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ABSTRACT 

Non-Gaussian noise is the subject of this study. The probability density 

functions for quantization noise, continuous wave interference, atmospheric noise, 

and impulse noise are presented and discussed in detail. Impulse noise is described 

by the hyperbolic and Pareto distributions and quantization noise is represented by 

the uniform error distribution. Both the continuous wave interference and atmo­

spheric noise follow Rayleigh and lognormal-distributions. 



FOREWORD 

This thesis attempts to satisfy a need which has become apparent in recent 

years with the development of data transmission systems. This need is for a pres­

entation of types of noise which are not described by a Gaussian process. Though 

most of the results obtained here have appeared elsewhere and have become well 

known in recent years they have not been classified and discussed as to their 

probability density functions. Thus, all types of noise discussed here have in com 

mon the probability density functions which are not Gaussian. However, old and 

well-known topics such as multipath interference and atmospheric noise are very 

closely related to the Gaussian process. These topics were included here because 

under transformations they cease to be Gaussian. For example, the Rayleigh dis­

tribution is a non-Gaussian distribution which has Gaussian orthogonal components. 

Also, the lognormal distribution of atmospheric noise amplitudes is a non-Gaus­

sian distribution. It is obtained by the transformation eA, where A is a Gaussian 

random variable. On the other hand, impulse noise is in no way related to the 

Gaussian process. Hyperbolic and Pareto distributions were used to describe the 

behavior of impulse noise. Another type of noise which is not related to Gaussian 

is quantization noise in PCM and which has uniform distribution. It is a Fact that 

non-Gaussian noise occurs often in data transmisfion. Non-Gaussian noise is 

thus important because the usage of data transmission techniques is extensive and 

rapidly increasing. 
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INTRODUCTION 

Noise can be broadly defined as any unwanted disturbance within the use­

ful frequency range. It is distinguished from distortion in that noise is a random 

process. 

One can classify noise into three categories in the frequency domain. Two 

of these are single frequency noise and impulsive noise. Between these extremes 

lies Gaussian noise. Naturally, the most commonly encountered noise is Gaussian. 

This distribution results where the noise is the sum of many independent noises with 

similar statistical characteristics as predicted by the central limit theorem. Exam­

pies of Gaussian distributed noise are thermal and shot noise. However, types of 

interferences encountered in data transmission, such as quantization noise in Pulse 

Code Modulation (PCM) and impulse noise in telephone channels, do not follow 

Gaussian distribution. The same is true for atmospheric noise produced by thunder­

storms. The non-daussian probability density function is encountered when radio 

waves at medium range of frequencies are scattered by the ionosphere and then 

interfere with the direct wave. 

Another way of classifying noise is to compare how it behaves with the sig­

nal strength. For example, impulsive noise peaks in data transmission caused by 

"hits" and "dropouts" are often multiplicative in character. That is, noise multi­

plies the instantaneous value of the signal wave amplitude by some function. -

Thus, multiplicative noise modulates the signal. Usually the multiplying function 

I 
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mentioned is I and sometimes 0. 1 On the other hand, there exists additive noise, 

and the effect of this type of noise is reduced by an increase in signal strength. 

Impulse noise is characterized by non-overlapping transient disturbances in 

the time domain, Common sources of impulse noise in wire transmission are dirty 

switch contacts, defective filters in power supplies, crosstalk through coupling from 

signaling circuits, improper shielding and grounding, unbalanced circuits, ignition, 

loose connections, etc. 2 This type of noise is also caused by external or directly 

connected selector switches in telephone channels. Therefore, during the busy 

hours of telephone communication impulse noise is increased since switching is 

increased. However, impulse noise is not so disturbing in voice or continuous 

communication systems. But, in data transmission systems when the noise pulse 

has high amplitude, so that it can become comparable in magnitude with the thres­

hold level, it can elilninate or add bits of information which are not present in the 

original signal. If the impulses occur very frequently, then they can become 

disturbing even in voice communication. 

In PCM systems, even when impulse noise is not present, there is an inher­

ent noise existing. This is quantization noise and it is caused by the random dif­

ference between the actual waveform and the quantized approximation. It is clear 

that quantized noise may be minimized by using as many quantized steps as possible. 

But this decrease in the noise is accomplished at the expense of increasing the num­

ber of code pulses required to transmit a signal sample. 

In Chapter 3, an example of continuous wave interference is discussed where 

the sky wave is scattered in the ionosphere. Scattering of waves is caused by the 



3 

inhomogeneities of index of refraction which results from the turbulence in the at­

mosphere. The scattering becomes more pronounced when the wavelength of the 

signal is of the same order of magnitude as the dimensions of the atmospheric 

"blobs" .3 When the scattered signal, as it is picked up by the receiving antenna, 

interferes with the ground wave, the result is fading. In other words the resultant 

wave has fluctuating parameters. Due to the fact that this fluctuation is not Gaus­

sian, it is discussed in this presentation. 

Atmospheric noise, like impulse noise, often has impulsive character in 

the time domain. Atmospheric noise is caused by lightning flashes, which radiate 

electromagnetic energy. It may produce an electric field in the ionosphere much 

greater than 0.1 v/m and a magnetic field which is comparable to that of earth's, 4 

These fields may, in addition to the direct interference, play an important part in 

the mechanism of reflection of signals from the ionosphere, at points close to the 

flash. This is so because absorption characteristics are altered by the presence of 

the fields. Ultraviolet light, which causes ionization in the ionosphere, also 

causes a change in the absorption characteristics of that medium. This is shown 

in Figure 1.5 

It is obvious from Figure 1 that at night, when electron density is less, 

absorption is less. Thus, atmospheric noise by being subject to propogation condi­

tions just like any other EM wave, causes more direct interference at night. This 

is because noise can propagate long distances without being absorbed by the ionio­

sphere. However, at higher frequencies this daily situation is somewhat reversed, 

At high frequencies, the ionosphere will support propagation only during the day­
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FIGURE 1. Electron density in the ionosphere 

- light hours. At night when absorption is-low, the wave penetrates. In addition 

to the daily cycles there are seasonal variations in the frequency of occurrence of 

thunderstorms, which is a common experience witnessed by everyone. 



Chapter 1 

IMPULSE NOISE 

Errors in data transmission do not follow the laws of purely random events. 6 

That is, Gaussian noise, which is purely random, does not describe the random 

process in this case. A characteristic of a Gaussian noise process is that it tends 

to deliver energy at a uniform rate. 7 , 8 But a noise process delivers energy at a 

uniform rate if its standard deviation a is very small. Obviously, impulse noise, 

as its name suggests, is impulsive in its character. This means that deviations in 

amplitude from the mean are highly probable or a is large. Then, it does have 

less uniform noise power and the process is considerably different from the Gaus­

sian. 

One way to describe errors is to find their amplitude probability density 

function. Another way is to find the error occurrences in the time domain. Error 

occurrences can be described either by a distribution of error rates measured in 

small fixed time intervals or by a distribution of inter-error spacings. In any of 

the cases different distribution laws are obtained for short-duration and long­

duration tests. 9 However, qualitative descriptions of errors in telephone circuits 

show that they appear to be comprised of bursts of errors, in fact, bursts of bursts 

of errors in addition to single, independent error events. 10 

The distribution for the amplitudes of impulse noise follows an empirical 

higher order hyperbolic law. 11 

5 
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Namely, 

p (n) = k/(n + b)m+l 	 (1.1) 

where 

(n) is the amplitude of impulse noise, 

(k) is the constant to be determined, 

(m) is the order of the hyperbolic equation, 

and (b) is an added small constant (bias) to keep the frequency of 

occurrence of smallest amplitudes finite. 

