
I l l 1  l l l l l l l  Ill1 

! 

N A S A  TECHNICAL NOTE N A S A  T N  D-5882 - 
C ’ /  

L0,AN COPY 
AFWL 

K I R M  

LONG-RANGE ATOMIC INTERACTION 
POTENTIALS FOR NITROGEN 

by Willurd E, Meudor 
Langley Research Center 
Humpton, Vu, 23365 

: ?!E’?JRN 
(WLOL) 
AFB, N M 

N A T I O N A L  AERONAUTICS A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D. C. JULY 1970 



13.'. 0132653 .- 

1. Report No. 

NASA TN D-5882 
4. Title and Subtitle 

LONG-RANGE ATOMIC INTERACTION POTENTIALS 
FOR NITROGEN 

2. Government Accession No. 

5. Report Date 
July 1970 

6. Performing Organization Code 

19. Security Classif. (of this report) 20. Security Classif. (of this pagel I 21. ~ 0 ~ ;  Pages 

Unclassified Unclassified 
-~ 

7. Author(s) 8. Performing Organization Report No. 

Willard E. Meador j L-5569 
10. Work Unit No. 

129-02-22-01 
11. Contract or  Grant No. 

9. Performing Organization Name and Address 

NASA Langley Research Center 
Hampton, Va. 23365 

13. Type of Report and Period Covered 

Technical Note 
14. Sponsoring Agency Code 

2. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 

5. Supplementary Notes 

22. Price* 

$3.00 

._ - . .. - 
6. Abstract 

Direct correlations between molecular and atomic wave functions a r e  employed to find 
the coefficients of the two-electron exchange energies in the valence-bond description of the 
interatomic forces  between colliding nitrogen atoms. Whereas the X 'Z; and 7 C t  poten- 

tials a r e  identical with those deduced previously, the A 3 C i  and 5Ci  potentials are very 
different. Not only are the long-range tails of the second pair revealed as mi r ro r  images of 
each other, as a r e  the first two, but a lso each is expressed a s  a simple fraction of the lowest 
curve. 
including comparisons with those of the current  l i terature,  a lso is presented. 

A more general discussion of the different types of diatomic bonds and antibonds, 

7. Key Words (Suggested by Author(s)) 

Quantum chemistry 
Molecular quantum mechanics 

. -  - _  

18. Distribution Statement 

Unclassified - Unlimited 



LONG-RANGE ATOMIC INTERACTION POTENTIALS FOR NITROGEN 

By Willard E. Meador 
Langley Research Center 

SUMMARY 

Direct correlations between molecular and atomic wave functions are employed to 
find the coefficients of the two-electron exchange energies in the valence-bond descrip- 

1 +  
g tion of the interatomic forces between colliding nitrogen atoms. Whereas the X C. 

5 +  and 'Z; potentials are identical with those deduced previously, the A 'C.; and 
potentials are very different. Not only a r e  the long-range tails of the second pair 
revealed as mi r ro r  images of each other, as a r e  the first two, but also each is expressed 
as a simple fraction of the lowest curve. A more general discussion of the different 
types of diatomic bonds and antibonds, including comparisons with those of the current 
literature, also is presented. 

=g 

INTRODUCTION 

The long-range tails of interatomic potentials a r e  important for many calculations 
of the nonequilibrium properties of collision-dominated gases. Often used for this pur- 
pose is the approximation of perfect pairing (ref. l), hereafter called APP, in  which 
molecular energies a r e  expressed as linear combinations of bond and antibond energies 
based upon symmetry and spin pairing considerations. Although the absolute results for 
individual collisions may be inaccurate, the method is thought to establish fairly reliable 
and useful relations between the various potentials operating in  a gas. (See ref. 2 for a 
discussion.) Hence, i f  a small  number of such potentials can be computed accurately 
(see refs. 3 to 5 for ab initio quantum mechanical calculations of the N2 ground state), 
the others will follow from simple APP theory. 

A principal objective of the present research is to supply the APP bond and anti- 
bond energies for collisions between two ground-state nitrogen atoms and corresponding 
to molecular electron configurations determined from correlation studies similar to that 

5 +  of Mulliken (ref. 6) for the N2( Zg) state. More general APP multielectron energies 
also are considered and several  important relations a r e  discussed. The correlation 
analysis forces the molecule to separate into atoms with the desired spin and angular 
momentum quantum numbers, a requirement which has not always been satisfied in  pre- 
vious calculations. Vanderslice, Mason, and Lippincott (ref. 7) , for example, assume 
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that of the several  different electron configurations which correspond to a given set of 
molecular quantum numbers, only the strongest attractive or the least repulsive one dis- 
sociates into normal atoms. Such assumptions are seldom valid and frequently yield 
incorrect results for the interaction potentials. 

