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SECTION III.
 

IMPACT RESISTANT COMPONENTS AND-CELL DEVELOPMENT 

A. 	 DEVELOPMENT OF HIGH-IMPACT TESTING FACILITY 

1. 	Introduction
 

In support of the unmanned exploration of the planets, the
 

Jet Propulsion Laboratory has been actively interested in
 

the development of electronic equipment capable of hard
 

landing survival since 1959. Of immediate concern was the
 

development of a battery power supply required for a pro­

posed hard landing on Mars in 1973. Based upon entry condi­

tions calculated from information about the gravitational­

and atmospheric conditions on Mars, a design goal has been
 

selected by JPL for all-equipment aboard this hard landing
 

capsule. At present, a shock level-of approximately 4000 g
 

(square pulse for 1 msec) from an-impact velocity of 120 ft/
 

sec is anticipated as the kind of environment to which cap­

sule components will be subjected. Texas Instruments, as a
 

*developer of heat-sterilizable Ni-Cd space batteries, has
 

long been interested in the cell's resistance to shock and
 

vibration environments. During 1969, over 100 high­

capacity cells (25 AH) capable-of heat sterilization were
 

manufactured for evaluation. Under the same contract with
 

JPL, development work concerned with prime cell components
 

was conducted to further extend the knowledge required for
 

high-impact cell design. In order to carry out this devel­
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opment work and the evaluation of complete cells, it was­

necessary to simulate the'anticipated shock environment.
 

The scope of this section is to describe in detair the exist­

ing impact facility at Texas Instruments. We wish to
 

describe its development and the resultant capabilities at
 

our disposal.
 

2. 	Mechanical Design of Testing Equipment
 

a) 	General Description:
 

In the design of the test facility, prime concern was
 

given to the means of achievement of the specified
 

shock pulse (the desired shape, magnitude and length).
 

Secondary concerns were the great number of cell con­

figurations. (shapes and sizes) that must be accommodated.
 

Finally, a facility with enough versatility to permit
 

the variation of the shock pulse was-needed for a com­

plete study of the dynamic response of components. The
 

testing method selected to meet these demands consists
 

of the following arrangement: The specimen is mounted
 

within a sliding carriage by means of adjustable fix­

turing. Carriage and specimen are then accelerated to
 

the desired velocity. The sliding carriage is finally
 

impacted against an-expendable target and massive anvil
 

to produce the desired shock pulse. The overall system
 

is shown in Figure 1.
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b) 	HYGE-Gun:
 

The accelerator is a commercial unit produced by the
 

Consolidated Electro-Dynamics Corp., and called aHYGE
 

gun. It-is essentially a pneumatic cylinder with the
 

piston operated by a pressure differential. The-gun
 

used.at-present has a 6" dia. bore with a piston area
 

ratio of 5.2:1 and compressed N2 is the operating
 

fluid. Thus with approximately 2000 psi N2 supply this
 

unit is rated at 40 ,000 lbs. thrust and capable of ac­

celerating a 40 lb. mass to a velocity of 125 ft./sec.
 

In order to gain more complete firing control than pro­

vided by automatic unbalance of equilibrium, we have
 

added an auxiliary firing valve. Repeatability of ±1
 

ft./sec. is attainable on a given sequence.of testing
 

using the manual firing valve. -Oscillograph traces of
 

acceleration - time were recorded to examine the cart­

riage input.
 

c) 	Carriage & Specimen:
 

The sliding carriage mass is approximately 32.5 lbs.
 

All structural members were machined from 7075-T651
 

aluminum alloy plate. The carriage itself sustains
 

repeated central impacts during acceleration and more
 

importantly.at impact. Of prime interest is the ver­

satile fixture arrangement. We are able to accommodate
 

various cell configurations and sizes in any orientation.
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Changes between tests involve very little time and
 

ensure a more rapid evaluation of particular cells or
 

components. Potting material has.been unnecessary with
 

the obvious exception of impact at-the terminal end of
 

a cell. This ensures a true evaluation of the cell in
 

the absence of most shock attenuating material. The
 

impact end of the carriage is fitted with a hardened
 

steel (M2) impact tool. Several penetrater diameters
 

have been ground and the design has proven quite satis­

factory in resisting the repeated impact energy of over
 

7000 ft.-lbs. As will be shown, the tool diameter is the
 

prime variable affecting the g-level attained at impact
 

and the ability-to change this tool readily is of great
 

convenience.
 

d) 	Anvil:
 

The anvil, against which the sliding carriage impacts,
 

is shown on the extreme right of Eigure 1. It is
 

basically a 2000 lb block of steel mounted on a steel
 

framework that-is free to roll on tracks. At full im­

pact conditions, the entire mass (approx. 2500 lbs) will
 

move 2-3 inches while shock absorbers arrest its motion
 

and return it to the original position. A-structural
 

steel extension is fastened to the main anvil block and
 

serves to position the main copper target block,. This
 

copper block is our means of achieving the desired uniform
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deceleration of the carriage mass as we plasticaily
 

deform the copper. Typically, the target is annealed
 

copper (#110I 3" x 3" x 1 1/2" thick.
 

3. Instrumentation System
 

a) General Description:
 

In order to fully evaluate a cell during shock environ­

ments, it is desirable to monitor the cell's voltage
 

during impact and an acceleration-time history for a
 

full description of the event. The acquisition of data
 

from a projectile experiencing this kind of motion is
 

not straightforward. The lead wire arrangement found
 

most satisfactory is a combination of high strength
 

steel slide-wire and the two-point suspension loop of
 

1/4 inch dia. elastic shock cord (bungee). Combined­

with an abrasion resistant harness, this system proVides
 

adequate progressive restraint to control the lead wire
 

motion.
 

b) 	Cell Voltage:
 

Ni-Cd cells present a nominal 1.3 volt open circuit
 

signal. A signal of this magnitude presents no particu­

lar measurement problem once the lead wire motion has
 

been controlled. Thus., We are able to display this dc
 

voltage level directly on the upper beam of the oscillo­

scope. Hence, a cell which is truly impact resistant
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will exhibit a constant potential (straight line at dc
 

level) throughout the impact period. Complete failure
 

at impact (plates and tab fracture or complete shorting)
 

will exhibit a drop to a lower dc level line. In addi­

tion we are able to observe any momentary shorts that
 

may occur within the cell only during the period of im­

pact. Should it be desirable, an external load is
 

easily placed across the cell and thus discharge voltage
 

(or charge voltage) can be measured during the actual
 

impact.
 

c) 	Velocity:
 

The velocity of the carriage at impact is accomplished
 

essentially by measuring the actual time of travel
 

between two points of known distance apart. The moving
 

carriage momentarily completes two circuits during its
 

travel and the two voltage pulses are used to start and
 

stop an electronic counter which records the time
 

interval (P sec) between the known distance. Although
 

basically very simple, this technique is highly reliable
 

and 	possesses several advantages over other methods.
 

Accuracy is better than-0.5 ft/sec.
 

The velocity measurement itself is made only one inch
 

before the point of impact. This system readily sup­

plies an equally reliable trigger pulse for the
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oscilloscop &s"'6vhfin Figure 111-2.
 

d) 	Acceleration:
 

(1) 	Instrumentation:
 

The 	measurement of the shock pulse associated with
 

the 	deceleration of the carriage and specimen is
 

obtained by a piezoelectric accelerometer mounted
 

on the main carriage plate. The high impedance
 

charge output of the transducer (Kistler 808A or
 

805A) is converted by an electrostatic charge
 

amplifier (Kistler 504A) to the low impedance
 

voltage signal desired for display on an oscillo­

scope (Tektronix 555). A passive transducer
 

resonance filter is also provided at the amplifier.
 

With this conditioning, the signal is connected to
 

a Tektronix lA7 plug-in at the scope.
 

(2) 	Low Frequency Response:
 

Good low-frequency response of the system is a
 

necessity in order to follow the long duration of
 

the rectangular pulse created. In the present
 

instrumentation system, the dominant time constant
 

is determined by the product of the feedback
 

capacitor and resistor within the charge amplifier.
 

With the present instrument settings we have a time
 

constant of 5O seconds (< O.lHZ)- which is nearly
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100- times better,than-the requirement for 2% 

accuracy. 

(3) High-Frequency Response:
 

A Fourier spectrum analysis of a rectangular pulse
 

shows that most of the energy of that pulse-is
 

contained in the frequency band from zero to l/T
 

(T=pulse length). It has also been shown.that in
 

order to prevent excessive rounding of corners,
 

f >-0/T. In the present case (-T=.00l sec) it was
 

felt-that fH=IOKHZ would be quite adequate to
 

accommodate the rectangular pulse and rapid rise
 

time The high frequency response of the instru­

mentation is- theoretically limited by the first
 

mechanical resonance of the accelerometer(mass­

spring) itself. Manufacturers generally trust
 

approximately fn/5 as the useable (± 5%) frequency
 

range and this-implies approximately 8KHZ for our
 

system. This value approached the desired 10KHZ­

and we expected fairly good-performance. The rise
 

time of our pulse is approximately 30 pisec-and
 

the system seems- to have more than adequate high-,
 

frequency- response to follow this pulse.
 

(4) 	Effect of Vibrations:
 

It-was felt that lower frequency vibration might
 

be a disturbing influence and we calculated the
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natural frequencies of key structural elements.
 

within the carriage for several modes-of vibration.
 

Later in the testing program, one rather important
 

design or structural modification was made to the
 

sliding carriage which significantly improved the
 

overall performance. The-original 8 " x 8 " x 2"
 

thick aluminum main plate was replaced by a conical
 

block of the same aluminum alloy. The shape is
 

best described as a conical frustrum with a square
 

base (8 "x 8 ") and a circular top (4" dia.). The
 

conical included angle is 800 providing a 6" height
 

or "thickness" replacing the original 2'" thick
 

plate. This angle isthe same as the tool angle
 

and the 4" dia. top matches-the tool's base exactly.
 

Thus, we have a smoother transition from tool to
 

specimen mounting and have essentially eliminated the
 

vibration problems that previously existed.' Because
 

of the increased weight and'associated momentum,
 

tools of larger-diameters were required to maintain
 

the upper g-levels. However, the resultant shift
 

in calibration was fully compensated by the increased
 

structural rigidity and the resultant,improvement of
 

system performance.
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(5) 	Filtration & Calibration:
 

Alternatively, such vibration and the frequencies
 

involved were best eliminated from the system by
 

electronic filtration. Thus, an active low-pass
 

filter network was- designed and employed to
 

attenuate all but the fundamental vibration fre­

quency.
 

4. 	Overall System Analysis
 

Oscillographs were taken during the development phase­

and indicated the g-levels and pulse lengths typically
 

achieved. They were used-as-the basis for calculations
 

to check.the overall system accuracy. Our present
 

collisioninto copper closely approximates the perfectly
 

plastic-collision yet-we experience some. rebound. Con­

sidering the applicable relations:
 

Impulse = A Momentum:
 

t 
ft F dt = m (Vm2 - Vml) (1)
 

0
 

Conservation of Momentum: 

m Vml += m Vm2 +MVM2 (2) 

Conservation of Total System Energy:
 

KEml + KEMl = KEm2 + KEM2
 

+ E Absorbed in + E at Light, (3)
 
Deforming Copper Soun
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Equation- (1) may-be solved for Vm2 by using the measured.
 

Vml 	and the area of the acceleration-time trace. This
 

would permit the. solution of equation (2) for VM2
 

directly assuming m and M were known. Finally equation
 

(3) could be solved for the force required to deform the
 

-copper 	since the depth of penetration is measurea. Thus
 

we -can compare this calculated force to that force
 

associated with the test's mean g-level. The results
 

are given in Table III A-l.-


In the tabulated calculations we have noted the very
 

small anvil velocity that is-implied (ref. col. VM2) and
 

the fairly low carriage rebound velocity (ref. col. Vm2)
 

that follows the collision and thereby established the
 

system's proximity to the classical plastic case. Late
 

in the testing program high speed photographic analysis
 

was also used to investigate the overall-system.
 

5. 	System Calibration
 

During the development phase and the initial testing
 

program, a large amount of data was generated by this
 

testing facility. Many separate studies were employed
 

to extend the typical range of values and the.total of
 

this information constitutes the overall system calibra­

tion. The blunt-end cylindrical tools are responsible
 

for achieving a square deceleration pulse with excellent
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Tool 
Dia. 
(in) 

Meas. 

Impact 
VelocityVmli
(ft/sec) 

Calc. 

Rebound 
VelocityV 2(ft/sec) 

Calc., 
Velocity 
Vm2 
(ft/sec) 

TABLE III A-I 

(1) (2) 
Fmean Fmeanmamean 
Calc. from amean 
full System Meas. from 

Analysis as
Described Photo 
Above 

(3) (4) (5) 
Fmean=mamean Fmean Fpk=mapk 
from uniform Im- apk 
decelleration pulse M u 

(m2 TieMeasured
amean=(Vml)2 Time From 

2S 

5/8 

3/4 

7/8 

1 

82 

91 

108.5 

115.5 

4.5 

0 

3.8 

10.8 

1.1 

1.1. 

