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ABSTRACT

Non=-Gaussian noise is the subject of this study. The probability density
functions for quantization noise, continuous wave interference, atmospheric noise,
and impulse noise are presented and discussed in detail. Impulse noise is described
by the hyperbolic and Pareto distributions and quantization noise is represented by
the uniform error distribution. Both the continuous wave interference and afmo-

spheric noise follow Rayleigh and lognormal distributions.



FOREWORD

This thesis attempts to satisfy a need which has become apparent in recent
years with the development of data fransmission systems. This need is for a pres-
entation of fypes of noise which are not described by a Gaussian process. Though
most of the resulfs obtained here have appeared elsewhere and have become well
known in recent years they have not been classified and discussed as to their
probability density functions. Thus, all types of noise discussed here have in com=
mon the probability density functions which are not Gaussian. However, old and
well-known topics such as multipath interference and atmospheric noise are very
closely related to the Gaussian process. These topics were included here because
under transformations they cease to be Gaussian. For example, the Rayleigh dis-
tribution is a non-Gaussian distribution which has Gaussian orthogonal components.
Also, the lognormal distribution of atmospheric noise amplitudes is a non-Gaus-
sian distribution. It is obtained by the transformation €8, where 415 a Gaussian
random variable. On the other hand, impulse noise is in no way related to the
Gaussian process. Hyperbolic and Pareto distributions were used fo describe the
behavior of impulse neise. Another type of noise which is not related fo Gaussian
is quantization noise in PCM and which has uniform distribution. It is a fact that
non-Gaussian noise occurs often in data transmission. Non-Gaussian noise is
thus important because the usage of data fransmission techniques is extensive and

rapidly increasing.
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INTRODUCTION

Noise can be broadly defined as any unwanted disturbance within the use~
ful frequency range. It is distinguished fromdisfortion in that noise is a random
process.

One can classify noise into three categories in the frequency domain. Two
of these are single frequency noise and impulsive noise. Between these exiremes
lies Gaussian noise. Naturally, the most commonly encountered noise is Gaussian.
This distribution results where the noise is the sum of many independent noises with
similar statistical characteristics as predicted by the central limit theorem. Exam-
ples of Gaussian distributed noise are thermal and shot noise. However, types of
interferences encountered in data fransmission, such as quantization noise in Pulse
Code Modulation (PCM) and impulse noise in telephone channels, do not follow
Gaussian distribution. The same is frue for afmospheric noise produced by thunder=-
storms. The non-Gaussian probability density function is encountered when radio
waves at medium range of frequencies are scaftered by the ionosphere and then
inferfere with the direct wave.

Another way of classifying noise is to compare how it behaves with the sig-
hal strength. For example, impulsive noise peaks in data transmission caused by
"hits" and "dropouts” are often multiplicative in character. That is, noise multi=
plies the instantaneous value of the signal wave amplitude by some function.

Thus, multiplicative noise modulates the signal. Usually the multiplying function

1



mentioned is 1 and sometimes 0.1 On the other hand, there exists additive noise,
and the effect of this type of noise is reduced by an increase in signal sirength.
impulse noise is characterized by non-overlapping transient disturbances in
the fime domain. Common sources of impulse noise in wire fransmission are dirty
switch contacts, defective filters in power supplies, crosstalk through coupling from
signaling circuits, improper shielding and grounding, unbalanced circuits, ignition,
loose connections, efz.2 This type of noise is also caused by external or directly
connected selector swirches in telephone channels. Therefore, during the busy
hours of telephone communication impulse noise is increased since switching is
increased. However, impulse noise is not so disturbing in voice or continuous
communication systems. But, in data fransmission systems when the noise pulse
heas high amplitude, so that it can become comparable in magnitude with the thres~
hold level, it can eliminate or add bits of information which are not present in the
original signal. If the impulses occur very frequently, then they can become
disturbing even in voice communication.

In PCM systems, even when impulse noise is nof present, there is an inher-
ent noise existing. This is quantization noise and it is caused by the random dif-
ference between the actual waveform and the quantized approximation. |t is clear
that quantized noise may be minimized by using as many quantized steps as possible.
But this decrease in the noise is accomplished at the expense of increasing the num~
ber of code pulses required to fransmit a signal sample.

In Chapter 3, an example of continuous wave interference is discussed where

the sky wave is scattered in the ionosphere. Scattering of waves is caused by the



inhomogeneities of index of refraction which results from the furbulence in the at=
mosphere. The scatfering becomes more pronounced when the wavelength of the
signal is of the same order of magnitude as the dimensions of the atmospheric
"hlobs® .3 When the scattered signal, as it is picked up by the receiving antenna,
inferferes with the ground wave, the resulf is fading. In other words the resultant
wave has fluctuating parameters. Due to the fact that this fluctuation is not Gaus-
sian, it is discussed in this presentation.

Atmospheric noise, like impulse noise, often has impulsive character in
the time domain. Afmospheric noise is caused by lightning flashes, which radiate
electromagnetic energy. 1t may produce an electric field in the ionosphere much
greater than 0.1 v/m and a magnetic field which is comparable to that of earth's, 4
These fields may, in addition to the direct interference, play an important part in
the machanism of reflection of signals from the fonosphere, at points close to the
flash. This is so because absorption characteristics are altered by the presence of
the fields. Ultraviolet light, which causes ionizatfion in the ionosphere, also
causes a change in the absorption characteristics of that medium. This is shown
in Figure 1,5

It is obvious from Figure 1 that at night, when eleciron density is less,
absorption is less. Thus, atmospheric noise by being subject to propogation condi-
tions just like any other EM wave, causes more direct interference at night. This
is because noise can propogafe long distances without being absorbed by the iono=-
sphere. However, at higher frequencies this daily situation is somewhat reversed.

At high frequencies, the ionosphere will support propagation only during the day-
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FIGURE 1. Electron density in the ionosphere

- light hours. Af night when absorption is fow, the wave penetfrates. In addition
to the daily cycles there are seasonal variations in the frequency of occurrence of

thunderstorms, which is a common experience witnessed by everyone.



Chapter 1

IMPULSE NOISE

Errors in data fransmission do not follow the laws of purely random evenis.
That is, Gaussian noise, which is purely random, does not describe the random
process in this case. A charocteristic of a Gaussian noise process is that it tends
to deliver energy af a uniform rate.”r® But a noise process delivers energy af a
uniform rafe if its standard deviation O is very small. Obviously, impulse noise,
as its name suggests, is impulsive in its character. This means that deviations in
amplitude from the mean are highly probable or o is large. Then, it does have
less uniform noise power and the process is considerably different from the Gaus~
sian.

One way fo describe errors is to find their amplitude probability density
function. Another way is fo find the error occurrences in the time domain. Error
occurrences can be described either by a distribution of error rafes measured in
small fixed fime intervals or by a distribution of inter-error spacings. In any of
the cases different disiribution laws are obfained for short=duration and long-
duration tests.” However, qualitative descriptions of errors in telephone circuits
show that they appear fo be comprised of bursts of errors, in fact, bursts of bursts
" of errors in addition to single, independent error events. 10

The distribution for the amplitudes of impulse noise follows an empirical

higher order hyperbolic law. 1



Namely,
pi) = k/a+b)m*! (1.1)
where
(n) is the amplitude of impulse noise,
(k) is the constant to be determined,
(m) is the order of the hyperbolic equation,
and (b} is an added small constant (bias) to keep the frequency of
occurrence of smallest amplitudes finite.
If P (n) is defined as the cumulative probability of amplitude being n or

greater, then

IOO k/(x»i—b)m'{'} dx

n
k/m {n +b)" (1.2)

P (n)

k in (1.2) can be determined by using the fact that J;ook/(n +b)" Tl 1.
Then let n == o in (1.2) which gives k to be
k = mb™
Equation (1. 1) becomes
pln) = mbm‘/(n LA (1.3)
and (1.2) becomes
P{n) = b™/(n+b)" (1.4)