If P(n) is defined as the cumulative-probability of amplitude being n or 

greater, 	 then 

P(n) = Y k/(x + b)m + I dx 
n 

m= k/m (n +b) (1.2) 

kin (1.2) can be determined by using the fact that Y'k/(n + b) m +1= 1. 
0
 

Then let n 	 a in (1.2) which gives k to be 

k = mbm
 

Equation (1. 1) becomes 

p (n) = mbm/(n + b)m + 1 (1.3) 

and (1.2) becomes 

P (n) = bm/(n + b)m (1.4) 

The average of n iseasily obtained by 

n = ffnp(n)dn 
.0 

o m bm n/(n + b) d n 

= b/m-1 	 (1.4.1) 
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similarly 

2 nrms = n p(n) dn 
0 

= 2 b2/ [(m -. 1) (m - 2)] (1.5) 

It is observed from (1.5) that for m = 1 or m = 2, nrms is not finite. Since 

p (n) in (1.1) is higher order hyperbolic, i.e. m 7 1, then m >2 is necessary. In 

5 is the range of m. 12 
fact, 2 < m 

The plots of the cumulative distributions of the amplitudes of impulse noise 

for different m = 3,4,5 are shown and compared with the Gaussian and Rayleigh 

distributions in Figure 1.1.13 Bias b I is assumed. 

30 m=3 	 1=4 m=5 

20 	 Hyperbolic 

"- co Gaussian 	 " 
0 

E 10 Rayleigh 
W­

0 
-a 
a 

-D 0 

4-


E
 
< -10
 

6 
 I0-io- 5 	 1o-4 I-3 10-2 .2 

Cumulative Probability 

FIGURE. 	1.1. Amplitude distribution of impulse noise 
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It is seen from Figure 1.1 that at low probabilities, the hyperbolic distri­

butions show much larger amplitudes than do the Gaussian or Rayleigh distributions. 

Also, the root mean square value for the hyperbolic distribution is meaningless if 

b and m are not known, whereas in the Gaussian distribution the root mean square 

value is obtained directly by measurements of the amplitudes. 

It is proposed that the distribution of error rates, measured in long duration 

tests follow the first order hyperbolic law. 14 That is, putting m 1 in Equations 

(1.3) 	and (1.4) gives 

p (n) = b/(n + b) (1.6) 

and
 

p (n)= b/(n + b) 	 (1.7) 

It is observed from (1.4.1) that n has no finite long-time average for m= 1. 

However, by running the integration to a finite boundary it is possible to derive a 

long time average. Thus 

na = 0n p (n) d n, ,(178) 

where subscript "a" in ;na denotes the upper limit of integration. Equations 

(1.6) and (1.8) give 

na = 	 b/(n+b) 2 dn (1.9) 

Let v= n+band y= a+b in(1.9). Then 

n= b.Q'(1/v) d v - b2 Y(1/v2) d v (1.10) 

or 

no = b[In (y/b) - I + (b/y)] 

Let q express a quantile boundary. That is, the upper limit of the integra­

tion in (1.10) is y = qb. 
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Then
 

no =1 b[lnq - I + /q]
 

or 

na = b [f (q)] (1.11) 

where f (q) = Inq - I + 1/q and it is a numeric which relates the long-time aver­

age na to the bias b. Now, (n) is no longer continuous by definition. Then it is 

possible to find the probability of exactly (e)events having the long time average 

n0. 

That is, 

p[e,-an fee+l b/(n+b)2 d n 

-b [1/(e+b) -(e + b+ 1)] 

b/[(e + b) (e + b + 1)] (1.12) 

Replacing the value of b in (1. 12) from (1.11) gives p[ee, n in terms of the long­

time average n . Thus 

p~e, ha]= na(f)/ (ef + a) (ef + f+7a). 

and let e = 0,1,2 etc. 

P[a, ;na= (2f+;](f)/[(f+n) 

p[2, noI= af)/(2f + -a) (3f+ a) etc. 

These probabilities for different e, have been plotted in Figure 1.2, with 

q = 1000.15 
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FIGURE 1.2. Error density distribution 

To find the probability of at least e events having the long-time average 

nh one proceeds as follows: 
CO 

P(en = feb/(n+b)2dn 
a e 

= b/(e + b) 

and again using (1.11) one gets 

P (e, -a) = na / (ef + a) 

Plots for q = 1000 and different e are shown in Figure 1.3 and compared 

with the Poisson distribution. 16 

It is observed from Figure 1.3 that Poisson probabilities are higher than 

the hyperbolic toward the larger na. 
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FIGURE 1.3. Cumulative error density distribution 

Now, it is of interest to find the cumulated number of error-free intervals 

having lengths (u) or greater. u is the interval duration with the same units as that 

of the test time T. 

Consider Equation (1. 12); here the bias b has a fixed value. However, the 

amount of bias necessary is proportional to the interval duration u, i.e., b = b-u. 

Then lettihg e = o and replacing b by blu in (1.12) one obtains 

P (na, o, u) = 1/(l + bu) 

or if bo = l/bi 

p (Ha, o, u) = bo/(bo + u) (1.13) 
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Now, p (a, o,u) represents the fraction of'the total number of intervals of 

duration u in the test that contain no events. If u is allowed to vary, then the total 

time dr devoted to event-free intervals of length between u and u+du is given by 

dr = -T~d/du p (Tra, o, u)]du (1.14) 

where T is the total test time. The negative sign is used in (1. 14) because p dimin­

ishes as u is increased. From (1.13) and (1.14) one gets 

dr =[T bo/(bo + u)2]du, 

or 

d'r/u (OA) IT b0 /(b o + u)2]du 

d'r/u is the number of error-free intervals in du. Thus,'when u varies from u 

to infinity the cumulated number of intervals M(u) is given by 

M(u).= Y (1/v)e b /(bo + v) 21d v 

L iT
 
M(u) T + 1 In bo+iu]
MIu= O+ 1To -u 

Thus far only the experimental results obtained from long-term tests were 

stated. It is now of interest to find the inter-error spacings for short-time tests. 

The distribution describing this case is called the Pareto distribution. 17 The Pareto 

distribution is a hyperbolic distribution without bias and of order m, where m is a 

parameter varying with the overall density of error incidence.- Namely, 

- mQ(u) = u (1.15) 

where Q(u) is the probability of an interval of at least u. The interval from one 

error to the next is u. Distribution (1. 15) plotted with logarithmic coordinates is 

shown in Figure 1.4. 
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FIGURE 1.4. -Logarithmic plot of interval distribution 

If the number of errors in the test is N, then the probability of the single 

longest error uo is 

Q(uo) = /N 

This is shown in Figure 1.4. 

Since there are N errors and therefore assuming N-I P N intervals one 

can redraw Figure 1.4 in a linear scale with N discrete steps. Let the ordinate 

Q(u) be replaced by NQ(u). Then each unit step in the scale represents one inter­

val between errors. This is shown in Figure 1.5. 

N2 

K, 
T \uNQ(u) 

. S 
0 

0 . 

FIGURE 1.5. Linear plot of interval distribution 
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In Figure 1.5 the sth interval us has the probability 

Q(us) = s/N (1.16) 

Equation (1. 15) also gives Q(us) as, 

Q(us) = us, (1.17) 

Then from (1.16) and (1.17) 

us = (N/s,)/m (1.18) 

Considering Figure 1.5, the total test duration T is equal to the sum of all 

the intervals u. 

Thus 

T = uj.+u2+us+...+us.+u0 

Then making use of Equation (1.18) 

T = NI/ [(1/1)1/ + 0/2)1/r +... (/)I/m + (I/N)1/m](1.19) 

The expression in the brackets in (1. 19) is called the zeta function. 18 

Z(N, p) = N (]/s) P (1.20) 

where p = l/r. 

Tables and graphs are given for the zeta function (see Appendix 1.1). 19 

Now, once Z(N, p) is computed the test duration T can be found by 

T = NI/ m Z(N, I/m). 

Now consider an ensemble of tests, each of duration T bits, but having a 

different number of errors Ni . In general, the longest spacing uoi in each test will 

be shorter when there are more errors or longer when there are ldss errors. This is 

illustrated in Figure 1.6. 

http:1/m](1.19
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FIGURE 1.6. Variation of maximum interval (uo) 

It is also seen that the magnitude of the slopes (-mi) increases with the 

increasing number of errors N i. A better plot showing the relation between the 

slopes mand number of errors N for a givern test time T is shown in Figure 1.7.20 
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FIGURE 1.7. Variation of order (r)with error incidence 
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If one determines m from Figure 1.7 for a given number of errors N and test 

time T, then it is possible to obtain another plot showing maximum inter-error 

interval uo . This is shown in Figure 1.8. 
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FIGURE 1.8. Variation of Maximum interval with error incidence 

It is observed from Figure 1.8 that the maximum intervals show a faster drop 

over a narrow range of errors. However, it is noted that this rate of fall is inde­

pendent of test duration time T. 



