines. Tandem, simultaneous 1 aru,
and sequential burn arrangements were investigated to establish staging techniques for
each baseline vehicle. (Three -element staging is discussed in Section 10 of Volume V).

2.5.1 TANDEM VEHICLE. It appears that the lower ballistic coefficient of the empty
booster will cause the two stages to separate without auxiliary thrust devices. It may
be desirable to deflect the control surfaces of the booster to increase drag and reduce
the time required for separation prior to orbiter ignition. Also, the negative accel-
eration experienced by the orbiter during coast may require special propellant feed
provisions to ensure main engine start.

2.5.2 SIMULTANEOUS BURN VEHICLES. Four candidate separation concepts are
described in subsequent paragraphs. (See Figure 2-13.)

a. Longitudinal separation.

b. Pure lateral separation.

c. lateral-rotational separation.

d. "Lofting" separation.

2.5.2.1 Lot itiidinal Separation. One element drops or eliminates thrust and drops
back on a rail or guide through the plume. Problems in addition to plume force/
heating are large overturning moments due to plume impingement on the aft -located
element that must be reacted through the rail or guide (beefy structure) and the for-
ward elements control system. These problems, in addition to the inherent problems
of passing a manned-reusable vehicle through the plume, make this a very poor candi-
date. A more attractive method appears to be a passive staging approach using the
higher ballistic coefficient of the orbiter element at staging. Both elements eliwAnate
thrust and use aerodynamics to drag one (the lighter or empty booster) back on a rail
or guide. This maneuver requires moderate q (50 to 100 psf) to accomplish staging in a
reasonable time. The larger, lighter vehicle having less mass and larger cross-
section will have considerably larger drag acceleration to accomplish separation.
Advantages are:

a. Can burn to depletion (no planned residuals).

b. Passive system (slide off rail once released).

c. Reliable.

2-26
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Disadvantages are: '

a. Orbiter engines must be shut down and restarted. (Simultaneous burn vehicle only.)

b. Both elements are noncontrolled during separation and must recover aerodynamic-
ally from disturbance. (Actually a very minor problem.)

c. Orbiter restart must be accomplished under negative g (although small negative g
due to its very high mass.

d. A moderate to high q is required for this concept. Since the orbiter engines must
be restartable for many in-orbit tasks, this is a very attractive candidate.

2, 5.2.2 Pure Lateral Separation. (See Figure 2-13(2).) Both elements:

a. Trim thrust to approximately same longitudinal g.

b. Disengage engine thrust vector control (TVC) system and trim thrust slightly
inboard of worse center of mass dispersion to ensure slight outward moment.

c. Rotate-rtxxanslate outward until sufficient clearance is obtained, then reactivate
control.

d. Fly to adequate separation before cutting off booster engines, etc.

Advantages are:

a. Large vehicle separation can be obtained.

b. Engine cutoff not required.

Disadvantages are:

a. Low q is required so as not to provide reconnecting disturbance thrusts, <20 psf.

b. An aft bumper or buraper -alignment mechanism is required.

c. Booster must be provided with runtime propellants plus adequate pad (a serious
performance loss) .

d. Non-workable if engine cutoff required (fire).

With the advantage/disadvantage ratio shown above, this appears to be a moderately
poor candidate.

I
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2.5.2.3 Lateral-Rotational Separation. (See Figure 2-13(3).) Both elements:

a. Trim thrust to same g (approximately).

b. Disengage TVC and trim thrust considerably inboard to ensure good rotation.

c. Rotate until desired angle is obtained (moderate angle of attack) and initial
disengagement.

d. Rotate-translate (using aerodynamics) until adequate clearance is obtained, then
reactivate control.

e. Fly to adequate separation before cutting off booster engi::,es, etc.

Advantages are:

a. Large vehicle separation can be obtained.

b. Engine cutoff not required.

c. High or low q can be accommodated (high q being preferred).

d. Can accommodate high q, engine cutoff case.

Disadvantages are:

a. An aft hinge is required.

b. Booster must be provided with run —tior a propellants plus adequate pad (a severe
performance lose) .

c. Engine-cut problem severe.

This modification to the pure-lateral separation scheme is moderately attractive and
can be considered a candidate.

2.5.2.4 Lofting Separation. At booster cutoff and with orbiter at thrust, the orbiter
rotates nose -down to slight negative angle of attack (positive for booster), disconnects
forward attach point with hard nose -up orbiter TVC, pivots on aft hinge to desired
disconnect as gle, and booster flies off aerodynamically. (See Figure 2-13(4).)

Advantages are:

a. No booster engine run required,

b. Partially extendable to abort condition (not =x q).

^P 2
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Disadvantages are:

a. Moderate (not large) separation clearance.

b. Requires thrust on orbiter element.

C, Large thrust vector deflections required by orbiter and orbiter engine-out problem
severe.

d. Large rotational accelerations required by orbiter and booster.

e. Non-workable without orbiter thrust.

With the advantages/disadvantages ratio shown above, this is a moderately poor candi-
date system.

I Y'

In summary, the passive longitudinal system and the lateral-rotational system are
the prime candidates with the longitudinal system appearing to be the most attractive.

2.5.3 SE9U3NTIAL BURN. When the orbiter is moved aft (to align the bases of bothti
vehicles), the concepts discussed above are applicable.

It would appear that the sequential burn configuration with noncoplanar bases may be
subjected to heavy buffet loading and some heating downstream of a relatively sharp
discontinuity, the base of the orbiter. This would require further investigation.

The longitudinal passive technique discussed in Paragraph 2.5.2.1 would work well
in this situation. Since the orbiter engine is not started until after separation, dia-
advantages (a) and (c) would be the normal mode and should not be considered in this
case.

The lofting separation concept is also workable, with extendable links or actuators to
force a large angle of attack on the booster, which can then fly away aerodynamically.

Staging the sequential burn vehicle is discussed further in Paragraph 6.5 of Volume II.

2.6 25K POUND PAYLOAD, VEHICLE FR-1-25K

This vehicle is shown in Figure 2-14. The orbiter element is shown in plan and side
view. The booster element is identical except that the space occupied by the 15-foot-
diameter by 30-foot-long payload bay in the orbiter is occupied by extensions of the
main propellant tanks as shown. The shorter payload lay requires that the main
landing gear attach in the hydrogen tank region; however, with this regLdrement nut,

Y;	 a very efficient tankage arrangement results.

{
r:x4:
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The main tanks are integral (nulled waffle pattern) with external frames and stringers.
These members transmit the main bending and axial loads. The payload bay and
intertank section is basically a skin/stringer assembly of conventional design. Poly-
urethane or open face honeycomb insulation is used inside the hydrogen tank. The
major structure is of 2021 or 2219 aluminum alloy protected by a thermal protection
system of dynaflex and microquartz insulation with external shingle-type cover skin
primarily L605 alloy on the lower surface and 811 titanium on the upper surface.

The liquid-oxygen tank is placed forward to increase the forward cg location during
boost and to reduce gimbal requirements. All the tanks have 1.414 to 1 end closures.
The thrust structure consists of paired parallel beams supported by a cylindrical
thrust skirt, which is a simple extension of the main hydrogen tank.

The orbiter payload bay area is shown. Stowed beneath this are the secondary fuel
and oxidizer tanks used for the on-orbit maneuver and retro p-:opellants. These are
heavily insulated tanks that contain propellants for up to seven days in space. The
payload bay doors run the full 30-foot length and provide a 1-foot clearance at each
end also. The doors are on top of the orbiter body, symmetrical about the vehicle
centerline. A swing nose payload access method was discarded primarily because of
orbital attitude control problems with the rl oor open.

The wing pivot bulkhead and carryover structure runs around the payload bay section
in the orbiter and between the main tanks in the booster. The wings are protected by
segmented doors in the stowed position. The wings are not deployed until subsonic
flight is achieved. The deployment mechanism is similar to that of the F-111, namely,
screwjacks driven by hydraulic motors.

Two bell nozzle engines with two position nozzles of expansion ratio 35/130 are in-
corporated in each of the configuration elements (six total). The extensions are re-
tracted at entry, and the nozzles are gimballed upward to protect then from heating.
The orbiter and booster nominal cg location is at 55% of the length from the nose to
the elevon trailing edge.

In general the FR-1-25K vehicle is an extension of the initial point design (IPD) vehicle
presented to NASA in April 1959 except that the payload bay size and ©V requirements
have increased. Four flyback turbofan engines are proposed instead of two to enhance
engineout performance. These are currently pax ametric extensions of the GE T34
Step III. Future work on this configuration would evaluate the penalty of installing
off-the-shelf engines. Figure 2-15 shows the 25K pound payload vehicle FIB--1-25K
launch configuration and overall dimensions.

The synthesis sump-iary for this vehicle is shown in Table 2-9. The summary weight
statement is shown in Table 2-10.
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Table 2-9. FR-1-25K Pound Payload Vehicle
Synthesis Summary

	

HOOSTER
	

ORBITER
	

VEHICLE
ELEMENT

WEIGHT
FUEL
	

1C7842
	

72612
OXIUITEk
	

690189
	

508284
PROPFLLANI
	

798031
	

580896
FLYSACK FUEL
	

12226
	

2423
PAYLOAD
	

25000
STRUCTURE
	

176446
	

17604n
	

529031

TOTAL
	

993525	 +i23524
	

2810574

P.

oo

IN ORHIT
RETUR N CONDITI ON
ENTRY
LANDING

VOLUME
FUEL
OXIDIZES
PROPFLLANT
PAYLOAD
OTHER
TOTAL

GEOMETRY

LENbTH
BOOY WE TTEU AREA
BODY PLANFORM AREA
ENTRY NLANF O RM LOADING

PROPULSION
THRUST—TO—wEIGHf
NO. OF ENGINES
THRUST PER ENGINE (5L)
THRUST PER ENGINE (VAC)
SPECIFIC IMPUi.SE (SL)
SPECIFIC IMPULSE (VAC)

TRAJECTORY
MASS RATIO
MAXIMI}M DYN AMIC; ORESSURC
STAGING DYNA MIC PRESSURE
STAGTN6 VELOCITY (RFLATIVE)
STAGIN4x ALTIIUI)E
STAGING FL) Get T PATH ANGLE ( RELAT I VF )
INJECTION VELOCITY (INERTIAL.)
INJECTION ALTITUDE
INJECTION F L LGMT PATH A 14GLF ( INERTIAL )
INJECTION INCLINATION

FLYBACK PArq%iE

0 246400
196414 237913

0 205551
177392 201958

26799 18044
10223 7526
37021 25570

5319
29522 35654
66544 66548

16?,l 162,1
11730.7 1173101
3684,6 3684o7

51,5 55.8

	10152800	 1,39183
2

652000 UPRAT ED
O/F = 6.4 X570351 NOMINAL

3900	 381960/F =7.0 390.3
457.5	 453.7	 4579 5

3.34086 201418
606,5

5o
7 382

169657
9.265

25897
259967
-•000
55.01

221,0
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Table 2-10. FR-1-25K Vehicle Summary Weight

SPACECRAFT SUMMARY WEIGHT STATEMENT

CONFIGURATION

FR-1-25K

By DATE

CODE 1YSTEK
ITEM OR MODULE SPACECRAFT

e C 0 E F M U

110 AERODYNAM!C SURFACES .Vq

2.0 BODY STRUCTURE 6	 3!

S.0 INDUCED ENVIR PROT 3 190 35	 (^

4.0 LNCH RECOV A DKG Q

5.0 MAIN PROPULSION 3	 O 3	 6
6.0 ORIENT CONTROL SEP a	 ULL 5314
7.0 PRIME POWER SOURCE 3 91!7 ^r

8.0 POWER CONY & DISTR

9.0 CUIDANCE h NAVIGATION

10.0 INSTRUMENTATION p 5

1140 COMMUNICAT10i 1 O
12.0 ENVIRONMENTAL CONTROL 3 Q 6 /(

13.0 (RESERVED)

14.0 PERSONNEL PROVISIONS

15.0

L

CREW STA CONTRL h PAN p ^r

16.0 RANGE SAFETY 8 ABORT

SUBTOTALS (DRY WEIGHT) 1 76494 e
17.0 PERSONNEL 2470 a
19.0 CARGO $ 6oD
19.0 ORDNANrE

20.0 BALLAS-i

2I.0 RESID PROP a SERV ITEMS 666 1 y/(,

SUBTOTALS	 (INERT WEIGHT) 6561 3O

22.0 1 RES PROP • SERV ITEMS

23.0 INFLIGHT LOSSES /"'3 D
24,0 THRUST DECAY PROPELLANT

25.0 FULL THRUST PROPELLANT p 3 O

26.0 THRUST PROP BUILDUP

27.0 PRE-IGNITION LOSSES

TOTALS (GROSS WEIGHT) 	 (L1) 5 35

DESIGN ENVELOPE VOLUME(FT ) foC 5!J4 5S^

PRESSURIZED VOLUME	 (FY3)

DESIGN ENVEL SURF AREA	 (FT I ) //731 /173
PRESSURIZED SURF AREA 	 (FT )

DESIGN q.MAX (L&'FT ) d 6ol
DESIGN B, MAX

DESIGN POWER. MAX (KW)

DESIGN NO- MEN/DAYS / o7-/-7

A	 T	 S' NOTES •	 SIIeTCHEl.

Thrust decay propellants are included
in residual weights.
Tanks are over-sized to account for
thrust build-up and pre-ignition losses.

CODE. SYSTEM: REF. MIL-M-39310A OR SP-6004

IT1Y OR MDDUtE
A	 -	 ooster
B
C
D

E

F
SPACECRAFT

MAmmw	 - Orbite r

U VNMANMCD LAU"

nSC F0(n lyZ3 (Ju l 6Y)
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2.7 50K POUND PAYLOAD, VEHICLE FR-1

The configuration inboard is shown in Figure 2-16. The synthesis summary is shown
in Table 2-11 for the vehicle as presented in August. As Li all the vehicles in the
spectrum the boost phase mixture ratio was selected at 6.4 to allow use of the 14%
uprating. The orbit phase was made at the nomir i1 mixture ratio of 7.0. the same
as for all the other vehicles. The 50K FR-1 vehicle is described in more detail in
Section 4 of this report for an updated version that included structural weight cha:.ges
and the incorporation of off-the-shelf flyback engines.

Figure 2-16. FR-1 Element
2-36
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Table 2-11. FR-1 Vehicle 50K Pound Payload
Synthesis Summary

BOOSTER ORBITER VEHICLE

ELEMENT

WEIGHT
FUEL 177339 1151211
OXIDIZER 1134968 805896
PROPELLANT 1312307 921024
FLYBACK FUEL 18797 3963
PAYLOAU 50000
STRUCTURE 262944 27936T 805255

TOTAL 1604332 1317681 4526345

IN ORBIT 0 402851

RETURN CONDITI ON 292006 399132
ENTRY 0 335723
LANOTNG 263835 330281

VOLUME_
FUFL 40065 24609

•OXIDTZEW 16810 11932
PROPELLANT 56875 36542
PAYLOAU 10638
OTHER 59081 695AS
TOTAL 116757 116764

GEOMETRY
LENGTH 202.8 2020A
BODY WETTED AREA 1000264 1800300
BODY PLANFORM ARLA 5813.0 aS813:2
ENTRY PLANFORM LOA11ING 4807 57:8

PROPULSION
THRUST-10-OEIbHl 1.62695 1039196
NO: OF ENGINES 2 2
THRUSI PEN ENGINE (SL) 1,050,800UPRATED
THRUST PER ENGINE (VAC) O/F = 6.4 1071904 NOMINAL
SPECIFIC IMPULSE	 (SL) 391.7 383.0 O/F = 7.0	 391,7
SPECIFIC IMPUL5E	 (VAC) 455.8 451:7 455.8

TRAJECTORY
MASS 09TIO 3.27007 2.38015
MAXIMUM DYNAMIC PRESSURE 606.8
STAGI NG (DYNAMIC PHtSSURF 50
STAGING VELOCITY	 (RELATIVE) 8273
STAGING ALTITUDE 1721T9
STAGING FLIGH1 PATH ANGLE	 INELATTVE) 79952
INJECTION vELUCITY	 (INERTIAL) 25897
INJECTION ALTITUDE 259986
INJECTION FLIGHT BATH ANGLE	 (INERTIAL) 0000
INJECTION INCLINATION 54*99

FLYBACK RANGE	 226.2
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SECTION 3

TWO-ELEMENT PARAMETRIC DESIGN ANALYSIS

3.1 PERFORMANCE

Parametric synthesis runs were made on the 50K payload two-stage sequential burn
vehicle to investigate the effects of staging velocity, thrust-to-weight at liftoff and
thrust-to-weight of the orbiter at staging on the vehicle weights, and the impact on
engine thrust requirements and numbers of engines. The staging velocity was also
tempered by aerodynamic heating considerations as discussed in Section 3.6. The
mixture ratio was held at 7.0 and nominal thrust was used in both booster and orbiter
elements for this study. Uprating of liftoff thrust was not employed.