1.5 

1.6 

56,800# 

78,700# 

104,000# 

135,000# 

55,200# 

74,800# 

104,0.00# 

119,000# 

57,800* 

79,700# 

105,000# 

138,000# 

51,400# 

68,800* 

103,000# 

110,000# 

65,000# 

.87,700­

122,000# 

140,000# 

H 
H 

*1 
H 



rise times. The actual g-level-and pulse length,
 

however, remain flexible and are under the control of
 

the operator within certain bounds. It is this capa­

bility (calibration) that is best shown in Figures 111-3
 

and 111-4 which illustrate the effects of changing the
 

main-system variables.
 

a) 	g-Level vs Tool Diameter
 

As indiated earlier, tool diameter or-the area of
 

the penetrator is the prime variable affecting
 

g-level. Assuming a fairly constant state of three­

dimensional stress during copper deformation, the
 

total force (g-level) would be directly proportional
 

to the area. Figure 111-3 shows this linear rela­

tionship as exhibited over many impact tests.
 

b) 	g-Level vs Velocity
 

The carriage mass, equipped with any given tool
 

diameter may be fired at any desired velocity as
 

regulated by the selection of differential pressure.
 

The practical limits are: 1) low velocity provides
 

a short (time) pulse length which was not of inter­

est in this study, 2) high velocity provides a very
 

deep penetration (tool may be embedded in the
 

copper) and if a very long (time) pulse length is not
 

required, it is avoided as a matter of convenience.
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The point is that in saying the g-level is-pri­

marily a function of tool diameter, we would expect
 

to see-a g-level. (for any given tool) that is
 

invariant with respect to velocity. We have.varied
 

the test velocity for each tooland illustrated the
 

relative invariance of g-level.
 

c) 	Pulse Length vs Velocity
 

With a constant carriage-mass we would expect that,­

as-a consequence of the aboveresult, the pulse
 

length would be-linearly related to the test velocity
 

(f Fdt =-MAV). Figure 111-4 illustrates this result.
 

The lines drawn in Figure 111-4 indicate the degree
 

of sensitivity (pulse length as a function of
 

velocity) for each tool. Each tool has a different
 

sensitivity as-we have shown it in Figure 111-4 but
 

this is simply a result-of including an actual area
 

function (d2)' within our third parameter tool
 

diameter (d).
 

6. 	Summary
 

We have developed a versatile impact testing machine
 

capable of evaluating most cell configurations within
 

the range of 10OOg - 4800g and 0.8 - 260 msec. This has
 

been accomplished by.changing only.two variables -- tool
 

diameter and carriage velocity. The ability to cover
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such a range this easily is of great convenience during
 

a given testing program. However, this in no way repre­

sents the limit ranges for this machine. Two other
 

prime variables (carriage mass and target materials)
 

have been held constant throughout the system develop­

ment described in this report. If desirable to study
 

the dynamic response of components to pulses of broader
 

length range, the additional capabilities of this
 

machine can be readily employed.
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B. DETERMINATION OF THE MECHANICAL PROPERTIES OF Ni-Cd ELECTRODES
 

1. Introduction and Model Analysis:
 

The:mechanical properties of battery electrodes must be
 

known before the engineering design of an. impact-resis­

tant cell can begin. At a minimum-, static force-data,
 

must-be available to permit reasonable cell configura­

tion design. A more refined design must-be based on
 

dynamic force data. An optimum cell design may indeed
 

hinge on a complete knowledge of the mechanical proper­

ties of the fundamental structural elements of the
 

battery. Of prime concern are the electrodes them­

selves. Their response to a dynamic force input must be
 

determined from a knowledge of their stress-strain-time
 

relation. A major effort under the current Jet
 

Propulsion Laboratory contract was-expended-in gathering
 

the experimental data needed to describe-the mechanical
 

properties of these elements At the beginning of the
 

experimental work, it was valuable to propose a model for
 

the structural element we were investigating.- We made
 

some assumptions. about our battery plate material,
 

formulated a model and made some preliminary predictions
 

from that model.
 

If we neglect the electrochemical differences between
 

the positive and negative plates, we can think about
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their basic structure alone. Both positive and negative
 

plates begin as a sintered nickel structure called
 

plaque. This structure is basically a 20 mesh screen of
 

.007" diameter nickel wire-to which particles of nickel
 

powder have been sintered. Applied primary to one side
 

of the screen, this sintered structure consists of par­

ticles of nickel powder sintered (fused) to each other
 

and, of course, sintered to the screen. A first impres­

sion might be to observe the similarity of this plate
 

to reinforced concrete. This comparison is not totally
 

valid since the sintered matrix of our plates is a
 

highly porous structure.
 

Although electrochemically very desirable, the-porosity
 

of these plates makes structural analysis most difficult!
 

We have shown (2nd JPL QTR Report 1967) that depending on
 

positive or negative, cycled or sterilized, the total
 

porosity may range from 27% to 59%. It is apparent that
 

we are dealing with a highly complex structure having a
 

random distribution of various size openings. Some
 

recent pictures obtained by scanning electron microscopy
 

have illustrated the complexity and randomness of this
 

matrix or at least the surface characteristics.
 

Fortunately, for the development of our structural
 

model, these properties of the final plate are probably of
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little consequence. We are assuming that only the
 

original sinter structure (plaque, common to all plates)
 

is of-load carrying concern. In other words, we are
 

assuming that it matters little from strength considera­

tions that-we fill this basic sintered porous structure
 

to various degrees with active chemical material which
 

has little reinforcement capability (especially in ten­

sion). Accepting this assumption, we need to be
 

primarily concerned with only the description of the
 

sinter matrix itself. It is this more highly porous
 

structure that we wish to describe via a structural
 

model. The model-should allow us to calculate the actual
 

load carrying area within this structure. Then, using­

the mechanical -properties of nickel metal, we may calcu­

late the strength and modulus associated with our model.
 

We considered various cubic crystals as representative
 

of the nickel matrix. The "atoms" (of radius "a")
 

normally placed in the basic crystal, were considered to
 

be hollow spheres; normal void space within the crystal­

was considered to be solid nickel metal. Three were
 

considered because they offered models of a matrix having
 

74%- (FCC), 68% (BCC) and 52% (simple) porosity. Most
 

emphasis was placed on the face centered cubic model.
 

The value of these porous models lies in our ability to
 

look at various cross sections and calculate the load
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bearing areas that are available. This was done for the
 

three principal planes of each cubic structure. The
 

overlapping of values obtained from such divergent models
 

(of porosity) indicates something about the random dis­

tribution. Our real structure has been shown to contain
 

a random number of various size pores. Therefore, one
 

would expect to see mean values between .the extremes of
 

any crystal. This seems strengthened by the fact that
 

the least dense (100) plane of a 52% porous model has a
 

modulus lower than the mean plane (100) of a 74% porous
 

model. We may modify our predictions further by three
 

considerations: a) the real sinter structure (plaque) is
 

78-80% porous and is thus higher than the 74% porosity of
 

the FCC Model,b) the "necks" carrying load between pores
 

in the structure are essentially areas of infinitesimal
 

gage length. Thus, elongation is impossible and considera­

ble tension load bearing area can be expected to be lost
 

very readily, c) plate material has many small cracks
 

initially due to manufacturing processes. These considera­

tions would tend to lower the apparent modulus and suggest
 

that E = 3.5 x 106 as predicted by the FCC (111) analysis
 

would be most valid. 'This should be true especially in
 

tension. In compression, however, we might suspect an
 

increase. The-model approach can also be used to predict
 

values of plate strength. Using handbook values for
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nickel metal these calculations were made. The previous
 

consideration of premature yielding of infinitesimal
 

"necks" indicates that some-of these calculated quan­

tities.are of little value. Once yielding occurs, the
 

matrix will be ineffective and total load should be
 

carried by the nickel wires in tension.
 

Stress-strain curves were drawn to present upper and
 

lower bounds of the real behavior. A curve for screen
 

alone is completely va-lid as the lower bound since it
 

assumes no strength associated with a matrix. The
 

curve for FCC (iil) is somewhat of an intuitive selec­

tion as the possible upper bound (primarily for tension).
 

We expected then, to see experimental tensile data
 

generate a curve very close to the upper bound.
 

Experimental Program Outline
 

The data required in support ,of a model for plate material
 

covers a rather broad experimental program. We are imme-­

diately interested in obtaining a stress-strain curve in
 

both tension and compression that will enable us to
 

examine this model more closely and check the assumptions
 

that have been made. Ni-Cd electrodes mus tbe fully
 

characterized with respect to their mechanical properties.
 

What is essentially involved is a determination of the
 

applicable stress-strain relation. However, there are a
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great many areas and tests required to fully explore,
 

this-relation and obtain the kind of information re­

quired to permit the analytical prediction of their
 

ability to withstand a shock environment. The scope
 

of the desired information is outlined below:
 

STRESS STRAIN BEHAVIOR:
 

A. 	Tensile
 

B. 	Compressive
 

l) 	Static
 

a) Complete "Shape" of Curve
 

b) Modulus of Elasticity
 

(1) AE vs e-level
 

c) Yield Strength.
 

d) Ultimate Strength
 

e) Poisson's Ratio
 

f) Elongation
 

2) Dynamic
 

a) Strain-Rate Effects
 

(1) Yield Strength
 

(2) Ultimate Strefigth 

b) Stress Amplification 

d) a y = f (wn) 

C. 	Bearing Strength (Edge Crushing)
 

D. 	Thickness Compression of Pack
 

E. 	Coef. of Friction at Various Pressures
 
F. 	Buckling at Various Spacing & Pressures
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2. Mechanical Properties in Tensile Loading
 

a) Constant Deformation Static Testing
 

The-initial studies of the mechanical properties of
 

Ni-Cd electrodes involved the static determination
 

of "conventional" stress-strain curves in tension.
 

"Conventional" here means the engineering a- E curve
 

as established by constant deformation loading. All
 

test samples consisted of 1/2" wide x 6" long strips
 

containing exactly ten (10) longitudinal screen
 

wires. -An Instron commercial testing machine was
 

used with a cross head speed of 0.1 in/min over a 4"
 

initial gage length for a-constantstrain-rate, c,
 

-
equal to 0.0004" sec . With cross head speed 

related to chart speed, -the x-axis as deformation was 

established and with load cell output on the y-axis 

we received initial data in the form of a direct load 

vs deformation plot-which was then easily converted 

to a stress-strain curve. For positive plate, nega­

tive plate, positive plaque and negative plaque the 

stress is simply the load divided by the actual 

measured area of the specimen.. However, for screen 

specimens, an arbitrary apparent area of 0.013 in 

was taken to permit strength comparisons with the 

final plate material. What we sought from this type 

of testing was the comparative strengths of the 
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screen alone, the reinforcement associated with the
 

sintered nickel-matrix and finally the actual
 

strengths and differences in strength of-positive
 

and negative plate. Thus, the rough determination
 

of modulus of elasticity, the engineering yield
 

strength (0.2% e), the ultimate strength, -elongation
 

(% in 4" G.L.) and most importantly, the complete
 

shape of the stress-strain curve into the plastic.
 

region were of immediate concern. Several specimens
 

were -tested of each of the five "materials" of inter­

est.
 

Reproducibility is excellent in this type of loading
 

and the average results for each material-are shown
 

tabulated below with respect to important values
 

describing the mechanical behavior;.
 

TABLE III B-1
 

NEGATIVE POSITIVE NEGATIVE POSITIVE 
ANNEALED PLAQUE PLAQUE PLATE PLATE 
SCREEN (905) (810) (170) (176*) 

E (PSI) 0.18x10 6 0.23xi06 0.47xi0 6 0.41xl0 6 0.58x10 6 

P yield (LES) 2.9 5.1 11.1 10.0 11.05
 

ayield (PSI) 225 390 855 710 850
 

Pult (LBS) 16.8 17.3 18.9 19.1 18.1
 

Uult (PSI) 1290 1330 1450 1360 1390
 

Elongation (%) 20.7 22.8 17.7 18.5 20.5
 
* Dry, as manufactured electrodes 
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In order to summarize the results of-this- study more
 

clearly, Figure 111-5 has been prepared to show the
 

average stress-strain curve obtained for each mate­

rial studied. The curve for screen alone essentially
 

lays the foundation of comparison in ths study. We
 

can observe the progression of increased strength
 

from the basic screen-grid through negative plaque,­

negative plate, positive plate and finally positive
 

plaque. It is desirable to compare these various
 

materials with regard to three important-quantities:
 

Modulus of-Elasticity -- The values-for each material
 

were tabulated as an indication of relative strength.
 

They were determined from approximate slopes of the
 

initial portion of the a-r& curves. They are valid
 

as a confirmation of relative strength.but tend to be
 

low in-absolute value. Section B.2.b of-this report
 

describes in greater-detail the results obtained from
 

a more precise method of determining this quantity.
 

Yield Strength -- The-prime consideration in discuss­

ing yield strength is the degree of basic grid rein­

forcement that is attributable to the addition of the
 

matrix. As first applied to the basic grid, this
 

matrix of sintered-Ni powder forms plaque. The first
 

important result-of this study was the significant
 

- difference in strength between positive and negative
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plaque. Positive plaque has a much higher yield
 

strength than.negative plaque. Although both
 

materials are manufactured from the same slurry
 

formation and have the same thickness, the positive
 

has a higher area-density than the negative. The
 

positive plaque-has less total porosity than-the
 

negative plaque and in addition, the sintering
 

temperature is higher for positive plaque than for
 

negative plaque. These facts explain very readily
 

the reason for the increased strength of positive
 

plaque.
 

The next significant effect shown is the reduction
 

in strength that occurs when positive plaque is
 

electrochemically formed into positive plate.
 

