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CHAPTER T

INTRODUCTION AND PRELIMINARIES

In most situations the parameters of a statistical
distribution are not known with certainty and must be
estimated. In this dissertation these parameters are
treaﬁed as random variables and empirical Bayes point
estimates are given. In particular, the two-parameter

Weibull distribution is considered.

1.1 Historical Background of the Weibull Distribution

In 1939 a Swedish scientist, Waloddi Weibull, derived
a statistical distribution with which his name has been
associated in recent years. This derivation came about as
the result of an analysis of breaking-strength data and can
be found in [34]. Weibull also published related papers
[35], [37], and in [36] illustrates several examples of
the distribution's practical value in analyzing various

types of data.

The wide audience these papers found among reliability
engineers after World War II firmly attached the Weibull
name to this statistical distribution. The distribution,
howeyer, was originally derived in l92é by R. A. Fisher and

L. H. C. Tippett [8]. Their derivation became known to



researchers who were familiar with extreme-value theory as
the Fisher-Tippett Type III distribution of extreme values

and as the third asymptotic distribution of extreme values.

1.2 Brief Survey of Previous Research

The problem of estimating the parameters in the
Weibull distribution has received considerable attention
in recent literature from several authors. The techniques
proposed by these authors encompass a wide spectrum of
statistical methods. These methods will be referred to

as "classical" methods of estimation.

Graphical techniques for grouped and ungrouped data
have been proposed by Kao [15]. Best linear unbiased
estimators (BLUE) were computed by Govinarajulu and
Joski [9] using ordered observations for small sample
sizes. White [33] obtained linear, unbiased, least
squares estimators for the censored Log-Weibull
Distribution. Gumbel [10], Menon [21], Miller and
Freund [22], and Bain and Antle [1] all give simple
estimators, that is, estimators which do not require
tedious computations. Maximum-likelihood estimators
which generally provide useful estimates have been
considered by several authors; among them are Cohen [“],
Dubey [7], Harter and Moore [12], and Thoman et al.
[31]. Although this by no means represents an

exhaustive list of authors concerned with parameter



estimation in the Weibull distribution, it does point out
the considerable attention that the distribution has

received.

1.3 Purpose

The type of decision problem to be considered in this
dissertation can best be iilustrated by an example.  Con-
sider the development program for a particular solid-
propellant-rocket engine which must "burn" for a specified
time. In this program, certain points exist at which
progress is monitored. For instance, the Pre-Flight
Rating Test program would be one such point at the cul-
mination of the initial R&D program, demonstrating the
ability of a sample of engines to perform for a specified
length of time. After this phase a new phase is entered in
which flight and static tests are performed, and if needed,
a more refined system configuration is developed. Finally,
design is frozen, and a Qualification Test program is
undertaken to demonstrate the suitability of the engine
system. During this period in the program, several groups
of engines are test-fired, and due to stringent reliability

requirements, a large sample of engines is required.

Throughout these development phases, it is quite
possible that the form of the time-to-fallure distribution
remains unchanged, that is, no significant design changes

were incorporated which would greatly affect the overall



characteristic performance of the engines. In each of the
experiments conducted throughout the total program, however,
the classical estimates obtained for the unknown parameters
varied unpredictably from experiment to experiment. Since
no specific cause for this variation could be found, the
variation was considered to be random. This random var-
lation may have been caused by the interaction of the
components comprising the engine system, by variation in

the solid propellant mixing process, or by nﬁmerous other

uncontrollable factors.

If the researcher is using a classical estimation
procedure during the Qualification Test program, he must
choose a large sample size in order to meet the stringent
reliability requirement. He would, of course, like to use
the data obtained from the previous experiments. His pro-
cedure, however, restricts him to the use of only the data
in the present experiment. He could consider "pooling"
all previous data to obtain point estimates for the
parameters; however, he would be violating the basic
principles on which classical methods are established and

might obtain inaccurate results.

To use these methods, it i1s necessary to assume that
the data are obtalined from the same specified distribution.
Therefore, in order to pool data from previous experiments,

the unknown parameters must remain constant throughout



each experiment. This is not usually the case in a devel-
opment program; therefore previous data must be ighored

when using classical techniques.

Since the fluctuation in the parameters for the time-
to-failure distribution can be attributed to random
variation, data from previous experiments can and should
be used to obtain point estimates in the present experi-
ment. When the researcher knows the prior distribution
describing this variation, the Bayes principle can be used
to provide estimates for the parameters. In terms of the
minimization of the overall expectation of some appro-
priate loss structure, this principle provides "best"
estimates for these parameters. Two attempts to apply
Bayes analysis when the time-to-failure distribution is
Weibull are given by Soland [30] and Harris and
Singpurivalla [11]. In each of these papers various

forms for the prior distribution are considered.

The Bayes method for parameter estimation is
difficult to apply in many situations. For "best" results
it requires a completely known and specified prior distri-
bution, which is seldom available. In such situations an
empirical Bayes apprcach can be utilized. This approach
acknowledges the existence of a prior distribution;
however, this distribution need never be explicitly known

to the researcher. Estimates of the parameters obtained



in previous experiments can be used to improve the esti-
mates in the present experiment. This approach will be

discussed in detail in the next section.

The main purpose of this dissertation is to develop
an empirical Bayes estimator that is capable of providing
significant improvement over both the classical and
presently known empirical Bayes estimators. The estimator
will then be used to obtain point estimates for the unknown
parameters in the two-parameter Weibull distribution. The
particular form of the distribution considered has the

following probability density function:

£(x) = aBx e (x 20; a, B > 0) (1.1)

where o denotes the scale parameter and B the shape
parameter. Figures 1 and 2 illustrate the influence these
parameters have on the Weibull density function (1.1),

In Figure 1, o = 1 and plots of f(x) in (1.1) are given
for various values of B . We remark that for B = 1 ,
f(x) plots as a one-parameter exponential density function
with the parameter equal to one. Thus, when B8 = 1 ,
(1.1) reduces to the well-known exponehtial density
function with parameter o . In Figure 2, B = 3 and
plots of f(x) from (1.1) are given for several values

of «
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Figure 1. — Weibull density function (a = 1).
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1.4 Bayes and Empirical Bayes Estimation

Throughout this dissertation, upper-case Greek or
Roman letters will identify random variables. Lower-case
letters will be reserved for realizations of the same.

In some cases ease of notation may cause violation of this
convention; however, in such instances proper meaning will

be clear.

To begin let us define the basic-decision theoretic
elements on which both the empirical Bayes and the Bayes

approach are based. They are as follows:

(1) There is a parameter space © with generic

s-vector § = (61, B, **s es) on which is

defined a probability distribution G referred

to as a prior distribution.

(1i) There is a decision space D , which coincides
with © for estimation, with generic

element &

~

(1i1) There is a loss function z(g, 8) > 0 repre-

~

senting the loss incurred when ¢ 1is taken as

~

an estimate for g
(iv) There is an observable random k-vector
= (xl, Xps %, xk) , distributed on a space

X
X on which is defined a o-~finite measure u .



10

When the parameter is 0§, X has a density

£(x|8) with respect to

If the decision function ¢ is chosen and the sample
vector is observed, then §(x) is taken as an estimate
of 8 and the loss 2(8(x), 8) is incurred. For any such
decision ¢ the expected loss when § dis the true

parameter 1s given by

RS, 8) = J 2(8(x), ©)f(xle) du(x) . (1.2)
X

~

Hence, the global or overall risk can be represented

as
R(s, @ = [ R(g, 8 ac(Q) (1.3)
' 2

where G 1s the prior distribution of @ . If the prior

density corresponding to G(8) is denoted by g(8), this risk

can be expressed as

R(s, @ = J rx) J 2(8(x), ©n(elx) dg ax
X S

where

n(glx) = (X = v (1.4)
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and f£(x) is the marginal density of X . Therefore, to
minimize the risk R(§, G), a decision function §(x) should

be chosen such that

08, x) = fz@@hgﬁ@&)@ (1.5)
| Q
is minimum. If such a decision function, say QG(E),Vexists

it is known as the Bayes decision function and

R(G) = R(,, @) = mén(R(Q, G» (1.6)

~

is known as the Bayes risk.

When G 1s known, the optimal decision QG can be
determined. If G 1is unknown, however, this minimum risk
decision cannot be obtained. In the empirical Bayes
approach complete determination and specification of the
prior distribution is unnecessary. Instead, it 1s assumed
that the decision problem given above has occurred repeat-
edly and independently with the same unknown prior
distribution throughout. Thus, there exists a sequence

(%

80, (Xys 80, *o*, (X, 0) (1.7)

1° 272 ~n? ~n

of independent pairs of random vectors (X, @), where

zi(i = 1,2,*+°,n) has dimension k and Qi(i = 1,2,°°+,n)
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has dimension s . At the time an estimate of 0 for
the nth realization or present experiment is to be deter-
mined, the researcher has at his disposal the vector-

valued sequence X ***, X . The s-vector §

l) 25"2’ 3 ~n
remains, of course, unknown. This information can be
used to provide a decision function of X based upon

X

X0 X x like

~2, o.o’ X1

én(5n> = in(ﬁl’ Xo» BRREP P zn) (1.8)
such that when x = 1is observed, 8 €D 1s taken as an
estimate of 6, and the loss l(gn(zn), Qn) incurred.

Such a decision function will be called an empirical

Bayes decision function. Hence, when G 1s unknown to

the researcher, he is able to extract some information
about the prior distribution through the sequence

Xis Xps "t X and obtain an approximate decision func-

tion én(zn) to the Bayes decision function Qc(ﬁ).

1.5 Squared Error Loss

Consider the squared error loss function

JCHEIF 0;) = (6i<f)~(«>_ei>2 (1.9)

for the Si component of 0 . If we répresent ¢G(6i, 5)

defined by (1.5) as E[Q(Gi(g), 6 )|§J and replace

i
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l(ai(ﬁ): ei) by (1.9) then (1.5) can be written as
E[(%Qs) - ei)zlz] : (1.10)

After adding and subtracting appropriate quantities and
simplifying, we have
2 _ 2
B[(s, 0 - 6,)%1x] = (5,00 - 5Cs,1x))? + var(o, | x)
(1.11)

which will be the minimum when

§,(x) = E(6i|;5). (1.12)

The Bayes estimator for each @i(i =1, 2, **°, 8) is
therefore given by (1.12), and from (1.6) the Bayes risk
becomes E[Var(GiIE)]. In general, the Bayes estimator for

© 1is given by

8(x) = E(9|x) . (1.13)

1.6 Bayes Estimate for a Sufficient Statistic

Consider an arbitrary random sample of size k denoted

12 Xgs °t%, xk) from a univariate distribution

with density function f(xle). If there exists a set of
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sufficient statistics t = (tl, t ., ts) for

2.’
8 = (el, 62, se es), then by the Neyman factorization

criterion [23] the likelihood function

k
nizle) = T] e, 09 (1.18)
i=1
factors into
L(xle) = f£(t]o) c(x) (1.15)

where f(EIQ) represents the conditional density function
of t and c(x) is some function of x not involving §
If the prior density function is denoted by g(8), the

Joint density function of x and § can be written

f(x, 8) = L(x]|8) g(8) ,

and by (1.15) this becomes

£(x, ) £(elg) g(8) c(x)

= f(t, 8) c(x) . (1.16)

If (1.16) is integrated over the region 0 , the marginal

density of X becomes
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£(x) = plglelr) (1.17)

and by dividing (1.17) into (1.16), we obtain

h(ﬂ|§) = —§(€§" = f(Q]E) .

Hence, the Bayes estimator for @ becomes
E(8|x) = E(8]t) (1.18)

and the empirical Bayes estimator can be based on
L= (&> t;s ***5 L) rather than X = (x,, x,, ***, %)

Thus, the sequence (1.7) which represents past experience

can be written as

(T,, 9.), (T, ©,) === (T

~n?’ ~n

with each vector pair (T, @) distributed identically and

independently with probability density f(EJg)g(g).

1.7 Maximum-Likelihood Estimation

In this section several properties of maximum-
likelihood estimation are presented for completeness.
These properties will be needed in the remaining chapters

and can essentially be found in Kendall and Stuart [16].
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Throughout this section the reader is reminded that the
parameter 6 , specifying the particular member of the
family of distributions under consideration, is not assumed
to be a random variable. Thus, notation such as f(xlg)
merely exemplifies the dependence of the density on the
parameter O and should not be confused with the analagous
conditional probability statement. This notation is
followed, since in the remaining sections, 9 is assumed

to be a random variable.

The maximum~Llikelihood estimate of 3 is defined as

that value, say gk s Wwithin the range of O which max-
imizes the likelihood function (1.14). The subscript k
is used to denote the dependence of the estimate on the
sample size, If the likelihood function L 1s a twice
differentiable function of © throughout its range and if
stationary values of L(§|g) exist, then the maximum-
likelihood estimates of 81, 82, ey es can be found by

solution of the system of equations

3L(x18)
—55—— = 0, (1=1,2,000,8), (1.20)
1

for 6 0 cee, B

In practice it is often simpler to work with the

logarithm of the likelihood function rather than the
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function itself. Since L(x|8) and log L(x|8) have their
maximum at the same value of 0e0. Thus, maximum-
likelihood estimates can be found by the solution of the

system of equations

9 log L(x|8) |
20, = = 0 s (i':: 1329°°"S) . (1'21)
i

When s = 1 , (1.21) reduces simply to

d log L(x|e)
a6

(1.22)

Consider the univariate density function £(x|e). 1If
a sufficient statistic § exists for the parameter vector
8 1t is readily seen that the maximum-likelihood esfimator
ék » must be a function of it. This is true since the
sufficiency of § for € 1implies the factorlization given

by (1.15). Choosing 9, to maximize the likelihood

function is thus equivalent to choosing to maximize

Rk

~

£(t]8), and hence 9, 1s a function of E alone. If

represents a one-to-one transformation on £ , then

o
Qk will be sufficient for §
In a proof given by Wald [32], the MLE is shown to be

consistent under quite general conditions. A simplified

version of this proof is available in [16]. The generality



of the conditions becomes clear by the absence of any
regularity constraints on the density function f(x|g).

These conditions require the existence of certain inte-

18

grals which are generally satisfied by most distributions

and, in particular, by the various forms of the Weibull

distribution.

Consider the case where s =1 . If the first two
derivatives of the likelihood function with respect to

exist, if

3 log L(x|6)
E< T x| > = 0 (1.

and if

]

R%(0)

exists and 1s nonvanishing for all 6e0 , then the max-

~

imum-likelihood estimator ©, can be shown [16] to be

asymptotically normally distributed with mean ©6 and

variance 1/R2(6), that is,

R2(9)

distr. (Bkle) = Ing 1 > . (1.

2
_E(a log L(%]@)) _ <8 log L(§|6)>2 (1.
762 96

23)

24)

25)
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It will be constructive to show under what conditions
the assumptions (1.23) and (1.24) are valid. In this

regard consider

5 log L(x|6) _ 1 OL(x|6)
E( 56 ) - (é(5|e) 56 )3L(£'9) dx
X

~ .(1.26)

3

If differentiation and integration can be interchanged,

then (1.26) becomes

3 log L(x]|e) 3
E< T = 3¢ |L(zle)ax = o ,

£

since

L(x|6) ax = 1 .
X (1.27)

Differentiating (1.26) again, we obtain

1 dL(x|6) | 8L(x|6)
L(x{6) 98 96

i

0 1 )
+ L(ﬁle) ggcgcgrgy 55 L(§|6%> dx = 0
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which becomes

2
1 3L.(x]0) 32 log L(x|6)
<L<g;e> 58 >+ o2 L(xl6) dx
X
or

2 2

E <a 1ogag(£]e)> . _E<3 1og g(519)> . (1.28)

90

Thus, the only condition necessary to establish assumptions
(1}23) and (1.24) when the first two derivatives of the
likelihood function exist is the ability to interchange
integration and differentiation. See, for example,

Cramér [5].