Figure 3-1 shows the weight relationships to staging velocity. Note that the gross
liftoff weight at all thrust-to-weight levels tends to be minimum at approximately
10, 500 fps staging velocity. The total system dry weight has reached a minimum at
approximately 12, 000 fps. The scale on the ordinates relative to the total amounts is

0,77

11
1.38/2.05

IN

(F/W)B (F/W)O
1

1,38/1.85

1.38/1.65

1.48/1.65

1.48/1.30

9	 10	 11	 12	
0.6?	 9	 10	 11	 12

	Vstg{l, 000 fps)	 Vstgjl, 000 fps)t;..

Figure 3-1. Weight versus Staging Velocity
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a coarse one and the differences in dry weight are not as severe as the visual indication
from the plot. As the figure indicates, weight will be reduced with increasing thrust-
to-weight at liftoff and weights increase with increasing thrust-to-weight at orbiter
ignition (over the range investigated).

A minimum thrust-to-weight at liftoff of 1.16 with one engine out was established as
a system ground rule to ensure safe liftoff without excessive drift in this condition.
The thrust-to-weight in the orbiter is fixed by the "once around" abort philosophy
whereby the orbiter, In case of engine out, proceeds to low orbit using the mission
maneuver propellants to overcome the performance loss of the engine out. The top half
of Figure 3-2 shows the effects, which indicate that a thrust to weight (F/W) of about
0.825 (min.) is needed.

2

000

W

1a
4
P4

H

O 0

— -- NOMINAL MANEUVER AV

VSTG = 8$ 000 FPS

11 9 000 F PS
12.' 000 FPS

1,65
(TWO ENGINE)

_I I

I
I
1

0.825
(ONE ENGINE)

I	 l

0,7	 1.0	 1.3	 1.6	 119

INITIAL THRUST/WEIGHT OF ORBITER

0.74
VSTAGE - 11

9 000 I'PS

CURRENT PONCE
AROUND" MINIMUM
	 LIFTOFF F/W = 1.38

F/W ORBITE R - 1.65

LIFTOFF F/W = 1.48

i

1.2	 1.4	 1.6	 1.8	 2.0	 2.2
INITIAL THRUST/WEIGHT OF ORBITER

H 0.73

0.72

W °^ 0.71
0

0.70

a..
0.69

O
0,68

0.67L

Figure 3-2. Two-Stage Parameter Study — Effect of Orbiter
Initial Thrust/Weight Ratio
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For a two-engine orbiter this results in a 1.65 F/W at ignition of both engines.
(These are initial estimates which are currently being rRvised for the NASA and the
USAF missions. Indications are that the requirements All be more severe than
anticipated here, and that it may be necessary to go to three-engine orbiters to main-
tain a higher F/W orbiter with one engine out, and thus reduce the effect of mis-
alignment AV losses.)

Figure 3--2 (bottom) shows that there is a minimum dry weight associated with the
orbiter F/W at ignition and that the safety aspects of once-around abort with a return
to the launch site involve a weight penalty. The crossrange associated with this abort
philosophy is about 800 n. mi. for the 55--deg orbit and ETR launch site.

The data was converted to numbers of engines versus staging velocity and plotted as
shown in Figure 3-3. The approximate temperature limit at 11, 000 fps staging

BOOSTER 811 Ti
UPPER SURFACE

16

TEMP. LIMIT
(F/W)B/(F/W)O

1.48/1.30 (APPROX OPTIMUM PERFORMANCE)

1.48/1.651
ABORT
ORBITER ONCE-AROUND

' 1.3 8/1.65 	 LIMITS
W 

14
	

L605

4L
8 9	 10	 11	 12

STAGING VELOCITY
(1, 000 fps)

Figure 3-3. Vstg vs. F/W vs. Number of Engines

velocity is shown. Selected curves to shoe: iiie trend with F/W are also shown. The
orbiter once-around abort limits as presently used are indicated. Note that increasing
the number of engines at a fixed orbiter F/W and constant staging velocity increases
the liftoff F/W of the booster. The number of engines investigated at this point was
held between eight and ten. The minimum-weight solution tends to increase the num-
ber of engines, as shown on Figure 3-4.
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Figure 3-4. Liftoff Weight vs. Booster Thrust/Weight
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One method of obtaining a high booster F/W with fewer engines is to increase the
F/W of the orbiter (bigger engine). However, as shown in Figure 3-5 (an extension
of Figure 3-2), increasing orbiter F/W above 1.30 increases gross liftoff weight (GLOW)
as the orbiter engine weight effects overcome the reduction in AV misalignment loss
effects to the right of this minimum.

To summarize, the maximum thrust of the common engine is limited by orbiter per-
formance considerations (Figure 3-5); therefore, increasing the number of engines
on the booster is the best way to increase the F/W and reduce GLOW. 'See Figure
3-6. It should be noted, however, that increasing the number of booster engines
beyond eight reduces reliability (Ref. Section 3.1.2.3).

3. 1.1 ENGINE SIZES, ARRANGEMENTS, AND NUMBERS

3.1.1.1 Engine Size Required. The variation in engine size when 8, 9, and 10 en-
gines are used on the booster is summarized in Table 3-1.

Table 3-1. Engine Size

Number of Thrust/ Nozzle Exit Engine Dia (ft)
Engines	 (F/W) / (F/W)o Eng Dia (ft) (Power Pack)

8 1.38 / 2.05 775, 000 7.08 10.1

9 1.38 / 1.85 675j000 6.40 9.5

10 1..,8 / 1.65 6029000 6.06 9.0

3. 1.. 2 Engine Space Available. The engine space available on the baseline booster
is limited by the basic shape of the vehicle and the arrangement or pattern used ill
grouping the engines. The basic shape assumed in this investigation was based on
early FR--1 (T-14) lines. The engine arrangements are discussed below:

a. Ei ht-En ine Arran ement. The optimum pattern for eight engines is shown in
Figure 3-7. It maximizes the engine space available when eight identical
engines are used and results in a reasonable thrust vector/vehicle cg relation-
ship.

b. Nine-Engine Arrangement. Figure 3 -8 shows four candidate engine arrange-
ments. The packaging efficiency of each arrangement was evaluated by com-
paring the ratio of maximum engine diameter to vehicle diameter (De/Dv). As
shown, arrangement D has the highest ratio and allows the maximum engine
diameter for a given vehicle size. This pattern also has a favorable thrust
vector/cg relationship.

3.5
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VS = 10, 500 FPS

F/WB = 1.38
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Figure 3-5. Effect of Orbiter F/My on Total System Dry Weight and GLOW
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4,

Figure 3-6. Liftoff Weight vs. Number of Engines

c. Ten-Engine Arrangement. Figure 3-9 shows four candidate engine arrangements,
The De/Dv ratio favors arrangement D; however, when compared to arrangement
B, the small space advantage may not outweigh the mounting and boattail advan-
tages of D. All arrangements except A have a favorable thrust line, with C the
best for side/side stage mounting as it has the lowest thrust line (nearest the
vehicle base). This will minimize the engine bulkhead cant angle required to
align the booster thrust line through the combined center of mass of both stages.

°sr...y.
3.1.1.3 Comparison of Space Available and Required. Engine space available and
space required is compared in Table 3-2. The comparison is based on best pattern
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D

D /D = 0.33
e v

Figure 3-7. Eight-Engine Arrangement

and Baseline Booster, L = 245. 0 ft, Dv = 32. 2 ft. At an expansion ratio E = 350
power pack diameter is critical. At E = 80, nozzle diameter is critical.

Table 3-2. Clearance Comparison

Diameter Required Clearance
Number Dia. No Gimbal Gimbal 7 Deg No Gimbal Gimbal 7 Deg
Engines Avail.	 E = 35  /E = 80 E= 35/ E= 80 E = 35 /E = 80 F = 35 /E = 80

8 10.70 10.1/11.0 10.1/13.0 +0.6/--0.3 +0.6/-1.3

9 9.50 9.5/10.25 9.5/12.25 +0/-0.75 +0.0,/-2.75

10 9.20 9.0/9.75 9.0/11.75 +0.2/-0.55 +0.2/-2.55

Note: All Dimensions in Feet L clear no clearance

a. Expansion. Engines with nozzle expansions of 35 have clearance regardless of
the number used (up to 10), and permit 7.0-deg gimbaling. Expansion ratios of
35/80 (two-position) will not stay within the base outline of the vehicle; however,
this protrusion is small when 7.0-deg gimbal clearance is not required between
engines.
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D

D /D = 0.283	 D /D = 0.294
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w	 Figure 3-8. Nine-Engine Arrangement
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De /Dv = 0.280	 De/Dv = 0.286

Figure 3-9, Ten-Engine Arrangement
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b. Number of Engines. Eight-engine arrangements have the best clearance when
compared at a fixed expansion, with gimbalhig requirement. Nine-engine
arrangements are acceptable with E = 35 but will have large protrusions outside
the base outline at E = 80 with 7.0 deg gimbaling. The ten-engine arrangement
is better with regard to space than nine, but not as good as eight.

3. 1.1.4Summary. Increasing the number of booster engines from eight to ten is
desirable from a performance standpoint (see Figure 3-10) and is acceptable from a
design standpoint if the engine expansion is limited to 35 to 1 (S. L. ).

However, if two-position (35/80) nozzles are used, the protrusion beyond the base
outline will be greather with nine or ten engines than with eight. The larger-expan-
sion nozzle will also make gimbaling all engines (or thrust modulation) more attrac-
tive for thrust vector control (TVC), because individual engine gimbaling (for checkout)
now determines engine spacing (not so with E = 35).

3.1.2 SAFETY AND RELIABILITY

3. 1.2. 1 Gross Failure and Mission Termination Analysis. Section 8, "Safety
Analysis, " of Convair Report GDC-DCB69-027 presents information on safety and
reliability for a fully reusable launch vehicle concept. The objectives of the analysis
were:

a. Investigate safety in the operation.

b. Establish abort philosophies and mission termination procedures, subsystem
design requirements, and requirements for redundancy.

The analysis shows that intact abort following subsystem failure can be accomplished;
vehicles can be returned to the launch site with the orbiter executing a "once around
the earth" maneuver and return to the launch site, and with the boosters depleting
propellant, separating, and flying back to the launch site in a normal manner.

It was determined that mission losses (incompleted missions) do not represent a large
operational cost factor. However, vehicle losses are a major cost factor and fail-safe
capability is required. Rocket engines, propellant feed and gimbaling are major con-
tributing factors in defining a safe vehicle. The analysis also considered the use of
L02 /LH2 propellant combinations and indicated what design actions are required to
minimize fire and explosion by the use of pressurization and purge of critical compart-
ments with an inert gas.
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Abort procedures following failures occurring in each trajectory phase were defined
and design recommendations for improved safety were made.

3.1.2.2 Safety Considerations in Selection of Number of Rocket Engines for the
Two-Stage (FR-3) System. An analysis was conducted to determine the effect on
crew and passenger safety and mission success for a range of booster engines (6-12)
and for one and two orbiter engines installed in the vehicles.

The analysis was based on:

a. Data and information from Convair Report GDC-DCB69--027, Section 8, 'Safety
Analysis ", where

1. A mission success goal of ^ 0.97 (mission losses = 30/1000 flights) was
established, and

2. A vehicle intact abort success goal ^ 0.9994 was established (vehicle losses
0.6/1000 flights) for mechanical failures.

b. Engine reliability = 0.997.

c. Liftoff to staging burn time = 0.066 hr.

d. Liftoff thrust to weight (F/W) = 1. 16 required for intact abort.

e. Liftoff F/W .:. 1.16 with n -1 engines operating (one engine out) is provided.

f. Orbiter can accomplish intact abort with n-1 engines operating.

3.1.2.3 Summary. Results of the analysis are summarized below and in Table 3-3.

As the number of booster engines used increases from 6 to 12:

a_ Total mission losses increase from 30 to 38.

b. Total vehicle losses increase from 0.6 to =e 0.7.

As the number of orbiter engines used increases from one to two:

a. Total mission losses increase from 28.7 to 30.

b. Total vehicle losses decrease from 1.9 to 0.6.

For a basic goal for vehicle losses < 0.6 total, a minimum of two orbiter engines
are required.

'	 3-13
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Table 3-3. Variation of Losses With Engine Quantity

Number Mission Losses/1000 Flights Vehicle Losses/1000 Flights
Of Total, All Due To Total, All All Causes Except

Engines Causes Engines Only Causes Fire & Explosion

H
6 30 (8) 0.6 (0.025)

0
p^ 12 38 (16) 0.7 (0.11)

1 28.7 (1.3) 1.9 (1.3)

:n	 2 30 (2.6) 0.6 (0.0018)
6

3.1.2.4 Conclusions and Recommendations, The conclusions and recommendations
are:

a. Booster Engines

1. The number of booster engines should be greater than six and less than 12.

2. Thrust to weight at liftoff with one engine out k 1.16.

3. Results with these recommendations incorporated:

Vehicle losses* ft 0.03/1000 to 0. 1/1000

Mission losses* ms 8 to 16/1000
b. Orbiter Engines

1. A minimiun of two orbiter engines should be used.

2. Thrust to weight

F/Wseq. burn - 1.2 (at staging)

F/Wpar. burn "- 1.8 (at staging)

3. Res ults
Vehicle losses* =:s 0.002/1000

Mission losses* ^w 3/1000
c. Commonality of Engines. It is suggested that nb be determined from sizing no

= 2 to achieve commonality or, if penalties are too great, select no = 2 for
orbiter and optimize nb for booster with uncommon engines.

.*Due to engines only.
3-14
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3.1.3 PARAMETRIC COST STUDY. A parametric cost study was performed for the

50K lb two -stage sequential burn (FR-3) configuration. The purpose of the study was
to determine the effects on system cost of booster F/W, orbiter F/W, number of
booster rocket engines, and staging velocity. The number of orbiter rocket engines
was fixed at two.

The relationships developed for the above variables are shown in Figures 3-11 and
3-12. In Figure 3-11 the costs are shown broken down into recurring costs and non-

H
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F, 2.7
O
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U
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r 1.38/1.85
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F/W

1.38,2.0

1.325/2.05

1.38/1.85

8	 9	 10	 11

STAGING VELOCITY (1, 000 fps)

12

Figure 3-11. Two-Stage Vehicle Program Cost Trends
(100 Launches Per Year for 10 Years)

recurring costs. Nonrecurring costs are made up entirely of development costs, but
do not include the cost of flight test hardware that is passed on to the operational pro-
gram. Recurring costs include the investment in operational hardware, spares, pro-
pellants, and operations costs. The nonrecurring cost plot shows that with the F/W
of both the booster and orbiter set at fixed values the development cost can be re-
duced by increasing the staging velocity. Also shown is a decrease in development
cost associated with increasing F/W of the booster and/or decreasing F/W of the
orbiter when the staging velocity is set at a fixed value. The recurring cost plot
shows relative insensitivity to both F/W and staging velocity, although there appears

to be a bucket in the recurring costs curve at about 10, 500 fps to 11, 000 fps.

In Figure 3-12 the nonrecurring and recurring costs have been combined and plotted
to show total program cost versus the same parameters. Constant number of

3-15
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engine lines have also been identified. Due to the relative insensitivity of recurring
costs, the trends in total program cost tend to parallel those of the nonrecurring
costs. In determining the relative advantage of varying F/W, Vstaging and number
of booster engines, the impact of a constraint on anyone of these variables on the
others must be understood. For instance, there is no cost advantage to increasing
the staging velocity unless there is a real constraint against going to a F/W relation-
ship that lies further toward the lower left corner of the plat. Likewise, depending
on the relationship of one constraint to another, different conclusions can be drawn
about numbers of engines and staging velocity. If the configuration were constrained
to no more than eight engines, from a total program cost point of view staging velocity
would not matter. If, however, there is a constraint of nine engines maximum and
there is also a constraint of 1.38/1.85 on the F/W relationship, then staging velocity
should bell,, 000 fps to achieve minimum total program cost. The plot shows a
general tendency toward decreasing costs with increasing numbers of engines, but
this trend can be counteracted if the F/W relationship is allowed to vary. As can be

!	 seen from the plot, nine engines with F/W set at 1.38/1.85 is cheaper on a total
program basis than 10 engines with F/W set at 1.325/2.05.

The point shown at the upper portion of the graph at about 11, 500 fps illustrates the
effect on cost of optimizing the vehicle primarily on performance and not constraining
the configuration to use the same rocket engine in both booster and orbiter. As can
be seen, this results in significantly higher total program costs.

