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Abstract  

A descr ip t ion  and an analys is  of the  t h ree  
methods used t o  measure t h e  t h rus t  of the  SERT I1 
(Space E lec t r i c  Rocket ~ e s t )  ion  thrus ters  i n  
f l i g h t  a r e  given. The f i r s t  i s  the use of t he  
MESA accelerometer t o  measure the  2 pg's  r e su l t i ng  
from the  r a d i a l  component of  the thrus t .  The 
second i s  t he  use of  telemetered beam e l e c t r i c a l  
parameters t o  ca lcula te  t h rus t .  The t h i r d  i s  the  
measurement of o r b i t  change resul t ing  from t h e  
thrus t .  It i s  shown t h a t  the  three  methods y i e ld  
values of t h r u s t  which agree with each other within 
t he  e r r o r  bands of t he  methods. It i s  concluded 
t h a t  t he  t h r u s t  was measured t o  within 2 1% by the  
MESA, t o  within 2 2.2% by beam e l e c t r i c a l  param- 
e t e r s ,  and t o  within about j 5% by o r b i t  changing. 

Introduction 

The successful  operat ion of the  SEBT I1 (Space 
Elec t r ic  Rocket ~ e s t )  spacecraft1, developed and 
b u i l t  a t  t he  Lewis Research Center, represents  the  
f i r s t  successful  l i f e  t e s t  of  an ion th rus t e r  i n  
space. The primary goal  of t he  SERT I1 mission is  
t o  achieve a t  l e a s t  s i x  months cf  ion  th rus t e r  
operat ion i n  a Space environment. A secondary 
goal  i s  t o  measure t he  t h r u s t  t o  an accuracy 
commensurate with t he  requirements of postulated, 
deep space, ion  propelled vehicles. 

The purpose of t h i s  paper i s  t o  describe the 
means avai lab le  on SERT I1 f o r  measuring th rus t ,  
t o  compare them, and t o  present  t he  avai lab le  
r e su l t s .  The t h r u s t  of an  ion  th rus t e r  very 
s imi lar  -to t h a t  on SEET I1 was measured on the  
SEET I spacecraft  t o  within an e r ro r  of about 5% . 
The goal  on SERT I1 i s  t o  subs tant ia l ly  reduce t h i s  
e r ror .  It w i l l  b e  shown i n  t h i s  repor t  t h a t  an 
e r ro r  of about 2 1% of t h e  28 mN (6.3 mlb) t h rus t  
was achieved. 

Many of  t h e  contemplated uses of e l e c t r i c  
propulsion a r e  f o r  deep space missions. The 
primary advantage obtained by using t h i s  type of 
propulsion i s  t h e  l a rge  spec i f i c  impulse delivered 
by it. This l a rge  impulse, though, i s  del ivered 
i n  the  form of low th rus t  f o r  a  long time con- 
t r a s t ed  with o ther  propulsion means which de l iver  
l a rge  t h r u s t  f o r  a  shor t  time. As a r e su l t ,  
accurate navigation during such an e l ec t r i ca l ly  
propelled mission requi res  t h a t  the thrus t  be  
known precisely.  

The th rus t  of an  i o n  th rus t e r  can be most 
eas i ly ,  but  not necessar i ly  most accurately, 
determined by measuring the  ion beam current and 
the  po ten t i a l  through which the  ions a r e  accelera-  
ted.  These e l e c t r i c a l  measurements can be readi ly  
made i n  t h e ,  t h rus t e r  power supply arith l i t t l e  
error .  Calculation of t h r u s t  from these 
measurements, however, . requires correct ions f o r  

such things a s  lack of beam coll imation and doubly 
and t r i p l y  charged ions. The uncertainty i n  these 
correct ions may r e s u l t  i n  an e r ro r  i n  t h r u s t  l a rge r  
than desired.  

Direct  measurement of t h r u s t  i s  d i f f i c u l t  on 
an  ion  propelled vehicle because of  the  inevi tab ly  
low thrust-to-weight r a t i o  o r  acce lera t ion  vhich 
r e su l t s .  One can measure the  change of  f l i g h t  
path caused by the  thrus t ,  but  t h i s  change i s  so 
gradual t h a t  very long averaging times a r e  required. 
The d i r e c t  approach of measuring vehicle accelek-a- 
t i o n  with an accelerometer i s  b e t t e r  i f  a  s u f f i -  
c i en t ly  s ens i t i ve  instrument ex is t s .  The r a d i a l  
component of  thrust-induced acce lera t ion  on SERT I1 
i s  about two micro g l s  which must be measured t o  
t he  order of one percent e r ror .  This requi res  an 
instrument r.7it-h an e r ro r  band no grea ter  than a 
few tens  of  nano g 's .  The YSA ( ~ i n i a t u r e  
E lec t ro s t a t i c  Accelerometer) t heo re t i ca l ly  meets 
these  requirements and was f l o r ~ n  on SERT 11. 