Chapter 2 

QUANTIZATION NOISE 

Quantization noise is a form of distortion due to "rounding-off" or quanti­

zation of a continuous signal into discrete steps. However, the quantization process 

allows digital encoding which is a very dsirable data transmission technique be­

cause of its ability to combat the effects of noise. In PCM, a major source of error 

is due to quantization. 

The typical quantized transmission scheme isshown in Figure 2.1.21 

Low-passile Sampler Compressor QnleUniform 

Filtered Signal T-J )F-z CANPlus H w ° 1 DEOr R----- IDEAL'{ 

QuanOW 
tized Receiving Low-pass Expandor 
noise Filter Filter 

FIGURE 2.1. Quantized transmission scheme 

Let the signal to be sampled and quantized be represented by s(t) and the 

sampling wave as TZ 6 (t - k T1 - T").
k 

This is shown in Figure 2.2. 

17 
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s 6 

s(t) / 

T'rT+T,* 7-+2 -V I A I.'-4 
(a) () 

FIGURE 2.2. (a) Sampling bf the signal 
(b) Impulse train 

T is the timing phase and it is uniformly distributed-over the interval o,' r9 T3 22 

s(t) can be represented with the pulse trains after sampling, compression, 

quantization and expansion, in that order. Thus, if s (kT1 + r) is the sample value 

of s (t) at time kT1 + T, then one obtains 

F s(kTi + ") 6 (t - kT1 - r) as the sampled signal, 

F sP(kT + "r)8 (t - kTj - "r)as the sampled and compressed
k Compsignal, 

kScomp (kT1 + r) 6 (t - kT1 - T) as the sampled, compressed and 
quantized signal, and 

Scomp(kT1 + 'r)]e6 (t - kT1 - 'r) as the sampled, compressed,m equantized and expanded signal. 

If F(s) is the compandor (in this case compression) characteristics, then , 

F(s) = F[s(kTi + r)] = scomp(kTi + "r)is the compressed sample value and Scomp(t) 

nis one of the (2 - 1)quantized levels that the quantizer output approximates for 
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Scoinp(t). Similarly F-1'[Tcomp(kT1 + r)] =[Cornp(kTi +r]x 

Note that from Figure 2. 1 the signal entering the expandor is already 

quantized. 

At the input of the low-pass reconstruction filter the impulse associated 

with time t = kT1 + 'r is 

[a comp(k<Ti r)] exp 6(t - M~ - r) 

and the area of this impulse can be expressed as 

[Scomp(kTi + 7")]exp = s(kT 1+ r) + (kT +T). (2.1) 

e(kT1 +r) in Equation (2.1) is the quantization error defined in an interval 

(-A/2) e(kTi +r')5A/2 as shown in Figure 2.3. 

*Scomp(kT1+))Iexp 
e(kT.e-r)
 tt I 

FIGURE 2.3. Error in quantization 

e(kT1 + 'r) is also the sample value of e(t) at tk = kT,. + r. 

When companding is present the quantization step size Avaries according 

to the companding characteristics F(s). But since s = s(t), a function of time, then 

F(s) and Awould be functions of time. For A(t) one has 

A(t) - Auniform 
r t s(t) 
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where F'[s(t)], in this case, is the derivative of the compressor characteristics 

and is evaluated at that input amplitude of the signal at the time of the sampling. 23 

To find the quantization noise e(t) at the output of the reconstruction filter 

one proceeds as follows. Let 

e(t) = [Lcomp(t)] exp -s(t) (2. 2) 

where Lacomp(t)] ex is a compressed, quantzed and expanded continuous signal, i.e. 

defined at any time t. This signal is obtained by passing EkIcomp(kT. + 'T)] exp6 

(t - kT1 - r) through the low -ass filter with the transfer function T1G2B(W), where 

G2B is the gate function with bandwidth 2B. Thus, one obtains (see Appendix 2. 1): 

j comp(t)] exp = Escomp(kT1 + 71)] exp Sa[B(t-kTij - ')] (2.3) 

Similarly s(t) is obtained by reconstructing it from its samples s(kT1 + "r). 

s(t) = s(kT1 + r) Sa[B(T - kT1 - T)]. (2.4) 

In Equations (2.3) and (2.4) Sa[B(t- kT1 - r)] is equal to[sin B(t- kTi-T)/ 

B(t - kT1 - "r)and is called the sampling function. Now, replacing[comp(t)] 

and s(t) in (2.2) by their equals in (2.3) and (2.4) one obtains 

(t) = F,[comp(kT. + 'r)] exp - s(kTi + T)jSa B(t - kT1 - r) (2.5) 

or by making use of Equation (2. 1) 

e(t) = e(kT + 'r) Sa [B(t- kT- r)]. (2.5.1 

From 	Equation (2.5) one can obtain e2 (t) (see Appendix 2.2) to be 

e (t) 2 2s - comp(kT + 7)exp s(kTi+ a(2.0) 
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Now, T is the interval over which averaging is performed and Fs is the signal 

frequency. But, since according, to the sampling theorem the minimum sampling 

rate must be 2f s , then 2FsT is the total number of samples in the interval T. 

Therefore the right hand side of Equation (2.6) is nothing but the mean 

square value of the samples at times tk = kT1 + 7. Therefore, 

= s(kT1 + r) (2.7) 

e2It is seen from the equality in (2.7) that the problem of finding t) is 

merely reduced to finding e2 (kT1 + r) of the band limited signal s(t). This can be 

found from the following argument. 2 4 

The quantized levels are Avolts apart and e(kT1 + r) must lie in the range 

f-A/2, A/2], where the midpoint of quantized interval is taken as reference. The 

amplitude distribution of the signal s(t) is assumed to be uniform in the range 

Lo, (M-1) A], where M is the number of quantizatiori.levels. Thus, the distribu­

tion of C(kT1 + 'r) will also be uniform in the range [-A/2, A/2]. The probability 

density function for e[kTi + r] would be, 

, [-/2, A/2]= (/Ap [e(kTi + r)] 
0otherwise.
 

Then, the mean square value of e(kT, + r).can be found by 

e'(kT1 + r) = f (kT1 +r) p [e(kT1 +rT)]d[e(kTi +rT)] 

2k eW.(kT + r) d[e(kTa + r)] 
Tr (-/2 

Therefore, from Equation (2. 7) 
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C2 (t) = A2/12 (2.8) 

Equation (2.8) represents the quantization noise power at the output of the 

reconstruction low-pass filter. 

The upper bound for this error can be found by applying the bounding tech­

nique of Chernoff.5 This bounding technique states that if a probability density 

function p (<) has a moment generating function M (v), then 

fa Pp (x) d x M (v)jva (2.9) 

where a is a constant. 

Now, e(t) as defined in Equation (2.5.1) is the sum of uniformly distributed 

functions. Thus, applying the Chernoff bounding technique to uniformly distributed 

functions one gets 

[ M (V)]unif -[sinh v(/2j3/v(A/2) 

E [ (/2 n /(2n +i 1) 1(2.10) 

One can find the characteristic function of the sum by obtaining the product 

of the characteristic functions of the individual sum terms. 

Instead of going ahead and applying this statement to uniformly distributed 

variables an interesting fact will be derived. This fact is that the quantization 

noise power 62 (t) is also upper bounded by G(v)e- va, where G(v) is the charac­

teristic function of the Gaussian process. For this to be true one must have 

G(v) : [M(v)] unif" In fact this is true (see Appendix .3). 

G(v) = exp[mv + v2 o"2 /2] (2.11) 
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where m, a are the mean and rms values respectively. However, since e(t) was 

chosen to have zero mean and variance equal to A2/12, then in accordance with 

this one has m= o, = A2/12 for the Gaussian process. This statement is justified 

since one is directly comparing e(t) and the corresponding Gaussian variable. 