The average of n is easily obtained by

?1-=,Jeonp(n)dn

o]

=J’:°mb"' n/i+b)™ T 1dn

=b/m =1 . (1.4.7)



similarly
[ce)

n2 = [ npln)dn
o

2b%/ [(m=1) (m=2)] (1.5)

I

i

It is observed from (1.5) that for m =T or m =2, niy, is not finite. Since
p (n) in (1.1) is higher order hyperbolic, i.e. m¥ 1, then m > 2 is necessary. In

fact, 2<m =35 is the range of m. 12

The plots of the cumulative distributions of the amplitudes of impulse noise

for different m = 3,4, 5 are shown and compared with the Gaussian and Rayleigh

_disiributions in Figure 1. 1. 13 Bias b =1 is assumed.
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FIGURE, 1. 1. Amplitude disiribution of impulse noise



It is seen from Figure 1.1 that at low probabilities, the hyperbolic distri-
butions show much lu;'ger amplitudes than do the Gaussian or Rayleigh distribufions.
Also, the root mean square value for the hyperbolic distribution is meaningless if
b and m are not known, whereas in the Gaussian distribution the root mean square
value is obtained directly by measurements of the amplitudes.

It is proposed that the distribution of error rates, measured in long cfuraﬁo!n
tests follow the first order hyperbolic law. 14 1hat is, putiing m= 1 in Equcﬂ;ions
(1.3) and (1.4) gives

p (n) =b/(n+b)? (1.6)
and
p (n) =b/(n +b) (1.7)

it is observed from (1.4. 1) that n has no finite long=time average for m= 1.
However, by running the integration to a finite boundary it is possible to derive a
long time average. Thus

a .
ny = ,J; np{n)dn, (179
where subscript "a" in ?\'q denotes the upper limit of integration. Equations

(1.6) and (1.8) give

Ry = [ [nb/n+B)?dn (1.9
letv=nt+bandy=a+bin(1.9). Then
Fa = b‘Ly(l/v) dv - bajg(]/vz) dv (1.10)

Qor

g = blIn (y/b) = 1+ (b/y) ]
Let q express a quantile boundary. That is, the upper limit of the integra-

tion in (1,10} is y = gb.



Then

3|
]

o *,‘b[-_lnq -1+ 1/q]

or

n, = b [f @] (.11
" where f (q) = Inqg = 1+ 1/q and it is a numeric which relates the long-time aver=
age Fq to the bias b. Now, (n) is no lo;ger continuous by definition. Then it is
possible fo find the probability of exactly (e} evenis having the long time average
T
That is,
p[e, ?{q] = EH b/(n+b)® d n

=b[lffe +b) ~Vle+b+1)]

=b/[ e +h) (e +b+ 1)] : (1.12)
Replacing the value of b in (1.12) from (1.117) gives p[e, ;C':l in terms of the long=

time average n . Thus

oo | = Tl [(6F 79 r 147

and lete = 0,1,2 etc.

|

p|0, ng |= F/(F+ny
= R/ G+ @+ |
p| 2 ng |= ngfY [(ZF +ng) (3f +?{q):| , efe.

These probabilities for different e, have been plotted in Figure 1.2, with

pl1,

3
!
|

q=1000. 13
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To find the probability of af least e events having the long=time average

ng one proceeds as follows:

Ple, n

a

oo
= Lb/(n—fb)a dn
=b/(e + b)
and again uvsing (1. 11) one gefs

P (e, Fq) = EQ/(eFFJ-'ﬁc)

Plots for q = 1000 and different e are shown in Figure 1.3 and compared

with the Poisson distribution. !

I+ is observed from Figure 1.3 that Poisson probabilities are higher than

the hyperbolic toward the larger -n'a.
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FIGURE 1.3. Cumulative error density distribution

Now, it is of interest to find the cumulated number of error-free intervals
having lengths (u) or greater. u is the interval duration with the same units as that
of the test time T.

Consider Equation (1. 12); here the bias b has a fixed value. However, the
amount of bias necessary is proportional to the interval durationu, i.e., b=byu.
Then letting e = o and replacing b by byu in {1.12) one obtains

p (g, o, u) = 1/(1 +byu)
or if by = 1/b
p (Ag, 0, U) = bo/(bo-!- u) (1.13)
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Now, p (fy, o,u) represents the fraction of 'the total number of infervals of
duration u in the fest that contain no events. If u is allowed fo vary, then the total
time dT devoted to eveni~free intervals of [ength between u and u+du is given by

dr = -T[d/du p (i, o, u)] du (1.14)
where T is the total test time. The negative sign is used in (1. 14) because p dimin=-
ishes as u is increased. From (1.13) and (1. 14) one gets

dr =[Tbo /lbo+ v)° Jdu,

or

d7/u= (/) [Thg /g + 0)* Jdu .

dT/u is the number of error-free intervals in du. Thus,:when u varies from u

1

to infinity the cumulated number of intervals M(u) is given by

M) = [T b/ + 7] v

M) = -1 1 In bo+u
(u) T[ ey + 5, n _OU :I

Thus far only the experimental results obtained from long=-term tests were
stated. It is now of interest to find the inter=error spacings for short~time fests.
The distribution describing this case is called the Pareto disiribution. 17" The Pareto
distribution is a hyperbolic distribution without bius and of order m, where m is
parameter varying with the overall density of error incidence.. Namely,

Qu) = ™M (1.15)
where Q(u) is the probability of an interval of af least u. The interval from one
error to the next is u. Distribution (1. 15) plotted with logarithmic coordinates is

shown in Figure 1.4.
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FIGURE 1.4. .Logarithmic plot of interval distribution

If the number of errors in the test is N, then the probability of the single
longest error ug is
Qug) = 1I/N .
This is shown in Figure 1.4.
Since there are N err;rs and therefore assuming N-1% N intervals one
can redraw Figure 1.4 in a linear scale with N discrefe steps. Let the ordinate

Q(u) be replaced by NQ(u). Then each unit step in the scale represents one inter-

val between errors. This is shown in Figure 1.5.

NQw | T M

FIGURE 1.5. Linear plot of interval distribution
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In Figure 1.5 the sTh

Interval u_ has the probability
Qlug = s/N (1.16)
Equation (1. 15} also gives Q(ug) «s,
Qlug) = ug™ (1.17)
Then from (1.16) and (1.17)
o = (N6 (1.19
Considering Figure 1.5, the total test duration T is equal fo the sum of all
the infervals u.
Thus
T=ugduegtugt...tug...+u, .
Then making use of Equation (1.18)
T = NVm [(1/1)Vm+ 2V V™ e a0

The expression in the brackets in (1. 19) is called the zeta function. ]8,

ZN B = 5 P (1.20)
s =}
where p = I/m.

Tables and graphs are given for the zeta function (see Appendix 1.1). 19

Now, once Z(N, p) is computed the test duration T can be found by
T = NYMZ(N, 1/m) .
Now consider an ensemble of tests, each of duration T bits, but having a
different number of errors Nj. In general, the longest spacing ug; in each test will

be shorter when there are more errors or longer when there are léss errors. This is

illusirated in Figure 1.6.
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FIGURE 1.6. Variation of maximum interval {ug)

It is also seen that the magnitude of the slopes {(-mj) increases with the

increasing number of errors N;. A better plot showing the relation between the

slopes m and number of errors N for a given test time T is shown in Figure 1.7.20

T=103 Bits

& O o M h O

° por-

0.2

0.1

FIGURE 1.7. Variation of order {m) with error incidence
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If one determines m from Figure 1.7 for a given number of errors N and test
time T, then it is possible to obiain another plot showing maximum inter-error

interval u,. This is shown in Figure 1.8.

T=10" Bits

6x10%

10°

0.1

1 10 10° 10° 10 10° 10° 107
N

FIGURE 1.8. Variation of Maximum interval with error incidence

It is observed from Figure 1.8 that the maximum intervals show a faster drop

over a narrow range of errors. However, it is noted that this rate of fall is inde-
t

pendent of test duration time T.