For the general case s > 1, analogous arguments to

those above (see [16]) verify that @  1is asymptotically

distributed as a multivariate normal distribution with

mean vector 6 and covariance matrix V whose inverse

v™! has elements given by

2
-1 9% log L(x[8)
vy T -E aeiaej B (1.29)

1.8 Outline of Succeeding Chapters

In Chapter II a continuously smooth empirical Bayes

estimator is developed. This estimator is obtained by
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replacing the continuous prior density in the Bayes
estimator by a suitable approximation. The approximation
is based on a sequence of consistent estimates and is
shown to converge in probability to the prior density as
both the number of past experiments n and the sample
size k tend to infinity. Since both n and k are
finite for practical application, the mean and variance
of the marginal distribution of these estimates may not
coincide with those of the prior distribution. Therefore,
a method for transforming these estimates into a new
sequence of values having a marginal distribution whose
mean and variance approximate those of the prior distri-
bution is illustrated. This new sequence of values is
then used to obtain an alternative approximation to the

prior density.

In Chapter III smooth empirical Bayes estimates are
obtained for the discrete Polsson distribution. This
chapter has been included in order to exemplify the
versatility of the smooth estimation procedure. The
distribution has received considerable attention from
empirical Bayes authors and can be used to provide a
common mode for comparison with other well known and
proven empirical Bayes estimators. Two such methods are

used for comparison in Chapter VII.



22

In Chapters IV, V, and VI smooth empirical Bayes
estimation is applied to the Weibull distribution.
Chapter IV provides smooth empirical Bayes estimators for
the scale parameter o when the shape parameter B8 is
known. Chapter V considers the reverse situation, and
Chapter VI provides smoéth estimators when both parameters
are known to vary unpredictably. In each of these éhapters,
results from Monte Carlo simulation show that even for
small sample sizes and few past experiments, the smooth
estimators have smaller, mean-squared errors than the

classical, maximum-likelihood estimators.

In Chapter VII empirical Bayes methods for point
estimation developed by Rutherford and Krutchkoff [28]
and Lemon and Krutchkoff [17] are outlined. Where
applicable, these methods are applied to the distributions
of the preceding chapters, and Monte Carlo simulations
are performed. The results from these simulations are
then directly compared with the results obtained by using

the continuously smooth empirical Bayes estimators.

A summary of the conclusions derived from this
research 1is presented in Chapter VIII,.and areas recom-

mended for future research are also discussed.



CHAPTER IT

A CONTINUOUSLY SMOOTH EMPIRICAL BAYES ESTIMATOR

In this chapter a continuously smooth empirical Bayes
estimator 1s developed. The estimator is obtained by a
continuous approximation to the prior density function
and offers a new approach for obtaining empirical Bayes

point estimates.

2.1 Notation and Preliminaries

Throughout this dissertation the term consistent
estimator will frequently be employed. To say that Qk
is a consistent estimator for © will imply that for any

positive numbers € and ¢ , however small, there exists

an integer K such that for k > K

Pr(|ék -9l <e)21-58

This will often be referred to as convergence in probability

and for notational convenience will be written as

p lim gk = 0

k> ~

Assume that an unobservable random parameter

6 = (el, 0 cee es) occurs according to the distribution

2’
G(8) with corresponding density function g(@). When §

23
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is realized, an observable random k-vector X occurs

according to the conditional distribution F(Elﬁ)- When

a sufficient estimate gk of 8 exlists, the Bayes esti-

mator E(ejlz) for @j , the jth component of © , is given

by

R L 8 f(éklg)g(g) ag
E(ej}gk) = Iz (2.1)

f f(§k|e)g(e) ae
e ~ ~ ~ ~

where f(@klg) denotes the conditional density function of

the sufficient estimator Qk given § . Any such function

(-

*) will be referred to as the kernel of integration.

When the prior density g(9) is unknown, the Bayes
estimator is unattainable. However, if the situation
described above occurs repeatedly with the same, but
unknown g(g), then a sequence of n sufficient estimates

A~ ~ ~

gk,l’ gk,z’ ety 8 (2.2)
obtained from previous replications can be used to construct
a continuous approximation to the prior density function.
Based on this approximation an empirical Bayes estimate of

B, » the nth realization from g(8), can be determined.
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2.2 Marginal Density Approximation

The marginal density function of Qk i1s given by

p(ék) = ‘f.f(éklg)g(g) ag . (2.3)
5

~

When g(@) is unknown, p(gk) cannot be determined; however,
consistent density estimators are available which can be
used to approximate'p(gk). These estimators can be con-

structed using sequence (2.2). They take the form

Il

~ 6., - 6, .
_ 1 ~k ~k, 1
pn(,g,k) - nhs le h—_ (2-14)
1=

where h 1is a function of n satisfying

lim h(n) = 0 (2.5)
n—>o
and
1lim nh®(n) = o (2.6)
n->co )

Acceptable forms for the function W are given by
Parzen [24] for univariate densities, s = 1 , and by

Martz [19] for multivariate densities. In particular
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for estimating a univariate density function, the estimator

”~ N 2
n Sin(ek - ek,i)
~ _ 1 2h
pn(ek) ~ 2mnh }E: 5 - 8 (2.7)
i=1 k k,i
2h
where
h n~1/3 (2.8)

will be used. This particular estimator has been demon-
strated to possess certain desirable properties (see

Clemmer and Krutchkoff [3] and Martz and Krutchkoff [20].

~

In practice, the estimates 8y i (i

]

1,2,°*+,n) are
unitized quantities, and 1t becomes necessary to multiply

h by an appropriate function to remove these units of
measurement from the argument of W in (2.4). TFor example

in (2.7), this may be accomplished by defining h to be

n
~ — 2
2 0s - B
-1/5 i=1 (2.9)
n n
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where

(2.10)

o
.
1l
D Y
=1k
}_l

The estimators pn(gk) are squared error consistent for

estimating the density p(gk) in the sense that

N N 2
1im E[pn(gk) - p(gk):l = 0 (2.11)

n-rco

for all ék in the continuity set of p(¢). This conver-
gence implies a different interpretation of squared error
consistency. Usually, it is the sample size k which

tends to infinity and not the number of experlences n

While increasing sample size is conceptual, in the empirical
Bayes situation the number of experiences may actually grow
without bound. Thus in application, the convergence given

by (2.11) represents a natural result.

2.3 Prior Density Approximation

In this section the marginal density estimator
pn(ék) will be shown to converge in probability to the prior
density function g(g), as both the number of experiences
n and the sample size k tend toward infinity. The

following theorem, which is a slightly modified version of
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a theorem found in Rao [25], will be needed to establish

the main result.

Theorem 2.1 — IT pn(gk) is a continuous density estimator

~

and Qk is a consistent estimator for © , then
p iiﬁ p (8,) = p (8) . (2.12)
Proof — Since Qk is consistent for Q s, given any pos-

itive numbers y and n , an integer K exists such that
for k > K Pr(l@k -0l <y)21-n/2. Now let I be a
finite region such that Pr(Q € I) = 1 - n/2 . Then since
p, 1s continuous, Ipn(gk) - pn(g)l < € , for any arbi-

trarily chosen € > 0 if |0 - 0| <y for @ € I . Hence,

~k ~

Prilp (8) - o (0] <¢) 2pr(lg -2l <v, g1
> pr (19, - ol < v) - prlo ¢ 1)

v
—
1
=3

for k > K

Theorem 2.2 — If the conditions of Theorem 2.1 are satisfied

and since

p limp (8) = g(8) (2.13)

n-—+o



29

then

p limp_(8.) = g(0) .
nee B~k ~ (2.14)

k>

Proof — By Theorem 2.1, given any positive constants vy

and € , there exists an integer K such that for k > K
Pr(lp (8.) - p _(8)] < E) > (1 - y)i72 .
n "~k n ~ 2 - Y 3

and since pn(g) is consistent for g(8), there exists an

integer N such that for n >N
£
pr(lp (8) - g(@)| < 5) 2 (1 - )2

Now

0,080 - & < |o (8) - p (&) + |p_(9) - &(®)]

n "~k

Thus for n >2Z and k > Z where Z = max(N,K)

3

~

pr(lp (5. ) - g(g)] < e)

n "~k

v

e ((1p, (80 = 2o (@] + 1o, (0) - &(@)]) < <)

v

Pr (Ipn(§k> -p, (8 <5, Ip (8) - g®)] < %)



The events

Ip,(8,) - p (&) <= (2.15)
and
lp_(8) - g(®] <35 (2.16)

are independent since the occurrence of (2.15) depends
only on the kernel of integration f(ék|g), and the
occurrence of (2.16) depends only on the prior density
g(g). These densities are clearly ihdependent; hence

PP<|p (é ) = g(o)] < %

n ~k

v

e (Ipa(8,) - pa(@)1 < §) e (I, (@) - ato)] < 5

v

(1 -7 @a-pn? - 1

2.4 Coentinuously Smooth Estimators

The limiting result in (2.14) is somewhat artificial
in practical applications since small values of k and n
are usually encountered. Nevertheless, this property does

suggest the replacement of the prior density in the Bayes
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estimator (2.1) by p (8, ) when considered as a function of
Q . The continuously smooth empirical Bayes estimator for

Gj s the jth component of En s becomes

~ #
~ J;)'ejf('gk,nl'g)pn(g) dg
(S = ~ = 1 2 sos o
D ~ * 5% s 0]
| TG al2vice) a2
S
2 (2.17)

where

~

no/e -0
p (8) = 1s:£:w<;;—5;54i> . (2.18)
nh

i=1

¥

o]

For simplicity we have not indexed 5D with a subscript

j . Denote the vector having components given by (2.17)

~

as Q. . In particular for s = 1, (2.17) takes the form

B - 72
n sin <E———Ehii>
A 2h
E ef(ek,n[e) - dse
i=1 0 (9 - Gk i)
3 _ L 2h .

= —~ = (2.19)
D
n ~ sin (E—:—3543) i
j{: £(8. _|8) 2h

k,n ~ ae
i=1 Jo O - 6,3
2h |
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where h is given by (2.8). The subscript D 1is a
notational convenience and denotes the particular distri-

~

bution of the estimator Qk when given 0O . For example,

if the kernel of integration is normal then (2.17) would

~

be represented as ON

In practice the actual range of © will generally be
unknown. This can be resolved satisfactorily by taking
the region of integration in (2.17) to be the observed
range of previous estimates. Thus it is necessary only to
order successively the sequence of estimates given in (2.2),
from which the range is easily calculated. The success of
this approximation will be demonstrated in the remaining

chapters.

Occasionally for certain families of distributions,
no sufficient statistic exists for estimating © . In
such cases some statistic ék may exist which can be
used in the formulation of §D . This, of course, repre-

sents a further degree of approximation since

E(glx) ¥ E(g]8,) . The estimator ED , however, may
continue to produce "good" results. This situation will

occur in Chapter V and Chapter VI, and the continued success

~

of QD. will be witnessed.

~

The ability of the estimator QD to provide "good"

results depends on the accuracy of several approximations,
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the most significant being the accuracy with which the
density estimator pi(g) represents the prior density

g(9). If §D provides "better" estimates for the previous
realizations of @ than the elements of sequence (2.2),
then iteration of Eﬁ may achieve still further improve-
ment. In each iteration the density estimator for the

prior density function is based on the sequence of

previous estimates ED i (i =2,3,***,n) . When i =1 ,
9 s 1s defined to be 8 . Results from such
Zp,1 2k, 1

iterations as well as further discussion are reported in

the remaining chapters.

2.5 Marginal Variance Correction

In the construction of the continuously smooth empiri-
cal Bayes estimator ED » 1t has been suggested that a
consistent density estimator be used to represent the prior

density. It would, therefore, seem desirable to base this

density estimator on a sequence of values
8 0 *e+, 0 (2.20)

whose marginal distribution has mean and variance approx-

imately equal to those of the prior density.

For finite samples of size k , the mean and variance

of the marginal distribution of Qk are generally not

equivalent to those of the prior distribution. A linear
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transformation, however, can be constructed on the ele-
ments of sequence (2.2) to provide a new sequence of
values having a mean and variance which are approximately
equal to the prior mean and variance. To illustrate this
procedure when s = 1

, consider the kernel of inte-

gration to be

~ 2
distr.(e,[6) = N<e, %C-> (2.21)

where ¢ 1is a known constant and k 1is the sample size.
This procedure is guite general, and the normal distribu-
tion is only used for purposes of illustration. If the

relations of conditional probability
E(e,) = EO{E(ekle)} (2.22)
and

Var(@k)

E@[Var(ékle)] + VareliE(é\kIG)} (2.23)

are applied to (2.21), then the mean and variance of the

marginal distribution of @k become

E(e,) = E(8)
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and

Var(ek)

62\
E<E€> + Var(e)

L

= E(6%) + Var(e)

= %3 (Var(e) + E2(6)> + Var(6)

- 1;50 Var(e) + ﬁ% E2(8) . (2.24)

~

respectively, Thus for finite k , the mean of Ok

unconditional on 6 will be equal to the prior mean, but

N

the variance of @k overestimates the prior variance by

the amount

fé [Var(@) + Ez(e)]

In the 1light of this observation, consider the trans-

formation of @k given by
o, = a,(6, - E(8,)) + E(8) (2.25)
where a is a constant to be determined. . Now

1

E(6,) = a,E(8,) - a,E(8) + E(8) = E(6)
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and

]

. (a,8,)
Var(6,) Var(a, 6,

ai Var(ak) ) (2.26)

Substituting (2.24) into (2.26) we obtain

Var(ei) = ai [(1;20) Var(6) + ﬁt Ez(e)}
2
: ai [(1+kc) Va;ée) + E (e)] . (2.27)
Hence by defining
1/2
N _ ke Var(6) (2.28)
! (1+ke) Var(e) + E°(8) .
we obtain
*
Var(ek) = Var(e)

the desired result.