3.1.4 TWO-STAGE SEQUENTIAL BURN 50K LB PAYLOAD PARAMETRIC STUDY
CONCLUSIONS. The following general trends were observed:

a. The optimized vehicles will stage in the neighborhood of 11, 000 to 12, 000 fps.

b. Temperature "Imits currently set at 11,000 fps could probably be extended to
12, 000 fps without significant penalty.

c. A F/W of about 1.45 in the booster and 1. 30 in the orbiter is optimum for per-
formance, but the common engine requirement makes this unachievable. The
F/W of the orbiter must be higher than optimum in order to achieve the staging
velocity required within the 8- to 10-engine limits which seem to be practical
for the booster. Part of the increase in I"/W of the orbiter is desirable, how-
ever, to a,.hieve the once-around abort requirement.

d. Vehicle safety or mission success increases slightly by going from 12 to 6 engines
in the two-stage sequential system. (Catastrophic failures were not considered
as a percentage of all engine failures in this work, however, and for these
effects Convair Report GDC-DCB69--032 should be consulted. )

e. Development costs make it desirable to use a common rocket engine with a
single development program for both stages of the two-stage system.
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f. Program costs follow the weight trends versus staging velocity. Nonrecurring

costs follow the total dry systern weight trends; recurring costs, for the selected
conditions, follow the gross weight trends. Costs reduce with numbers of en-

gines and with the thrust-to-weight ratios which give lowest weights. Staging

velocity and number of engines are interrelated, with 10 engines showing the

least cost.

g. The parametric study was for nominal engine thrusts. Uprated liftoff thrust at

a mixture ratio of O/F = 6.4 would reduce the number of booster engines and

improve the total system.

3.2 TWO-STAGE THRUST VECTOR CONTROL GIMBAL ANGLE REQUIREMENTS

Simulated flights using 99 percentile winds have demonstrated the need for engine
gimbaling. Figure 3-13 presents the gimbal requirements for each configuration.

These requirements are dictates" by 1) one engine out, 2) center of gravity offset, and
3) maximum aq conditions. A unique feature which heavily influences the gimbal

angle requirement is that all of the vehicles under consideration are aerodynamically
stable throughout the boost phase of flight. With an aerodynamically stable vehicle,
maximum aq loads can be relieved by limiting the gimbal angle. For the limited
gimbal angle conditions at maximum aq, the vehicle "weathercocks " (rotates into
the wind) to reduce the angle of attack, thereby reducing the airloads on the vehicle.

Gimbal angle requirements were established by limiting the attitude error (command
attitude minus actual attitude) to less than three degrees. The gimbal angle limiting
is unconventional when compared to the -ontrol systems on operational unstable
boost vehicles; for these vehicles, a gimbal angle limit can produce a catastrophic
failure and load relief can only be provided by sophisticated control system elec-

tronics.

3.3 TWO-ELEMENT VEHICLE LOADS

Net loads were determined for four two-element vehicle configurations. These con-

figurations were nose-to-nose sequential burn, tail-to-tai-L sequential burn, simul-

taneo-is burn, and tandem.

The net loads presented herein are net body shears, bending moments and axial loads

for various ground, flight and landing conditions. All loads shown in this section are

limit. Net loads were determined by means of computer programs which handle air-
loads and .mass distributions, cruise and booster thrust vectors, concentrated loads,
and translational and rotational inertia loads. Rigid-body analysis was used and the

% ,ehieles are in quasi-static equilibrium in all cases. Details relative to airloads,
mess distributions, and net loads are given in the following paragraphs.

:1.3. 1 Al it LOADS. Vehicle airloads were obtained for conditions of maximum boost
dynatilic pressure, subsonic cruise gust, landing, and launch pad ground winds. The
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r

i

ENGINE '	 VEHICLE

REF. LINE	 REF. LINE

Configuration

®
Cant
Angle

s
Gimbal
Angle

s
Liftoff

&
Max q Burnout

s
One

Engine 
Out

Two-Stage Seq-Burn 8 f5 -3.8 4 3.5 4.5

Two-Stage Sim-Burn 5 -15 -3.5 4.7 4.8 4.7

Fixed-Wing Two-Stage 8 f7.5 -3.8 7.5 3.5 4.5
r.uy-riurn (see Section
6 of this report)

All units in degrees.
*Gimbal angle is the engine rotation about the cant angle.

Figure 3-13. Gimbal Angle* Requirements for Two-Stage
Space Shuttie Configuration

surface winds were assumed to act normal to the longitudinal axis of the vehicle on
the launch pad and to be from the most critical direction. The winds were 99 per-
centile surface wind speed envelopes for the Eastern Test Range. Maximum boost
dynamic pressure loads were obtained by a three-degree-of-freedom simulation.
The vehicle was flown through 99 percentile Marshall synthetic winds for the most
critical direction with the peak gust occurring at maximum dynamic pressure. Sub-
sonic cruise gust loads were for a 50 ft/sec sharp-edge gust as specified in MIL-
SPEC-8861. Airloads on the wing, fin, and body were determined. The landing loads
are for a 12 ft/sec touchdown sink speed and a rigid body analysis. Both two-point
and three-point touchdown attitude conditions were considered.
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All air loads are for a rigid body. Maximum dynamic pressure loads were computed
for an elastic body and the elastic body amplification factor was found equal to 1.026.
The first bending frequency for this class of vehicles was found to be between 3. 0 and

3.5 cps.

3.3.2 MASS DISTRIBUTIONS. Mass distributions used in the calculation of net loads
were those for the dry weight and the propellant weight corresponding to each of the
conditions analyzed. Summaries of the total weights used with these mass distri-
butions are given in Section 2.

3.3.3 BODY NET LOADS. Net loads for the body were determined for various ground
and flight conditions. These include ground winds, max aq, booster burnout, sub-
sonic gu^A, and landing. Plots of net axial loads, shears and bending moments for
those conditions are shown in Figures 3-14 through 3-33 for the orbiter and the booster
of each con figuration. Subsonic gust and two-point landing loads shown in Figures
3-30 through 3-33 are typical of all configurations, In order to visualize the effects
of configuration on loads, plots of net axial loads and net bending moments for maxi-
mum coq and booster burnout conditions are presented in Figures 3-34 through 3-41

for orbiter and booster elements. Furthermore, peak compression load intensities
were also plotted for the nose-to-nose and tail-to-tail sequential burn configurations
to enable identification of critical load conditions. These plots, which include the
effects of internal pressure in the orbiter's integral tanks, are shown in Figures 3-42
through 3-45.

3.4 VEHICLE MASS PROPERTIES

Tables 3-4, 3-5, and 3-6 are mass property summaries for the FR-3 two-element, se-
quential burn, (3A) two-element tandem, and FR-1 50K lb payload. The two-element
simultaneous burn mass properties data was not calculated separately, because of
its similarity to the (3A) configuration. Load data, balance, and inertias for the
FR-3-25K were therefore obtained by using FR-3 data with appropriate modification.
In like manner, FR-1-25K mass properties were obtained when needed by ratioing
FR-1 data.

Shown in the FR-3 and (3A) mass property summaries are preliminary weights, not
current weights. The FR-1 summary reflects current weight status. Current
weight summaries for the five configurations — FR-3, (3A), FR-3-25K, FR-1-25K
and FR-1 — are shown in Section 2. These weights were obtained through use of the
space shuttle synthesis program, with program inputs constantly modified to reflect
the developing designs, load data, etc.

3.5 TWO--STAGE VEHICLE AERODYNAMICS

Certain studies, such as tail sizing versus vehicle length and side slope, are appli-
cable to both the booster and the orbiter vehicles. These are covered in Section
3.5.1. The studies specifically for the two-stage booster are covered in Section 3.5.2.
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Condition Weight
(Ibl

x - C.G. Z-C. G.
2

Millions of slug - ft
Sta. (it)< 1 tii" L tit) I,	 - Holl

IYY 
- Pitch IZ - Yaw

Pxz

Gross - Liftoff 4,267.617 88.6 36.1 19.4 12.654 344.773 334.682 -2.071

Booster
Liftoff 3, 403.692 91 _ 37.3 99.5 10.929 284.979 284.949 -2.000
Max. aq (64 see) f. 363. 94 2 104.0 42.4 99.3 7.280 224.602 224.584 -1.350
Burnout 567.555 139.0 56.7 97.1 4.964 118.927 119.024 0.461
Entry 534.056 136 .5 55.7 97. 1 4 . 873 112.468 112.606 0.046
Fl}•back ( Initial) 534.056 135.3 55.2 97.1 9.011 111 .792 115. 067 0.344
Landing 483,919 147.1 60 _ d 96.6 8.101 89.880 93.056 1.030

Booster Propellants 2.835,537 85.9 35.1 00.0 10.598 115.509 115.509 0
11iax. &q Propellants 1.795, 387 93 . 0 50.3 00.0 2 . 201 77 - 167 77.167 0
Flyback Propellant 50,137 23.0 9.4 00.0 0.001 0 . 057 0.057 0

Orbiter
MR-EH 864,525 77.2 41.7 99.0 1.725 49.764 49.702 -0.081
Burnt 311.884 99.6 53.8 97.3 1.430 24.505 24.487 0.506
Entry ( Payload in.) 259.809 192.5 55. 4 98.2 1.330 22.381 22. 348 0.261
Flyback (Initial) 259. 809 101.2 54.7 98.2 2.060 22.041 22.738 0.373
Landing 256.698 102.5 55.4 97.9 2.137 21.569 22.187 0.361

Payload 50,000 93.0 50 . 3 103.0 0.044 0.485 0.488 0
Orbiter Propellants 552. &il 64 .4 34 . 8 100 . 0 0.247 17.653 17.653 0
Fl,-back Propellants 3,111 35.0 18.9 95.0 0 4.003 0.003 0

m

CO2

c
g

=r

i•

^	 x

V	 Table 3-4. Mass Properties Summary FR-3 Two-Stage, Parallel, Sequential Burn

r,



Table 3-5. Suss Properties Summary -- (3A) Two-Stage, Tandem

b

.n

ONDI' ION

WEIGHT

(lb)
k - CG Z - CG -Millions of slu

gR2

Sta-(ft)	 ^: Length WL (ft) Im - Roll ^y -Pitch I . -Yaw P

GROSS LIFTOFF 4,192, 476 234.3 54.5 99.5 9.496 1220.333 1219.783 0.483

BOOS'T'ER
Tditaff 3,267,047 278.6 38.7 99.6 7.297 259.612 259.333 0.322

Max a 2,230f245 292.3 44.3 99. 4 6.608 196.090 195.820 0.913

Burnout 582,655 327.2 58.5 97.6 4.369 96.302 96.107 2.420
Entry, 549,934 326.7 58.3 97.3 4.273 93.868 93.752 2.550
Flyback (Initial) 549, 934 325.4 57.7 97.3 7,504 93.432 96.547 2.830

co	 Landing 499,908 329.8 59.5 98.3 7.343 90.118 93.327 2.050
1
cn

Booster Propellants 2,684,392 268.4 34.6 100.0 5.286 110.839 110.839 0

Max a q Propellants 1,647,590 280.0 39.3 109.0 2.163 69.901 69.901 0

Flyback Propellants 50,026 284.0 40.9 85.0 0.024 0.021 0.065 0

ORBITER
Liftoff 925,429 77.8 40.5 99.3 2.198 56.778 56.508 0.147
Burnout 323,771 101.4 52.8 98.0 1.397 26.741 26.496 0.617

Entry (Payload in) 269,404 106.7 55.5 99.0 1.320 24.511 24.326 0.333

Flyback (initial) 269,404 105.2 54.7 99.0 2.299 24.080 24.873 0.477

Landing 26A1178 106.3 55.3 99.0 2.302 23.555 24.340 0.368

Payload 50,000 95.0 49. 4 105.0 0.044 0.488 0.488 0
Orbiter Propellants 601,658 65.1 33.9 100.0 0.775 21.425 41.426 0
Flyback Propellants 3,226 35.0 18.2 82.0 0. 001 0.002 0.005 0

0
C

m

r^



Table 3-6. Mass Properties Summary - FR-1
v

CONDITION
WEIGHT	 X - CG	 Z - CG	 Millions of slug - ft2

(lb)	 Sta- (ft) % Length WL (ft) 1xx - Roll	 Iyy - Pitch f IZZ - Yaw	 PXZ
t

` t GROSS LIFTOFF 4,843,694 82.4 39.8 99.4 12.943 290 . 422 289 . 767 -3.317

BOOSTER
' Liftoff 1,719,637 82.2 39.7 99.4 4.342 97.577 97.635 -0.618

F Max aq 1,098,848 93.8 45.3 99.1 3.604 71.762 71.830 -0.260
Burnout 329,052 115.5 55.8 97.0 2.357 37.160 37.288 0.399

j Entry 319,044 115.3 55.7 96.9 2.351 36.005 36.129 0.423
Flyback (Initial) 319,044 134.5 55 . 3 97.1 3.855 34.604 36.022 0.523

Landing 298,117 118 . 6 57.3 97.3 3.778 32.327 33.606 0.170

c.s
Booster Propellants 1,390,586 74 . 7 36.1 100 . 0 1.155 45.056 45.056 0

`n	 Max aq Propellants 767,603 84 . 5 40.8 100.0 1.157 27.486 27.486 0
Flyback Propellants 20,927 54 . 9 26.5 88.0 0.001 0.030 0.030 0

Oil
rr

ORBITER
¢ {; Liftoff 1,404,421 83.0 40.1 99.5 3.506 94.229 94.212 --0.273

Burnout 418,027 113.9 55.0 98.2 2.896 40.508 40.520 0.418
Entry (Payload in.) 352,221 117 . 0 56.5 99 . 0 2.489 36.2 5,^ 36.191 0.124

Flyback (initial) 352,221 116 . 1 56.1 99 . 1 3.958 34.887 36.096 0.240

Landing 298,044 117.0 56.5 98.9 3.440 29.624 30.571 0.140

Payload 50, 000 109.5 50.5 105.0 0.044 0.488 0.488 0

Orbiter Propellants 986,395 70.8 34 . 2 100 . 0 0.694 38 . 786 38.786 0 0
Flyback Propellants 4,177 54 . 9 26.5 88.0 0 0.007 0.007 0
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3.5.1 GENERAL

3.5.1.1 Longitudinal Stability and Control

a. Hypersonic. When using the ruddervators (combined rudders and elevator sur-
faces) for pitch control, hypersonic aerodynamic prediction (HAP) runs were made
to determine the effect of deflecting the ruddervator up out of the flow. The effect
of moving the ruddervator hinge line forward to obtain additional hypersonic pitch
control is shown in Figure 3-46.

b. Transonic. Longitudinal stability at a C N value of 0.10 for the basic FR-1 shape
(as determined by tests conducted at the Cornell Laboratory) through the Mach
number range of 0.7 to 1.3 is shown in Figure 3-47. As shown, the stability in-
creases markedly through the transonic range. The working plots have indicated
that transonic trim occurs at low C N values.

c. Subsonic. Static longitudinal stability as determined by tests in the Convair low
speed wind tunnel is shown in Figure 3-48 for the case of eliminating the boattail
and showing the effect of fore-aft wing position. As shown, the vehicle is neu-
trally stable for a 0.55L cg position with the wing MAC at 0.54L. Somewhat
greater sweep and/or aft movement of the wing pivot is required for stability.

3.5.1. 2 Lateral Directional Stability and Control

a. Hypersonic. Cnp versus a¢ is shown in Figure 3-49 for two ruddervator positions
-- zero and 10° down. As shown, the deflected ruddervator case provides for a
comfortable stability level at L/Dmax.

Hypersonic roll control using ruddervators only was investigated using a handling
qualities program. Figure 3-50 presents roll and yaw angle versus time for
ruddervator deflection of 5.7 deg (each). Because of the very high moment of
inertia about the yaw axis compared with that about the roll axis ; the yaw intro-
duced by using the ruddervators for roil control is very small. Figure 3-50 is
for q = 30 psf, and Figure 3-51 is for a q = 260 psf. At the higher q, it is seen
that the yaw is again very small, and decreases past a time of 16 seconds. This
data indicates the feasibility of using the ruddervator for roll control through
the speed regime where the wings are retracted. A yaw disturbance (due to gust,
etc. ) is counteracted by the positive Cnp for the vehicle.

b. Transonic. The stability level through the transonic speed regime is seen in
Figure 3-47 to increase substantially, as found in tests conducted at Cornell,
over the hypersonic case. At Mach 0. 95 , the stability level is somewhat lower
than for the .subsonic case with the wing deployed as determined by tests con-
ducted at Princeton (Reference 3-1).
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c. Subsonic. Direction stability data from the Convair low speed tests was used
to obtain Cnp versus center of gravity position. As shown in Figure 3-52, the
stability drops to zero at a cg position of 0.64L.

3.5.1.3 Cruise. The Breguet expression for range was used to develop the fuel
fraction versus subsonic L/D for a range of 300 n, mi. and an SFC (specific fuel con-
sumption) of 0. 5, using a turbofan engine, for cruise speeds of from 200 knots to
320 !mots. This is shown in Figure 3-53. For a representative case of a vehicle
having a wing loading of 70 psf and cruising at L/Dman (7.0 at a C L of 0.5 for a
cruise speed at 256 knots true) at 15 9 000-ft altitude, the fuel fraction Is 0.079.

3.5.1.4 Tail Sizing. A study was conducted to determine the effect of vehicle length
on the tail size require- to yield identical yaw acceleration. The resulting variation
of tail area versus length is shown in Figure 3-54. The effect of changing the body
sidewall angle on tail size required to maintain an identical level of yaw acceleration
is shown in Figure 3-55. There is question regarding the influence of the shadowing
effect of the vehicle forebody on the effectiveness of the tail. Two assumptions are
shown: for the tail geometry fully shadowed by the forebody, and completely un-
shadowed. As shown, the required tail size is affected very little for the sidewall
range of zero to about 15 deg, but as the sidewall angle increases, the required tail
size is affected substantially by this shadowing effect.