Porosity alone is certainly no.indication of this
 

effect for it is not- uncommon to reduce the total­

porosity. The factor that is important is the
 

corrosion of the sinter matrix which occurs during
 

the process. It is true that positive-active mate­

rial is deposited within the pores and results in
 

the lowered porosity, but it appears that-this
 

material in hydroxide compound form adds little
 

strength to the material. The overriding effect,
 

then, is-the significant weakening of the initially
 

strong positive plaque matrix by the extensive
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corrosion associated with impregnation.
 

Equally significant is the reverse strength,effect
 

we have observed associated with the manufacture
 

of negative plate. Negative plate material has a
 

higher yield strength than the initial negative
 

plaque. The-total porosity is decreased during
 

this process but again, it is the manner in which
 

this change. occurs that is important.
 

Firstly, however, the amount of sintered matrix
 

corrosion is less for the negative-plate than for-the
 

positive plate. Secondly, the negative active:mate­

rial partially as a metal,.has more strength than the
 

positive compounds.. It is, therefore, apparent that
 

the lower amount of corrosion combined with-the, over­

riding factor of a stronger active material produce
 

the net strengthening of negative plate. It is shown
 

as a final-result that positive plate material has a
 

higher yield strength than negative plate material.
 

This is obvious at the 0.2% s point, by the higher
 

modulus of-elasticity, and by the larger drop of load
 

as the matrix -cracks. Not only is the positive plate
 

matrix stronger, but it continues to help support
 

load further into the high strain region. It seems
 

then, that even after considering the differences, in
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corrosion and impregnation phenomenon, the positive
 

Ni plate is stronger than the negative Cd plate
 

primarily because there is such a great difference
 

in their respective parent structures -- the posi­

tive and negative sinter material -- plaque.
 

Ultimate Strength -- Although the basic progressive
 

ineffectiveness of the matrix has been.shown by the
 

reversion of plaque/plate strength to that of screen
 

alone, it is first important to note that the ulti­

mate strength of all four matrix materials remains
 

slightly higher than that of-screen alone. This may
 

be accounted for by assuming that some of the-nickel
 

powder has been effectively sintered to the screen
 

wires or in the immediate vicinity and permits this­

small portion of the matrix to provide continued
 

reinforcement throughout elongation to fracture. If
 

this is indeed the mechanism acting, we can then also
 

explain the relative values of ultimate strength from
 

the corrosion consideration discussed earlier.
 

Firstly, it is reasonable to expect the higher den­

sity, higher temperature sinter of the positive
 

plaque to exhibit the highest ultimate stress which
 

indeed is the case. Secondly, we note that despite
 

a stronger matrix at yield, the positive plate has a
 

lower ultimate strength (absolute load) than the
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negative. Here the greater corrosion of the
 

positive wires and proximate matrix would tend to
 

weaken and lower-the ultimate strength below that--of
 

the negative plate.
 

b) Constant Load Static Testing
 

Although the previous study is-an excellent starting
 

point for an investigation of-a material's mechanical
 

behavior and providesthe usual-engineering under­

standing, it may not provide the optimum information
 

for our purposes.. Thus; we employed a constant load
 

test frame rather than-the commercial constant
 

deformation type-used in the preliminary studies.,
 

This arrangement applied load to the specimen by
 

means of--a water-fill technique. A container at­

tached to the specimen served as a dead weight
 

accumulator as it was filled with water at a con­

stant rate. Additionally, unloading at any point
 

along the stress-strain curve is easily accomplished
 

at a fairly uniform rate by draining water from the
 

accumulator. Load is measured by a strain gage proof­

ring and the signal plotted directly on the vertical
 

axis of an x7y recorder. Strain measurements are
 

taken more accurately by a strain gage extensometer
 

of 1" gage length mounted on the. specimen-. This
 

output is plotted directly on the horizontal axis of
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the x-y recorder. This system provided a very
 

deliberate manner of loading to closely examine the.
 

region of yielding. Especially because of our
 

ability to-unload very precisely, we were also able
 

to examine the modulus of elasticity of the material
 

and its relation to strain level. Again, the
 

average results for each material are shown in Table
 

III B-2 with respect to the important values describ­

ing its mechanical behavior.
 

TABLE III B-2
 

ANNEALED NEGATIVE- POSITIVE
 
SCREEN PLATE PLATE
 

0.8 ± 0.2 x 106 1.0 ± 0;i x 106 1.2 ±:0.2 x l06
E (PSI) 


3.1 9.9 11.2'
yield. (LBS) 

ayield (PSI) 240 705 860
 

%ut.(LBS) 17.0 19.8 19.11
 

ort(PSI) 1310 1420 1470
 

* Dry, as manufactured electrodes 

Figure 111-6 has been prepared to permit compari­

son of the average stress-strain curve associated
 

with each material studied. It is shown,once again
 

that the screen alone forms the foundation and the
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increased strength due to the matrix is very
 

obviousin this region of low strain (<1%). The
 

tabulated values of strength agree quite well with
 

those obtained under the constant deformation type
 

of loading. However, this description of strength
 

was obtained in a different manner and it is best
 

to consider each value separately.
 

Modulus of Elasticity
 

As the matrix becomes ineffective, (while cracks
 

form as strain level-progresses), we would expect
 

to see a progressive decrease in the initial
 

modulus value toward the lower value of screen
 

alone. As indicated, the constant load technique
 

allows us to unload and reload at any strain level
 

we chose to determine the elastic modulus at that
 

strain level. In practice, we were able to unload
 

and reload at 400 p in/in <e< 6000 p in/in. Within
 

this region, the experimental scalfzer is equal to
 

the diminishing function which may exist. Some
 

values were obtained near the 200 jaslevel,.and
 

they were higher than the average reported. The
 

values that have been given in Table III B-2 are
 

the average values obtained from the unload-reload
 

determinations within 400 p in/in <e< 6000 p in/in
 

for each material. The tolerance is that of
 

metallurgical

111-36 materials division
 



experimental error combined with any diminishing
 

function that may exist within this-region of strain.
 

We have, of course, plotted E vs-. s for each material
 

and can only say that three regions of interest seem
 

to exist: (a) E may be diminished rapidly in the
 

region 0 <z< 200p in/in; (b) for the region 200p in/
 

in <E< 2000p in/in there may exist a very small 

diminishing of E; (c) beyond e = 20001 in/in there 

seems to be no function of E vs e level. In other
 

words we feel that a plastic deformation component
 

exists at very low strain levels (<200p in/in) and
 

that yielding is complete @ 2000pe. This is con­

firmed by the fact that a determination of modulus of
 

elasticity by.measuring the slope of the stress
 

strain curves will give a lower value than that ob­

tained by the more accurate unload-reload technique.
 

The-values indicated in Table III B-2, therefore,
 

remain the best measure of true elastic response in
 

tensile loading. Aside from permitting future cal­

culations of dynamic response, they are important
 

measurements for several reasons: (a) the value ob­

tained for screen alone agrees well with that indi­

cated by the model;_(b) at-least for E< 6000V in/in
 

the modulus of plate material remains higher than
 

that of screen-alone; (c) the strength (stiffness)
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of the positive matrix is greater than that of-the
 

negative matrix.
 

Yield Strength
 

As indicated, this type of precise loading was­

meant-to more accurately examine-the region of
 

yielding c<l%. Figure 111-6 illustrates this
 

region in great detail. It is important only to­

note-that this value of yield strength @ 0.2% E
 

agrees very well with the initial determination
 

given-in Table III B-1. Thus, this series of con­

stant load tests-fully supports the initial rela­

tions between positive- and negative plates as
 

extensively-discussed in the previous section.
 

Ultimate.-Strength
 

Although-this type of testing was-meant to closely
 

examine only the low strain region near yielding,
 

most specimens were taken to tensile fracture.
 

Load,data,was available-up to the point.of failure
 

and it is important only to note that the ultimate
 

strengths thus reported are essentially in agree­

ment with those first determined and reported in
 

Table III B-i. Thus, this series of constant load
 

tests essentially supports the discussion of
 

ultimate strength contained in the earlier section..
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c) The Effects of HeatSterilization and Electrolyte
 
Saturation
 

All tabluated values- and stress-strain curves shown in
 

thepreceding sections were obtained from as-manufac­

tured, dry, unsterilized plate material. We were.
 

interested, therefore, in the possible changes in
 

mechanical properties which'-might result from heat
 

sterilization and electrolyte-saturation of this same
 

plate material. Tensile samples were thus prepared by
 

full heat sterilization (135°C for 64 hours) in the
 

saturated condition (30% KOH). These specimens.were
 

then tested in the constant loading apparatus-described
 

in Section B.2.b. The results are.tabu-lated below and
 

should be compared to those in Table III B-2.
 

TABLE III B-3
 

SATURATED AND STERILIZED ELECTRODES
 

Negative-Plate Positive Plate 

E (psi) 0.71 ±-0.i0 x 106 1.35 ± 0.25 x 106 

Pyield (lb) 8.2 10.9 

ayield (psi) 587 835 

Pult (lb) 19.2 22.0 

Cult (psi) 1375 1690
 

The complete stress-strain curves-have been included in
 

metallurgical
 

111-39 materials division 



5-MMD-19869 10158
 

Figure 111-6 in order to permit the comparison of as­

manufactured vs saturated and heat-sterilized plates.
 

It-appears that the mechanical properties of the positive
 

plate material are not.changed as greatly-as those of the
 

negative plate. The positive results indicate-.verysmall
 

changes-in the modulus of elasticity and yield strength.
 

However, the ultimate strength has been found to be.
 

significantly higher.
 

The behavior of negative plate is changeda-great deal
 

by this saturated sterilization. The-modulus of elas­

ticity and yield strength of the negative has been
 

significantly lowered along with a slight reduction in­

ultimate strength. The-weaker-of the two electrodes in
 

our Ni-Cd system seems to be further weakened by the
 

saturated sterilization treatment.that is required.
 

d) 	Dynamic Tensile Testing
 

Considering the goal of the current effort to develop
 

knowledge.which will enable the design of impact­

resistant Ni-Cd cells, it should be stated that the
 

actual dynamic tests are of prime importance. In
 

retrospect to what has been written, it should be
 

stated that the reason for performing static testing
 

is 	to establish a foundation of strength properties.
 

What is necessary-for a.thorough-understanding
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is a knowledge of the actual transfer from static to..
 

dynamic conditions. The static testing isvaluable
 

since it can provide us with a complete picture-of
 

stress vs strain which-is not easily obtained under
 

dynamic loading. In fact, it will be shown that
 

only the yield point and ultimate load can be obtained
 

under dynamic conditions and that the static.results
 

are of-great value in-establishing the complete mechani­

cal behavior.
 

Ultimate Strength:
 

From the static values we have obtained and a
 

knowledge of the plate's physical properties, we
 

might write -­

__L _ Unit Area 
Ultimate Forde 
" Unit Width 

( ength) dth)'DensityI. 
i D 

g, 

and would find that -­

k > 3.3 inch 4 Failure
 

This mass, inertia-loading defines the method of
 

testing we have used to investigate dynamic proper­

ties. The essential concept is shown diagrammatically
 

below.
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All specimens of positive and negative plate
 

material were constant width (2" or 40 wires) and 

cut to various lengths (3-1/2" - 6-1/4i'). 

Typically, four positive plates and four negative, 

plates, each of a different length, would be placed
 

in the fixture. Through suitable shims, friction
 

duplication techniques (support data of frictional
 

coefficients have been generated) and clamping
 

arrangements, we could consider one end fixed.
 

Then, knowing the effective free length, 1, the
 

mass density, p, and the mean g-level at impact, 

Ng, we could calculate for each plate the dynamic
 

tensile inertia force experienced. Therefore,
 

lengths were varied above and below the predeter­

mined static failure length and the value was
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bracketed. Values of ultimate strength. are tabu­

lated below for comparison.
 

TABLE III B-4
 

ULTIMATE TENSILE STRENGTH (2" WIDTH)
 
(As-Manufactured Electrodes)
 

Static Static Dynamic Dynamic
 

c =Constant a =Constant 7/8" Tool 1" Tool
 

Positive
 
Plate 72# 76# 80# 107#
 

Negative
 
Plate 76# 79# 90# 115#
 

What is apparent from this study is that the plate
 

material can support greater loads under dynamic
 

conditions and we indeed may use static-strength
 

determinations as a foundation or. lower bound for
 

design. In'other words, the material is e sensitive
 

and under dynamic loading may support perhaps 120#.
 

The reason that-the dynamic tests as reported above
 

are separated is due to the different pulse lengths
 

involved. The calculated values shown are magnified
 

to some-degree by the dynamic loading. It is felt
 

that we are in the area where the magnification is
 

not constant and is dependent upon the natural and
 

applied frequencies involved. This aspect is dis­

cussed in Section C.2.b of this report.
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Yield -Strength
 

•in 	addition to bracketing the value of ulimate
 

strength under dynamic loading, we are also able to
 

determine the material's dynamic yield strength, as
 

indicated by the onset of matrix cracking. For
 

example, after impact loading a plate has the appear­

ance shown in the following sketch and in Figure
 

I ar ~t 

Z_
 

As.stated previously, the value of effective length,
 

1, will detdrmine whether or not there is sufficient
 

mass experiencing the test acceleration to produce
 

a force sufficient to fracture the plate at Section
 

A-A. There also exists for each plate a length, Iy
 

from the free&end over which no matrix cracking
 

occurs. Beyond 1y the matrix will have cracks uni­

formly spaced, each 1/20 inch (20 mesh screen). If
 

we measure ly fbr each plate, then, knowing the input
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DYNAMIC TENSILE LOADING
 

VELOCITY 

114.5 FT/SEC 

m-m Ly2 

NilE Figure £"u-H 
1.05 msec 3850 g's mean 



acceleration and the physcical.properties of the.
 

plate, we can calculate the dynamic force created
 

by this mass which was responsible for yielding
 

the plate or cracking the matrix. This dynamic
 

yield strength has been calculated for each plate
 

tested. We have plotted the yield force, p y,
 

against the effective plate length, 1, to demonstrate
 

the distinct linear function that exists because of
 

relative frequency - magnification considerations.-


The.effect is amplified by our failure to consider
 

the progressive nature of yielding. The range of
 

yield strength values are given in Table III B-5.
 