If the mean and variance of the prior distribution

are known, then a,; can be exactly determined. In

practice, however, these quantities will generally remain
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unknown; hence estimates for these quantities must be
obtained. Since E(#6) a E(ek) , the prior mean can be

estimated by the sample mean

= _ k,i”
en = j{: = - (2.29)

s = (2.30)

and substituting (2.29) and (2.30) into (2.24), we have

2 _ l+ke 2

1.._
S 7o ver(e) + 7 °n (2.31)
Solving (2.31) for Var(6), we obtain
A
Var(e) = -X&_ g2 _ _1 32 (2.32)

l+kc' n l+ke "n

as an estimaée of the:prior variance. Therefore whén bdth
the mean and variance of the prior distribution are unknown,
_ A

6, and Var(6) can be substituted for E(6) and Var(6) in

(2.28) giving
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1/2
1 ke -~ Ei
al = 1—+—k—c_ ;i (2.33)
n

*
The transformation @k defined by (2.25) is suffi-

clent for estimating © since it is obtained by a one-to-

N

one transformation on the sufficient statistic ©6

K To
show that it is also consistent, consider
* A A
p lim 6, = D lim[alOk - aiE(ek) + E(G)} ‘ (2.34)
k> k>
Now it is easily shown that both representations for
a; (2.28) and (2.33), have the property that
1im a = 1
koo
Thus (2.34) becomes
) * . -
p lim o _ = p lime,_ = 0 (2.35)
koo koo

*
and Gk is therefore a consistent estimator for ©O
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Hence by Theorems 2.1 and 2.2, a density estimator based

on sequence (2.20) has the property that -

*
p lim p (8,) = g(8)
n-rcc
k>

(2.36)



CHAPTER III

ESTIMATION IN THE POISSON DISTRIBUTION

The Poisson distribution has played a significant
role in the development of empirical Bayes techniques.
Robbins [26] first introduced the empirical Bayes approach
with the Poisson distribution. Recently, new empirical
Bayes methods have been illustrated using this distribu-~
tion. In keeping with the historical significance of the
Poisson distribution, the usefulness of the continuously
smooth empirical Bayes method will first be illustrated

with this distribution.

Maximum-likelihood estimation 1s chosen as the
classical method of estimation, and results from Monte
Carlo simulations are reported, which show that the smooth
estimators have smaller mean-squared errors than the
maximum-likelihood estimators. These results are reported

for small sample sizes and few past experiences.

3.1 Maximum-Likelihood Estimation

Assume that the conditional distribution of X

3

given any value © > 0 , 1s Poisson with probabllity mass
function
e %9

£(x|e) = Z—5— (x = 0,1,*++; 6 >0) . (3.1)
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Consider a random sample of k observations from

(3.1). The likelihood function of this sample is

k
2%
-kb6,i=1
L(xle) = &0 : (3.2)

Since the Poisson distribution satisfies the necessary
regularity conditions given: in section 1.7, the maximum-
likelihood estimator fdr .é# can be found by the solution
of equation (1.22), Therefore taking the logarithm of

(3.2) and differentiating with respect to © , we have

K
d log L(x|®) _ -1
- - ok +oe Zx. : (3.3)

i
i=1

Equating (3.3) to zero and solving for © , we obtain the

maximum-likelihood estimator
‘A 'Xi
6, = > L. (3.1)
1=1

Observation of equation (3.2) reveals that the likeli-

hood function can be expressed as the product

L(x|e) = a(t]e) c(x)
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where
7—[x.!
1
i=1
and
Q(t|e) = ete™®% |

Thus by the factorization criterion [23]

k
T = E X,
1

i=1

is a sufficient statistic for © . The maximum-~likelihood

A

estimator Ok can clearly be obtained by a one-to-one

transformation on T and therefore represents a sufficient

estimator for 6

It is evident that given any 6 > 0 , the only

possible values for @k are 0, 1/k, 2/k, **+ . For a
particular value t/k , the values x = (xl,x2,°--,x )

~

k
must be such that z:xi = t ; hence the probability

N

f(t/k|8), that 0, takes on the values t/k , is obtained

by summing (3.2) over all sets x so that E:Xi =t

That 1is,
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rEle) = Y

= TPy (3.5)
A 7-[xi!

i=1

where A represents all possible sets Xx such that

E:Xi = t . The multinomial theorem states that
ki s
gy 4y, + o byt = e Br 5 3.6)
Y1 Y2 Y o xi! 4 '
) A i=1
therefore setting each vy, = 1 ,.. we have
kt 1
T - K : s
4 A 7—Tx.!
1
i=1
and from (3.5)
) -k0 t
t _ e (ek) ~o_ b _ 1
rgle) = £ s (O =g =0 o)



by

Writing (3.7) explicitly as a function of the maximum-

likelihood estimator ©, , we obtain

k
ko
~ -kS k
£(e o) = S kO) (3.8)
1
(k6 )!
Since there is a one-to-one correspondence between
0, = T/k and T = 2x. , the probability mass function
of T is
-k 0 t
0
r(ele) = KB (g2 0,1,2,000) L (3.9)
Hence
£(e, |8) = r(t]e) (3.10)

which is a Poisson mass function with mean and variance

given by k®©

3.2 Smooth Empirical Bayes Estimators for ©O

Assume that an unobservable random parameter 6
occurs according to the unknown density function g(6).
When ©6 1is realized, an observable random vector 5
from (3.1) occurs, and a maximum-likelihood estimate of

6 is formed using (3.4). Now if this situation occurs

repeatedly, then the seqguence

ek,l’ ek,29 ...) e (3-11)
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of maximum-likelihood estimates can be used to form a
marginal density approximation pn(ék), given by (2.7), .
for«p(gk).~ Convergence in probability of pn(ak) to the
unknown prior density function g(6) is assured by
Theorem 2.2. Therefore when (3.8) is used as the kernel
of integration, pn(gk) can be treated as a function of:
© , and a continuously smooth empirical Bayes estimator

for 6 , the nth realization from g(8), becomes

(3.12)

>

The limits of integration in (3.12) 6 and

k, (1)

are the respective minimum and maximum values of

A

ekr (n)
sequence (3.11).

3.3 A Smooth Empirical Bayes Estimator for © Corrected

for Variance

Although

p iiﬁ p,(8,) = g(o) ,
k>
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in practical application both n and k will remain
finite. The marginal density estimator pn(ak) may
therefore represent a poor approximation to the prior
density. As demonstrated in section 2.5, when the mean
and/or the variance of the marginal distribution of 6k
are not equivalent to those of the prior distribution,

the prior density approximation can often be improved.

Performing the transformation

~

o, = a (0, - E(s)) + E(6) (3.13)
on 'each of the maximum-likelihood estimates of seguence
(3.11), we obtain a sequence of values

* * *

ek'l, ek’z, see ek'n . (3.14)
The marginal distribution of this sequence has a mean
and a variance equivalent to those of the prior distri-
bution. Based on this sequence, an approximation
pn(S:) to the marginal density p(ei) can be formed.
When considered as a function of 0 , pn(ez) can be
used to represent the prior density in_the Bayes estimator
E(elék). Thus an alternative smooth estimate of en s

the present realization from g(6), can be given.
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If the relations of conditional probability (2.22)
and (2.23) are used, then the mean and the variance for
the marginal distribution of the maximum-likelihood

estimator become

N (3.15)
E(8,) = E(k8) = KE(8)

and

Var<6k) E(k6) + Var(k8)

(3.16)

KE(8) + k2 Var(e)

respectively. Since the mean and variance of the
marginal distribution of Ok overestimate the mean
and variance of the prior distribution, the transfor-

mation given by (3.13) can be applied.

To determine the constant a1 in the transformation

%
(3.13) so that Var(ek) = Var(6) , consider the variance

#
of Gk :

"

Var(e:) = Var(al B.) = a? Var(gk) . (2.17)

k 1
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Substituting (3.16) for Var(6,) in (3.17), we have

Var(G:) - ai(kE(e) + k2 Var(e)) ) (3.18)
Thus choosing
1/2
a - Val"(e; , (3.19)
1 KE(8) + k° Var(9)

we obftain the desired result.

When the mean and the variance of © are known,
a; can be exactly determined by (3.19). In practice
héwever, these values are generally unknown and require
estimation. Since E(ék) = kKE(8) , the prior mean
can be estimated by §g/k where §£_ is the sample
mean given by (2.29). The sample variance si given by
(2.30) can be used to approximate Var(ak). Proper
substitution of these quantities into (3.16) gives

A s -0
Var(8) = 21 (3.20)

as an estimate of the prior variance. Thus when E(6)
and Var(6) are unknown the constant ai can be approxi-

mated by

2
a. = |2—2 ) (3.21)
Kk
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With the transformation Oz completely determined,
the marginal density approximation pn(eﬁ) for p(Q:) can
be formed. Substituting pn(e:), when considered as a
function of © , for g(6) in the Bayes estimator

E(e[ek), we obtain as an alternative smooth estimator

for 6

n

* i % 12
0 6-6.
En: oo ~xe KO ,n | 510 < 2?1'1)
_ fe 8 ! . aoe
. * 6-0. .
'5 _ i=1 ek,(l) ( k,1)
P,V = 2h =
¥ B * 72
n ek'(n) k8 sin (?:EEJE)
2 : e—ke6 k,n *21'1 ae
i=1 Jo; 1) (e'ek,i>
' i 2h J
(3.22)
where Gz (1) and 6: (n) are the respective minimum

and maximum values of seqguence (3.14), and h is given

by (2.8).

3.4 Iteration of the Smooth Estimators

Consider a sequence of smooth estimates from (3.12),

te*, 0 (3.23)
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obtained in each of n previous experiences. Based on
this sequence, a more "precise" estimate of the reali-
zation en can often be determined. The estimate is
obtained by replacing the prior density in the Bayes

estimator by the continuous density approximation

iy 2
. (e—ep,i)
1 n Sll’l'——z—'ﬁ-———
0 (0) = = D I T7os ) (3.20)
i=1 <_____._P_Li.
2h
constructed with sequence (3.23). This represents an

iteration of the smooth estimator 5; and 1s denoted

by 5é since the kernel of integration remains unchanged.

~

A similar iteration of the estimator GP v can be
1

obtained and will be denoted by Ep .

Integration in
each estimator is performed over the range of values
obtained from the first iteration. For example, the

region of integration for 5; is from min(ag i) to

max(gp’j) where 1i,j = 1,2,**+,n and 1 % j . The
smooth estimator BP is defined for n > 1 ; therefore
for 1 =1, we define eP,l = ek,l

3.5 Monte Carlo Simulation

To ascertain the usefulness of the continuously

~

smooth empirical Bayes estimator OD as opposed to the
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maximum-likelihood estimator, Monte Carlo simulation
was employed by means of a UNIVAC 1108 computer. The
criterion for comparison was mean-squared error, and

therefore the ratio

empirical Bayes mean-squared error

Ro= maximum-likelihood mean-squared error (3.25)

was of interest. Here the symbol 5D is used as a
general notational device to represent any smooth

estimator under consideration.

A value of 6 was generated from a chosen prior

distribution; then a random sample X1s Xys 00, X

of size k , corresponding to the realization of 6 ,

was obtained from (3.1). The maximum-likelihood

estimate Gk was found and ifs squared deviation

’”~

(6 - ek)2 from the corresponding parameter 6 was
calculated. For the second experiment, a new value for
6 was generated and the process repeated, obtaining

) and its squared deviation. For this experiment, [}

k D

and its squared deviation (6 - 55)2 from the corre-

sponding realization of 6 were also calculated. This
was repeated twenty times, and each time, 5D was cal-

A

culated using the present ek as well as all previous

maximum-likelihood estimates. Five hundred repetitions

of this run of twenty experiments were then made, and
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the averages of the squared deviations of 6k and ED
were formed as estimates of E(0 - ék)z and E(6 - ED)Z.
Then the ratio R was calculated utilizing these
estimated mean-squared errors. All numerical integrations

were performed by means of the eleven-point Gauss

quadrature formula. For details see Appendix A.

This procedure was repeated for all types of Pearson
prior distributions with varying coefficients of skewness
and kurtosis. As with Clemmer and Krutchkoff [3], Lemon
and Krutchkoff [17], and Martz and Krutchkoff [20], the
ratio R was observed to be significantly influenced

by the prior distribution only through the value

¥ A
Var (6,]6)

z Var(9) (3.26)
where * indicates that E(6), the prior mean of 0 ,
has been substituted for © . 1In particular, for a
random sample of k observations from (3.1), the
maximum-likelihood estimator is distributed according
to (3.8), and the value Z becomes
_ KE(8)

Since it was found that the only factors affecting the

ratio R , apart from the number of experiences, are
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contained in (3.27), this quantity can be conveniently

used to summarize and index a given situation.

It has been repeatedly observed in the Monte Carlo
study that the sample size k has no effect on the ratio

~ ~

R  when formed with OP or GP _ Therefore without
loss of generality, k will be taken to be one. We will
denote the ratio R when calculated with 6P by RP

~

and when calculated with ©0 by R

P,V P,V

To support the claim that the smooth empirical
Bayes estimators are indeed robust to the form of the
prior distribution, the values of 6, (i =1,2,°°°,20)
were generated from various distributions. For all types
of Pearson prior distributions with varying coefficients
of skewness and kurtosis, the ratio R has been observed
to vary only slightly for a given value of n , providing
the value of Z remains unchanged. This 1s illustrated
in Pigures 3-6 for a given value of Z = 2.0 . The solid

line in each figure represents the ratio RP v calcu-

14
~

lated with the smooth estimator OP v and the broken

~

line represents the ratio RP calculated with GP
This representation will be used in the remaining figures
of this chapter. The parameters of the prior distribu-

tions are designated as follows:



54

(0) = prior mean of 0
V(6) = prior variance of 0O
S = skewness

K = kurtosis

In Figure 3 the prior distribution is bell-shaped
(skewed); in Figure 4, L-shaped; in Figure 5, J-shaped;
and in Figure 6, U-shaped. These estimators are evi-
dently rather insensitive to the form of the prior
distribution as summarized by S and K ; therefore,
values of S and K will not be given for the remaining

figures in this chapter.

Values of the ratios RP and RP,V are plotted

in Figures 7 and 8 respectively. These values are
plotted for different values of E(6) and V(6), summarized
by Z . The values of Z range from 0.5 to 5.0. We
note that as 7 1increases, the values of the ratios
RP,V and RP tend to decrease. This phenomenon is
best understood by considering the summary quantity 72 ,
defined by (3.26). If Var(gkle) is large as compared

to Var(6), then the classical estimates of 6 will vary
widely. The smooth estimators, however, are capable of
"detecting" this variation and use this information to
obtain "better" estimates of 6 . Conversely if

Var(ekle) is small as compared to Var(8), then the

classical method would be expected to do quite well.
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In this case there 1is a great deal of information within
an experiment, and previous experiments contribute very
little information about the parameter. We also notice
that for a given number of experiences, the decrease

of RP v is more significant than that of RP demon-

.~

strating the superiority of the smooth estimator @P v

over the smooth estimator OP . This increase in mean-

squared precision is easily explained. The prior density

approximation used in OP v is based on a sequence of
r

values having a marginal distribution whose mean and
variance are approximately equivalent to those of the

prior distribution. The prior density approximation used

~

in OP , however, is based on a sequence of maximum-

likelihood estimates having a marginal distribution whose

mean and variance are known to overestimate those of the

~

prior distribution. Hence we expect @P v to provide a

~

significant increase in squared-error precision over OP
as seen by comparing the corresponding values of the

ratios R, . and R, of Figures 7 and 8.

Figure 9 shows a typical result obtained when EP v
is iterated as described in section 3.4. The ratio

; v formed with the iterated smooth estimator 6; v

is denoted by the dotted line. We note that a second

R

iteration of BP v slightly decreased any improvement
7

obtained by OP _ This decrease in precision is
7
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expected. The marginal density approximation used to

~

represent the prior density in OP v is based on a

sequence of estimates whose distribution has its mean
and variance approximately egquivalent to those of the

prior distribution. The prior density approximation

~t

in @P v however, is not known to have this
, ;

property.

