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ABSTRACT
 

This report presents the results of a study for determining the feasibility
 
of multibeam antenna systems for the transmission of high RI power (in the
 
order of 1 KW CW) from geostationary satellites. Conceptual designs are
 

analyzed with respect to generation of multibeam patterns, low sidelobe
 
levels, low RF insertion losses, high power handling capability of micro

wave components, antenna pointing capability and structural thermal dis

tortions affecting antenna patterns and pointing errors.
 

A conceptual design is described that satisfies the desired requirements
 

and constraints, concluding that such antenna systems are feasible for
 

satellites to be launched in 1975. 
 The hardware technology development
 

efforts required to verify the analytical results are identified.
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combining providing low loss characteristics and good power-handling capa
bilities. High-power breakdown in RF components was one of the most critical
 

issues addressed. Multipactor and ionization breakdown were examined for all
 
components, concluding that ionization breakdown was more critical than
 

multipactor and that success depends on ease of outgassing and surface
 

cleanliness. The problem of power dissipation in RF components and its
 

effect on dimensional stability is solved by introducing external thermal
 

radiators. The results of the structural thermal distortion analysis indi
cated that using Invar honeycomb reflectors, the effect of thermal gradients
 
on the antenna patterns was negligible. Through iterative thermal distortion
 

analysis, the pointing error due to deflections between the interferometer
 

and antenna structure was reduced to an acceptable level. The phase measure

ment errors in the interferometer receiver were greatly reduced by using
 
"pilot tone receiver", thus minimizing one of the key pointing errors. The
 

necessary hardware development programs for verifying the analytical results
 

have been identified.
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SUMMARY
 

This report describes a study, performed under NASA/LeRCcontract NAS 3-11525,
 

which investigated the feasibility of a multibeam antenna system for the trans

mission of RF energies in the order of 1 KW CW per beam from a geostationary
 

satellite. The system includes the antenna direction-sensing and steering but
 

does not include the high power RF devices such as TWT's or klystrons.
 

The study encompasses a program that involves conceptual design and analysis
 

of an antenna system transmitting four partially overlapping -beams of 2.7
 

degrees half power beam width at a frequency of 12.2 GHz; evaluation of the
 

state of the art and its growth as applicable to the proposed antenna systems,
 

recommendations for hardware development tests to confirm the antenna concept
 

performance, and evaluation of the effect of alternate design requirements on
 

the conceptual design and system performance.
 

The study resulted in a conceptual design that indicates it is feasible to
 

achieve the desired objectives within the constraint of 1975 launch.
 

The basic concept arrived involves four separate prime focus reflectors with
 

aperture blockage compensation for sidelobe suppression. The four reflectors
 

are mounted on a platform having 360 degree (continuous) freedom of rotation
 

with respect to the spacecraft, and two axes of limited motion. A receiving
 

interferometer system is used for direction sensing and control of the antenna
 

platform. The antenna reflectors and the interferometer horns are supported
 

by truss structure. A four-channel RF rotary joint is used for transferring
 

the RF power from the four transmitters located in the main spacecraft to the
 

antenna platform.
 

This concept was arrived as a result of iterative analysis of the performance
 

relating to the critical design features. The antenna concept selected
 

results in sidelobe levels of -35 dB with aperture blockage compensation
 

or -28 dB without the compensation feature. A four-channel rotary joint is
 

prescribed based on a previous rotary joint developed by Philco-Ford. Using
 

OFHC copper waveguide, the overall RF insertion losses were estimated as
 

1.19 dB. A band-stop filter and hybrid power divider is used for power
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SECTION I
 

INTRODUCTION
 

The overall purpose of this study is to examine the technologies involved in
 

multi-beam antenna systems for high power transmission applications from
 

geostationary satellites. Continuous transmission of RF power in the order of
 

1 KW with emphasis on extremely low sidelobes and low RF losses presents new
 

technological problems that do not hold the same prominence in present-day
 

communication satellite antenna systems. The need for high power transmission
 

systems is becoming more and more pronounced as thi communication satellite
 

requirements are increasing from communications to large terminals to communi

cations to smaller and smaller terminals, to the point of broadcasting to home
 

receivers. While this study is dealing with the antenna system for transmitting
 

efficiently high RF energy in a given direction, NASA has been expanding con

siderable efforts towards the design and development of the associated high
 

power transmitters with emphasis on high efficiency and long life.
 

High power transmission from satellites presents the problem of interference with
 

non-participating receivers and must be restricted to well defined regions and
 

thus the generation of sidelobes adjacent to the main antenna beam need to be
 

greatly suppressed. Low sidelobe level antennas therefore have become a tech

nological design challenge.
 

The 	specific objectives of this study were as follows:
 

I. 	Arrive at a multi-beam antenna system with fairly closely spaced beams,
 

exhibiting very low sidelobe levels, and low RF losses with components
 

capable of handling high power.
 

2. 	Define a system to point the antenna to any desired direction within a
 

prescribed region with a fairly high accuracy.
 

3. 	Define through analysis a mechanical design that results in minimum
 

thermal distortions, both from the point of view of beam distortion
 

(increased side lobe level) and the point of view of pointing errors.
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The study also examined the effect of variations in the basic requirements with
 

the objective of defining trends and limits in performance and implementation
 

feasibility. The study also defined the hardware developments required to
 

verify the study results.
 

The basic philosophy used in meeting the objectives of this study was to emphasize
 

the analyses, trade-offs, and solution of the key technological problems rather
 

than detail system synthesis and detail definition of routine implementation
 

functions.
 

The nature of the study was such that it required detailed analysis in several
 

technical disciplines in order to arrive at the proper conclusions. To meet
 

those requirements a four phase program was defined.
 

The first phase consisted of investigations of the state of the art, parametric
 

analyses, and generation of interface requirements and constraints between the
 

antenna subsystems.
 

The second phase involved the generation of alternate system configurations and
 

the selection of a baseline configuration.
 

The third phase involved the performance of detailed analysis of the baseline
 

design in all technical disciplines. It was during this phase that the final
 

concept evolved. The results of the detail analysis were used to modify the
 

initial baseline configuration, thus arriving at a design concept that met the
 

design objectives.
 

The fourth phase consisted of the final performance analysis, detail definition
 

of suggested hardware development program As the next step in the system
 

development, and examination of the sensitivity of the design to variations in
 

design parameters.
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SECTION II
 

SUMMARY OF RESULTS
 

2.1 SCOPE
 

The scope of the contracted effort reported herein involved the analysis
 
and design of 
an antenna system for a-geostationary satellite.
 

The system was defined to include the transmitting antennas and the
 
necessary antenna steering devices. 
As such, it included an inter
ferometer system for direction sensing, the antenna drive mechanisms,
 
all IRF, electrical and mechanical connections to the antenna system
 
from the rest of the spacecraft, and all those parts which are articu
lated with respect to the rest of the spacecraft to properly direct the
 
transmitting antenna beams toward earth. 
The study scope did not include
 
the high power RF devices such as 
the TWT's or klystrons.
 

The general requirements called for an antenna system which could trans
mit to earth four beams of 2.7 degree beamwidth at a frequency of
 
12.2 GHz, with a pointing accuracy of 0.1 degree. 
The power rating was
 
to be I KW CW per channel, with one or two channels per beam.
 

The detailed requirements and system constraints 
are listed in Sec
tions 2.2 and 2.3 below.
 

2.2 CONSTRAINTS
 

o Geostationary orbit
 

o 1975 launch date
 

o Five-year minimum expected life
 

o Atlas/Centaur class launch vehicle
 

o Main spacecraft and solar panels sun oriented
 
o Continuous rotation (3600 /day) of the antenna system with respect to
 

spacecraft accomplished by antenna system
 

2-1
 



2.3 DESIGN REQUIREMENTS
 

a) RF Characteristics
 

Operating Frequency : 12.2 GHz 

Number of Beams . 4 

Number of Channels Four Transmission Channels Operating Simul
taneously with Minimum One Channel Per Beam
 

Power I1 KW CW Per Channel 

Polarization . Circular 

Beamwidth . 2.7 Degrees Half Power Beamwidth 

Beam Separation . 0.55 and/or 0.72 HPBW 

Near-in Sidelobe Leiel -30 to -35 dB 

Channel Bandwidth 50 MHz 

Channel Separation 100 MHz 

Channel Isolation 40 dB 

RF Losses . 1.5 dB 

b) Control Requirements
 

o 	Capability for switching two RF channels to one beam on command.
 

o 	Capability for changing the direction of one beam to a second
 

position
 

o 	Capability to point the antenna system to any direction within + 20
 

degrees longitude and 45 degrees north, 10 degrees south latitude.
 

c) Direction Sensing
 

o 	Use of signal transmitted from ground station, either beacon,
 

command or uplink.
 

o 	Use of the transmitting signal or beacon signal from the spacecraft.
 

d) Pointing Accuracy
 

o 	Pointing accuracy ± 0.1 degrees RMS.
 

o 	Accuracy maintained with spacecraft attitude error in three axes
 

of ± 5.0 degrees and rates of 1.0 degree per minute.
 

o 	Accuracy maintained with spacecraft drifting from station by 0.5
 

degrees RMS latitude or longitude at a rate of 0.1 degree per day.
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2.4 STUDY RESULTS
 

The study has resulted in a feasible conceptual design that meets all the
 

requirements and constraints stated above.
 

The basic concept involves four separate prime focus reflectors with
 

aperture blockage compensation for sidelobe suppression. The four
 

reflectors are mounted on a platform having 360 degree (continuous)
 

freedom of rotation with respect to the spacecraft, and two axes of
 

limited motion. A receiving interferometer system is used for direction
 

sensing and control of the antenna platform. The antenna reflectors
 

and the interferometer horns are supported by truss structure. A four

channel RF rotary joint is used for transferring the RF power from the
 

four transmitters located in the main spacecraft to the antenna platform.
 

The antenna concept was arrived at after several trade-offs and design
 

analyses. A broad state-of-the-art review was first of all carried out
 

to determine which techniques were applicable. From this, it was con

cluded that the design requirements could best be met by utilizing a
 

mechanically despun reflector system.
 

Various reflector/feed combinations were investigated in some detail
 

before a decision was made to adopt a configuration based on multiple
 

prime focus reflectors. This approach is seen to be advantageous in
 

that it immediately simplifies the RF design and at the same time pro

vides a convenient means of steering individual beams since the appro

priate reflector can be independently pivoted about a gimbal axis.
 

The only shortcoming with respect to the system being considered was
 

that aperture blockage effects would limit the suppression of the near

in sidelobes in the secondary radiation pattern. Extensive computational
 

analyses were therefore performed in order to identify the antenna
 

geometry which could provide maximum suppression. From these analyses,
 

it was concluded that a near-in sidelobe level of approximately -28 dB
 

can be achieved by using a 28-inch diameter reflector with an F/D ratio
 

of 0.35.
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Further calculation then showed that the system design goal of -30 to
 

-35 dB can be realized by employing relatively simple aperture blockage
 

compensation techniques in conjunction with the optimized prime focus
 

geometry. A compensating element in the form of a hollow thin-walled
 

dielectric tube antenna can be conveniently located behind the prime
 

focus feed horn since it will not add to the blockage area and will have
 

only a minimal effect on the phase front of the plane wave emanating
 

from the reflector. A small fraction of the total power (approxi

mately 2%) can then be radiated from this element with its phase
 

adjusted so as to achieve the required sidelobe cancellation.
 

To minimize the detrimental effects of solar heating, the reflector
 

contours must be fabricated from low coefficient of expansion materials.
 

Mechanical and thermal design considerations indicated that a 0.003-inch
 

Invar face sheet backed by a 0.25-inch Invar honeycomb core would be a
 

suitable structure. A computational analysis was therefore carried out
 

to evaluate the performance which could be obtained by utilizing this
 

technique. It was found that the worst-case thermal distortions will
 

occur when the solar vector is at right angles to the reflector axes.
 

The maximum calculated distortion corresponds to a 0.002-inch deflection
 

of the sunlit edge of the reflector and, to a first-order approximation,
 

the overall distortion can be compared to a small (0.0090) rigid body
 

rotation of the reflector. The maximum deflection of the aluminum feed
 

horn support was calculated as being 0.018 inch, which gives rise to a
 

beam-pointing error of 0.060 RMS in longitude and latitude. The worst

case distortions were converted into equivalent phase errors and the
 

secondary radiation pattern of the reflector antenna recalculated. This
 

yielded the result that the highest near-in sidelobes remain at essen

tially the same level. Thus, it is concluded that, with the proposed
 

fabrication technique, there will be no significant deterioration of the
 

antenna radiation pattern due to the effects of solar heating.
 

One of the most critical issues involved in high-power spaceborne trans

mission systems is the RF losses in various components and waveguide
 

runs. The losses not only translate into large solar array raw power,
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but they result in significant thermal problems due to the power dissipa

tion in the RF components. A great deal of effort was expanded in arriving
 
at a system that results in minimum losses. The proposed configuration
 

is outlined schematically in Figure 2-1. As shown in the diagram, the
 

required channel-combining functions are achieved by a network of band
stop filters, hybrid power dividers and two-way switches. A key design
 
feature is the utilization of OFHC copper waveguide in conjunction with
 

band-stop (rather than band-pass) filters, the latter being selected
 
because of their low loss characteristics and good power-handling capa
bilities. Figure 2-2 is a flow diagram of all losses in the RF system.
 

The circuit shown represents the combined channel into one beam mode,
 
and therefore it is the worst-case insertion loss mode.
 

As seen in the diagram, the initial waveguide run from the transmitter
 
to the rotary joint is 6 feet long., This is due to the fact that the
 

antenna reflectors had to be mounted as high as the shroud would allow
 

above the spacdcraft, so that the radiation beams can clear the solar
 

panels.
 

Another critical issue is, of course, the problem of high-power breakdown
 

in the space entironment. In this respect, there are three potential
 

failure mechanisms: (1)Multipactor breakdown, (2) Ionization breakdown
 

in regions of localized gas entrapment, (3) Dimensional variations
 

brought about by RF power dissipation within the structure.
 

The critical area for multipactor breakdown was found to be the choke
 
section of the innermost coaxial channel. Calculation showed, however,
 

that this section has a probable breakdown power of 18 KW CW and it was
 

therefore concluded that multipactor effects would in no way compromise
 

the performance of the RF system.
 

The critical area for ionization breakdown was also identified as being
 
the coaxial waveguide choke sections which have a relatively high surface
 

area-to-volume ratio and which serve as a conductance path for particles
 
outgassing from inside the rotary joint structure. The maximum pressure
 

due to outgassing, however, was estimated to be of the order of 10-5 torr,
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which is well within the ionization breakdown limit of approximately 10-2
 

torr. Further calculation revealed that the time constant associated
 

with the initial venting process is extremely small (0.5 milliseconds);
 

thus, for a clean structure the pressure within the choke sections will
 

drop below the critical level within a few seconds.
 

Analysis of the effect of RF power dissipation revealed that external
 

thermal radiators will be needed to achieve the dimensional stability
 

required by the band-stop filter cavities and the coaxial choke sections
 

of the rotary joint. For example, calculation showed that 6 ft2 of
 

radiator surface will be required for the rotary joint.
 

The direction sensing system consists of two orthogonal axes interfero

meters of 32-inch baseline with the receiving horns mounted directly on
 

the truss members connecting the four antenna reflectors. The frequency
 

used is 8 GHz. A second, shorter baseline for ambiguity resolution is
 

not used, on the basis that the ambiguity can be easily resolved on the
 

ground.
 

One receiver is used for both axes and it is being switched between
 

interferometer arms by means of PIN diode RF switches at a 20 Hz rate.
 

The receiver is a "pilot-tone" type to achieve negligible phase bias
 

error in the receiver channel. This is achieved by measuring the phase
 

of all incoming signals relative to a reference RF sinusoid. Two ground
 

beacons are required to derive three axes information. The second beacon
 

is required for measuring an angle about the line of sight.
 

The interferometer information is in the form of direction cosines of
 

the angle between the beacon station line of sight and the interferometer
 

arm. The interferometer output is fed to an onboard or ground computer
 

which compares the measured angles with a set of desired interferometer
 

angles and computes the required three axes gimbal drive signals. Both
 

onboard self-contained and ground controlled antenna pointing systems
 

were studied. The choice depends primarily on spacecraft body rates
 

and operational constraints.
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An extensive thermal and structural computer analysis was conducted to
 

determine the structural distortions due thermal gradients and to
 

establish component temperatures. Some of the results on the antenna
 

patterns and pointing were discussed earlier. One of the key considera

tions recognized early in the study was the pointing error that would
 

result due to thermal deflections between the interferometer reference
 

system and the four antenna reflectors. An iterative process of thermal
 

distortion analysis was conducted until an optimum location for mounting
 

the interferometer horns with respect to the reflectors was established
 

that provided an acceptable pointing error. A system analysis was con

ducted to establish the overall pointing error considering all possible
 

error sources. Table 2-1 summarizes the error sources and the net
 

pointing error per axis.
 