Therefore from (2. 11): 

G(v) = exp[(A2/12) (v2/2)] (2.12) 

One can now find the characteristic function of the sum by 

k 
Gs(v) = kITGiv)
 

i=o
 
where the subscript s in Gs(v) stands for "sum", and from (2. 12) 

G,(v) = exp[ /2)(A0/12) vj1 

Then 

-Gs(v) e va = exp [(k/2) (A/12) v2 - av] (2.13) 

In Equation (2. 13) v can be chosen such that this upper bound is minimized. 

Thus, this value of v is found to be (ste Appendix 2.4): 

v = (q/k) (12/Y ) (2.14) 

Placing the value of v in (2.13) from (2.14) one gets 

=[ Gs(v) e-va] min exp [- (a2/2k) (12/A)] 

The final result is obtained from (2.9) by placing exp[-(a2/2k)(12/A2)]for 

M (v) e - av. Then, 

P [e(t) >a] < expj[- 6a2/kA] 



Chapter 3 

AN EXAMPLE OF CW INTERFERENCE 

Continuous wave interference is in contrast to other types of noise dis­

cussed, because they were impulsive and/or discrete time domain occurrences. In 

addition to this, it is assumed CW does not originate from a random source, but 

from a transmitter which transmits a deterministic continuous carrier wave. 

However, an uncertainty is witnessed at the receiving end. This is, among 

other factors, due to scattering of the transmitted wave which takes different prop­

ogation paths to reach the receiving dhtenna. The probability density functions 

obtained to describe this uncertainty are very much the same as for the atmospheric 

noise. 26 This is the main reason CW interference is discussed here along with 

other non-Gaussian disturbances. However, CW interference differs from atmos­

pheric noise, in addition to the differences described above, in that it does not 

add noise power to the signal. 

A probability density function for the resultant wave is to be found. The 

resultant wave is obtained by the sum of the direct wave and the wave reflected 

from the ionosphere. The direct wave will have amplitudes defined by 27 

so exp[-Z 6-d.] (3.1) 

This is the equation describing the attenuation of a wave due to the pene­

tration of a wall or other obstacles where 

24 
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d* is the thickness of the jth obstacle 

6- is the attenuation caused by that obstacle. 

The distribution of I 6d. is found by applying the central limit theorem 

and it is Gaussian. 2 8 By a transformation of variables using (3. 1)one obtains the 

probability density function for the amplitudes So (see Appendix 4.2) 

m)2exp[- (InSo -P (So) -

This is called the lognormal distribution. The phase of the direct wave is 

assumed to be uniformly distributed at the receiving end. 29 

The sky wave is scattered at the ionosphere before it is reflected back to 

earth's surface. This well-known scatteringproblem will yield a waveform des­

cribed by a Rayleigh phasor,. That is, this wave will have a Rayleigh amplitude 

distribution and uniform phase distribution. 3 0 A Rayleigh phasor has Gaussian 

orthogonal components. 3 1 

The resultant wave will also have uniform phase distribution due to the 

fact that one has the sum of uniformly distributed phasors (see Appendix 3. 1). 

The problem to be solved in this chapter is to find the amplitude distribution of 

this resultant wave. Thus, the problem is stated as follows. Let the received sig­

nal be 

-sj= so J66 + Se (3.2) 

where 

S, So , Si are the amplitudes of the resultant, direct? and reflected waves 

respectively. 8, 6o, El1 are phases of these waves. Now, the probability 
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density function p(S) is to be found. Figure 3.1 shows the phasors in (3.2) 

y 

S1 e 

FIGURE 3. 1. The random phasors and their resultant (S) 

To find the distribution of S, first the conditional distribution Pc(S = 

p(S/So) is found and then the application of the theorem of total probability 

yields p(S). Thus, So is held constant for the moment. Also, to make the cal­

culations easier e0 will be assumed a reference phase. This assumption merely ro­

tates x, y to put So on the x-axis. Physically this may be achieved by some 

arrangement of phase-lock system. 3 2 Then the components of seia are 

Sx = So + Si cos 9i (3.4) 

SY = S sin 01 (3.5) 

It was stated earlier that S1e is a Rayleigh phasor and has Gaussian 

components. Therefore, SlcosGl and Slsinej are Gaussian. Then, 

p(Sy) is Gaussian from (3.5) and 

p(S ) is also Gaussian but shifted to the right by So in (3.4). 

The joint distribution of Sx and Sy isgiven by 

p(Sx, Sy) =_L exp[(Sx S) - , (3.6) 

= 2(T.where 'a 
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Equation (3.6) is transformed into polar coordinates by 

Pc(SE) = (S)P(Sx, Sy) 

where 

PC (S,0) is the conditional probability, 

Sx = ScosO, 

Sy = Ssin,6' and 

S2 = Sx2 + Sy2 

Thus 

- r.-eSPcS,)= x[-ep+ (S+S) 2 -2SSCos] (3.7) 

One can now obtain Pc(s) = p(S/S 

Pc(S) = yo pc(SO) dQ 
0 

= S e- (S+So)/a 

) from (3.7) by 

e(2SSo/q cosO AG. (3.8) 

But f 2 

o 

(2SSo/a') cos6 dO = i o 25S 

Io(x) is modified Bessel function of x. 

Then equation (3.8) becomes 

Pc(S) = LS[ _(S2 + s.2)/a]I. (2SS.) (3.9) 

Applying the theorem~of total probability to (3.9) one gets 

p(S) = o pc(S) P(So) dSo00 (3.10) 

or by replacing Pc(S) from (3.8) and p(So) from (3.1.1) 

2S72 rI S_S,________) 2 

P() exp f s+~+nom3(sc)d 0 
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The evaluation of this integral is difficult. 33 However, the following 

practical results are obtained: 

Case 1. 

If S and So are much smaller than /v", the rms value of S, then 

e-S/o/ (2S) approaches unity. Thus, from Equations (3.9) and (3.10) one 

gets 

p(S) =_2S _S2/a J' p (SO) dSb 
& e0
 

P(S) 2S S2 ae if So> 0 for all time. 

This is the Rayleigh distribution. 

Case 2. 

A somewhat more difficult argument is followed-to obtain p(S) when S >> 

."34 The result is that, (3.10) approaches p(So ) given by (3. 1. 1). In other 

words, p(S) becomes lognormally distributed. 

http:difficult.33


Chapter 4 

ATMOSPHERIC NOISE 

The lighthing discharges in storms all over the world are the main cause 
I 

of atmospheric noise. The model that will be proposed here does conform with the 

experimental results plotted in Figure 4.1. 3 5 

40 

30 

20 Lognormal 

E 10 
R 

0
-1 

0 Rayleigh 

-0 -10 

-20 0­

-30 	 G_ 

-40 1__ 
0.0001 .01 5 204060 80 90 95 98 99 

Pfnp/nrms > RJ] % 

FIGURE 4. 1. 	Amplitude distribution of atmospheric 
noise plotted on Rayleigh paper. 

29 
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Distributions approach Rayleigh for small amplitudes (high probabilities) 

and lognormal for large amplitudes (low probabilities). 3 6 A lightning discharge is 

transmitted by radiation and therefore superposition -applies at a particular point or 

time. For example, atmospheric noise is the sum of all the other atmospherics 

propagated to that point. The model proposed here describes each atmospheric 

as upsurging and decaying exponentials in time. 3 7 ' 38 This model is shown in 

Figure 4.2. 
(n )k 

no ( decaying 

atmospheric 

nl----- upsurging
atmospheric 

to
 

ti 4tk 

FIGURE 4.2. Random sequence of atmospherics 

If (np) o is the peak value of the atmospheric received at time to and a 

is the exponential decay time constant, then the atmospheric no(t) is given by 

n)(np) o exp (-t to for t > to 

F(npr exp I toisfort<t 

For t"< to , P is the rise constant. 
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The amplitude of the kth previous atmospheric nk at time to is given by 

nk = (np)k e-tk (41.1) 

At a particular time to the total atmospheric noise is 

neja = noejdPo +kS nkejiPk +kZ (n')k eJ' °k (4.1)
k-i k=1 n) 

where (n') is used for upsurging atmospheric. 

