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In the limit of high vibrational and electronic principal

quantum numbers a semiclassical model for autolonizatlon of

diatomic molecules has been constructed. The molecular vi-

brations are treated as classical oscillators, whose parameters

are chosen from a knowledge, which can be taken either from

theory or experiment, of the positions of the quantal vibra-

tional levels and the position and depth of the minimum of

the adiabatic potential curve of the residual molecular ion.

The theory is designed for the case where vibrational quantum

numbers are greater than about 10. 	 Electronic quantum numbers

are restricted by the requirement that they be high enough

so that the excited electron-core electron interaction can

be represented by the monopole term in the region where the

distance of the excited electron from either nucleus is always

greater than the distance of the core electron and the excited

electron-nuclear interactions can be represented by the monopole

terms in all regions. An advantage of the theory over the per-

turbed stationary state theory is that its validity extends into

the region of very high electronic quantum numbers (n-100) where

the electron and nuclear velicities are comparable, and the

Born-Oppenheimer theory is not valid.	 Numerical-estimates for

the autotonization rates are presented for several sample cases

for vibrations in the neighborhood of 0-10 and'excited electrons

of n-10 to n-20, and for zero energy ejected electrons.

^r
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Introduction

A molecule can autoionize when one of its electrons is so

highly excited that a transition from an excited vibrational or

rotational level can supply enough energy to ionize the electron.

The electron is almost decoupled from its parent molecular ton,

and the process is almost the process of energy transfer between

colliding systems.	 Typically a n'-5 to n'-4 vibrational transi-

tion supplies enough energy to lonizd'an n-9 electron. The pro-

cess is observed experimentally in the neighborhood of threshdld

in the photolonization of H 2 1 , in which there is photoexcitation

of electrons to around n-10 and vibrations to n'-5 and then the

production of photoelectric current by autoionization.	 In this

region of energy an n-10 electron has an order of magnitude

higher velocity than the relative nuclear velocity of a n'-10

vibration (estimated from the exact H2 vibrational energies).

The mechanism responsible for the transition is taken by Nielsen

and Berry 2 (hereafter referred co as NB), in an application of

the perturbed stationary state theory for heavy particle colli-

sions 3 , to be the nonadiabatic (vibronic) corrections on the

adiabatic electronic states for the nuclear motion; thus the

transition amplitude is proportional to VR	 ( r,R) and V-^ (7A).

VRX i (R), where ^i and Xi are the initial electronic and vibra-

tional states and r and R are the position vectors of the elec-

tron in the molecule fixed frame and the relativelnuclel respec-

tively, Integrated over the product with the final electronic

and vibrational states.	 The first derivative term is dominant,

and autolonization rates calculated by this theory are in

qualitative agreement with the experimental estimates of Chupka

and Berkowitz.)
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The purpose of this paper is to formulate a theory in

which autoionization rates can be predicted without an explicit

knowledge of the vibrational states involved, which in its turn

requires a knowledge of accurate adiabatic potential curves and

surfaces, available for only the smallest molecules. 	 Provided

the vibrations are excited enough (about n'-10) so that they

can be represented by classical oscillators, the information

required about the vibrational levels involved ?n the internal

conversion process can instead be taken from the extensive

infrared spectroscopic measurements of vibrational quanta and

experimental determinations of molecular bihding•energies.	 This

semiempirical aspect should be especially useful for polyatomic

molecules (not explicitly considered here). 	 In addition the

formulation is not made within the framework of the Born-Oppenheimer

theory and thus avoids many of the numerical complications of this

theory and more importantly extends into the region of comparable

electron-nuclear velocities in which the BO theory is not valid.

In the energy range considered by NB it is reasonable that non-

adiabatic effects could be irrvoked to give a reliable first-order

theory.	 However in the region in which 50-en<oothe electron and

nuclear velocities are comparable so that vibronic couplings are

no longer perturbations on the Born-Oppenheimer system. A similar

situation is encountered in H atom-H atom collisions above 1 keV

incident projectile energy in which the ground state-ground state

Heitler-London energy curve departsfrom Its zero velocity limit

below lkeV, distorts beyond recognition from 1 to 100 keV, and

merges into a coulomb curve when the electron exchange interactions

become negligible above 100 keV4

Autoionization from the higher levels (electronic and vibra-

tional) may be important in H1 regions in interstellar space in

which competing processes for electron supply are ionization of

n-100 hydrogen atoms by collision with ground state hydrogen atoms

and by background radiation from H2 regions. ?here has been recent
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astrophysical Interest s in "anomalous" recombination radiation

from H2 regions as a result of observation~ through H1 r--gions

in which such processes are occurring. Molecular autoionization

has not yet been proposed, although undissociated H 2 molecules

are known to be present in dark dust clouds in H1 regions 
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Theory