The long-range potential tails thus computed for the N2(. ' 2 3 ,  N2(A '2$, 

N2(5Zi), and N2 Zu states are compared with each other and with Gilmore's extrap- 
olations (ref. 8) of Rydberg-Klein-Rees (designated "RKR") data. Although the latter 
curves are somewhat uncertain in  the region of interest ,  a pronounced preference is 
shown for the present calculations over those of reference 7 mentioned previously. In 
addition, the present theory yields much simpler relations between the energies than does 
reference 7 because each of the three excited potentials can'be expressed for the first 
time directly in  te rms  of the molecular ground-state energy. Vanderslice, Mason, and 
Lippincott, on the other hand, are left with two independent potentials, one of which they 
obtain by a delta-function computation of N2 Xu and the other by a rather question- 
able analysis of predissociation data. The latter procedure is unnecessary in the pres- 
ent refinement. 

r +) 

r +) 

SYMBOLS 

a,b atoms a and b; reference to nuclei when used as subscripts; atomic 
functions 

C1, C2, CQ variational coefficients in  equation (18) 

e absolute electron charge 

EO ground-state energy of atomic hydrogen 

E (He) ground-state energy of atomic helium 

F arbitrary operator in  equation (Cl) 

H Hamiltonian operator 

I ,I atomic functions, px + ipy and px - ipy 

i ,j integers 
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Ji 

L 

Lmax 

ML 

MS 

0 

OL 

Px,Py'Pz 

Qi 

r 

'ia 

'b 

12 

exchange energy for an i-electron bond; subscripts cr or 7~ refer to i = 2 

quantum number for total orbital angular momentum 

maximum value of L 

step-up, step-down or ladder operators 

magnetic quantum number for total orbital angular momentum 

magnetic quantum number for total spin 

atomic function pz 

projection operator 

p-type atomic orbitals 

Coulomb energy for an i-electron bond 

ratio defined by equation (31) 

distance between electron i and nucleus a 

distance between an electron and nucleus b 

distance between electrons 1 and 2 

R internuclear separation 

S overlap integral 

S s-type atomic orbital 

Ti kinetic energy operator for electron i 

and pz; also pY X,Y ,Z abbreviated notation for the atomic functions px, 
Cartesian coordinates 
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Q 9 P  spin functions 

x variational parameter 

5,5* molecular orbitals 

a-type molecular orbitals * *  ax 9 ay Y ax 9ay 

a,a* a-type molecular orbitals 

7. volume element for electron i is dTi 1 

+ interaction potential; sometimes used with subscripts a (attractive) and 
r (repulsive) 

London dispersion energy @d 

@ wave function 

q i 9 q 2  &3 special wave functions defined by equation (1 1) 

special wave functions and 2- 'j2(+2 + 994, respectively 

Special notations: 

molecular states 

g I lz+ 3,+ 5=+ 
g, -lu' g' 

7 +  3 +  1 +  
CU,A qpx 2 

atomic states 

Dirac integral defined by equation (Cl) 

atomic state function defined by equation (B2) 

se ts  of spatial coordinates for electrons 1, 2, 3, 4 

Primes a r e  used as indices to distinguish different functions. 

4 2 2  s, D, p 

< qilH1qj > 

(XY 12) 

192,394 
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ATOMIC AND MOLECULAR CORRELATIONS 

With the z-axis defined as coincident with the line joining the two nuclei of a nitro- 
gen molecule, the conventional molecular orbital (MO) notation of a, a*, nx, nx, fly, 

and T; is chosen for the individual states accessible to the electrons of a p3 configu- 
ration on each atom. The various two-electron bonding and antibonding possibilities are 
reviewed and summarized in  appendix A, it being assumed that only the interactions 
between electrons in  similarly oriented p-type atomic orbitals (AO) will contribute to the 
interatomic potentials. Overlap between the atomic orbitals of different atoms is the 
essential consideration. 