In general, the design concept presented indicates that it is feasible
 

to achieve the antenna performance, the power handling and pointing
 

errors required. High power breakdown in microwave components in the
 

critical issue, and a detail development test program to verify the
 

analytical result and provide information on manufacturing techniques,
 

has been generated.
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TABLE 2-1 

SYSTEM ERROR SOURCES 

Pitch Axis (Brushless DC Motor Drive) 

Alignment of Interferometer to Antenna Structure +.018 

'Thermal Deflection in Horn +0.060 

Interferometer Measuring Accuracy (20 Hz) T.02 

Computer Quantizing Errors (10 bit) +0.02 
Station Drift +0.02 
D/A Conversion +0.01 

Yaw Gimbal Error +0.05 

RSS Total +.088 

Roll Axis (Stepper Motor) 

Alignment of Interferometer to Antenna Structure +0.050 
Thermal Deflection in Horn +0.060 
Step Resolution +0.03 

Interferometer Measuring Accuracy +.02 
Linear Actuator Backlash +0.01 
Computer Quantizing Errors +0.02 

Inclination (0.50) ±0.03 
Yaw Gimbal Error (±10) +0.05 

RSS Total +0.095 

Yaw Axis (Stepper Motor) 

Interferometer Measuring Accuracy +0.95 
Step Resolution +0.03 

Linear Actuator Backlash +0.01 
Computer Quantizing Errors +0.02 

RSS Total +0.950 
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SECTION III
 

RF ANALYSIS AND DESIGN
 

3.1 PRELIMINARY SYSTEM ANALYSIS
 

3.1.1 Introduction
 

This section of the study encompasses the conceptual design and analysis
 

of the 12 GHz multiple-beam antenna system, the development test program
 

required to verify its performance and the evaluation of the effects of
 

alternate design requirements on the system concept and performance char

acteristics.
 

The proposed antenna configuration takes the form of four separate prime
 

focus reflectors, each with aperture blockage compensation incorporated
 

in its design. A network of band-stop filters, hybrid power dividers and
 

two-way switches performs the required channel-combining functions. This
 

network and the reflector antennas form an integrated structure which is
 

despun from the main body of the satellite by means of four-channel RF
 

rotary joint.
 

The initial effort in the study is directed towards establishing which
 

antenna concept represents the best means of achieving the system design
 

goals. The most promising configuration is seen to be a mechanically
 

despun reflector systemand extensive computational analyses are therefore
 

carried out to optimize its theoretical performance in terms of beamwidth
 

and sidelobe suppression.
 

The conceptual design and analysis of the key RF subcomponents then yields
 

performance figures whtch are used to evaluate the capabilities of the
 

integrated system. In carrying out this evaluation, particular emphasis is
 

placed on demonstrating that theoretically the system can transmit I KW CW
 

power levels while operating in a space environment.
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Test programs are 	then devised to verify:
 

a. The proposed aperture blockage compensation techniques
 

b. The power rating of the system under hard vacuum conditions
 

Finally, the effect of alternate design requirements on the system perfor

mance are evaluated. For the purpose of the analysis, the design goals are
 

specified to be as follows:
 

Operating Frequency : 12.2 GHz
 

Number of Beams : 4
 
: 2.70

Half-Power beamwidth (HPBW) 

Beam Separation 0.55 and/or 0.72 HPBW 

Near-in Sidelobe Level : -30 to -35 dB 

Polarization : Circular (ellipticity less than 1.1) 

Number of Channels : Four transmission channels operating 
simultaneously with a minimum of one 
channel per beam. 

Channel Width : 50 MHz 

Channel Separation : 100 MHz 

Channel Isolation : 40 dB 

Attenuation : Transmitted signal of each channel 
from the final output stage shall 
not be attenuated by more than 1.5 
dB and flat within ±O.5dB over 0.9 
of the channel width. 

Phase Delay : 	 Phase delay of each channel shall be
 
linear within ±10 over 0.9 of the
 
channel width.
 

Power-Handling Capa
bility of System : I KW CW per channel
 

3.1.2 Selection of Most Promising Antenna Configurations
 

The antenna concepts which cane under review are listed diagramatically in
 

Figure 3-1 and the principal reasons for their being rejected or selected
 

for further consideration are given in Table 3-1.
 

From this table it is seen that the preferred approach is to utilize a mechan

ically despun reflector system and that there are three potentially useful
 

configurations of this type:
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TABLE 3-1
 

Preliminary Selection of Antenna Configuration
 

CONFIGURATION 


Phased Array 


Mechanically Despun 

Phase-Shifter Array 


Mechanically Despun 

Multiple-beam Array 


Mechanically Despun 

Luneberg Lens 


Mechanically Despun 

Bootlace Lens 


Mechanically Despun 

Metal Plate Lens 


Mechanically Despun 

Solid Dielectric Lens 


Mechanically Despun 

Single Reflector 


Mechanically Despun 

Double Reflector 


Mechanically Despun 

Four-reflector 


REASONS FOR REJECTION 


Highly Complex, Heavy,
 
High Insertion Loss
 

Despun antenna is only
 
required to produce a
 
limited number of beams,
 
therefore complexity of
 
phased array system is
 
not justified.
 

Cannot simultaneously
 
achieve the required
 
beam spacing and
 
isolation.
 

Complex Mechanical
 
Assembly; Heavy; Poor
 
Structural Integrity;
 
High Insertion Loss
 

Complex Mechanical
 
Structure; Heavy; High
 
Insertion Loss
 

Complex Mechanical
 
Structure; Susceptible
 
to Thermal Distortion
 

Heavy; High Insertion
 
Loss
 

REASONS FOR SELECTION
 

Light Weight; Compact
 
Feed Structure
 

Light Weight; Fairly
 
Compact Mechanical
 
Structure
 

Fairly Light Weight;
 
Simple RF Design
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1. Single reflector with a multiple feed.
 
2. Two reflectors, each with a dual feed.
 

3. Four separate reflectors, each with a single feed.
 

The relative advantages -and disadvantages of these configurations, for
 
both the axial and offset feed conditions, are directly compared in
 

Table 3-2.
 

As shown in the Table, the dual and multiple-feed techniques are the
 
most attractive from the standpoint of weight and mechanical complexity.
 

Unfortunately, they are susceptible to mutual coupling and off-axis
 
defocusing effects which could lead to unacceptable performance degrada

tion.
 

These effects were 'recently the subject of an experimental investigation
 
by Philco-Ford. Measurements were made at 7;5 GHz using a 40-inch
 

parobolic reflector with an F/D ratio of 0.38. 
 Two waveguide horns,
 
each designed to give a 20 dB aperture taper, were used as feed elements.
 

Feeding the reflector with a single on-axis horn gave a half-power beam
width (HPBW) of 3 and a sidelobe level of -26 dB. 
The two horns were
 
then mounted symmetrically on either side of the reflector axis. 
Due to
 
their physical dimensions, the minimum spacing which could be achieved
 
was 1.15 Xo, corresponding to a main beam separation of 1"7 HPBW. 
With
 
this spacing and with one horn terminated, the secondary radiation
 
pattern had a -17-3 dB sidelobe on the side of the main beam adjacent
 
to the reflector axis and a -24 dB lobe on the opposite side. 
Also, it
 
was observed that the HPBW had increased to 3-3° .
 

Since the isolation between the feed elements had a measured value of
 
greater than 27 dB, the pattern degradation could not be attributed to
 
mutual coupling effects. It was, therefore, a consequence of the phase
 
error brought about by the off-axis displacement of the feed horns.
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TABLE 3-2
 

Relative Advantages and Disadvantages of Alternative
 

CONFIGURATION 


(1) On-axis 

Single Feed 


Reflector 


Offset 

Feed 


(2) On-axis 

Double Feeds 

Reflector 


Offset 

Feeds 


(3) On-axis 

Four- Feeds 


Reflectors 


Offset. 

Feeds 


Reflector Configurations
 

ADVANTAGES 


Minimizes number of re-

flector surfaces required 

to produce multibeam 

pattern; very compact 

mechanical structure; 

minimizes antenna weight. 


Minimizes number of re- 

flector surfaces required 

to produce multibeam 

pattern; compact mechan-

ical structure; minimizes 

antenna weight; no
 
aperture blockage.
 

Reduces number of re-

flector surfaces required 

to produce multibeam 

pattern; fairly compact 

mechanical structure; 

reduces antenna weight.
 

Reduces number of re-

flector surfaces required 

to produce multibeam 

pattern; fairly compact 

mechanical structure; 

reduces antenna weight;
 
no aperture blockage.
 

Simple RF design; good 

beam isolation, 


No aperture blockage; 

fairly good beam 

isolation, 


DISADVANTAGES
 

Severe aperture blockage
 
due to multiple feed
 
structure; mutual cou
pling between feed
 
elements; pattern degra
dation due to off-axis
 
defocusing.
 

Mutual coupling between
 
feed elements; complex
 
RF design; pattern de
gradation due to off
axis defocusing.
 

Aperture blockage;
 
mutual coupling between
 
dual feed elements;
 
pattern degradation due
 
to off-axis defocusing.
 

Mutual coupling between 
dual feed elements; 
complex RF design; 
pattern degradation due 
to off-axis defocusing. 

Aperture blockage;
 
requires four separate
 
reflector surfaces
 

Requires four separate
 
reflector surfaces;
 
fairly complex RF design.
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These results indicate that multiple feeds based upon waveguide horn
 

elements can only be usefully applied to systems in which beam separa

tions of approximately 1.5 to 2.0 HPBW are required. Hence, to achieve
 

smaller separations, as will be required for this project (0,55 and 0.72 HPBW)
 

it would be necessary to resort to the use of end-fire antennas, such
 

as dielectric rods, for feed elements.
 

A configuration of this type has already been investigated by Koenig
 

and Dalley.* Their principal finding was that, while off-axis defocusing
 

effects were relatively small, considerable performance degradation re

sulted from mutual coupling when beam separations of less than 10 HPBW
 

were 	employed.
 

The experiments described were carried out at 6 GHz, using dielectric rods
 

to illuminate a six-foot parabolic section (F/D = 0.5). It was found
 

that a single rod, placed on-axis could produce a secondary radiation
 

pattern with a -25 dB sidelobe level. However, when two such rods were
 

positioned so as to obtain beams separated by 1.0 HPBW, the resultant
 

mutual coupling caused this level to rise to approximately 14 dB.
 

From these results, it is evident that dual, or multiple-feed structures
 

cannot be used to generate closely spaced pencil beams which have low
 

sidelobes. Therefore, since this project requires very stringent control
 

of near-in sidelobes (design goal -30 to -35 dB), it is necessary to
 

forego the use of such techniques and employ an antenna system based on
 

four separate reflectors, each with a single feed.
 

This type of system is more complex mechanically. However, it does have
 

certain advantages in that:
 

a. Good beam isolation is readily obtained.
 

b. A convenient means of steering beam number 4 is provided,
 
since the appropriate reflector can be independently
 
pivoted about a gimbal axis.
 

* 	 "Multiple Beam Antennas for Regional Coverage Communications Satellites" 
by W. A. Koenig and D. G. Dalley -- AIAA 2nd Communications Satellite 
Systems Conference, San Francisco, April 1968. 
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In addition, since each reflector is only required to generate a single
 

beam, there is a considerable reduction in the antenna design problems.
 

Before the antenna system can be completely specified, it is necessary
 

to determine which reflector feed configuration is best suited to this
 

particular application. In this respect, there are four promising con

figurations:
 

(1) Prime focus, on-axis feed,
 

(2) 	Cassegrain, on-axis feed
 

(3) Prime focus, offset feed
 

(4) Horn reflector 	(cornucopia)
 

Hence, the main effort in the antenna-analysis is directed towards
 

establishing which of these represents the best means of achieving the
 

required system performance.
 

3.2 REFLECTOR FEED 	CONFIGURATION ANALYSIS AND TRADE-OFF
 

Detailed analyses were carried out to evaluate the performances of the
 

various reflector feed configurations with respect to the requirements
 

of this system. These are presented in the following sections, after
 

which the trade-off 	leading to the final definition of the antenna
 

system is described.
 

3.2.1 Analysis of Prime Focus Reflector with On-Axis Feed
 

The primary objective of this analysis was to optimize the antenna
 

geometry by adjusting the aperture taper, F/D ratio and blockage param

eters so as to produce the required 2.7 HPBW with maximum suppression
 

of the near-in sidelobe level.
 

For 	the purpose of the calculations, the following assumptions were made:
 

1. 	The feed element is a circular waveguide horn which provides
 
an essentially symmetrical primary pattern with zero phase
 
error.
 

2. 	The feed-horn radiation pattern, when expressed in dE's, may
 
be very closely approximated by a simple quadratic function,
 
i.e., the edge-directed aperture taper may be defined as:
 

T(O) 	 a -k @2 dB, where e - angle from horn axis 
and k - a constant. 

3. 	There is zero mechanical error in the contour of the main
 
reflector.
 

4. 	The aperture blockage is of the form shown in Figure 3-2. 
(The waveguide run to the feed is taken to the edge of the 
reflector, as shown, in order to eliminate shadowing of
 
the primary feed pattern.)
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These assumptions were used in conjunction with the following basic
 

design parameters:
 

1. 	Diameter of main reflector = 26.0 inches (66.04 centimeters):

determined by overall mechanical design considerations.
 

2. 	Operating frequency = 12-2 GHz.
 

In calculating the performance obtainable for a given F/D ratio, the
 

following procedure was adopted:
 

1. 	Calculate the angle subtended by the radiating aperture at
 
the focal point of the parabolic reflector.
 

2. 	Calculate the primary patterns associated with 10 ,12 ,14 ,16
 
18 and 20 dB edge-directed aperture tapers.
 

3. 	Estimate the diameters of the feed-horns required to produce
 
these tapers.
 

4. 	Compute the secondary radiation 3-2 patterns in the orthogonal
 
planes Pl and PI (see Figure 2-1), with and without aperture
 
blockage.
 

5. 	From these patterns, derive plots of near-in sidelobe level,
 
beanwidth and gain as a function of aperture taper.
 

6. 	Hence, obtain sidelobe level corresponding to a 2.70 beamwidth
 
and thereby define the maximum suppression obtainable for the
 
F/D ratio being considered.
 

This analysis was carried out using the WDL SECPAT Antenna Computer
 

Program for a range of F/D ratios and the performance curves obtained
 

are shown in Figures 3-3 through 3-6. These were used to obtain a
 

plot of the minimum sidelobe level as a function of F/D ratio and this
 

is given in Figure 3-7, together with the corresponding gain values.
 

From this, it is seen that a maximum sidelobe suppression of approxi

mately 27-5 dB may be obtained by utilizing an F/D ratio in the region
 

of 0.34.
 

(Because of the "shallow" optimization curve, the computed patterns for
 

the optimized F/D = 0.35 configuration are representative of the best
 

achievable performance. These are shown in Figures 3-8 and 3-9.)
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3.2.2 Analysis Of On-Axis Cassegrain Feed
 

The geometry of this configuration (see Figure 3-10) is such that the
 

main reflector "sees" a virtual image of the feed-horn aperture in its
 

focal plane. Hence, a realistic estimate,of the antenna performance
 

can be made by assuming an edge-directed aperture taper of the form
 

generated by a prime focus feed-horn and using it in conjunction with
 

the blockage parameters associated with a subreflector and its sup

porting struts.
 

This approach was adopted for the analysis since it permitted direct use
 

of the results already obtained for the on-axis prime focus case. These
 

results for a 26" (66.04 cm) diameter dish, provided the maximum edge-directed
 

aperture taper compatible with a 2.70 HPBW and this is listed in Table 3-3
 

as a function of F/D ratio.
 

The aperture blockage associated with a given taper was obtained by
 

estimating the subreflector diameter required to optimize the antenna
 

geometry.
 