This repor t  discusses t he  t h ree  t h r u s t  measure- 
ment methods on SERT I1 and presents  and compares 
t he  r e s u l t s  obtained from them. These t h ree  
methods a r e  ( 1 )  MESA measured accelerat ion,  ( 2 )  beam 
e l e c t r i c a l  parameters, and (3)  f l i g h t  pa th  o r  o r b i t  
change. 

Spacecraft and Orbit  

The SERT I1 spacecraft  was launched on 
February 3, 1970 in to  a nearly sun-synchronous, 
nearly polar ,  c i r cu l a r  o r b i t  of  about 1000 km 
a l t i t ude .  An a r t i s t ' s  conception of  the  spacecraft  
i n  o r b i t  i s  shovn i n  f igure  1. It cons is t s  of an 
expended Agena stage permanently af f ixed  t o  t h e  
spacecraft  support and experiments sect ion.  A 
l a rge  so l a r  array, attached a s  shown, supplies 
e l e c t r i c a l  power f o r  t he  ion thrus ter ,  f o r  house- 
keeping, and f o r  t h e  other experiments. 

The spacecraft  i s  s t ab i l i zed  i n  o r b i t  such t h a t  
t h e  Agena long axis  always l i e s  along the  ea r th  
radius l i n e  and such t h a t  t he  so l a r  panels and 
th rus t e r s  always l i e  i n  the  o r b i t  plane. The ear th  
oriented s t ab i l i za t i on  i s  achieved by means of 
gravi ty  gradient  torque coupled with cont ro l  moment 
gyros. The desired so l a r  panel t o  sun o r i en t a t i on  
i s  achieved by inc l in ing  the  o b i t  such t h a t  it !i precesses a t  t he  r a t e  required . 

There a r e  two ion th rus t e r s  aboard, only one 
of which operates a t  any time. Each t h r u s t  vector 
i s  aligned by means of gimbals t o  pass through the 
spacecraft  center  of mass and form a 10' angle 
with the  spacecraft  long o r  yaw axis .  Thus, there  
i s  a  component of t h rus t  d i rec ted  along the  orb i3  
radius  which i s  proportional t o  t he  cosine of  10 
and another component r.rhich i s  d i rec ted  along the  
o r b i t  tangent and i s  proport ional  t o  the  s ine  of 
10'. The MESA accelerometer i s  oriented with i t s  



seri: 1 el vc ax i s  p a r a l l e l  t o  the  ya17 ax i s  so t h a t  it 
s e n i d s  the r a d i a l  component of thrus t .  The 
t a igpn t i a l  component causes the  o r b i t  a l t i t u d e  
t o  cllarlge with time and is  the  bas is  f o r  t he  o r b i t  
ra is ing  th rus t  measurement method. 

It should be mentioned a t  t h i s  poin t  t h a t  a 
fourth means of measuring th rus t  ex i s t s  aboard 
SEET 11. This cons is ts  of purposely gimbaling 
the thrus ter  so t h a t  the  t h r u s t  vector does not 
pass through the  center  of mass. The r e su l t i ng  
torque .r~ill be balanced by the  torque from gravity 
gradient  a t  some a t t i t u d e  o f f s e t  angle. Measure- 
ment of  t h i s  o f f s e t  y ie lds  a measure of thrus t .  
Error analysis  of t h i s  method shows t h a t  a 
measurement with no l e s s  than 2 10% e r ro r  would 
be achlesred due primarily t o  angle uncertainties.  
Therefore, it w i l l  not be t r ea t ed  fur ther  i n  t h i s  
paper. 

Tllrust Measurement Methods 

MESA Accelerometer 

The e l ec t ros t a t i c  accelerometer i s  a s ingle  
axis  instrument designed fo r  measurement of 
extremely low accelerat ions i n  a low-gravity 
environment. State-of-the-art  techniques i n  
machining a r e  required t o  produce a successful 
instrument based on the pr inc ip le  of e l ec t ros t a t i c  
force. A de ta i led  description of the bas ic  MESA 
s t ruc tu re  and operating pr inc ip les  i s  found i n  
references 3 and 4. 

EXectrostatic forces are  used both f o r  the  
support of t he  accelerat ion sensing element ( t h e  
proof mass) and f o r  the  measurement of external  
acceleration. The proof mass i s  suspended 
orthogonal to the accelerometer sens i t ive  axis by 
means of a.c. voltages via s e r i e s  tuned LC c i r cu i t s .  
The magnitude of this voltage i s  selected t o  
support the  proof mass against  the  expected l eve l  
of cross axis  accelerat ion forces. The lower the  
cross-axis g environment, the lower the  required 
cross-axis voltages. It is  advantageous t o  reduce 
the support voltages a s  low a s  p rac t i ca l ,  commen- 
sura te  with the  expected environment, t o  reduce 
the instrument n u l l  bias.  This n u l l  b i a s  
represents the  instrument output with zero input 
acceleration. I n  general, the n u l l  b i a s  term i s  
proport ional  t o  the  cross-axis support forces. 
The cross-axis suspension capabil i ty f o r  the  
SEET I1 MESA was 100 pg. 