TABLE III B-5
 

YIELD STRENGTH (2" WIDTH) (AS-MANUFACTURED ELECTRODES)
 

Static Static Dynamic Dynamic 
E = Constant a =Constant 7/8" Tool 1" Tool 

@ 0.2% c p @ 0.2% P @ Crack p @ Crack 

Positive
 
Plate 44# 45# 60-72# 42-96#
 

Negative
 
Plate 40# 40# 60-70# 48-78#
 

Again, it is apparent that yield strength as well
 

as ultimate strength is elevated by the higher
 

strain rate associated With dynamic loading. The
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j.AMD. tB69 I.0/ s40 
variation with pulse length. (7/8" vs i" tool), and
 

effective plate. length-has been demonstrated.
 

Rather complete Static stress-strain curves have
 

been established and the effect of strain-rate sen­

sitivity has been shown:
 

~....h,. .{ .h .2T: '-"" ";{]'" | i!i4 .I.. :f::.. : ::: - -' 'i-;:I7Zir. '.1. :' J A"1 


2400 it jv -- -iti ", ill .
:=._ 

T I 

.. I _ -l. V2 
Rs T 

EstSTRAN N/N H 

.Dynamic strength behavior is elevated above that
 

of the well-established static lower bound. 
However,
 

the degree of this elevation (shaded area above)
 

depends on a more well-defined relation between ele­

ment response an& the applied forcing .function.
 

e). Poisson's Ratio 

.- "
 

Extensive development of strain gage tchniques was
 

carried out under the present contract. The support­

ing data can be found in the 9th QTR JPL Report.
 

The prime reason for development was the measurement
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of dynamic strain during impact conditions as, dis­

cussed in Section C.2.b. These techniques- also
 

offer the most appropriate method that can be used
 

for a determination of Poisson's Ratio. The static
 

determination employed an axial strain gage and an
 

identical transverse strain gage of the thin paper
 

foil type installed with Eastman 910 on each of
 

three " wide dry negative plate specimens.
 

Simultaneous strain readings were taken from each
 

gage and a commercial axial extensometer. Essen­

tially, we compared the slope ratio of the trans­

verse to the axial gage output within the region
 

of-linear agreement between the axial gage and
 

the axial extensometer. The constant loading as
 

described in Section B.2.b was-used for these
 

tests. The third specimen was subjected to one
 

unload-reload cycle to show the elastic behavior
 

more clearly.
 

The-results are presented in Table II B-9. We
 

have indicated the modulus of elasticity, E, as
 

determined at various strain, E, levels by unload­

reload cycles. The values obtained-are in good
 

agreement with those previously determined by this
 

type of loading. We have also given the calculated
 

ratio of strain gage-output to that of the
 

- metallurgical 

111-48 materials division 



TABLE 111-9 

Negative 
Plate 
Specimen

" Wide 

E 
@ sin/in

(PSI) 

, axia gage 
Faxial-extensometer 
-.slimits i in/in 

s transverse gage 
saxial extensometer) 
E-limits p in/in 

Poisson's 
Ratio 

V 

H 
H 

2 

5-28 

H
6-16 

1.22 x 106 

@ .0014 
1.00 x 106 

@ .0038 

6 
1.30 x 10 
@ .0044 

0.702 
(50-300) 

0.400 
(100-600) 

0.116 
(50-350) 

0.088 
(100-700) 

0.164 

0 

Initial 
Loading 

6-27 Reload 1.01 x 106 

0.364 
(80-600) 
0.733 

0.068 
(20->625) 

0.124 

0.186, 

@ 0.0012 
in/in 

average 
@ .0012 

(10->300) (40->300) 0.169 



extensometer. Next reported, are the values of
 

Poisson's Ratio, which were obtained from each
 

test. The average value is V= 0.184. However, more.
 

weight-must be given to the values obtained at the
 
h axial gage ratio since this indicates
 

higher Ca axial exten.
 

a lower degree of matrix reinforcement. On this
 

basis, the best.value of Poisson's Ratio is approxi­

mately 0.17 and should be used for subsequent calcu­

lations. This value is of course much lower than the
 

0.28 	normally observed with pure-nickel -and indicates
 

a large degree of anisotropy. We had previously
 

observed the differences in tensile and compressive
 

strength, and this predicted anisotropic behavior
 

has been confirmed under this uniaxial loading study.
 

3. 	Mechanical Properties in Compression Loading
 

a) Introduction
 

The experimental program for evaluating the mechani­

cal strength of Ni-Cd electrodes may be broadly
 

separated into three (3) distinct methods of load­

ing: tensile, compression, bearing. The behavior
 

under tensile loading has been discussed in Section
 

B.2. The studies of-bearing strength are of prime
 

design interest and will be discussed in Section
 

BA4. This section describes the manner of loading
 

and the strengths that have been measured in a com­

metallurgical 
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pression-buckling mode of-failure. This area of 

Investigation is- similar to the tensile work in 

that it has'primarily increased our understanding 

- of our plates' behavior under load. In contrast, 

the bearing strength studies will be more clearly
 

related to actual cell failure mech-anisms. In
 

other words, edge crushing of the electrode pack
 

could be a prime cell failure mode under impact
 

loading.
 

b) 	Constant Deformation Static Testing
 

The static compression loading was.accomplished by­

the constant deformation method (comrmercial testing
 

machine) as fully described in the tensile report.
 

The manner of specimen loading is shown below:
 

_JT741 4 Z" CQl07-14r. 
114-' 

/7// 
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Two prime failure modes were observed, during the
 

course of our investigation:
 

s/%:a IA'; 

30C Q
n111 C~i~lcs/a 

Since the loading system did not provide lateral
 

support, buckling would occur whenever the effective
 

column'length was too large for the material strength
 

available. If-the material has sufficient strength,
 

buckling is resisted and the highercompressional
 
'ultimate load is exhibited.
"
 

in.the first series of tests,-as-manufactured posi­

•tive 	and negative electrodes 1/2" wide were loaded
 

over a 1/2" initial gage length. In all cases, the
 

buckling mode of failure was exhibited.
 

The second series of tests were performed on 1/2"
 

Wide specimens of positive and negative plaque over
 

a 1/4" gage length. Again, Ehe universal failure
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mode was in buckling.
 

The third series.of tests involved as-manufactured
 

positive and negative plates- 1/2" wide loaded over
 

a 1/4" gage length. This was a sufficiently short
 

gage length to permit the specimens to resist
 

buckling and .primarily exhibit compressional shear
 

failure.
 

Reproduceability of stress-strain information for
 

various specimens of the same material is poor
 

when obtained by this manner of loading. Figure
 

111-8 presents, therefore, average stress-strain
 

curves for the three series of tests. The positive
 

(both plate and plaque) is shown to be stronger
 

than the negative in all cases. The very large
 

increase of plate strength over that of plaque is
 

shown. The absolute stresses shown in Figure
 

111-8 are significant. Regardless of mode of
 

buckling-compressional failure, we observe ultimate.
 

stresses of 3000-6000 psi as compared to 1400 psi
 

tensile ultimate stress. What is needed for true
 

compressional evaluation, however, is a measure of
 

the uniform strain with a provision for positive
 

lateral restraint.
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Table III B-6 compares the experimental values­

obtained with some fundamental buckling calculations.
 

E1 represents the initial apparent modulus of elas­

ticity if significantly exhibited before yield.
 

Following the plastic elongation region, the final
 

"apparent.-modulus of elasticity" displayed during
 

ultimate loading is represented by E2. The actual
 

failure load P, is next given but-distinguished by
 

the associated mode-of failure. Next we have
 

shown a predicted buckling load as calculated by a
 

modified Eu ler equation which serves merely as a
 

very inaccurate lower limit for comparison purposes.
 

The absolute values of E2 noted in this type of
 

testing are lower than those observed during con­

stant deformation tensile testing. It also appears
 

from this study, that a rather large amount of
 

plastic-deformation is necessary be-fore,the matrix
 

is able to support the load. Such factors suggest
 

that the initial bends in the screen play a very
 

significant role.
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TABLE III B-6 

Static Calculated Dynamic 

-E 

ps16 ps x 

* 

E2 
12C psi 

Static 
F(Critical
Buckling. 

_ 

'Ultimate 
Compres-
sion 
#-

Critical' 
Buc.kling 

,2 fr E I 

Ultimate 
Compres­
sion 

_# 

Positive 
Plate 

Negative 
Plate 

1/2" 

G.L4 

0.-24 

0.12 

- 0.12 

E---.0.12 

35 

' 
32 

---- 8 

8 

Pas it ivd 
Plaque * 1/4" 0.14 --­ >- 0.05 15 .12 

Negative
Plaque *G.L. ---- .0.i0 8 24 

Positive 
Plate 1/4" 0 14 0.18 70 A2 >34., 

H 

an * 

Negative 
Plate G.L. 0.1.6 0.16 42 .36 34 



0
 

Pocrous structure Porous structure has Sufficient de­
uncrushed.-Supporting reached yield, Pores formation & 
-initial load as in collapsing, wirfe "densification of 
tension. bending. collapsed pore 

, .,_structur6to per­
' S mit.further load 

' " '!<support. 

This understanding'.or explanation is supported by
 

sevsral experimental results. Yield strengths on
 

thelorder of 100-600 psi have been observed in com­

pression which are lower than those (225-850 psi)
 

experienced under tensile loading. The extensive
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plastic elongation region is then fairly well 

established. The modulus E observed when load is 

again supported is < the modulus of screen alone. 

under tensile loading. This indicates that the­

contribution of screen under compression is reduced 

and 	that indeed from a modulus standpoint, the
 

combination of corrugated screen and compressed
 

sinter are scarcely equal to the screen alone in
 

tension. The ultimate load carrying ability in­

tension was seen to rely primarily on screen alone
 

since the matrix became ineffective or lost due to
 

elongation. In contrast, however, compression ap­

pears to utilize the matrix as the major load bear­

ing element up to the point of fracture.
 

c) 	Dynamic Compression Loading
 

The dynamic-test method used to evaluate Ni-Cd
 

plates has been completely described in the tensile
 

loading Section B.2.d. The method used for com­

pression studies-is identical except for a reversed
 

mounting procedure which simply allows the plates
 

to experience decelerating forces in the opposite
 

direction.
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As in tension testing, the compressive specimens
 

were 2" wide and cut to provide various effective
 

lengths, 1, for each impact. Through the use of
 

suitable clamping and friction elimination tech­

niques, each plate was essentially free to exhibit
 

its response to the input force. A buckling mode
 

-of failure,was not permitted, and thus we observed
 

only compressional fracture as shown in Figure
 

111-9. If the'effective length, 1, was sufficiently
 

large, failure would occur at the associated load­

ing. A dynamic yield point is not'observed in the
 

compression loading of the matrix as was seen in
 

tensile loading Thus, we have merely a deter­

mination of the ultimate compression load.
 

Positive Plate'could not be failed in a completely
 

dynamic compressional mode in our testing. We have
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observed plates of the maximum effective length
 

permissible (I = 5-7/16") experiencing impact levels
 

of .3700 g with no apparent damage in pure dynamic
 

compression. Thus, we may-only say that the Pult >
 

134# or ault > 2600 psi. Indications are then, that
 

the positive is stronger than the negative which is
 

in agreement with the very obvious result of static
 

testing.
 

Negative Plate material has been found to have a
 

fracture load of 135 lbs for the 2" width (2400 psi).
 

This is slightly lower than the average value
 

obtained in static testing (recall 168 lbs or 3000
 

psi). Even recognizing that the static data con­

tained a great deal of scatter, we may assume that
 

some dynamic phenomena are being observed. If our
 

deformation model for compression is valid, it
 

would imply that the Ni metal screen wires are not
 

available at ultimate load to carry significant
 

stress and therefore the strain rate, c, effects
 

observed in.tensile loading will not appear in com­

pression. In other words elevation of ault in ten­

sion at elevated C was an observable and reasonable
 

effect but we now have reason to expect very little
 

difference in compressional ault as a function of C.
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4. ,Mechanical Properties of Electrodes in Bearing Loading
 

a) Introduction
 

The determination of the mechanical properties-of
 

Ni-Cd electrodes under tensile and compressive
 

loading has been discussed. This section describes
 

the third and final method of loading employed to
 

complete the strength characterization of this ma-­

terial. Bearing tests, although certainly related
 

to the study of compression loading have been dis­

tinguished here as a separate method. The main
 

reason is that we did not insist upon any one
 

failure mode. Instead, we attempted to shift from
 

one failure mode to another in a controlled fashion.
 