3.5. 1.5 Boost Drag, Drag characteristics for boost performance of the two-element
vehicles, including a tandem arrangement the drag of which is of interest for general
application, is shown in Figure 3-56. Three configurations are shown: simultaneous
burn, sequential burn, and tandem. Data obtained from Cornell tests of a basic FR -1
shape at transonic speeds was adjusted for the effect of rocket engine operation.

3.5.1.6 Time to Ground. The time required to touchdown from what is usually con-
sidered the end of "entry' s of the entry computer runs was approximated and is shown
in Figure 3-57, where altitude, velocity, Mach number, and C L are plotted versus
time. These plots are based on the assumptions that Newtonian aerodynamics apply
down to Mach 1. 0, the wing is extended from Mach 1. 0 down to Mach 0. 6, and that
the aerodynamic characteristics in this Mach range are lir ear with Mach number,
Subsonic aerodynamics are used from Mach 0 . 6 to touchdown, with the vehicle
flying at L/Dm",

3.5.2 TWO-STAGE BOOSTER

3.5.2.1 Longitudinal Stability and Control

a. Hypersonic. Longitudinal characteristics for the booster, which incorporates
lower horizontal surfaces, are shown in Figure 3-58. The effects of deflecting
the ruddervators down 1.0 deg and up out of the flow are shown in this figure,
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Figure 3-56. Drag Data for Boost

An axis line for a cg position of 0.583L is shown, corresponding to the current
cg position for the vehicle at entry. As shown, the vehicle can be trimmed to
an a of about 33 deg using the ruddervator alone. Higher values could be ob-
tained using a hingle line farther forward than the 0.65 chord position currently
shown. Also, some negative incidence would help, and would also relieve the
subsonic trim situation. (The hypersonic directi,oial stability is good at high
angles of attack, and remains acceptable at the lower angles if longitudinal
trimming is accomplished using ruddervators rather than the elevons.) Using
10 deg of down ruddervator, the vehicle can be trimmed down to an alpha of
about 25 deg, which is as low as need be provided for in the two-stage booster.
As speed is reduced below hypersonic, the transonic data indicates that the
vehicle will trim at the lower angles of attack(a).

b. Transonic. (See remarks in Section 3.5. 1)
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c. Subsonic. The effect of adding a horizontal surface to the subsonic longitudinal
characteristics of the basic vehicle v. as approximated by using the data obtained
in the Princeton tests of Reference 3-1. It was assumed that the effectiveness
of the horizontal surface is the same as that of a horizontal surface used in these
tests which incorporated considerably greater leading edge sweep (75 deg com-
pared to 45 deg) on the basis of equal horizontal area. The actual area of the
horizontals is about double that of the tests, and the dC m/dC L is adjusted
accordingly. The value taken as representative of the effect of adding the hori-
zontals is 0.040 dCm/dC L.

3.5.2.2 Lateral/ Directional Stability and Control

a. Hypersonic,-• . See remarks in Section 3.5.1.

b. Transonic. See remarks in Section 3.5.1.

c. Subsonic. See remarks in Section 3.5.1.

3.5.2.3 Tail Sizing. The center of gravity for the two-element booster vehicle is sub-
stantially farther aft than for the other vehicles being examined. The landing cg is
substantially farther aft than the entry cg, requiring that the longitudinal and lateral/
directional characteristics be examined throughout the hypersonic, transonic, and
subsonic speed regimes. This examination has revealed that the critical condition
is that of static longitudinal stability for landing. In this case, it is more desirable
to add 'Lower horizontal area than to add area to the Vee tail. Figure 3-59 presents
the required tail size as a function of cg position to satisfy the landing stability re-
quirement. The dashed line indicates how the eg is affected, by adding weight to the
tail in the form of tail size increase. For the current case, it is seen that a tail
size of 1.76 times the original area is required to provide landing stability and elimi-
nate ballast. This added tail weight amounts to about 7, 000 pounds.

3.5.2.4 Entry. Entry trajectory computer runs for booster entry following staging
were made to provide data for aerodynamic heating analysis and for footprint and
load factor study. The angle of a.itaek used was 40 deg, and bank angles of 0 deg
(Run 304), 30 deg (Run 305), 45 deg (Run 306, and 60 deg (Run 307) were run with
these initial conditions at staging:

CL = 0.645

CD = 0.643

C L = 0. 01612

W/S = 64 psf

Alt. = 187,290 ft
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Vrel	 = 10 1 764 fps

rel	 = 2.89 deg

Latitude	 = 29.8 deg N

Long.	 = 79.2 deg W

Heading (E of 3) = 146.2 deg

Figure 3-60 presents the footprint resulting from these runs. Figure 3-61 chows the
maximum values of the resultant load factor experienced during the entry, a, d it is
seen that the limit value of 4.0 is never exceeded.

OU'

Figure 3-60. Booster Entry Footprint
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To further explore eniry heating, the following runs were made for various staging
dynamic pressures and for various velocities at a common dynamic pressure of 50
psf. Initial conditions were the same as above except as noted:

Run No.	 321	 322	 323	 325	 326	 327

Altitude, ft	 185395	 174641	 167104	 179604	 191329	 189526

VrelsfPS	 10509	 10569	 10612	 9450	 11715	 11328

arel' deg	 2.217	 1.207	 0.509	 3.91	 1.74	 1.19

q, psf	 50	 75	 100	 50	 50	 50

3.6 AERODYNAMIC HEATING

The aerodynamic heat transfer studies performed had two objectives: one was to as-
tablish the variation of lower surface peak temperature with entry angle (y); the other
was to establish the peak temperature of the first element of the two -element sequen-
tial burn concept as a function. ^f stag ing velocity and staging dynamic pressure (qA).
Results of the first objective led to selec ting an entry angle of -1.0 deg instead
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of the -2.0 deg used previously because of a reduction in peak lower surface
temperature with a reduction in entry angle. Results of the second objective sup-
ported the selection of a staging velocity of 11, 000 fps at a dynamic pressure (q,A,)
of 50 ibf/ft2.

3.6.1 METHOD OF ANALYSIS. Figure 2-16 shows the FR-1 configuration analyzed.
Figure 3-62 presents the lower surface angle as a function of centerline distance,
The aerodynamic heating prediction procedure used was tangent wedge dissociated
flow field properties, Eckert's reference enthalpy method for laminar boundary
layers, adiabatic wall reference enthalpy method for turbulent boundary layers
(iaw), and gradual transition  starting at a shock layer Reynolds number of 1 X 106
and ending at 2 X 10 . These methods are described in Reference 3-2. Figure 3-63
presents the corrections applied to the tangent wedge heat transfer rates to account
for the angle-of-attack-induced flow divergence on the lower surface. The transi-
tional boundary layer Reynolds number ratio of 2.0 v ►as chosen based upon the data
presented in Reference 3-3. Nose stagnation temperatures were calculated using
the Detra, Kemp and Riddell (Reference 3-4) laminar stagnation heating equation.
All surface radiation equilibrium temperature and insulation (radiative) sizing cal-
culations were dope with the Convair 3020 aerodynamic/structural heating program
(Reference 3-2). The emissivity chosen was 0.90 except for the nose and leading
edges, which were assumed to have emissivities of 0.8 and 0. 85, respectively.

The insulation thermal protection subsystem (TPS) thermodynamic model is shown in
Figure 3--64.

Trajectories were calculated using the nominal hypersonic aerodynamic characteris-
tics presented in Section 3.5. These aerodynamic characteristics were derived for
a preliminary FR 1 design and show a maximum hypersonic L/D of 2.03. The tra-
jectory analysis program uses empirical relations to adjust these nominal aero-
dynamic characteristics to account for the change in viscous effects along the tra-
jectory.

3.6.2 ENTRY ANGLE STUDY. The configuration selected for the entry angle study
was the orbital element of the FR-1, shown in Figure 2-16. This configuration was
representative of all the orbital elements of the Integral Launch and Reentry Vehicle
(ILRV) concepts being studied, and hence the temperature trends established apply
to all concepts.

The trajectories used in the analyses for the FR-1 orbiter were numbered 113, 110,
120, and 114. Entry was from the 270-n. mi. , 55-degree orbit, and all trajectories
gave a nominal 800-n, mi. lateral range. The planform loading of the orbital ele-
ment was 53.1 lb/ft2 . In respective trajectory number order the entry angles
were -1.0, -1.5, -2.0 and -2.0 deg at 400, 000 feet. Respective angles of attack
were 40, 40, 35, and 30 deg. Respective bank angles were 25, 30, 20 and 0 deg.
Entry velocities at 400, 000 feet were 24, 690, 24, 450 1 24,130, and 24,130 fps.
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Relative velocity relationships as well as altitude and relative velocity histories of
the FR-1 orbiter during entry for different trajectories are presented in Figures
3-65 through 3-72. Some variation in pull-out altitudes and velocities readily can be
noted.

Hot-wall heat transfer rate histories to the vehicle two-foot diameter nose and one-
foot diameter fin leading edge are shown in Figure 3-73 for the -1.0 degree entry
angle trajectory.

Radiation equilibrium temperature histories for the nose, lower surface, upper sur-
face, and fin leading edge and outboard surface are plotted in Figures 3-74 through
3-80. The effect of the change in entry angle from -1.0 to -2.0 deg on the peak
temperatures can be ceen. In addition, the effect of the local body angle and the
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distance aft of the nose, X, is observed. Table 3-7 lists the maximum radiation
equilibrium temperatures of the nose and lower surface for the trajectories analyzed.
The entry angle effect on the peak lower surface temperatures has been plotted in
Figure 3-81. This variation led to the selection of the -1.0 degree entry angle.
Figure 3-82 also indicates vehicle surface materials as well as the peak temperature
distribution for Trajectory 113 (-1. 0 deg entry angle).

Imsulation thickness requirements were based on limiting the structural temperature
to 660 ° R (200 ° F) R) More or av a time 60 seconds after landing. The structural temp-
erature at X = 10 feet was the value of the honeycomb inner faceplate, and at X = 60
and X = 165 feet was the value of the 0.1-inch aluminum tank wall, Figure 3-64.
Figure 3-81 shows the lower surface average insulation thickness as a function of
entry angle.

The results shown on r igure 3-81 all pointed toward the selection of a -1. 0 deg
entry angle. Hence, the remainder of the study was conducted at this entry angle.

3.6.3 STAGING CONDITION STUDY. An aerothermodynamic analysis was performEd
on the first element of the two-element sequential burn vehicle configuration (FR-3) shown
in Figure 2-3. Figures 3-83 through 3-88 present the recovery trajectories for
staging velocities of 9,450, 10, 510, and 11,720 fps at a dynamic pressure of 50 psf,
Similar trajectories were obtained for a staging velocity at 10,510 fps and dynamic
pressures of 75 and 100 psf. Temperature/ rad:oa.tion equilibrium histories were cal-
culated at various locations on the vehicle lower surface, upper surface, and fin out-
board surface for the five trajectories. Figure 3-89 presents the lower surface con-
tour. The peak temperature results are plotted on Figure 3-90 as a function of
staging dynamic pressure (qA) and staging velocity. Also shown on the curve of
temperature versus qA is the variation in gross liftoff weight (GLOW) with q A for a
thrust-to-weight ratio of 1.392. The lower surface temperature was at a minimum
at qA = 75 psf while the GLaOW was a minimum at qA = 50 psf. Since the temperature
was only approximately 50 R less at qA = 75 psf than at 50 psf, the staging
qA was selected at 50 psf to minimize the GLOW. The surface temperatures in-
creased with staging velocity at the qA of 50 psf. A temperature limit of ;, 260°R
(800 0 F) on the upper surface (811 titanium) limited the staging velocity to 11,000 fps.
Also, the lower surface temperature was below the temperature limit c' 2, 260°R
(1, boo* F) for L605 cover panels (heat shields).

The variation of GLOW with staging velocity has been shown in Section 2 for the in-
dividual two-stage vehicles and parametrically in this section.

The resulting staging condition was then determined to be at a staging velocity of
;1, 000 fps and a staging dynamic pressure of 50 psf. Figure 3-91 presents the peak
temperature distribution for a staging velocity of 10, 51.0 fps and q A = 50 psf. This
is representative of the selected staging condition and results in 811 titanium upper
surface an-1 L605 lower surface cover panels for the outer skin. Sizing of an
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Tabie 3-7. ILRV Orbiter Maximum Radiation Equilibrium
Temperatures for the Nose and Lower Surface

Trajectory (800 n. mi. Lateral Mange)

e

Distance 113 110 120 114 105

Aft of « = 400 400 350 300 200

Nose. -250 -300 -200 00 00

X	 (ft) y = -1.00 -1.50 -2.00 -2.00 41.50

Temperatures In Degrees Fahrenheit

4,.

1

5 2125 2355 2610 2680 2610

10 1910 2144 2360 2422 2400

20 1720 1920 2140 2190 2125

30 1620 1810 2280 2200
1W

40 1560 1740 2340 2560 2410

60 1665 1780 2530 2540 2280

100 1790 2110 2400 2370 2050

165 1750 2070 2335 2310 1995

Nose	 3204	 3499	 3788	 3876	 3908
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Figure 3-81. FR-1 ILRV Orbiter -- Temperature and Insulation
Thickness vs. Entry Angle — Lower Surface

4

insulation system composed of the. cover panels and a Microquartz blanket indicated
that 0 . 7 inch of insulation at X = 10 feet, and approximately 0. 125 inch in the pro-
pellant tank area on the lower surface would maintain a 660 0 R (200°F) peak struc-
tural temperature. The upper surface would require 0.15 inch at X = 10 feet and no
insulation in the propellant tank areas to maintain 660°R (200°F) or lower structural
temperature peak.

3.7 PROPULSION

All propulsion data used in the two-stage vehicle studies is contained in Volume VI,
which gives detail performance, corfiguration, and weight data for the high chamber
pressure bell engine. All vehicles studied were assumed to have an increased thrust
rating at liftoff. The basis for the liftoff rating is the actual maximum thrust capability
for the engine, which Me a design mixture ratio (MR) band of 5.0 tr, 7.0 with maximum
thrust at MR = 6.4. This is discussed in detail in Section 2.5 of Reference 3-5.

In base-area-limited configurations, area ratios used were the maximum that would
fit into available space, with a minimum of one -foot clearance between nozzle exits.
Where space available was sufficient, a maximum area ratio of 150 was used.
Resulting Isp values are given in the synthesis summary for each vehicle.
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3, 8 TWO-STAGE VEHICLE STRUCTURE

For the purpose of this Initial study, thermostr uctural concepts for the two-stage
vehicles were selected on the basis of previous work accomplished rit a onvair, These
concepts utilize nonintegral propellant tankage for the boost element,

The concept selected as most appropriate for the orbital element (shown In Figure 3-92)
features a fully thermally protected primary structure Insulated to a peak structural
temperature of 200°F, The body structure is essentially a "cylindrical" semi-
monocoque of aluminum alloy Into which the propellant tanks are integrated In a manner
similar to that proven on expendable vehicles. The liquid hydrogen tank uses an in-
ternal insulation system to minimize bolloff and to prevent cryopumping, The body
primary structure is isolated from the aerothermal environment by a system of large,
slip-jointed cover panels overlaying fibrous Insulation, Typical cover panel materials
are coated tantalum on the nose cap and leading edges, L005 cobalt alloy on the wind-
ward surface, and titanium on the sides and upper surface, The deployable wing is
housed Inside the thermal protection subsystem during entry and is protected to a
peak temperature of 200° F, The wing structure utilizes a two-spar torsion/bending
box with stringer-stiffened wide column skins, A similar structure is also used for
the stabilizer which Is protected by an insulation/ cover panel thermal protection sys-
tem, The elevons feature a thermally protected box structure..

The more moderate temperatures applicable to the boost element permit a lighter and
simplified thermostructural concept. This is illustrated in Figure 3-93, The primary
structure of the body is a hot load-carrying structure insulated by cover panels and
insulation on the nose arA lower surface only, The lower-surface cover panels are
type 718 Nickel alloy, A semi-monocoque, corrugation- stiffened, frame-supported
shell structure of titanium alloy Is proposed, Propellant tanks are nonintegral, ring-
stiffened shells of 718 Nickel alloy, Support from the primary structure is accom-
plished by a system of straps and links which transmit inertia loads and accommodate
thermal displacements, The deployable wing is stowed above the lower-surface
thermal protection subsystem during entry and is protected to a peak structural
temperature of 800'O r, The wing employs a two-spar torsion/bending box, as in the
orbiter, The structural material is titanium, In addition to the lower-surface ther-
mal protection subsystem, insulation is required inside the hot structure for the
personnel compartment and for critical subsystems, etc. The stabilizers uve hot
structures, Thermostructural ,design criteria are shown in Table 3-8,
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Table 3-8, Thermostructural Design Criteria

Maximum Launch Winds:	 99% Probability

Maximum Longitudinal Accelemitions: 4g Limit

Factors of Safety

Aerodynamic & Associated Inertia Loads 	 1.40

Thrust & Associated Inertia Loads 	 ° 1.18

Parsonnel Compartawnt Pressures 	 -2.00

Reusable Propellant 'Tank Pressures	 - 1.:30

Malarial Temperature Constraints

Normal Entry 'Tomperatura Runge ( O V)

Titanium	 - to 800

hwonel 718	 g0Q to 10200

lla no 41	 1 o 200► to 1 o400

IO0t3	 1 o400 to 1, 000

TO N, sC	 i s OOO to 2s200

Columbium	 11100 to 3, 500

Tantalum	 i , 600 to ;1,100
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SECTION 4

FR-1 BASELINE

This section documents the 50K pound payload (FR-1) baseline vehicle developed to-
ward the end of the study. This is an updated version of the FR-1 vehicle shown in
Paragraph 2.7 and incorporates off-the-shelf flyback engines.