This is given * by:
 

Aperture blockage area = 2 x (HPBW in radians) x F/D 
Total aperture area 

Hence, for a 26-inch (66.04 cm) diameter reflector and a 2.70 HPBW
 

2 

t - 15-92 F/D, where r is the radius of the subreflector 

The values of r yielded by this relationship for the required range of
 

F/D ratios are listed in Table 2-2.
 

Now, the dimensions of this antenna are such that it would be feasible
 

to support the subreflector by means of hollow, thin-walled dielectric
 

* "Antenna Engineering Handbook" -- H. Jasik. 
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TABLE 3-3
 

MAXIMUM EDGE-DIRECTED APERTURE TAPER
 

COMPATIBLE WITH 2.70 BEAMWIDTH
 

FOR 26" DIAMETER REFLECTOR
 

MAXIMUM
 
F/D RATIO TAPER (dB)
 

0.40 14
 

0.35 14
 

0.30 12
 

0.25 10
 

TABLE 3-4
 

REQUIRED SUBREFLECTOR DIMENSIONS
 

AS A FUNCTION OF F/D RATIO
 

RADIUS OF
 
F/D RATIO SUBREFLECTOR (IN)
 

0.40 2.52
 

0.35 2.36
 

0.30 2.18
 

0.25 1.99
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tubing which has negligible effect on the aperture distribution.
 

Therefore, for the purpose of computing the radiation patterns, it was
 

further assumed that the only aperture blockage present was that due
 

to the subreflector dish.
 

The radiation patterns obtained were used to derive plots of sidelobe
 

level and gain of the optimum configurations as a function of the F/D
 

ratio. These plots are shown in Figure 3-11, from which it can be seen
 

that, if a Cassegrainian feed structure is employed, the sidelobe sup

pression which can be achieved is limited to approximately -25 dB. The
 

0"25 (see Figure 3-12) serves to illustrate
computed pattern for F/D = 


the best performance which may be realized.
 

3.2.3 Analysis of prime Focus Reflector with Offset Feed
 

3.2.3.1 	Definition of Reflector/Feed Geometry. The configuration which
 

was analyzed for this case is depicted in Figure 3-13. As shown, the
 

reflector is a section of a 52-inch diameter paraboloid surface, its
 

contour being such that its projected area in the direction of the main
 

beam is a circle of 26 inches (66.04 cm) diameter. The F/D ratio of the paraboloid
 

was taken to be 0"4, giving a focal length of 20.8 inches (22.832 cm). Hence, the
 

total angle subtended by the reflector at the focal point is 640 in the
 

plane J (see Figure 3-13).
 

3.2.3.2 	 Derivation of Aperture Distribution. With a symmetrical unblocked
 

26-inch diameter reflector, the required beam shape (2.70 beamwidth,
 

30-35 d3 side lobes) may be generated by imposing a 17 dB aperture taper.
 

The parameters of the offset feed were, therefore, chosen so as to pro

duce an aperture distribution which closely approximated this taper. A
 

feed-horn pattern which provided a 16 dB taper across a 640 sector was
 

utilized. It was then possible to adequately compensate for the asymmetry
 

in the space attenuation by judiciously choosing the angle at which the
 

feed-horn was tilted relative to the paraboloid axis of symmetry.
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It was assumed that the feed-horn pattern, expressed in dB's, was a simple 

quadratic function of the form: 

T (e) = R82 , where e degress is the angle from the peak 

of the horn pattern and R is a constant. 

The requirement that T (32) = -16,- then gave the pattern as: 

= T (6) 
_92
 

64
 

By tilting this pattern at an angle of 330 relative to the paraboloid axis,
 

a good approximation to the required 17 dB aperture taper was obtained in
 

the plane PP, as is demonstrated by Table 3-5. (The angles e and 8H
p 

referred to in this table are defined in Figure 3-14,which also gives a
 

graph of the normalized aperture distribution in the plane PP).
 

To compute the secondary radiation pattern for this configuration it was
 

necessary to have the complete aperture distribution in terms of the polar
 

coordinates defined in Figure 3-15.. The following procedure was adopted
 

as a means of achieving this:
 

1) The two angular positions 61, e corresponding to each
2 


of the -1, -2, ---, -16, t17 dB levels were read from
 

the graph of Figure 2-8.
 

2) 	The angles 81, 62 were converted into displacements d1 , d2
 

above the paraboloid axis by making use of the relationship:
 

d = 2f tan -2 (see Figure 3-13) 

Each pair of values d1 , d2 , therefore, defined the position 

of two points on an equal intensity contour of the aperture 

distribution. 
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TABLE 3-5
 

Derivation of Equal-Intensity Contours
 
for Offset feed Configuration 

Contour 
(db) 

12 
degrees degrees 

dl" 9 
(2f tan -) 

d2 t 2 
1 LI
(2f tan--

d2+d 
2-1
2 

d2-d 
2 1
2 

0 33.0 33.0 12.31 12.31 12.31 0.0 

-0.5 25.0 37.0 9.24 13.92 11.58 4.68 

-1 23.0 39.4 8.46 14.89 11.68 3.22 

-2 20.2 42.8 7.41 16.29 11.85 4.44 

-3 18.2 45.1 6.67 17.30 11.99 5.32 

-4 16.3 47.1 5.96 18.19 12.08 6.12 

-5 14.4 49.0 5.26 18.98 12.12 6.86 

-6 12.7 50.8 4.63 19.78 12.21 7.58 

-7 11.0 52.3 4.01 20.47 12.24 8.23 

-8 9.6 53.9 3.48 21.2 12.34 8.86 

-9 8.1 55.1 2.94 21.77 12.36 9.42 

-10 7.0 56.4 2.54 22.3 12.40 9.88 

-11 5.7 57.5 2.07 22.9 12.49 10.42 

-12 4.6 58.8 1.67 23.45 12.56 10.89 

-13 3.5 59.8 1.27 23.95 12.61 11.34 

-14 2.4 60.9 0.80 24.50 12.65 11.85 

-15 1.4 61.9 0.51 25.0 12.76 12.25 

-16 0.5 62.9 0.17 25.5 12.84 12.67 

-17 -0.5 63.8 -0.17 25.9 12.87 13.04 
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3) 	The assumption was made that the contour joining these two points
 

could be represented to a good first approximation by a circle,
 

radius d2-dl with-its center at a distance above the
dl + d2

2 2
 

paraboloid axis, (i.e., the aperture distribution was assumed
 

to be of the form shown in Figure 3-16). This assumption is
 

justified by the fact that the reflector is symmetrical about the
 

plane PP, with an aperture which has a circular projection in the
 

direction of the main beam.
 

4) The required values d2 dl , d2 + dl were calculated and a 
2 2 

scale drawing of the equal intensity contours thus obtained. 

5) 	The radial coordinates (see Figure 3-1 were superimposed on
 

this diagram and, hence, the aperture distribution as a function
 

of the required parameters was obtained. The results which this
 

procedure yielded are listed in Table 3-6. These were used to
 

compute the radiation patterns in the planes 6 = 00, 450, 900
 

shown in Figure 3-16. The patterns thus obtained are given in
 

Figures 3-17 thru 3-19. These indicate that, although there
 

is some asymmetry in the beam shape, the required 30-35 dB side
 

lobe level can be realized by the offset feed configuration.
 

3.2.4 Analysis of Horn Reflector
 

The 	horn reflector (or cornucopia) was considered as a possible alternative
 

to the prime-focus, offset-feed configuration. As can be seen from the dia

gram of Figure 3-20, it operates on essentially the same principle, except
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TABLE 3-6 

APERTURE DISTRIBUTION (IN VOLTS/m) FOR PRIME FOCUS,
 

OFFSET FEED CONFIGURATION 

RADIAL NUMBER 
RADIUS 
(IN) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 

1 0.989 0.989 0.983 0.971 0.966 0.955 0.944 0.940 0.933 0.940 0.944 0.955 0.966 0.971 0.983 0.989 

2 0.977 0.971 0.966 0.955 0.933 0.912 0.896 0.881 0.876 0.881 0.896 0.912 0.933 0.955 0.966 0.971 

3 0.955 0.950 0.944 0.912 0.881 0.856 0.832 0.813 0.809 0.813 0.832 0.856 0.881 0.912 0.944 0.950 

4 0.933 0.912 0.891 0.851 0.813 0.785 0.759 0.737 0.728 0.737 0.759 0.785 0.813 0.851 0.891 0.912 

5 0.841 0.822 0.804 0.770 0.724 0.692 0.668 0.653 0.649 0.653 0.668 0.692 0724 0.770 0.804 0.822 

6 0.741 d.724 0.708 0.668 0.638 0.606 0.582 0.565 0.562 0.565 0.582 0.606 0.638 0.668 0.708 0.724 

7 0.631 0.617 0.603 0.569 0.543 0.519 0.507 0.490 0.484 0.490 0.507 0.519 0.543 0.569 0.603 0.617 

8 0.537 0.525 0.513 0.490 0.462 0.442 0.427 0.417 0.409 0.417 0.427 0.442 0.462 0.490 0.513 0.525 

9 0.447 0.437 0.427 0.407 0.382 0.367 0.355 0.344 .0.339 0.344 0.355 0.367 0.382 0.407 0.427 0.437 

10 0.359 0.351 0.345 0.327 0.311 0.302 0.292 0.285 0.282 0.285 0.292 0.302 0.311 0.327 0.345 0.351 

11 0.282 0.275 0.270 0.257 0.244 0.237 0.229 0.224 0.221 0.224 0.229 0.237 0.244 0.257 0.270 0.275 

12 0.211 0.207 0.204 0.200 0.194 0.191 0.184 0.182 0.180 0.182 0.184 0.191 O.194 0.200 0.204 0.207 

13 0.153 0.153 0.151 0.148 0.145 0.141 0.141 0.140 0.138 0.140 0.141 0.141 0.145 0.148 0.151 0.153 

NORMALIZED FIELD STRENGTH (VOLTS/m) 
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that the transmitted power is concentrated onto the reflector by means of
 

an extended feed-horn. This offers certain advantages in that the far

out sidelobes are reduced and a good back-to-front ratio is obtained.
 

However, since the feed horn normally propagates only the dominant TE01
 

mode; control of the aperture taper and hehce of the near-in sidelobe
 

level is somewhat limited. This is illustrated in Figure 3-20 (a) for
 

the case of linear polarization in the longitudinal plane of the antenna.
 

As shown, the aperture distribution in this plane is uniform; hence the
 

resulting sidelobe level is approximately -13 dB. In the orthogonal
 

(i.e., transverse) plane, however,, the cosinusoidal aperture taper asso

ciated with the TE01 mode gives rise to a -23 dB sidelobe level.
 

From this, it is apparent that a conventional horn reflector cannot pro

vide a near-in sidelobe level of better than -23 dB in all planes.
 

Measurements by other investigators haveshown, in fact*, that when a
 

circularly polarized-beam is being generated, a sidelobe level of -15
 

to -20 dB is to be expected.
 

A further disadvantage is that, for the proposed application, the horn
 

feed is a rather cumbersome structure. Because of this, it may not be
 

mechanically feasible to switch the position of beam 4 by pivoting the
 

appropriate reflector about a.gimbal axis. Should this be the case, it
 

would be necessary to resort to a system based on five separate reflec

tors.
 

Both the problem of near-in sidelobe suppression and that of mechanical
 

incompatibility can be alleviated to some extent by utilizing a horn/lens
 

* Bell System Technical Journal, July 1961.
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combination as shown in Figure 3-20(b). With this modification,,the length
 

of the horn can be substantially reduced and, because of the additional
 

illumination taper associated with the lens itself, the near-in sidelobes
 

may be suppressed to-approximately -25 dB. in any plane.*
 

Unfortunately, these advantages are offset by the fact that introducing
 

the lens will give rise to impedance matching problems. Also, for a
 

1 KW CW input at 12.2 GHz, the power dissipation within the lens structure
 

could prove to be unacceptably high.
 

3.2.5 Selection of Optimum Reflector Feed Configuration
 

The results of the analyses performed for the four candidate reflector
 

systems formed a basis for selecting the optimum antenna configuration.
 

In conducting the final trade-off, these results were reviewed in
 

conjunction with the other characteristics of the antennas which have a
 

bearing on their compatibility with the overall system requirements. The
 

principal factors involved in the trade-off are discussed for each con

figuration in the following paragraphs.
 

3.2.5.1 Prime Focus, On-Axis Feed
 

The analysis of this case indicates that for a 26-inch diameter reflector,
 

aperture blockage effects will limit the side lobe suppression to approximately
 

-27.5 dB. However, a four-dish antenna system based on this configuration
 

would have a symmetrical geometry which would facilitate realization of
 

the design goals in terms of ellipticity of polarization and beam isolation.
 

* 	 "Theoretical and Experimental Investigations on Methods of Reducing 

Antenna Sidelobes" - AFCRC-TR-58-139, June 26, 1956 to June 15, 1958. 
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In addition, it would offer the advantages of a lightweight, reasonably
 

compact antenna structure with a straightforward RF design.
 

3.2.5.2 On-Axis Cassegrain Feed
 

This system would provide a more compact feed structure at the expense
 

of a slight increase in the complexity of the RF design. Unfortunately,
 

the severe aperture blockage associated with the subreflector imposes a
 

limit of approximately -25 dB on the level to which the side lobes can be
 

suppressed.
 

3.2.5.3 Prime Focus, Offset Feed
 

As has been demonstrated in the analysis, this configuration is capable
 

(due to the absence of aperture blockage effects) of realizing the design
 

target of 30-35 dB sidelobe suppression. Furthermore, it creates the
 

possibility of mounting the four reflector feed elements on a single,
 

central mast. (See Figure 3-21.) These advantageous features ate largely
 

negated, however, by undesirable effects which arise as a consequence of
 

the offset geometry.
 

The most significant drawback is that the inherent asymmetry of the
 

resultant aperture distribution will give rise to a substantial cross

polarized component (assuming for the moment a linearly polarized
 

primary pattern). A precise theoretical evaluation of the magnitude of
 

this effect is complex. However, it may be stated that it is unlikely
 

that the cross-polarized lobes will be more than -25 dB below the level
 

set by the peak of the main beam in the principal plane of polarization.
 

In terms of the proposed system, this means that although the radiation
 

pattern, as measured in the main sense of circular polarization has its
 

near-in side lobes in the opposite sense of polarization will lie well
 

above that level, The asymmetry of the antenna geometry and, hence, the
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cross-polarized effect can, of course, be reduced by increasing the
 

focal lengtof the paraboloid. Unfortunately, this step introduces
 

new problems in that it decreased the angle subEended by the reflector
 

at the focal point and, therefore, increases the size of the feed horn
 

necessary to achieve the required aperture taper. Thus, a significant
 

reduction in the asymmetry effects can only be achieved at the expense of
 

rather cumbersome feed structure.
 

Further disadvantages of this system are that:
 

1) It requires a fairly complex RF design.
 

2) 	For the preferred case, in which a central mast structure is
 

employed, the proximity of the feed elements will tend to
 

lower'the beam isolation.
 

3) 	For the preferred case, again, it will be difficult to avoid
 

pattern degradation in beam 4 when it is in the switched position
 

i.e., it will be necessary to move both the main dish and the
 

feed element if off-axis defocusing effects are to be avoided.
 

3.2.5.4 Horn Reflector
 

The principal advantage of the horn reflector is that it provides very
 

low far-out sidelobes. This has an added advantage for the system being
 

considered since it means that very good beam isolation is readily obtained.
 

There are, however, two major disadvantages associated with this
 

configuration:
 

(1) 	Suppression of near-in sidelobes is limited to approximately -25 dB.
 

(2) 	The extended feed-horn is a mechanically awkward structure.
 

An additional drawback is that it will be prone to the same type of
 

cross-polarization effects as have been described for the prime-focus, offset-feed
 

case,
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From a consideration of the relative advantages and disadvantages of the
 

four candidate systems (summarized for convenience in Table 2-5), it was
 

concluded that the prime-focus, on-axis feed configuration represents the
 

best means of achieving the antenna design goals. This configuration has
 

one shortcoming, namely that, in its basic form, it cannot realize the
 

design goal of -30 to -35 dB near-in sidelobes. (Although it does adequately
 

meet the minimum requirement of -25 dB). Techniques are available, however,
 

by means of which this difficulty can be overcome. These techniques, and
 

their application to the project, are discussed in the design analysis
 

of the candidate antenna system.
 

3.3 DESIGN ANALYSIS OF CANDIDATE ANTENNA CONFIGURATION
 

A cluster of four separate prime-focus reflectors with on-axis feeds was
 

chosen as the best means of meeting the overall antenna system requirements.
 