In Figure 10 results from a second iteration of

@P are given when the parameters of the prior distribu-

tion are identical to those used in Figure 9. The dotted

line is used to represent the ratio R; based on the

~

smooth estimator @; . We note that in this case,
iteration does improve the ratio R 5 however, this

improvement 1s not as significant as that obtained using

~

@P - given in Figure 9. It is conjectured that the

overestimation of the prior variance by the marginal

distribution of Gk has a far more significant effect

on the prior density approximation than does the marginal
variance of 5; . In general, iteration of the smooth
estimators is discouraged. While a second iteration of

@P does decrease the sqguared error, the decrease is not

as significant as that obtained using .@P _ A second

iteration of @P v usually increases the squared error.

’

In all cases considered in the Monte Carlo study,

~

the estimator @P v provided consistent improvement over
7
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the maximum-likelihood estimator for two or more past
experiences. It was also observed to be the most
efficient of the smooth estimators. Since this improve-
ment was uniform over a wide variety of Z values, we
are confident that 5£'V can be used in any situation.
However, when some idea of the prior mean and wvariance
is known, Figure 11 can be used to obtain an indication
of the amount of improvement 6£,V will provide over the
maximum-likelihood estimator. In this figure, the ratio
RP'V is plotted as a function of Z for a given number
of experiences. Thus one can obtain some a priori idea

of the improvement over maximum-likelihood that is likely

to be obtained.
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CHAPTER IV

ESTIMATION OF THE WEIBULL SCALE PARAMETER
WITH KNOWN SHAPE PARAMETER

In this chapter continuously smooth empirical Bayes
estimators are given for the scale parameter o 1in the
two-parameter Weibull distribution. The scale parameter
i1s assumed to vary randomly throughout a sequence of
experiments and the shape parameter g 1is assumed to be
known. It may, however, be different in each experiment.
Results from Monte Carlo simulations are reported which
show that even for small sample sizes and few exXxperiments
the smooth estimators have smaller mean-squared errors

than the maximum-likelihood estimators.

4,1 Maximum-Likelihood Estimator for a

Let X be a random variable having a Weibull distri-
bution with known shape parameter S . If the scale
parameter o 1is a random variable, then the conditional
density function of X 1is gilven by

B
Flx|a) = oapxPle™®x | (x 20; o, 8 >0) . (4.1)

Consider a random sample of k observations from

(4.1). The likelihood function of this sample is

67
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L(x|a) = C(ap)¥e V=1 (4.2)
i=1
and by defining
k
_ B
T=) xb (4.3)
i=1
can be expressed as the product
L(§|u) = Q(tla)c(g)
where
c(x) = Bk,‘x.s'l
~ 1
i=1
and
Qlt]|a) = afe~ot
Thus, the factorization criterion [23] assures that T 1is

a sufficient statistic for

o
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The Weibull distribution satisfies the necessary
regularity conditions given in section 1.7 to allow the
maximum-likelihood estimator for o to be found by the
solution of eduation (1.22). Therefore, taking the
logarithm of (4.2) and differentiating with respect to

o , we have

k
d log L(}g\a) _k Z B
dao = &‘ - Xi . (M.L&)
i=1

Equating (4.4) to zero and solving for o , we obtain the

maximum-likelihood estimator

0, = , (4.5)
B
in
i=1

This estimator can clearly be obtained by a one-to-one

transformation on the sufficient statistic T ; therefore

A

the maximum-likelihood estimator o provides a sufficient
statistic for each realization of « . For ease of
notation, the subscript k representing the sample size

will be suppressed.
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4.2 Distribution of the Maximum-~Likelihood Estimator

for o

According to (1.25), the asymptotic distribution of

the maximum-likelihood estimator o given the parameter

o 1is normal with mean
E(a]a) = o (4.6)

and variance given by

-1
R 2
var(ala) = - Ex<d 1og L<5'“)> (4.7)

daz

If we differentiate (U4.4) with respect to a and form

the expectation with respect to X , then

2

2
E<d 1og L(f}5|°‘)>= -5 (4.8)
da o

Hence the variance becomes

Var(a|a) 0‘ (4.9)
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and

~ 2
distr.(ala) = N(a, —“k—) . (4.10)

Since the maximum-likelihood estimator is represent-
able in closed form, its conditional distribution can be
found for finite values of k . This distribution will be
obtained through a series of variable changes and will

require the use of moment-generating functions.

Consider the distribution of the variable
y = xPB (4.11)

where the conditional density of X is given by (4.1).
Since Y 1is either an increasing or decreasing function
of X , depending on the fixed value B , the conditional

density function of Y , say h(y|a), is given by the

formula

hiyla) = f£(x]|a) (k.12)

dx
d

in which X 1is to be replaced by its value in terms of
Y given in equation (4.1). This formula represents a

simple change of variable technique which can be found in
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Hoel [14]. Based on formula (4.12), the conditional den-
sity function of Y given o becomes the exponential

density function
hiy|a) = ae™® > (y 20; a >0) . (4.13)

Corresponding to this density function, the moment-

generating function 1s given by

M, (0) = f e~ (0=0)Y 4
Yo
= . (4.1lb)
1 - 2
a
Since each xi(i = 1,2,°*+*,k) is independently and

identically distributed, the moment-generating function
of T given o , MT(G), can be written as

M, (8) = M g(8) = M (8) M ,(6) «++ M (8)

B
'Sl + o6 o}

and by (4.14) as

MT(6)
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Now this function is precisely the moment-generating
function for a gamma distribution with density function

ftla) = 03 o, (t 20; k, o >0) 3

(4.15)

therefore (4.15) represents the conditional density.
function of T given o . Based on this result, the
conditional distribution of the maximum-likelihood esti-
mator is easily obtained. If the previously described
change of wvariable procedure is followed, the maximum-

likelihood estimator o can be shown to have the

conditional density function

(ak>k+l _ok
- o e 0O
flala) =

I'(k)ak

(4.16)

This density function is recognizable as an inverted gamma

density function with mean
~ _ ak
E(ala) = =% (4.17)

and variance

(ak)?

Var(&|a) = 5
(k-1)“ (k-2)

(4.18)
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Thus for finite sample sizes, the maximum-likelihood

estimator o conditional on any o has the inverted

gamma distribution given by (4.16).

4.3 Smooth Empirical Bayes Estimators for «

Assume that the data obtained in each of n previous
experiments can be adequately described by a Weibull
distribution with known shape parameter Bi . Further
assume that between successive experiments, the scale
parameter o varies randomly with the same but unknéwn
pridr density function g(oa). If in each experiment a
maximum—~likelihood estimate ai(i = 1,2,+*++,n) was obtained
for each realization from g(a), then the sequence of

sufficient and consistent estimates

a ses (4.19)

o-a,
~ = sin< l>
_ 1 z : 2h
pn(oc) = Sroh < (4,20)
i=1 '

where h 1is given by (2.8).
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Convergence in probability of (4.20) to the prior
density g(o) as both the sample size k and the number
of experiments n ‘tend to infinity is assured by Theorem
2.2. Therefore when the kernel of integration 1is the
inverted gamma density given by (4.16), pn(&) can be

considered as a function of o and a continuously smooth

empirical Bayes estimator for o becomes

~ 2
2 ak a-u.)
n o, k+1 = . i
(n)<9‘_l£> . <°‘n> Sm( 2h do

2{: ~ a a-0,

. n i
~ =1 Jo ) L ( h |
o = T 1

(4h.21)

Pal PaN

where 1y and o,y ere the respective minimum and

maximum values of sequence (4.19).

The kernel of integration in (4.21) represents the
conditional density function of the maximum-likelihood
estimator o given o for fixed and .finite values of the

sample-size k . If the asymptotic normal density (4.10)

is used as the kernel of integration instead of (4.16),
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then an alternative smooth estimator for a ~ can be given

by

. A~ N2 T
n % —£<&n—a> Sin(a—ai)
:E: e ? * Az2h J do
i=1 -

Q
1}
>
-
——
i
o Q>
H
S

n 1

— e
) a
i=1 Y4

(a—&.)
1
(1) h ]

(4.22)

For small sample sizes which are usually encountered
in practical situations, the estimator && is shown in
section 4.6 to provide inferior results when compared
with EG . This 1s not too surprising since E& is based

on the asymptotic density of a given o ©rather than

on the true density as 1s EG . Therefore when £ 1s

~

known, we use A to estimate the scale parameter o
The estimator Oy > however, provides substantial squared-
error improvements over the corresponding maximum-likelihood

estimator and for reasons to be made apparent in the

following discussion has been considered here.
In some instances a closed form representation for a

classical estimator o will be unattainable. The

asymptotic distribution of the estimator may be known to
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be normal, in which case EN can be obtained. In section
b ,6 the ability of Eﬁ to provide good squared-error
results is demonstqated and can be directly compared with
that obtained from aG . This comparison provides some
indication about the degree c¢f departure one can expect
when a smooth estimator is based on the asymptotic
distribution rather than the true distribution of a-
classical estimator. Obviously the degree of departure
depends on the rate of convergence to the asymptotic dis-
tribution as a function of k , the number of observations

in each experiment. Hence no general conclusion can be

reached.

4.4 Smooth Empirical Bayes Estimators for o Corrected

for Variance

In section 4.3 the asymptotic distribution of the
maximum-likelihood estimator o given any o was shown
to be

N 2
distr.(ala) = N(u, %;)

This distribution corresponds to the distribution given
by (2.21). Their respective means coinhcide, and by setting
¢ =1 in (2.21) their variances become equivalent. Hence

the transformation

of = ala- E(a)) + E(a) (4.23)

1|
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defined by (2.25) can be performed on each element of

sequence (4.19) thus forming a new seqguence

0y, e, o (4.2h)

having a marginal distribution whose mean and variance
approximately equal those of the prior distribution.
When the prior mean and variance of o are known, the

constant a, in (4.23) is given by

1/2
k Var(o)
a, = 5 (4.25)
! ((l+k) Var(a) + Ez(a))
otherwise
1/2
—2
I O (P (4.26)
1 1+k 82 :
where
LR
— _ i
5 - ET (4.27)
i=1
and

S = (4.28)
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*
Any density estimator pn(m } formed from sequence
(4.24) has the property that
- . *
plimp (a ) = glo)
n->x
koo
¥
Therefore, when considered as a function of o , pn(a )
can be used to approximate the prior density function,

and a smooth estimator for an becomes

3 72
a* 8 -a)? o-o¥
n (n) _k|_n . i
Z Z\ o SN\ 7%n
e do
. o-a¥
N,V 5
% n 2 T %
n [*m) (%0~ N
Z 1 "2\"q S0\ 7on
- e —— da
=1 * o OL_O{'i
i1t ]
(4.29)
¥ ¥
where a(l) and a(n) are the respective minimum and
maximum values of sequence (4.2L4). Since the asymptotic

normal density is used as the kernel of integration in

(4.29), G , corresponds to the smooth estimator oy

given by (4.22).

The sequence (4.24) is obtained under the assumption

that the conditional distribution of the maximum-likelihood
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estimator is normal. For finite values of k , the actual
distribution of this variable is known to be the inverted
gamma distribution. Based on this distribution, a trans-
formation similar to (4.23) can be obtained and used to
develop a smooth estimator EG'V which corresponds to

EG . This transformation is found by following a

development similar to the one used in section 2.5 for

@*

The mean of the inverted gamma distribution is given
by (4.17) and its variance by (4.18). If these values and
the relations of conditional probability given by (2.22)
and (2.23) are used, the mean and the variance for the
marginal distribution of the maximum-likelihood estimator

~

o become

E(a) E(-l—?_—_l%)

_K_
k-1

It

E(a) (4.30)
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and
~ 2
Var(a) = E{ (u?) ] + Var(ﬁ%&)
(k-1) " (k-2)
2 2
= k2 E(a?) + 2Var(u)
(k=-1)"(k-2) (k-1)
2 2
= g (%ar(a) + Ez(a)) + ——K——E Var (o)
(k-1)° (k-2) (k=1)
2 2
= ——5——5 Var(a)(l + k}2) + k2 E% (o)
(k-1) (k-1)"(k-2)
(4.31)
respectively.
In order to obtain a sequence of values
t t t (}4. 2
such that E(a') = E(a) and Var(a') = Var(a) , consider
the transformation of o given by
1 ~ ~
o' = o fa-E@) + E@ (4.33)
where ¢y is a constant to be determined. Now
E(a') = c;E(a) - ¢ E(a) + E(a) = E(a) (4.34)
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Var(a') = o2 Var(a) . (4.35)

If (4.31) is substituted into (4.35) and E(a) is replaced
Dy

k-1

E(OL) = T E(&.) s

then the variance of o' becomes

+

, N
Var(a') = Ci[?;%z;i Var(a) (1 + k}2> Eﬁg)}

2 2
B 21k® Var(a) + E“(a) (k-1)
- 01{ (-T) (k=27 } (4.36)
Hence by defining
1/2
c, [ (k=1) (k=-2) gar(a) J (4.37)
| k2 var(a) + B2 (a)(ko1)

we obtailn

Var(a') = Var(a) ,

the desired result.

The mean and variance of the prior distribution will

generslls remaln unknown. Thus the constant Cy giliven
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by (4.37) cannot be exactly determined. As in section
2.5 this problem can be easily resolved by finding
estimates for both E(a) and Var(a). Since

E(a) = [(k—l)/k]E(&) , the sample mean &ﬁ can be
used to approximate E(&); hence E(o) can be estimated by

\
E() = 513 . (4.38)

If in (4.31) Var(a) is replaced by the sample variance
A
si and E(a) is replaced by E(a), then

-2
2 o}
2 k 1
s = = Var(a)(l + ) +
n (k-1)2 k-2 " k-2
(4.39)
Solving (4.39) for Var(a) we obtain
N ]:(k—2)si - a‘z}(k-n
Var(a) = 5 n (4.40)
k
as an estimate of Var(a). Proper substitution of (4.38)
and (4.40) into (4.37) gives
2
_ k-1 n
¢, = (k=2) - — . (4.41)
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Hence when the mean and variance of the prior distribution
are unknown, (4.41) can be used to represent ¢, 1in the

transformation (4.33).

With this transformation completely determined,
sequence (4.32) is obtainable and a density estimator based
on these estimates can be used to replace the prior density

function giving the smooth estimator for o

- q2
! ok -
" % P Sin(a ai)
<0Lk OLn 2h
z e . ven g
i=1

~ .y !
o (a ai)
L\ 2h J

aG'V o ak K 12
NG
Z = (gk e \’n "\ on da
o (a—qi)
2h

_ .

da

(4.42)

1

and «a are the

1
T . . .
he limits of integration o1 (n)

respective minimum and maximum of sequence (4.32).