A second reason for distinguishing this series of
 

tests is that the present manner of loading more
 

closely approximates the type of freedom and failure
 

that might be experienced in an actual battery. It
 

was.envisioned that under high gravitational fields
 

our plate material might exhibit any one of three
 

failure modes:
 

metallurgical 
111-62 materials division 



/ 	 C)/ 

IJ 	 [ I 

* _: ......2_ - , W , "I 

(1) 	True Bearing Failure: The bearing failure
 

mode would be exemplified by edge crlshing of
 

the plate material at the fixed impact surface.
 

If this failure mode were exhibited, it would
 

occur at a lower value of inertial stress than
 

that maximum required to cause true compres­

sional failure. This failure mode has signifi­

*cant'implications to the battery manufacturer
 

since it is most likely to cause separator
 

penetration and shorting of the cell.
 
I 

(2) 	Compression-Shear Failure: The true compres­

sion 	failure mode would be exhibited if ulti­

mate 	bearing stress exceeded ultimate compres­

sion 	stress. If this is the case, then the
 

value observed would represent the maximum
 

inertial stress that can be supported by this
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material. It is obvious, therefore, that the
 

battery designer would be extremely interested
 

in this determination.
 

(3) 	Duckling Failure: The buckling mode of
 

failure will be observed at a lower stress level
 

than that associated with either failure mode
 

(1) or (2) and is obviously to be avoided.
 

Hence, the determination of the degree of
 

lateral restraint necessary to prevent this
 

transfer of failure mode is of-prime design im­

portance.
 

With these considerations and goals in mind,
 

the 	experimental program was outlined to inves­

tigate the occurance of all three failure modes
 

under controlled lateral restraint-at both
 

static and dynamic-rates of loading.
 

b) 	Constant Deformation Static Testing
 

The- static bearing loading was accomplished on a
 

universal testing machine at a constant deformation
 

z
rate (a 0.0007 sec-l). The manner of specimen
 

loading is shown on the proceeding page:
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t = separator thickness
 

n = number of plates
 

Thus, stress, a, could be defined as:
 

a.- P
 
2
W(tpl +'tp + ...+ tpn)
 

where the denominator is simply the area of plates
 

being compressed and P is the total force as
 

recorded from the load cell of the machine on the
 

y-axis. Strain in this study was taken as e=i
 
0
 

and again 6 = p t was directly displayed on the x-axis 

of our recorder. 

The-static bearing tests carried out under this
 

type of loading were conducted on positive -and negative
 

plates at spacing values ranging from .000"/plate ­

.009"/plate. The specimens are shown in Figure III-10.
 

The progression from left to right illustrates the
 

complete trasfer of failure mode from true compres­

sional-shear to buckling as-the spacing is increased.
 

We observe the ultimate loads decrease to that mini­

mum level-associated with pure buckling. Important
 

to note is the total absence of edge-crushing or.
 

true bearing failure. What is observed then, is an
 

ultimate bearing stress whidh seems to be greater
 

than the ultimate compression stress for this material
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Material 


Pos. Plate 


Neg. Plate 


c) 


under static conditions.
 

Ultimate strain levels were fairly uniform regardless
 

of failure mode-mainly due to our definition of an
 

overall apparent macro-strain. The stress levels are
 

important however and large differences have been
 

exhibited in direct relation to the spacing allowed
 

and our ability to-restrain buckling. The values
 

of buckling stress and ultimate compression stress
 

obtained in this study agree very well with the
 

values determined earlier under strict compression
 

loading as demonstrated in Table III B-7.
 

TABLE III B-7
 

Static Buckling Stress Ultimate Comp. Stress
 
Compression Bearing Compression Bearing
 
(l/2"G.L.) (Max. Spac'g.) (1/4" G.L.) (Min. Spacing)
 

2700 3000 5600 6500
 

2300 2300 3000 4900
 

Dynamic Bearing Loading
 

Having established a static strength foundation,
 

we were interested in observing possible changes
 

in these values because of increased loading rate.
 

Dynamic bearing tests were performed by use of a
 

loading fixture as shown on the proceeding page:
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Figure III - 10 

STATIC BEARING 

NEGATIVE MAXIMUM STRESS (S) 

000"/PLATE 001"/PLATE .0025"/PLATE .0045"/PLATE .009"/PLATE 

S = 4910 PSI S = 4000 PSI S = 3715 PSI S = 2760 PSI S = 2290 PSI 

POSITIVE 

000"/PLATE .0025"/PLATE 001"/PLATE ,0045"/PLATE 

=
S= 6500 PSI S 4585 PSI S = 5480 PSI S = 1385 PSI 
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in the compression fixture but were free tomove
 

and to crush at the ends if sufficient force was
 

applied. Controiled spacing/plate, however, through
 

the use of shims, was the essential feature of this
 

fixture in order to duplicate the static conditions
 
of-loading. initial plate length and impact level
 

could be varied and thus maximum stress., a--ax, has
 

been-defined here as :
 

a P g _ (w -(L -. ) (Ng) 
max A (E-:-) g(t-w)
 
max =­

where: p = area wt. densitLy (#/i 2 ) 

t- plate thickness (in)
 

L = plate length (in)
 
1[=-number of gs accel. H
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Thus, for a given test at a controlled spacing/
 

plate, the maximum stress would be calculated from
 

the measurement of plate dimensions and applied
 

deceleration. This max. stress would either cause
 

visual failure at the end of the.plates or it would
 

not. If-this max. stress was sufficient to fail
 

the plates, we would lower the value to find the
 

point where-the material would not fail. If the
 

same max. stress was not sufficient to fail the
 

plates, the level would be raised to the point of
 

failure. This partly explains the span lines of
 

experimental determination of failure-non-failure
 

shown in Figure III-ll. This procedure was fol­

lowed for each value of spacing selected. Figure
 

III-ll presents the values of dynamic failure loads
 

superimposed on the static failure- loads as a func­

tion of plate spacing or degree of lateral
 

restraint. The static curves are well behaved and
 

exhibit the greater strength of the positive elec­

trode and show both electrodes tending toward a
 

nearly common buckling stress asymptote. This is
 

again in agreement with the earlier static compres­

sion study. These curves display the need to main­

tain a high degree of lateral restraint if exces­

sive loading must be endured.
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The dynamic load levels that are indicated as span
 

lines on Figure III-l are not solely the limits of
 

two experimental levels. We have included in these
 

lines the results of both positive and negative
 

plates. Several of each type-were-placed in each
 

fixture and the difference in stress was very small.
 

This was essentially as expected since it agreed
 

with the static results observed -- that at larger
 

spacing, buckling is dominant-and there is.thus
 

little distinction between the two electrodes.
 

This is shown by the joining of the two static
 

curves and their tending toward a common asymptote.
 

As lateral restraint was increasedjhowever, we
 

reached a point whe-re wo were unable to produce
 

failure in either electrode. (single point on Figure
 

III-11 @ .0025' spacing). In other words, taking
 

the longest plate (6-5/8") that could be accommo­

dated in our fixture, and employing the highest
 

impact level(meas. mean 4000g) for 1.1 msec from
 

110 ft/sec). Available at that time, the maximum
 

stress developed (3100 psi for NEG.; 2900 psi for
 

POS.) was not sufficient to produce failure. Thus,
 

only a lower bound could be established at this
 

degree of lateral restraint (see Table III B-8).
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It appears, however, that the dynamic curve, if able
 

to be completed, would have a shape or character
 

similar to the static curve. The dynamic values of
 

ultimate stress are nearly equal to those obtained
 
0
 

statically and reinforces our position that E
 

effects may not be as important in compression.
 

This is valuable information in that it makes the
 

transfer from static to dynamic results less compli­

cated.
 

The failure modes exhibited in the dynamic study
 

included all three mechanisms to some degree. In
 

the case of minimum lateral restraint, the onset of
 

buckling at the impact end was dominant as expected.
 

As we increased the degree of lateral restraint,
 

both compression-shear (very close to the impact
 

edge) and bearing failure (edge crushing of the
 

impact surface) were displayed in nearly equal
 

amounts. It appears, therefore, that in high rate
 

loading the ultimate bearing stress nearly coincides
 

with the ultimate compression stress.
 

It is valuable as a final summary to tabulate the
 

dynamic results obtained in this study and compare
 

them with previous determinations of dynamic ulti­

mate strength.
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TABLE III B-8
 

Dynamic Dynamic 
aunt anut Dynamic 0uit Bearing 

Tension Compression @.008" @.004" @.0025" 

Pos. Plate 2000 >2600 2800 2800 >2900 

Neg. Plate 2000 2400 3000 2800 >3100
 

C. 	DYNAMIC RESPONSE OF'ELEMENTS TO IMPACT LOADING
 

1. 	Theoretical Predictions of Dynamic Response
 

a) One Degree of Freedom Analysis of Natural Frequency:
 

The natural frequencies, fN 'of a vibrating system or
 
n
 

element are a most important parameter in the study of
 

the transient as well as the steady state response of
 

that system. Therefore, our preliminary analysis
 

effort was directed toward a modified single degree of
 

freedom approach to approximate the natural frequencies
 

of our system. With this approximation, we could then
 

examine the consequences of the value of f so obtained
 

with respect to the shock spectra of the specified
 

deceleration pulse.
 

The single degree of freedom system employed is shown
 

below:
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X 

I/ / I 

i. = unstressed length of spring 

S = static equiilibrium position 

dynamic displacement of body 

M =.mass of body 

I = length along spring 

= dynamic displacement of dl 

m = mass of spring 

K =_ spring constant 

This system permits the mass of the spring to be con­

sidered and wN as in the simple case. Thus we
 

can use this system to reduce our distributed-mass
 

(infinite degree-of-freedom) element (battery elec­

trode) to a lumped-parameter system utilizing the con­

cept of vibrational transfer of potential and kinetic
 

energy_. This method has been accurately described in
 

the literature and for this system it has been shown
 

that the natural frequency (undamped) is:
 

W, , for M << m 

(Rad./Sec.)
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Thus if M + 0, we have the case of a spring alone with­

out concentrated end mass and: 

S for M = 0
 
N1
 

or for our elastic spring element of length, 1, apparent
 

cross-sectional area, A, and apparent modulus of elas­

ticity, E, we have:
 

f 1 2_ 1 (cy/sec)
 

Now for battery electrodes we may write for convenience:
 

A = width x-thickness = wt
 

m = weight = length x width x area density = lw p 
g g g 

where: p = area weight density
 

fN1 = C/
 
Where: C = 1/4/ . 

Specifically for our Ni-Cd electrodes:
 

t = thickness (.025"-.028") = 0.0265 in.
 

g = acceleration of gravity = 386 in/sec
2
 

3 

p = area weight density = 3.2 x 10

- #/in 2
 

3
(2.8-3.2 x 10- #/in 2 positive) 

(3.3-3.5 x 10- 3 #/in negative) 

Variables: 

E = modulus of elasticity 

0.1 x 106 psi negative plate in compression
 

1.0 x 106 psi positive plate in tension
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1 = 	length of electrode
 

normally 3" - 8" 

Thus: C = 14 

and the fundamental frequency of longitudinal vibration 

for 	sintered Ni-Cd electrodes is given by:
 

f 	 = (14) 

This fundamental natural frequency has been calculated
 

for various plate lengths and values of E and is plotted
 

in Figure 111-12.
 

b) 	Shock Spectra Implications:
 

A shock spectrum is a plot showing the peak response of
 

a variable-frequency, single degree of freedom oscillator
 

to a specific shock pulse as a function of the natural
 

frequency of the oscillator. (It is important to under­

stand from the start, that the shock spectrum tells us
 

what a given shock pulse will do; not what it is.) This
 

is much different from a Fourier spectrum or plot of the
 

Fourier analysis performed to describe a given shock
 

pulse. It has been found that when a single degree of
 

freedom, linear, undamped system with a distinct natural
 

frequency is subjected to a mechanical shock, its re­

sponse motion will be determined by the magnitudes, shape,
 

and time duration of the shock pulse. In fact, the
 

amplification spectrum as it is sometimes called, is
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rather insensitive to the exact time-history of the
 

pulse. Rather, the rise-time of a given pulse is the
 

most important factor which distinguishes the maximum
 

amplification factors for various pulse shapes. The
 

total impulse and rise time are the two main damage
 

criteria. As will be seen, the rapid rise time of
 

our square pulse implies the highest maximum value of
 

any pulse shape (theoretically = 2X). In general, the
 

shock spectrum will not have frequency alone as the
 

aboissa because of the above considerations, rather a
 

ratio of the shock pulse length (t0) to the natural
 

period of the oscillator (T) is more useful (to)
 

Depending on the value of this ratio, however, we find
 

that the system's response during application of a
 

given shock pulse may differ considerably from the mo­

tion after the shock pulse has ended ft = to). It is
 

therefore common to plot a."primary" spectrum (response
 

during shock input *o<t<to) and a "residual" spectrum
 

(response after shock input to<t<o) to fully generalize
 

the behavior of various elements to various shock dura­

tions of a certain pulse shape. However, it is more
 

useful to provide the designer of shock-resistant ele­

ments with a single "maximax" spectrum plot arrived at
 

by taking the greater value from the "primary" or the
 

"residual" plots throughout the frequency ratio range
 

of interest.
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It is not appropriate to reiterate the derivations and
 

analyses of various'spectra characteristics that can 

be found in the literature. The value of using this 

concept is well recognized and it is only important 

that ye understand the fundamentals in order to apply 

.theinformation that can be obtained. Thus, the 

character of the maximax shock spectra can be obtained 

directly from the literature. In our case, we wish to 

consider a single shock input: = 

AT/ON Z- V x 2 4 s c 

, . . t7 < 

Thus, we can establish the abscissa directly as the
 

natural frequency of our Ni-Cd electrodes rath~er than
 

as a time ratio.
 