Chapter 2

QUANTIZATION NOISE

Quantization noise is a form of distortion due to "rounding=-off" or quanti=
zation of a continuous signal into discrete steps. However, the quantization process
allows digital encoding which is a very desirable data transmission technique be-
cause of its ability to combat the effects of noise. In PCM, a major source of error

is due to quantization.

21
The typical quantized transmission scheme is shown in Figure 2. 1.

. FR) :
signgf ~ | =L el CODER
H, T1=1/28 ~ A

Low~pass Sampler Compressor Uniform

Filter Quantizer
Filtered Signal :
Plus| i) ds |, P becopEs IDEAL
Quant | ¢ -B [ B ’ CHANNEL
tized Receiving Low=pass Expandor .
MO1€  Filter Filter

FIGURE 2.1. Quantized transmission scheme

Let the signal to be sampled and quantized be represented by s(t) and the

sampling wave as E 6 (t-kTy~-1).

This is shown in Figure 2.2.

17



18

s() d

/u/-—_-" v
\/ &(t=kT1~T)

T T T \/‘l\'-T-lZTT”'f T T \/\ r >3
{a) {b)

FIGURE 2.2. (a) Sampling of the signal
(b) Impulse train

T is the timing phase and it is uniformly distributed. over the interval 07 =T, 22

s (t) can be represented with the pulse trains after sampling, cémpression,
quantization and expansion, in that order. Thus, if s (kTy + ) is the sample value
of s () at time kTy + T, then one obtains

E s(kT1 + 1) 8 (+ = kT1 - T) as the sampled signal,

(kTy + 7) 6 (t = kTy - T) as the sampled and compressed

E Scomp
signal,

~

E Scomp (kT1 +7) 8 (t = kTy - T) as the sampled, compressed and

quantized signal, and

P kTy + 7| 8 (+ = kTy = T) as the sampled, compressed,
k[ comp ]exp quantized and expanded signal.

If F(s) is the compandor (in this case compression) characteristics, then .
Fs) =F [s(kT; + T):I = scomp(le +T) is the compressed sample value and S ®

comp

is one of the (2" ~ 1) quantized levels that the quantizer output approximates for
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scomp(f)' Similarly Fd[?comp(k'rl + 'T‘)] = [g\comp(kTi + T):I exp

Note that from Figure 2. 1 the signal entering the expandor is already
quantized.
At the input of the low-pass reconstruction filier the impulse associated
with time t =kTy + T is
[ ScompkT #7) |8 = kTa = 1)
and the area of this impulse can be expressed as

[ ScompkT + Mo = ST # D+ e (Tem) . @.1)

e(kTy + T) in Equation (2.1) is the quantization error defined in an interval

(~8/2) < e(kTy +T) =4A/2 as shown in Figure 2.3,

l{ . ‘L [ecomp(kh:qz:expl / (1)

e(kT1+7)
i D Ty

T /

FIGURE 2.3. Error in quantization ;

e(kTy + 7) is also the sample value of &(t) ot fj =kTy + 7.

When companding is present the quantization step size & varies according
to the companding characteristics F(s). But since s =s(t), a function of time, then
F(s) and & would be functions of time. For A(t) one has

A = Auniform

Fos(h)
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where F ’[s(i-)] , in this case, is the derivative of the compressor characteristics
and is evaluated at that input amplitude of the signal ot the time of the sampling 23
To find the quantization noise €(t) at the output of the recoenstruction filter

one proceeds as follows. Let

&) = [Scomp(] exp 0 (2.2)

-~

whereEs‘

o omp(f)] exp is a compressed, quantized c?nd expanded continuous signal, i.e.

defined af any time t. This signal is obtained by passing E[@‘comp(k]’l + T):] exp6
(t - kT1 - 7) through the low pass filter with the transfer function T1Gap(w), where
Gzp is the gate function with bandwidth 2B. Thus, one obtains (see Appendix 2. 1):
[Feomp® ] oy = F[fcomplcTs + 7] o Se[B-KT: = 7] (2.3)
Similarly s(t) is obtained by reconstructing it from its samples s(kT, + 7).
() = T s(Ty +7) S| BT - kT - 7). (2.4)
In Equations (2.3) and (2.4) Sq[B(f— kTy - T)] is equal i’o[sin B(t - kT;_-’l'):l/
B{t - kTy = 7) and is called the sampling function. Now, replacing['s\comp(f)] oxp
and s(t) in (2.2) by their equals in (2.3) and (2.4) one obtains
3 = E}{[?comp(kh #1]] g~ KT + 1 S B - KTy =) (2.9
or by making use of Equation (2.1)
o) = T ofkTy +7) Sa[Bl - kT - 7)]. (2.5.1) "

From Equation (2.5) one can obtain (i) (see Appendix 2.2) to be

5 1 A 17
@ = T zz([scomp(kn + —r)] exp - SKT1 + fr)) (2.6)

(o]
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Now, T is the interval over which averaging is performed and f; is the signal
frequency. But, since according, to the sampling theorem the minimum sampling
rate must be 2f;, then 2f.T is the total number of samples in the inferval T.

Therefore the right hand side of Equation (2.6) is nothing but the mean

square value of the samples at times tj, = kT1 + 7. Therefore,
q k

& (ff = kT, +T) . (2.7)

It is seen from the equality in (2.7) that the problem of Findingﬂﬁ—aw(:f_)” is
merely reduced to finding m of the band limited signal s(t). This can be
found from the following c:rg;;un'n'-zn’r.z4

The quantized levels are & volts apart and e(kT1 +7) must lie in the range
[-8/2, 8/2], where the midpoint of quantized inferval is faken as reference. The
amplitude distribution of the signal s(f) is assumed to be uniform in the range
[:o, (M-1) A], where M is the number of quantizaiior.levels. Thus, the disiribu~
tion of e(kTy + 7) will also be uniform in the range [-3/2, A/Z]. The probability

density function for €[]<T1 + 'J':I would be,

.I/A ’ ["A/zr A/2:|
) , otherwise.

p ekt +7)] =

Then, the mean square value of €(kTy + T).can be found by
[T +7) plelTy +7)]d[ekTy +7)]

%. _jjA A//2 2 & (kT +7) d [e(kn + 'r)]

KTy +7)

n

= N/12

Therefore, from Equation (2.7)
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() = A*/12 (2.8)
Equation (2. 8) represents the quantization noise power at the output of the
reconstruction low-pass filter.
The upper bound for this error can be found by applying the bounding tech-
hique of Chernoff.? This bounding technique states that if a probability density

function p {x) has a moment generating function M (v), then

m -
‘an px)dxSM(v)e Ve 2.9
wP{ere a is a constant,
Now, &(t) as defined in Equation {2.5.1) is the sum of uniformly distributed

functions. Thus, applying the Chernoff bounding technique to uniformly distributed

functions one gefs

|: M (v)]unif =|:sinh V(A/23]/V(A/2)
= n%.; [V(A/zﬂz“ [1/(2n +1) 1 ] (2.10)

One can find the chur;:::terisﬁc function of the sum by obtaining the product
of the characteristic functions of the individual sum terms.
Instead of going ahead and applying this statement to unifarmly distributed
varicbles an interesting fact will be derived. This fact is that the quantization
°

-vVQ

noise power (1) is also upper bounded by G(v)e™v9, where G(v) s the charac~-

teristic function of the Gaussian process. For this fo be true one must have

Giv} = [M(v)] onif- 10 fact this is true (see Appendix 2.3).

Gv) = expl:mv-!- vBO‘B/Z] (2.17)
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where m, 0 are the mean and rms values respectively. However, since €(t) was
chosen to have zero mean and variance equal to 4°/12, then in accardance with
. 2 a2 . . . . .pa
this one has m = o, 0= £°/12 for the Gaussian process. This statement is justified
since one is directly comparing €(+) and the corresponding Gaussian variable.