* 

As is explained also in  appendix A, doubly occupied molecular orbitals such as ( u ) ~  
must not be regarded too literally at large distances because of the configuration inter- 
action with (a*)2; hence, the proper wave function for ( o ) ~  is the valence bond (VB) 
expression za(l) zb(2) + Zb(1) za(2) constructed from pz orbitals Z a  and Zb cen- 
tered, respectively, on the nuclei a and b. Likewise, with the understanding that all 
dissociations of present interest  leave one electron in each of Z a  and Zb, the triplet 
relation of equation (A4) is employed always in  place of the singlet relation of equation (A5) 
for the notation (a)(a*). Similar statements apply to orbitals with other symmetries. 
Although the dissociation products of a given molecular state can be presented in  a num- 
ber  of ways, corresponding to the various orientations of the individual atomic spins, only 
one set  of atomic functions is ever required for the desired correlations. A complete 
listing of the pertinent atomic states is given in appendix B. 

The following dissociations of molecular nitrogen are significant: 

1 +. %' 
3 +. 

5 +. %' 
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Each of the parentheses to the right of the arrows is symbolic of determinants defined as 
in  equation (B2), the interconnecting positive signs between them referring schematically 
to N2 - N + N. The dissociations (2), (3), (6), and (7) are not deduced from pure molec- 
ular states but rather from mixtures of Z and A symmetries; the correct  combina- 
tions to establish definite C states occur automatically in  the subsequent analysis. 

represents an observed atomic state, namely, the N[4S(Ms = 3/2)] of equation (B6), 
whereas the second is only a part of equation (B4), (B5), (B7), or (B8). Accordingly, the 
following linear combinations are required: 

It is noted that only the f i r s t  atomic parentheses in  each of the relations (2) to (7) 

and 

(12) 

where. the notations $'I, $'2, and 1,b3 a r e  defined in  equation (11) for future reference 
and are considered to be orthonormal. 

The coefficients on the right-hand sides of equations (10) and (11) are of equal mag- 
nitude because of the similar situations in  equations (B7) and (B8); by way of contrast, 

+("xi - 4s + 2 ,  D = 2 ( 6 ) - 1 / 2 $ ' [ ( ~ ) 2 ( . x ) ( ~ ~ ) ~ y ) ~ ; ~  - 6 - 1 / 2 ~ ~ 0 ) ( a r ) ~ ~ ) 2 ~ y ~ ~ ~ ~ J  

- 6-14[(o)(ar)(1TX)@)p y)2 3 E 6-1'2@$'1 - $'2 - $'3) (13) 

from equations (B4) and (5) to (7). 
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I 
If the further definitions *I = 

equations (11) and (13), there results 
and I,!I= = 2-lI2(q2 + $9) are substituted into 

and 

These expressions are identical with those of Mulliken (ref. 6) mentioned previously. A 
disadvantage of this notation with regard to intermolecular forces is discussed in  the next 
section. 

Finally, since ( D ) ~  forms a stronger two-electron bond than either of (,.)2 Or 
(7iy)2 because of the greater overlap involved, an elementary consideration of the non- 
crossing rule for potential energy curves of the same symmetry yields the correlation 
diagrams 

and 

as the internuclear separation R increases from left to right. A similar procedure can 
be applied to the dissociations of N2@ ' 4 .  

INTERACTION POTENTIALS 

The combinations of electron configurations in  equations (9) to (12), together with 
the two-electron bond and antibond energies (assumed to be additive) of appendix C, are 
sufficient to determine the long-range potentials of two colliding N(4S) atoms. Equa- 
tion (11) is preferred over equation (14) because the resonance implied by $Q between 
a single rx bond and a single bond is not so directly accessible to the simplest 
APP techniques as are the individual functions $9 and +3. In the final analysis, of 
course, the results must be equivalent. 

ry 

One possible source for confusion remains. Since equations (11) and (13) are spe- 
cial examples of the more general variational function 
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and since the variational process decrees that two of the coefficients C1, C2, and C3 
must vanish unless the energy integrals <I)~IHI*~> differ from zero when i # j ,  inter- 
actions between the individual configurations of +I, *2, and $9 cannot be ignored in  
considerations of the total energy. At the large internuclear separations R of pr.e&nt 
interest, however, the sole function of such cross te rms  is the separation of the energy 
asymptotes corresponding to different dissociation products; accordingly, the interatomic 
forces are not affected. For comparatively small  values of R, on the other hand, the 
cross term < @ ~ I H I I , ~ ~  + +3> has a negligible splitting effect because of the already large 
energy separation between the states +I and qU; this statement, i n  fact, is the explana- 
tion for and 
grams (16) and (17). 