In the design analysis of this configuration, particular emphasis was
 

placed on investigating the extent to which the near-in sidelobes can be
 

suppressed. Now, the amount of suppression that can be achieved is
 

primarily limited by aperture blockage effects. A first step towards
 

minimizing these effects was therefore taken by re-organizing the
 

mechanical integration of the system so as to maximize the area available
 

for the reflector surfaces. In this way, the diameter of the reflectors
 

was increased from 26-inches to 28-inches (66.04 cm to 71.12 cm).
 

3.3.1 Derivation of Optimum Aperture Taper for 28-Inch Diameter Reflector
 

The analysis performed for the 26-inch diameter reflector was extended to
 

accommodate this case by making use of the fact that, at a fixed frequency,
 

beamwidth is inversely proportional to diameter for a given aperture
 

Thus, for a given aperture taper, the beamwidths e26 anddistribution. 
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TABLE 3-7 

COMPARISON OF CANDIDATE REFLECTOR ANTENNA CONFIGtRATIONS
 

CONFIGURATION ADVANTAGES 

Prime Focus, Simple RF design; good'beam 
On-Axis Feed isolation; good circular 

polarization characteristics; 
lightweight, reasonably compact 
structure, 

On-Axis Compact feed structure 
Cassegrain 
Feed 

Prime Focus, Can achieve 30-35 dB side-lobe 
j Offset Feed level; feed elements can be 

mounted, on a single mast 

Horn reflector Very low far-out sidelobes; 
(Cornucopia) Very good beam isolation, 

DISADVANTAGES
 

Side lobe suppression limited by
 
aperture blockage to approximately
 
-27.5 dB (26-inch diameter aperture)
 

Severe aperture blockage effects;
 
more complex RF design
 

Substantial cross-polarized
 
component in radiation pattern;
 
cumbersome feed structure required
 
for reduction of asymmetry effects;
 
reduced beam isolation; complex
 
RF design; difficulty of avoiding
 
pattern degradation when beam 4
 
is in switched position.
 

Mechanically awkward structure;
 
suppression of near-in sidelobes
 
limited to approximately- 25 dB;
 
Substantial cross-polarized
 
component in radiation pattern
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028' corresponding to 26-inch and 28-inch diameter reflectors respectively,
 

are related 	by:
 

e =28 	 e28 
26
 

For this application, it is required that 928 = 2.70 and therefore 
0 0= 28 X 2.7 = 2.9


26 2
 

Hence, the maximum edge-directed aperture taper compatible with a 2.70
 

beamwidth for the 28-inch reflector is that which corresponds to a 2.90
 

beamwidth for the 26-inch reflector. This taper is listed in Table 3-8
 

as a function of F/D ratio, together with the inner diameters of the
 

corresponding circular feed horns. A final choice was made in favor of
 

the configuration based on an F/D ratio of 0.35.
 

3.3.2 Estimation of Aperture Blockage Parameters
 

Back radiation from the feed-horn could make a substantial contribution
 

towards raising the sidelobe level of the secondary radiation pattern.
 

To reduce this effect to an acceptable level, the horn design was-modi
 

fied by the addition of a double choke section, giving the configuration
 

illustrated 	in Figure 3-22. The aperture blockage parameters associated
 

with this configuration are defined in Figure 3-23 and these were used for
 

the purpose of computing the antenna radiation pattern.
 

3.3.3 	 Computed Radiation Pattern of 28-Inch Diameter Reflector With
 

Optimized Aperture Distribution
 

The radiation patterns in the planes 0 = 0* and 0 = 900 were the first of
 

all computed. From these (see Figures 3-24 and 3-25) it is seen that,
 

for 0 = 0*, the first minor lobe is highest at -33.4 dB below the peak
 

of the main beam, whereas, for 0 = 90', the second -lobe predominates at
 

-28.4 dB. 	To investigate the behavior of these lobes over the complete
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TABLE 3-8
 

-OPTIMUM EDGE-DIRECTED TAPER AS A FUNCTION
 

OF F/D RATIO FOR 28 IN. DIAMETER REFLECTOR
 

Taper Required for Appropriate Inner Diameter 

F/D Ratio 2.70 HPBW (dB) of Feed-Horn (ins.) 

0.40 20 0.88 

0.35 18 0.77 

0.30 18 0.68 

0.25 16 0.59 

* Waveguide cuts off at approximate 0.6 in. 
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range of 0 values, a series of patterns were computed for 0 = i0*, 200 .... 

°
 170 , 1800.
 

From these, the variation in near-in sidelobe level as a function of 0 

was obtained and this is plotted in the graph of Figure 3-26. This graph
 

defines the upper limit on the amount of sidelobe suppression that can
 

be obtained by means of a conventional prime focus reflector with an
 

optimized aperture distribution. It therefore formed the basis for
 

estimating the performance that could be achieved by utilizing active

element sidelobe suppression techniques.
 

3.3.4 Active-Element Sidelobe Suppression Techniques
 

To improve the near-in sidelobe performance of the antenna beyond that
 

specified by Figure3-26 it is necessary to resort to active-element
 

suppression techniques. These fall into two categories:*
 

1. Aperture blockage compensation
 

2. Active zone suppression
 

In the former technique, a single radiating element (see Figure 3-27)
 

is used as a means of partially compensating for the aperture blockage
 

associated with the antenna feed structure. The relative phase and
 

amplitude of this element are adjusted so as to suppress the highest
 

near-in sidelobe in the manner depicted in Figure 3-28.
 

If further suppression is required, then it may be obtained by simultane

ously employing the active zone technique. In this, the reflector is
 

surrounded by a ring of elements as shown in Figure 3-29. The diameter
 

of the ring is chosen so that the lobes of its radiation pattern coincide
 

* "Analytical and Experimental Investigation of Sidelobe Suppression 

Techniques for Reflector Type Spacecraft Antenna" 
- Goebels, Meier and Thomas, NASA Report NASA CR-72462 
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with the near-in sidelobes of the reflector pattern. Suppression is
 

again achieved by adjusting the phase and amplitude of the elements to
 

obtain cancellation. This is illustrated in Figure 3-30 for a given
 

plane.
 

3.3.5 	 Estimation of Performance That May Be Achieved By Utilizing
 

Active-Element Sidelobe Suppression Techniques
 

The graph of 	Figure 3-26 suggests that is should be possible to achieve
 

an all-round 	near-in sidelobe level of approximately -32 dB by employing
 

only aperture blockage compensation. (This would be accomplished by
 

suppressing 	the high sidelobe in the 0 = 90* plane until the point was 

reached at which the near-in sidelobes in all planes were at a common
 

level).
 

The power required for this operation may be estimated in the following 

way: 

Let P = Total power delivered to antenna system 

P R Power delivered to prime focus reflector 

PC = Power delivered to blockage compensator 

Then, assuming a loss-free system, 

PT = PR + PC 
 (3.1)
 

If GR = gain 	of reflector, then the power per unit solid angle at peak of
 

main beam is:
 
PR'= R- .P
R 4 R (3.2) 

Similarly, for the blockage compensator:
 

GC
Pf = P (3.3)
 

47r
 
Combining equations (3.2) and (3.3) gives:
 

PC = GR 	 P'
 

C -5
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and, from equation (3.1), PR P PC ,Y so thatR T C
 

PC R PC' 

P -rP Z 
T C C PR
 

which may be re-written as:
 

P 
PTP 

1 

S1+GC . R1 

(3.4) 

GR PC' 

If PR is normalized to unity, then the power density at the peak of the
 

highest sidelobe is 14 - 05 X 10-4, which corresponds to a normalized
 

Now, for a sidelobe level of -32 dB, the equivalent
amplitude of 3:75 x 10 -2 

-2
 

amplitude is 2.45 X 10 2 so that to obtain the required suppression the
 

compensating element must provide an out-of-phase field with a normalized 

-2 -2 

amplitude of (3: 75 - 2:45 X 10 = 1:30 X 10 

= 0.592 X 104 and, since the computedHence, for this application, PR' 

PC
 

value of R is 37 dB, equation (3.4) becomes:
 

PC - 1 (3.5) 
PT 
 1+ 1.18 GC
 

It is envisaged that the compensating element will take the form of a
 

(Such a device, with a length
hollow, thin-walled dielectric tube antenna. 

of 7X to 8X , has a gain of approximately 16 dB. It may be conveniently 

located behind the prime focus feed since it will not add to the blockage 

area and vill have only a minimal effect on the phase front of the plane 

wave emanating from the reflector). 

Therefore: C

C = 40 which gives:
 

PC = 0.0208 (3.6) 
F 48.3
T 
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i.e., approximately 2% of the total power delivered to the antenna will
 

be required for aperture blockage compensation. (It is anticipated that
 

this power would be extracted from the main waveguide run to the feed-horn
 

by means of a broad-watt directional coupler). The near-in sidelobes
 

could be suppressed below the -32 dB level by utilizing the active zone
 

technique in addition to aperture blockage compensation. However, the
 

use of the second technique is not advocated for this project, since it
 

is felt that its implementation would lead to an unacceptable increase
 

in antenna weight and complexity.
 

3.3.6 Comments on Accuracy of Predicted Sidelobe Level
 

In computing the radiation patterns of the prime focus antenna, it was
 

assumed that the following conditions prevailed:
 

1. Zero phase error in the feed-horn aperture
 

2. Zero mechanical error in the contour of the parabolic
 

reflector.
 

These ideal conditions cannot be realized in practice and consequently
 

the predicted -32dB near-in sidelobe level is somewhat optimistic.
 

Past experience indicates, however, that by employing a precision re

flector and optimizing the feed position, it should be possible to obtain
 

a sidelobe level which is within 2 dB of the theoretically predicted
 

value. It is therefore concluded that a near-in sidelobe level of
 

approximately -30 dB may be achieved by means of the proposed antenna
 

configuration.
 

(The extent to which this performance will be affected by the conditions
 

which exist in a space environment is analyzed later in the report).
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3.3.7 Ellipticity of Polarization
 

The power-handling requirements of this system make it desirable to avoid
 

the use of any circular polarizer which entails loading the waveguide runs
 

with posts or dielectric slabs. It was, therefore, decided to employ the
 

septum polarizer*, which is illustrated in Figure 3-3L The mode of oper

ation of this device can best be understood by considering its action on
 

an incident circularly polarized wave.
 

This wave may be considered as being composed of two orthogonal linearly
 

polarized waves of equal amplitude which are in phase quadrature. The
 

manner in which the septum operates on each of these components is illus

trated in Figure 3-32. -As shown, the component normal to the septum is
 

simply ditiided so as to generate two in-rhase H 10-modes in the rectangular
 

waveguides. The other component, however, is transformed into two out-of

phase H 10-modes. Phase cancellation is therefore achieved in one of the
 

rectangular waveguides and, hence, the net result of the incident circularly
 

polarized wave is to produce a linearly polarized signal at one of the out

put 	ports. It then follows, by reciprocity, that an H10-mode propogating
 

in one of the rectangular waveguides will cause a circularly polarized wave
 

to be radiated with no power being coupled into the remaining port.
 

This device can therefore be neatly incorporated in the prime focus feed
 

33
 structure in the manner shown in Figure 3- . The inner dimensions of the
 

rectangular waveguide (0.75 inch x 0.375 inch) are such that a smooth tran

sition can very easily be made into the circular aperture of 0.77 inch dia

meter required to feed a reflector with F/D = 0.35. (Making this transition
 

* 	 "A New Type of Circularly Polarized Antenna Element", by Davis, Digiondomenico 
and Kempic, Univ. of Michigan, 1967, International Antenna and Propagation 
Symposium. 
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in a short distance will tend to enhance the performance of the polarizer
 

and this consideration was a factor in choosing an F/D ratio of 0.35 for
 

the reflector.)
 

Therefore, it is anticipated that, over the 4% bandwidth
 

required for this system, an axial ratio of 0.5 dB and an isolation of
 

30 dB can be maintained. (The second of these performance figures is of
 

particular significance since it means that the power which.must be dissi

pated in the matched termination is limited to approximately 1 Watt CW.)
 

3.3.8 R.F. Losses and Power-Handlin2
 

For a rectangular waveguide with copper walls and inside dimensions a, b
 

(cms), the attenuation constant is: *
 

1
Crc = 0".04 y/jr b a (a VA22 dB / Meter 

V/X l-0-25 tXo_ 

For the system being considered: 

No = 2"46 cm, a = 1"91 cm, b = 0-952 cm, er = i'0 

Hence, 
ac = 0"129 dB/meter
 

i.e., ac = 3"94 dB per 100 ft.
 

The corresponding figure for aluminum waveguide may be obtained from the
 

above result as follows:
 

* "Principles and Applications of Waveguide .Transmission", Southworth. 
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For the H 0-mode in rectangular waveguide, the attenuation coefficient
 

associated with conductor losses at a fixed frequency is:
 

K 

Where 	k is a constant andois the conductivity of the metal from which the
 

waveguide is fabricated.
 

From this, it is seen that:
 

_aA, aC
 
aC oA
 

where 	aA = attenuation constant for aluminum waveguide 

aC = attenuation constant for.copper waveguide 

LT C = conductivity of copper
 

( A = conductivity of aluminum
 

Therefor:
 

aA = 	 C 5-8 x 10 = 1.29AC 

3.475 x 107
 

i.e., AA = 5.08 dB per 100 ft.
 

Current estimates indicate that the waveguide run from the last power combiner
 

to the prime focus feed-horn will be approximately 2 feet long. Hence, the
 

R.F. losses associated with the antenna will be in the region of 0.1 dB.
 

Since there are no abrupt discontinuities in the waveguide run to the
 

feed-horn aperture, multipactor breakdown in the rectangular waveguide
 

will be the limiting factor in the power-handling ability of the antenna
 

feed. 	An adequate discussion of this effect is given in the analysis of the
 

power handling ability of the 4-channel rotary joint (see paragraph 3.4.1).
 

From this analysis, it is concluded that the antenna feed will have a
 

minimum CW power-handling ability of 18.6 KW.
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3.3.9 Antenna Efficiency
 

The computational process used in calculating the radiation pattern of
 

the prime focus reflector also provided the following results:
 

Gain of uniformly illuminated 28-inch diameter aperture - 39.15'dB
 

Reduction in gain due to aperture blockage = -0"24 dB 

Reduction in gain due to spillover - -0-05 dB 

Reduction in gain due to aperture taper = -1"83 dB 

Total gain reduction = -2-12 dB
 

Thus, Net Gain = 37.03 dB
 

To obtain the gain of the proposed antenna system, this figure must be
 

modified to include the effects of:
 

a. RF power dissipated in waveguide run to feed-horn
 

b. Power required for aperture blockage compensation
 

In the previous section, power dissipation was estimated to be 0.1 dB.
 

Also, it was shown in paragraph 3.3.5 that-approximately 2% of the input
 

power will be required for blockage compensation. These two effects con

stitute an additional loss in gain of approximately -0.2 dB. Therefore,
 

the resultant gain of the antenna system is approximately 36:8 dB,
 

which corresponds to a net efficiency of 59%.
 

3.3.10 Beam Isolation
 

A good estimate of the beam isolation provided by the antenna system may
 

be obtained by calculating the power coupled between two adjacent prime
 

focus reflectors. The relative positions of two such reflectors and their
 

respective feed-horns are defined in Figure 3-34. For the purpose of the
 

calculations, the antenna designated Tx transmits while the antenna Rx is
 

a matched receiver.
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Two principal coupling mechanisms exist:
 

1. Direct coupling between feed-horns
 

2. Coupling of power by the Tx feed-horn from the near-field
 

of the Tx reflector.
 

Each of these effects were evaluated separately inthe manner shown below:
 

3.3.10.1 Coupling Between Feed-Horns
 

The dimensions of the feed elements are such that the Rx horn is in the
 

far-field of the Tx horn. Hence, the coupling between them may be
 

extimated as follows:
 

Let G (Q) = Gain of Tx feed-horn angle where 9 is the angle fromT
 

the peak of the horn's radiation pattern
 

Similarly, GR (9) = Gain of Rx feed-horn
 

The power per unit area at a distance r from the Tx horn is therefore
 

defined by:
 

( )
GT
= PT 2P (9) 
 47r r

Where PT is the total power transmitted by the horn. 

Hence, the power coupled into the Rx horn is: 
A R 
PR = PT GT (990) - (900)
 

47 r
 

Where AR (9) represents the effective area of the Rx feed-horn.
 