4,5 Iteration of the Smooth Estimators

Consider a sequence of smooth estimates from (4.21)

cee, q (4.43)
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obtained in each of n past experiments. Based on this
sequence, a more "precise" estimate of the realization

a ~can often be defermined. This estimate is obtained
by replacing the prior density in the Bayes estimator by
a density approximation constructed with sequence (4.43),
This approach represents an iteration of the smooth esti-
mator O, and is denoted by Eé since the kernel of
integration remains unchanged. Similar iterations of

the estimators 0 , O

and o can be obtalned
G,V

N N,V

. o~y ~1 ~
and will be denoted by aG'v > Og and aN'V

respectively. Integration in each estimator is performed
over the range of values obtained from the first iteration.
For example, the region of integration for Eé is from
mln(aG'i) to max(aG’
i+ 3j . For i=1

j) where 1,j = 1,2,**+,n and

we define o =
s f uG,l al

4.6 Monte Carlo Simulation

The continuously smooth empirical Bayes estimators
‘given in the previous sections were investigated for small
samples by Monte Carlo simulation and compared to maximum-
likelihood estimators. The simulation was conducted in a
manner analogous to the procedure described in section 3.5.
In each experiment a value of a was éenerated from a

prior distribution belonging to the Pearson family of

distributions. This parameter was then used to obtain a

sample of size k from (4.1), and the maximum-likelihood
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and continuously smooth empirical Bayes estimates were
calculated. Five hundred repetitions of each of twenty
experiments were made for each prior distribution, and the
ratio

empirical Bayes mean-squared error

R = - T
maximum-likelihood mean-squared error

was formed. As 1in section 3.5, 1t was found that the ratio
R was significantly influenced by the prior distribution

only through the value

*J\
Var (ala)

Z = Var(a

where ¥ indicates that E(a), the prior mean of o ,

has been substituted for o . In particular for a random
sample of size k from (4.1), Var(a|a) is given by (4.18),
and the value Z Dbecomes

k’E2 (a)

7 = 2 . (4.44)
(k=1)“(k=2) Var(a)

Since the only factors affecting the ratio R , apart
from the number of experiences, are contained in (4.L44),
this guantity can be conveniently used to summarize and

index a given situation.
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As in Chapter IIT we wish to illustrate the robustness
of the continuously smooth empirical Bayes esftimators to
the form of the prior distribution. Accordingly, values
of ai(i = 1,2,°°+,20) were generated from various
Pearson prior distributions. The ratio R was observed to
vary only slightly for a given value of n , providing
the value of 7 remained invariant from distribution to
distribution. Illustrations of this fact are presented
in Figures 12-15 for a given value of Z = 2.0 . In
Figures 12, 13, 14, and 15 the prior distribution is
bell-shaped (skewed), L-shaped, J-shaped, and U-shaped
respectively. The solid line in each figure represents the

ratio RG v calculated with the smooth estimator ag v

given by (4.42); the broken line represents the ratio Ry

calculated with the smooth estimator ag given“by (4.21).
This representation is used in the remaining figures of
this chapter. The value Z 1s the same for all four
figures, but skewness (S) and kurtosis (K) vary, giving
different forms to the prior distributions. Little differ-
ence, however, can be detected in the corresponding values
of RG,V and R, in the four figures. Hence the smoéth
empiricai Bayes estimators are quite insensitive to the
form of the prior distribution as summarized by S -and

K . Therefore the values of S and K will not be given

for the remaining figures in this chapter. The values of
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the prior distribution are designated as follows:

E(a)

prior mean of a

V(a)

prior variance of a

To determine the effect of the sample size k on the
ratios RG'V and RG , several runs were made with k
ranging from 5 to 20. Results from these investigations
revealed that the quantities in Z <can vary in a manner
not affecting the value of Z without having a signif-
lcantly noticeable effect on the ratios RG'V and RG
That is, the value of Z and not the individual quan-
tities in Z determines the values of RG’V and RG
Figures 16, 17, and 18 illustrate this point. By com-
paring these figures, it can be seen that although the
parameters k , E(a), and V(a) vary widely in each
figure, with the value of Z remaining 3.5, the ratios
RG,V and RG remain relatively unchanged. Since the
ratio R remains relatively unchanged for equivalent

values of Z , the individual quantities in Z will

not be given for the remaining figures in this chapter.

Values of the ratios RG and RG y are plotted in

Figures 19 and 20 respectively. These ratios are plotted
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for different values of Z ranging from 0.5 to 5.0.

Again we notice that as Z 1increases, the ratios RG v
14

and RG decrease. * In particular for a given value of

Z , the values of RG y are smaller than those of RG s

demonstrating the superiority of the smooth estimator

~

a, y over the smooth estimator EG . Again this increase
I

in mean-squared precision is attributed to the priof den-

sity approximation used in EG _ This approximation is
r

based on a sequence of values having a marginal distribu-
tion whose mean and variance are approximately equivalent

to those of the prior distribution.

Figure 21 represents a typical result obtailned when

~

aG v is iterated as described in section 4.5. The ratio

R! formed with the iterated smooth estimator

~1
G,V o‘c,,v .

is represented by the dotted line. As in Chapter IIT

we notice that the squared-error improvement achieved

by using EG v 1s slightly decreased by a second itera-

tion. This decrease in precision is expected. The
approximation used to represent the prior density
in &E’V is based on a sequence of values whose marginal
distribution has i1ts mean and variance approximately
equivalent to those of the prior distribution. The

> . . . . ~ 1
prior density approximation in o

GV ° however, is not
14

known to have this property.
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Results from a second iteration of EG are given in
Figure 22 for a value of Z 1identical to that used in

!

Figure 21. The ratio RG formed with the smooth estimator

~T

O is represented by the dotted line. We note that
iteration of EG increases the mean-squared precision;

however, this improvement is not as significant as that

~

obtained with aG,V

It is conjectured that the over-
estimation of the prior variance by the marginal distri-
bution of the maximum-likelihood estimator has a far more

significant effect on the prior density approximation than

does the marginal variance of EG

In the Monte Carlo study the estimator pro-

aG,V
vided uniform squared-error improvement over the maximum-
likelihood estimator for two or more experiences. It was
also observed to be the most efficient of the smooth

estimators. Since this improvement was consistent over

a wide variety of Z values, we recommend that the smooth

estimator &g y DPe used in all situations.
In Figure 23 the ratio RG v is plotted as a func-

tion of Z for a given number of experiences. These
plots give some indication of the improvement over maximum-
likelihood one can expect if an estimate for the value of

Z can be obtained.
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As discussed in section 4.3, in some instances the
true density function of the maximum-likelihood estimator
for a finite sample size k may be unknown. Its asymp-
totic distribution may, however, be known and can be used
to form an efficient smooth estimator. The estimators
&ﬁ and &ﬁlv given by (4.22) and (4.29) respectively,

were constructed in this manner. Values of the ratios

R. formed with 4. and R formed with

re
N N N,V Oy,v @

plotted in Figures 24 and 25 respectively. These ratios
are plotted for various wvalues of Z ranging from 0.5 to
5.0. Comparison of Figures 24 and 25 with Figure 20 shows
that the estimators Eﬁ and EN,V are not as "good" as
the estimator EG'V . However they do provide significant
and uniform squared-error improvement over the maximum-
likelihood estimator for two or more experiences, and this

is of paramount importance.
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CHAPTER V

ESTIMATION OF THE WEIBULL SHAPE PARAMETER
WITH KNOWN SCALE PARAMETER

In this chapter, smooth empirical Bayes estimators
are given for the shape parameter B 1in the two-parameter
Weibull distribution. The scale parameter o 1is assumed
to be known and fixed in each experiment. Results from
Monte Carlo simulations are reported which show that
even for small sample sizes and few experiments the smooth
estimators have smaller mean-squared errors than the

maximum-likelihood estimators.

5.1 Maximum-Likelihood Estimator for B8

Let X be a random variable having a Welbull
distribution with a known scale parameter o . If the
shape parameter B 1is a random variable, Then the

conditional density function of X 1s given by

f(x]|B8) = aBx""Te™™® |, (x 20; a, B >0)

(5.1)

Consider a random sample of Kk observations from

(5.1). The likelihood function of this sample is

106
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k B

-0X.,
L(x|B) = (aB)kI ‘x?‘le 1 (5.2)
i=1

Upon taking the logarithm of (5.2), differentiating with

respect to B , and equating to zero, we have

Kk k
d log L(x|8) _ k z log x. - az x® log x. = 0
ds P : : :
i=1 i=1

(5.3)

This equation can be solved to obtain the maximum-
likelihood estimator B . This may be accomplished with
the aid of standard iterative techniques. In Appendix B

such a procedure is described.

The maximum-likelihood estimator is not known to be
sufficient for B , and its exact distributional form
is unknown. The estimator is, however, consistent for

B and by virtue of (1.25) is distributed asymptotically

normal, with mean B8 and variance given by

-1
1 L
o8 (5|B)> (5.4)

2
A d
Var(g|B) = - Ex< e
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Now

k
2
d“ log L(x|B) Kk B 2
5 = = - E x; (log x) (5.5)

and the expected value of (5.5) is

2
E(d tog g(élB)) = - j% - ukE[xB(log X)z] . (5.6)
as B
Hence (5.4) becomes
A k B 2 "l
var(B[B) = |[= + akE[x (log x) ] . (5.7)
B
Consider
R 2 g 2 B-1 —axB
E|x"(log x) = x"(log x)“aBx e dg
0
(5.8)
If the substitution u = XB is made then
E[Xs(log x)z] = J% u log (u) e %" qu (5.9)
R
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which after integrating by parts, becomes

1]

E[Xs(log X)Z] —%— 2.{ e” %™ log u du
B
0

+ J. e™%% 10g2 u du
0]

1 '1T2 2
aB
- 2(10g o - IP(]_)) . (5.10)

The function ¥(1) in (5.10) is the digamma function
Y(x) evaluated at x = 1 . Completing the square in
(5.10) and using the recurrence formula

y(x+1l) = 1/x + P(x)

, WwWe obtain

2 2
E[XB(lOg X)z} —lf %T + (log o - w(l)—l> —l}

L

= —lg %; + (¢(2) - log a)z—l]

L.

(5.11)
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Hence (5.7) becomes

-1
~ g2 |2 2
Var(g|B) = ' [’6‘ + (w(z) - log oc) :l . (5.12)

5.2 Smooth Empirical Bayes Estimators for B

Assume that the Weibull distribution with known scale
parameter o adequately describes data obtained in each
of n previous experiments, Further assume, that
between successive experiments, the shape parameter B
varies randomly with the same but unknown prior density
fﬁnction g(B). If in each experiment a maximum-likelihood

estimate Bi (1 = 1,2,**+,n) was obtained for each

realization from g(B), then the sequence of estimates

1o Bys tee, B (5.13)

can be used to form an approximation to the marginal

density. This approximation can be represented by
”~ N 2
z sin(B—Bi)
AN _ 1 2h
p_(B) = oo — = (5.14)
i=1 (B—B.)
1
2h

where h 1is given by (2.8).
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Convergence in probability of (5.14) to the prior
density g(B) as both the sample size k and the number
of experiments n ‘tend to infinity is assured by
Theorem 2.2. Therefore, when the kernel of integration
is normal with mean B and variance given by (5.12),
pn(g) can be considered as a function of B , and a

continuously smooth empirical Bayes estimator for Bn

becomes
n (B k[PaP . [B-B;
- B sSin 21’1
Z e _ as
i=1 é (?—Bl>
~ (1) 2h
B, = . —— 5 F I
0 (P J_{_(Bn-ﬁ) Sin(s—sl)
28 [N Rin ke = |
i=1 /B\ (B—Bl>
(1) | 2h j

(5.15)

~ ~

where B(l) and B(n)

maximum values of sequence (5.13).

are the respective minimum and

~

Since the true density function of B8 , when given
B 5 1s unknown for a finite sample size, its asymptotic
distribution has been used in (5.15). Such substitutions

were considered in Chapter IV, and results from Monte
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Carlo simulation indicated that substantial improvements
in squared-error precision over maximum-likelihood could
be obtained.

~

Since B 1is not known to be a sufficient statistic
for B , we cannot write E(B[x) = B(8|8) ; thus By
involves a further degrge of approximation to the Bayes
estimator. In section 5.5, results from Monte Carlo
simulation indicate that E& has smaller mean-squared

errors than the maximum-likelihood estimator even though

BN involves these approximations.

5.3 A Smooth Empirical Bayes Estimator for B Corrected

for Variance

The asymptotic distribution of B conditional on

B was shown to be

distr.(B|B) = N{B, (5.16)

————
QI
o B ]

S

where

c = %; (¢(2) - log u)z

This distribution corresponds to the distribution given
by (2.21). Hence from the calculations in section 2.5,

the mean of the marginal distribution of B 1is equal to

the mean of the prior distribution. Its variance,
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however, overestimates the prior variance by the amount

Y

= [Var(B) + EZ(B)]
We can now form the transformation
B = al(e - E(B)) + E(8) (5.17)

defined by (2.25). This transformation provides us with

a new sequence of values

1> By v, B (5.18)

The marginal distribution of this sequence has a mean
and a variance equivalent to those of the prior distri-
bution. When the mean and variance of the prior

distribution are known, the constant a in (5.17) is

1
given by
1/2
a, = ke Var(B) . ) (5.19)
(1+ke) Var(B) + E“(B)
Otherwise
B 1/2
- = lx E; (5.20)
41 7 V1¥xc {¥¢ - = :
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and
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(5.21)

(5.22)

Any density estimator pn(B*) based on sequence

(5.18) has the property that

¥
p lim pn(B )

T ->co
koo

g(B)

Therefore when considered as a function of B

pn(B*) can be used to approximate the prior density

function,

oY,

N,V

¥
where B(l)

and a smooth estimator for

Bn becomes

maximum values of sequence (5.18).

(5.23)

* ~ 2 ¥
0 (B k(sn—e) Sln(s—sl
A 2h
> e 2\ B a8
— *
i=1 B(l) i
BY : 2
. (n) (Bn—B) 3-8
1 "I\ sin\—
EE: [ g n ds
1=1 7g*
(1) 2h
and Bfn) are the respective minimum and
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5.4 Tteration of the Smooth Estimators

Consider a sequence of smooth estimates from (5.15)

Y

~

By 1s B e, B (5.24)

N,2°

obtained in each of n previous experiments. Based on
this sequence a more "precise" estimate of the realiza-
tion Bn can often be determined. This estimate is
obtained by replacing the prior density in the Bayes
estimator by a density approximation constructed with
sequence (5.24). 1In essence this represents an iteration

of the smooth estimator 8.

N 2 since the kernel of

integration remains unchanged and 1s denoted by gé

~

A similar iteration of the estimator BN v can be

obtained and will be denoted by E'

N,V Integration in

each estimator is performed over the range of values

obtained from the first iteration. For example, the

A~

region of integration for Bé is from min(gN i) to

max(gﬁ j) where 1i,j = 1,2,¢°+,n and i #+ j . When

14

i=1, we define §N 1= él

5.5 Monte Carlo Simulation

The continuously smooth empirical Bayes estimators
given in the previous sections were investigated for
small samples by Monte Carlo simulation and compared to

the maximum-likelihood estimator. In each experiment
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a value of B was generated from a prior distribution
belonging to the Pearson family of distributions. This
parameter was then used to obtain a random sample of

k observations from (5.1). The maximum-likelihood and
continuously smooth empirical Bayes estimators were then
calculated. Five hundred repetitions of twenty experi-
ments were made for each prior distribution, and the

ratio

R = empirical Bayes mean-squared error
maximum-likelihood mean-squared error

was formed. As in section 3.5, it was found that the
ratio R was significantly influenced by the prior

distribution only through the wvalue
. - Var*(sgs)
Var(B

where ¥ indicates that E(B), the prior mean of B8 ,
has been substituted for B . In particular for a
random sample of k observations from (5.1), the value

of 7 Dbecomes

2 2 2
EZ(B) |5 + (¥(2) - log a)
z = k Var(g) (5.25)
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where ¢(2) = .U4227843351 1is the value of the digamma
function P(x) evaluated at x = 2 . Since the only
factors affecting the ratio R , apart from the number
of experiences, are contained in (5.25), this quantity
can be conveniently used to summarize and index a given

situation.