existing alone at the far left-hand sides of the correlation dia- 

Hence, for the present application, the correct procedure is as follows: first, the 
APP interaction potentials a r e  deduced independently for each substate in  equations (9) 
to (12); secondly, these substate energies are given their  proper statistical weights 
according to the squares of the coefficients of the corresponding wave functions; finally, 
the energies a r e  added to yield the total interaction potentials. The results are: 

(19) 

@b 3 +  zu) = 3'l(5, + J, - JT) + 3-l(JU - J, + J,) + 3-l(-JU + J, f J,) = 3-l(JO + 25,) 

and 

where J, and J, a r e  exchange energies of the type J2 in equation (C9). Improved 
estimates would include the London dispersion energy (Van der Waals  attraction) in  addi- 
tive form (ref. 2). 

For purposes of comparison, the energy 
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is derived from equation (13). The interaction potential and the reference asymptote both 
differ from equation (2l), even though the molecular state is 'C ;  in  each case. 

Although the physical origin of the exchange forces is made sufficiently clear by the 
Hellmann-Feynman electrostatic theorem (the enhancement of the negative charge distri- 
bution between nuclei in  a bonding situation being related to the exchange forces, which, 
in  turn, result from the particular mathematics of the VB procedure for satisfying Pauli's 
exclusion principle), detailed calculations involving equation (C9) a r e  less  useful than 
might be supposed. Computations based upon simple isolated hydrogen-like functions are 
too inaccurate. Nevertheless, as was shown first by Vanderslice, Mason, and Lippincott 
(ref. 7), much information can be obtained from expressions like equations (19) to (22) 
when they are employed judiciously with experimental data. 

RELATIONS BETWEEN POTENTIALS 

The most obvious characteristic of equations (19) to (22) is that the dependence upon 
J, and J, is identical in the four states;  accordingly, 

g(A3.z:) =-qJfc;)=-3 -1 qJ (7 cu .)= 3 -1 gx ( 1 cg +) (24) 

If the lowest potential curve is provided from ab initio quantum calculations (refs. 3 to 5), 
extrapolations of RKR results, o r  some other type of experimental data, the others are 
immediately available. Alternatively, delta function calculations (ref. 9) on the repulsive 
7ZA configuration could be used. 

Vanderslice, Mason, and Lippincott (ref. 7), on the other hand, employed only the 
first substate in each of equations (10) and (11) to obtain 

and 

+ fC  'C$ = J, + 25, 

Cp(7z:) = -(J, + 2J,) 

They then deduced the final relations 
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and 

each of which is included in  equation (24). Aside from the greater complexity of equa- 
tions (29) and (30), which presuppose the knowledge of two curves for a complete deter- 
mination of the interactions between normal atoms, perhaps the most significant feature 
of the two sets of potentials is the additional symmetry provided by equations (20) and (21). 
Just as X 

3 +  5 +  asymptote, so are A Zu and Zg. 
and 'Z: are mir ror  images of each other across  the dissociation 

As previously explained by means of the correlation diagram (16) and a similar one 
3 +  for  the A Cu state, a gradual transition must occur from equations (20) and (21) to 

equations (26) and (27) as R decreases;  the present formulation, however, is expected to 
provide a better description over most of the range for which the valence bond theory is 
valid since it was designed for that purpose. A simple test of this prediction is furnished 
by numerical computations of the ratio of $(X '22;) to @(A 'E:) according to three 
different methods: Vanderslice's formulation, the present formulation, and Gilmore's 
RKFt extrapolations (ref. 8). 

dependent dominantly upon the square of the corresponding overlap integral, J,/Ju can 
be replaced for present purposes with (ST/S.>". Accordingly, the approach of refer- 
ence 7 yields 

Because of the similarity of forms between Ju and J, and the fact that each is 

for  the desired ratio, whereas equations (19) and (20) give the constant value 3. Table I 
summarizes the various results and clearly supports the present technique over a wide 
range of the potential tails if  Gilmore's curves are accurate. 
not agree with Gilmore's potentials where the VB theory is valid. 