Now, GR ()=4_ r AR (9), wherex= free-space wavelength

72
 

\ 2 
Therefore, A (9) = - -G (), which gives

R 4 ir 0R () hc ie 

'4P = PT GT (90) x 2 0 (900)-- R

R 4rr7 4r 
 R
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Since the two feed-horns are identical, this reduces to:-


P = jrA G(90,) j 2 where G() = GT (9) = G().
PT 47r r
 

The computed on-axis gain of the feed.horns is 10-6 dB; using this figure
 

in conjunction with the theoretical horn pattern gives:
 

G(900) = G(o) - 29.8 dB = (10-6 - 29.8) dB = -19.2 dB
 

i.e., G(90') = 0.012 

Also, the,geometry of the antenna configuration is such that r = 30 inches. 

Thus, PR =1 0.97 x 0.012 N2 = 9.54 x 10 -10 
\ 4PT x 3. 142 x 3 

i.e., PR = -90dB
 

3.3.10.2 Near-Field Coupling
 

In a rigorous theoretical treatment of this effect, the total power
 

coupled from the near-field would be obtained by integrating the contribu

tions from all points on the radiating aperture. This would entail a
 

lengthy computational process, it was therefore decided to resort to a
 

much simpler analysis by means of which a good first approximation to the
 

solution could readily be obtained. This analysis follows:
 

Main reflector subtends a semi-angle of 710 at feed-horn, and thus
 

Space attenuation = 3 dB
 

Feed-horn gives an 18 dB edge-directed taper, and thus
 

Aperture taper = (18 + 3) dB = 21 dB
 

Now, since the Rx feed-horn is in the immediate near-field of the Tx
 

reflector, the power density at that point is approximately 21 dB below
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the power density at the peak of the main beam (i.e., the Tx radiation
 

pattern in this region is still essentially the reflector aperture
 

distribution).
 

Peak gain of Tx horn is G- 10.6 dB = 115 times, -and thus the power
 

density at the center of the reflector surface, and hence at the peak
 

of the near-field main beam is:
 

PPp- PT X 11-5 

4,rx(9 .8)2 

The power density at the Rx feed-horn is of the order of 21 dB below this
 

level; therefore, the power coupled into the horn is
 

=PH PTxll.5 X 0.008 X A, 

4wx (9 .8)2 

Where A is effective .area of horn
 

Hence, = P x 0.008 x x 2 11.5 / i5x0-97 2 x 0.008 
47-x(9.8) 4 4ix98 

= 0.656 x 10 - 4 

i.e., P 

PT -42 dB 

3.3.11 Review of Proposed Antenna System
 

The proposed antenna configuration is illustrated in Figure 3-35. A
 

comparison between the theoretically derived performance figures and the
 

'antennasystem design goals is also provided.
 

3.3.12 Effect of Environmental Conditions on Antenna Performance
 

When the system is operating in the space environment, it will be subjected
 

to solar heating effects which will tend to cause distortion of the antenna
 

3-64 



Integrated 
ntennd System 

28" Diam. 
Reflector 
(F/D 035) 

Prime Focus Chokes 
Feed Horn 

"BlockageC pnstoBlockage Compensation 
Element (thin-walled 
Dielectric Tube) 

Circular Polarizers 

Waveguide 
, Broadwall Directional 

Coupler 

Parameter System Theoretical 
Design Goal Estimate 

Antenna Cluster of Four Prime 
Configuration Focus Reflectors (28" Diam, 

F/D-0.35), each with aper
ture blockage compensation 

HPBW 2.70 2.70 

Near-in 
Sidelobe Level 30-35 dB -30 dB 

Net Gain 37 dB 

Net Antenna 
Efficiency 59% 

Ellipticity of 
Polarization <1 dB <1 dB 

Power Handling 
Per Channel 1 KW CW 18 KW 

CW 

Beam Isolation 40 dB >40 d1 

Figure 3-35 Review of Proposed Antenna Configuration
 
a, 
Ln 



structure, particularly the parabolic reflectors. It will therefore be
 

necessary to employ special fabrication techniques in the manufacture of
 

the antenna components if the performance degradation associated with
 

these effects is to be minimized.
 

The recommended approach is to use invar metal as a basis for forming the
 

reflector surfaces. (Analyses already performed by Philco Ford for similar
 

antenna configurations have shown that, for an all-aluminum structure,
 

there would be an unacceptable deterioration of the radiation pattern.)
 

Mechanical design considerations indicate that a 0.003-inch (7.62 inm)invar face
 

sheet backed by a 0.25-inch (6.35 mm) thick invar honeycomb core would be a suitable
 

structure. A computational analysis was therefore carried out to verify
 

the performance of an antenna constructed in this manner.
 

The case of "edge-on" solar illumination (see Figure 3-36) was studied
 

since the distortions associated with this configuration are representative
 

of the worst-case values. The computed distortions were converted into
 

equivalent phase errors and the secondary radiation pattern was calculated 

at 100 intervals in the rotational angle, . (4 is defined in Figure 3-36). 

These patterns revealed that the effect of the distortion was most pronounced 

in the 4'= 600 plane. This is shown in Figure 3-37. However, the pattern 

for (D = 900 is essentially the same as the corresponding one for the undistorted 

case, as can be seen by comparing Figures 3-38 and 3-25. Thus, the highest 

near-in sidelobes are still at the level originally set by aperture blockage effects. 

From this, it is concluded that with the proposed fabrication techniques there
 

will be no significant increase of the sidelobe level due to the effects of
 

solar heating.
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The analysis did show, however, that thermal expansion of the aluminum
 

waveguide feed arm causes the feed horn to be displaced by 0.025 inch from
 

the reflector axis.
 

For the reflector geometry being employed, this corresponds to a beam dis

placement of 0.080. This displacement occurs in the 6 = 00 plane, which 

lies at 450 to the spacecraft spin axis (see Figure 3-36). It can there

fore be resolved into two equal, orthogonal components of magnitude 0.060,
 

which represent displacements about the pitch and roll axes, respectively.
 

Thus, the antenna system will have a worst-case beam-pointing error
 

of 0.060 in both pitch and roll due to the effect of environmental conditions.
 

3.4 DESIGN ANALYSIS OF RP SUBSYSTEM
 

3.4.1 Candidate System Design
 

The RF subsystem which has been selected for use in conjunction with the four

reflector antenna is outlined diagrammatically in Figure 3-39. It has
 

a principle of operation which may be described as follows:
 

RF power from.the separate transmitters TI1, T21, T3 and T4 is transferred
 

across the spin interface between the satellite and the antenna platform
 

by means of a four-channel rotary joint. The two-way switches SWI and
 

SW2 can then be activated so as to permit either transmission of one channel
 

on each of the four beams or transmission of two channels on Beams 2 and 3
 

with no power being delivered to Beams 1 and 4.
 

3-70 



T1 0-,-

4-Channel
Rotary Joint / 

/ 

Quadrature
Hybrid High-Power 

Band-Stop 

Filter 
(Rejects Power 

from 11 

T 2 p 
BEA 

T IT 
BEA 3 

IA 

T4 0L 

Figure 3-39 

Channel-Select 

Switch 

Candidate RF Subsystem 

2(Switchable) 



In the second mode of operation, power from transmitter T2 enters a-quadrature
 

hybrid where it is divided into two equal parts. These pass through the
 

band-stop filters, which are tuned to reject the power from Transmitter TI,
 

and then recombine in a second hybrid. Power from transmitter TI enters this
 

hybrid and divides into two equal parts. These are rejected by the band

stop filters and hence recombine at the antenna port of the hybrid. In this
 

way, the powers-from transmitters TI and T2 are radiated in beam 2. Similarly,
 

the powers from transmitters T3 and T4 may be simultaneously radiated in
 

beam 3.
 

The analysis of this system fell naturally into two parts. In the first,
 

the components which go to make up the system were considered separately to
 

establish their nominal RF performance and specify their overall dimensions.
 

The information thus gained was then used in the second part of the analysis
 

as a basis for evaluating the performance of the integrated unit.
 

Since a compact, light-weight systemis required, the design of each com

ponent was based upon aluminum WR75 waveguide.
 

3.4.2 Analysis of RF Components
 

3.4.2.1 Four-Channel Rotary Joint
 

.Figure 3-40 i~lustrates the design of a rotary joine that can provide 

4-channel operation in the 7-8 GHz frequency range. As can be seen from the 

diagram, the device consists of four concentric coaxial wavegdlde sections, 

the innermost being a "straight-through" channel, while the remaining three 

are excited by air-dielectric striplihe corporat& fdd networks. Since this config

uration has a'power rating of only 200-300 Watts CW per channel (the upper 
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limit being imposed by the stripline networks), it cannot be directly applied
 

to the current project. However, the basic design may be extended to cope
 

with the increased power-handling requirements by replacing the stripline
 

networks by waveguide structures of the type shown in Figure 3-41.
 

A candidate design based on this technique was derived and is illustrated
 

in the composite drawing of Figure 3-42. Details of the proposed coaxial
 

waveguide sections, the non-contacting chokes and the rectangular-to-coaxial
 

waveguide transitions are given in Figure 3-43.
 

With this configuration, the design performance figures for the rotary
 

joint are as listed below:
 

CW Power
 

Channel Frequency (GHz) Loss (dB. Rating VSWR Isolation (dB)
 

(KW)
 

>40
1 12.025 - 12,075 < 0.4 >1.0 < 1.2 t 
2 12.125 - 12.175 < 0.4 ,1.0 < 1.2 >40 

3 12.225 - 12.275 < 0.4 >1.0 1< 1.2-4 
< 1.2< 0.3 >1.012.375
12.325 4 

3.4.2.2 Channel-select Switches
 

The high CW power levels required for this system preclude the use of any
 

Also, the requirement for
currently-available solid-state switching device. 


low insertion losses rules out any switching circuit based on gas discharge
 

tubes. It is therefore necessary to utilize an electro-mechanical switch of
 

the type illustrated in Figure 3-44.
 

3-74 



INOTE: 
All dimensions in inches.
 

Figure 3-41 Rectangular Waveguide
 
Corporate Feed Section for 12 GHz Rotary Joint
 

3-75 



LA 

-J
 

I 
. 

Figure 3-42 
 Candidate 4-Channel, High-Power, Rotary Joint, Schematic
 



// \ Z

-- 7 

'WALL A 

WALL t 

WALL C. 
ANE
 

WALL DfHNEL2le Ip 

o 1_o 
FIGURE~ ~~ ~AEUh ~ ~ETOS ~ ~ ~EALO-ANLRTR ~ CANE 3-3 

3-'? 

FIGURE 3-43.-DETAIL OF WAVEGUIDE SECTIONS, 4-CRANEL ROTARY 

JOINT 
3-77 



OUTPUTS
 

SWITCHING / : 
IIECHANISM / 

, INPUT 

._ - - .
 

CONTROL
 

MdECHANISM ...
CONROL-- -

RF JUNCTION 

FIGURE 3-44 CHANNEL-SELECT SWITCH
 

3-78 



A state-of-the-art review indicated that such devices are capable of handling
 

1 KW cW power levels at frequencies in the region of 12 GHz, while intro

ducing an insertion loss of only 0.05 dB into the system. In addition,
 

channel isolations of greater than 40 dB may be achieved. From this, it is
 

evident that an electromechanical switch may be obtained whose RF performance
 

is compatible with system requirements.
 

3.4.2.3 Power Dividers/Combiners
 

The power splitting/combining operations are performed by short-slot hybrid
 

junctions (Riblet 3 dB couplers). The design procedure for these components
 

is well established and it is anticipated that, by using both inductive and
 

capacitive tuning, equal ppwer division to within +'0.2 dB with an isolation
 

of approximately 30 dB can be maintained across the required frequency band.
 

An insertion loss of less than 0.2 dB should also be achieved.
 

Due to the high power requirements of the system, it may be necessary to
 

employ "rounded" tuning elements. The proposed configuration is therefore
 

as shown in Figure 3-45.
 

3.4.2.4 Filters
 

The use of diplexers (i.e. band-pass filters) involves placing inductive
 

posts or irises within the main waveguide transmission lines. This leads
 

to high field concentrations within those areas and thereby limits the power

handling ability of the system.
 

For this reason, it was decided to base the RF subsystem on band-stop filters
 

of the type shown in Figure 3-46. A preliminary design analysis was performed
 

from which it was concluded that the system requirements could be adequately
 

met by employing a 7-element Tchebyscheff device.
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A specimen filter with its stop-band centered on 12.2 GHz was then designed
 

and its theoretical performance curves generated by means of a computational
 

process. These curves are shown in Figures 3-47 and 3-48.
 

From Figure 3-47, it is seen that the required isolation characteristics can
 

be achieved. It is also seen, however, that both the reflected wave for
 

frequencies within the stop-band and the transmitted wave for frequencies
 

more than 75 M z outside it are attenuated by approximately 0.25 dB. Hence,
 

each filter will contribute an insertion loss of this magnitude towards both
 

of the channels that it handles.
 

The curve of Figure 3-48 plots the phase angle of the reflected wave as a
 

function of frequency. From this, it is seen that the filter response com

plies with the requirements for phase linearity over a channel width.
 

3.4.2.5 Rotary Joints (Limited Motion)
 

in the candidate spacecraft configuration, rotary joints are required to circum

vent the gimba axes which control the pitch and roll motions of the despun
 

antenna platform. A rotary joint is also required for switching the posi

tion of Beam 4.
 

In each case, however, the motion is limited to a few degrees and can, therefore,
 

be readily achieved by means of flexible waveguide sections.
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3.4.3 Analysis of Integrated RF Subsystem
 

The main objective here was to define the power-handling capabilities
 

of the integrated system. The bulk of the analysis was therefore devoted
 

to investigating the problems associated with:
 

(a) High-power breakdown,- and
 

(b) The effects of RF power dissipation within the structure.
 

3'.4.3.1 High-Power Breakdown
 

When operating in a space environment, the system will be exposed to the
 

following breakdown mechanisms:
 

(a) Multipaction
 

(b) Ionization in regions of localized gas entrapment
 

For both of these, the critical area is the coaxial waveguide choke sec

tions of the rotary joint. Extensive calculations were therefore per

formed to determine the power levels required to initiate a breakdown in
 

this area.
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3.4.3.1.1 Analysis of Multipactor Breakdown*
 

General Description of Multipacting - Multipactor breakdown is
 

a buildup of electrons-near an electrode, in resonance with the
 

RF electric field. For planar, parallel electrodes,
 

separated by a gap, d, the time for electrons to cross the gap is an odd
 

number of half-cycles of the radio frequency, f. The primary electrons
 

must strike the electrode with sufficient energy to emit more than one
 

secondary electron (on average). The secondary electrons then enter the
 

discharge and maintain it. Present multipacting theories satisfactorily
 

explain most of the observed experimental phenomena. The modes are described
 

by an integer p = 0, 1, 2, etc., where (2p+l) is the number of half-cycles to
 

cross the electrode gap.
 

Other important parameters for multipacting are: K2 , the ratio of primary
 

electron energy to secondary electron energy;Y , the secondary emission
 

coefficient, which is a function of primary electron energy;t , the starting
 

phase of the electrons with respect to the RF electric field; and U, the
 

primary electron threshold energy at which Y= I. Figure 3-49illustrates
 

multipactor breakdown regions for the first three modes, assuming U = 50eV,
 

=
K=3,4) -58.
 

The secondary emission coefficient also depends upon the electrode material,
 

surface contaminants, and surface absorbed gases. Therefore, it can vary with
 

time, and multipacting may start, quench itself, restart, and continue to
 

flicker on and off. Alternately, it may not restart. Hence, the starting
 

voltage for multipacting of surfaces is not necessarily the restriking voltage.
 

* Performed by SRI, Menlo Park, California 
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Past experiments on multipacting of surfaces not previously outgassed by prior
 

discharges have found that higher order mode breakdown tends 
to occur along
 

a line parallel to and above the mode envelope, rather than showing dips and
 

rises characteristic of the individual modes. 
 After outgassing, the mode
 

structure reappears, and U evidently increases.
 

Band and Channel Assignments - The four channels of the rotary joint 
are as follows:
 

I - Outermost coaxial channel, O.D.2"196 in, I.D.2"056in.
 

II - Central coaxial channel, O.D.1652 in, I.D.l.488 in.
 

III - Innermost coaxial channel, O.D.1'288 in, I.D. 1"160 in.
 

IV - Rectangular waveguide channel, 0.375 in. by 0-750 in.
 