As in the preceding chapters, we again wish to
illustrate the robustness of the smooth estimators to
the form of the prior distribution. Therefore values
of B, (i = 1,2,-°-,EO) were generated from various
Pearson distributions while holding the wvalue of Z
fixed at 1.5. The results are shown in Figures 26-29.
In each figure the coefficients of skewness (S8) and
kurtosis (K) were varied to give different forms to the
prior distribution. In Figure 26 the prior distribution
is bell-shaped (skewed); in Figure 27, L-shaped; in
Figure 28, J-shaped; and in Figure 29, U-shaped. The

solid line in each figure represents the ratio RN v

~

calculated with the smooth estimator B and the

N,V ?
broken line represents the ratio RN calculated with
E& . This representation will be used in the remaining
figures of this chapter. Again we notice that the
smooth estimators are quite insensitive to the form of
the prior distribution as summarized by S and K

Therefore values of S and K will not be given for



118

the remaining figures in this chapter. The values of

the prior distribution are designated as follows:

E(B)

prior variance of B ,

V(B)

prior mean of B

To determine the effect of the sample size k on
the ratios RN'V and RN , Several runs were made
with k ranging from 5 to 20. Results from these
investigations revealed that the quantities in Z
can vary in a manner not affecting the value of 2
without having a significant effect on the ratios
R and RN . Thus the value of Z , not the

N,V

individual quantities in 272 , determines the values

of RN,V and RN . PFigures 30, 31, and 32 illustrate
this'point. By comparing these figures, it can be seen
that, although the parameters k, o, E(B), and V(B)
vary in each figure with the value of Z remaining
0.8, the ratios RN’V and Ry remain relatively
unchanged. Since the ratio R remains relatively -
unchanged for equivalent values of Z , the individual

quantities in Z will not be given for the remaining

figures in this chapter.

Values of the ratios RN and RN y are plotted in

Figures 33 and 34 respectively. These ratios are plotted
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for different values of Z ranging from 0.5 to 5.0.
As in the previous chapters, we notice that as 2

increases, the ratids RN and RN v decrease. In
7

particular for a given value of Z , the values of RN v

are smaller than those of RN , demonstrating the super-

~

iority of the smooth estimator BN v over the smooth
estimator E& As in the preceding chapters, the
increase in mean-squared precision by E& v is

attributed to the prior density approximation. This
approximation is based on a sequence of values whose
marginal distribution has its mean and variance approx-

imately equivalent to those of the prior distribution.

Figure 35 represents a typical result obtained

when E& v is iterated as described in section 5.4.
The ratio R& v formed with the iterated smooth esti-
mator g/ is represented by the dotted line. As

N,V

in the previous chapters, we notice that the squared-

~

error improvement achieved by using BN v is slightly

decreased by a second iteration. This decrease 1in

precision is expected. The approximation used to

~

represent the prior density in BN v is based on a

sequence of values whose marginal distribution has its
mean and variance approximately equivalent to those of
the prior distribution. The approximation used in BN s

however, is not known to have this property.
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Results obtained from a second iteration of EN

are presented in Figure 36 for a value of Z 1identical

to that used in Figure 35. The ratio Ré formed with

~

the smooth estimator B& is represented by the dotted

line. We note that although iteration of E& does

increase the mean-squared precision, this increase is

~

not as significant as that obtalned when BN v is used.

It is conjectured that the overestimation of the prior
variance by the marginal distribution of the maximum-
likelihood estimator-has a far more significant effect
on the prior density approximation than does the mar-

ginal variance of §N . In general, iteration of the

smooth estimators 1s discouraged. While a second

~

iteration of BN does decrease the squared error, the

decrease is not as significant as that obtained using

~

B . A second iteration of B usually increases
N,V N,V

the squared error.

In all cases considered in the Monte Carlo study,

~

the estimator BN v provided consistent mean-squared

improvement over the maximum-likelihood estimator for
two or more experiences. It was also observed to be
most efficient of the smooth estimators. Since this

improvement was uniform over a wide variety of Z

~

values, we are confident that BN g can be used in
r

any situation. In case, however, some idea of the
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prior mean and variance is known, Figure 37 can be

used to obtain some indication on the amount of improve-

~ .

ment of BN v over the maximum-likelihood estimators.

In this figure, the ratio R is plotted as a function

N,V
of Z for a given number of experiences.
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CHAPTER VI

ESTIMATION IN THE WEIBULL DISTRIBUTION

In this chapter, smooth empirical Bayes estimators
are given for the scale parameter o and the shape
parameter B in the two-parameter Weibull distribution.
These estimators are proposed on the assumption that
they are subject to random variation. Results from
Monte Carlo simulations are reported which show that
the smooth estimators have smaller squared errors than

the maximum-1likelihood estimators.

6.1 Maximum-Likelihood Estimation

Let X be a random variable having a Weibull
distribution. If o and B , the scale and the shape
parameters respectively, are random variables, then the

conditional density function of X 1s given by

f(x}ja,B) = oaBx" e , (x20; a, 8B >0)

(6.1)

Consider a random sample consisting of k observa-
tions from (6.1). The likelihood function of this

sample 1s

k B
“0x,
L(x|8) (@) ¥Tlxfe T (6.2)

i=1

134
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Taking the logarithm of (6.2), differentiating with
respect to a and B 1n turn and equating to zero, we

obtalin the equations

k
Plegl . k-3 - (5.5
i=1
and
k k
é—l%%—é = % + ji: log X, - a:E:XE log X, = 0

i=1 1=1
(6.4)

Eliminating o between these two equations and simpli-

fying, we have

k
- % = %Z log x, (6.5)
i=1

which may now be solved to obtain the maximum-likelihood
estimator B . This can be accomplished with the aid of
standard iterative procedures. 1In Appendix B such a

procedure is described.

~

With B thus determined, o 1s estimated from

(6.3) as
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o = —X (6.6)

ﬁé 8
X,
i=1 *

A

The maximum-likelihood estimafors o and E are
not known to be jointly sufficlent, and their exact
distributional form is unknown for small samples. The
estimators are consistent and by virtue of (1.29) are
distributed bivariate normal with mean vector

v = (a, B) and covariance matrix V given by

-1
log L) _E(82 log L )
Buz 30.0R
v =
log L B 3% log L
30 oR 882
(6.7)
Thus
aistr.(a, Bla, B) = N,(u, V) . (6.8)

The expected value of the mixed partial derivatives

in (6.7) can be represented as

k
2
9” log L B
E(’Tu'a'ég_') - ZE(Xi log x,)
i=1

-k E(xP 10g x) (6.9)

]
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since each X, is independently and identically distrib-

uted according to (§.1). Now

® 8
E(x® log x) = I (xP 10g x)aBxf"te™™* ax  (6.10)
0

which becomes
E(xP log x) = &% (w(2) - log a) (6.11)

after integrating (6.10) by parts. The function y(2)
is the digamma function Y(x) evaluated at x = 2

Thus

2
'E(a ai%%’g) - é% (w(2) - log a) , (6.12)

and the inverse of the covariance matrix can be written

Xk (“2 + A2 kA
g2 6 aB
vto=
kA Xk (6.13)
o 0.L2
where A = $(2) - log o and the main diagonal elements

are given by the reciprocal of (4.9) and (5.12)
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respectively. The covariance matrix V can now be

given as
-1 -1
82 2 aBA ﬂ2>
k \6 Tk \6
Vo= 1
- -1
_ aBa (m of ;4 a2 (nf
kK \6 K 6

(6.14)
6.2 Smooth Empirical Bayes Estimation

Assume that an unobservable random parameter vector
p = (a, B) occurs according to the bivariate density

function g(u). When u is realized, an observable
random vector X from (6.1) occurs and a maximum-
likelihood estimate of B is formed. Now if this

situation occurs repeatedly, then the vector-valued

sequence

~ A

Bis Hps °77% ﬁn (6.15)
of maximum~likelihood estimates can be used to form a
marginal density approximation pn(ﬁ). Convergence in
probability of pn(ﬁ) to the prior density g(ﬂ> is assured
by Theorem 2.2. Hence, pn(i) can be considered as a
function of p , and a continuously smooth empirical
Bayes estimate of X can be given. Here as in

~

Chapter V, the true density function of p given u 1is

~
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A

unknown for small samples, and J 1s not known to be
jointly sufficient for u . Thus E(p[x) % E(Elﬁ)
Nevertheless, a smooth estimator for U can be given,
and in section 6.3 its ability to provide squared-error

improvement over maximum-likelihood will be i1llustrated.

In the remainder of this chapter, it will be advan-

tageous to omit vector notation, restricting our attention

to the respective components of the vectors u and o)

Sequence (6.15) will now be written as

~

(a']_’ Bl)’ (azs 62)’ ...’ (un, Bn) . <6.16)
Using the multivariliate density estimators proposed

by Martz [19], we form

= A A A A - 2
n sin "% i B_Bi
n A oh 510 1%n
- 1 Z : o B
pn<a’3 B) - F——_— N A ~ A 2
mnh h, 1T a-o, B-B
i 2h 2hB
(6.17)
the marginal density estimator for p(a, B). In a prac-

tical situation, the maximum-likelihood estimates will
generally be unitized quantities. These units can be
removed from the arguments of the sine function in

(6.17) by defining



140

h = sn /3 (6.18)
o o
and
_ -1/5
hB = 8gn (6.19)
where
n n
Si = Z(O{,l - —0—(,-)2/1'1 P Sz = (Bl - -B—)Z/n
i=1 i=1
(6.20)
with
n & n é
- i = _ i
3 = }E: = B = EE: - (6.21)
i=1 i=1

Considering pn(u, B) as a function of o and B
and using (6.8) as the kernel of integration, we obtain

the smooth estimators

>
>

n (B [ %) a;‘;?;%;:E'Q |
gg; Jé & oo, VoS pn(a, B) da dB
~ ) ) _
N n rB(n) % ;-;?ITQ;E o
Z:l-ié ). T Pale 8) e

Q
Q
™

(6.22)



141

pn(u, 8) dao dR

'(D

respectively.

pn(a, B) do 4R

(6.23)

2
- 2p&n +
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n

_ 1
p,lo, B) = 2ﬂnhahsz
i=1

(6.2L4)

where h_ = and hB are given by (6.18) and (6.19) respec-
tively. The limits of integration in (6.22) were obtained
by ordering the components of sequence (6.16) for & and

B respectively.

~

The smooth estimators aN and BN require the
estimation of bivariate density functions which are
difficult to estimate accurately. Also, to obtain point
estimates from each of these estimators, double integra-
tion must be performed over regions which have been
apprOximated from sample data. To avold a substantial
decrease in mean-squared precision which could be created
by the compounding effect of such approximations, we

propose the use of marginal empirical Bayes estimators

as a possible alternative.

The smooth empirical Bayes estimator EN has been

used to represent an approximation to E(a[a, B), even

though o and B are not jointly sufficient for o

and B . We extend this approximation further by
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constructing a continuously smooth estimator for «
based on the marginal Bayes estimator E(al&). Similarly,
a continuously smooth estimator for B will be based on
the marginal Bayes estimator E(Blé). By constructing
such estimators, we are tacitly assuming that & and

g are independently distributed and marginally
sufficient for o and B respectively, and that «a

and B are independently distributed. The results of
such approximations are considered in section 6.3. We
remark that the use of marginal empirical Bayes estima-

tors is partly motivated by the results Clemmer and

Krutchkoff [ 3] obtained with such approximations.

The marginal empirical Bayes estimator for o can

therefore be written as

~ & -0 2
o __l_ n
n (n) S\ o
) ’
i=1

~ ' % (1)

OLM = & &n )2
= f () 1 B ( ocx
> = o -p,(a) da
i=1 Jo *

(6.25)

N[ =



where pn(a) is given by

n
_ 1
pn(u) - 2wnh EE:
o .
i=1

The marginal empirical Bayes estimator for

1 Bn"B
2 ¢}

by

A~

)

n B(n .
2 5

o~ 0
i=1 7B

8

p,(8) dB

. B
g - (1)
BM = -
n B(n)
2 =
~ o
. B
i=1 8(1)

where p (B) is given by
n g

n
1
pn(B) - 2mnh Z
B 5ol
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(6.26)

is given

(6.28)
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6.3 Monte Carlo Simulation

The continuously smooth empirical Bayes estimators
@ and B were investigated by Monte Carlo simulation
and compared to the maximum-likelihood estimators. The

criterion for comparison was mean-squared error, and

therefore the ratio

R = empirical Bayes mean-squared error
maximum-1likelihood mean-squared error

~

was of interest. Here the notation o and B 1is used
to represent any of the smooth estimators given in the
preceding section for the parameters o and B

respectively.

Values of o and f were generated from chosen
prior distributions. Then a random sample of k obser-
vations corresponding to the realizations o and B
were generated by (6.1). The maximum-likelihood estima-
tors & and E were found, and their squared deviations
from the wvalues of the corresponding parameters were
calculated. For the second experiment new values of
o6 and B were generated. The procedure was repeated
with & and é , and thelr squared déviations were
calculated. For this experiment, o and 8 and their
squared deviations were also calculated. This procedure

~

was repeated 20 times, and each time @ and B8 were
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~

calculated using the present values of o and B as
well as all previous maximum-likelihood estimates. Five
hundred repetitions of this run of 20 experiments were

then made, and the average of the squared deviations

~ ~ ~

of o, B , o, and B were formed as estimates of
E(a - a)2, E(B - 8)2, E(d - a)? and E(B - B)? respec~-
tively. Then the ratios Ra and R were calculated

B8
utilizing these estimated mean-squared errors.

In the Monte Carlo simulation, numerical integration
was performed using the Gauss quadrature formula
described in Appendix A. The numerical integrations in

~

the smooth estimators aM and BM were calculated to
a desired degree of accuracy by means of halving the
intervals of integration as discussed in Appendix A.
The numerical solution of several double integrals is

~

required to form the smooth estimators aﬁ and BN
Therefore in the Monte Carlo simulation, checking for
convergence proved to be extremely time consuming.
Several runs were made in which the integrals were
calculated without requiring the time-consuming accuracy
check. The results from these runs were directly com-
pared to those obtained when accuracy checking was
employed. This comparison showed that the results

almost always were comparable, to three significant

digits, and in cases where they differed, the
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mean-squared errors of Eﬁ and §& , formed without
consideration of integral convergence, were only slightly
greater than those obtained when integral convergence

was consldered. Thus any bias associated with the

ratios Ra or RB formed with these mean-squared errors
would be in favor of the maximum-likelihood estimators.
Since this bias was slight and computer run time was
significantly reduced, any galn in precision by checking

for accuracy was sacrificed in favor of the reduced

run time.