Consider the H 2 molecule in an highly excited electronic

and vibrational state.	 We choose to treat the vibrational levels

of the H +
2

	ion for n'29 as classical oscillators.	 This

is a good approximation for the higher states since the classical

distribution function can represent an average of the oscillatory

quantum distribution over the stretch of the molecule 	 Hence

a knowledge from experiment or theory of the positions  of the

quantum states and the depth, D e , of the minimum of the adiabatic

potential curve of the residual ion at R e can be used to choose

the parameters of the classical oscillator,, whose position and

velocity are given by,

R i (t) - R e + DIsinwt

v i (t) - D I Wcoswt
	

(1)

where w-(k/u) } where k is the stretch constant equal to (a2V(R)/aR2)R-R

and V(R) is the potential culve.	 The stretch constant is taken 	
e

from the Morse model to be 2D e a 2 where a is a fitting parameter9.

v is the nuclear reduced mass.	 D i is the amplitude of the ith

oscillator and is chosen by fitting the classical energies, }kD1,

to the quantum eigenvalues
7 where the bottom of the well,D et is

chosen an the zero point.	 We use the Wentzel 10 correspondence

relation which gives a classical velocity which is an average

of the Initial and final velocities resultiig froma quantal

absorption of energy,
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V	 (vivf(vi+vf)/2)^'^	 (2)

This "symmetrization" seems especially justiflabib as we approach

the top of the potential well where the quantum states are almost

degenerate.	 We di) not symmetrize the trajectories, R i . but choose

the initial trajectory.	 In a more careful treatment the symme-

tr'zed trajectories could be obtained from an integration over

the time of the correspondence given'1n (2).

The excited electron is in a state of high principal quantum

number so that its average distance from the H2 residual core

is large (of order n 2 ).	 The existence of H2 in a highly f:xcited

vibrational state means that the quantum mechanical average

relative position of the nuclei can change over a very wide

range of internuclear distao;ces as determined by the modulus

^X i (1))
2
 of the vibrational wave function in distinction to

the range for a low vibrational state whose modulus is peaked

near Re .	 Classically this means that there is a I large vibra-

tional amplitude, D i . and that in the time, (t 2 -t 1 )/2, of a

half period in which the molecular ion goes from its minimum

to maximum stretch the sphere swept out by the nuclei in the

space occupied by the excited electron has a large radius;

hence the average electron distance from the core is effectively

decreased (the electron, originally outside the core at R-Rmin'

has a greater chance of being inside the core where the ionizing

interaction occurs over the period T-t 2 -t 1 ).	 At t  we take the

electron to be outside this sphere (outside the core, for which

r>R), so that it moves in the potential,

n

ii

-1/r - R 2 /r 3 P 2 (^ • 4) - (higher order poles)	 (3)
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where the monopole term of the expansion in the

(r' is the core electron coordinate) of the exc

core electron potential r^ I has been cancelled

screening) and the higher order poles dropped.

term In (3) was first propcsed- by Berry 
11 

to be

region r^r'

tied electron-

(complete

The quadrupole

the dominant

ionizing interaction, but calculations by Berry li , Bardsley12,

and Russek et a1 13 showed that It contributed only a few per-

cent to the rates as measured by Chupka and Berkowitz 
1.
	 Physi-

cally this is clear because t'-e electron is always outside the

molecular core (r>R), and vibronic effects are of higher order.

We will there neglect the quadrupole term.	 Thus at t-t 1 the

electron moves in a coulomb potential, and its states a.-e hydro:,

genic.	 In the interval t 1`t5t 2 , the perioa of the vibration,

the nuclei move from their minimum to maximum stretch and back

to their minimum.	 The ionizing interaction occurs during this

interval.	 Also, during this interval it is reasonable to treat

the electron as a molecular electron, whose molecular orbital

^1 (in the simplest "Linear Combination of Atomic Orbitals"

approximation) is given by,

^l " 
a1(t)(OnRm( ^	 tA)e v,T t O

njtm
(F )e- IV
	 t(B v.^ )e - En +v 2 /2)t	 (4)

where the states are bound hydrogenic states of energy c  on

protons A and B, and the exponential factors result from the

translational component of motion of the electron travelling

with the classical protons moving in the directions of positive

and negative velocities respectively 
14
	 The upper and lower

signs are taken for the gerade and ungerade molecular symmetries.

The final molecular orbital 
W2 

is,
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''2 a a2(t)(mktm(rA)eiv•r = 0kRm(rp)e-lv•r)e-i(k2/2^v /2)t
2 	

(5)

where the states are the hydrogenic continuum states of energy

k 2 /2 on protons A and B. The.total wave function is the sum of

(4) and (5) (in the two-state approximation 15 ).	 Substitution

Into the time-dependent Schrodinger equation and projection

from the left with the molecular orbitals yields the usual set

of coupled first-order differential equations in the time for

the set of a(t)'s,

S a - (IM -1 V a	 (6)

where S and V are the overlap and potential matrices respectively.