The four frequency bands, each 50 Mz wide, have center frequencies
 

as follows:
 

I - 12.050 GHz
 

2 - 12.150 GHz 

3 - 12.250 GHz 

4 - 12.350 GHz 

There is an optimum assignment of frequency bands among the channels which 

minimizes multimoding in the coaxial channels. The longest wavelength or
 

lowest frequency (Band 1) is assigned to the channel with the greatest
 

circumference (Channel I), 
etc. The optimum assignment is therefore,
 

I-I, 2-11, 3-111, 4-1V. This assignment was 
the only one used here. The
 

likelihood of multipactor breakdown can be minimized by assigning the highest
 

frequency (Band 4) to the channel having the highest field strength (Channel IV),
 

etc., provided all other circumstances are 
the same. This assignment is
 

therefore, identical with the one used above.
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Higher Order Modes and Resonance t*alysi ..- PAom this analysis
 

it was concluded that, although multimoding is possible and the
 

coaxial channel lengths are nearly resonant for some modes, no
 

strong resonance can be excited, due to cavity loading. All mode effects
 

were therefore neglected in computing voltages and fields in the various
 

channels.
 

Voltage and Field Calculations - In calculating the voltages and
 

fields, it was assumed that there were no mismatches within
 

the channels. The rotary joint design incorporates eight
 

probes from waveguides into each end of a given coaxial channel. The channel
 

is short-circuited one quarter wavelength beyond each probe. Impedances are
 

well matched. The geometrical layout is such that regions of high reactive
 

field immediately about the probes are unlikely to multipact.
 

Channel IV fields were computed from waveguide theory. All three coaxial
 

channels have the same impedance (6.25 Ohms), and so have the same gap
 

voltage (79.1V) for 1 KW power transfer. Average gap fields were computed
 

as voltage divided by gap spacing. To estimate choke fields, it was first
 

assumed that each choke corresponded to an open-circuited line of quarter
 

wavelength. The line current was assumed to be distributed sinusoidally from
 

the open end of the choke, as on an antenna. The surface charge along the
 

choke and the electric field were then derived. To zeroth order, the choke
 

field at the open end is identical to the corresponding channel field. There
 

are two minor corrections, one for a series expansion of the channel impedance,
 

and one for a change in surface current density due to different diameters of
 

choke and channel. These corrections lead to a field reduction for the outer
 

diameter choke, and a field increase for the inner diameter choke, both by
 

nearly the same amount.
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Multipactor Calculations - Using existing theory, minimum voltage
 

levels necessary to initiate multipacting between parallel plate
 

electrodes can be predicted. The results also nearly hold
 

for coaxial lines with outer/inner diameter ratios of 2.3,
 

and are even more'exact for smaller ratio such as the
 

1.11 used here
 

The aluminum used for the construction of the rotary joint quickly forms
 

an A 203 surface coating.* The value of U commonly quoted for this oxide
 

is used, which is about the minimum value
is 20eV. A value of k 3 


With these two values, the mode envelope line is given by
observed. 


where fd is the frequency-gap spacing product
V = 0.2555 fd volts rms., 


This is taken to be the minimum ;oltage required to initiate
in MHz-cm. 


multipacting, but it is quite conservative, as the experimentally observed
 

= 

mode line is V = 0.350 fd for the 1/2-cycle mode, and V 0.402 fd for
 

higher order modes on gassy surfaces. Using this last value, a probable
 

voltage required to initiate multipacting is obtained. These voltages are
 

independent of mode number.
 

Within an individual mode, multipacting can begin at a higher voltage than
 

on the mode line. The lower phase-controlled boundary of an individual mode
 

depends only on K, and K=3 was used to determine that boundary0
 

Based on the initial probable voltage to initiate multipacting, Channel 
IV,
 

the rectangular waveguide, had the lowest power rating, provided 
multipacting

occurred in the p=
4 2 mode. Multipacting has seldom been observed in modes
 

Usually electrons diffuse from the multipacting region so
 ,higher than p=3. 


* 	 The aluminum is assumed un-anodized. Anodization would likely increase, 

U above that observed for commercial aluminum. 
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rapidly that high order modes cannot be sustained, and multipacting must then
 

take place in a lower order mode at a voltage well above the mode envelope
 

voltage. The multipactor-initiate voltage then falls on the lower phase

controlled boundary.
 

Accordingly, a new probable starting voltage for the waveguide was calculated,
 

by requiring the generation of one new secondary electron before the average
 

secondary electron diffused to the waveguide sidewall. It was assumed that
 

the secondary electrons had 5.55 eV energy, and thatY, 1.27, which should
 

be characteristic of 50eV primary electrons on Ae20 The values have much
 

uncertainty; however, the value of p was then limited to 22, and the waveguide
 

probable breakdown power was raised about 8.5-fold.
 

With the waveguide calculation refined, it was found that the next three
 

lowest power ratings were the inner choke, channel and outer choke for
 

channel III, respectively. Of these, the two chokes would multipact in the
 

p=l or 3/2 mode, and so are less subject to diffusion-effects, even though
 

the high field region is at the choke end where the electrons can diffuse
 

away. An incomplete analysis shows that gap electrons will raise the breakdown
 

power only slightly, by shifting the breakdown region about one gap thickness
 

inward from the choke edge. A'fuller analysis is not warranted because
 

Channel III itself can probably multipact at a slightly higher voltage as its
 

mode number is only p=7.
 

Conclusions on Multipactor Breakdown - Table 3-9 lists the various
 

channels and critical regions considered, with an estimate of
 

their minimum and probable breakdown powers. Channel III is
 

most likely to begin multipacting, with the inner choke the most critical
 

location, followed by the channel itself. The minimum breakdown power is
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TABLE 3-9 

ROTARY JOINT POWER TO INITIATE MULTIPACTING 

, * Minimum Probable Minimum Probable 
Electric Gap Gap Frequency Breakdown Breakdown Breakdown Breakdown 
Field Voltage Spacing x Spacing Voltage Voltage Power Power -

Location V/cm rms V rms cm MHx-cm V rms V rms kW kW 

Channel I 306 79.1 4259 3120 795 1260 101 251 
II 381 79.1 .208 2520 645 1020 65.2 200 
III 489 79.1 .1625 1990 508 802 41,3 103 
IV 733 697.0 .952 11700 3000 8800 18.8 159 

Outer Choke I 284 14.4 .0508 611 156 246 118. 291 
II 353 18.0 .0508 616 157 248 76.2 190 
I1 448 22.8 .0508 621 159 250 48.2 120 

Inner Choke 1 328 16.7 .0508 611 156 246 87.0 217 
II 424 21.0 .0508 616 157 248 56,0 140 
III 530 26.9 .0508 621 159 250 34.7 86.2 

Coaxial Probe I 286 77 .539 3240 830 1300 116 287 
II 286 77 .539 3270 836 1315 118 293 
III 286 77 .539 3300 843 1330 120 298 

Aperture 
into Channel I 348 90.3 .259 3120 795 1260 77.2 194 

II 389 80.9 .208 2520 645 1020 63.3 158 
III 441 71.5 .1625 1990 508 802 50.2 126 

*i 

Based on 1-kW power transfer per channel. 

NOTE: Band-channel assignments are 1-I, 2-11, 3-1I1, 4-1V. 



based on empirical data which covers the frequency-spacing range appropriate
 

to the Channel III chokes, and so should be quite reliable. Diffusion effects
 

are expected to slightly increase the choke breakdown power. Except for the
 

chokes, which can multipact in the 3/2 mode, the lowest mode number for
 

multipadting is p=7, or the 15/2 mode.
 

Multipacting probably limits the power-handling capability of the rotary
 

joint not by direct power absorption, but by its consequences: Surface
 

absorbed gas is released by bombardment of multipacting electrons, and thereby
 

increases the local gas density. The combination of RF electric field and high
 

local gas density can result in a gas discharge and/or an RP arc. Both of
 

these can be physically destructive to the rotary joint, by overheating
 

and structural failure, or by providing conducting deposits, sharp tips, or
 

other electrical disturbances to the RF circuit. Naturally, high reflected
 

RF powers may damage the RF power source, unless it is protected by limiting
 

devices.
 

Although the lowest predicted probable power-handling capacity of any
 

part of the rotary joint is 86 KW, it will be desirable to check its
 

performance at lower power levels to ensure that the local gas pressure
 

is not too high. This might occur due to heating of electrodes, or to
 

slower-that-anticipated outgassing.
 

NOTE:
 

The results of the above analysis may be used directly to confirm
 
that the band-stop filters do, in fact, have the required power
handling ability:
 

In this case, the critical region is the resonant cavity nearest
 
the input to the device. However, from Table 3-9 it is seen that
 
the probable breakdown voltage across the cavity is 8800 V rms,
 
which corresponds to an input power of 57 KW CW to the filter.
 
Hence, it is evident that the performance of these components is
 
compatible with the system design goal of 1 FI CW per channel.
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Analysis of Ionization Breakdown - The occurrence of ionization
 

breakd6wns in regions of localized gas entrapment is a potential
 

hazard for any RF system operating in a space environment.
 

In most cases, the increase in gas density can be mainly attributed
 

to out-gassing of the metal surfaces of the RF components.
 

For the system being considered, the critical region in this respect was
 

identified as the coaxial choke sections of the rotary joint. This region
 

has a relatively high surface area-to-volume ratio and it also serves as a
 

conductance path for the particles outgassing from the very thin annular
 

volume adjacent to the rotary joints innermost cylinder. The rather high
 
-6 

outgassing rate from the waveguide's aluminum surfaces, about 10 torr-liters
 

I 2 sec- cm , compared to about 10 7 torr-liters sec cm 
-2

, for stainless
 

steel, is of particular concern.
 

A detailed analysis was therefore performed with a view to obtaining a quan

titative evaluation of the outgassing phenomena associated with this config

uration. This analysis is presented in the following section.
 

Mathematical Treatment of Outgassing Phenomenon - The following problem
 

was solved: given an outgassing rate for clean aluminum previously
 

exposed to the atmosphere determine the maximum number den

sity as a function of time in the region enclosed by the waveguide choke
 

section; assume a reasonable initial pressure distribution.
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Let n(x,t) be a function which expresses the number of gas particles per unit
 

length in a direction x.which is parallel to the walls in the enclosed choke
 

section and in a plane containing the central axis of the rotary joint (see
 

Figure 3-50). Also, let f(x) be the rate of surface outgassing per unit
 

length along x. This one dimensional representation assumes that:
 

I. 	The radii of curvature of all surfaces is much greater than
 

any of the gap distances.
 

2. 	There are no gradients in the number density or the outgassing
 

rate in any plane perpendicular to the direction of x.
 

It is assumed that the following partial differencial equation applies:
 

n(LE,) . 2 6n(x,t) 2 
2 a t af(x) 

The 	boundary conditions are (see Figure 4-10):
 

n(o,t) = 0 

= =
 

These boundary conditions are equivalent to n(o,t) = 0 = nx( if n(x,t) is
 

symmetric about x = n(x,o) is known and assumed equal to no sin (x-7). 

Further,
 

2 2
a	 -


T2R
 

where /2 is the r.m.s. distance traveled by the gas particles along x
 

between collisions (free molecule flow is assumed'), and R is the mean collis-


I - I
ion 	frequency assumed that f(x) = constant = r particles sec- cm
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x=o x L 
2
 

FIGURE 3-50 THE COORDINATE SYSTEM OF THE COAXIAL WAVEGUIDE CHOKE SECTION
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The solution to the above partial differential equation can be obtained by
 

standard Green's Function techniques; the solution is 

2
n(x,t) = 4a2 L2 r - (2l) t si (2n-1)rx + no sinir e 
L I~a2 

n=l (2n-l) 3 r3 [l-e 	L a2 L 

This can be verified by direct substitution. (Note that
 

CO
 

A F' 
1 = _I 	 sin (2n-) 1)

r n=I (2n-l) 
 L
 

Using the following values of a, L, and r
 

- 2
 
a = 4.9xi0
 

-4
2 sec 	cm
 

R 4.1xl0-5 sec- I
 

/ 2 0.1 cm 

L= . 3.0cm 

-I - I
 
r = 85xi013 particles sec cm 

W2
 

we obtain (using 	Z 
n=l (2n-1) 

= 	 -I
fim n(L t) 4.8 x 10+10 particles cm
 

t --0 

Since the minimum 	gap distance is 0.05 cm, the maximum number density is
 

- 3
4.8 x particles cm 9.6 x 10 particles cm
 
(0.05 cm) (I cm)
 

and at 250 C this 	number density is equivalent to
 

- 3
(9.6xi0") (3.2xi016 Darticles cm 3xlO 5 torr
 
torr
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a. The Transformation of the Outgassing Volume
 

The outgassing volume is shown in Figure 3-50 the first step in the trans

formation and simplification of the outgassing volume is shown in Figure
 

3-51. Two, rather than one, enlargements are shown because in order to
 

transform the boundary condition from n(o,t) - 0 - nx (,t) into the more
 

= 
manageable boundary conditions n(o,t) " 0 = n(L,t), it is necessary to ensure
 

= 
symmetry about x L
2 

These enlargements do not contribute significantly
 

to the conductance along x but their surface area does contribute to the out

gassing; this outgassing is assumed to be "smeared out" uniformly over x
 

as stated in discussion of the outgassing rate.
 

b. 	The Outgassing Rate
 

6 torr-liters (at 250C) per cm
2
 

The outgassing rate was assumed to be 10


2 

per sec* The surface area of the region of interest is 4.2 cm per unit
 

length perpendicular to the cross section shown in Figure 3-50 (including
 

the enlargements shown in Figure 3-51; therefore, number of particles per
 

unit length coming off the walls is 

-2 -1 x 4.2 cm2 = 1.36 x 10+14 particles
3.25 x 10+13 particles cm sec
 

Since the length of the region of interest is 1.5 cm.
= I - -	 I I
 

r 1.36 x 1014 particles sec = 9.1 x 1013 particles sec cm
 

L/2
 

2
 
= The Relation a2 
c. 


This relation can be derived from the a solution to the one dimensional ran

dom walk problem. The details will not be given here (see Kennard, Kinetic
 

C. B. Barnes, "Cryogenic Vacuum and Space Simulation , CVI Corporation,
 

Columbus, Ohio, May 1967, Figure 33.
 

"]
sec
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FIGURE 3-51 TRANSFORMED OUTGASSING VOLUME 
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Theory of Gases, beginning on Page 268). The value of Pr-m-s.(the r,m.s.
 

distance traveled by the particles along x between collisions) was estimated,
 

= 
assuming a cosing spacial remission distribution; the result was I r.m.s. 2d
 

where d is the gap distance. R (the mean collision frequency) was determined
 
c 

from R = C where E is the mean speed of the gas particles at 250 C 

and £ is the mean distance traveled between collision (not necessarily 

along x); Ais equal to 2d. The particles' residence time on the walls between 

collisions is negligible; it is of the order of 5 x 10'12 sec 

d. The Boundary Conditions
 

=
At x 0 in Figure 3-50, the conductance of all leakage paths increases 

several decades; the boundary condition at x = 0 can therefore be reasonably 

approximated by n (o,t) = 0. At x = 1 in Figure 3-50, the conductance of 
2
 

the leakage path decreases, and there is some incoming particle flux at this
 

point. This incoming particle flux comes from the outgassing of the inner
 

shaft of the rotary joint. Under these circumstances, the boundary condition
 

nx(L/2,t) = 0 seems to be the most appropriate approximation.
 

e. The Time Constant
 

The time constant of the system is - 2 0.45 milliseconds.
 

Therefore, any reasonable initial number density decreases to a negligible
 

value in an interval that is very short compared to the operational time scale.
 

"The Dynamical Character of Adsorption", J. H. deBoar, The Clarendon
 
Press, Oxford, 1953, pp 30, 35.
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Conclusions of Ionization Breakdown - The preceding analysis shows
 

that the venting path formed by a single rotary joint choke
 

section has a time comstant of approximately 0.45 milliseconds.
 

It also shows that the maximum pressure in this region due to outgassing from
 

a clean aluminum structure is 3 x 10- 5 torr.
 

Since both of these parameters are proportional to (path length)2 , the cor

responding figures for the complete rotary joint assembly (in which the vent

ing path is through four such sections) are (4)2 x 0.45 = 7.2 milliseconds
 

x 3 x 10-5 
and (4)2 = 0.48 x 10-3 torr.
 