4.1 BASELINE ELEMENT CONFIGURATION

Layout of the final FR-1 configuration is shown in Figure 4-1. Orbiter and booster
elements are identical in size and shape. Each is powered by two L0 2 /112 rocket
engines for liftoff, with three fanjet engines for flyback in the booster and two land-
ing engines in the orbiter. The overall vehicle length to the fin tips is 225 feet. The
fuselage is 35 feet wide and 30 feet high, with a 12-degree side slope angle. The
exposed wing area of 1760 square feet is 28% of the planform area.

The wing is located in the extended position by matching the 1/4 chord of the exposed
mean average chord (MAC) with the 55% balance point of the fuselage planform. The
exposed area for the two fins is 1809 square feet. The fins are located with the lower
surfaces at a 45-degree angle above the horizontal. They are placed high on the aft
fuselage while retaining clearance from the adjacent vehicle. Front and rear fin
spars are located to attach directly to the heavy thrust structure. A more efficient
internal arrangement has been accomplished in the orbital vehicle by using' the space
below the 15- by 60-foot payload for stowage of 7500 cu ft of main hydrogen fuel. This
reduces the length of the main hydrogen tank, thereby reducing vehicle length. This
area is replaced in the booster by a large L0 2 /H2 tank with a common bulkhead.
(This tank also includes the 7500 cu ft of hydrogen carried in the orbiter bay.) This
arrangement provides maximum commonality between orbiter and booster by merely
replacing the orbiter payload bay doors with frames and skin on the booster. Two
super-insulated maneuvering oxygen tanks are located in the aft bay, forward of
the wing pivot bulkhead and isolated from the hydrogen tanks by the lower payload
bay structure.

Location of major components and compartments is identical for the orbital and
booster elements.

a. The nose from station 0 to station 14 contains space for two side-by-side pilots,
and navigation/communication equipment.

b. Stations 14 to 21 contain subsystem components such as fuel cells, hydraulic power
units, reservoirs, accumulators, and environmental control subsystem components.
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c, The Engine compartment between stations 21 and 38.3 provides space for stowage
of the three fanjet flyback engines. They are extended to the flying position by a
simple double acting system (similar to a wing-fold mechanism). Doors will be
closed after the engines are extended to retain a clean aerodynamic surface.

d. The main L02 tank is located between stations 38.3 and 72 and forms an integral
part of the structure.

e. The compartment between stations 72 and 134 contains the payload in the orbiter
and additional propellants in the booster as discussed previously. This compart-
ment also contains the wing pivot bulkhead and the landing gear attachment and
stowage space. These items will be located outside the lower circular frames and
skin thereby providing good structural continuity through this compartment.

f. The main hydrogen tank is located between stations 134 and 184 and forms an
integral part of the structure.

g. The thrust structure extends from the hydrogen tank aft to station 190.5 and pro-
vides support for the two rocket engines. This structure also supports the fin
spars, the vehicle separation mechanism, and the pad support fittings.

4.2 ELEMENT ARRANGEMENT

Figure 4-2 shows the 50K pound payload (FR-1) vehicle in the launch configuration.
Separate views also show the orbiter element and the booster element before mating.
Basic technical data is also listed on the drawing. The vehicle lines drawing is docu-
mented in Figure 4-3.

4.3 (FR-1) SYNTHESIS

The latest synthesis program output for the 50K pound payload FR-1 system is shown
in summary in Table 4-1. This vehicle includes updated wing structural considera-
tions resulting in higher weight than the FR-1 in Paragraph 2.7, and it also includes
off-the-shelf flyback engines; namely, Rolls Royce RB-211 type turbofans in the 50K
pound sea-level static -thrust category. The synthesis runs represent an iteration with
the layouts of Figures 4-1 and 4 -2 so that the dimensions will not match precisely as
is usual during this interim design development phase. Table 4-2 shows the summary
weight statement for this vehicle. Sensitixdty of the 50K pound payload FR-1 vehicle
is shown below. The two-stage sensitivities are also shown for comparison.

Q Gross Liftoff Weight
4 Pounds Inert in Orbiter

A Gross Liftoff Weight
0 Pounds Inert in Each Booster

FR-1	 Two-Stage

	

31.8 lb/lb	 26.6 lb/lb

	

9.0 lb/lb	 4.82 lb/lb

4-3
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Table 4-1. FR- 1 Synthesis Summary

ROASTER
ELFMENT

167917
1202669
1390586

x0927

270X97
17020
10907

1719637

329653
319613
298123

ORBITER

123299
863096
986395

4177
50000

270113
27011
66725

1404421

424546
469961
353695
348042

VEHICLE

840507

4843694

WEIGHT

F VF'L . .
QXIn;7FR
PROPELLANT
FLYBACK FUEL
PAYLOAD
STPUC7URE
CONTINGENCY
OTHER'
TOTAL

IN ORBIT
RFtURN CONDITION
ENTRY
L AND ING

VOLUMF
FLIFL
OXIOi ER
PROPELLANT
PAYLOAD
OiNFR
TOTAL

GEOMETPY
LFNCTH
80DY WETTED AREA
BODY PLANFORM AREA
ENTRY PLANFORM LOADING

PROPULSION
THRUST-TO-WEIGHT
NO, OF ENGINES
THRUST PER ENGINE (50
THPUST PER ENGINE (VAC)
SPECIFIC IMPULSE (SL)
SPECIFIC IMPULSE (VAC)

TRAJECTORY
MASS RATIO
MAXIMUM DYNAMIC PRESSURE
StbG1NC DYNA MIC PRESSURE
STARING VELOCITY (RELATIVE)
STA0jNG ALTITUnE
STAGING FLIGHT PATH ANGLE ( RELATIVE)
INJECTION VELOCITY (INERTIAL)
INJECTION ALTITUDE
INJE^t!`ON FLIGHT PATH ANGLE (INERTIAL°)
INJECTION INCLINATION 	

,000

	

1963542	 1939273

	

2	 2
1124400 UPRATED

O/F p 6.4 1148411 NOMINAL

	

391.3	 383.0 O/F - 7.0 391 .2

	

455.6	 451.7	 4 SS 9 6

	

3.30749	 2,34843
61107

so
8096

171148
8x 53 4

25897
26000®

54,92
FLYBACK RANGE	 024,9

Ay/

4•-7
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Table 4-2. FR--I Vehicle Summary Weight

SPACECRAFT SCNNARY WEIGHT STATEMENT

CON F IGU pA TION	 6Y

FR--1
UATL

r CODE SYSTEM
ITEM OR MODULE SPACECRAFT

D E F II U

1,0 AERODYNAMIC SURFACES 5

2.0 BODY STRUCTURE

.3.0 INDUCED ENVIR PROT 5	 3

4.0 LNCH RECOV & OXG

5.0 MAIN PROPULSION BO E• 3

6.0 ORIENT CONTROL SEP •	 ULL alp S6
7.0 PRIME POWER SOURCE 6 .yd Z
8.0 POWER CONV h DISTR x 9
9.0 GUIDANCE 3 NAVIGATION
10.0 INSTRUMENTATION 926 5

11.0 COMMUNICATION
12.0 ENVIRONMENTAL CONTROL 33 6/

13.0 (RESERVED)

14.0 PERSONNEL PROVISIONS
1S.0 CREW STA CONTRL b PAN ,2 2 d

16.0 RANGE SAFETY 3k ABORT

SUBTOTALS (DRY WEIGHT) 971,93 
17.0 PERSONNEL d D

18.0 CARGO 501104

19.0 ORDNANCE

20.0 BALLAST

21.9 RESID PROP t SERV ITEMS 9	 O 80

(INERT WEIGHT) IO 3iiSUBTOTALS 5

22.0 RES PROP L SERV ITEMS
23.0 INFLIGW LOSSES /! / 4Q 171

24.0 THRUST DECAY PROPELLANT
23.0 FULL THRUST PROPELLANT

26.0 THRUST PROP BUILDUP

27.0 PRE -IGNITION LOSSES

WEIGHT	 lBl /

PE VOLUME

7LU

S

0LU11E
SURF AREA	 (FT )

SURF AREA	 (FTI)
DESIGN 4. MAX (LB/FT ) Ei

DESIGN e. MAX

DESIGN POWER	 MAX (KW,
DESIGN N0. YEN/DAYS .2

CODE, SYSTEM: REF. MIL-M-363

ITEM OR MODULE
A - booster
B

C
D
E

F
SPACECRAFT

U UNMANNIM LAU #=

For* 1923 (ful BB)

NOTES a SKETCHES,
OR SP-6004	 Thrust decay propellants are included

in residual weights.
Tanks are over-sized to account for
thrust build-up and pre-ignition 'Losses.

4-8
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SECTION 5

CROSSFEED VERSUS NO CROSSFEED

5.1 VEHICLE CONSIDERATIONS

With many of the parallel staged vehicle configurations being considered for space
shuttle, it is possible and from some standpoints desirable to burn all engines of both
booster and orbiter at launch. Operation of all engines at full thrust throughout boost
phase is possible if crossfeed plumbing is provided to permit operation of the orbiter
engines on propellants supplied from the booster. If all engines operate at full thrust
during boost phase, the following advantages are obtained:

a. Since the orbiter engines provide part of the required thrust, the thrust required
by the booster is reduced, reducing either the size or number of booster engines.
The reduction in engine weight improves vehicle performance. Depending on the
specific vehicle configuration, use of a higher expansion ratio or a reduction in
size of aerodynamic fairings required for nozzle protection may be possible,
further improving performance.

b. Loads on the connections between elements are reduced, since the orbiter, instead
of being carried up inert to the maximum boost phase acceleration (generally 3g),
is being accelerated by its own engines (generally at about 1.5g). This could re-
duce interconnection loads by up to 50 percent, depending on design criteria for
orbiter engine-out. This reduction in weight could improve vehicle performance.

c. All main engines operate from launch, eliminating the requirement for in-flight
start of the orbiter engimes. This is somewhat more important for space shuttle
than for past rocket vehicles because of intact abort requirement (no separate es-
cape system for crew or passengers). Complete failure of the orbiter engines to
operate results in the loss of vehicle and crew.

d. Balance of booster vehicles is improved because of the reduction in engine weight.

Addition of subsystems required for propellant crossfeed capability in the spae r shuttle
produces a number of disadvantages:

a. Hardware to interconnect the main propellant systems of the booster and orbiter
must be added. At the minimum, a main propellant crossfeed incorporating a re-
tracting, non-spilling disconnect 10 to 20 inches in diameter is required for each
propellant. For additional safety, valves to back up the disconnect, recirculation
systems, and purge systems may be required.

b. Heat shield doors — for some vehicle designs, the crossfeed plumbing must pene-
trate the heat shield, requiring doom, and related opening/closing mechanisms.
Failure of a door could result in loss of a vehicle.

5-1

.r-

MW



Volume III

c. Additional staging functions — at staging, orbiter propellant flow must be phased

from booster tanks to oi •biter tanks, crossfeed lines disconnected and retracted,

and heat shield doors closed. Timing of these functions is critical and may im-

pose some performance penalties.

d. Increased development requirements -- component development programs are re-
quired for crossfeed hardware. An all-up system static firing test stand coupling

the orbiter and the booster may be required.

e. Feed system transients — pressure transients at rooster engine shutdown and at
staging may affect operation of the orbiter engine.

Because of the significant disadvantages associated with crossfeed, a study was made
to determine the performance of comparable vehicles with and without crossfeed.

5.2 PERFORMANCE COMPARISON

The crossfeed comparison study was made on three-element vehicles. Those with
crossfeed were designated FR-1, and those without crossfeed were designated FR-4.
The procedure used for the study was to synthesize vehicles with and without cross-
feed for identical missions, as defined in Table 5-1, on the Convair space shuttle
synthesis program, incorporating a fixed weight penalty for the crossfeed plumbing,
residuals, and heat shield doors. Estimated weight penalties generated by NASA
MSFC and Convair were considered. uiitially, the weight penaliies used were based
on a 4-4-4 configuration using 500, 000-pound thrust Bell engines for both the FR-1
and FR-4 configurations. Performance data generated is shown in Table 5-2 and
Figure 5-1. Two major conclusions were drawn from these data.

a. For a given configuration (for example, a 5-3-5 engine arrangement) use of
crossfeed reduces launch weight between 8 and 11 percent.

b. There are different optimum engine arrangements for FR-1 and FR-4, and use
of these optimum configurations minimizes performance differences. FR-1 and
FR-4 vehicle perfc--mance was found to be a strong function of initial orbiter
F/W ratio. For equal volume vehicles with common orbiter and booster engines,
orbiter F/W is uniquely determined by the engine arrangement (i.e.,, relative
number of engines in orbiter and boosters). For the FR-4, orbiter thrust/weight
is substantially higher with a given engine arrangement than FR-1. For vehicles

of equal weight with a 5-3-5 engine arrangement, FR-4 orbiter thrust is 30 per-
cent of launch tixust (3/5+5), while for FR-1 it is only 23 percent (3/5+5+3).
Consequently, initial orbiter F/W is about 30 percent higher. To equalize or-
biter F/W ratios, the number of orbiter engines divided by the total number of
engines operating at liftoff should be approximately the same.

Because of the importance of the engine arrangement in a proper evaluation of cross-
feed, the weight penalties for crossfeed were reassessed with more nearly optimum

5-2
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Table 5-1. Mission Requirements for Crossfeed Study

Payload	 50, 000 pounds

Launch Site

Orbit

On-orbit AV

ACS AV

Launch Thrust/Weight Ratio

Maximum F/W Ratio

Staging Dynamic Pressure

ETR

55-degree inclination

1800 fps

200 fps

1.47

3

50 psf

Injection Altitude	 45 n. mi.

engine arrangements. Propellant feed system designs were developed for the 6-3-6
FR-4 and the 5-3-5 FR-1 vehicles described in Table 5-2. These designs are shown
in Figures 5-2 and 5-3. Two crossfeed arrangements are shown, one with "full"
manifolding that allows flow of propellant completely across the vehicle from one
booster to the other, and one with "partial" manifolding that provides the minimum
connections required for feeding; the orbiter engines. The latter arrangement has the
same operational disadvantages as the no-crossfeed case in that booster-engine-out
results in a buildup of cg asymmetry because of unequal booster propellant con-
sumption.

The propellant system weight differences between the no crossfeed 6-3-6 arrangement
and the two crossfeed arrangements were then determined. These differences are
summarized in Table 5-3. Orbiter feed system weights are substantially increased
because of added disconnects, shutoff valves, T PS doors, and residuals in the added
ducting. Booster feed system weights are almost unchanged with full manifolding and
reduced 1000 pounds with partial manifolding. The reason for this reduction is not
obvious on inspection of the feed system layout. However, when it is considered that
each FR-4 booster has six engines of 631, 000-pound thrust, while the FR-1 has only
five engines of 543, 000•-pound thrust, each with required plumbing and residuals, the
reasons become apparent.