The MESA uses an e l e c t r o s t a t i c  force  
rebalance method i n  the  sens i t i ve  axis  t o  measure 
accelerat ion.  The frequency of voltage pulses 
required t o  maintain the  proof mass a t  i ts  balance 
point  i s  proportional to the external  acceleration. 
The voltage pulse amplitude, width, and maximum 
frequency determine the  f u l l  sca le  s ens i t i ve  axis 
accelerat ion capabi l i ty  of the instrument. For 
SERT 11, the MESA f u l l  scale was s e t  f o r  100 pg 
even though only about 2 pg were t o  be measured. 
This f u l l  sca le  was chosen as  t h e  minimum vhich 
would a l lov  accurate ca l ibra t ion  on earth.  Unlike 
most instruments, the MESA measurement e r ro r  i s  
a percentage of reading, plus n u l l  uncertainty, 
r a the r  than the usual percentage of fill scale,  
plus nu l l ,  uncertainty. Thus, i n  space the  276 

of f u l l  sca le  can be measured with the  same 
accuracy as  100% of  f u l l  sca le  except f o r  the  nul l  
uncertainty3. The in t e rna l  data conditioning 
provides 100 second averages of the measured 
frequency. Because the  MESA output i s  based on 
frequency averaging and because of l a rge  in t e rna l  
damping, t h e  MESA i s  a steady s t a t e  instrument. 

MESA cal ibra t ion .  The only presently p rac t i ca l  
method of on-earth ca l ibra t ion  of the MESA uses 
accurate small angle def lec t ion  and measurement t o  
produce loer magnitude input accelerat ions derived 
from ea r th ' s  g vector. 

Figure 2 i l l u s t r a t e s  the MESA dividing head 
ca l ibra t ion  method. With the  sens i t ive  ax i s  
perpendicular t o  the  ea r th  g vector, t he  mounting 
surface i s  varied t o  obtain an instrument nul l .  
The angle 8 i s  then varied t o  provide input 
accelerat ions of g s i n  8, o r  g 8 fo r  the  small 
f u l l  sca le  angles of 20 arcseconds required f o r  
the SERT I1 MESA. Use of autocollimator angle 
measuring techniques f o r  small angles r e s u l t s  i n  
an angle measurement accurate t o  v i t h i n  2 0.05 
arcseconds, with a corresponding ca l ibra t ion  
er ror  of 2 0.25 percent. 

Of course, on-earth ca l ibra t ion  requires a 
l g  cross-axis suspension capabil i ty f o r  the MESA 
and r e s u l t s  i n  t h e  accompanying increase i n  n u l l  
b ias  due t o  cross-coupling. Measurement of n u l l  
b ias  under these conditions was 50 pg. Theoreti- 
cal ly,  the n u l l  b i a s  sca les  down with the  reduction 
of cross-axis voltages. The expected nu l l  b ias  
fo r  the  SERT I1 l e v e l  of  100 pg suspension i s  
therefore 0.005 pg. 

SERT I1 accelerat ions.  Figure 3 shows the  
SERT I1 spacecraft  configuration d e t a i l s  per t inent  
t o  the MESA. The MESA i s  located a t  a distance 
d = 2.39 2 0.015m from the vehicle center  of mass 
with the  sens i t i ve  ax i s  aligned with t$e spacecraft  
yaw axis.  The th rus t  vector i s  cp = 10 from the  
MESA sens i t ive  axis .  Equation ( 1 )  is  the expected 
sens i t ive  ax i s  accelerat ion a t  the MESA location,  
consisting of the  thrust-produced term F cos cp 
divided by the  spacecraft  mass, and two simplif ied 
o r b i t a l  components. 

a = MESA sens i t i ve  axis accelerat ion ( g ' s )  
F = t h rus t  ( N )  
cp = angle between MESA sens i t ive  axis  and 

th rus t  vector (O) 
m = spacecraft  mass (kg) 

d = spacecraft  center  of mass t o  MESA proof 
mass distance (m) 

w = o r b i t a l  r a t e  ( radlsec)  
p = universal  gravi ta t ional  constant times 

mass of ear th  (m3/sec2) 
r = distance from center of earth t o  space- 

c r a f t  center  of mass (m) 
g = f r ee  f a l l  standard accelerat ion 

(9.807 m/sec2) 



Since the  spacecraft  i s  gravity gradient 
s tabi l ized ,  it has a p i t ch  r a t e  of one revolution 
per o rb i t .  The MESA thus revolves about the  
spacecraft  center  of mass a t  a once per y b i t  r a t e  
and senses a cen t r ipe t a l  accelerat ion do . The 
t h i r d  tern1 i n  equation ( 1 )  i s  the gravity gradient  
component ~ rh ich  i s  due t o  the MESA being closer t o  
the ear th  than the  spacecraft  center  of mass. 