Therefore From’ (2.11):

Glv) = exp[(ﬁa/ 12) (v2/2):] (2.12)

One can now find the characteristic function of the sum by

: k
Gl =T G
i=o

where the subscript s in G.(v) stands for "sum”, and from (2. 12)

G (v) = exP@Sﬁ) (4%/12) va:\
Then

G (v) &7V = exp [(k/ 2) (8%/12) v® - uv] (2.13)

In Equation (2. 13) v can be chosen such that this upper bound is minimized.

Thus, this value of v is found to be (sge Appendix 2.4):
v = (k) (12/%) (2.14)
Placing the value of v in (2. 13) from (2. 14) one gets
[Gst) e™va] = exp[- (a%/2) (12/%)]
The final result is obtained from (2.9) by placing exp [—(qz/Zk)(m/Aa)]for

M (v) e, Then,

P [e(f) > c] = exp[— 6ca/kﬂe] .



Chapter 3

AN EXAMPLE OF CW INTERFERENCE

Continuous wave interference is in confrast to other types of noise dis-
cussed, because they were impulsive and/or discrete time domain occurrences, In
addition fo this, it is assumed CW does not eoriginate from a random source, but
from a transmitter which fransmits a defterministic continuous carrier wave.

However, an uncertainty is witnessed at the recelving end. This is, among
other factors, due to scattering of the fransmitted wave which takes different prop=-
ogation paths to reach the receiving dntenna. The probability density functions
obtained to describe this uncertainty are very much the same as for the atmospheric

26

noise.“” This is the main reason CW interference is discussed here along with

other non=Gaussian disturbances. However, CW interference differs from atmos-
pheric noise, in addition to the differences described above, in that it does not
add nofse power to the signal.

A probability density function for the resultant wave is fo be found. The

resultant wave is obtained by the sum of the direct wave and the wave reflected

from the ionosphere. The direct wave will have amplitudes defined by27

= -z &d.|. .
So = exp o Jd,j (38.1)

This is the equation describing the attenuation of a wave due to the pene-

tration of a wall or other ohstacles where

24
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dj is the thickness of the J"rh obstacle

8 is the attenuation caused by that obstacle.

J

The distribution of .%?1 {)jd‘j is found by applying the central limit theorem
J-_"

and it is Gaussian. 28 By a fransformation of variables using (3. 1) one obtains the

probability density function for the amplitudes S (see Appendix 4.2)

— i ‘(lnSo-m)a ]
P o) SaOva P T Zo” ) (3.1.1)

This is called the lognormal distribution. The phase of the direct wave is
assumed to be uniformly distributed af the receiving end 2

The sky wave is scattered at the ionosphere before it is reflected back to
earth’s surface. This well-known scattering-problem will yield a waveform des-
cribed by a Rayleigh phasor.. That is, this wave will have a Rayleigl; amplitude
distribution and uniform phase distribution. S0 A Rayleigh phasor has Gaussian
orihogonal components. 81

The resultant wave will also have uniform phase distribution due to the
fact that one has the sum of uniformly distributed phasors (see Appendix 3. 1),
The problem to be solved in this chapter is to find the amplitude distribution of
this resultant wave. Thus, the problem is stated as follows. Let the received sig-
nal be

$e® = 5 M 4 5, 80 (3.2

where

Ss Sor S1 are the amplitudes of the resultant, direct, and reflected waves

respectively. 0, 8, 6, are phases of these waves. Now, the probability
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density function p(S) is to be found. Figure 3.1 shows the phasors in (3. 2)

YA

o]

FIGURE 3.1. The random phasors and their resultant (S)

To find the distribution of S, first the conditional distribution pC(S) =
p(S8/So) is found and then the application of the theorem of total probability
yields p(S). Thus, So is held constant for the momeni. Also, to make the cal-
culations easier 8, will be assumed a reference phase. This assumption merely ro-
tates x, y to put S, on the x~axis. Physically this may be achieved by some

arrangement of phase=lock sysfem.32 Then the components of sel® are

S, = So+ 51 cos 6y - 3.4
Sy = Sisin 6, (3.3)
It was stated earlier that Slgel is a Rayleigh phasor and has Gaussian
components. Therefore, S1cosf; and S1s5inBy are Gaussian. Then,
p(Sy) is Gaussian from (3.5) and
p(S,) is also Gaussian but shifted to the right by Sq in (3.4).

The joint distribution of S, and Sy is given by

2
p{Sx, Sy) = %_. expl:"(sx ;?So)3 - S&, ], (3.6)

2
where &« = 2¢° .
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Equation (3.46) is fransformed into polar coordinates by

po(5,6) = (5) plSyc, 5,)

where

P (S,6) is the conditional probability,

o
il

Scosb,

v
|

Ssin®’ and

2 __ 3 2
ST o= 5 +5y.

Thus

Pcls,0) = exp[ s +so) (2SS°c059)] (3.7)

o
One can now obtain p_{s) = p(S/S.) from (3.7) by

T
pol8) = [ pq(5,6) do

_S e‘(:'f’?*Sf)/“ £2ﬁe(zsso/a) cos® \yq

To (3.8)

But [ 2255 o/)c0s8 g = T, (2s_so> o
o

o
Io(x) is modified Bessel function of x.

Then equation (3. 8) becomes
= T e ug B/
pel) = B[ ~" 5.7/ o, (2%_) (3.9)
Applying the theorem:of total probability to (3.9) one gets
pS) = [ polS) plSo) dS, (3.10)

or by replqcing p(S) from (3.8) and p(S,) from (3.1.1)

o(5) = 2sf2 1 p{[s 45 5 +(|ns -m)]Io 'zsso\cls

a/ ol ‘o
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The evaluation of this integral is difficuls. 33 However, the following
practical resulis are obtained:

Case 1.

If S and S are much smaller thanv' o, the rms value of S, then

2
_[e-so / a]IOG;SaSP_) approaches unity. Thus, from Equations (3.9) and (3. 10) one

getls
p(s) = % . -§° S0 J;oop (So) dSy,
os) = 2 -5/ 1S, 0 forall time.
This is the Rayleigh distribution.
Case 2.

A somewhat more difficult argument is followed.to obtain p(S) when S =
Ja . 34 The result is that, (3.10) approaches p(S,) given by (3.1.1). In other

words, p(S) becomes lognormally disiributed.


http:difficult.33

Chapter 4

ATMOSPHERIC NOISE

The lighthing discharges in storms all over the world are the main cause
/
of atmospheric noise. The model that will be propoesed here does conform with the

experimental resulis plotted in Figure 4. 1.35

40

30

Lognormal

20

i
g 10,
% 0 Rayleigh
8
o
2 -0
s
o
-20]
-~30
=40

0.0001 .01 5 204060 80 90 95 98 99
P[pp/nrms >R[ %

FIGURE 4.1. Amplitude distribution of atmospheric
noise plotted on Rayleigh paper.