During the time of ionization, the potential is just -1/A(t) + 1/r

in the region r<R(t), r>r' and zero in the region r>R(t), r>r'

(zero in the region r>R(t), r>r' is consistent with the neglect

of the quadrupole term in (3)), where we have kept only the mono-

pole terms(as in (3)) of I	 - 41
-1
 and ^^ - ^'^r	 in the region

r<R(t), r>r', and the monopoles have cancelled in the region

r>R(t), r>r'.	 Note that the excited electron is always taken

to be in the region r>r'. 	 1his bears closer examination since

r<R(t) implies that the excited electroricar. move in the space

of the core electron during the collision. 	 Hence the integration

over r extends only to R(t).	 We solve (6) by neglecting back-

coupli-,g and distortion 15 , thereby reducing the set to the Born

amplitude,

^i

2
a(T ,k) 0 (it )-1	 dt e i ( k /2- En ) t(<OkLm( A) 1/r^ 1/R (t) ^OnRm( A)>

t
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♦ *

2 
<0ktm(rA) 1(1 /rA-1/R(t))e21v•rIQntm(re)>)

	
(7)

where we have reglected the continuum-continuum overlap. The

momentum factors vanish by orthogonality except for the inter-

ference term which results because the exchange integral contains

the atomic orbital components of opposite velocity direction

of the molecular orbital (cross term). 	 Since the time of a

classical period is 2n/w, and the mooplus of a(T,k) is the

probability, which cannot be greater than unity, the semi-

classical autoionization rate has an upper bound of (27r/w) -1

80.65865 x 10 sec -1.

a
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Numerical Results and Discussion

To obtain numerical estimates of a(T,k) we make the following

set of approximations. 	 Since the electronic states are continuum

and highly excited bound states, r A--4*_.rg to a good approximation,

i.e. the two-center integration can be performed about a single

center. We expand the continuum function in partial waves and

keep only the A-t wave (9-1 bound states are the initial states

of interest in the photoionization experiment l ; hence6i-0 only

are considered). The maximum velocity. 
kmax' 

of the ejected

electron is small for the small energy transfers involved, so

that we evaluate the rates for zero energy electrons only; the

radial coulomb wave function normalized on the energy scale

(coulomb functions normalized on the k scale multiplied by

k-} ) is 16,

OOL	 (2/r)}i2L+l((8r)})
	 (3)

Using (8) the rate per unit velocity is given by (a(T,O)J2/T

at zero velocity. Assuming the probability to be nearly cons-

tant over the range OSk ,:^k ma , the total rate is estimated by

taking the product Ja(T,0)J kmax/T.
	 Numerical difficulties

in evaluating the generalized Laguerre polynomials limit the

calculation to about ns20; continuum waves of very 'ow k are

likewise subject to the same numerical difficulties (convergence

of the confluent hypergeometric function for large n--;/k).

Table 1 gives sample values for the rates for n'-9, 10,

11, and 12 vibrations (all possible On') and 10<ns20. 	 Some

of these rates v;olate the upper bound given in the previous

section because the probabilities are greater than unity.	 This

^.
ATY
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error is inherent in the Born approximation, which does not

conserve probability.	 It is strongly suspected that the larger

than unity probabilities are due mainly to the overestimation

of the two-center integral by the one-center approximation and

(probably a more	 important source of error) the treatment of

the probability as a constant ovYfs the interval 0<<kSkmax'

especially since only the An'>1^show the violation of the

bound and kmax increases with An'. This increase of rate with

increase of AnI .is also not in agreement with the NB rates, which

decrease with An'.	 This incorrect behavior of the semiclassical

rates seems to be due (with smaller contributions from the two

sources of error above) to the dependence only on the initial

trajectory; with increase in An" the final trajectory (amplitude)

has less and less stretch while the initial trajectory remains

the same.	 Symmetrization of trajectories would therefore be

indicated.	 The decrease with increase of n is in agreement with NB.

The upper bound of nearly 10 8 means that the semiclassical

rates can never be as fast as the quantum rates of around 1012

for An'-1 for vibrations 0<n's5 and nS10 of Berry and Nielsen2c.

Their values forjW>l are as slow as 10 5 .	 Clearly the very fast

rates are the result purely of the quantum effect of initial

and final vibrational states whose overlap is strongly peaked

in a very small region of internucle • r distance.	 This effect

could be mimicked classically if we allowed 0<w% 2n; that is

if we restricted the classical time to some very small region

instead of allowing the ionization to occur over the entire period.

Since there is no unique prescription for choosing such shorter

times, the classical description of the nuclear motion must fall

for these cases.

There is an intermediate region (5<n'<12) into which the

calculation of NB does not extend, so that.a direct comparison

between quantum and semiclassical rates cannot bu made. 	 It would

be useful if calculations based on the NB theory were made In this

region.
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