The o r b i t a l  accelerat ions f o r  SERT I1 were 
calculated t o  be 0.73 pg. Other sens i t ive  axis 
accelerat ions due t o  vehicle a t t i t u d e  and 
accelerometer misalignment contribute terms two 
orders of magnitude l e s s  than these and a r e  
considered ins igni f icant .  

The o r b i t a l  accelerat ion reading of the  MESA 
pr io r  t o  th rus t e r  turn-on can be considered a 
secondary ca l ibra t ion  source f o r  the  MESA, although 
it i s  impossible t o  separate n u l l  b ias  from scale 
fac tor ,  s ince only one data point  i s  available.  
Xowever, ass~uning t h a t  the  MESA scale fac tor  does 
not change with cross-axis voltage changes, t h i s  
o r b i t a l  accelerat ion measurement can be used to 
determine the  n u l l  b ias  scaling of the  MESA with 
respect  t o  the  1-g ca l ibra t ion  value. 

The expected ion th rus t  $or SWT I1 was about 
28 mIT (6.3 mlbs). For cp = 10 and m = 1434 kg 
(3162 lbs  ) the  thrust-produced accelgration was 
calculated to  be 1.9 pg. 

Beam Elec t r i ca l  Parameters 

A measurement of t h rus t  can be made by using 
the  following equation: 

where 

IB = ion beam current  ( A )  

Vnet = net accelerat ing po ten t i a l  (v) 

m/q = mass-to-charge r a t i o  of a singly ionized 
propellant  molecule ( k g / ~ )  

I n  t h i s  equation, I& and Vnet a r e  measured values 

telemetered from the spacecraft. This equation 
i s  the  r e su l  of a one-dimensional analysis  of t he  
ion thruster'. ( ~ d d i t i o n a l  treatment of the  
thrus t  equation is  presented i n  reference 6.) 

The one-dimensional equation is used t o  
determine an idea l  t h r u s t  f o r  the  SERT I1 thrus ter .  
Corrections f o r  s ign i f i can t  r e a l  e f fec ts  such a s  
doubly ionized propellant  atoms, ion beam 
divergence, and uncertainty i n  the th rus t  vector 
d i rec t ion  a re  t rea ted  i n  the sec t ion  of t h i s  
report  t i t l e d  "Eerors". 

Orbit  Changing 

Another method of obtaining the  th rus t  i s  t o  
measure the  change i n  o r b i t  radius over a period 
of time. The equation governing t h i s  measurement 
i s  obtained by solving the  equations of motion and 
in tegra t ing  over the averaging time. 

2 = r 3 l 2  ( see  ref .  7 ) (3 )  

msp 
1/ 2 

F = - 112 - r- l /2)  
t s i n  cp ( r O  

where ' 

t = time ( sec )  
r = o r b i t  radius a t  time t = O  (m)(about 7400 km) 

With the  expected th rus t  l eve l  of 28 mN (6.3 mlb) 
the o r b i t  w i l l  increase radius by about 570m per 
day. Measuring the r a t e  of o r b i t  radius change 
thus y ie lds  a measure of thrus t .  

Errors 

MESA Accelerometer 

The engine th rus t  determined from the  MESA 
accelera t ion  measurements is  given by 

m 
F = A  cos cp a~ 

where 
aon = accelerat ion with th rus t e r  on 

a = accelerat ion with th rus t e r  o f f  
o f f  
aT = accelerat ion due t o  th rus t e r  

a = o r b i t a l  accelerat ion 

a = n u l l  b ias  N.B. 

Therefore, the  th rus t  measurement (eq. 7) is  
independent of  o r b i t a l  accelerat ion and n u l l  b i a s  
( i f  n u l l  b ias  i s  constant). 

The er ror  i n  F, dF, i s  a function of e r ro r s  
i n  the  mass of the spacecraft, e r ro r s  i n  
determination of the  angle cp, and accelerometer 
er rors .  These er rors  w i l l  be  discussed and root  
sum squared to provide a t o t a l  e r ro r  i n  the  
measurement of F. 

( )  = tan  @cp 
cp 

- = +0.22$ ( ref .  1) 
m - 

cp i s  known t o  wiihin 5 . 5  deg. = +0.0087 rad. 
Therefore, f o r  cp = 10 , t a n  @cp = +0.17$. The 
e r ro r  da/a i s  composed of severa l  possible er rors :  

1. Scale fac tor  ca l ibra t ion  er ror .  
2. Scale fac tor  s t a b i l i t y  and repeatabi l i ty .  
3. Null b ias  d r i f t .  
4. Readout system error.  
5. Basic instrument l i nea r i ty .  