Vanderslice's formula does 

1 +  

OF THE INTERNUCLEAR SEPARATION R 

TABLE I.- RATIOS r OF $(x zg) TO $(A 3 4  AS FUNCTIONS 

R. I Ratios r from - 
1 angst'oms I Equation (31) I Present paper I Reference 8 

3.0 
3.0 
3.0 

2.8 
2.7 
1.9 

10 
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An interesting observation concerns the 5 Z i  dissociation: Whereas equation (2 1) 
predicts a purely repulsive interaction, equation (27) states that the potential is attractive 
at large R because of the dominance of Ja over J,. A more realistic representa- 
tion would retain the repulsion in  the far regions, depict a maximum in the potential curve 
at a somewhat smaller separation, and culminate i n  a minimum between 1.5 and 1.6 ang- 
s t roms (ref. 8) as the left-hand side of the correlation diagram (16) is approached. It 
appears doubtful that Gilmore's second minimum between 2.8 and 2.9 angstroms is real- 
istic; i n  addition, he seems to underestimate the curve between 2.2 and 2.9 ang- 

s t roms in  violation of the requirement that the A Zu potential should l ie midway 
between those of X Zg and 5Z& Equations (29) and (30) a r e  invariant in  regard to 
the present and Vanderslice theories, and therefore are especially reliable. 

3 +  

1 +  

Finally, i f  the London dispersion energy @d is added to each of equations (19) 

@d: 

to (22) and then eliminated between combinations of the resulting expressions, the following 
relations a r e  obtained between interaction potentials which include the effects of 

I 

and 

Equation (32) is common also to the analysis of reference 7 with o r  without ($d, but equa- 
tion (33) is unique to the current model. 

CONCLUDING REMARKS 

Valence-bond expressions have been derived for the outer regions of the four inter-  
Although the action potentials governing collisions between ground-state nitrogen atoms. 

individual potential tails are probably not very accurate in  an absolute sense, the rela- 
tions obtained between the four energy states a r e  expected to be reliable. Hence, the 
combination of the present results with a minimum amount of experimental data should 
prove adequate for most thermodynamic and kinetic-theory applications. 

A principal advantage of the present method over the previous and similar work of 
Vanderslice, Mason, and Lippincott is the use of detailed correlations between the molec- 
ular states and the actual atomic products. The results of these correlations are dis- 
tinguished by additional symmetries of the potential tails. Whereas Vanderslice, Mason, 
and Lippincott found only the most repulsive and most attractive potentials to be mi r ro r  
images of each other, the present research predicts the same property also for the inter- 
mediate pair of curves. Finally, the intermediate potentials are expressed for the first 
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time as simple fractions of the ground-state molecular energy and thus require less 
experimental data for the complete semiempirical specification of nitrogen collisions. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., April 15, 1970. 
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APPENDIX A 

THE HYDROGEN MOLECULE 

A brief review of the essential features of two-electron molecular configurations 
(see ref. 10, pp; 340-358, for a more detailed description), especially in regard to the 
differences between molecular orbital (MO) and valence bond (VB) models, seems appro- 
priate for this paper. The interaction energies of H2 and several other simple mole- 
cules are derived in  appendix C. 

With 5 = a + b and [* = a - b as the basic molecular orbits, where a and b 
are 1 s-atomic functions (AO) centered, respectively, on nuclei a and b, there are 
possible six different occupations by two electrons: both in  5 ,  both in  (*, one in  5 
and the other in 5* with antiparallel spins, and three orientations of the parallel spin 
combination of one in 5 and one in  (*. Only four states of H2 exist, however, one 
for the singlet X Zg configuration and three for the triplet ‘Xi, which dissociate into 
normal atoms; accordingly, two of the six MO occupations must yield excited products. 
A study of the configuration interaction between the first two occupations is essential for 
this distinction. 

(*(I) 5*(2) = ([*l2 gives 

1 +  

The expansion of the two-electron MO wave functions ((1) ((2) = and 

([)2 + = (1 - h)[a(l) b(2) + b(1) a(21 + (1 + h)[a(l) a(2) + b(1) b(21 (Al) 

where h is a variational parameter and 1 and 2 refer to the electrons. At large inter- 
nuclear separations (negligible overlap between a and b) , the variational procedure 
selects X = -1 and X = 1 corresponding, respectively, to the H + H VB function 
a(1) b(2) + b(1) a(2) and the H+ + H’ ionic state a(1) a(2) + b(1) b(2). In addition, the 
application of the noncrossing rule reveals the correlation diagrams 

and 

for the transition from small to large distances. 