Thus, if a rotary joint which has been thoroughly cleansed is placed in a
 

space environment, the initial venting process will cause the pressure at
 

the innermost choke section to drop within a few seconds to a level which
 

3
is just below the ionization breakdown limit of 10-3 torr. (At 10- torr, the
 

mean free path of an electron is commensurate with the inside dimensions of
 

the coaxial waveguide channels. Hence, at pressures below this level, the
 

avalanche process required to initiate an ionization breakdown cannot occur.)
 

The pressure then falls off gradually from this level as the outgassing
 

rate decreases.
 

If the unit has not been thoroughly cleansed, it is possible that the initial
 

pressure due to outgassing will be above the critical level and hence there
 

will be a period following launch (typically 10-20 hours) during which an
 

ionization breakdown could occur.
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It is therefore concluded that if such an occurrence is to be avoided,
 

it will be necessary to 

(a) 	Specify a cleansing procedure which removes the
 

metal surface impurities, and 

(b) 	Avoid switching on high RF powers in the early
 

stages of the mission.
 

3.4.3.2 RF Power Dissipation
 

Estimation of RF Losses - The total RF losses were estimated by taking
 

the mechanical layout and tracing the power flow through the system for
 

each channel.
 

The worst case is depicted in Figure 3-52, which illustrates the path
 

taken by the power in Channel I when it is switched into Beam 2. The
 

insertion loss associated with each circuit element (including inter

connecting waveguide runs) is shown, and adding these gives a figure of
 

1.55 dB.. The value of 0.35 dB quoted for the rotary joint was arrived at
 

in the following manner:
 

ITEM' INSERTION LOSS (dB) 

Input Network 0.10 
Rectangular-to-coaxial Waveguide Transition 0.05 

Coaxial Waveguide 0.05 
Coaxial-to-rectangular Waveguide Transition 0.05 

Output Network 0.10 

Total Insertion Loss 0.35 
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For a 1 KW input, this corresponds to a power dissipation of 300 watts and
 

it therefore follows that there will be 
severe thermal control problems
 

which must be overcome if the system is to operate successfully. These
 

problems are discussed in the'followihg section.
 

Effect of RF Power Dissipation on System Performance - A thermal
 

analysis was performed which shows that, for an input of I KW CW per
 

channel, the RF system has a steady-state operating temperature of
 

400-450 F. From this result, the dimensional changes and hence the perfor

mance degradation associated with the RF power dissipation were estimated.
 

Two components were particularly vulnerable in this respect:
 

1. The band-stop filters
 

2. The coaxial choke sections of the rotary joint.
 

A first-order calculation showed that, in the case of the filters, the
 

effect of the temperature variation would be to change the position of the
 

stop-bands by approximately 20 MHz.
 

A similar calculation for the proposed rotary joint configuration revealed
 

that dimensional changes of as much as 
0.030 Inch could occur in the region
 

of the coaxial waveguide choke sections.
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Clearly, both of these effects are unacceptable to the system and it is
 

therefore necessary to conclude that extensive thermal control mechanisms
 

(e.g., external radiators) will be required if the design goals in terms
 

of power-handling ability are to be realized.
 

Possible Techniques for Reducing RF Transmission Losses
 

RF transmission losses can be reduced (and hence the thermal control prob

lem 	alleviated) by resorting to the following techniques:
 

1. 	Substitute WR-90 for WR-75 and fabricate, where possible,
 

in OFHC copper instead of alumintm.
 

2. 	Use 0.9 inch (2.286 cm square waveguide for the 6-foot (1.8288
 

meter) runs from the transmitters to the rotary joint.
 

With these modifications, the attenuation constants become 2.96 and 1.65
 

dB/lO0 ft. 
(30.48 m) for the WR90 and 0.9-inch square waveguide respectively.
 

The 	worst-case insertion loss is therefore reduced to 1.19 dB (see Figure 3-53).
 

This corresponds to a power dissipation of 240 watts, which represents a substan

tial improvement on the original value of 300 watts.
 

3.5 RECOMMENDED DEVELOPMENT TEST PROGRAM
 

There are three areas which will require experimental investigation in order
 

to verify the performance of the proposed RF system. These are:
 

a. 	Suppression of near-in side lobes of antenna radiation
 

pattern.
 

b. Feasibility of the candidate design for the 12 GHz rotary
 

joint.
 

c. Performance of the RF components (rotary joint in particu

iar) at high power under environmental conditions.
 

The recommended test programs for each of these items are given in paragraphs
 

3.5.1 through 3.5.3.
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3.5.1 Antenna Test Program
 

3.5.1.1 Objectives
 

The main purpose of this program should be to establish:
 

a. 	The extent to which the near-in side lobes of the
 

antenna radiation can be suppressed by utilizing
 

relatively simple aperture blockage compensation
 

techniques in conjunction with a heavily-tapered
 

aperture distribution.
 

b. 	The fraction of the input power which must be
 

delivered to the blockage compensation element
 

in order to achieve maximum suppression.
 

In addition to this work, a series of measurements should be carried out
 

to evaluate the RF coupling between the high-power antennas and the
 

interferometer elements of the direction-sensing system.
 

3.5.1.2 Test Plan
 

The antenna configuration, together with a block diagram of the required
 

test set-up, is illusttated in Figure 3-54.
 

Since the blockage compensation technique, per se, does not depend on
 

the use of circular polarization, the necessary tests could be carried
 

out using linear polarization only. The prihcipal stages of the program
 

should, therefore, be as follows:
 

I. 	Procurement of main reflector
 

This should be a precision dish having the required 28-inch
 

(66.04 cm) diameter and f/d ratio (0.35).
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2. Design. Fabrication and Testing of Prime Focus Feed-Horn
 

The horn dimensions needed to provide the required edge-directed
 

aperture taper should be established experimentally.
 

Back-radiation from the horn could make a substantial contri

bution to the near-in sidelobe level of the secondary pattern.
 

A double choke section of the type shown in Figure 3-54 
should,
 

therefore, be incorporated iq the horn design so as 
to reduce
 

this effect to an acceptable level.
 

3. Optimization of Prime Focus Reflector Antenna
 

The optimum feed position shbuld be determined, after which
 

measurement should be made of antenna gain, efficiency, beam

width, near-in sidelobe level, back-to-front ratio and cross

polarization pattern.
 

4. Design, Fabrication and Testing of Dielectric Tube Antenna
 

As a first step in the development of this component, a suit

able outside diameter 
should.be chosen for the dielectric tube.
 

Based on this dimension, a transition 
should be designed so that
 

the antenna 
could be fed from coaxial cable. The dielectric tube
 

parameters (i.e., length and wall 
thickness) _
 

so as to find the configuration which yields the optimum per:
 

formance in terms of beamwidth, gain and sidelobe level. 
 The
 

final design, should be modified by the addition of a choke sec

tion as shown in Figure 3-54. The function of this choke would be
 

to suppress the backlobe of the tube pattern and hence minimize
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the mutual coupling between the blockage compensator and the
 

main antenna.
 

5. 	 Optimization of Prime Focus Reflector Using Aperture
 

Blockage Compensation
 

The blockage compensator should be positioned behind thp prime
 

focus feed-horn, as shown in Figure 3-54, and the phase and
 

amplitude of the power delivered to it adjusted to achieve max

imum 	suppression of the near-in sidelobes of the secondary pat

tern. The overall performance figures for this optimized configu

ration should then be obtained and compared with those for
 

the basic prime focus reflector. In this way, the advantages
 

to be gained by utilizing aperture blockage compensation for
 

this project could be fully assessed.
 

6. 	 Measurement of RF Coupling Between High Power Antennas and
 

Interferometer Elements
 

The R coupling between a single high-power antenna and the
 

adjacent interferometer element should be measured using the
 

test set-up shown in Figure 3-55. The coupled power could prove
 

to be above an acceptable level when the interferometer element
 

is in the position currently allocated to it. Should this be
 

the case, a series of measurements should be performed to inves

tigate the effectiveness of reducing the coupling by displacing
 

the element, either laterally or axially, from its original
 

position.
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3.5.1.3 	 Expected Results
 

It is anticipated that the proposed antenna configuration
 

near-in sidelobe level of approximately -30 dB. The power which must be
 

delivered to the blockage compensation element to achieve this should repre

sent a drop-in antenna efficiency of less than 3 percent.
 

3.5.2 Rotary Joint Feasibility Test Program
 

3.5.2.1 	 Objectives
 

This program should be directed toward demonstrating the feasibility of the
 

candidate 12 GHz rotary joint. A complete single-channel device should
 

therefore be fabricated and detailed measurements performed to evaluate
 

Its RF transmission properties.
 

3.5.2.2 	 Test Plan
 

The test plan should be divided into the following sections:
 

1. 	 Design. Fabrication and Testing of Power Dividers for
 

Feed Network
 

The power dividers take the form of E-plane T-junctions and
 

the object of this part of the program should be to develop a
 

junction of this type which provides equal power-split with
 

low input VSWR and insertion loss at the design frequency.
 

2. 	 Design. Fabrication and Testing of Waveguide Bends for Feed
 

Network
 

The waveguide bends required for the interconnection of the E-plane
 

power dividers should be determined from the final layout
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of the feed network. These bends should then be designed with
 

a view to minimizing their VSWR and the insertion loss.
 

3. 	 Fabrication and Testing of Complete Feed Network
 

The design information gained in Sections (1) and (2) should be
 

used as a basis for the fabrication of a complete feed network.
 

This network should be tested for insertion loss, input VSWR
 

and equality of power split. The relative phase at each of the
 

eight output ports should also be measured.
 

4. 	 Design. Fabrication and Testing of Rectangular-to-Coaxial
 

Waveguide Transitions
 

The special test equipment required to carry out this part of
 

the program (such as coaxial waveguide slotted line) should first
 

of all be designed and fabricated.
 

Measurements should then be carried out on a series of experi

mental transitions to establish the configuration which provides
 

the best performance in terms of VSWR and insertion loss.
 

5. 	 Design, Fabrication of Coaxial Waveguide Choke Section
 

A coaxial choke section which would provide a channel isolation
 

of better than 40 db should be designed and fabricated.
 

6. 	 Fabrication and Testing of Complete Single Channel Joint
 

A prototype single-channel unit should be designed and fabri

cated using the data gained in the previous segments of the
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test program. An extensive series of VSWR and insertion loss meas

urements should then be conducted to evaluate the RF trans

mission properties of this device as a function of rotational
 

angle.
 

A 	prime objective of the tests 
should be to detect any performance
 

degradation caused by the generation of higher-order modes
 

or spurious resonances within the coaxial waveguide section.
 

In the final part of the program, any modifications necessi

tated by these, or other, effects should be carried out.
 

3.5.3 Environmental Test Prograr,,
 

3.5.3.1 	 Objectives
 

The theoretical results of the high-power breakdown analysis (paragraph 3.4.3)
 

indicate that the proposed rotary joint configuration will be capable of
 

handling I KW CW power levels while operating in a space environment.
 

This test program should therefore be directed toward verifying these results
 

experimentally and defining the thermal control mechanisms required to keep
 

the operating temperature within acceptable limits.
 

3.5.3.2 Test Set-Up
 

RF Equipment - The RF test set-up is outlined diagrammatically in Figure 3-56. 
 As
 

shown, a pulsed source should be used. 
The peak power of this device at the
 

design frequency should be in excess of I IW and the pulse should be of sufficient lengt
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to permit the build-up of any multipactor or ionization processes which
 

might occur. (The RF power dissipation associated with a fully operational
 

4-channel rotary joint should be simulated by means of D.C. heating, so that
 

the conditions under which the device must function would be accurately re

produced in the vacuum chamber.)
 

The source should be isolated from the effects of high-power breakdowns within
 

the test circuit. Adequate filtering should be provided to reject any harmonics
 

which might be generated by the source.
 

The power delivered to the test piece should be controlled by means of 7phase-


In this way, it should be possible to avoid
shifter/hybrid junction network. 


the changes in pulse shape which would occur if the power level was varied
 

electronically.
 

Provision should be made for the measurement of both incident and transmitted
 

In addition, these parameters should be monitored continuously
power levels. 


on oscilloscopes in order to detect any small, sporadic changes which might
 

occur.
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Low Pressure Equipment - The low-pressure tests should be performed
 

using a stainless steel vacuum chamber which is equipped with the
 

following:
 

1. Thermocouple feed-thru
 

,2. Liquid nitrogen feed-thru
 

3. High-voltage and current feed-thru
 

4. Ordinary electrical leads
 

5. Rotary motion and linear displacement feed-thru's
 

A residual gas analyzer should also be utilized. The ultimate
 

pressure of a vacuum system of this type should be a few times 10-10 tort,
 

provided that all feed-thru-s and other equipment inside the vacuum
 

chamber are routinely cleaned in an ultrasonic cleaner.
 

3.5.3.3 Test Procedure
 

The power-handling capabilities of the rotary joint in a space environment
 

should be evaluated by means of the following test procedures:
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I. Cleansing of Test Item
 

The test item should be thoroughly cleaned prior to each set of
 

low pressure measurements. Of the various cleansing methods
 

available, the procedure associated with ASTM Designation
 

B253-53* is considered to be the most satisfactory and prac

tical for the aluminum surfaces in question. This treatment
 

is advantageous in that it removes both the original oxide
 

film and the surface microconstituents.
 

2. 	 Checkout of Vacuum Facility
 

Each set of low-pressure measurements should be preceded by a
 

test run with the empty chamber to ensure that the vacuum
 

facilities are functioning satisfactorily.
 

3. 	 Initial Investigation of Venting and Outgassing Rates
 

Preliminary tests should be carried out to evaluate the venting
 

and outgassing rates associated with the basic rotary joint
 

structure. These would merely involve placing the test piece
 

in the vacuum chamber, pumping down, and monitoring the time
 

required for the pressure within the joint to drop below the
 

-
critical pressure of 10 3 torr. If it is felt to be necessary,
 

the feasibility of introducing venting holes to increase the
 

leakage rate should also be investigated.
 

"Specifications and Tests for Electrodeposited Metallic Coatings",

American Society for Testing Materials, July 1958, p. 69.
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4. 	 Investigation of Thermal Effects
 

The thermal conditions which will prevail when the 4-channel
 

rotary joint is operating in the space environment should be
 

simulated in the vacuum chamber by using DC heating in con

junction with a liquid nitrogen thermal shroud.
 

With zero heating, the internal pressure of the single-channel
 

joint should be reduced below the critical value. Heating should
 

then be applied (thereby simulating the switch-on of RF power),
 

and the effect on the outgassing rate determined by measuring
 

any pressure changes which occur. The results of this test
 

should be used to define a switch-on procedure to ensure that the
 

.internal pressure remains below the critical level after the
 

initial venting phase has been completed. Hence, the danger of
 

ionization breakdown within the rotary joint during the early
 

stages of high-power operation should be eliminated.
 

An additional test should be performed to evaluate the effect of
 

thermal expansion brought about by RF power dissipation. The
 

pressure should again be reduced below the critical value and the,
 

RF transmission properties of the rotary joint monitored using
 

a low input power.
 

This power level should be kept cnnstant as the temperature is
 

increased to simulate the I KW CW per channel operating condi

tions. Any performance degradation due to the resulting dimensional
 

variations should then be observed.
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The 	results of this test should be used as a basis for defining
 

the maximum permissible operating temperature and for specify

ing 	any thermal control mechanisms (such as external radia

tors) which might be required in the final system.
 

5. 	 High Power Tests
 

The power handling capabilities of the rotary joint should be
 

investigated using the techniques described in the previous
 

sections to simulate the environmental operating conditions.
 

The 	general approach should be to observe a cautious switch-on
 

procedure and then raise the input power to the maximum level
 

that 	can be tolerated by the device.
 

If breakdown occurs before the required power level, steps
 

should be taken to identify and eliminate the failure mech

anism involved.
 

3.6 EFFECT OF VARIATIONS N DESIGN 

The following sections are devoted to considering various change in the 

system design parameters. In all cases, the primary objective will be to 

evaluate the effect of these changes on the performance of the antenna and 

RF subsystem. 

3.6.1 Beam Separation of Up to 2 HPBW on All Patterns
 

In the proposed antenna system, a separate prime focus reflector is allocated
 

to each of the four beams. Increasing the beam separations up to 2 HPBW,
 

therefore, represents no mechanical or RF design problem since it only
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involves making relatively small adjustments to the alignment of these
 

reflectors.
 

To assess the effect of the increased beam separations on the system per

formance, it is necessary to consider separately the two modes of opera

tion which are illustrated in Figure 3-57.
 