29



30

Distributions approach Rayleigh for small amplitudes (high probabilities)
and lognormal for large amplitudes (low probc:lbilifies).36 A lightning discharge is
transmifted by radiation and therefore superposition 'gpplies af a particular point or
time. For example, atmospheric noise is the sum of all the other aimospherics
propogated to that point. The model proposed here describes each atmospheric
as upsurging and decayin’g exponentials in time. /s 38 This model is shown in

Figure 4.2.
(o)

/

AN
i

kf (np)o

decaying
atmospheric

Nk

/1

m-s— upsurging
atmospheric

/

/\/7& L

[~

T

[o]

;
T

FIGURE 4.2. Random sequence of atmospherics

If (np)o is the peak value of the atmospheric received at time i, and &

is the exponential decay time constant, then the atmospheric ny(t) is given by
(ng)g exp (-’_.__,.-* ‘_O:C) for t >ty

no(t) =
(np)o exp C_;_fg) fort <iq -

For t <tg , B is the rise constant.
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kl‘[‘]

The amplitude of the previous atmospheric nj at time tq is given by

hk = (np)k e~ tk/ ' (4.1.1)

At a particular ¥ime t, the total atmospheric noise is
o
z
k=1

where (n') is used for upsurging atmospheric.

neJe = noeti<P°+ nke.J.(Pk +:§] (n')k ed¥k 4.1
Since t), shown in Figure 4.2, is a randem variable, the phases of the at=
mospherics at the receiving point are also random. Thus one has random phasors.
In fact they are uniformly disiributed and each component in (4. 1) is called a uni-
formly distributed phasor (UDP),39
Now, af any time t the atmospheric noise N(i}, when the uprising atmo=

spherics are neglected, is

N{) = ne_f/a for i'o< 1<, 4.2

Here, it is assumed that there are no new atmospherics occurring in the time
interval t, defined in (4.2). The next atmospheric occurs af t =f1. But in_this
time interval the total amplitude n is fixed by the set of atmospherics that have
already occurred. Therefore, N(f) is a deterministic function of time. Conversely,
if time is held constant and n varied randomly, then N will have the same disiri-
bution as for n, of course differing by a multiplication constant.

The question arises as to what the distribution of N would be if N were to
vary randomly, not at a fixed time chosen in the interval t, <+t < ty but throughout
this interval. The distribution in this interval can be found once the conditional

distribution at a given fime is found. Then the. theorem of total probability is
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applied fo find the general distribution. 40 However, no attempt is made here
to find this general distribution because it is very involved. Instead, at a
given fime the cumulative distribution P(N/N.,s > R) is found. Even before finding
this, one must find the distribution of n which in turn is determined by the distri-
butions of s Pl and (n’)k.

ng has the same distribution as the disiribution of the peak values (np) of
the atmospherics but differing by a multiplying constdnt (see Appendix 4.1). The

peak values follow the field strength formula

K/B, |
= : -z O.d.
Ny 5 exp (J"'1 Jd ) . (4.3)

where P, is the peak power af a particular frequency,

d is the distance of discharge from the receiving point, in general

;
d =% d. ,
j=1 J

K is a constant of proportionality, and

th

5. is the path of propogation of J | section.

J

One can express Equation (4.3) as

n = eA
P
where 4 = -}31 Odi+1/2InPy +InK=-Ind . ,, (4.4)
J':

All quantities in (4.4), except K, are random. Alsé the fluctuation in the

first ferm of & is more dominant. Thus the distribution of & would approximate the

!

I
distribution of T 8.d:. However, the central limit theorem applies to Z_8:d:
J=1 Jdd j=1 Jd

which makes it Gaussian. Therefore, 2 is Gaussian as well.
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One can now find the probability density function of the pedk noise ampli-

tudes as (see Appendix 4.2)

plng) = [Ving) 0/ 27 exp { [—IEE"Z”)TEJ—}

2

(4.5)
The distribution described by (4.5) is called lognormal distribution. As was pre-
viously stated, p{ng) differs from this distribution by a multiplying constant.
Now, one must obtain p(nk). From Equation {4.1.1) one has
ne = ufv (4.6)
where u = (np)k and v = exp l:’rk/oz]. (4.7)
The distribution of u is given by (4.5). However, before the distribution of
v can be found the distribution of t. must be obtained. One way of finding p(t)) is
to divide 1), into k intervals of length T;, each having exponential dis’rribui'io:nn.m'42
Then, p(T;) = ke_M and f, =i2i31'i'i where i = 1,2,3...k and A is the number of
atmospherica per unit fime. Now p(t)) is found by making use of these (see Ap=-
pendix 4.3}, end
p(ty) = [xkfk’é'i e'Mk] Jk-1 . (4.8)
It is interesting to note that, one could have just as well obtained (4. 8) by
assuming that the number of atmospherics in a given inferval is Poisson distributed.
Then conversely, under this assumption, one finds the interval disiribution given
the number of atmospherics in that in’rerval.43

If one proceeds to find p(v) by using (4.7) and (4.8), (See Appendix 4.4),

one gets

ke g <]
p(v) = (1) | Xos] (4.8.7)
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Now, since the distributions of u and v are known, one can find the distri-~

bution of ny from Equation (4.6), (see Appendix 4.5).

k k o 2

oo k-1 (In n) + x~=m)
T er——————— - >L - .

POW) = D Tom /2 L exp[ e dx @9

where Inv = x.

Returning to Equation (4.1) one can prove (see Appendix 4.6) that,
o =S

<n®> = <p2>+ T <n®> + }_‘, <(n,)?> (4.10.7)
=1 Kk k=1 Tk

The mean square of ny_is given by:

(&0
<n|f> = ‘Q nka p(nk) d Nl (4.10)

Placing the equal of p(ny) in (4. 10) from (4.9) one gets

) k .k =)
<nka> _ J‘ "ke X J‘ k=1 oxp [—Odlx _(ln n[.(-t-x-m)2 dxdny,
° " k-Dlonyam © 20 Jany

When the integral in Equation (4. 11) is evaluated (see Appendix 4.7) one

gefs
)Lkak exp 2(c® + m)
Qe+ 2K

i

<n>> (4.12)

Also, consider the upsurging atmospherics (nk’) attaining their peak values
at a time t . The second moment for this is obtained in the same‘way as that
for decaying atmospheric, except that the ¢ fime constant is replaced by 8.

)\kﬁk exp 2(0° + m)

O = o

If one assumes af the fime of observation that there are no upsurging afmo-

spherics, then one can neglect <(n/)>> in Equation (4.10.1). This assumption is
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especially true if the set of atmospherics is occurring away from the observation

point. Now, replacing <n®> in (4. 10%1) by its equal in (4. 12) one obtains

o _ P ooz _ a0%Hm) a e
> = E <>z o= e éj, vy (4.13)
A\ k
ko \ A2 in (4.13) is a converging geomeiric series which is equal to
Mo/2) + 1.

Equation (4. 13) becomes

<n®> = I:(WZ) + 1] 20 4m) (4. 14)
Cease 1

If /221, then A/ (M#2) will approach unity and the geometric series
will thus tend to converge less rapidly. The first ferm <nj> in {4.13) would
be negligible as compared to the sum.

In other words

=S
<ng> < kéo <nlf>z()m§/2) e2(0‘a +m) (4.15)

From Appendix 4.6

>3 " <of> = <( ] ne! 2> (4.16)

The sum kE (nkeJ‘Pk) in (4. 16) has a Rayleigh amplitude distribution since it
=0
represents the sums of uniformly distributed phasors nkejcPk.AM Consequently, for
Ao/2>>1, the random variable n will approach the Rayleigh distribution af fime te.

However, experiments have contradicted this resuh‘.45 Therefore, one rejects the

possibility A0/2>>1 and seeks the possibility My/2< 1.
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Case 2

< k
Al
If Mo/2<1, then k§6<§o¢+2> will converge to 2/(2 - A0). Since the
first term is not negligible as compared to 2/(2-10), one cannot neglect any term
in the sum (4.13). From Appendix 4.1, the distribution of ng was found to be log-

normal. Also, for the reasons stated in Case 1, k%; nje % s still o Rayleigh

phasor. Then one has the sum of a lognormal and a Rayleigh phasor, the distriby~

tion of which was derived in ‘Chapter 3. Thus

(l’/nU\/Z_iT_)exp[-(ln n-m)a] , for n >V M
208

p(n) =
(2n/M) exp[—nB/M:l , for n<V (4.17)

where M = (a)/2) ea(02+m) .