The ordinate is simply the relative response and can
 

be scaled directly in numerical dynamic amplification
 

factors. It must be remembered that the response can
 

be thought of as displacement, acceleration,'etc.
 

(If this same qu&ntitydes6ribes the input pulse). More
 

useful to the designer is the concept of force or
 

stress (indirectly strain) amplification over that of a
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static loading equal to the amount 	of input acceleration.
 

The shock spectrum for the pulse illustratedabove is
 

given in Figure 111-13 with the ordinate and abcissa
 

scaled as discussed for optimum use in.our problem. The
 

basic implications are: (1) Any Ni-Cd electrode with a
 

natural frequency.greater than 167 cy/sec.will:experience
 

an amplification of the nominal input forces under
 

dynamic loading. (2) Any Ni-Cd electrode with a natural
 

frequency greater than,500 cy/sec will experience twice
 

the nominal input forces under this dynamic loading situa­

tion.
 

From 	a design point of view, the calculation of-natural
 

frequenciesin-the previous section now has more value.
 

It may be instructive to outline the design considera­

tions that have been formulated:
 

(1) 	The manner-of loading must first be identi­

fied and this will dictate the modulus of
 

elasticity and strain-rate effects from
 

previous determinations of the mechanical
 

properties of our electrode.
 

(2) 	Space considerations may indicate a trial
 

size of our electrode.
 

(3) 	The design pulse magnitude will be used to
 

calculate,the static stress applied to this­

size 	and weight electrode.
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(4) 	The natural frequency of this specific
 

electrode is determined.
 

(5) 	The shock spectrum (for the design
 

pulse) is used to determine the dynamic
 

amplification factor which applies.
 

(6) 	The- actual stress which this electrode
 

will experience under this design pulse
 

loading can now be calculated.
 

(7) 	The effect of this stress on the elec­

trode is now determined from previous
 

determinations of this electrode's
 

mechanical properties under the same
 

manner of loading.
 

The importance of determining complete experimental
 

information concerning the mechanical properties of
 

Ni-Cd electrodes is now obvious. Without such
 

information, design can neither begin (Step 2) nor can.
 

a valid judgment be made (Step 7) concerning the adtual
 

damage that may or may not occur to an, electrode in a­

specific loading situation.
 

c) Analysis of Displacement and Stress for Distributed-

Mass Element:
 

The frequency-shock spectra analysis is quite straight­

forward and can provide valuable information to the
 

designer. It does not.permit a direct calculation of
 

the stress within the element, however, &nd it does not
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give us a description of the deformation process. What
 

we would like is an insight into the actual displacements
 

within an electrode and the stresses that are applied
 

during impact. We seek an accurate description of stress
 

and strain as a function of location and time. This type
 

of information can only be obtained by a more rigorous
 

analysis of our distributed-mass element. To explore the
 

possibility of solution, we have formulated the problem
 

as a long, slender element of uniform cross-sectional
 

area, A, and constant initial velocity (rigid body
 

-motion), -V, which is subjected to asudden longitudinal
 

deceleration at time t = o. The problem is shown below: 

~V 

_ __-I 
> >0 
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We find that the governing differential equation is:
 

2u 2 @2u
 
2 2 (2)
 

at 9x 

which is the general "wave equation" in which:
 

a = - where: p = mass.density 

We have for our case:
 

Initial Conditions Boundary Conditions
 

u (x,o) = o u (o,t) = o
 

au (xo)= -v (L,t) = TE x
 

imposed by our.considerations of constant initial
 

velocity, rigid fixed end and free unstressed end.
 

Following the method of separation of variables we
 

assume the general solution of.EQ. (2) may have the. form:
 

u (xt)=-X (x) T(t) (3)
 

Now we may-write EQ. (2) as:
 

2
X " = a T X" 

T" 2 X" 2
-= a = 

the component .ordinary differential equations will be:
 

A2 
& X11 = 
T" = _X2T 


2 X
 
a
 

and whose solutions,are known:
 

T = A cos At + B sin At.
 

X = C cos- x + D sin i x 
a a
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Therefore, the general product solution EQ.3 can be-­

written: 

u(x,t) = (C cos !'x + D sin -K x) (A cos At +.B sin At) (4)a a, 

Examining the first boundary condition in EQ.(4): 

=> C =-O in general for all t 

Examining the second boudary condition in EQ. (4): 

-(D ) cos LL_= 0 in general for all t 

Hence. x_ (2n-l) air 
Hence: Xn 2L n = 1,2,3. ..... 

n2
4 

Now the general-solution EQ. (4-) has been reduced to a 

series of product solutions: 

u (x,t)= n=l sin (2n-l)T2L ncs 2L t+n 2L- 5{A (2ntl)ra .(2n-l)ra ] 

Examining the first initial condition in-EQ. (5): 

> An =-0 in general for allix 

Examining the second initial condition in EQ. (5);
 

3-t tO=n B((2n-l)ra) sin (n-l)

at = n=I n 2L sin (2n-l)ur x = -V (6)
_= =EZ Bn 2) 2L3
 

We recognize a similarity between EQ. (6) and a half-range
 

Fourier Series expansion. Hence, the problem of deter­

mining Bn in EQ. (6) is really the problem of expanding the
 

given function f(x) in a-half-range sine series expansion
 

over the interval O<x<L.
 

Performing the required expansion and integration to
 

determine the coefficients we find:
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0 

Bn = L(2n-i)2 72 a (8) 

Now-we may write the final general equation for displace­

ment from EQ. (5):
 

u-i (xt-SVL22 ___ =1_ sin (2n-l) Tx L (2n-l)2.i Lat 9
( rn=l(2n-l)2 - 2 L
 

which fully describes the elastic displacement at any
 

time and any longitudinal location along the electrode.
 

The natural frequencies of this sinusoidal displacement
 

u(t) or vibration are:
 

fN _In (cycles/sec) n = 1,2 3......
 
n
 

therefore:
 

1a (a) 5
4L cai-)? ............ (10)
 

Examining the fundamental natural frequency:
 

f = a_ =VE V'2 - AV
 
Ni 4L 4L 4L
 

We find that it is equivalent to the "approximation"
 

we had obtained earlier in Section III C.l.a. in our
 

consideration of the single degree of freedom system.
 

This is not actually surprising since the earlier ap­

proximation employed sine functions as "guesses'! for
 

both the normal function and the time function. This.
 

means now that-Figure III-12.gives us the true natural
 

frequency, fNl, as confirmed by -arigorous analysis.
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Having obtained a complete solution (EQ. (9)) for elastic
 

displacement, we can now investigate the general stress
 

solution:
 

a = E = E 3u(x,t)Dx
 

If this initial assumption of elastic material behavior 

isretained, the general stress solution is: 

(x~t)- - 1 coss 2 x 2 at (i=- n~l (2n-l) sin (2n-l) La (xt) air (2n-l) 2 f 2_ (11 

which fully describes the elastic stress within the
 

element at any time and any longitudinal location along
 

the electrode.
 

We are interested in the expression for maximum stress 

which occurs at the fixed end (x = 0): 

,- E (2n-l) 7f (12)a (O't) = -4EV 1 T- sin 2 at (12 
max. a7Tn~lT 1 

Numerical Analysis:
 

We have attempted to numerically evaluate the maximum
 

stress (EQ. (12)) for a few values of time, t. It is
 

apparent that we have simply the- summation of the
 

fundamental and all the odd sinusoidal harmonics which
 

is of course a square wave. The coefficients of the
 

odd harmonies appear to imply a L multiplier for the
 

fundamental. At the fixed end where stress is a maximum,
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we have a state of compression for the time interval,
 

Ot2L
 
O<tca, followed by a state of tension for the time
 

interval -<t<- This process is then cyclic at a
a . a
 

frequency of Q ) cycles/sec.
 

Conclusion:
 

The sole limitation of the general solution obtained
 

in this section is the one assumption that made the
 

solution possible -- elastic material behavior. If
 

we do not impose this material limitation and allow
 

stress to be some general function of strain, we do
 

not obtain EQ. (2) as the governing differential equa­

tion.
 

Rather:
 

2
@a *au a2 u
 
3- ( =
=7_2) (13) 

whose general solution is unknown. EQ. (13) therefore
 

introduces the most significant portion of non­

linearity into our system. We understand that JPL has
 

devoted some effort to the treatment of this and large
 

displacement non-linearities. Recent literature has
 

discussed ways of introducing empirically the non­

linearities implied by plastic and strain hardening be­

havior. This area is in need of further analysis. The
 

research indicated for a more complete understanding of
 

dynamic response is in the introduction of these material
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behavior non-linearities into the general governing 

differential equation (13) and the physical interpreta­

tion of its solution with the aid of computer analysis. 

One further point does not concern the validity of the 

solution given, but concerns the exactness of its 

applicability to our experimental loading situation. 

In question is the first boundary condition which was 

used in our solution to describe the rigid fixed end. 

We should go back and examine the effect on our solu­

tion of imposing a condition of uniform deceleration 

during the time interval of impact: 

u(o.,t) = -Vt a t2 o<t<.0001/sec. 

2 

This more accurately describes the displacement of 

this end of the bar during the time of loading and 

could thus make the existing solution conservative in 

its-prediction of-stresses which may.be higher than 

those actually experienced in our testing. 

2. Experimental Determinations of Dynamic Reponse 

a) High Speed Photographic Analysis 

Following an analysis or theoretical prediction of 

mechanical behavior, we most'desired an experimental 

verification of that prediction. one-method to experi­

mentally obtain the actual displacements of an element 

111-89 metallurgical 
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5-MMD-19869 10/68 0 
during a loading situation is to visually observe and
 

measure them. We have, therefore, used high speed
 

photography to examine the motion of our.electrodes
 

during impact. It appears that a great deal of infor­

mation concerning the description of -dynamic displace­

ments can be gained by this method.
 

b) 	Dynamic Strain Measurements
 

Some work has been done in the measurement of dynamic
 

strain under impact conditions using the strain-gage
 

techniques we have developed. The basic circuitry and
 

instrumentation system was simply a wheatstone bridge
 
employing a single active strain gage with zero balance:
 

"-Active 

ConstanVoAae e Gage K 

Hewlett.Packard Tektronix 
Constant Voltage 
Power Supply 

E1A 
1A7 

Mod.#6215A Plug-In 

[ 	 outputE 

K =,Active Gage Factor (2.0)
 
R = Fixed Resistor (120 E2)
 
P = Zero Balance Potentiometer
 
E = 12 Volt Supply
E R2KE
 

Eoutput 2
= R+RE­ (As) 	= 6.0 (As) 

This circuit was used for all-the experimental data con­

tained-in this report. Some work was done near the end
 

of the experimental program involving two active-strain
 
gages to explore the dynamic strain distribution along
 

the plate length, u = u(X, t). This data was very 
limited, however, and rather inconclusive. - Some corre­

lation with our theoretical predictions of strain distri­
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bution with time, u = u (x, T), was indicated before the 

experimental work ended. This portion of the report 

indicates the relation of these preliminary findings to the 

theoretical predictions that have been made. 

(1) 	Aluminum Plates:
 

The mechanical properties of the aluminum alloys
 

are well established and readily available. An
 

aluminum plate loaded within its elastic region
 

is obviously a more well-behaved system than our
 

porous .plate material. Thus, our initial experi­

mental work was aimed at confirming our theoretical
 

analysis by the use of an aluminum plate:
 

" 	 V =,oofr •c 

/0 0/ 	 7 S-e 74 

7 0 2 

6061 -T6 AIIv: 	 Single Strain Gage:
 
E = 	10.0 x 106 psi R__=120 Q 

=
= 40,000 psi, 	 K = 2.0,
CFlY 45,000 psi E = 12A Volts 

6 0.0976A/in RKE( :AE = (6.S0)tA 

p= 0.00605 #/in 2 	 (R&R)2
 
a =.16,600ft/sec
 

We could first calculate the natural frequency, fn
 

of this element by either of the two equ-ivalent
 

equations we have given earlier:
 

f i= 347-/
nl
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Figure III - 14 

UPPER TRACE: 

DYNAMIC STRAIN - 1 msec/cm; 1 mo/cm 

LOWER TRACE: 
ACCELERATION PULSE - 0. 5 msec/cm; 1000 g/cm 

6,500 cy/sec 
x ., dS 2S Al
 

760 ME PK
 

EIIIEIII17MImiimr 

V =100 ft/sec
 

1.1/2" DIA.
 

DYNAMIC STRAIN OSCILLOGRAPH OF AL PLATE 
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/or fnl = 1 (,0)t15 
and we find fnl = 8,300 cy/sec. 

The lower trace of Figure 111-14 shows the accelera­
tion time history of loading imposed on this plate
 

during impact. We note that the pulse length (to )
 

is 0.001 sec. The shock spectrum given in Figure
 

111-13, therefore, applies directly. Since the cal­

culated fnl = 8,300 cy/sec >>500 cy/sec, we can
 

only conclude from this spectrum that a dynamic am­

plification factor equal to 2.0 must be used.
 

Due to simple inertia loading, the static stress
 

level (L=6") may be calculated:
 

= ma (L'-w-Y) (Ng) = L'YN 2staticT-A g (w.t) statii 

Employing the dynamic amplification: 
I = 4600 psi
dyn.
 