A s  mentioned previously i n  t h i s  report ,  the 
f ir iai  on-earth scale f ac to r  ca l ibra t ion  i s  
considered known t o  within +0.25$. However, t he  
measured. sca le  fac tor  was found t o  vary by as  
niu-ch as  0.8$ between ca l ibra t ion  t e s t s  following 
the vibration,  shock, and thermal-vacuum qua l i f i -  
cat ion t e s t s .  ( 1 t  i s  possible t h a t  o ther  
ca l ibra t ion  er rors ,  such as  t e s t  base s t a b i l i t y ,  
a r e  contributing t o  t h i s  var ia t ion  r a the r  than 
ac tual  physical changes i n  the  MESA.) Assuming 
tha$ no added change i n  sca le  fac tor  occurs with 
10-'g cross-axis suspension, the  f i n a l  in-orbi t  
sca le  f ac to r  i s  known t o  

+ - = - +0.84%. 

The nu l l  b ias  d r i f t  was studied using the 
average d r i f t  i n  o r b i t a l  accelerat ion data p r io r  
t o  th rus t e r  turn-on and was determined t o  be l e s s  
than 0.5% over a shor t  (500 second) time period. 

The readout system e r ro r  i s  a maximum of 
+0.2$ f o r  a 100 second reading and decreases 
~ r ~ ~ o r t i o n a t e l y  with time averaging over longer 
periods. 

Th basic instrument l i n e a r i t y  is  5.1% of E reading . 
Using root  sum square to t a l ing  f o r  the  

independent percentage er rors  i n  a:  

Therefore, t o  determine the  r s s  e r r o r  f o r  
thrus t ,  F: 

Hereafter i n  t h i s  report ,  we w i l l  consider 
the er ror  i n  th rus t  a s  determined by the  MESA t o  
be 2 1%. 

Beam Elec t r i ca l  Parameters 

Measurement accuracy. Determination of t h rus t  
using equation (2 )  f o r  the  SERT I1 th rus t e r  is  
made by subs t i tu t ing  f l i g h t  data as  received. 
Equation ( 2) becomes 

V = posi t ive  high voltage, V 
5 

V - anode voltage, V . 4 -  
VSP '= space probe voltage, V 

The r e l a t ion  of these parameters i s  shown 
i n  f igure  4 which i s  a p lo t  of the po ten t i a l  seen 
by an ion on i t s  way out  of  the thrus ter .  

The t h r u s t  determined by using equation ( 8 )  
i s  subject  t o  e r ro r s  i n  the  measured quant i t ies .  
An er ror  analysis  o f  t h i s  method yie lds  the 
following errors:  

The root-sum-square er ror  i n  the SEET I1 analog 
f l i g h t  data i s  ( including the  quantizing e r ro r  
of the d i g i t a l  telemetry system) 1.59 percent 
of the f u l l  sca le  value of the parameter measured. 
This was applied t o  the  parameters f o r  each 
thruster .  It was determined t h a t  the contributions 
of the terms i n  equations (gb),  .(9c), (ge) ,  and 
( 9 f )  t o  the  er ror  a re  negligible.  

The root-sum-square er rors  i n  th rus t ,  a s  
determined by equation (8), f o r  each SEET I1 
thrus ter  a t  each nominal operating condition 
during the SERT I1 mission a r e  given i n  Table I. 
Variations i n  e r ro r  and th rus t  with time a r i s e  
from two sources: V decreases a s  the  so l a r  a r ray  
degrades; V decreaszs as  the  thrus ter  wears with 4 operating time. 

I, = screen current, A 

I5 = accelerator current, A 

A 1 5  = acce era tor  current  due t o  neut ra l izer  8 ions , A 



Table I 
ROOT-SUM-SQUARE EBROR I N  THRUST 

AS DEZEBMINED BY EQUATION 8 

( 100 (1.0 hours 

100 (100 hours)a 

100 (4liO0 hours)" 

" ~ i m e  from th rus t e r  beam turn-on. 

b~s t ima ted  from projected operation. 

Nonideal e f fec ts .  Effects  of t h rus t e r  
construction and operation a re  now considered. 
Not a l l  the  propellant  i n  the  SERT I1 th rus t e r  i s  
ionized; gpproximately 15% i s  expelled a s  neut ra l  
pa r t i c l e s  The net  momentum contribution of 
t h i s  e f f lux  t o  the  t o t a l  t h rus t  i s  l e s s  than one 
pa r t  i n  105. This contribution w i l l  be neglected. 

Some of t he  propellant  i n  a mercury electron- 
bomb?rdment ion th rus t e r  i s  doubly o r  t r i p l y  
ionized. Studies o f  the  ionization process t o  
determine the  extent of these phenomena have been 
undertakenlO,ll. The ne t  r e s u l t  of these studies 
i s  t ha t ,  f o r  no@nal SERT I1 th rus t e r  operating 
conditions, a reduction i n  th rus t  of 0 t o  2.5 
percent can be applied. This paper w i l l  assume 
0 percent reduction. 

The problem of unwanted th rus t  vector 
def lec t ion  i n  mercury electron-bombardment ion 
thrus ters  due t o  electrode (g r id  system) misalign- 
ments has been t rea ted  i n  reference 12. The 
analysis  used a d i g i t a l  computer program and was 
applied t o  the  SERT I1 th rus t e r  configuration. 
Misalignment types were considered a s  t rans la t ional ,  
ro ta t ional ,  and skew. 