Since tk, shown in Figure 4.2, is a random variable, the phases of the at­

mospherics at the receiving point are also random. Thus one has random phasors. 

In fact they are uniformly distributed and each component in (4. 1) is called a uni­

3 9 
formly distributed phasor (UDP). 

Now, at any time t the atmospheric noise N(t), when the uprising atmot 

spherics are neglected, is 

-N(t) = ne t/a for to< t< tj, (4.2) 

Here, it is assumed that there are no new atmospherics occurring in the time 

interval t, defined in (4.2). The next atmospheric occurs at t = ti. But in this 

time interval the total amplitude n is fixed by the set of atmospherics that have 

already occurred. Therefore, N(t) is a deterministic function of time. Conversely, 

if time is held constant and n varied randomly, then N will have the same distri­

bution as for n, of course differing by a multiplication constant. 

The question arises as to what the distribution of N would be if N were to 

vary randomly, not at a fixed time chosen in the interval to < t < ti, but throughout 

this interval. The distribution in this interval can be found once the conditional 

distribution at a given time is found. Then the, theorem of total probability is 
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applied to find the general distribution. 40 However, no attempt is made here 

to find this general distribution because it is very involved. Instead, at a 

given time the cumulative distribution P(N/Nrms > R) is found. Even before finding 

this, one must find the distribution of n which in turn is determined by the distri­

butions of no, nk and (n)k . 

no has the same distribution as the distribution of the peak values (np) of 

the atmospherics but differing by a multiplying const6nt (see Appendix 4.1). The 

peak values follow the field strength formula 

fp=n=KK 17pn exp (d-l j) , (4.3) 

where Fn is the peak power at a particular frequency, 

d is the distance of discharge from the receiving point, in general
I 

d = b d. 
j=l
 

K is a constant of proportionality, and 

6. is the path of propogation ofjth section. 

One can express Equation (4.3) as 
A 

np = e 

whereA= -1.d.+ 1/2lnP +InK- Ind. (4.4) 
j=l J J 

All quantities in (4.4), except K, are random. Als6 the fluctuation in' the 

first term of A is more dominant. Thus the distribution of Awould approximate the 
I I 

distribution of L 6-d.. However, the central limit theorem applies to S_ 6d.
j=1 i J J=l 

which makes it Gaussian. Therefore, 6 is Gaussian as well. 
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One can now find the probability density function of the peak noise ampli­

tudes as (see Appendix 4.2) 

Rn, = pp n- - (4.5) 

The distribution described by (4.5) is called lognormal distribution. As was pre­

viously stated, p(no) differs from this distribution by a multiplying constant. 

Now, one must obtain p(nk). From Equation (4.1.1) one has 

= u/v (4.6)nk 


where u = (np)k and v = exp [tk/a]. (4.7) 

The distribution of u is given by (4.5). However, before the distribution of 

v can be found the distribution of tk must be obtained. One way of finding p(tk) is 
.., .41,42

each having exponential distribution.to divide tk into k intervals of length Ti,
-xi. k
 

-
Then, p(Ti) = Xe t and tk = T where i = 1,2,3. .k and X is the number of 

atmospherica per unit time. Now p(tk) is found by making use of these (see Ap­

pendix 4.3), and 

-p(tk) = [ktl eXtk]/(k - 1) I (4.8) 

It is interesting to note that, one could have just as well obtained (4.8) by 

assuming that the number of atmospherics in a given interval is Poisson distributed. 

Then conversely, under this assumption, one finds the interval distribution given 
3 

the number of atmospherics in that interval 

If one proceeds to find p(v) by using (4.7) and (4.8), (See Appendix 4.4), 

one gets 

X (In v)k- 1 

p(v) = (k-i) !vX 1 (4.8.1) 
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Now, since the distributions of u and v are known, one can find the distri­

bution of nk from Equation (4.6), (see Appendix 4.5). 

v '=('~xkak ;cI& F_ (lnnk+x-m)2 1 

p(nk) Xk)Ik foxk-lIiexp XX- 2 dx (4.9)
( 2 2 

where In v = x. 

Returning to Equation (4.1) one can prove (see Appendix 4.6) that, 

O C 

<n2 > = <n2>+ Z <nl2> + F <(n') 2>. (4.10.1)
k=1 k=l k 

The mean square of nk is given by: 
CO 

<n> onk P(nk) d nk (4.10) 

Placing the equal of p(nk) in (4. 10) from (4.9) one gets
 

00 - x-M21
nk xS dxdn k< >=W nk 2Xkek x k-I [xp-a (In nk+xm) 
o O1)cr 1- exp L(4.11)

_____ 2X lk 

When the integral in Equation (4.11) is evaluated (see Appendix 4.7) one 

gets 

k (4.12)nk= xkak(Xa+exp 2)172(o&+ m) 4.2<nk,> 

Also, consider the upsurging atmospherics (nj<) attaining their peak values 

at a time to-Ftk. The second moment for this is obtained in the same'way as that 

for decaying atmospheric, except that the U time constant is replaced by P. 

n xksk exp 2(002 + m)
>= (XPl + 2) k 

If one assumes at the time of observation that there are no upsurging atmo­

spherics, then one can neglect <(nk) 2> in Equation (4.10.1). This assumption is 
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especially true if the set of atmospherics is occurring away from the observation 

point. Now, replacing <n2> in (4. 1041) by its equal in (4.12) one obtains 

<n2> = C) <n > = m 

kZo k = a . (4.13)
00k 

ko(X 2 in (4. 13) is a converging geometric series which is equal to
 

X(0/2) + I
 

Equation (4. 13) becomes 

= [(Xq'2) + 1] e2(O+m) (4.14) 

Case 1 

If X/2>1, then Xc*/(XO 2) will approach unity and the geometric series 

will thus tend to converge less rapidly. The first term <n2> in (4. 13) would 

be negligible as compared to the sum. 

In other words 

<no2> << ZS_<n '>; (XU2) e2(0'+m) (4.15) 

From Appendix 4.6 

cO <nj > <_one~)Mo == <=onek) >. (4.16) 

The sum k ° (nkek) in (4. 16) has a Rayleigh amplitude distribution since it 

represents the sums of uniformly distributed phosors nkeJi . 4 Consequently, for 

Xo/2>>1, the random variable nwill approach the Rayleigh distribution at time to. 

However, experiments have c6ntradicted this result. 45 Therefore, one rejects the 

possibility X/2>>1 and seeks the possibility XC/2<< 1. 
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Case 2 

If X/2 <<1, then kZoka+_2/ will -converge to 2/(2 - Xo. Since the 

first term is not negligible as compared to 2/(2-X), one cannot neglect any term 

in the sum (4. 13). From Appendix 4.1, the distribution of no was found to be log­

normal. Also, for the reasons stated in Case 1, k= nke iJPk is still a Rayleigh 

phasor. Then one has the sum of a lognormal and a Rayleigh phasor, the distribu­

tion of which was derived in Chapter 3. Thus 

(naf,1iexp F (in n-m)21 ,for n 
2a ip(n) =L 

(n2n/M) exp[-n'/M], for n«<IM (4.17) 

where M = (OdX/2) e2 (0+m) . 

As a final solution one uses (4.2) to find p(N) at a given time or more 

practically P[WiNrmsj. It was said before that at any given time the values of 

N would differ from n by some multiplying constant C. Then 

N = O-n 

or (Nrms2 ) = (nrms2 ) 

and N/Nrms = n/nrms (4.18.1) 

o" = ' + ?dY/2 Jea+mwhere nrms e . .18.2) 

From (4.18.1) one obtains 

p[N/Nrmsl = nrms p(n) (4.18) 

Equations (4. 17), (4. 18. 1)and (4. 18) are used to obtain 
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Nrms).lexp n(N/Nrms) + 

p(N/N ) = for n>MA~and N/Nrms >>Xa/2 

(4.19) 

2Cr/N) rms exp -(N/Nrmst nms 

for n -/M-and N/Nrms<< Xa/2. 