Figure 5-4 was then developed, using the crossfeed weight penalties given in Table
5-3. Gross liftoff weight (GLOW) for FR-4 no crossfeed vehicles and FR-1 Cross-
feed vehicles with full and partial manifolds are shown as a function of orbiter F/W
ratio. Engine arrangements that result in the parametric F/W values are indicated.
Evaluation of the abort capabilities of these configurations with orbiter engine-out, dis-
cussed in Paragraph 3.2.2 of Volume IV, shows that the 5-3-5 FR-1 is the lightest sat-
isfactory configuration. The 8-3-8 FR-4 configuration is satisfactory, since orbiter
engine loss affects only the orbiter solo phase, and not the boost phase of flight.
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Table 5-2. Crossfeed Comparison, 50K Pound Payload Vehicle, Various Engine Arrangements

No Crossfeed No Crossfeed	 No Crossfeed	 Crossfeed	 Crossfeed	 Crossfeed	 Crossfeed
NASA AWT M GDC AWT( 1 ) NASA OWTM GDC j,WT(1)

E	 A	 t	 5-3 5	 6-3-6	 5-2-5	 5-3-5	 5-3-5	 5-4-5	 5-4-5nine	 rran amen

Liftoff Weight - lb 5,389,086 5,154,182 4,991,800 5,020,753 4,889,577 5,231,583 5,098,682

Booster Sea Level 792,496 631,436 734,185 557,256 542,696 550,960 536,964
Thrust/Engine - lb

Orbiter Vacuum 934,898 744,898 866,109 666,079 648,676 658,553 _ 641,824
Thrust/Engine - lb

Orbiter ISp, -/453.0 -/453.0 /453 378.5/456 378.5/456 378.5/456 378.5/456
S. L. /VAC

Booster ISp, 384.0/446.0 384.0/446.0 384/446.5 381.5/451.5 381.5/451.5 381.5/451.5 381.5/451.5
S.L. /VAC
Booster Engine Weight - lb 41,328 40,087 38,460 30,720 29,979 30,400 29,687

W	 Orbiter Engine Weight - lb 25,653 20,725 15,912 18,887 18,451 24,919 24,334
IL	 Orbiter F/W a Staging 1.975 1.651 1.3272 1.5 1.5 1.88583 1.88795

Liftoff Weight Change - lb REFERENCE -234,904 398,000 -368,333 -499,509 -157,000 -209,404

(1) Added weights for crossfeed are as follows:
NASA	 Convair

Orbiter	 6412	 2845
Booster (2)	 6652	 7028

(2) This orbiter F/W ratio is below the minimum required for 'once around" abort in event of one
orbiter engine failure (1.54 minimum with a total of 2 engines).

Note: Liftoff F/W for all vehicles is 1.47.
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NOTE: 1. NUMBERS REFER TO LINE DIAMETER SIZED FOR
MAXIMUM FLOW ACCELERATION OF 0.004
LB/SEC 2-LB. PER ENGINE.

2. ALL DIMENSIONS IN INCHES.
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Table 5-3. Propellant Feed System Weight Differences 5-3-5 FR-1
Compared With 6-3-6 FR-4, 50, 000-Pound Payload

FULL MANIFOLDING	 L02 SYSTEM

(pounds)

Orbiter	 6980

Booster (each)	 510

PARTIAL MANIFOLDING

Orbiter	 5820

Booster (each)	 -560

LHH2 SYSTEM! TOTAL

(pounds)	 (pounds)

1148	 8128

-437	 73

1148	 6968

-437	 -997

NOTE: Plus weight values mean crossfeed system
weights heavier, and minus values mean
crossfeed system weight lighter.

5.3 SUMMARY

The following conclusions may be drawn from the data presented in Figure 5-4.

a. For a given vehicle configuration, use of crossfeed reduces vehicle launch weight
6 to 9 percent. This can be seen by comparing 5-3-5 configurations weighing
approximately 5.39 million pounds without and 4.9 to 5.02 million pounds with
crossfeed. For a "common" element vehicle, therefore, performance im-
provement is substantial.

b. For vehicles optimized for either crossfeed or no crossfeed differences in launch
weight are minor, the exact differences depending on relative detail weight
differences, pro and con, for crossfeed. This can be seen by comparing the
8-3-8 configuration at 4.82 million pounds and the 5-3-5 FR-1 at 4.9 to 5.02
million pounds.
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SICTION 6

FIXED-WING AND DEPLOYABLE-WING VERSIONS
OF

THE TJ'O-STAGE SEQUENTIAL-BURN SPACE SHUTTLE

6.1 FIXED-WING-CONFIGURATION DESIGN

A preliminary design st^3y was made to evaluate a fined-wing ILRV configuration. The
fixed-wing configuration for the study was a conversion of the current FR-3 deployable-
wing design. Figures 6-1, 6-2, and 6-3 show the FR-3 orbiter, booster, and launch
configuration respectively.

As the fixed-wing design was to be a conversion of the existing FR-3 deployable-wing
design and is inherently less complex, a list was made of the differences between
them. The list is shown in Table 6-1. This list was used to ensure that the synthesis
program inputs were changed to reflect the differences between the designs.

Initial configurations based on the FR-3 deployable-wing design were made and used
as a model for studying the aerodynamics, dynamics, loads, thermodynamics, and
structural aspects of a fixed-wing design. Some of the decisions made during the
initial design phase were to use a wing area equal to the current deployable-wing de-
sign. The wing was subject to geometric growth as the design was iterated on
the synthesis program as was done for the deployable-wing design. The wing shape
is the same as an MSC fixed-wing design. A launch configuration similar to the FR-3
design was used throughout the study. This configuration was a nose-to-nose arrange-
ment and is shown on the fixed-wing design, Figure 1-4. This arrangement (as
stated before) is similar to the FR-3 design; consequently, comparison between the
two are on the same basis. As launch shear winds are assumed to b-) from any direc-
tion, the positioning of wings to reduce maximum aq loads was not considered. The
bottom-to-bottom arrangememt gives a more zymmetrical body cross-section and
reduci^.s the discontinuities between the boost and orbit elements. Flat mating sur-
faces appear to simplify structural attachment. A single vertical tail proportioned
from the MSC design was used.

As can be seen from Figure 6-4, the plan and end view shows a complex arrangement of
wing and tail surfaces in the launch configuration. The effects of shock flow, particu-
larly during transonic boost flight, and shock impingement, during entry for the
separate booster and orbiter elements, are difficult to evaluate, and considerable
wind-tunnel testing is needed to bring their effects into an evaluation. These effects
were not considered in this study.
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Table 6-I. Fixed- and Deployable-Wing Variations

FIXED WING	 DEPLOYABLE
WING

ORBITER FBOOSTER ORBITER BOL STER
BODY

GEOMETRY X -	 -	 -
WING PIVOT FRAME X X	 -	 -
AAIN LANDING GEAR X X	 -	 -

INSTALLATION
WING DOORS X X	 -	 --

WIN G
GEOMETRY X X	 -	 -
PIVOT X X	 -	 -
ACTUATOR ATTACHMENTS X X	 -	 -
LEADING EDGE X X	 -	 -
TRAILING EDGE X X	 -	 -
FLAPS X X	 -	 -
SPOILERS X X	 -	 -
WING TIPS X X	 -	 -
CARRY THROUGH STRUCTURE - -	 X	 X
STRUCTURAL BOX X X	 -	 -

HORIZONTAL TAIL
GEOMETRY X X	 -	 -

VERTICAL TAIL
GEOMETRY X X	 -	 -

ACTUATION
DOORS X X	 -	 -
WINGS X X	 -	 -

LANDING GEAR
GEOIIIETRY X X	 -	 -

THERMAL PROTECTION SYSTEM
COVER PANELS X X	 -	 -
INSULATION X X	 -	 -

BOOST DRAG X X	 -	 -

LOADS X X	 -	 -

X w VARIA'T'ION

`	 6-5a

^-^,•	 ..' - - ^	 - .^^a.:.-.^—Pte'+ate 	 ^	 _	 ^'^'^'^^'^". . -, si . «^. ...	 ^' ^  ^ =^-wz*^ :^ ^►""^'--"--.__ .. _ ._	 ...r,^,.•



3

i.

0

•kl

t

I	

l

	

88

-165

124-

^ 8. 7-

e

24.9
^r

33.8

i [
br

i^

l^

•'1k

i

it

I

,r

192	 I

ORBITER ELEMENT

]BOOSTER ELEMENT

SCALE FEET

0 0,20.304050	 37.8
256

ALL DIMENSIONS ARE IN FEET
UNLESS OT11ERWLSE NOTED

Figure 6-4. Fixed-Wing, Two-Element, Sequential -Burn Configuration

52

I
120

68



Volume III

Figure 6-5 shows typical cross-sections of a deployable-wing and fixed-wing design.
For the fixed-wing orbiter-element design a 9-inch slice (to eliminate wing storage
volume) was taken from the lower surface to yield an improved volume utilization
factor on the synthesis program.

6.2 AERODYNAMICS

The aerodynamic characteristics of the fixed-wing FR-3 configuration for both the
launch and entry phases of flight were analyzed. Figures 6-6 through 6-9 present the
results of these analyses.

The launch configuration aerodynamics are presented in Figure 6-6. Axial force,
normal force gradient, and center-of-pressure location are presented over the launch
Mach number range. Also shown for comparison are the launch characteristics of
the FR-3 (deployable-wing) configuration. The data was derived from recent tests
of 3- and 2-body launch configurations conducted by Convair in the Cornell Aeronauti-
cal Laboratory 8-foot transonic, wind tunnel. The contributions of the wings were
derived using the methods of Reference 6-1. The data of Figure 6-6 indicates the
wing contributions add substantial launch drag, double the normal force gradient and,
for the nose-to-nose launch configuration, decrease the longitudinal stability (although
the total moment at a givesl angle of attack and Mach number is Increased).

Figures 6-7 and 6 ­8 present the fixed-wing orbiter hypersonic entry aerodynamics,
for angles of attack from 20 to 60 degrees. Also shown for comparison are the
characteristics of the deployable-wing orbiter. These characteristics were analyzed
by using the Convair Hypersonic Aerodynamics Prediction progr;tm, which is based on
modified Newtonian aerodynamic theory. The trim capability of the fixed-wing con-
figuration at a 60-degree angle of attack is shown; approximately 58% of the total
horizontal stabilizing area must be removed from the flow (de = -60 degrees) to trim
with the center cf gravity at 55.5% of body length, with additional control area required
to trim at more forward cg locations. (The hoi izontal stabilizer surface area was
sized to produce subsonic stability comparable to the deployable-wing configuration. )
Figure 6-8 presents the lift/drag ratio and the static direction stability of the fixed-
wing orbiter. It is indicated that the configuration is directionally unstable, even at
a 60-degree angle of attack, with the single vertical surface (which has effectively no
contribution except at low angles of attack). The increase in directional stability due
to an incorporation of vee tails is indicated, although at lower angles of attack the
interference between the wing and the tail would reduce the tail effectiveness.

An entry trajectory for the fixed-w-ng orbiter was generated using a three-degree-
of-freedom-trajectory computer prc gram. Figure 6--9 presents the altitude time
history of the entry, starting from 400, 000 feet with velocity of 25, 315 fps and a
-1.5-degree flight path angle. With a 60-degree angle of attack and 45 degrees of
bank, a cross-range of approximately 175 nautical miles is achieved. A maximum
resultant load factor of 2.18g is produced at 185, 000 feet. Also shown is a typical
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FIXED WING

HEIGHT OF BODY DETERMINED
BY TANK RADIUS PLUS SOME
STRUCTURE DEPTH BELOW TANK

5-FOOT REDUCTION
IN HEIGHT

WING CARRY THROUGH STRUCTURE
IS BELOW PAYLOAD BAY (NO STRUCTURAL
DEPTH RESTRICTIONS IN THIS AREA)

Figure 6-5. Typical Orbiter Cross-Section

CLmax entry for the deployable-wing orbiter, which with 35 degrees of final bank
achieves approximately 750 nautical miles of lateral crossrange.

6.3 DYNAMICS AND LOADS

Loads at maximum dynamic pressure flight condition were determined by flying the
vehicle through 99 percentile Marshall synthesis wind profiles with the maximum wind
and gus` occurring at the maximum dynamic pressure condition. The trajectory was
determined using a three-degree-of-freedom simulation with a control system. The
fixed-wing FR-3 configuration requires a cant angle of 8 degrees and a gimbal angle
of ±7.5 degrees about the cant angle. The maximum dynamic pressure was 600 psf,
and the maximum angle of attack at the maximum dynamic pressure was 10 degrees.
No attempt was made to reduce the maximum dynamic pressure by accepting perform-
ance losses. Both nose-to-nose and tail-to-tail configurations were analyzed.

The results of the loads analysis are presented in Figures 6-10 through 6-13. These
curves indicate that the maximum aq loads of the fixed-wing configuration imposes
a penalty on the booster body in both the nose-to-nose and the tail-to-tail arrange-
ments and also on the orbiter of the nose-to-nose arrangement. The next critical
loads are the booster burnout condition as shown by the curves. For the orbiter
vehicle in the tail-to-tail arrangement, the booster burnout condition remains the
critical one, although the maximum a q loads for the fixed-wing configuration are
substantially higher than those for the stowed deployable-wing configuration.
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6, 4 AERODYNAMIC HEATING

Figures 6-14 through 6-17 show aerodynamic heating data computed during the study.
The following comments note some of the differences between the fixed- and deployable-
wing configurations,

a. During laminar heating the average temperature difference is approximately
25e R. This can be attributed to the decreased M/C LS resulting from increased
area, and C L due to increased angle of attack. Increased angle of attack results
in decreased lateral range during entry, and decreased temperature.

b. A 67% decrease in body insulation mass was calculated. However, the lateral
range was 800 n, mi, for the deployable wing versus 200 n, mi, for the fixed wing.
This difference would decrease for the same lateral range to approximately zero,

c. Fixed wing results in interference heating and reduced radiation heat transfer
near the wing/body junction. Interference heating film coefficient ratios of 4.0
are reasonable.

d. Fixed wing at angle of attack of 60 degrees does not lend itself to state-of-the-art
heat transfer prediction methods, At other angles of attack, fixed wing requires
more experimental investigation than deployAle wing.

6.5 SYNTHESIS SUMMARY

Tables 6-2 through 6-5 show the synthesis and weight summaries for both the current
fixed-wing and FR-3 deployable-wing designs.

6.6 CONCLUSIONS

From the weights point of view there is very little difference between a fixed-wing
and deployable-wing design.

The fixed-wing design is inherently simpler in concept, but surface exposed to
complex flow conditions is increased.

Wings are inherently subject to deflections due to loads and Blow interactions,
requiring a thermal protection subsystem that will be subject to these conditions.

The effects of exposed wings on transonic flow with the possibility of flutter need to
be evaluated by considerable wind-tunnel testing.

Fixed-wing design needs to satisfy both subsonic, transonic, and h."personic aero-
dynamic requirements, some of which are in conflict with each other. Deployable
wings decouple these requirements but at some expense in complexity.

H
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camparA.on purpc) •• ' th ••• ChM.tI. Wtlf. made to the two-stllB" .eBmcmted~burn 50K 
I)()und payload vohiclo ailio. Tho ro.ul&41 ar. pnorally .pplic.blo to all of the othor 
vehicle .. in the llpectrum • 
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Table 6-6 shows the summary run for the increased wing weights. The gross liftoff
weight has increased to 4.12M lb. Table 6-7 shows the added effect of off-the-shelf
flyback engines.

The orbiter element of the two -stage sequential-burn vehicle has three Pratt & Whitney
TF 33- P-5 turbofan engines. Versions of the TF-33 engine are used on the C-135,
the 707, and the DC-8. The TF-33 - P-5 has a maximum sea level static thrust of
18, 000 pounds and an S. F. C. at maximum power of 0.54 lb/hr/lb. Its bare weight and
dimensions are: weight, 4170 pounds; diameter, 53 inches; length, 137 inches.

An alternate airbreathing engine configuration is two General Electric 'rF 39-F10
turbofan engines. The TF39- F10 engine is a study version of the TF:39-1 and was
estimated to require approximately $55 million and 38 months to develop through MQT.
The TF39 - F10 has a maximum sea level static thrust of 26, 000 pounds and an S. F. C.
at maximum power of 0 . 365 lb/hr/lb. Its bare weight and dimensions are: weight,
5445 pounds; diameter, 70 inches; and length, 159 inches. Using this configuration
would result in a decrease in airbreathing engine system and fuel weight of approxi-
mate'y 2550 pounds.

The gross liftoff weight is now 4 . 27M pounds, including the updated wing and engine.