The l i m i t s  of  t he  fabr ica t ion  and assembly 
tolerances of the SERT I1 th rus t e r  can be applied 
t o  the  r e s u l t s  of the analyses i n  reference 12 .  
Thrust vector def lec t ion  due t o  t r ans l a t iona l  
misalignment can be 1.46O o r  l e s s .  Skew misalign- 
ment can produce a th rus t  vector deflection of 
0.04' o r  l e s s .  ( ~ d d i t i o n a l ,  and potent ia l ly  the  
most unpredictable and damaging, skew misalignment 
can r e s u l t  from thermal-mechanical warping of the 
electrodes during th rus t e r  operation. However, 
the bulk of experience with SERT I1 thrus ters  
leads t o  the  conclusion tha t ,  f o r  the SERT I1 
thrus ter  configuration, thermal-mechanical warping 
occurs primarily i n  the  screen grid,  and t h i s  
varping i s  r ad ia l ly  near-symmetrical. Any skew 
contribution t o  th rus t  vector misalignment from 
t h i s  source i s  deemed negligible.  ) Rotational 
misalignment produces an azimuthal component of 
thrus t  ~rhich  r e s u l t s  i n  a couple about the  
longitudinal  axis  of the  thrus ter .  SERT I1 space- 
c r a f t  a t t i t u d e  data lead t o  the conclusion t h a t  
ro t a t iona l  misalignment i s  negligible.  

B c h  SERT I1 thrus ter  system i s  mounted t o  
a gimbal system capable of moving the  t h r u s t  
vector plus o r  minus lo0,  i n  two orthogonal axes, 
from the p re f l igh t  geometric alignment through the  
spacecraft  center of mass. The ant ic ipa ted  in-  
f l i g h t  corrections t o  the th rus t  vector of  an 
operating th rus t e r  have been unnecessary f o r  
SERT 11. Nine opportunit ies f o r  a change i n  
th rus t  vector d i rec t ion  with a commanded change 
i n  th rus t e r  operating conditions occurred: 
t h rus t e r  2 (backup) s tar tup  through th ree  d i sc re t e  
t h r u s t  l eve l s  and two th rus t e r  1 (primary) s tar tups  
through three  d i sc re t e  t h rus t  levels .  (Thruster 
1 was shut o f f  during the so l a r  ec l ipse  of 
March 7, 1970.) SERT I1 spacecraft  a t t i t u d e  data 
show t h a t  the  th rus t  vector of  each t h r u s t e r  i s  
misaligned by l e s s  than 0.63' under a l l  operating 
conditions. (1n addition, r e s u l t s  obtained i n  
ground t e s t ing  of a f l ight-configuration SERT I1 
th rus t e r  have shown the th rus t  vector t o  be 
misaligned by l e s s  than 0.5'. ) The correc t ion  i n  
th rus t  due t o  th rus t  vector misalignment which . 
can be applied to  the  th rus t  determined by using 
equation ( 8 )  i s  then cos 0.63') o r  a reduction of 
0.002 percent; t h i s  w i l l  be neglected. (AS the  
electrodes wear during the mission, the  th rus t  
vector d i rec t ion  may change, gimballing may become 
necessary, and the  correction may become 
s ign i f i can t  . ) 

The remaining r e a l  e f f ec t  t o  be quant i ta t ive ly  
considered i s  the  divergence o f  the  ion  beam. The 
ion  current density d i s t r ibu t ion  i s  a function of 
the operating charac ter i s t ics ,  mechanical design, 
and fabr ica t ion  and assembly tolerances of t he  
pa r t i cu la r  t h rus t e r  under consideration. 

The divergence of the  ion  beam and the ion 
current  density d i s t r ibu t ion  have not been 
determined f o r  the  SERT I1 th rus t e r  configuration. 
Experience leads t o  an estimate of a 1 t o  3 percent 
reduction i n  the  magnitude of t he  t h r u s t  vector, 
a s  determined by equation 8, t o  account f o r  the 
combination of these effects13. A 1 percent 
reduction w i l l  be applied i n  t h i s  paper. 

I n  sunmary, the  thrus t ,  a s  determined by 
equation ( 8 )  using SERT I1 th rus t e r  f l i g h t  
operating data, is  reduced by 1 percent due to  ion 
beam divergence and i n  addit ion i s  subjec t  to the  
root-sum-square er rors  of  Table I. 

Orbit  Change 

As was s ta ted  previously, the t h r u s t  can be 
calculated from the measured change o f  o r b i t  
radius over a period of time. An e r r o r  analysis  
of t h i s  method using equation (4) yie lds  the  
e r ro r  i n  th rus t  due t o  er rors  i n  the  measured 
quant i t ies .  These individual  e r rors  w i l l  be 
roo t  sum squared t o  obtain the e r ro r  i n  F. 



where 
A r  = r-r 

0 

As was s t a t ed  before, 

d t  For reasonably long averaging time (days), 
i s  completely negligible. 