One can find the cumulative distribution P(N/Nrms) from. (4.19). It is also 

noted from (4.18.1) that P(N/Nrms > R) = P(n/nrms > R)and is given by 46 

1/2 [-erf(in ) 1for R>> /2 

P(NNrms > R) = 

e [-R l wnrm2)], for R<< Xn/2 

Note that vVnrms = Xa/2 (X>o/2 + 1) 
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Appendix 1.1 
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FIGURE 1.]A. Zeta function 

Figure 1.]A is the plot of incomplete (N c) zeta function versus number 

of errors. Note that it is practically unity for m= 1/p = 0.1. 
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Appendix 1.1 (Continued) 

Table 1 

INCOMPLETE ZETA FUNCTION Z(N,p) 

p 0.100000, mr 10 p = 0.500000, m = 2 

Z(N, N N Z(N, p) NP 

1.933033 1.071773 2.00 1.707107 1.414214 
4.550882 1.174619 5.00 3.231671 2.236068 

8.619334 1.258925 10 5.020998 3.162278
 
1.623687xi0 1.349283 2x0 7.595255 4.472136
 
3.730404x10 1.478758 5.10 1.275237x10 7.071068
 

6.9818 74xlO 1.584893 102 1.858960xi0 1.00000Oxl0
 
1.305143x102 1.698646 2x10 2 2.685924x10 1.414214xi0
 
2.980869xi02 1.861646 5x10 2 4.328328x10 2.236068xlO
 
4.036227x10 2 1.925350 7x10 2 5.147344x10 2.645751x10
 

3
5.565207x102 1.995262 10 6,18008Ix1O 3.162278x10
 

1.038811x10 3 2.138469 2x10 3 8.799798x1O 4.472136x10
 
2.370094x10 3 2°343673 5x10 3 1.399766x10 2 7.071068x10
 

1.000000x10 2
 4.423059x103 2.511886 104 1.985553x10 2 


1.414214x10 2
 8.254026x103 2.692173 2xi0 4 2.813980x10 2 


1.882878x104 2.950509 5x10 4 4.457689x,02 2.236068x10 2
 

3.513606x104 3.162278 105 6.310108x10 2 3.162278x102
 

3.389245 2x10 5 8.929825x102 4.472136x102
 6.556652x104 


3.714471 5x10 5 1.412769x10 3 7.071068x102
 1.495648x10 5 


1.000000x10 3
 2.790981x10 5 3.981072 106 1.998555x10 3 


5.208158x105 4.266807 2x10 6 . 2.826982x103 1.414214x10 3
 

1,188038x]0 6 4.676242 5x10 6 4.470691x10 3 2.236068x103
 

2.216958x106 5.011872 107 6.323110x10 3 3.162278x103
 

4.136989x106 5.371592 2x]0 7 8.942827x103 4.472136x103
 

9.436923x106 5.887040 5x10 7 1.414069x10 4 7.071068x10 3
 

1.760992x10 7 6.309573 10 1.999856x104 1.000000x10 4
 

3.286128x107 6.762433 2x10 8 2.828283x10 4 1.414214x10 4
 

7.496015x107 7.411344 5xi0 8 4.471992x10 4 2.236068x104
 

1.398806x108 7.943282 109 6.324411x104 3.162278x104
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Table 1 (Continued) 

p 1.000000, m= 1 I p= 1.428561, m= 0. 7 

NPZ(N,p) 	 N Z(N, ) NP 

1.500000 2.000000 2.00 1.371499 2.691800
 
2.283333 5.000000 5.00 1.818010 9.966177
 

2.928968 1.000000xi0 10 2.089265 2.682696x10
 
3.597739 2.000000x]0 2x0 2.301445 7.2212 8l10
 
4.499205 5.000000xlO 5xi0 2.506341 2.673622x]02
 

5.187376 1.000000x102 102 2.617318 7.196856x102
 

5.878027 2.000000x10 2 2xi02 2.700206 1.937250xi0 3
 

6.792811 5.000000xi0 2 5xi0 2 2.778246 7.172514x,03
 

7.128992 7.000000xi02 7x102 2.800060 1.159914x104
 

1.930698xi0 4
 7.485444 1.000000xi03 103 2.819999 


8.1784 2.000000xi0 3 2xio 3 2.851059 5.197053x104
 

9.0945 5.000000xi03 5xi0 3 2.880221 1.924167xi0 5
 

4
9.7876 1.000000xl04 10 2.895803 5.179474x105
 
4


10.4806 2.000000x104 2x10 2.907381 1.394211x106
 

11.3967 5.000000x104 5x104 2.918252 5.161955xi06
 

12.0896 1.000000x105 105 2.924060 	 1.389495x]07
 

3.740244x107
 2.000000x10 5 2x10 5 2.928376 

1.384795x10 8
 5.000000x105 5x10 5 2.932428 


6
1.000000x10 6 10 2.934593 3.727593x]08
 

2.000000x106 2xI0 6 2.936202 1.003394x]09
 

5.000000x106 5x]0 6 2.937713 3.714985x109
 

7
1.000000xi07 10 2.938520 9.999996x]0 9
 

2.000000x107 2xi0 7
 

5.000000x107 5xi0 7
 

1.000000xi0 8 108
 
2xi08
2.000000x]0 8 


5.000000x]0 8 5XI08
 

109
1.000000:109 
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Table I (Continued) 

=2.000000, m = 0.5 . = 2.500000, m = 0. 4
 

Z(N, 0) NP N 	 Z(N,p') 0 

1.250000 4.000000 2.00 1.176777 5.656854
 
1.463611 2.5000QOxiO 5.00 1.290065 5.590170x10
 

3.162278x]0 2
 
1.549768 1.000000xi0 2 10 	 1.321921 


1.788854x103
 1.596163 4.000000x102 2x10 	 1.334307 

1.339629 1.767767x104
 1.625132 2.500000x103 	 5x1O 


1.634983 1.000000x10 4 102 	 1.340825 9.999999xi04
 

1.341251 5.656854x105
 1.639945 4.000000x104 	 2xi0 2 


5xl0 2 1.341424 5.590170x106
 1.642932 2.500000x105 


1.643501 4.900000x105 7x]0 2 1.341446 1.296418x107
 

3 
 3.162278x107
 1.643927 1.000000x10 6 10 1.341459 


1.644427 4.000000x106 2x10 3 1.341472 1.788854x]0 8
 

1.644727 2.500000x107 5xi0 3 1.341478 1.767767x109
 

104 1.341479 9.999998x10 9
 
1.644827 1.000000x108 


1.644877 4.000000x10 8 2x10 4 1.341480 5.656853xi10
 
1.644907 2.500000x109 5x10 4 1.341480 5.590169xi0 11
 

1.644917 1.000000x10 10 105 1.341480 3.162279x10 12
 

1.644922 4.000000x1010  2x10 5 1.341480 1.788855A013
 

1.644925 2.500000x10 11 5x10 5 1.341480 1.767767x10 14
 

6
1.644926 1.000000x10 12  i0 1.341480 	 1.000000x10 15
 
5.656853x10 15
 

1.644927 4.000000x012 2x106 1.341480 


1.644927 2.500000x10 13  5x10 6 1.341480 5.590168x10 16
 

107 1.341480 3.162277x1017
 1.644927 1,000000x10 14
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Table I (Continued) 