6.8 REFERENCES

6-1 D. E. Haak, USAF Stabili ty Control DATCOM, Flight Control Division, AFFDL,
WPAFB, August 1968.
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Table 6-2. Two-Element Sequential Fixed-Wing Configuration
(Single Tail) Synthesis Summary

ROOSTER	 ORBITER	 VEHICLE
ELEMENT

WEIGHT
FUEL
OXIDIZER
PROPELLANT
FLYBACK FUEL
PAYLOAD
STRUCTURE
CONTINGENCY
OTHER
TOTAL

IN ORBIT
RETURN CONOITIaN
ENTRY
LANDING

VOLUME
FUEL
OXIDIZER
PROPELLANT
PAYLOAD
OTHER
TOTAL

GEOMETRY
LENGTH
BODY NETTED AREA
BODY PLANFORM AREA
ENTRY PLANFORM LOADING

PROPULSION
THOOUST- TO-WE I G* T
NO, OF ENGINES
THRUST PER ENGINE 130
THRUST PER ENGINE (VAC)
SPECIFIC IMPULSE (SL)
SPECIFIC 14PULSE (VAC)

TRAJECTORY

35520S 67989
2273314 4TS920
2620SI9 54390A

43250 30SS
50000

448399 185111	 630508
46539 11 sl i
2OS90 47293

3186302 647834	 4134140

308625
557787 299864

0 280902
494626 284546

90337 14199
336AZ ?047

I E2'019 21246
10638

74466 81338
196608 43220

24104 16397
25504 6 3 1449S 6 0
9308 0 9 476062

5?6 p S4.3

1667935	 1934280
e 2

702233 1 PiwrED
O/F 6.4 711910 ',40MINAL

3090 337,0, 0; F # T . u	 395. u
451 6 7 45#1 $1 a	 45147

MASS RATIO	 1974773	 2687000
MAXIMUM DYNAMIC POESSURE	 59904
STAGING DYNAMIC PRESSURE	 so
STAGING VELOCITY IRELATIVE)	 104s2
STAGING ALTITVUE	 147247
STAGING FL1G"I PAT* ANGLE (RELATIVE) 	 Boos?
INJECTION VELOC1Tr IINERTIALI 	 29897
INJECTION ALTITUUE	 260001
INJECTION FL11004T PATM ANGLE (INERTIAL) 	 06000
INJECTION INCLINATION 	 11469S

rLYNACK 0AN4E	 ??7n•
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Table 6-3, Two-Element Sequential Fixed Wing Configuration
(Single Tail) Summary Weight

SPACECRAFT SUMMARY MEIRIIT STATEMENT

ti 5t ,̂tec i4	 ' q	 t	 i	 ► x	 cl	 W ing
ilt	 ^tsr^it ur 

r
[L)n	 fn^	 r	 Vail

Goo[ SrS TEr 1111 am 000M SPACECRAFT

r u

F	 0 ALRUOYNAMiI,' 	 itiR/AC,'E>< 4{ ^

1 a 1111 Y	 %T Uc	 tINR
I	 u NDUCRD KNV N PINI T

♦ 	 r1 I.WIH uFrov 6 DUG

S	 ^^ yAIN MOPU KTON

6 0 op 1RNT (Y)NT M S&P 6	 ULL

1	 0 PRINK Post It soURCE

0.0. POWZR CONV R DISTR

9.0 rtUIPANCE 6 NAVIGATION

1010 1NSTRt1MENTATION

I t . 0 CoMMt1N CAT ON
11.0 ENVIRONMENTAL CONTROL

I

NEL PROVISIONS

TA CONTRL 6PAN

SAFETY 6 AROITr

ti

SUITOTALS (01 1 •EIONT)
1710 PERISON141L OlJ -
10.0 CARGO DO

19.0 ORDNANCE

NO BALLAST

71.0 RESID PROP 6 SERV ITEMS 4L

SUITOIALS (INERT 9EI911T) /

27.0 VIES PROP 6 EERV ITEMS

71.0 INFLIGHT LOSSES 6 // 5
24.0 THRUST DECAY PROPELLANT

21.3 PULL THRUST PROPELLANT

26,0 1 THRUST PROP BUILDUP

21.0 PRR-IGNITION [ASSES

TOTALS	 91053 REI9HT	 W

DESIGN sNVSLOPE VOLUMS 	 R) lf6ass

6
3

PRESSURIZED VOLUME 	 frr )

DESIGN ENVIL SUN! AREA	 771 ) g /^ 'f95
PRESSURIZED SURF AREA
	

(FTZ)

DESIGN V. MAX (LMT ) $
DESIGN S. MAX

DESIGN POWER	 MAX (II/)

DRSIGN NO. MEN/DAYS 2 •/ Z/7,

I NATIONS , NOT[S A 599TCML5i

Thrust decay propellants are included
in residual weights.
Taas are over-sized to account for
thrust build -up and pre-ignition losses.

CO 0s, SYSTEM: REF. MIL • M • 38310A 011 SP-4004

ITEM an MGDUL2

A - Boo ate r
a
C
D
s

r
SPACECRAFT

Orbiter 
U IRINARM

NBi Form 12141 (Sul rs)

6'-24



Volume ..a

Table 6-4. Two-Element Sequential Variable Geometry Wing Synthesis Summavk

BOOSTER ORBITER	 VENA'%
ELEMENT

WEIOMT
FUEL 357849 66067
OXIDIZER 2290236 462468
PROPELLANT 2648085 528534
FLYBACK FUEL 46266 3048
PAYLOAD 50000
STRUCTURE 456340 184665	 641205
CONTI NGENCY 60654 18467
OTHER 20742 47169
TOTAL 3232287 831883	 4064171

IN ORBIT 308029
RETURN CONDITION 584205 299279
ENTRY 0 258393
LANDING 518108 254040

VOLUME
FUEL 88995 13423
OXIDIZER 33933 6848
PROPELLANT 122928 20271
PAYLOAD 10638
OTHER T5399 46959
TOTAL 198317 77860

GEOMETRY
LENGTH 24200 1TT.2
BODY VETTED AREA 2562798 13741.9
Sony PLANFORM AREA 435190 4437.3
ENTRY PLANFORM LOADING 6004 58#2

PROPULSION
THRUST » TO-WEIGHT	 102434	 1.39261
N0 * OF ENGINES	 8	 2
THRUST PER ENGINE (SL)	 707476 UPRATED
THRUST PER ENGINE (VAC)	 0/.0=6.4 71T226 NOMINAL
SPECIFIC IMPULSE (SL)	 395.0	 357,4 O/F =7.0 3950
SPECIFIC IMPULSE (VAC)	 4510	 45605	 451.7

TRAJECTORY

R

MASS R A TIO 2070082 2087000
MAXIMUM DYNAMIC PRESSURE 668.7
STAGING DYNAMIC PRESSURE 50
STAGI NG VELOCITY	 (RELATIVE) 11086
STAGING ALTITUDE 188347
STAGING FLIGHT PATH ANGLE 	 (RELATIVE) 1.864
INJECTION VELOCITY	 (INERTIAL) 25897
INJECTION ALTITUDE 260002
INJECTION FLIGHT PATH ANGLE	 (INERTIAL) -s000
INJECTION INCLINATION 54.96

FLYBACK RANGE	 28396
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Table 6-5. FR-3 Two-Element, Sequential Burn,
50K Pound Payload NVeight Summary

SPACECRAFT SUMMARY WEIGHT STATEMENT

Z stir 1 (0-1? A7 101.	 FR-3,	 Two Stage
Se uential	 50K Payload

eY DATE

CODE SYSTEM
ITEM OR MODULE SPACECRAFT

0 E F M U

1.0 AERODYNAMIC SUNFACES 63 561 2 '^7
2.0 BODY STRUCTURE

3.0 INDUCED ENVTR PROT ?93 .:Sq

4.0 LNCH RECOV b DKG 3,0/0,1 $ D

5.0 MAIN PROPULSION /9 953
6,5 ORIENT CONTROL SEP &	 ULL p(

7.0 PRIME POWER SOURCE

8.0 POWER CONV A DISTR 2 c' p2

9.0 GUIDt.YCE 4 NAVIGATION

10.0 INSTRUMENTATION 5

11.0 COMMUNICATION
12.0 FNVIRONMENTAL CONTROL J

13.0 (RESERVED)

14.0 PERSONNEL PROVISIONS

15.0 CREW STA CONTRL d PAN

16.0 RANGE SAFETY 3 ABORT

SUITOTALS (DRY WEIGHT) 5r a^
17.0 PERSONNEL 90D D
18.0 CARGO S	 7

19.0 ORDNANCE

70.0 BALLAST

21.0 I RESiD PROP t SERV ITEMS

SUITOTALS ( INERT WEIGHT)

22.0 RES PROP A SERV ITEMS

23.0 INFLIGHT LOSSES //SCg

24.0 THRUST DECAY PROPELLANT

25.0 FULL THRUST PROPELLANT 5^ 3

26.0 THRUST PROP BUILDUP

77.0
PRE 

• IONITION LASSES

TOTALS	 GROSS WEIGHT	 LI) 8 883

DESIGN ENVELOPE VOLUME	 FT 7

PRESSUR I ttl) VOLUME
	

(W)
DESIGN ENVEL SURF AREA	 (FT2)

PRESSURIZED SURF AREA	 (!T )

DESIGN 9. MAX (LB/FT ) 6f,

DESIGN t. MAX

DESIGN POKER	 MAX (KW)

DESIGN NO. MEN/DAY:I
c

2	 +/ .147
HATES !	 59([' CMESe

Thrust decay propellants are included

in residual weights.
Tanks are over-sized to account for
thrust build-up and pre-ignition losses.

CODE. SYSTEM: REF. MIL -M•38310A OR SP-0004

1 TEM OR MOVUI.E

A	 - Booster
B
C
D
E

F
SPACECRAFT

U UMAMMZD LAUNM

n61V rr.m IVa0 4JV1 vul

r
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Table 6-6.	 FR-3 Two-Element Sequential Burn, 50K Pound Payload Synthesis Summary

ROOSTER ORBITER VEHICLE
FLEMENT

WEIGHT
FUFI- 30009 66766
OXIDIZER ?3?5255 44-7359
PROPELLANT 26A6?64 834125
FLYBACK FUEL 006 3082
PAYLOAD 50000
STaucTURE 472052 187170 660121
CnNTINGENCY 54595 18717
OTHER 21009 47662
TnTAI 3282005 840756 4122761

IN OPRTT 311359
RFTURN CONDITION 595749 302511
ENTRY 0 261190
LANDTNG 528459 256808

VOLUME
FUFL 90277 13597
OXTniZFR 34422 6921
PROPELLANT 124700 20517
PAYLOAD 10638
CTHFR 76410 47397
TOTAL 261109 78552

GEOMETPY
LFNGTH 243.1 177.7
BODY WETTED AREA ?5867.8 13822.3
RnOY , PLANFORM AREA 943a.b 4463@2
ENTRY PLANFORM LOADING 61.0 58.5

PROPULSION
THRUST-TO-WE16HT 1.72915 1,39133
NCI. 0 ENGINES 8 2
THRUST PER -*JINE	 (SL) 717014
THRUST PER ENGINE	 (VAC) 726895
SPECIFIC	 IMPULSE	 ( 5L) 39590 357.4 395,n
SPFCIFTC	 IMPULSE	 (VAC) 451.7 456.5 45107

TRAJECTORY
MASS RATIO 2070041 2.87000
MAXIMUM UYNAMIC PRESSURE 667,8
STAC,ING DYNAMIC PRESSURE 50
STACTNG, VELOCITY	 (NELATIVE) 11085
STAGTNS A L T ITUDE 188438
STAGING FLIGHT PATH ANGLE	 (RELATIVE) 10064
INJECTION VELOCITY	 (INERTIAL) 25897
IN,rf.CTTON ALTITUDE 260004
INJECTIO N FLIGHT PATH ANGLE	 (INERT14LI 0000
INJECTION INCLINATION 5406

FLYBACK RANGE ?83,5

6-2'7



WEIGHT
FUFL 37$913
OXIDIZE R 2405846
PROPELLANT 2761759
FLYBACK FUEL 57678
PAYLOAD
STkUCTUKE 475589
CONTINGE NC Y 54959
OTNEK 19877
TOTAL 3369761

69b*9
409203
559181

3353
50000
197552
	

673160
19755
49722

979562
	

4269324

14375
7245

21621
10630
69344
81603

18000
1417709
4378.1

3906

1.73877
2

598662/
764679/

357,0/
496.0/

1.39104

S983265/66209Z2
383.6/39209
44600/45100
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Table 6-7. FR-3 Two-Element Sequential Burn, 50K Found Payload Synthesis Summary

BOOSTER
	

ORBITER
	

VEHICLE
ELE 4ENT

325325
316054
272879
26622'3

IN ORAIT
RETURN CONVITION 608009
ENTkY 0
LANDING 531362

'VOLUME
FUEL 93467
OXIDIZFR 35640
PROPELLANT 129086
PAYLOAD
OTHER 78935
TOTAL 208021

GEOMETRY
LENRTH 2450a
BODY WETTEV AREA 26457.2
BODY PLANFORM AREA 965306
ENTRY PLANFORM LOADING 61.1

PROPUI S I ON
THRUST-TOE-WEIGHT
NO, OF ENGINES	 a
SL THRUST/ENG NOM/UR	 643269/ 742777
VAC THRUST/ENG NUM/Uk 	 7479013/ 852615
SL ISP NOA/UR	 39306/392.9
VAC 159 NOM/UR	 44600/45100

TRAJECTORY
MASS RATIO	 2087000
MAXIMUM DYNAMIC PRESSURE
STAGING DYNAMIC PRESSURE
STAGINr VELOCITY (RELATIVE)
STAGING ALTITUDE
STAGING FLIGHT PATH ANOLL (RELATIVE)
INJECTION VELOCITY (INERTIAL)
INJECTION ALTITUDE
I N JkC,TI UN FLIGHT PATH ANGLE (INERTIAL)
I p ►JECTION INCLINATION

iLYBACX RANGE	 29305

2070452
676x4

50
11066

16/163
10940

25097
260004

000[
54.96

r'
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SECTION 7

FIXED GROSS LIFTOFF WEIGHT VEHICLES

This section summarizes the FRr 3 and FR ,.-4 point design vehicles sized to fixed gross
liftoff weights of 3.0 and 3.5 million pounds,

FRt3 is a two-element sequential-burn vehicle and FRr4 is a three-element configura-
tion, (Two-stage sequential-burn with the booster being made up of two identical
elements arranged on either side of a central orbiter element,) The vehicles do not
use crossfeed,

The ground rules established for this vehicle investigation are summarized below;

a, investigate a 3, 0 million pound liftoff weight version of both the FR-3 and FR.-4.
These were to incorporate the 15-foot-diameter by 60-foot-al ong payload bays,

b, Investigate a 3.5 million pound liftoff weight version of both the FR-3 and FR-4.
These were to incorporate the basic 16-foot-diameter by 60-foot-long payload
bay with a 22-foot-diameter by 30-foot,-long bay superimposed on it,

c, 400K pound thrust bell nozzle, high Pc engines, sea level nominal were to be
Incorporated, Only nominal 1000/,, thrust ratings with a mixture ratio of 6, 5 to i
were to be used in all stages.

d, Elimination of go-around in the orbiter was permitted, (In this case XJ-88
engines were used to permit holding a 3-degree glide path on the approach.)

e, Reduction of on-orbit AV was allowed within the limits of the mission require-
ment, (In this respect the nominal 1800 fps in the main maneuver propellant
system was reduced to 1480 fps, being made up as follows for the 270 n, mi,
orbit mission; circularize at 100 n, mi, , 110 fps; transfer to 270 n, mi, , 300 fps
plus 300 fps, retro 450 fps, reserve 320 fps, )

f, Orbiter burn was required at liftoff, 100% thrust throttled back to 10 11* thrust
during the remainder of the orbiter flight prior to staging,

g, The basic design should have a crossrange capability (inherent in its shape) of
1500 n. mi, with actual TPS for 800 n, mi. The effect of added TPS welt for
1500 n, mi, c:rossrange was to be shown,

7sai
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7, 1 3. OM POUND GLOW VEHICLES (15- FOOT-DIAMETER BY BO-FOOT-LONG
PAYLOAD BAY)

Exploratory data was examined, and it was apparent that to arrive at a system with
positive payload some concession must be made in the ground rules. The alternatives
seemed to be:

a. Design to less demanding orbit,

b, Reduce payload bay length.

c, Revert to uprated thrust.

d. Eliminate contingency.

The decision was made for this immediate study to eliminate the contingency, This
'	 was done on all the point designs, for comparison purposes. To keep the record clear,

the effects of the contingency are shown also,

7, 1.1 FR-3 POINT DESIGN. This point design is shown in Figure 7-1. The arrungo-
ment is tail- try- :.ail alignment to permit orbiter burn if necessary. The arrangement
also reduces loads on the booster. The vehicles are similar to those previously pre-
sented in the two-element sequential-burn studies. Table 7-1 gives the pr*lnt design
synthesis outputs for the Flip-:3 system, 'fable 7-2 is a weight summary for this
system.

7.1.2 FR-4 POIN ,r DESIGN , 'Ilia FI1-4 point design is shown in Figure 7-2. They
lines are similar to the previously developed aerie® of fully reusable vehicles at
Convair. The synthesis run is summarized in Table 7-3 and weights are summarized

n	 in Table 7-4. This final srunmary is slightly higher in gross liftoff weikht than the
vehicle used in previous parametric steadies, but the difference is small (3.0211+1f vor-
sus 2,99M).

7.2 3 5M POUND GLOW VEHI„M

The 3.5M lb GLOW vehicles are summarized in the following paragraphs.