0 For cp = 10" and dcp = 0.5 
c tn  cpdq = 5% 

The equation given f o r  e r r o r  i n  t h r u s t  due t o  
inaccuracy i n  measuring radius (eq. 10c) assumes 
t h a t  the change i n  radius i s  very small compared 
v i t h  the  radius. This assumption i s  va l id  f o r  
the  low th rus t  case being considered here. The 
quanti ty A r  increases with time and can be 
calculated from equation ( 3  ). 

= 570 m/day f o r  SERT I1 

so t h a t  

where T i s  the  time i n  days. 

The s t a t ed  accuracy of radius measurement 
i s  2 300 meters. 

A p lo t  of the t o t a l  root-sum-square e r ro r  
i n  th rus t  a s  a function of time i s  shown i n  
f igure  5. 

Results and Discussion 

Thrust measurements f o r  i n i t i a l  t h rus t e r  1 
operation were obtained by the  three  described 
methods. Table I1 shotis t he  measurement r e s u l t s  
f o r  each phase of the th rus t e r  1 s ta r tup  operation. 

Table I1 
SERT I1 COMPARATIVE WRUST MEASUREMENTS 

FOR THRETER 1 

Elec t r i ca l  

The MESA-obtained th rus t  data pias derived 
from the  MESA accelerat ion measurements using 
two d i f f e ren t  averaging techniques. 

The f i r s t  technique used only t h a t  MESA data 
which was obtained within 500 seconds before and 
a f t e r  each s t ep  change i n  thrus t .  Figure 6 is  
the  MESA data edited and p lo t ted  t o  show only 
these s tep  changes. The s t ep  changes i n  
accelerat ion were then summed t o  obtain the 80% 
and 100% t h r u s t  levels .  The t o t a l  accelerat ion 
change measured between the  th rus t e r  o f f  and f u l l  
on conditions is: 0.725 + 0.866 + 0.328 = 1.919 pg. 

The second averaging technique involved using 
a l l  of the  MESA accelerat ion data available a t  
t he  time of writing. An average thrust-off  
accelerat ion and an average 100% thrust-on 
accelerat ion were calculated t o  be 0.67 pg and 
2.60 pg respectively.  Taking the difference 
r e s u l t s  i n  an accelerat ion term due t o  th rus t  of  
1.93 pg, i n  close (0.5%) agreement with the  s tep  
change data. 

Figure 7 i l l u s t r a t e s  t yp ica l  MESA data f o r  
two f u l l  o r b i t s  and shows the  a s  ye t  unexplained 
o r b i t a l  var ia t ion  pa t t e rn  which was observed i n  
much of the  bESA data,  whether t he  th rus t e r  was 
operating o r  not. Computer studies a re  being 
made t o  corre la te  these 0.1 gg ' t r ans i en t  peaks 
with spacecraft  loca t ion  over the earth. The 
c lose  agreement between t h r u s t  calculat ions based 
on short-term and long-term averaged data supports 
the  contention t h a t  these var ia t ions  do not 
s igni f icant ly  affect .  the MESA th rus t  measurement 
accuracy. 

Information on the  MESA n u l l  b i a s  was obtained 
from the  accelerometer readings p r io r  t o  th rus t e r  
turn-on. A s  described e a r l i e r ,  the expected 
o r b i t a l  accelera t ion  f o r  SERT I1 was 0.73 pg. The 
ac tua l  averaged measured value was 0.67 pg. This 
discrepancy can be a t t r i bu ted  t o  a n u l l  b ias  of 
-0.06 pg. p e  n u l l  b ias  was expected t o  scale 
down by 10 from the  1 g cross ax ' s  voltage value 
of - 5 0  pg t o  -0.005 pg a t  t he  lo-' g voltage 
se t t ing .  I f  t h i s  o r b i t a l  accelerat ion discrepancy 
i s  ac tua l ly  due t o  n u l l  b ias ,  the n u l l  b ias  scaling 
was only 8 . 3 ~ 1 0 ~ .  The n u l l  b ias  of an accelerometer 
should e i t h e r  be ins igni f icant ly  small, o r  known 
and stable.  For SERT I1 measurements a n u l l  b i a s  
of  0.06 pg i s  grea ter  than 1% of the  measured 
accelerat ion and hence, i s  not negligible. 
Although the  long-term d r i f t  of  the n u l l  b i a s  
appears t o  be ins igni f icant  on the  bas is  of 
available data,  t h e  aforementioned o r b i t a l  
var ia t ion  of 0.1 pg presents problems i n  evaluating 
the  short-term n u l l  b ias  s t a b i l i t y .  On the bas i s  
of  thrus ter -off  o r b i t a l  accelerat ion data, t he  
t o t a l  accelerat ion var ia t ion  fo r  periods of l e s s  
than 500 seconds was generally l e s s  than 3 . 0 1  pg. 
On the  bas i s  of t h i s  data, therefore, the MESA 
n u l l  b ias  was su f f i c i en t ly  s table  to  r e s u l t  i n  
measurement e r ro r s  of  l e s s  than 0.5% a s  was s t a t ed  
i n  the sec t ion  t i t l e d  "Errors". 