And: a adyn. - 460 jaa
 
dyn. E
 

is the expected gage output under this loading con­

dition. We now note that the upper trace of Figure
 

111-14 has recorded an experimental peak strain of
 

E:= 760 p in/in. In the experimental.record, it is
 

possible that the subsequent peaks which indicate a
 
more uniform 668 p in/in peak strain level are truly
 

more significant. The difference between measured
 

and calculated strain is then 210 p in/in. This is
 

quite encouraging as a very preliminary experimental
 

result. The predicted natural frequency (fn) of the
 

cyclic displacement within our element was 8,300
 

cy/sec and should be recorded by the strain gage,
 

The upper trace of Figure III-14 shows this cyclic
 

strain behavior within the plate at a frequency
 

of approximately 6,500 cy/sec. Again, it is
 

encouraging to see this preliminary correlation
 

but we cannot account for the discrepancy
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(1800) cy/sec) at this time. We may now look at
 

the experimental results and the predictions from
 

our detailed analysis. It appears that our series
 

in the max. stress equation (12) converges to 7.
 

We may, therefore, calculate the max. elastic stress
 

predicted:.
 

C (o,t) = -4 (-) - - -60,000 psi 
max.
 

Now:
 

60,000 psi > 40,000 psi =a
 
yield
 

In fact not only plastic deformation is implied but
 

60,000 psi > ault !
 

Even if we assume that a high strain-rate sensi­

tivity elevates the dynamic yield stress and the
 

elastic modulus still applies we have:
 

= 6,000a
 
predicted 6
-

This value is >0.2% a normally taken as the yield
 

point; yet there was no observation of plastic
 

deformation after repeated loading at.this impact
 

level. Furthermore, the experimental strain trace
 

showed no residual strain (plastic or lack of zero 

return);yet the fact remains: 

760 c PK « 6,0001 PK 
Experimental Predicted 
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Our only conclusion must be that our analytical
 

prediction is nearly an order of magnitude con­

servative! The fault must lie in the first boundary
 

condition we have assumedt
 

u (o,t) = o implies no carriage displacement
 
during the loading period
 

What we really have is the situation that the car­

riage and the end of the element have an absolute
 

displacement during the loading period. Thus, we
 

must modify our analytical prediction to account
 

for this boundary condition. Consideration of
 

this, of course, will reduce the predicted magni­

tude and have a strong effect on the discrepancy
 

that has been brought out by our preliminary experi­

mental results. Time did not permit the introduc­

tion of this aspect during the current investigation.
 

(2) Cadmium Electrodes:
 

Following our study of the aluminum plate, we have
 

obtained some preliminary results on the negative
 

electrode.
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K- >1 

Negative Cd Plate Single Strain Gage
 

E 0.5 x 106 psi AF-7-l-56 (E-910)
comp. 
au Zt30 0 0 - 5006 psi' = (6.0) AE 

S0.127 #/in
3 

- 0.0033 4/in 2 

a 7.3250 ft/sec 

Again, it is first useful to determine the natural
 

frequency of this element either by calculation as
 

before or directly from Figure 111-12.
 

- fnl 2000 cy/sec -

The upper trace of Figure 111-15 shows a cyclic
 

strain behavior within the electrode at a frequency
 

of approximately 2500 cy/sec. This is in good
 

agreement with our predicted 2000 cy/sec. Further­

more, it implies that the governing elastic modulus
 

may be higher:
 
V fnL26
 

--(f-)= 0.8 x 106 psi 

The lower trace of Figure 111-15 shows the accelera­
tion-time history of the loading and the pulse length
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Figure III - 15 

UPPER 	TRACE: 

DYNAMIC STRAIN - 2 msec/cm; 5 mo/cm 

LOWER TRACE: 
ACCELERATION PULSE -0. 5 msec/cm; 1000 g/cm 

2500 cy/sec 

833 ME 
2120 ME PK

4, 
333 ME 

PLASTIC 

1700 g PK 

V = 64 ft/sec 

7/8" DIA. 

d = 0. 367" 

1.4 

msec 

DYNAMIC STRAIN &SCILLOGRAPH OF Cd ELECTRODE 

III- 97
 



to is approximately 1.4 msec. Thus, we cannot use the
 

shock spectrum of Figure 111-13 directly (t0 .001 sec).
 

However, the amplification factor of 2.0 will apply to
 

any element with a fnl > 356 cy/sec for this loading
 

pulse if we assume it is square. If is obvious that
 

fn, = 2000 cy/sec >> 356 cy/sec and the maximum amplifi­

cation factor will apply. The maximum will apply for any
 

shape pulse of this duration. However, we could question
 

the use of the square wave for this low velocity impact
 

level and assume the experimental record more closely
 

approximates a half-sine pulse. If this is true, a
 

maximum amplification factor of 1.8 will apply.
 

We may now calculate the maximum stress due to simpl6
 

inertia loading:
 

-A=ma
 a = - = LyN = 1080 psi 

Employing the 1.8 x amplification factor:
 

a= 1940 psi
 
dyn.
 

whih -E=0.8xl-O6 2 430
iplis:
which implies: s =8dyn. in/in PK.
 

The- upper trace of Figure 111-15 has recorded an experi­

mental peak strain level of only 2120p in/in. There is
 

one consideration that might help explain this
 

discrepancy although we have no experimental confirmation
 

at this time. We know that if a material is one-half
 

critically damped ( /Cc = 0.5), its maximum amplification
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factor for a half-sine'pulse is only 1.1. If this fac­

tor 	is taken-into account we would predict a peak strain
 

of only 14701 in/in. This is lower than the recorded
 

peak 	yet equal to the approximately 14501 in/in strain
 

level recorded by subsequent peaks.
 

This 	is important enough that it should be investigated
 

if work were continued since it is a very beneficial
 

material property of this porous electrode.
 

It is important to note the lack of zero-return in the
 

upper trace of Figure 111-15. This indicates a
 

residual plastic strain of 333p in/in.
 

Considering the complete analysis, we could evaluate
 

the stress by equation (12) as-we did for aluminum:
 

a (o,t) = -4EV (:) = 9850 psimax. air 4 

If our original values E = 0.5 x 106 psi .and a =-3250
 

ft/sec are used for our 64 ft/sec impact. This value
 

of max. >> ault. as was the case for the aluminum
 

plate analysis. The reasons for this discrepancy have
 

been discussed in the previous section.
 

(3) 	Summary:
 

The experimental measurement of dynamic strain during
 

impact loading has been accomplished. The frequency
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data of elastic wave propagation that has been obtained
 

may be our most valuable tool for determining the value
 

of the dynamic modulus of elasticity. The ability to
 

measure the residual plastic strain component in a total
 

strain level has also been demonstrated. This ability
 

will allow us to very accurately determine the dynamic
 

a-E curve from a number of tests. Information well
 

beyond the empirical yield point 0.2% eseems very possi­

ble. The preliminary magnitudes that have been recorded
 

are satisfactory at this time. Agreement was good and
 

it is felt that the.experimental data would correlate
 

very well with the predictions that could be made from
 

the detailed analysis with proper boundary condition
 

modification. The interplay of: (1) strain-gage rein­

forcement, (2) amplification factor based on pulse
 

shape as well as frequency, (3) viscous damping of the
 

porous material, (4) accuracy of E value, and (5) the
 

compressional str&in-gage behavior, have been briefly
 

described. With an accurate experimental determination
 

of E, a may be accurately calculated from Equation (12)
 

if we have made the analytical modifications indicated.
 

Then we are confident that the dynamic amplification
 

could be accurately determined for future use.
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D. 	IMPACT TESTING OF Ni-Cd CELLS
 

1. 	Failure Criteria
 

True "failure" may be electrochemically defined as the
 

cell's inability to deliver suitable discharge capacity fol­

lowing an impact environment. Since we have monitored a
 

cell's open circuit voltage during impact, we can use this
 

as an indicator of electrical damage. Typical of the informa­

tion provided by this failure indicator are the phenomenon
 

shown in Figure 111-16. The upper trades display a cell's
 

open circuit voltage from 5 msec.before impact to 15 msec
 

after impact. The three oscillographs presented indicate
 

the 	classifications of impact-induced damage:
 

(a) 	no cell damage (N) V2=V1 no Ak @ impact
 

(b) 	questionable damage (P) V2=V 1 AV @ impact (momem­
tary shorting)
 

(c) 	failure (f) V2<V 1 AV @ impact (complete
 
shorting o' loss of
 
plates
 

The type of behavior exhibited in (b) is of very question­

able damage electrochemically. We assume that such a
 

momentary short will-have little effect on the following
 

discharge capacity and certainly not prevent the cell fr6m
 

subsequent cycling. However, we will distinguish this ob­

served behavior from that of a complete satisfactory per­

formance.
 

metallurgical
 

III-101 	 materials division 



UPPER BEAM: LOWER BEAM: 
OC VOLTAGE OF CELL ACCELERATION 
VERT: 1 VOLT/CM VERT: lOOOg/CM 
HORIZ: 2 msec/CM HORIZ: 0.5 msec/CM 

a) , l l.... 

NO CELL DAMAGE 

b) 

MOMENTARY 
SHORTING
 

DURING IMPACT
 

c) 

COMPLETE
 
CELL FAILURE
 

AT IMPACT 

-r
II 

Figure III - 16 



2. 	Existing Ni-Cd Cells (<5AH)" 

The-total study of existing cells involved 52 impact tests 

to evaluate the performance of four (4) types of i Cd cells: 

(1) 	C Sub-C without spindle (Part #006200)
 

(2) 	CS-Sub-C with spindle (Part 4003800)
 

(3) 	LCLong Sub-C without spindle (Part #005500)
 

(4) 	P Prismatic 4 AN (Part 4003500)
 

.Each type of ceil was tested in each non-redundant direction
 

--t three average impact levels: 2300g, 2960q, 3950g.
 

NOTE: Impact in +y-direction implies:
 

v in +y direction
 

a in -y direction
 

impact surface -- terminal end (+y)
 

Each cell was fully characterized physically and electro­

chemically before impact testing. The-cell was in the
 

charged state and voltage was monitored during impact.
 

Following impact and discharge, each pell is further
 

examined physically and-electrochemically (post­
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characterization) before complete fdilure analyses.
 

Table III D-1 summarizes the results of the complete study.
 

Each type of cell is shown with the directions of impact
 

included. The actual impact (meas. mean g-lkvel and
 

velocity) is stated and the observed cell behavior. It
 

must be emphasized that-none of these cells was. designed
 

specifically for impact-resistance. The- inherent impact
 

resistance-exhibited (or the lack of it) is not meant to
 

imply -the actual shock resistance that can be attained by
 

any 	of the configurations that have been studied. The ob­

vious example-is the prismatic cell where great gains could
 

be-expected fo the ±y direction with a minimum- of design
 

improvement.
 

In general, we were encouraged by the preliminary-analysis
 

of this study. The cylindrical cells performed quite well,
 

however, the Sub-C with spindle seems to have more poten­

tial damage in the x direction than the same cell configura­

tion without a spindle. The long Sub-C seems to have ex­

perienced more difficulty in thd -y direction than-in the
 

+y direction. Similarly, the prismatic results in the ±y
 

directions were anticipated, but not the relatively poor
 

behavior in the- z direction at the highest impact level.
 

3. 	Testing of High-Capacity Cells (25 AH)
 

In addition to the programmed testing of smaller production
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TABLE I1"D-1
 

Cell Type & 
Impact Direction 

Low 
Impact 
Level 
(g) 

(V) 
ft/sec. 

Med. 
Impact 

Beha- -Level 
vior -(_9) 

Beha-
(V)vior 

High 
Impact 
Level 
(g) (V) 

Beha 
vior 

..Sub-O 

Without 

Spindle 

x 

-y 

+y -

2000 

2350 

2350 

(87) 

(86) 

(--1 

N 

N 

N 

2800 

2700 

3400 

(106) 

(107) 

(102) 

N 

N 

N 

3800 

-4170 
4100 
3500 
4200 

(118) 

(122
j113
(1201
(115) 

N 

N 

P 
N 

Sub-C 

With. 

Spindle 

x 

-y 

+y 

2000 

2520 
2050 
2400 

(88) 

(89)
N6 
(87 

N 3400 

2750 

2800 -

(106) 

(106) 

(108) 

N 

P 

P 

36004600 
4600 

4800 

(122)(123) 
(121) 

(119) 

F 
-P 

P 

N. 

ng 

Without 

Spihle 

z 

x 

-y 

+y 

2100 

2350 

2450 

2300 

(276 

(88) 

(86) 

(90)-

N 

P 

N 

20 

3400 

3120 

(17) 

(106) 

(105)
(105)
(106) 

N 

N 

P 
P 
N 

35^0 

3500 

3700 

37004600 

-122 

(121) 

(119) 

'117'k116) 

N 

N 

P 

PP 

Prismatic 

A.H. 

z 
-

x 

2250 

2300 

(89) 

(89) 

N 

.N 

2500 

2850 

(104) 

(105) 

N 

P 

4070 
4020 
38004400 

(114) . 
(111
(120)(120) 

P 

FP 

-y 

+y 

2300 

2600 

(88) 

(87) 

F 

F 

2800 

3200 

(104) 

(102) 

F 

F 

3100 

3800 

(112) 

(113). 

F 

F 

-CELL BEHAVIOR CODE: N - no damage 
P - possible damage 
F- failure 
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cells, 25 AH cylindrical prototype cells havesbeen tested.
 