The parameters o and B were generated indepen-
dently in the Monte Carlo studies. The theory does not
require that o and S be independently distributed;
however for ease in obtalning random values from the
Pearson distributions this was taken to be the case. As
in the previous chapters, results indicated that thg
ratio R depended on the distributions only as they
influenced the value of the ratio of the conditional
variance of the maximum-likelihood estimator to the
variance of the paramefter, given the corresponding

parameter value. Thus, for o

_ E?‘(a)<l + 02 (%2_)‘1)

o k Var(a) (6.29)
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where A = Y(2) - log E(a) and ¢(2)

4227843351

and, for B ,

-1

2 Tr2)

B - K Var(B) (6.30)

In (6.29) and (6.30), the values of the parameters o
and f have been replaced by their expected values.
Apart from the number of experiences, the only factors
found to affect the ratios Ra and R were contained

B
in Za and Z respectively. Therefore, these

B8
gquantities can be conveniently used to summarize and
index a given situation. In particular, it was found
that for a given value of Z , the ratio R remained

relatively unchanged regardless of the correlation

between the maximum-likelihood estimators.

In order to support the claim that the smooth
estimators are indeed robust to the form of the prior
distribution, the parametérs o and B were indepen-
dently generated from various Pearson distributions.

For all types of Pearson prior distributions with varying
coefficients of skewness and kurtosis, the ratio Ra
and RB have been observed to vary only slightly for a

given number of experiences, providing the values of

Za and ZB remain unchanged. Illustrations of this
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fact are presented in Figures 38-41 for given values of

Zu = ZB = 2,0 . For convenience the same coefficients

of skewness (S) and kurtosis (K) were used in each
situation; however the first four moments of the prior
distribution were different. In Figures 38, 39, 40,
and 41, the prior distribution is bell-shaped (skewed),
L-shaped, J-shaped, and U-shaped respectively. The

solid line represents the ratio Ru N calculated with

the smooth estimator EN given by (6.22), and the

broken line represents the ratio calculated with

RB,N

the smooth estimator EB given by (6.23). The

parameters of the prior distributions are designated as

follows:
E(a) = prior mean of a
V(o) = prior variance of o
E(B) = prior mean of B
V(B) = prior variance of B8
We remark that the ratios Ru M and RB M calculated

with the marginal empirical Bayes estimators EM and

EM given by (6.25) and (6.27) respectively are also

robust to the form of prior distribution.

In the Monte Carlo study it has been repeatedly

observed that the maximum-likelihood estimates vary
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widely for a random sample consisting of less than

15 observations. These fluctuations caused the aver-
aged squared errors over 500 repetitions to represent
poor approximations to E(&—a)z and E(é—B)z. Therefore
in each case reported in this section, k was fixed at
20. For k 215 we observed that for a given value

of Z , the ratio R was unaffected by cholice of
sample size. Thus restricting k to 20, causes no loss

in generality.

The results gliven above were based on the assumption
of independent prior distributions for o and 8 . A
gquestion which naturally arises is: What effect does
correlation between oo and £ have on the ratios Ra
and RB ? To answer this guestion a bivariate normal
prior distribution was assumed for the parameters o
and B . For given values of Za and ZB it was found
that as the correlation p between o and £ 1increased,
the ratios Ra'N and RB,N decreased. Also the same
degree of positive and negative correlation gave similar
results. For example, correlations of p = 0.5 and

p = -0.5 gave similar results for equivalent values

of 7 and 7
a B

Figures 42-47 illustrate the increase in mean-

squared precision achieved by the smooth estimators &&
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~
~

and BN over the maximum-likelihood estimators o and

A

B for various values of p and Z . Figures U2, 43,

and 44 illustrate the improvements achieved by a& when

p =00, p=20.5, and p = 0.9 respectively for

several values of Z_ . Figures b5, L6, and 47 illustrate

~

the improvement achieved by BN when p = 0.0 ,

p=0.5, and p = 0.9 respectively for several values

of ZB . We note that for a given value of Za , as
p 1increases, Ra N decreases. Similarly for a given
value of ZB , as p 1increases, RB N decreases.

The amount of correlation between o and B8 has

been observed to have no effect on the ratios Ra M
and R formed with the marginal estimators o and

g,M

BM respectively. This is, of course, expected since

the smooth estimators were based on the assumption of
independent prior distributions. Values of the ratios

Ra'M and RB,M are plotted in Figures 48 and .49

respectively for various values of Za and ZB

ranging from 0.5 to 5.0. It 1s of particular importance
that for a given value of Za and a fixed number of

experiences, the wvalue of Ra M is less than that of

Ra N regardless of the value of p . Similar results

are witnessed by observing corresponding values of RB M

and RB N C Thus the marginal smooth estimators o

~

and BM provide "better" results than the estimators

M
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~

o, and B even though the former are based on the

assumption of independent prior densities.

It is conjectured that the compounding effect of
being unable to accurately approximate bivariate den-
sities and having to perform double integration over
regions approximated from sample data cause this

phenomenon. The errors produced by such approximations

~

in &N and BN appear to be far more significant than

the errors produced by the independent assumptions on

which the marginal estimators a& and Eﬁ are based.

~

We are confident that ah and B, will give "best"

results in any situation since they provided uniform

~

improvement over E& and BN regardless of value of

Z or the degree of correlation between o and B8
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CHAPTER VII

COMPARISONS WITH TWO ALTERNATIVE EMPIRICAL
BAYES ESTIMATORS

In this chapter two alternative empirical Bayes
estimators are considered. Where applicable, these
estimators are applied to the distributions considered
in the preceding chapters. Results from Monte Carlo
simulation with these estimators are reported and directly
compared with the results obtained from the corresponding

continuously smooth empirical Bayes estimators.

7.1 Alternative Empirical Bayes Estimators

The methods of empirical Bayes estimation can be
partitioned intoc two distinct classes. The first class
consists of those methods which attempt to obtain empirical
Bayes estimators without requiring explicit estimation of
the prior distribution. The well-defined families devel-
oped by Rutherford and Krutchkoff [28] typify this
technique. The second class consists of those methods
which endeavor to obtain empirical Bayes estimators by
consldering an approximation to the prior distribution
function. The method proposed by Lemon and Krutchkoff [17]
demonstrates this fechnique. In a well-defined sense, the
continuously smooth estimator does not belong to any of

these classes. The continuously smooth estimator,
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however, can be considered an analog to the second method
of estimation since it too attempts to approximate some

form of the prior distribution.

Rutherford and Krutchkoff [28] established several
well—-defined families of distribution functions. Each
family provides a unique empirical Bayes estimator

En(6|5) having the property that

p lim E _(6|x) = E(8]|x) (7.1)
nN—>o n
for all x . This property was considered desirable since

previously [29] they had shown that e-asymptotic opti-
mality could be obtained by a truncated version of
consistent estimators for the Bayes estimator. In prac-
tical situations, e-asymptotic optimality is equivalent

to asymptotic optimality which is defined by

p lim R(S§ , G) = R(G) . (7.2)
n-—*>co ~n
Here R(°,+) represents the overall risk, én an empirical
Bayes decision function, and R(G) the Bayes risk. These

elements were described in detail in section 1.14.

In particular we will be concerned with families

Fl and F3 . For completeness we include their defini-

tions. A family of distributions {F(x|6):6e0} is said
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to be a member of Fl if

i) the random variable X 1s discrete for each

6 , and

ii) the probability mass function P(x|8) is such that

P(;(;Ié{e) = a(x) + ob(x)

where a(x) and b(x) are any functions such that
b(x) + 0 . If P (x) and P _(x + 1) are consistent esti-
mators for the marginal probability mass function P(x),
then a consistent empirical Bayes estimate of 6n is
given by

% Pn(xn + 1) a(xn)

o T Bz Pz T B

A family of distributions {F(x|6):6e0} is said to be

a member. of F2 if

i) X is a continuous random variable for all

ge® , and

ii1) the probability densities f(x|8) are such that

Bf(xle)

oX

'ﬂ—X—I—e-)'— = a(x) + eb(X)
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where a(x) and b(x) are any functions such that

b(x) # 0 . If fn(x) and f;(x) are consistent estimators
for the marginal density and its first derivative
respectively, then a consistent empirical Bayeé estimate

of en is given by

£ f;(xn) a(xn)‘
D b{x )f_(x_J ~ b(x_J

4
For a discussion on estimating fn(x), see Rutherford [27].

Lemon and Krutchkoff [17] proposed a general
smoothing technique for obtaining empirical Bayes
estimators. One particular estimator is essentially
obtained by the replacement of the prior distributilion
by a step function having steps of equal height 1/n at
each of n previous classical estimates. This estimator

can be fepresented by

o, = (7.3)

~

where ei represents the 1th classical estimate of ]

and f(-

*) is the kernel of integration.
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Also suggested was a second iteration of @D .

This iteration gives

n =« A R
gl - é;%eD:lf(enleD,l) (7.1
D n ~ R ’
f?lf(en'%.l)
where 8 is given by (7.3). Further iterations are,

D,i

of course, possible; however, as with the continuously
smooth estimators, they may provide a significant increase

in squared error and thus may be undesirable.

7.2 The Poisson Distribution

Let us assume that in each experiment, a single
observation X, (1 = 1,2,**+,n) 1is obtained from the
Poisson mass function given by (3.1). From (3.4) the

maximum-likelihood estimate of €6 is simply x or ©

The subscript k has, for convenience, been deleted.

The Poisson distribution is readily verified to be
a member of family F, in which a(en) = 0 and
b(en) = l/(en + 1) . The empirical Bayes estimate of Gn

is therefore given by

6. = (8_+ 1) = . (7.5)
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Clearly, Pn(en) can be estimated from the sequence of

*
observations 61, 62, see en . Although GP is the
unique estimator obtained from family Fl s, 1t 1s

precisely the estimator Robbins [26] used to introduce

the emplrical Bayes situation.

For the Poisson distribution, the estimators proposed

by Lemon and Krutchkoff [17] can be represented by

n —51Aén + 1
~ 2: e el
- i=1
o, = —— (7.6)
e} -ei/\en
2: e 61
i=1
and
n -ep,lken + 1
de 6_ .
R =1 P,1
0, = — (7.7)
1) -0 ;\\6
2: e P,lepni
i=1 !
regpectively.
*
Monte Carlo simulations for the estimators eP s

A Ry
ep , and eP were conducted in a manner analogous to

the procedure described for SD in section 3.5. As in
section 3.5 the criterion for comparison was mean-
squared error, and therefore the ratio R defined by

(3.25) was of interest. Here we denote this ratio by
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A

* N ~t ¥ ~
RP s RP , and RP when calculated with OP ) @P s
At
and @P respectively. The ratio R calculated with

the smooth estimator EP v given by (3.22) will be

denoted by Rp,v

~
~t

In Figures 50-52 the values of R, and R, o »

represented by the broken and solid lines respectively,
are plotted as a function of the number of experiences.

These plots are given for various values of the summary
’Ql

quantity Z given by (3.27). The estimator 0, was

observed to provide uniform squared-error improvement

A "~
A ~

over the estimator @P ;5 therefore the ratio RP is not

*
shown. Also, the ratio RP i1s omitted since for
0.5<Z<5.0 and n £20 , the maximum-likelihood

estimator gave smaller mean-squared errors than the

*
estimator @P regardless of the form of the prior

distribution. By comparing the values of RP v with

Ry

RP in each of the figures, it can be seen that the

continuously smooth estimator provides consistent mean-

~
~

- !
squared improvement over the estimator OP . Hence,

A
~ ~

OP v provides consistent improvement over @P and,
14

%
of course, over @P

7.3 The Welbull Distribution with Known Shape Parameter

Let us assume that in each experiment, a random

sample of k observations x = (xl,xz,--°,xk) is
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obtained from the Weibull density function given by
(4.1). In section 4.1, the sufficient statistic

T = ;z X? formed with this sample was shown to have
the conditional gamma density function given by (4.15).
Differentiating this function f(t|a) with respect to

T and dividing by f(t|a) we obtain

f (t]a)

9t k-1 ) (7.8)

G

The gamma distribution is therefore a member of family

F2 » and a consistent estimator for a ~ can be given

by

- t)
a, = T = FE) (7.9)

1
The consistent estimators fn(tn) and fn(tn) chosen to

represent f(t) and its first derivative are given by

L) |
sin
f.n(tn) = 2ﬂnh 2{: t —t ) (7.10)
( 2h
and
' f (t_ + h) - f (¢
f(t ) = n_n n( n) (7.11)
n h

respectively.
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The estimators of Lemon and Krutchkoff [17]

~t

O and a, can be constructed using as the kernel of

integration the inverted gamma density function given

by (4.16). These estimators become

0.k
.
oy + ~
aik k1 un
—_— e
N o(,n
cx =
G - (7.12)
o,k
X1
~ k+1 “§ ~
1 o.k o
1 n
~ = e
o, o
1 n
and
o
R _ G,lk
~ + ~
aG ik k+l o
/\’ e n
Xy o
o, = R (7.13)
G o Kk
R G, i
- k+1 ~
o .k o
1 G,1i n
A A €
o
%G, i n

~

where a, (i = 1,2,*°+,n) is the maximum-likelihood

estimate from the i1tk experiment.
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Monte Carlo simulations for the empirical Bayes

* R [t
estimators Og 5 Og and a, were conducted in a

manner analogous to the procedure described for 55

A~ ~
~

* At
in section 3.5. The ratios RG s RG , and RG

% N
defined by (3.25) were calculated with Ay > O s

At

and o respectively.

¥ Ry
In Figures 53-55, the values of RG s RG , and

RG,V , denoted by the dotted, broken, and solid lines

respectively, are plotted for various values of Z

defined by (4.44). The ratio R, , was calculated

with the continuocusly smooth estimator aG v given
: N ,

by (4.42). The ratio RG has been omitted in each
figure since the results obtained with the estimator

Rt

a, were in all cases considered uniformly superior
when compared to the results obtained with o, . In
each‘figure comparison of the plots of R: s §
and RG'V as a function of the number of experiments

demonstrates the significant improvements one can

obtain using the continuocusly smooth estimator EG v
A * ~ ’
S opposed t o} or o, . Since «« i
a PP o) c G c,v Erov1des
A~
consistent mean-squared improvement over o, , it

G
A
also provides consistent improvement over o
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7.4 The Weibull Distribution with Known Scale Parameter

Let us assume that in each experiment a random
sample of k observations is obtained from the Weibull
density function given by (5.1). The maximum-likelihood
estimator for the shape parameter B 1s found by the
solution of (5.3). The distribution of this estimator,
given any value of the parameter B , has an asymptotic
normal distribution with mean £ and variance given
by (5.12). This distribution can be used to form the

empirical Bayes estimators

™ >
1]

N ~ =~ (7.14)

and

[
1l
}_J

™>»
b=
1l

~ (7.15)
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The estimators given by (7.14) and (7.15) are of
the form proposed by Lemon and Krutchkoff [17]1; however,
they are based on an asymptotic distribution rather
than on the true distribution. This result represents
a natural extension of their estimators and will be
treated accordingly. We remark here that the Weibull
distribution with known scale parameter cannot be
placed into any of the families of Rutherford and

Krutchkoff [28].

"~
”~

Monte Carlo simulations for the estimators B
Rt

and BN were conducted in a manner analogous to the

N

~

procedure described for OD in section 3.5. The ratios

N Xt

Ry and R, defined by (3.25) were calculated with
A At

By and By Trespectively.

At
In Figures 56-58 the values of Ry and Ry o

denoted by the broken and solid lines respectively are
plotted for various values of Z as defined by (5.25).