As a final solution one uses (4.2) to find p(N) at a given time or more
practically p[N/Nrms:l. It was said before that at any given time the values of

N would differ from n by some multiplying constant C. Then

N =Cn
or (Nrmsa) = ¢ (nrmsa)
cmc] N/Nrms = n/nrms (4. 18. ])

, 5 . .
where n..o = [ I+ Ae/2 ]eg +m . 4.18.2)
From (4. 18. 1) one obtains
p[N/Nrms:l= Prms P (n) (4' ]8)

Equations (4. 17), (4.18.1) and (4. 18) are used to obtain
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1 _[ In(N/ N ) + 0° ?
E NrmS: 2 P f—-é- )

P(N/Nm-.ls) = for n>>Mand N/N, s =X 0/2
(4.19)

(N/Nrms) znrMms )exp[" (N/ Nl.ms):a “rhrxs :l

for n</M and N/Nrms <«<Aa/2,

One can find the cumulative distribution P(N/N__ } from (4.19). It is also

>R) = P(n/n,, ~ R) and is given by 46

Fms

noted from (4.18. 1) that P(N/N

rms

.T/2|:I-erF C"UR‘[Z 02) } for R > /2

PIN/Np s> R) =

exp [—RB/(M/nrm: )] , for R< /2 .

Note that M/n> = X\&/2 (\a/2 + 1) .
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Appendix 1.1

104

Z(N,p)

1.1
1.05

38
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FIGURE 1.1A. Zeta function

Figure 1. 1A is the plot of incomplete (N%%®) zeta function versus number

of errors. Note that it is practically unity for m= 1/p = 0. 1.



Appendix 1.1 (Continued)

INCOMPLETE ZETA FUNCTION Z(N,p)

Table 1

40

p = 0.100000, m = 70

p = 0.500000, m = 2

Z(N, p) NP N Z(N, p) NP
1.933033 1.071773 | 2.00 1.707107 1.414214
4.550882 1.174619 | 5.00 3.231671 2.236068
8.619334 1.258925 10 5.020998 3. 162278
1.623687x10 1.349283 | 2x10 7. 595255 4.472136
3.730404x10 1.478758 | 5.10 1.275237x10 7.071068
6.981874x10 1.584893 102 | 1.858960x10 1.000000x 10
1.305143x102 | 1.698646 | 2x102 | 2.685924x10 1.414214x10
2.980869x102 | 1.861646 | 5x102 | 4.328328¢10 2.236068x10
4.036227x102 | 1.925350 | 7x102 | 5.147344x10 2.645751x10
5.565207x10% | 1.995262 103 | 6.180081x10 3. 16227810
1.038811x105 | 2.138469 | 2x103 | 8.799798x10 4.472136x10
2.370094x10° | 2.343673 | 5x10 1.399766x102 | 7.071068x10
4.423059x10° | 2.511886 104 | 1.985553<102 | 1.000000x102
8.254026x10% | 2.692173 | 2x104 | 2.813980x102 | 1.414214x102
1.882878x104 | 2.950509 | 5x10 4.457689x102 | 2.236068x102
3.513606x104 | 3.162278 105 | 6.310108x10% | 3.162278x102
6.556652x10% | 3.389245 | 2x105 | 8.929825x102 4.472136x10§
1.495648x10° | 3.714471 | 5105 | 1.412769x10° | 7.071068x10
2.790981x10° | 3.981072 106 | 1.998555¢103 | 1.000000x103
5.208158x105 | 4.266807 | 2x106- | 2.826982x103 | 1.414214x108
1.188038x105 | 4.676242 | 5x100 | 4.470691x103 | 2.236068x103
2.216958x106 | 5.011872 107 | 6.323110x10° | 3.162278x10°
4.136989x106 | 5.371592 | 2107 | 8.942827x103 4.472136x10°
9.436923x10° | 5.887040 | 5x10 1.414069x104 | 7.071068x103
1.760992x107 | 6.309573 108 | 1.999856x104 | 1.000000x10%
3.286128x107 | 6.762433 | 2x108 | 2.828283«10% | 1.414214x104
7.496015x107 | 7.411344 | 5x108 | 4.471992¢<104 | 2.236068x104
1.398806x108 | 7.943282 109 | 6.324411x10%4 | 3.162278x10%




Table 1 (Continued)
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p=1.000000, m=1

p=1.428561, m=0,7

Z(N, p) NP N Z(N, p) NP
1. 500000 2.000000 2.00 1.371499 2.691800
2.283333 5.000000 5.00 1.818010 9.966177
2.928968 1.000000x10 10 2.089265 2.682696x10
3.597739 2,000000x 10 2x10 2.301445 7.221281x 10
4, 499205 5.000000x10 5x10 2.506341 2.673622x 102
5, 187376 1.000000x 102 102 | 2.617318 7. 196856x102
5.878027 2.000000x102 | 2%102 | 2.700206 1.937250x 103
6.792811 5.000000x102 | 5x10 2.778246 7.172514x10°
7.128992 7.000000x102 | 7x102 | 2.800060 1. 1599 14x 104
7.485444 1.000000x103 103 | 2.819999 1.930698x 104
8.1784 2.000000x108 | 2x103 | 2.851059 5. 197053x 104
9.0945 5.000000x 10 5% 10 2.880221 1.924167x 107
9.7876 1.000000x 104 104 | 2.895803 5. 179474x10°
10. 4806 2.000000x10% | 2x104 | 2.907381 1.394211x10°
11.3967 5.000000x10% | 5x104 | 2.918252 5.161955x 108
12.0896 1.000000x 105 109 | 2.924060 1.389495%107
' 2.000000x10° | 2¢10° | 2.928376 3.740244x 107

5.000000x10% | 5x103% | 2.932428 1.384795x10°

1. 000000x 10° 100 | 2.934593 3.727593x108

2.000000x10° 2x1og 2.936202 1.003394x 107

5.000000x106 | 5x10 2.937713 3.714985x 107

1.000000x 107 107 | 2.938520 9.999996x107

2.000000x107 | 2x107

5.000000x107 | 5x107

1.000000x 108 108

2.000000x108 | 2x108

5.000000x10% | 5x108

1.000000x107 107




Table 1 (Continued)
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p=2.000000, m=0.5

S

p=2.500000, m=0.4

Z(N, B NP N Z(N, ) NP
1.250000 | 4.000000 2.00 1. 176777 5. 656854
1.463611 | 2.500000x10 5.00 1.290065 5.590170x 10
1.549768 | 1.000000x10% 10 1.321921 3.162273x1o§
1.596163 | 4.000000x 102 210 1.334307 1788854107
1.625132 | 2.500000x10° 5%10 1.339629 1. 76776710
1.634983 | 1.000000x10% 102 | 1.340825 9.999999x 104
1.639945 | 4.000000x10% 2x 102 1.341251 5.656854x10°
1.642932 | 2.500000x103 5102 | 1.341424 5.590170x10%
1.643501 | 4.900000x10° 7x102 | 1.341446 1.296418x107
1.643927 | 1.000000x10° 103 | 1.341459 3. 162278x107
1.644427 | 4.000000x10° 2x103 | 1.341472 1.788854x108
1.644727 | 2.500000x107 5¢105 | 1.341478 1.767767x107
1.644827 | 1.000000x108 104 | 1.341479 9.999998x107
1.644877 | 4.000000x108 %104 | 1.341480 5.656853x1010
1.644907 | 2.500000x10° 5x10% | 1.341480 5.590169x1011
1.644917 | 1.000000x1010 109 | 1.341480 3. 1622791012
1.644922 | 4.000000x1010 2%105 | 1.341480 1.788855x1013
1.644925 | 2.500000x1011 5102 | 1.341480 1.767767x1014
1.644926 | 1.000000x1012 108 1.341480 I.OOOOOOx]O}S
1.644927 | 4.000000x1012 %106 | 1.241480 5.656853x10 19
1.644927 | 2.500000x1013 5x106 1.341480 5.590168x1016
1.644927 | 1.000000x1014 107 | 1.341480 3. 162277x1017




Table 1 {Continued)
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p=23.333333, m=0,3

p = 5.000000, m=0.2

Z(N, p) N N Z(N, p) NP

1.099213 1.007937x 10 2.00 1.031250 3. 200000 10
3.00 1.035365 2.43  x102
4.00 1.036342 1.024 x10°