The remaining occupations are, with their wave functions, 

H2(3X:): (e)(<*) __L valence bond [a(l) b(2) - b(1) a(2)]: H + H (A41 

13 
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APPENDIX A 

and 

: (.$)(.$*)-ionic[a(l) a(2) - b(1) b(2)] H+ H' (-45) 

Configuration interaction is not appropriate for either of the latter states; more specifi- 
cally, the MO and VB descriptions are equivalent at all separations in the relation (A4). 
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APPENDIX B 

WAVE FUNCTIONS FOR ATOMIC NITROGEN 

The atomic eigenfunctions for the total angular momentum (quantum number L) of 
any complex species are obtained most directly by the technique of projection operators. 
With an arbitrary electron configuration in  the linear vector space restricted to the total 

1 magnetic quantum number ML equal to L, the subsequent operation (ref. 11) by 

Lmax-L t t t  (-1) L J J +  
t!(2L + t + l)! OL = (2L + l)! 7' 

t = O  

will select just that component of the Hilbert space representation of the initial wave func- 
tion corresponding to the desired value of L. Other symbols a r e  L+ and L,, the usual 
ladder operators of the electron system, and the maximum value L m m  permitted for 
L. Operations by L, a r e  used for ML < L. 

As an example of the general procedure, the operator 01 is applied to the three- 
electron function 

where CY and a r e  spin states and I = x + iy, f = x - iy, and 0 = z ,  the x,y,z 
referring to p-type atomic functions of different orientations. With Lmax = 2 because 
of Pauli's exclusion principle, the result  of the projection operation is 

The remaining functions of present interest  for nitrogen a r e  
P 1 
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APPENDIX B 

and 

where Ms is the magnetic quantum number of the total spin. Step-down operators i n  
spin space were employed for the derivation of equation (B5) from equation (B4) and 
equations (B7) to (B9) from equation (B6). 

It is noted that the wave function for N(2P) differs from those of N(2D) and 
N(4s) in  two important ways: i n  the first place, the former is complex; secondly, it 
shows double occupations of the various p-atomic orbitals. Accordingly, the corre-  
sponding contributions to the interaction forces between two nitrogen atoms are not those 
of appendix C,  but rather must be derived in  s imilar  fashion from the ionic functions in  
equations (A3) and (A5) of appendix A. 

16 



APPENDIX C 

INTERACTION ENERGIES 

Since the essence of most long-range molecular approximations is the neglect of 
overlap between unlike orbitals (differently oriented p-states, for example) on colliding 
atoms, so that each 0- or 7r-bond or antibond exists more or l e s s  independently of the 
others, only the interactions which arise from a given pair of similar atomic functions 
are considered in  this appendix. All the pertinent behavior is deduced from a study of 
the one-, two-, three-, and four-electron occupations associated respectively with Hi ,  
Ha, Hei,  and He2; i n  particular, theoretical relations between the different interaction 
energies a r e  derived and compared with several  techniques currently employed in  the 
literature. 

Integrals a r e  expressed in  the Dirac "bra-ket" notation defined by 

<I,ZA,V *IE'II,V?I)??~ . . .> = l[+(1)@?(2) . .]*F[@?? (l)+?'? (2) 0 d72 . . . 
(C 1) 

for the operator F and electrons 1, 2, - - * . 
The Coulomb and exchange energies Qi and Ji for an i-electron system are 

defined in  te rms  of the attractive and repulsive interaction potentials +a and $r in 
the following manner: 

and 

so that 

+a,r = Qi * Ji 
A simple energy calculation involving the molecular orbitals a + b and a - b, 

.I where a and b are 1 s-atomic functions centered on the respective nuclei a and b, 
yields for the hydrogen molecule-ion H$ the well-known expression 

# 

<alHla> + <alH(b> <a IH la>( 1 + S) + -a. IH b> - S<a IH la> - Eo = - Eo l + s  1- i -S +a = 

17 



APPENDM C 

and similarly, 

Other symbols represent the full Hamiltonian operator H, the ground-state energy Eo 
of atomic hydrogen, and the overlap integral S = <alb>. 

Equations (C2) and (C3) then give 

and 

te rms  of order S2 being neglected to the right of the approximate equalities i n  order  to 
depict large internuclear separations R. The potential -e2ri1 refers to the interaction 
between the electron and nucleus b. 