7.'2.1 FR-3 POINT DESIGN, To incorporate the payload bay into the vehicle, a
certain amount of reconfiguring was required. The orbiter vehicle was the only one
affected. the booster being similar to that used throughout, Some advantage was taken
of the reduced 1500 n, mi. maximum erossrange shape requirement (versus 2000 n, mi,
previousty used) to :,Lunt the nose and improve volume-to-wetted-area ration. The
large payload bay area and the iomaller payload weights allow a decrease In planform
area, since the entry planform loading limits are not approached in thane configura-
tions. Since these configurations took cognizance of the smaller gross liftoff weight
factors, the volumes have been adequately chocked out, and further iteration should

7-2
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Table 7-1. 3M-Pound GLOW FR-3 Design Point Synthesis Summary
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Tabu 7-2. rR-3 Weight Summary

SPACECRAFT SUMMARY VIIGNT STATEMENT
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Table 7-3.	 3M-Found GLOW FR-4 Design Point Synthesis Summary

06MSTER MITER	 VE"ICLE
tLffw[aT

W116"T
PROPF6L4NT9 ASCENT 940164 3^27A3
PRQPELLAN T r 040 17 	ANELiVi^'6' 1	 tog
PROPELLANT? TOTAL
FLVrACM FUEL

f ;^ t 34 04i^
0

PAyLOAO 15000
STRUCTuWE :1460• 141610	 591478
CONT I MOINC T 0 0
cITNII.IA 10461 11293
TOTAL 1829096 371149	 3029333

IN Opo l T 211960
RETURN CONCITI ON 268403 303330
ENTRY 219225 177746
LAND I N6 21 114 31 0

VML UME

F OFL f?x9 3 11933
OR 11)1If 64 I PS9 0 4667
P40Pf L LANT A666) 13602
PAVLOkU 10634
OTHER 79636 40240
TOTAL 74962 64400

4[M MF Tsar
LE.NGT M 17096 16049
Hanr WETTEC AWEA 1314107 1202001mon1► PLA%FCWM 40EA 407003 395907
FOYT04Y P LAN00WO L O ADING 490 1 4409

PQftV()L S T ON

vmwuS T - rn-ot l6mi 2947713 1, SA44 7
ha. OF	 ENG I Nt 5 n 3tkRUSTIONG %00*/UR 309994' 399994 234369/ 41904241 4799924VAC T"R U STatNG %044 11A 661647! 441447 471600/ 5542 168/ SS42168
SG IS O	NO"04 1JM 38993/3+490.1 2 32 00/ 349,3/3A9,3VAC I SO NOW/Uw 449*A/449,4 45Q00/ 4400144965

flas Ac Too Y

MASS k AT IA	 2041445	 2969944
"ANIOUM nyhAmlr' PRESSOR!	 ?3604
STAM NU n yKA"IC PRESSURE	 50
SYAGINO VlILOCITY 4QFLATTVFI	 10605
STAGINU ALTITamE	 186354STAGING FLIGHT PATO+ A140LE IRELATIVEI 	 30965INJECTION YELOCITr IINERTIALI 	 2SR97
INJECT ION AL11TUUE	 260002
I N jEC T ION FL10.04 1 PATm ANGLE IINERTIALI 	 0000
INJECTION INCLINAII(IN	 55.05

FLVOACK AAN01	 ?AS, I
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Table 7-4, FR-4 Weight Summary

SPACECRAFT SUNNARY WEIGHT STATEMENT

MA'SA TIk-4, Point Design 6-3-6
Enip.	 Zero Conting f acy FF , ed ThJuit

SYSTEM ITEM OR MODULE SPACECRAFT

R D E F M U

E=1210-)

AERODYNAMIC SURFACSS

RODV STRUCTURE

INDUCED ENVIR PROT 33	 O j 3	 5

4 . a 1.NCN RECOV & DXO a 3

S.0 MAIN PROPULSION (7 9 v

6.4 ORIENT CONTROL SEP t	 ULL
g

7.0 PRIME POWER SOURCE

9.0 1 POWER coNv d DISTR O -' 50

9.0 GUIDANCE 1k NAVIGATION n0 1ox
14.0 INSTRUMENTATION

age,
11,0 COMMUNICATION
12.0 ENVIRONMENTAL. CONTROL O ^ D
I3.0 (RESERVRL)

I4.0 PERSONNEL PROVISIONS

L S . 0

L

CREW STA CONTRL 4A PAN p SC
16,4 RANGE SAFETY Y ABORT

SUBTOTALS (DRY WEIGHT) Q 14,904 8

17.0 PERSONNEL D Q
16 .0 CARGO ppd
19.0 ORDNAMCE

E$p3

70,0 BALLAST

71.4 Ras ID PROP 6 SERv ITEMS q
SUBTOTALS (INERT RVIINT) v o

22.0 093 PROP M SERV ITEMS

23.0 INFLIGHT LASSES

24.0 THRUST DECAY PROPELLANT

21-0 FULL THRUST PROPELLANT

26.0 THRUST PROP BUILDUP

77.0 PRE-IGNITION LOSSES

TOTALS (CROSS /EIGHT	 LB) 90

DESIGN ENVELOPE VOLUME	 (rT 5 6 5
PRESSURIZED VOLUME	 (FT

DESIGN SNVEL SURI' AREA 	 (FT ) /

PRESSURIZED SURF AREA	 (K )

DESIGN 0. MAX (LB/TT') jL
DESIGN [.	 MAX

DESIGN POWER	 MAX (RR)
DESIGN NO. MEN/DAYS

MOTI1	 Sk[TCM[S^

TM7euST DLLQy Pota0 a.61.40rs /lr[	 XA#C"atp
/AI	 I^Tt.S/^fJ/9L	 Wf/try/.Ii•

T^9NKS /RKL orL,t -.51ttp To ^gcr^uN f
Fax TNAu s r gfNtD- up gpjA;
PRS-YGNisI,#Al	 4.,04jEI

CODR. SYSTEMi REF. MIL • M • !B]IOA OR It-4804

11E1M OR MODULE

-
C

D
a

F
SPAC	 AFT

- Orbiter
U UMIAMD LAUNCH

Rau Tom Iota (Jul ON)
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r not reduce the system capability on that score. Figure 7-3 shows the orbiter config-
uration, and Table 7-5 shows the synthesis summary. Table 7-6 is the weight sum-
mary.

7.2.2 FR-4 POINT DESIGN. The fiew orbiter configuration was used here also. It
is similar to that of Figure 7-3. Table 7-7 shows the synthesis summary of this
FR-4 system, and Table 7-8 is its weight summary.

7.3 COMPARISON OF FR-3 AND FR-4 VEHICLES

A comparison of the vehicles defined in Sections 7.1 and 7.2 is summarized in the
table below. The FR-3 has approximately twice the payload capability of the FR-4 for
both the 3.0 and 3.5M-lb configurations.

Note also that the 17 percent increase in GLOW did not result in a .similar payload in-
crease. This was due to the larger payload bay requirement (22-ft diameter) for the
3.5M-lb vehicle.

3.0M-lb GLOW 3.5M-lb GLOW
FR-3 FR-4 FR-3 FR-4

Payload (lb) 32j000 15j000 35,000 17,300

Total Weight — Booster 2,429,886 1,2299094 29787,324 10396,323
w	 Element (lb)

Propellant -- Booster 1,9689076 9809288 20281,676 19131,186
(lb)

Total Weight — Orbiter 5909637 5710145 714,499 7079454
(lb)

Propellant — Orbiter 3889923 381,982 474,331 482,172
(lb)
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Table 7-5.	 3.5M-Pound GLOW FR-3 Design Synthesis Summary

d005TER ORBITER
ELE 14ENT

WEIGHT
P ROPELL AN T. ASCENT 2281676 449694
P PnPELLANT9 ORBIT MANEUVER 24-537
PPOPE'LLANT9	 TOTAL 22816T6 474331
FLYHACK F UEL 43487 0
P AYLOAD 35000
STPUCTURE 430839 142BR3
CONTINGENCY 7300 0
nNER 19022 12296
TOTAL ?787324 714499

IN OPRIT 268867
RFTURN CO ND ITI ON 505648 260920
ENTRY 0 228795
LANDING 439040 0

VEHICLE

623722

350IN23

VOLUME
`	 FUFL 75693

OXIDIZER 29302
PP nPFLLANT 104999
PAYLOAD
OTt+FP 62543
TOTAL 16753A

GECMETPY
LENGTH 22897
4nnY wETTEU APEA 22402.9
RnrY PLANFOP M ARLA A356.F
ENTRY PLAINFO W M LnA 1jjNG 5803

PROP11j.cInN
TW44UST-70- WEIGHT
Nn.	 OF	 ENGINES 13
SL	 THP(1ST/E 1j r,	 -vUM/UR 400027/	 400027
VAC	 THRUST/EN(; NQfI/UP 461886/ 40886
S(.	 19P	 NOM/UR j89.3/399.3
VAC.	 ISP NOM/UR 449.5/449.5

TRAJECTORY
MASS RATIO 2.87000
MAWIM04 DYNAMIC PRESSURE
STAGING DYNAMIC PRESSURE
ST4GTNG VELOCITY	 (kELATIvE)
STAGING ALTITUDE
STAGING FLIGHT PATH ANGLE, (4ELATTVE)
I ftl .IECTION	 VELOCITY	 (INERTIAL)
PiJECTIO N 	ALTITU€)E
I k 'jFCTION FLIGHT NArH ANGLE (IWEPTIAL)
INJECTION	 INCLINATION

FL Y BACM	 RANGE 288.2

14697
577?

20669
16720
52111
P9501

16+x.2
14353.0
4698.8

46.7

189802 9	1.48503

238398/	 5?00349/ 5240349
471639/	 6(+04512/ 6004512

	

232,0/	 389.3/380,3

	

454. n /	 449.5/449.5

2.65805
766.3

5 C'
11042

189345
2.597

25897
260002

•000
54.96
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SPACECRAFT SUMMARY WEIGHT STATEMENT

CONFIGURATION F R -3 Point Design	 °V
oATE

CODE srSTSYSTEM
ITE/ OR NODULE SPACECRAFT

D E F N U

110 AERODYNAMIC SURFACES b $^

2.0 BODY STRUCTURE

3.0 INDUCED ENVIR PROT 3 3 5
4.0 LWH RECOV h Dxc

5.0 MAIN PROPULSION 3SQ
6,0 ORIENT CONTROL SEP a	 ULL J53419
7.0 PRIME POWER SOURCE $

6.0 POWER CONY & DISTR

9.0 GUIDANCE s NAVIGATION
10.0 INSTRUMENTATION p 5 Q
11,0 IEUCUUNICATION O
12.0 ENVIRONMENTAL CONTROL $

13.0 (RESERVED)

14.0 PERSONNEL PROVISIONS

15.0 CREW STA CONTRL S PAN Dp
16.0 RANGE SAFETY A ABORT

SUBTOTALS CRY WEIGHT)

17.0 PERSONNEL 4
16.0 CARGO SOO

19.0 ORDNANCE

20.0 BALLAST

21.0 REBID PROP R SERV ITEMS /	 D $O
SUBTOTALS (INERT WEIGHT) b e
22.0 RES PROP M SERV ITEMS

23.13 INFLIONT LOSSES 0

24.0 THRUST DECAY PROPELLANT

25.0 FULL THRUST PROPELLANT 0AY6 74 41

26.0 THRUST PROP BUILDUP

n27.0 11 PRE-IGNITION LOSSES

41TOTALS	 GROSS WEIGHT	 LO)

DESIG	 LON ENVELOPE VOLUME	 PT 6 53

PRESSURIZED VOLUME	 F'T

DESIGN ENVEL SURF AREA	 (WTI)

PRESSURIZED SURF AREA	 (FT )

DESIGN Q. MAX (LB'FT )

DESIGN °. MAX

DESIGN POWER	 MAX (RW)

DESIGN NO. MEN/DAYS

NOTEf ° !R[?CNE6i

TMR4usr ascwr r90POLLAwrs	 j986 SAfCLU060
/K	 Rsi^Ou/^1.	 yv L/sNFtf.

rAo ks wxe ors1C -si zta To ACC.pwar
Ir•AL rNx rs r &&Otp - tip AN A
PR BT - XG of r/Ir/	 4.044 ;t .

CODE. SYSTEM: REF. MIL -0 . 38310A ON SP-6004

ITEM OR MODULE
A - Booster

B
c

D
E

F
SPAC=RArT

wAmmm- Orbiter
U uNMANNSD LAUNrH

EBC Form 1023 (JulOB)

^
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Table 7-6. 3.5M-Found YR-3 Weight Summary
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3.343
25897

260057

• 1104
54.97
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Table 7-7. 3.5M-Pound GLOW FR-4 Design Point Synthesis Summary

OOOS I EIS
	

ORBITER
	

VEHICLE

ELEMENT

*EIGHT
PR0PELL4NT. ASCENI
PROPEL 61ANT9 0441T 1ANEUVE4
PROPEL_A4T9 TOTAL
FLYaACI FUEL
PAYLOA]
STR{JC 1 JRE
CONT1 N ;ENCY
OTHER
TO1 Al.

IN 0041T
RETUkV COrduITVIN

ENTR Y
LANDIN3

VOLUME
FUEL
OXIDIZE4
PROPELLANT
PAYLOA )
OTHER
TOTAL

GEOMETRY
LEN31 H

HOl?Y a E r TEW AREA
ROUY P„ANFORM AREA
LNTRY ; LANF-)RM L04JI14G

OROPULSI 04
THkJSr-T3 +EIagT
NO. OF ENOVIES	 6
SL 1 HQ JST/E NG ut1M/ Jk	 399931 / 399931
VAC T-iRJST/Er{ ^p rJU4/Uk	 4151775/ 461775
SL IS+' 40M/Uk	 394.3/389*3
VAC ISM NO A,/U4	 449.5/444.5

TRAJECTORY

1131186

1131186
23625

230086
0

10625
1396323

265136
255411
231519

37249
14525
51173

33766
e556(►

182.8
14632.7
5339.1

470B

48943
22929

48217?
0

17300

	

19431#9
	

65617!
0

13593

	

707454
	

35001OU

2S2U32
242820
212622

0
,q

15103
5908

21010
16720
62925
90556

168.9
14465.3
4735.6

44.9

	

1 * 94953	 109 T1 14
3

238331 /	479917'8/ 47991%
471526/	 5541297/ 5541297

23200/	 389.3/389.3
45490/	 449.5%449.5

MASS R ATIO	 2982784
MAXI :SUM DYNAMIC PRESSUME
STA3143 7YNAM IC PRE: SSII RE
STAGING VEL5CITY IgELATIVEI
STA31 N,; AL r I TU)E
STA314 FLIGHT PA14 ANGLE (RLL.4TIVE)
INJECTID N VELOCITY IINERTIALI
INJECTION ALTI TUuE
INJE CTION FLISAT OA TH ANG LE 11 NEKTIALI
INJECTION I'NCLI`IAIIUN

FLYBACK kA43E	 26764

A

ILL

^yr

• vei 7-13
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Table 7-8. 3.5M-Found FR-4 Weight Summary

SPACECRAFT SUMMARY WEIGHT STATEMENT

'MA"PR-4, Design Point 6-3-6	 °	
DA TE

CODE	 SYSTEM	
ITEM p R II'	 .E	 SPACECRAFT

O	 E	 F	 M	 U

1.0 ARRODVNAMIC SURFACES 1 8

2.0 BODY STRUCTURE nfag a 66Z-4-1

3.0	 1 INDUCED ENVIR PROI ,0

^.O LRCIJ RECOV	 0 5S S.S

3.0 MAIN PROPULSION .S
5.0 ORIENT CONTROL SEP i 	 VLL (^

7.0 PRIME POWER SOURCE d 5 3

8.0 POWER CONY I► D1STR

9.0 GUIDANCE & NAVIGATION

10.0 INSTRUMENTATION

11.0 COMMUNICATION 2D ~^
12.0 ENVIRONMENTAL CONTROL 300
13.0 (RESERVED)

14.0 PERSONNEL PROVISIONS

IS.0 CREW STA CONTRL d PAN pQ g0
16.0 RANGE SAFETY R ABORT

SUBTOTALS ( ORr WEIGHT) 3a a

17.0 PERSONNEL -00 .0 O

to.0 CARGO

19.0 ORDNANCE

20.0 BALLAST

21.0 RESID PROP 1 SERV ITEMS 5 5

SUBTOTALS t INERT nEIIINT) /D 6 /

12.0 RES PROP 6 -41" ITEMS

13.0 INrLI01TT LOSSES
24.0 TI(Rl1ST DECAY PROPELLANT
75.0 FULL THRUST PROPELLANT

26.0 THRUST PROP BUILDUP
17.0 P&R-IONITION LOSSES

TOTALS	 91108E 1lEI9NT	 LE)
DESIGN ZMLOPE VOLUME	 FT 5560 5

FRESSURIxED VOLUME 	 FT

DESIGN EAVEL SURF AREA	 (FT ) /M /'J1

PRESSURIZED SURF AREA 	 (FT )

• 519,,DESIGN 9, MAX (LII/FT ) 5
DESIGN a. MAX

...

DESIGN POWER	 MAX	 R1r

DESIGN NO. MEN/DAYS

NOTES	 SKETCHESo

Torusr DacAr PJCOPdtt19Mr.t iT1[g 2NCfr►J7QD

JAI	 Jtai.AU VL	 N/Lr1tr#rj.
Tgr r S AxF- ovee -.517.90 ro	 Rcrot►wr r
Fog TNRvs7 OUO&C- UP /!ND
1^'Rc - I GN^TID+J	 Loss Jam.

CODE, SYSTEM+ REF. MIL •M • 39310A OR SP-4004

ITEM OR MODULE

A	 - Booster
B	 -
C
D

E

F
EPACEZRAFT

U UNMANNED LAUNCH

MSC Form 1973 (Jul BB)
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