It must be emphasized that these cells were heat-sterilizable
 

but not designed for impact resistance. The tests were
 

meant solely to study the design techniques and practical
 

aspects-that might occur with the larger cells.
 

a) Description ofLarge Capacity Cells
 

Since-it was decided that a cell specifically designed
 

for impact resistance-would not be manufactured under
 

the current contract, we felt it would be of value to
 

study the large heat-sterilized Ni-Cd cells. Three
 

cells of the approximately 25 AH size were available.
 

Again, it must-be emphasized that these cells were not
 

designed for impactresistance-but were of geometric
 

value in supporting some of our data on plate strength.
 

Cell #PR38­

(12) Positive Plates 6.6" 1g. x 2;8" wd. x .0'255" tk.
 
1.46 gm/in 2 , 0.0596#/plate
 

(13) Negative Plates 6.6" ig. x 2.8" wd. x .026" tk.
 
1.61 gm/in 2 ,-0.0656#/plate
 

(26) Separator 0.005" tk.
 

Case 7-5/8" high x 2.925" wide x 0.832" tk. internal
 

Spacer 0;5" @ top
 

free SPACE:
 

Thickness --

Approx. 0.002"/plate
 

Width --

Approx. 1/16" each side
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5-MMD-I980g IU/ta 

Height --
Approx. 7/16" Top
 
Approx. 1/16" Bottom
 

F 	 W(N)from: 
 -A- w-t 

4000 	g cmax = 3,340 psi
 
pos
 

(assume no,
 
dynamic amplification) amax = 3,610 psi
 

neg
 

Cell #PR114
 

(10) 	Positive Plates 5.4"lg. x 2.8"wd. x 0.030" tk.
 
1.67 	g/in2 0.0557 #/plate
 

(11) 	Negative Plates 5.4"lg. x 2.8"wd. x 0.032" tk.
 
,
2.04 	g/in 2 0.0680 #/plate
 

(22) 	Separator 0.005" tk.
 

Case 6.31"high x 2.925" wd. x 0.832" tk. internal
 

Spacer-0.5" tk. @ Top
 

free 	SPACE:
 

Thickness -- Approx. 0.0018"/Plate 

Width -- Approx. 1/16" each side 

Height -- Approx. 1/4" @ Top 
Approx. 1/8" @ Bottom
 

from: a = W(N) (assume no dynamic ampl.)

w-t­

4000 g =>.ax = 2,650 psi
 
pos
 

'max 	= 3,040 psi 
poS 

Cell 	#C33
 

(3) Positive Plates 18"lg. x 4.2"wd. x 0.0255" tk.
 
1.465 g/in 2 , 0.244 #/Plate
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(4) 	Negative Plates 18"lg. x 4.2"wd. x 0.026"tk.
 
1.61 	g/in 2 , 0.268 #/Plate
 

(6) 	Separator 0.005" tk.
 

Case 2.931" I.D. x 5.532" int. height
 

Spacer 0.5" tk. @ Top
 

free 	SPACE:
 

Thickness -- Approx. 0.01"/Plate
 
Height -- Approx. 11/16"-13/16" @ Top
 

Approx. 3/16"-1/4" @ Bottom
 

from: W(N) (assume no dyn. impl.)

w.t­

4000 g > a- = 2120 psi
 
pos
 

Cmax 	= 2290 psi 

Pos
 

One 	cell of each.configuration had been previously
 

cycled and only cell #PRll4 was shorted prior to our 

testing. Initial indications were that the plates:'in 

all these cells would support the loading imposed by a 

4000 g - 1 msec impact! The-stresses -that have been 

calculated do not exceed the values obtained during'
 

'
 static bearing tests for plates with the same degree of
 

lateral restraint. Dynamic bearing stress values gave
 

excellent correspondence--with the static values and
 

indicated that a significant dynamic amplification fac­

tor is not required. The plates used in these cells
 

are much longer than those used in static bearing tests
 

and approximately equal in length to those used in
 

dynamic bearing tests. This implies a lower natural
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frequency and therefore even less concern for requiting
 

a dynamic amplification factor. Thus our only conclu­

sion from previous evaluation of the mechanical proper­

ties of NiACa electrodes would be that'the plates in
 

any of these cells would survive impact.
 

b) 	Afalysis of the Impact Process:
 

The preliminary conclusions are indeed founded on
 

design data. However, we must examine the manner of
 

loading. There is reason for concern over the amount
 

of free space permitted within these cells. It~will
 

be shown that this is the main reason for emphasizing
 

that these cells were not designed for impact resistance.
 

It-is instructive to ask: is a mere 1/16" vertical
 

free space dangerous to a large cell's capability for
 

impact resistance?
 

V
 

I 
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.M IonO-lSg 

When impact occurs, the carriage, cell, and individual
 

electrodes experience a 4000g gravitational field for
 

1 msec; The resultant force exerted on a negative elec­

trode is:
 

F = ma =-262#
 

This force will accelerate the electrode to some higher
 

velocity which will be limited by the distance (and
 

thus time) over which this acceleration force can act:
 

2
 
S = v.t + 1/2 a t


t =351 sec
 

With this time available to cover the 1/16" free space,
 

the finalelectrode velocity at impact will be:
 

vf = vi + at-= 124.5 ft/sec-


Now during the same time interval, the carriage-and cell
 

case have to be decelerated to a velocity of:
 

vf = vi + at = 115.5 ft/sec 

Diagramatically we have: 
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/120
 

-, /20
 

-t;
 

In reality therefore, we have the carriage and cell case
 

experiencing entirely different loading than the electrodes:
 

C46:7 __ t= 

cog-- . ".
j''r 


'IA -- i -W -

41
 
"MAGNITUDE" & TIE CNOTB 

I INDEPENTLY CALCUJLATED 

-I 

Ifl-lll
 



S-MMD*-1989 10/08 

The cell case of course experiences the uniform,decelera­

tion loading. The-electrode, however, has a relative
 

velocity at-its impact of 9 ft/sec which must be dimin­

ished-before movement with the carriage (and 4000 g
 

loading) can occur. Rapid deformation of the electrode
 

will occur at this point, as loading increases for a
 

short time. We can calculate the energy involved.
 

fF.dt = m (Av) = (9 ft/sec)
 

or the shaded area of the spike. Unfortunately, we can­

not determine the "magnitude"or'time involved without
 

additional experimental information describing the de­

formation process.
 

We can only assume-that-this is a small amount of energy
 

and question if the electrode can accommodate it by
 

deformation at maximum load for the remainder of time
 

available. If the static bearing values are valid,-the
 

maximum stress that a negative electrode can support at
 

.002"/plate lateral restraint is 3750 psi.. Thus the 

maximum force is: 

F = a (w.t) = 274# 

The amount of time required (by uniform force) to accom­

plish the total velocity change from 124.5 ft/sec -* 0 ft/ 

sec is: 

F t = m (AV) 

t = 0.926 msec 
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This amount of time is < 0.965 msec still available and
 

implies the deceleration could be accomplished safely
 

(with a margin of only 39 p sec).
 

This exercise was performed for a specific plate (2.36
 

length: width ratio) and assumed a mere 1/16" free
 

space; yet, it dramatically illustrates the very fine
 

distinction between failure and survival. Several
 

points regarding this analysis must be noted:
 

1. 	The additional weight of electrolyte saturation
 

was not included in the mass of the electrode,
 

2; 	 The total area of the end of the electrode was 

presumed to be. available for supporting load. 

3. 	Prior to initial impact, the electrode pack
 

was-presumed stationary -- maintaining its 1/16"
 

relative distance- to the cell case impact sur­

face.
 

4. 	Most importantly, the effect of a damaging peak
 

force at electrode impact was neglected in our
 

final statement of apparent survival.
 

c) 	Results of Testing:
 

We shall now look at the results of impact tests per­

formed on these cells and see that failure to achieve
 

the above conditions will have rather obvious conse­

quences.
 

metallurgical
 

materials division111-113 



The orientation of each cell during impact 14S shown
 

below;
 

4PR38 #PRI14 #C33 

Thedesripio oftheimact parameters for each cell
 

, (vlocty g-leve!, time) is given in Figure IiI-17 (a),


j~..'4
;Cr;. The time history of oPen circuit voltage
 

during impact is also shown. All three cells failed
 

under the 'Imposedimpact. X-rays taken of each cell
 

immediately after impact are shown in Figures III-18,
 

111-19, 11i-20. Upon disassembly of each cell, photo­

graphs were taken of the electrode deformation and are
 

eshown in Figures -21,ii-22,i i23. The visual
 

evidence of failure depicts quite vividly the kinds of
 

deformation that can occur when some of the earlier de­

sign points are not-realized. We may discuss these
 

tests individually:
 

Cell #PR38:
 

The large prismatic cell failed in buckling of the
 

electrodes. It was our decision to test Cach cdll as 
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Figure III - 117 

UPPER 	TRACE: 2 msec/cm LOWER TRACE: 0. 5 msec/cm 

(a) 	CELL #PR 38 u fjfl 

=105ft/sec 1.2 VOLT *fllfl 
-F 	 ffff flME 

ME- v uri 

m	 m
(b) 	 CELL #PR 114 11 1 m i 
V = 104 ft/sec MEpq 

EXTRANEOUS SIGNAL *ttm ESE
 
NOT 	CONNECTED * *N NE E
 

TO 	SHORTED CELL EON 

(c) CELL #0 33 M N O 

V =104 ft/sec E M 

0. 7 VOLTM "h -N O 

1000!gOlfrf 
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Figure III - 18 

CELL #PR 38 POST-IMPACT
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Figure III - 19
 

i i
 

CELL #PR 114 POST-IMPACT
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Figure III - 20 

CELL #C 33 POST-IMPACT
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Fig~ue Il - 21 

* p 

Ix 

INL 3
 

Il 1
 



I 

Figure III - 22 
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Figure III - 23 
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CELL #C 33
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an entity in the sense that external restraints would
 

not be used. This lack of restraint showed that the
 

cell case alone is not of sufficient strength to sup­

port its own weight under inertial load and the lateral
 

pressure imposed on it by the deforming electrode pack.
 

The electrode pack apparently had sufficient lateral
 

restraint and support from its terminals-to withstand
 

the loading during acceleration. This is both a visual
 

observation and the presence of full voltage at impact.
 

Under deceleration a much lower degree of lateral re­

straint was- available from the cell case, and the elec­

trodes had little difficulty in buckling (Figure III­

18 & 21). The electrodes could not reach the full
 

value of stress which they are capable of supporting.
 

The post-mortem failure analysis also showed that one.
 

terminal collector had apparently not been welded.
 

This is the.most likely cause for the erratic voltage
 

trace shown in Figure II-17(a). We note, however,
 

that voltage was maintained on this cell despite the
 

defective terminal and the extensive deformation. It
 

is our contention that this cell would not have expe­

rienced failure if-thicker axial spacers and lateral
 

restraining plates had been used.
 

Cell #PRlI4:
 

The smaller prismatic cell had the largest free space
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at the impact end of any cell and this is largely
 

responsible for the damage. We cannot make a judgment
 

on the motions during acceleration. Although there is
 

no visual damage to the bottom of the electrode pack,
 

we do not have a trace to indicate the voltage at im­

-pact. During deceleration both terminal collectors
 

were fractured. The most significant lesson in the
 

study of this cell is the total ineffectiveness of the
 

spacer design.
 

~2 

The predicted stresses for this cell become meaningless
 

under this' situation and failure is the obvious conse­

quence. The visual observations of the top of the elec­

trode pack dramatically show the areas which supported
 

load (Figures 111-19 & 22). The spacer vent hole area
 

is quite emphatic. We note that the failure mode in
 

supported areas is again buckling. This again indicates
 

that low lateral restraint' (static plate spacing and
 

dynamic cell caseexpansion) prevented the electrodes
 

from reaching their ultimate compression- stress.
 

Cell #C33:
 

The cylindrical cell developedodirect shorting in the
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terminal areas of the ce'll (Figure 111-17(c)) as elec­

trode motion was severe during impact. Again, the
 

spacer design was solely responsible for this failure.
 

2.60 in
2
 

59% of electrode pack 
lo t 11 bearing area 

As shown in Figure 11-20 and Figure 111-23, the plates 

moved forward into the open areas- of the spacer. The 

open core in particular had large axial-excursion. 

Again, there was no damage to the cell during accelera­

tion (visual observation and cell voltage trace). It 

is significant that this cylindrical configuration-has
 

rsisted nearly totally the buckling mode of failure.
 

Even in the areas where severe bearing loads were pos­

sible, the x-ray analysis shows only traces of buckling.
 

The stability of the cylindrical cell is apparent mainly
 

because of the inherent cell case design. What we have
 

seen is that the cell cases in the two prismatic de­

signs (without the benefit of restraining plates as nor­

mally used on batteries) were the prime cause of lower­

ing lateral restraint under impact conditions. This conz
 

firms our contention that our electrodes themselves will
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resist buckling and go on to the true ultimate compres­

sional stress that we have established.
 

In conclusion, the study of these cells has provided the
 

design emphasis that we desired. The importance of
 

static assembly plate spacing, the use of spacers that
 

maximize effective bearing area and axial thickness, and
 

the cell case .contribution to pack integrity have been
 

adequately demonstrated. In short, we have stated the
 

precautions that must precede the use of our design data
 

to predict a cell's behavior under impact loading.
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