An exactly analogous manipulation for H2, but this time with the valence-bond wave 
functions a(1) b(2) f b(1) a(2) instead of molecular orbitals since the configuration inter- 
action of appendix A destroys the latter concept at large R, yields 

Q2 = <ablH)ab> - 2E0 - S2J2 % e2<ab ab> - 2e2<alrblJa> + e2Re1 0 (C8) 

and 

J2 = (1 - S4)-l(<aalHlbb> - S2<ablHlabz) e2<aa I r12 -11 bb> - e 2 S 2 <ab I r12 -11 ab> + 2SJ1 (c9) 

It is noted that whereas J1 is of order S, J2 approaches zero as S2. This 
particular feature of long-range forces has been overlooked often in  previous applications 
but is essential for subsequent comparisons. Such results,  moreover, must not be con- 
fused with the statement (ref. 10, p. 362) that a two-electron bond is about twice as strong r 

as the one-electron kind, for that conclusion is reached only by considering the near- 
equilibrium separations. At comparatively small  values of R, the configuration inter- 8 

action does not so  disrupt the concept of a doubly occupied molecular orbital i n  the ground 
state of H2; the triplet repulsive state, on the other hand, is still described by 
a(1) b(2) - b(1) a(2) because 
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'4 
f 

a(1) + b(1) 1 

a(2) + b(2) 

a(1) - b(1) 

a(2) - b(2) 
-- 

APPENDIX C 

a(1) b(1) 

a(2) b(2) 
- - 

The electron wave function for He; may be written 

where CY and P refer  to the two spin orientations. Thus, as was shown first by 
Linnett (ref. 12), only one molecular o.rbita1 exists, the remaining two electrons occupying 
atomic functions (AO). 

Since the A 0  electrons engage only in  two-body exchange, which is of order S2, it 
seems reasonable to assume for present purposes that their sole function is to screen 
perfectly (by one electron unit each) the nuclei f rom the MO electron. Accordingly, one 
should take the a and b of the latter to be hydrogen 1 s, drop all reference to the A 0  
electrons except as they provide proton-like cores for the MO, and write J 3  J1. This 
procedure is supported also by the fact that the MO electron is likely to be found at dis- 
tances farther from a nucleus than a r e  those of atomic helium; consequently, the screening 
by the A 0  electrons is more effective in the molecule-ion. 

A similar study of the electron wave function for He2 reveals that no molecular 
orbital is formed, even at small  internuclear separations. 
and b are defined so that 

If the atomic functions a 

+ T2 + e2r;i  - 2e2r;i - 2e a(1) a(2) = E(He) a(1) a(2) (C 12) 
7 

where Ti is the kinetic energy operator of electron i, there results 
a 

44 = Q4 - J4 

Q4 = <aabbIHlaabb> - 2E(He) = 4e2<ab rY2 ab> - 8e a> + 4e2R-l = 0 (C 13) I II 
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and 

J4 2(<aaablH)abbb> - S2<aabblHlaabb>) = 4e2S<aalr;ilab> + 2e2<aa)ri i(bb> 

Contributions of order  S4 are neglected. 

The substitution into equation (C 14) of the approximate relation 

the foundation for which l ies in  the reasoning that a(i) b(i) corresponds to electron i 
dividing its time equally between a and b, gives 

As illustrated next, this form is a step closer to the application of screening arguments 
similar to those for Heg. 

Because of the saturation of atomic orbitals in  the present example, the neglect of 
te rms  of order S4 in equation (C14) refers  strictly to pairwise exchanges of electrons 
with parallel spins. If each such pair is assumed to simultaneously create an antibond 
and perfectly screen the nuclei as seen by the other pair, only the interactions between 
electrons with like spins will survive the setting of a and b in  equation (C16) equal to 
hydrogen 1 s functions. In addition, 2e2ri1 must be replaced by e2rb1 to yield 

J4 E 2e2<aa r12 bb> - 2e ab> + 4SJ1 = 2J2 I - l I  
A second way of reaching this same conclusion follows from the approximation of 

perfect pairing (APP) technique of Coulson (ref. 1) for the case of random spins. Since 
each electron of atom a pairs with each electron of atom b with one-fourth probability 
of antiparallel spins and three-fourths probability of parallel spins, there results 

r 

$ 
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In summary, one can write 