Tab]-e 112 l i s t s  the  thrus t ,  and expected F 
elms, determined from telemetered e l e c t r i c a l  
por-ameters and equation (8) .  No corrections have F~ 

The th rus t  cbtained by o r b i t  ra is ing  \" I/X 
measurements over the  period February 16 t o  
March 21, 1970, i s  6+3 mlbs o r  28.1 rN. This F' 

P 
data was  obtained from the s a t e l l i t e  tracking g 
group a.t Goddard Space Flight  Center. The 
er ror  band on t h i s  data i s  0.31 mlb o r  1.4 mN. 

I 5  
The data obtained from beam e l e c t r i c a l  '6 parameters i s  more complete than t h a t  from the  

MESA o r  o r b i t  changing techniques. The MESA was 
not operating during th rus t e r  2 operation and 

"6 

a lso  ceased functioning properly about four days 
a f t e r  t h rus t e r  1 carne on. Thus, the MESA derived 'B 

data f o r  t h rus t e r  1 does not apply f o r  data a f t e r  ms 
the 100 percent t h rus t ,  10 hour data. The o r b i t  m 
changing technique requires too long an averaging P 

period and exhibi t s  too large  an er ror  band t o  - m 
l i s t  a de ta i led  t a b l e  of data fo r  a l l  of  the 9 
thrus ter  operating levels .  

Thrust ( N )  

Force on MESA proof mass (x) 

Error i n  F due t o  er ror  i n  X ( t y p i c a l  
notat ion used throughout ) 

sens i t i ve  axis  component of  F ( N )  D 

Free f a l l  standard accelerat ion 
(9.807 m/sec2) 

Thruster screen current  ( A )  

Thruster accelerator current  ( A )  

Acce era tor  current due t o  neut ra l izer  
ion& ( A )  

Ion beam current  ( A )  

Mass o f  spacecraft  (1434 kg - 3162 ~ b s )  

MESA proof mass (kg) 

Mass-to-charge r a t i o  of singly ionized 
propellant  molecule ( k g / ~  ) 

Table 111 
UNCORRECTED THRUST OF SERT I1 I O N  THRUSTERS AS 

DETERKTNED BY EQUATION ( 9)  

nominal Tilrus t 
Level, Percent 

I Thruster 1 Thruster 2 I 

a ~ i m e  from th rus t e r  beam turn-on. 

b ~ s t i m a t e d  from projected operation. 

I n  conclusion, it has been shown tha t  the  
th rus t  of the SERT I1 th rus t e r s  has been measured 
t o  within 5 1% by the MESA, t o  within 2 2.276 by 
the e l e c t r i c a l  parameter method, and t o  within 
+ 5% by the  o r b i t  changing method. Within these r - 0 
er ror  bands the  three  methods are i n  agreement. A r  

Symbol L i s t  T 

t 
a MESA sens i t ive  ax i s  accelerat ion ( g t s )  

Total  a with thrus ters  on ( g ' s )  V4 
V 

aoff Total  a v i t h  th rus t e r s  o f f  ( g ' s )  5 

a~ a due t o  th rus t e r  ( g ' s )  '6 
7 ,  - 

a Orbi ta l  accelerat ion (gravi ty  gradient + "BP 
c e n t r i p e t a l ) ( g t s )  V~~ 

"1i. B. MESA nu l l  b i a s  ( & '  s )  'net 

d Distance from spacecraft  center  of mass 
t o  t h a t  of the MESA proof mass (m) 

Distance from center of ea r th  t o  
spacecraft  cent r of mass (m) (approxi- % mately 7.400~10 m) 

r a t  t = O  (m) 

r - r (m) 

Time i n  days (days) 

Time i n  seconds ( s )  

Thruster anode voltage ( v )  

Thruster pos i t ive  high voltage (v )  

Thruster negative high voltage ( v )  
Spacecraft beam probe po ten t i a l  (v )  

Spacecraft space probe po ten t i a l  ( v )  

Thruster ne t  accelerat ing po ten t i a l  ( v )  



Angular deviation from hor izonta l  zero 
reference during MESA ca l ib ra t ion  ( O )  

kc-versa1 gravi ta t ional  constant times 
the  mass of the  ear th  (m3/s2) 

Angle between thgust vector and space- 
c r a f t  yaw axis ( ) 

Orbi-tal r a t e  (rad/s ) 
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Figure 1. - SERT-I1 spacecraft in orbit (artists conception). 
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Figure 2. - MESA calibration method. 
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Figure 3. - SERT I1 acceleration measurement con- 
f iguration; 
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Figure 4. - Thruster potentials. 
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Figure 5. - RSS error  i n  th rus t  versus averaging 
time for orbit radius change measurement. 
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Figure 6. - MESA acceleration data dur ing thruster  t u r n -  
on  procedures. 

Figure 7. - MESA acceleration data. 
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