1. 139414 2.137470x102 | 5.00 1.036662 3.125 xI0°
6.00 1.036790 7.776  x10°
7.00 1.036850 1.6807 x10%
8.00 1.036880 3.2768 x10%

1.45586 2.154435x10° 10 1.036907 1.000000x 105

1.46984 2.171534x104 | 2x10 1.036926 3.200000x10%

1. 147310 4.605039x105 | 5x10 1.036927 3, 124999 10°

1. 147346 4.641588x 106 102 | 1.036927 1.000000x 1010

1. 147353 4.678427x107 | 2¢x102 1.036927 3.200000x 1011

1. 147353 9.921255x10§ 5% 10 1.036927 3. 125000x1013

1. 147353 3.045510x10 7x10 1.036927 1. 680700x 1014

1. 147353 $9.999998x 107 103 1.036927 1.000000x1013

1..147353 1.007937x1011 | 2x103 | 1.036927 3.200000x1016

1. 147353 2.137469x1012 | 5%x103 1.036927 3. 125000x1018

1.147353 2. 154434x1013 104 | 1.036927 1.000000x 1020

1. 147353 2.171533x1014 | 2x10% | 1.036927 3.200000x102!

1. 147353 4.605039x1010 | 5x104 |—1.036927 3. 125000x 1023

1.147353 4.641588x1016 109 1.036927 1.000000x 1023

1.147353 4.678428x1017 | 2x10° | 1.036927 3. 200000x 1026

1.147353 9.921253x1018 | 5x105 | 1.036927 3. 125000x 1028

1. 147353 9.999997x 1019 106 1.036927 19000000x10§?

1. 147353 1.007937x1021 | 2x106 | 1.036927 3.200000x10

1. 147353 2.137465x1022 | 5x10 1.036927 3. 125000x 1033

1.147353 2. 154434x1023 107 | 1.036927 1.000000x 1032

p=10,m=0.1
p(N,p) NP N

1.000977 1.024 %103 2.00

1.000993 5.9049 x104 3.00

1. 000994 1.048576x10% 4,00

1.000995 9.765625x100 5.00

1.000995 6.046619x107 6.00

1.000995 2.824752x108 7.00

1.000995 1.073742x107 8.00




Appendix 1.2

The plot of number of errors N versus the total test time T as the slope m

is the porameter is given in Figure 1.2A.

108

10"
109

10%

FIGURE 1.2A. Total test.time T in Bifs
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Appendix 2.1

Consider the low=-pass filtershown in Figure 2. 1A

Lojy~Pass
E[Scomp(kT1+1-):lexg(f-kT1'799T (F',"“?t.lJ) [Scomp(f)] exp
sampled signal : (2? continuous signal
s]
A TaGap(4)
Ty
-B B :;_U)
! (b)

FIGURE 2.TA (a)} Reconstruction filter
(b) Gate function

- To obtain the output one takes the inverse transform of the transfer function

[TngB (wﬂand convolves with the input. Thus
[Scomp®] exp =  [Poomp®T3: sl (-kTs-n7salB)  (2.14)
where
*means convolution and S¢{Bt) = sin Bi/Bt is the inverse transform of the
transfer function or the gate function. Now, since
O(t=kTy ~7) #SafBt) = Sa[B(=kT4~7) ]

Equation (2. 1A) becomes

[comp(t] oxp " E[gcgmp(kn w)] expSg‘:B (kT4 -T)]which is

Equation (2. 3}.



Appendix 2.2

S
Find the mean square value of e(t), where

o) = 2{[ comp(le'H')j exp” s(kT1+’T)}Sq[B(f-kT1-T):I.

5 {im i 1/2
M = 1w T _7/2(2{[ comp T+ | exp

2
- S(kT:L-I"T)} SGI:B(fnij,-Til) di . (2.2A)

Various sampling functions appearing in the summation in Equation (2.2A)

are orthogonal, i.e.

o /B for m=n
."[cl;o Sa [B(f»mT;-‘r)] Sa[B(f-'nT:.-T)]d t= {o for m¥n (2.2.1A)

Therefore, after changing the operation of integration and summation in

(2.2A) one obtains

ee(f) le;r;@ 79 ‘I’ comp(leM)]exp (ij,*H")}

Sa [B(f-k’fl-f)] dt

=]

ZH=2 lim {[comp(khﬂ)]exp s(kT1+1')}

k Tpeo T
T/2
I 50 [B(’f'“kTr'T)] dt {2.2.2A)
But from (2. 2. 1A)
T/2
# Sc”[B(t-kTy=7)] dt = /B
-T/2

then (2.2.2A) becomes

=T [ﬂ/sT]{ ecomp(kn +fr) kTrH')}
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Appendix 2.2 (Continved)

But since B = 2ﬂfs

1 2 _—
&2 (1) =7F;._.r_. E{[gcomp(kT1+T):| exp—s(kTﬁ‘r)} , which is (2.6).
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Appendix 2.3

Show that G(v) ZD\A‘(V)] onif’ where G{v) and M(v) are the moment generat~
ing functions of Gaussian and uniform distributions respectively.

Proof.

(ow]
mgf of (x) = ‘roo [exp (vx)] p(x) dx (2.3.1A)

thus from (2.3.1A)
Glv) = exp[mv + v202/2:|

and for m=o, 0°=4%/12
() = expl@/120/2)]
=|<O§O |:(w3/2)3 1/6] k k1, (2.3.2A)

also

[ M), ¢ = sinh v(&/2) /vie/2)

=:<%O [viy2 ™ Vet , (2.3.3A)
=0

Now, if one compares the sums (2.3.2A) and (2.3.3A) it is obvious that

| viy2)| % 1/(21<+n!: <[ow/2? 176]° 1kl

_thus

v =[ M) ]

unif
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Appendix 2.4

Find the value of v that would minimize G (v) e™V® = exp|(k/2)(4%/12)
vz-ov] . (2. 4A)
Solution:
Minimizing ln‘[Gs(v) e_vq] will also minimize G (v) ¢V .
Thus
In[Gg () €)= Ifey(+]]- va (2.4.1A)
taking the derivative of (2.4.1A)
&/dv[in &) &va] =[1/o,0) |o/dv[e - o (2.4.2A)
Equating (2.4.2A) to zero.
v Gsv) |= a G4v) (2.4.3A)
v must be chosen such that (2.4,3A) is safisfied. Putting G.(v) = exp

[(k/2)(A2/12) vgjin’ro (2.4.3A)

one gefs .

K(2/12)v exp | (/2)0%/1v%] = @ exgl (/2)(8%/12)V7]
and k */12) v = o
or v = (@K (12/)

which is (2. 14).
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Appendix 3. 1

Prove that the sum of uniformly distributed phase phasors is itself a uniformly
distributed phase phesor.
Proof:
Let Reje: % AkeJek
k=o
where
. (A) are amplitude distributions such that the central limit theorem is
satisfied. That is, no one of the disiributions of A is dominant, and
(61) are the uniformly disiributed phases.
If n is large, then by the central limit theorem Ry = E Ak cos6), and
Ry —kEOAk sin B} are Gaussian with zero mean and variance (] n<Ak) Since
Ry and Ry are orthogonal they are uncorrelated. The joint distribution is found as
follows:
p RO =R PR, Ry). (3.1.1A)

The two~dimensional Gaussian distribution is given by

1 —RE4RS)/20°
P R Ry = g

where o°= (1/2)n</_5nﬁ >

Now, from (3. 1. 1A) one gets

2 2
p R, 6) = 273'?7 o R7/20 (3.1.24)

(3.1.2A) is integrated with respect to R to obtainp(8).
(=) o2 2
1 ~R"/20%)
B) = (4] = it R d
p@=[ pR,OdR == [ Re R

p(0) = 1 (3.1.34)



phasor.

Equation (3. 1,3A) shows that ReJ® is a uniformly distributed phase

51



52

Appendix 4.1

let ng = ng, eXp [' (%@] .