+i = Qi * Ji 

$4 = Q4 - J4 

Qi "0  

J3  J1 = e2(&alri11a> - <aIri'lb$ 

J4 " 252 = 2(?2<aalryi/bb> - e S <ab I r12 -lI ab> + 

(i = 1, 2, o r  3) 

at large internuclear separations. As  mentioned previously, a significant feature is the 
fact that the first pair J 3  and J1 of equation (C19) bears  no simple relation to the sec-  
ond pair J4  and J2 of equation (C20); it is only when equilibrium results a r e  extrapo- 
lated incorrectly to large distances (without accounting for the effects of configuration 
interaction upon MO theory) that $2 2+1 is obtained. Whereas the two-electron bond 
is stronger than the one-electron variety at short  range, the roles a r e  reversed further 
out. 

The previous statements regarding the existence of only one molecular orbital i n  
the case of He; and the failure of any to form for He2 require additional explanation. 
An illustration of the pertinent facts is obtained most conveniently by means of the alter-  
nate forms of the two-electron determinant of equation (ClO), according to which there  
a r e  three methods of description as follows: 

(a) Molecular orbital description: Apart from the net electron-electron interaction 
(assumed to be negligible for this discussion) in  J2, the assignment from equations (C4) 
and (C7) and the first form of equation (C6) of energy Jl(1 - S) to the (a + b) electron 
and energy -Jl(l + S) to the (a - b) electron gives a total of -2SJ1 " -J2 for the two- 
electron antibond. Such additivity of independent one-electron energies is, of course, 
neither required nor implied by equation (ClO), but is imposed in  order to take full advan- 
tage of the molecular orbital notion. 

(b) Valence bond description: This is the method of equations (C8) and (C9), which 
yields directly the antibond energy -J2. 

(c) Alternate molecular orbital description: The arbi t rary assignment of energy 
J2 /2  to the (a + b) electron and energy -3J2/2 to the (a - b) electron yields the correct  
antibond energy -J2 without resort to the -SJ1 portion of Q1 used in  description (a). 
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No allowance is made for the fact that J2/2 and J1 differ by at least the factor S. 
This technique is employed by Vanderslice, Mason, and Maisch in  their work on nitric 
oxide (ref. 13) and oxygen (ref. 14). 

Of the three procedures, description (b) is preferred because there is no tendency 
to ignore electron-electron interactions by pursuing too literally, as in (a), the concept of 
independent one-electron energies. Consequently, there  is less danger in  the assertion 
that molecular orbitals do not exist in such examples. Description (c), on the other hand, 
although equivalent to (a) in  its results for Gr(H2) and $I He2 - visualize 0 

G(He2) = -J4 = 2 

fails completely when the number of elechrons is odd. More precisely, when one singly 
occupied MO is the essential feature, as in Ga(H;), $+(Hi), Ga(He;), and &.(He;), 
description (c) gives the incorrect answers J2/2, -3J2/2, -J2/2, and -5J2/2, respec- 
tively. Each of these results disregards the factor S'l and leads to serious diffi- 
culties, among which is the loss  of the attractive character of @ He+ . In addition, 

asymmetries are introduced between the bonds and antibonds of the same molecule. 
4 2) 

Finally, should the electron-electron interactions of equation (C20) be comparable 
to 2SJ1, the literal interpretation of description (a) will be insufficient. A typical 
numerical calculation (see ref. 10, pp. 329, 342, and 343, for the appropriate integrals) at 
R = 4 atomic units shows that the neglected te rms  in  (a) constitute about 40 percent of 
those retained; accordingly, Ji must be considered in  at least the complexity suggested 
by equations (C19) and (C20). More elegant treatments, such as the generalization by 
Kolos and Wolniewicz (ref. 15) of the James and Coolidge wave function to large distances 
(keeping the dependence upon 1-12>, are required for absolute accuracy of the detailed 
characteristics (including the Van der Waals forces) of the potential tails. 

These discussions, and especially the overlap distinctions between one- or three- 
and two- o r  four-electron configurations, are particularly significant for molecules in  
which two or  more different types occur simultaneously. Previous calculations on the 
long-range interactions of nitrogen and oxygen (ref. 13) and two oxygen atoms (ref. 14), 
for  example, must be reevaluated because of the relations employed between the two- and 
three-electron bonds and antibonds existing together in  certain states. 
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