p= 3.333333, m= 0.3 	 p= 5.000000, m = 0. 2 

Z(N, p) N N Z(N, p) NP 

1.099213 1.007937x10 2.00 1.031250 	 3.20000010
 
2.43 x10 2
 3.00 1.035365 


4.00 1.036342 1.024 x10 3
 

500 1.036662 3.125 x10 3
 
1.139414 2.137470xi02 


7.776 x10 3
 1.036790 

x10 4


6.00 

7.00 1,036850 1.6807 


8.00 	 3.2768 x10 4
 1.036880 


1-036907 1000000x105
 1.45586 2.154435x103 10 

2x10 1.036926 3.200000x106
 1.46984 2.171534x104 


1.147310 4.605039x105 5x10 1.036927 3,124999x108
 

1.147346 4.641588x106 102 1.036927 1.000000x10 10
 

1.147353 4.678427x107 2x10 2 1.036927 3.200000x1011
 
1.147353 9.921255x108 5x10 2 1.036927 3.125000x1013
 

1.147353 3.045510x10 9 7x102 1.036927 1.680700x10 14
 

1.000000x10 15
 1.147353 9.999998x109 103 1.036927 

2x103 1.036927 3.200000x1016
1..147353 1.007937x1011 


1.147353 2.137469x1012  5x103 1.036927 3.125000x10 18
 

1.147353 2.154434x1013 104 1.036927 	 1.000000x1020
 

1.147353 2.171533x1014 2x104 1.036927 	 3.200000x10 21
 

3.125000x10 23
 1.147353 4.605039x10 15 5x104 -1036927 


1.147353 4.641588x1016 105 1.036927 1.000000x10 25
 

1.147353 4.678428x10 17  2x10 5 1.036927 3.200000x10 26
 

1.147353 9.921253x1018  5x10 5 1.036927 3.125000x10 28
 

1.147353 9.999997x10 19  106 1.036927 	 1o000000x10 30
 
3.200000x10 31
 

1.147353 1.007937x102 1 2x106 1.036927 


1.147353 '2.137469x1022  5x106 1.036927 3.125000x10 33
 

1.147353 2.154434xi023  107 1.036927 	 1.000000x10 35
 

p =lO,ni 0m 1 

p (N,p) NP N 

1.000977 1.024 x103 2.00
 
1.000993 5.9049 x104 3.00
 
1.000994- 1.048576x106 4.00
 

1.000995 9.765625x106 5.00
 
1.000995 6.046619x107 6.00
 
1.000995 2.824752x108 7.00
 

1.000995 1.073742x109 8.00
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Appendix 1.2 

The plot of number of errors N versus the total test time T as the slope m 

is the parameter is given in Figure 1.2A. 

10/ 

10 /0 

10. 10 / 

100.7, 

N 

104 

10 

0.5 

. 

104 

10 100 . 0.1 

1 10 102 o1a 
T 

o4 io 106 i0 10 

FIGURE 1.2A. Total test.time T in Bits 
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Appendix 2.1 

Consider the low-pass filtershown in Figure 2. IA 

Low-Pass 
IS
HKcom-" )lexp •~fScomp,(kT+" 0 (t-kT1-orT Filter [Scomp(t)] exp 

sampled signal T1GaB() continuous signal 
(a) 

AT1G2B(W) 

TiF1 
-B B 

- (b) 

FIGURE 2. ]A (a) Reconstruction filter 
(b) Gate function 

- To obtain the output one takes the inverse transform of the transfer function 

[T1GtB (w)]and convolves with the )nput. Thus 

AEBcomp(t)1exp= k [tomp(kT +lexp6(t-kTi-r)*Sa(Bt) (2. 1A) 

where 

*means convolution and S(~Bt) = sin Bt/Bt is the inverse transform of the 

transfer function or the gate function. Now, since 

6(t-kT1-,r) *Sa(Bt) = SaLB(t-kT-'r)] 

Equation (2. IA) becomes 

comp(t)lex p (kTz +r)] Sa{[B(t-kT,-'r)]which is 

Equation (2.3). 
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Appendix 2.2 

Find the mean square value of e(t), where 

2(t) = {[tcomp(kT.r)] exp- s(kTi+)}S a[B(t-kTi-r)]. 

cl(t) j- ,),-T/2-

T-- 1 somp(kTI+(t) = I M T/ 2 \k c exp 

- s(kTi+r)J SaLB(t-kTi-) dt . (2.2A) 

Various sampling functions appearing in the summation in Equation (2.2A) 

are orthogonal, i.e. 

CaB(tmT'r)SaB(tnT-r)]dt {WB for mn 
Lo for mkn (2.2. 1A) 

Therefore, after changing the operation of integration and summation in 

(2.2A) one obtains 
1 

e(t) jlkTT=rke TI ' -T/2- ]F)exFCT.vf(:T-)5)llimG rTtGm~~.T2comp(kT1+')1 

Sq [B(t-kT1 ,-r)] d t 

k T-4im Go T omp(kT +,)Iexp -s(kTl+r-)) 

fT/2
Sa [B(t-kT-,r)] dt (2.2. 2A) 

-T/2 

But from (2.2. IA) 
T/2Sa[~~~~) d t IT/B 

-T/2 

then (2.2.2A) becomes 

k FBXP/comp exp 



Appendix 2.2 (Continued) 
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But since B = 2"Tfs 

(t)o 
t2fsT k 

(kT+
comp 

-s(kT+ 2 , which is (2.6).expkT)> 
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Appendix 2.3 

Show that G(v) >[M(v)] unif' where G(v) and M(v) are the moment generat­

ing functions of Gaussian and uniform distributions respectively. 

Proof. 

mgf of (x) = f [exp (vx)] p(x) dx (2.3.1A) 

thus from (2.3.IA) 

G(v) = exp[mv + v202/2] 

and for rmo, 032= A2/12 

G(v) =exp[(A2/l2)(v2/2)] 

t_[(VA/2)2 1/6] k '/k , (2.3.2A) 
k~o 

also
 

[M(v)]unif 	= sinh v(A/2) /v(A/2) 

= r_[v(A/22k /(2k+l) (2.3. 3A) 

Now, ifone compares the sums (2.3.2A) and (2.3.3A) it isobvious that 

[v(A/ 2 )]2k 1/(2k+1r S A/k1/6] k(vA/2)2k 


thus 

G(v) :; M(V)]uif 
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Appendix 2.4 

Find the value of v that would minimize Gs(v) e- v a = expF[k/2) (A2/12) 

v2av]. (2.4A) 

Solution: 

Minimizing In.[Gs(v) e-Va will also minimize Gs(v) e- v a 

Thus 

=In [G s (v) eVa1] ln[Gs(v)- va (2.4. ]A) 

taking the derivative of (2.4. 1A) 

-d/dv[ln Gs(v) e va] =[Vos(v)]d/dv LGs(v)]- a (2.4.2A) 

Equating (2.4.2A) to zero. 

d/dv[Gs(v)] = a Gs(.v) (2.4.3A) 

v must be chosen such that (2.4.3A) is satisfied. Putting Gs(v) = exp 

[(k/2)(A/2) v2] into (2.4.3A) 

one gets 

k(A2/12)v exp [(k/2)(A/12)v2] =-a ex (k/2)(9/12)va] 

and k (A2/12) v = a 

or v = (q/k) (12/A 2) 

which is (2.14). 



50 

Appendix 3.1 

Prove that the sum of uniformly distributed phase phasors is itself a uniformly 

distributed phase phasor. 

Proof: 

Let Reie= AkeJk 
k=o 

where 

,(Ak) are amjolitude distributions such that the central limit theorem is 

satisfied. That is, no one of the distiibutions of Ak is dominant, and 

(ek) are the uniformly distributed phases. 
n 

If n is large, then by the central limit theorem Rx = F Ak cosOk and 
k~o 

Ry =kE Ak sin 0k are Gaussian with zero mean and variance (n<Ai>). Since 

R and Ry are orthogonal they are uncorrelated. The joint distribution is found asx 

folltows: 

p (R,e) = (R)p(Rx , Ry). (3.1. IA) 

The two-dimensional Gaussian distribution is given by 

1 e.(R +RR)/20r'
 
p (Rx, Ry) = e x 


where o (1/2)n < A >. 

Now, from (3. 1. IA) one gets 

p (R, 9)= R -R2/2( 2 (3. 1.2A) 

(3. 1.2A) is integrated with respect to Rto obtainp(O).
 
C 1. r° -(R2 /2°&)d
 

p (9) = p(R, 0) d R f a0 12Tr ( A 
p.-(e) = 1 (3.1.3A) 

2Tr
 



51 

Equation (3.1.3A) shows that Ret g is a uniformly distributed phase 

phasor. 
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Appendix 4. 1 

)..
Letno = n exp [_ 1 . 

Find the distribution of-no at a given time and if the distribution of np is known. 