The ratio RN y was calculated with the continuously

~

smooth estimator B8 . given by (5.23). As in the
’
[
above cases, 1t was found that the estimator BN

provided significant squared-error improvement over

~

the corresponding estimator éN , and therefore the

ratio RN has been omitted in each figure. Comparison

R
of the plots of RN and RN v in each of the
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Figures 56-58 demonstrates the significant improvement

one can obtain using the continuously smooth estimator

~ N Nt
B8 as opposed to B . Since B8 was observed to
N,V N N

"N
~

give uniform improvement when compared with B8_ , the

~

N
estimator BN v is also more efficient than BN
z
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CHAPTER VIITI

CONCLUSIONS AND RECOMMENDATIONS

The purpose of this chapter is to summarize the
results of this dissertation and to suggest directions

for future research.

8.1 General Conclusions

A new method of empirical Bayes estimation has

- been presented. The versatility of the method has been
demonstrated for estimating the parameters of several
distributions. The estimator has also been shown to

be more efficient in a mean-squared sense than other

well-known and widely used empirical Bayes estimators.

The continuously smooth empirical Bayes estimator
was developed in Chapter II. The estimator was pre-
sented in a general form applicable to multivariate
estimation problems. The estimator allows the researcher
the use of present as well as previous information, as
opposed to classical estimation techniques which must
restrict the researcher to the use of only present or
current information. The past information is in the
form of classical estimates of other éarameters in

similar but independent experiments. By "similar" we

187
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mean that there exists a common prior distribution of

the parameter vector, but it remains forever unknown.

The smooth estimator was obtained by representing
the prior density funcfion in the Bayes estimator by a
continuous approximation formed from a sequence of
classical estimates. This approximation was based on

three general assumptions. They are as follows:

(1) The prior distribution has a continuous density

function.

(ii) The classical estimator is both sufficient and

consistent for estimating the parameter vector.

(1ii) The distribution of the classical estimator

is known.

In practical situations a noncontinuous or discrete
prior density would sometimes seem to be an unlikely phe-
nomenon. If, however, the prior‘density was noncontinuous,
perhaps it could be approximated by a continuous density
function. The effect such an approximation would have on

the smooth estimator is a subject for future research.

In general most classical estimators can be shown
to be consistent. 1In particular, the widely used
maximum~likelihood estimators are consistent under

general regularity conditions. The assumption of
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consistency was used to prove that the marginal density
function of the classical estimator converges in proba-
bility to the prior density function as the sample size
tends to infinity. Experimental results revealed that
the smooth estimator gave improved results for small
sample sizes. Thus it is conjectured that the assump-
tion of consistency represents a property which in
practice can be relaxed. If a classical estimator
provides "good" results, then a smooth estimator based
on it should also give "good" results, regardless of
the consistency property. The sufficiency property can
also be relaxed. This was demonstrated in Chapters V
and VI. Therefore it is conjectured that the second
assumption represents an unnecessary restriction in many

practical applications.

The third assumption may also be viewed as a general
restriction. When the true distribution of the classical
estimator is unobtainable, its asymptotic distribution
may be known. This distribution can then be used to
form a continuously smooth empirical Bayes estimator.

In Chapters V and VI this technique was employed, and
significant squared-error improvement over the classical

maximum-likelihood method was achieved.

In all cases considered in the Monte Carlo studies

of the preceding chapters, the continuously smooth



190

empirical Bayes estimators uniformly provided mean-—
squared improvement over the maximum-likelihood
estimators. The smooth estimators were also observed

to be robust to the form of the prior distribution.

For all types of Pearson prior distributions with varying
coefficients of skewness and kurtosis, the ratio R of
empirical Bayes mean-squared error to maximum-likelihood
mean-squared error was observed to be significantly
influenced by the prior distribution only through a
guantity 4 . Apart from the number of experiences,

the only quantities affecting the ratio R are contained
in Z . Therefore this guantity was conveniently used

to summarize and index the amount of improvement achieved
by the smooth estimators over the maximum-likelihood
estimators. In particular as the value of Z 1increased,
the ratio R decreased. This phenomenon is easily
explained. As the variance of the maximum-likelihood
estimator, given the corresponding parameter value,
increases relative to variance of the prior distribution,
the maximum-likelihood estimates will vary widely. The
smooth estimators, however, are capable of "detecting"
this variation and can use this information to obtain
improved estimates. Conversely, if the conditional
variance is small as compared to the prior variance,

then the maximum-likelihood estimator would be expected

to do quite well. In this case there is a great deal of
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information within an experiment, and previous experi-
ments contribute very 1little information about the

parameter.

In the preceding chapters whenever point estimates
were required for distributions conditional on only one
parameter, four smooth estimators were considered. They
are: (1) an estimator 55 whose prior density approx-
imation is based on a sequence of classical estimates,

~1

(2) an estimator OD ‘whose prior density approximation

is based on a sequence of smooth estimates obtained from
5D s (3) an estimator Eg,v whose prior density approx-
imation is based on a sequence of transformed maximum-
likelihood estimates having a marginal distribution

whose mean and variance are approximately equivalent

to those of the prior distribution, and (4) an estimator

~1

GD v whose prior density approximation is based on a
sequence of smooth estimates obtained from BD _ or
these estimators, the smooth estimator ED v was:

observed to be the most efficient in a mean-squared
sense, This result is expected. The improvement
achieved by the smooth estimators was observed to be a
function of the mean and variance of the prior distri-
bution as demonstrated by the summary quantity 2 ;

thus any consideration given to accurately estimating
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these moments by the prior densify approximation should

result in squared-error improvement,

The transformation given in section 2.5, on which

~

the smooth estimators OD gy are based, was only applied
to the maximum-likelihood estimators. It is, however,
not just restricted to this method of estimation. The

transformation can be applied to any classical estimator

whose distribution is known.

In Chapter VI smooth estimators were obtained for
the parameter vector u o= (a,B) in the two-parameter
Welbull distribution. Two distinct types of smooth
estimators were considered. The first type denoted by

~

EN and BN respectively were constructed in a manner
analogous to that given in Chapter II. These estimators
were based on an approximation to the bivariate prior
density function. No dependence assumptions on o or

B were required. The estimators were, however, based
on the assumption that the maximum-likelihood estimators
are jointly sufficient for o and B8 . This is not
known to be true. The second type of smooth estimators,

~

denoted by EM and BM respectively and referred to

as marginal empirical Bayes estimators, was based on the

assumptions that: (1) the maximum-likelihood estimators
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are independently distributed and are marginally suf-
ficient for o and B respectively, and (2) the
parameters o and B are independently distributed.
Under these assumptions, the Bayes estimators for o
and B become E(al&) and E(Blé) respectively. In the
case of the Weibull distribution, however, neither

assumption can generally be made.

In section 6.3 we observed that even when o and
B are highly correlated, the estimators Eﬁ and E&

gave "better" results than could be obtained using EN
and E& . It is conjectured that the compounding effect
of belng unable to accurately approximate bivariate
densities and of having to perform double integration
over reglions approximated from sample data causes this
phenomenon. The errcor introduced by such approximations

appears to be more significant than that caused by the

false assumptions of independence and sufficiency.

In the Monte Carlo studies of the preceding chapters,
the sgquared-error improvement achieved by each of the
smooth estimators over that of the classical maximum-
likelihood estimators was observed to reach its maximum
gradient during the initial 10 experiments. For example

in Figure 12 for a <Z value of 2.0, the smooth estimator



194

EG,V achieves 34 percent improvement over the maximum-
likelihood estimator after the second experience and
gains 31 percent more improvement through the tenth
experiment. From the tenth to the twentieth experiment,
only a 7 percent gradient is noticed. This result tends
to indicate that in practice an accumulation of more
than 10 sets of data may be unnecessary. The amount of

labor required to obtain additional data may not be

worth the slight increase in improvement.

In Chapter VII the continuocusly smooth empirical
Bayes estimator was shown to be significantly superior,
over 20 experiences, to the estimators proposed by
Rutherford and Krutchkoff [28] and the step function
estimators evolved from the method of Lemon and
Krutchkoff [17]. The estimators of Rutherford and
Krutchkoff are e-asymptotically optimal; however thelr
mean-squared errors appear to be much larger than those
of the continucusly smooth estimaftors or the estimators
of Lemon and Krutchkoff. It is the author's opinion
that although bypassing explicit estimation of the
prior distribution may be theoretically desirable as
well as convenient, in practical application such
procedures are undesirable. As demonstrated in
Chapter VII they not only gave poorer results than the

explicit estimation procedures, but were limited in
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application. 1In particular, the Weibull distribution
with unknown shape parameter, considered in Chapter V,
could not be placed into any of the families proposed
by Rutherford and Krutchkoff. Furthermore, attempts by
the author To obtain an empirical Bayes estimator which
does not require explicit estimation of the prior

distribution were unsuccessful.
FaS A
Ve

~
The empirical Bayes estimators @D and @D

suggested by Lemon and Krutchkoff and given by (7.3)

and (7.4) respectively were observed to be more efficient
than those of Rutherford and Krutchkoff; however they
were not as efficient as the continuously smooth esti-

~

mators. In particular the estimator @D y was
r

observed to be significantly superior, over a run of

P

20 experiences, to the estimators @D and g; . It is
conjectured that the observed improvements obtained by
the smooth estimators result from the continuous prior
density approximation being less sensitive to the
estimates than is the discrete approximation to the

prilor distribution.

8.2 Areas for Future Research

Application of the continuously smooth empirical
Bayes estimator to multivariate density estimation will

be cumbersome if an electronic computer is unavailable.
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Even with the aid of a computer the numerical solution
of multiple integrals could prove frustrating to the
researcher and he may abandon the method for one of
lesser precision. Thus a method to avoid this annoying
numerical integration would significantly enhance the
practical value of the smooth estimation technique.

This method would not be generally applicable since‘it
would depend on the kernel of integration. It may be
possible, however, to obtain closed-form solutions for
the integrals for certain families of distributions.

Such solutions may be accomplished by considering various
forms for the prior density estimator. The sine function
has been chosen in this dissertation, although many

other forms are given by Parzen [24] for univariate
estimation and by Martz [19] for multivariate estimation.
Currently such investigations are belng conducted at
Texas Tech University, and initial results are

encouraging.

Another lucrative area for research lies in
Experimental Design. Since empirical Bayes procedures
allow the researcher the use of current as well as past
‘information, he should design his experiments with these
procedures foremost in mind. Presently, however, such
designs are virtually unavailable. The number of

experiments and the sample size, which should be used
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in order to obtain a certain level of performance, are
subjects for further research. If such designs could

be obtained, then the total number of items subjected to
testing procedures could be drastically reduced. For
example if the total number of rocket engines subjected
to firing tests in an engine development program could
be reduced, then a substantial reduction in cost would

be realized.

A general field of research would be the application
of the smooth estimator to various practical problems.
A particularly suitable field of application that is
indicated by the research described in this dissertation
lies in Reliability and Maintainability Engineering.
This suitability is twofold; first, the empirical Bayes
approach frequently lends itself to the testing situations
encountered in this field, second, the two-parameter
Weibull distribution considered in the preceding chapters
is a highly versatile and widely used time-to-failure
distribution. Presently research of this nature is

being conducted at Texas Tech University.

8.3 Conclusion

The purpose of the research described in this
dissertation was to develop and exploit a new method

of empirical Bayes estimation. This purpose has been
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accomplished. The continuously smooth estimator has
been shown to provide significant improvements over both
the classical maximum-likelihood method and other well-
known and widely used empirical Bayes methods. In
addition, the results of this research constitute a

foundation upon which fﬁture applications can be based.
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APPENDIX A: GAUSS QUADRATURE

An accurate formula for finding the value of the

definite integral

b
I = f(x) dx (A.1)
J

where f(x) is a known function, but whose integral is
either not easily evaluated or cannot be convenlently
expressed in closed form, was derived by Gauss and is
based on Legendre polynomials. The procedure 1is to
obtain the subdivision of the interval (a,b), the value
of the function at these points, and the coefficients
to multiply the functional wvalues to yield the value

of the definite integral.

First we transform the interval x = (a,b) into

the interval t (=1,1) by letting

1 1 \
-2—(b-a)t+§(a+b,

>4
[

The new form of f(x) is

f(x) = f‘[% (b - a)t + % (a + b)] = o(t)
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and
1
dx = 5 (b - a) at

so that

b b - & 1
j f(x) dx = 5 f o(t) dat
a -1

Using the Gauss mechanical gquadrature formula

1 n

o(t) at - Z[A}gm@(t}gm)] 2.

'_1 k=1

where n 1is the number of points of subdivision of the

(n)

interval (-1,1), Al

the weighting coefficients, and
tén) the zeros of the Legendre polynomials of degree

n , we have

n t(n)

. b -a (n) k b + a
I 5 E AT (b - a) = + 5
k=1

(n = 2,3,%9¢) .

(n) (n)
The Ak and tk

to t =0 , that is,

are symmetric with respect

(n) _ (n) (n) _ (n)
Ak N An—k+1 > tk - tn—k+1
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A table of the zeros t."' of the Legendre polynomial

of order 1-16 and the weight coefficients Aén) for
the Gauss mechanical quadrature are given by Lowan
et al. [18]. In Table Al we have reproduced these values

for the special cases when n =3 and n = 11

In particular, in the subroutine GAUSS, which was
used to solve the integrals of the smooth estimator,
n was taken to be 11. Also a "built in" accuracy
check is made. The value of the integral given by (A.1)

is first calculated; then the integral

b-a
. 2 b
I = j f(x) ax + L £(x) dx
a

-~

2

is computed. If & < e , where

and € 1s the desired tolerance given by input, then

!
the value I is returned as the value of the integral.

If 8§ 2 e then the range (a,b) is partitioned into

"
four subintervals and the sum I of the integrals over

"
each interval is computed and ¢ 1s formed with I
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TABLE Al

GAUSS'S QUADRATURE COEFFICIENTS

k tk Ak
n =3
0.77459 66692 0.55555 55556
0.00000 00000 0.88888 88889
n =11
1 0.97822 86581 0.05566 85671
2 0.88706 25998 0.12558 03695
3 0.73015 20056 0.18629 02109
it 0.51909 61291 0.23319 37646
5 0.26954 31560 0.26280 45l
6 0.00000 00000 0.27292 50868
1 n
and I . If 86 < & then I is returned as the value

of the integral. If 6 2 & then the region (a,b) is
again subdivided. This procedure is repeated IT times,
a value given by input. If convergence is not reached
after IT subdivisions, an error message is printed and

the program terminated.



APPENDIX B: NEWTON'S METHOD

The well-known iterative procedure of Newton can
be easily applied to the solution of the nonlinear
maximum-likelihood estimating equations of Chapters V
and VI. This procedure can be obtained by truncating
the Taylor series expansion after two terms and has.
the form

f(xi)

X, = X, =—- — (i = O,l,"’) . (B.l)
i+l i £ (Xi)

Convergence to the root is gquadratic if the multipli-
city of the root to be determined is equal to one and

if f(x) is a twice-differentiable function.

The subroutine RTNI based on (B.1l) and given in the
System/360 Scientific Subroutine Package was used to
solve for the maximum-likelihood estimators. In this
subroutine the iterative procedure is terminated 1f the

following two conditions are satisfied:

§ £ e and |f(xi + 1)| < 100¢
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with

X+l-— X
) : X = it i+1I > 1
i+l
§ = ’
YIRS L

and tolerance € given by input; If the procedure

does not converge within a specified number of iteration
steps, an error message is given. For further details
on the method as well as reasons for divergence, see

Hildebrand [13].
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