Find the distribution of ng at a given time and if the distribution of ng is known.

Solution:

At a given time let exp[" (*X'fo)] = k where k is a constant and let p(np)
o

be defined by Equation (4.5). Now then,

N = knp
but p(ng) ding) = p(np) d(np)
pirg) = g | e

then

n

ping) = Vk plny)

which proves the statement made in page 32.
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Appendix 4.2
Given np = &b , where 4 is Gaussian, find the distribution of Np-
Solution:
p &) = (U)\I/'QTI’— exp . l:(l;-;)zjl (4.2.1;&)
and since p (np) d(ng) = p(8) dA '
or p(np) = p (&) db/d(np) (4.2.2A)
but ding) = "dt =[einlnp] da = n_an

then (4.2.2A) becomes

plng) = (1/np) p(8)

plag) = (1/nppy(in ng) (4.2.30
or from (4.2.1A) and (4.2.3A)

plny) = 1 ex [1n(n)-m]}
P ooVt {

which is Equation (4.5).



Appendix 4.3

k -
Let ty = .E] T;, where T are distributed identically and p(T}) = Ae M.
l:

Then find p(t).
Solution:
The characteristic function of the random variable t = T; is

o, A
[ 0™t = T

The characteristic function of t) is the preduct of the characteristic

functions of the sum terms t = Tj. Then the characteristic function of 1 is

_ ok
chf. of fj = (mk (4.3.1A)

Toking the inverse transform of (4.3. 1A) one obtains

pli) = 1 IOO Ak oIk du
o o)k

which is Equation (4. 8)



Appendix 4.4

Let v = exp [#,/@ |, and the distribution of ty is p(ti).

tion of v, plv).
Solution:
ply) = AT eMe /) o
and
PW)=PWW)PmﬁN’
since t) = alnv, thendf/dv = a/v.
The p(t)) in terms of v is given by

?Lk(a In v)k'] e~Aeln v
PRl = T

AK(aln v)k=1
(1) 1 vha

Pfk (v)

Then from (4.4, 1A) and (4.4.2A)

: Rk(OJI )k-]
o) = ) e

A.kak([n V)k"]
(k- 1)] vl&—l—l

pv)

which is Equation (4.8.1).

55

Find the distribu=

(4.4.1A)

(4.4.2A)
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Appendix 4.5

fl

Given ny u/v, p(v) and p(v) find p(n). Assume u and v are inde-
pendent.
Solution: Let n = 'nk(u,v) ; m = vand their inverse functions are

v = uln, m), v= v(nk, mj) -

Since the following relation holds,

plu,v) d ud v =plny, m) d nkd my,

then
dudy (4.5.1A)
plne, m) = plu, v) T dmp |
but dudy = 19 {u,v)
dny "~ dmy, S(nic, m)
Therefore one first finds the Jocobian.to be:
a(U,V) == v 2 o = v
5ink, mk) _U/nk 1 )
The Equation {4.5.1A) becomes
ply., m) = vp (u,v)
= vpy, (M, m.) (4.5.24)

Now, since u and v are independent

@

plu, v) = p(u) p (v).
Also noting that dv=dmy , upon integrating both sides of Equation (4.5.2A)

ohe getls

IP(nk, m } dmk = va(u) p(v) dv (4.5.3A)


http:Jocobian.to
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Appendix 4.5 (Continued)

Left side of Equation (4.5.3A) is p (nk). Also replace u=nv. Now, if

v = exp[fk/o.'] and o <t) SO then 1 =v 2@, Therefore Equation (4.5.3A) becomes

o0
P = [ Ve p, (y, v) dv (4.5.47)

From Equation (4.5) and (4.8.1) p, (nv) and p(v) are obtained. But first
the following transformations are made

Inv=x, thend v=e*dx and whenv=1, x =0 and v =¢ x =<0,

Then )

p(v) =(kA_ ]O;TX:;(.;.O&]) (4.5.5A)
and

PU(UkV) = W exp [_ (In r;kc;x - m)” ](4.5.6)-\)

Placing the values of p(v) and pu(nk, v) in (4.5.4A) from (4.5.5A) and (4.5.6A)

ons gets k
k 2
Ao l: (In uptx=m) :I
LA _ {In yptx-m)”
Pty = (k=D onk V277 [ 5 exp| -0 207 dx

this is Equation (4.9).
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Appendix 4.6

co . 20
Show that < kgo nke‘ﬂ% > = kE <th> .
Proof:
let s =Red® = 3 n Ik (4.6.1A)
k=0
The mean=-square value of the complex random varicble S is <S5%>. Therefore, from
(4.6.1A) one has
R?> —<f ny ed P Iz nje~d1> . (4.6.2A)
If one assumes ny and n| are independent and uses the fact that the average of the
sum is equal to the sum of the averages, then
n n «forn
K> = B E, Syl (> (4.6.38)
If the amplitudes of the phasors are independent of their phases, then (4.6.3A)
becomes
n
<R*> = T IE <nkn[><e.!(cﬂ< P> (4.6.4A)
=0

k=o
But, if the phases are uniformly distributed then

A 1 - o, for kil
<@ - y= J’o f eI (AP yq d = {1 for k=l
Thus (4.6.4A) is now
<@>= T <py.> (4.6.5A)
k=o

or from (4.6, 2A) and (4.6.5A) letting n =cC one gets

W o .
=z <“k> = < (z n eJ<Pk>a >
k=1 k=o k
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Appendix 4.7

Evaluate the following integral

o, kgt

<n2> = k 1 0
I < -1 onk/?ﬁ‘r oxp[-
- “—”25;-5'—:-’—‘:5"—)— } dxd - (4.7.18)

Set In m=v and interchange integrals over x and nj, then infegrate with respect to
ng. Since dny = eVdv and when ny = o, v =-%and n} =2, v =, the Equation

(4.7.1A) becomes

. )Lk&k <o k=1 Aoixc o]
<nl> = T xR lgmhoxy Y
T FR_-Mo/2T 4oyt © <]
2
exp[—- -Q—VL'E“‘)_] eVdv ,
2¢
or l
ko k loc) o
<n|f> = o J. k_] -dex I

exp [- v3+2v(x2-;2:202-) + (x_m)a] dv. (4.7.24)

Now, if one adds and subfracts (x-m=-20")% from the numerator of the exponent of

the integral with respect fo (v) and considering that integral only, then one gets

exp[ {[V+(x-m-2@] +4oﬁ[x_m-oz]}}

|:- 467 ( x-m--oz):| o
= exp - I
26

=0

= {vH{x=m-20)"] a}
X ——( d .
P{ Py v (4.7.3A)

The integral in (4.7.3A) is easy to evaluate and it is equal to 6V 2T . Thus

{(4.7.3A) is now equal to

o/21 exp[ 4o (xz-m-oa)] (4.7.4A)

20
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Appendix 4.7 (Continued)

Returning to Equation (4.7.2A) and replacing the integral with respect to

(v} by its value from (4.7.4A) one obtains
ko k - ~46° (=
<0 P> = AN J.ocxk..le Ao exp|: 40° (x~m o‘a)] dx
TR 27

or

kk o ‘
o o -1 - (o
<nk> = (k:z'[)l. [ez( ):II_O xk ]e ( 2))( dx . (4.7.5A)

Let Qot+2)x =T and dT= (A@+2) dx. When 7=0, x =0 and T=99, x =oc,

Equation (4.7.5A) becomes
kka['( 2 oo r k-1 a7
2
<t > =&-DT |:e2(m+o ):I,J;.___o [(m,,. 2)"':] T XoF 7D

or

)Lk ok 82 (m+ca) (o)

<> = *=1e"T 4 4.7.6A
KT 2F e (4768

But the integral in (4.7.6A) is the Gamma function [ (k) and since (k) = k-1l

one has

_ akok o2(mi®)
<nk > == k
(Ao + 2)

which is (4.12).
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