Solution: 

At a given time let exp,"(tx-4)] = k where k is a constant and let p(np) 

be dehned by Equation (4.5). Now then, 

no = k np 

but p(no) d(no) = p(np) d(np) 

or pnor ~~p(no) = p(np) na 

then 

p(no) = 1/k p(np) 

which proves the statement made in page 32. 
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Appendix 4.2 

Given np = eA , where A is Gaussian, find the distribution of np. 

Solution: 

p=e() xp L 2 (4.2. 1A 

and since p (rip) d(np) = p() dA 

or p(np) = p (A) dA/d(np) (4.2.2A) 

but d(np) = eAdA =[4ln(np) d]A = np dA 

then (4.2.2A) becomes 

p(ni) = (1/np) p(A) 

p(np) = (1/np)p(n np) (4.2. 3A) 

or from (4.2. 1A) and (4.2.3A) 

p1 exp --fln(np) - m2e x  (np)¢ 2Ic.2" J 

which is Equation (4.5). 
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Appendix 4.3 
k 

-Let tk = 2; T., where Ti are distributed identically and p(Ti) = Xe
i=1 

Then find p(tk). 

Solution: 

The characteristic function of the random variable t = Ti is 

.Xe_ - x 

(el') (.Xt) d t = X-j-w
The characteristic function of tk is the product of the characteristic 

functions of the sum terms t = Ti. Then the characteristic function of tk is>,k 
chf. of tk = (x-wk (4. 3. ]A) 

Taking the inverse transform of (4.3. IA) one obtains 

p(tk) = 1 C )xk e-J k dw 

Xktkk- le-Xtk
 
P(tk) = (k-I) I
 

which is Equation (4.8) 
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Appendix 4.4 

Let v = exprtk/ao, and the distribution of tk is p(tk). Find the distribu­

tion of v, p(v). 

Solution: 

and 

P(tk) = xktkk-l e ->Xtk / (k-1) 1 

p(v) Ptk(V) Idtk/dvi (4.4. 1A) 

since tk = a In v, then dtk/dv = /v. 

The p(tk) in terms of v is given by 

Ptk(V) = 
xk(a Inv)k-I e -Xaln v 

(k-1)1 

xk(cIn v)kl (4.4.2A) 

tk (k-1)! vX 

Then from (4.4. IA) and (4.4.2A) 

p(v) = (V/v) ?,k(, In v)k-1 
(k-I)I vX t 

p(v) = xkak(In v)k-I 

(k-whcvi 
+ 

which is Equation (4.8. 1). 
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Appendix 4.5 

Given nk = u/v, p(u) and p(v) find p(nk). Assume u and v are inde­

pendent. 

Solution: Let nk -nk(u'v) , mk v and their inverse functions are 

u = u(nk, mk), v = v(nk, ink) 

Since the following relation holds, 

p(u,v) d u dv = p(nk, mk) d nk d mk 

then 
du dv 

p(nk, ink) = p(u, v) nud ,4. 

d (4.5.1A) 

but dudv = (u,v) 
a Tmk 

_ 

(nk, mk) 

Therefore one first finds the Jocobian.to be: 

a(u,v) = v a o 
7nk, k) -u/nk I 

The Equation (4.5.IA) becomes 

p( ink) = vp (u,'v) 

= VPUV(nk, mk) (4.5.2A) 

Now, since u and v are independent 

p(u, v) = p(u) p (v). 

Also noting that dv =di k , upon integrating both sides of Equation (4.5.2A) 

one gets 

.fp(nk, ink) dmk = J'vp(u) p(v) dv (4.5.3A) 

http:Jocobian.to
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Appendix 4.5 (Continued) 

Left side of Equation (4.5.3A) is p (nk). Also replace u= nkv. Now, if 

v = exp[tk/a] and o : tk co then I < v <c0. Therefore Equation (4.5.3A) becomes 

p (nk) = v p(v) Pu (nk' v) dv (4.5. 4A) 

From Equation (4.5) and (4.8.1) pu (nkv) and p(v) are obtained. But first 

the following transformations are made 

Inv=x, thendv=eXdxandwhenv 1, x=oandv=0, x=c°. 

Then 

xk Cakxk- 1 
pv) =(k-])! x(Aa+) (4.5. 5A) 

and 

1 a - (In nk+x- m)2( 4 56A)
Pu(nkv = crnkex 2. exp 20. 

Placing the values of p(v) and Pu(nk, v) in (4.5.4A) from (4.5.5A) and (4.5.6A) 

one gets xkak Ck_ I -C&x (In uk+x-m) 2l 
Pink - (k- 1"0 exp) -j dx 

this is Equation (4.9). 
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Appendix 4.6 

Show that<(A nkeJ) e> = 

Proof: 

' P k  Let S = ReJ 6 = E nke (4.6. IA)k=oK 

The mean-square value of the complex random variable S is <SS*>. Therefore, from 

(4.6.lA) one has 
> °<R--~YkZ nk J nle-jYI > .- (4. 6. 2A) 

kl:= 

If one assumes nk and n1 are independent and uses the fact that the average of the 

sum is equal to the sum of the averages, then 
.(.n_3A)<e> = E Ln < nknlej(fkT)> (4.6.3A) 

If the amplitudes of the phasors are independent of their phases, then (4..6. 3A) 

becomes 

n n< R2> = F, L <nk~n><ej(qk-'Pl)> (4. 6. 4A) 
I1=o
k=o 


But, if the phases are uniformly distributed then 

I 21TI 2Te j( -pl f, for kMl 
452 0 J(k-l dYdO ,for k=l 

Thus (4.6.4A) is now 
n
 

F= <nk> (4.6. 5A)
 
k=o
 

or from (4.6.2A) and (4.6.5A) letting n =Cc one gets 

Z <nk2> = < E nkeJ >. 
k=I k=o 
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Appendix 4.7 

Evaluate the following integral 

hk> xko ",COftk-1 exp[-a>x
k> nk (k-) ankv2T 0 

(In nk+x-m) 2 dxdnk • (4.7.IA) 

2a 2 I 

Set In nk=v and interchange integrals over x and nk, then integrate with respect to 

nk. Since dnk = eVdv and when nk = o, v = -seand nk =G, v =0, the Equation 

(4.7.IA) becomes 

- le- a xdx JGo ev<n2> (k) 2tx k


exp- (V+x-m) 2 vd
 
ex{ 29 edv 

or 2> Xkk CO, -xax 1
(k V2- J1xk- exe Xdx i' 

exp2o(' dr
exp v2 +2v(x-m-2 .) + (x-m)'] dv (4.7.2A)4.. 

Now, if one adds and subtracts (x-m-22)2 from the numerator of the exponent of 

the integral with respect to (v)and considering that integral only, then one gets 

:=expL ­ 2Lv+x-m-Lu)JJ+4 L xmJj

F-
dv 

4& (x -5# f[ (--¢ ] 
-ex F p j dv (4.7.3A)&ex 

The integral in (4.7.3A) is easy to evaluate and it is equal to a27f. Thus 

(4.7.3A) is now equal to 

f4expF-° (x-m-&)] (4.7.4A)
CrVT- xpL 
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Appendix 4.7 (Continued) 

Returning to Equation (4.7.2A) and replacing the integral with respect to 

(v) by its value from (4.7.4A) one obtains 

<nk2> = a k .xk-le-Xexp[-4a2(-m-e)l dx 
(k-I)! x=o L2 

or <n > ±k k l[e2(m+ f)]Sxk-1e -Xa x dx (4.7.5A) 

k (k-i)! x-e 

Let (Xa+2)x = rand dr= (.a+2) dx. When r= o, x = o and r =, x =c-. 

Equation (4.7.5A) becomes 

I Le2(m+aFGo 2)- k -"rX d'r -+= kak e-'s+ ,n [ e 

or 2>= k e(2(r+Ae)2mk) 

<n> k- 1)1(Xa + 2 'k  = <n ',rk-le-Tdr (4.7.6A) 

But the integral in (4.7.6A) is the Gamma function r(k) and since F(k) = (k-)i, 

one has
 
eSXkke2(md )
 

<nk> = + 2)
 

which is (4.12). 
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