In the first, the four beams are "in-line" and the increased separation in
 

no way compromises the antenna performance.
 

In the second case, however, increasing the "vertical" displacement of beam
 

4 will cause it to be intercepted by the solar panels. Unfortunately the
 

situation cannot be alleviated by reorganizing the mechanical integration of
 

the system, since the available shroud volume has already been fully utilized
 

to provide maximum clearance between the panels and the high-power beams.
 

Therefore, with the present system, an upper limit (estimated as being approx

imately 1 HPBW) must be imposed on the "vertical" displacement of beam 4, if
 

severe pattern degradation due to the presence of the solar panels is to
 

be avoided.
 

3.6.2 Three Channels on Beam 3 and One on Beam 2
 

A slightly more complex RF subsystem it required to achieve the capability
 

of combining three channels in a single beam.
 

The suggested configuration is illustrated in Figure 3-58. As can be seen
 

from the diagram, it is a modified version of the original RF subsystem, and
 

therefore presents essentially the same design problems.
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There is, however, an additional problem of some significance in that the
 

power rating of the second switch (SW2 in Figure 3-58) is increased to 2 KW CW.
 

Hence, the successful operation of this system is contingent upon the develop

ment of a switch which is capable of handling power levels of'this magnitude.
 

3.6.3 Power Transfer From Solar Panels to Transmitters by Means of
 

D.C. Sliprings
 

The preferred satellite configuration for a system based on the concept of
 

DC power transfer across sliprings is illustrated in Figure 3-59. From this,
 

it is seen that the "North-South" alignment of the solar panels offers the
 

immediate advantage of eliminating any interference between them and the
 

beams from the high-power antennas.
 

In addition, by removing the need for a rotary joint and the 6 foot
 

length of waveguide connecting it to the transmitters, a significant reduc

tion in the RF power dissipation may be achieved. Calculation shows, in
 

fact, that the overall insertion loss can be reduced by as much as 0.4 dB.
 

3.6.4 Variation of Channel Separation to 1.2 Channel Widths With a
 

Relaxation in Channel Isolation to 20 d
 

The proposed RF subsystem is such that a reduction in channel separation
 

to 1.2 channel widths does not affect the system performance for the mode of
 

operation in which a single channel is allocated to each beam.
 

However, for the mode in which the four channels are combined in two beams,
 

the reduction in channel separation which may be achieved is limited due to the
 

performance characteristics of the band-stop filters.
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In'this case, which is illustrated by Figure 3-60,the filters must reject
 

one channel while transmitting the power from the adjacent channel with a
 

minimum attenuation. Hence, as the channel separation is decreased, the
 

"transmitted" channels move into the edges of the stop bands and conse

quently suffer an increase in attenuation.
 

An estimate of the lower limit which must be imposed on the channel sep

aration may be obtained by considering the specimen filter which was designed
 

to illustrate the feasibility of the proposed RF subsystem. This filter pro

vides a 50 MHz stop band centered on 12.2 GHz. Therefore, the frequency
 

corresponding to the center of the adjacent channel is of the adjacent channel: 

fa = (12.2 + 0.050 8) GHz, where 8 is the channel separation 

in channel widths. 

From this, the frequency at the lower end of the adjacent channel is: 

fl = 1(12.2 + 0.050 8) 0.022 J Hz 

i.e., 

fl . = (12.178 + 0.050 ) Hz. 

Using this relationship in conjunction with the theoretical curve for the
 

filter transmission coefficient leads to the graph of insertion loss vs.
 

channel separation which is shown in Figure 3-61.
 

If the maximum permissible transmission loss is nominally specified to be
 

0.5 dB, then it is seen from the graph that a lower limit of approximately
 

1.7 channel widths must be placed on the channel separation.
 

The transmission loss near the edge of the stop band could be reduced by
 

relaxing the specification on the filter rejection from 40 dB to 20 dB..
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This would not involve a corresponding decrease in the channel isolation
 

since that parameter is determined by the properties of the rotary joint
 

coaxial choke sections. However, there would be an increase in the power
 

losses associated with the rejection process and, with a I KW input, it
 

would be necessary to dissipate 10 Watts within the matched termination
 

of the hybrid junction (see Figure 3-60).
 

Because of this effect, it is not possible to substantially reduce the lower
 

limit on the channel separation by modifying the filter design.
 

A marginal improvement in the loss figures could be obtained by using
 

WR 90 OFHC copper, instead of WR 75 aluminum waveguide. This would allow
 

a separation of approximately 1.5 channel widths to be achieved. Any fur

ther reduction, however, would be accompanied by a sharp rise in the power
 

dissipation within the filter. For this reason, it is necessary to con

elude that a separation of less than 1.5 channel widths is not feasible
 

for the mode of operation in which the four channels are combined in two
 

beams.
 

3.6.5 Variations in Power Level to as High as 2.5 KW per Channel
 

There are three mechanisms which can seriously affect, the performance
 

characteristics of an RF system when it is operated at high CW powers in
 

a space environment:
 

1. Multipactor breakdown
 

2. Ionization breakdown
 

3. Dimensional chAnges brought about by RF power dissipation.
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For 	the system being considered, the critical region for both multipactor
 

and 	ionization breakdown is the innermost coaxial choke section of the
 

four-channel rotary joint. Analysis has shown, however, that multipac

tion 	cannot occur in this region until power levels in excess of 18 KW
 

per 	channel are being transmitted. Furthermore, the choke dimensions are
 

such that the avalanche process required to initiate an ionization break

3
down 	cannot take place if the internal pressure is less than 10- tort.
 

Hence, it is concluded that an increase in power level to 2.5 KW per
 

channel will not result in a multipactor or ionization breakdown, provided,
 

of course, that a cautious switch-on procedure is observed.
 

Any 	performance degradation which occurs will, therefore, be related
 

to the increased RF power dissipation. For a power level of 2.5 KW per
 

channel, this effect gives rise to an operating temperature of approxi

mately 600°F (see Thermal Analysis). It is therefore evident that if
 

power levels of this magnitude are to be achieved, then external radia

tors must be empl6yed to keep the system temperature within acceptable
 

limits.
 

If adequate temperature control is not maintained, then it is possible
 

that complete loss of mission will occur. In this event, the most likely
 

failure modes are:
 

(1) 	Contact between adjacent coaxial choke sections, leading to
 

complete malfunction of rotary joint.
 

(2) 	Change in position of filter stop bands, leading to very
 

high power dissipation within matched terminations of power
 

dividers.
 

3-130 



SECTION IV
 

DIRECTION SENSING SUBSYSTEM
 

4.1 PURPOSE
 

The purpose of this part of the study is to develop alternative Direct
 

Sensing Subsystem (DSS) concepts and select the best alternative to meet
 

direct sensing requirements. A detailed error analysis is performed on
 

the preferred design to determine DSS attitude measurement accuracy.
 

The DSS study has resulted in an attitude sensing system which meets the
 

design requirements, objectives and constraints given in the Statement of
 

Work. The system derived from the study reflects state-of-the-art techniques
 

in RF direction sensing as it would be implemented for spacecraft. Tests
 

required to confirm performance are recommended.
 

4.2 STUDY SUMMARY AND CONCLUSIONS
 

4.2.1 Preferred Spacecraft DSS Approach
 

The DSS is construed to be an integral link in the"Attitude'Control System
 

(ACS) and the VSS with the ACS forms a complete, precision antenna platform
 

attitude stabilization system. This system angle-locks to ground radio beacons,
 

the attitude angle of lock being controlled by ground cojmand. Upon changing
 

of this command, the system seeks and acquires the new attitude stabilizing
 

on it. In this way, the direction of and area of earth illumination by narrow
 

beam satellite antennas is controlled.
 

4.2.1.1 DSS Requirements
 

The DSS requirements are derived from the overall antenna pointing requirements
 

and-are listed in Table a-i. Included are important DSS requirements and
 

constraints derived from study considerations.
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TABLE 4-1
 

DIRECTION SENSING SUBSYSTEM (DSS) REQUIREMENTS 

STATED REQUIREMENTS 

" Simultaneous or Sequential Measurement (With Command Override) of:
 

a. Signals from Ground Transmitters
 
b. Signal(s) using Spacecraft Transmitting Antenna(s)
 

* Acquisition and Tracking Over: (Acquisition Time 15 Minutes)
 

a. +200 Longitude from Subsatellite
 

b. + 45, -l00 Latitude
 

" Define Ground Equipment Characteristics for Evaluation and Analysis
 

DERIVED REQUIREMENTS AND CONSTRAINTS
 

" DSS Pattern Axes Location Error Allocation:
 

a. .05 RMS Pitch and Roll Relative Error for Spacecraft Measurement,
 
b. .50 RMS Yaw Absolute Error for Ground Measurement
 

" Ground Interferometer Beacon Transmitter Locations:
 

a. 15 N. Latitude, 0 Longitude (From Subsatellite)
 
b. Others Within the Tracking Area Boundary
 

* Reliability for a 5 Year Mission
 

" Minimum Impact on Transmission Antenna Design
 



4.2.1.2 Preferred DSS Configuration: Summary
 

The investigation of DSS design alternatives and error analysis has led to
 

the following DSS configuration.
 

a. 	Orthogonal axes interferometer of 32-inch baseline (91.44 cm)
 

with the horns mounted directly on the truss members running
 

between the large aperture transmission antennas. Frequency
 

is 8 GHz linearity-polarized "diagonal" horns are mounted on
 

waveguide extensions to reduce coupling with the high power
 

feeds. A second shorter baseline is omitted, the ambiguity
 

resolution being performed initially by ground sensing of the
 

beam position, and subsequently by.phase tracking over the 2
 

transition in the receiver.
 

b. 	The interferometer receiver is located behind the center of
 

the 	cross of the baselines and is coupled to the horns by non

rigid, thermally insulated, temperature compensated coaxial cable.
 

The 	receiver input is isolated from 12 GHz signal coupling by
 

waveguide filters which provide 105 dB rejection at 12 GHz.
 

The receiver is switched between interferometer arms by means
 

of PIN-diode RF switches at a 20 Hz rate. The receiver is a
 

"pilot-tone" type to achieve negligible phase bias error in
 

the receiver channel.
 

c. 	Three axis attitude measurement is provided by using two
 

continuously transmitting ground beacons. The phase measurement
 

circuit averages phase samples, which represent a beacon
 

transmitter L.O.S. vector direction cosine in one axis for
 

1/80 second. The measurement circuit is then switched to the
 

output of the alternate beacon signal detector to measure the
 

second L.O.S. vector direction cosine. The receiver inputs are
 

then switched to the other interferometer arm for measurements in
 

the other axis.
 

4-3 



d. 	The phase measurements are then presented to the ACS computer
 

in the form of 4 11-bit binary numbers representing measurements
 

with signal-to-noise ratios of 34 dB. The ACS computer derives
 

antenna platform pitch,roll and yaw. The attitude determination
 

contains .0380 noise and .0230 bias errors (both 3 c) for pitch
 

and roll. Yaw noise error for a 10-second averaging period is less
 

than 0.60 (30r) for beacon L.O.S. vectors separated by more than
 

60 as viewed from the spacecraft.
 

4.2.1.3 Physical and Electrical Configuration
 

The 	physical configuration is shown in Figure 5-2.
 

The 	pilot tone receiver is shown in principle in Figure 4-1. Omitted from the
 

drawing are the RF switches to alternate between the two interferometer axes,
 

the 	switching between two envelope detectors and a standby redundant receiver
 

and 	pilot-tone oscillator. The drawing illustrates the simplicity of the
 

receiver design. There are no synchronous detectors or narrow-band tracking
 

loops. The demodulators are conventional envelope detectors. The phase
 

detector is an all-digital circuit that produces a phase estimate in the
 

form of a digital numbe. The receiver design is detailed in paragraph
 

4.3.2.
 

4.2.1.4 Interferometer Attitude Measurement Performance
 

Table 4-2 itemizes the pitch and roll attitude errors due to the interferometer
 

measurement. These figures are derived in paragraph 4.3.3. Note that the
 

root sum square (RSS) of 3c noise and bias error is .0320, which is well
 

within the .050 allocation for DSS. The figures for the yaw measurement
 

are 	for a 10-second averaging time.
 

4.2.2 Preferred Ground DSS Function
 

4.2.2.1 Requirements
 

The DSS is required to perform the following functions not performed by the
 

spacecraft functions. The DSS must:
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For Af = n Aw = 10 kIz and a pilot tone stability of 10- 7 (.1 ppm),
 

a post-detection bandwidth of 20 kHz is practical.
 



a,
 

TABLE 4-2 INTERFEROMETER ERROR BTmaET 

RMS RANDOM 	 BIAS & LONG-TERM 

RANDOM ATTITUDEERO OREATTITUDEERROR SOURCE 
ERROR ERROR (39)
 

(DEG.)(DEG.)
 

Phase Quantization .001
 

Receiver Thermal Noise .0086
 

Scale Factor (Baseline Stability) .0011
 

Zero Crossing Detector Bias .001
 

RF Phase Bias
 

Antenna Phase Center 	Motion
 
(0.3' Diff.) .0024
 

Antenna Polarization Error
 

(.10 Element Alignment) .001
 

Coax Diff. Phase (.50)
 
(200C Temp. Diff.) .004
 

Directional Coupler Phase Diff. .01
 

Rcvr. Diff. Phase (.1 ) .001
 

Pitch and Roll RSS Total 	 .009 (i0)
 
.027 (39) .0160 (3y)
 

Yaw (L.O.S. Vector Separation 60) 	 .60 (3r) .0160 (3u)
 



a. Measure antenna -platformattitude employing signal(s) which use
 

the 	spacecraft large-aperture transmitting antennas.
 

b. 	Locate the beam pattern'geometric center orientation with an
 

absolute accuracy of +.05 ° in antenna platform pitch and roll and
 
t.50 in yaw.
 

c. 	Convert the attitude measurements to attitude correction signals
 

to be transmitted to the spacecraft attitude control system.
 

d. 	Provide spacecraft antenna platform attitude measurements
 

simultaneously or in sequence with spacecraft interferometer
 

attitude measurements.
 

e. 	Provide a means of redundant spacecraft antenna platform
 

attitude measurement in event of spacecraft interferometer system
 

failure or measurement interruption.
 

f. 	Provide a means of resolution of ambiguity of measurements made
 

by the interferometer.
 

Requirements e and f above are derived from the preferred spacecraft DSS
 

approach.
 

4.2.2.2 Selected Approach
 

The 	recommended technique of direction sensing employing signals which use
 

the 	spacecraft transmission antennas is making direct measurements of the
 

patterns at ground receivers. Other techniques were investigated. However,
 

they in general involve additional feeds on the transmission antennas located
 

close to the main feed. The resulting additional aperture blockage or feed
 

mutual coupling would raise the sidelobe level above the -25 dB requirement
 

placed on the design of the transmission antennas. Paragraph 4.4.2 compares
 

the 	various approaches.
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The recommended approach makes power measurements on the main transmitted
 

signal (if angle modulation is used) with bandwidth up to 50 MHz. This is
 

feasible with spacecraft ERP of 63 dBw or more. For operation with less ERP
 

or if amplitude modulation is employed on the main beams, a constant power
 

signal in.a vacant area of the 12 GHz frequency spectrum must be used. In
 

this case an ERP of 50 dBw provides the necessary attitude measurement accuracy
 

if receiver bandwidth is equal or less than 2.5 MHz.
 

4.2.2.3 Accuracy of the Ground DSS Technique
 

Two approaches have been developed which measure beam pattern characteristics
 

at gm und receivers. The first approach utilizes the spacecraft antenna and
 

ground receiver site effectively as an antenna range. (Refer to paragraph
 

4.4.3.)
 

Present simple antenna range practices permit definition of the location of
 

the beam axis with an uncertainty of 1/50 of the HPBW. This corresponds
 

to .050 for a 2.70 HPBW. Averaging data over several antenna pattern cuts
 

reduces the uncertainty of the axis location. Table 4-3 lists errors in the
 

axis location definition process.
 

TABLE 4-3 

AXIS LOCATION UNCERTAINTY 
(FULL PATTERN MEASUREMENT) 

POWER METER PER MEASUREMENT ERROR AXIS LOCATION UNCERTAINTY 
RESOLUTION (INCREMENT = .060) (ERRORS AVERAGED OVER -2.5O 

TO +2.50 PATTERN) 

.01 dB .0510 .00560 

.02 dB .1020 .011 0 

It was found that error due to power meter resolution dominated error due to
 

antenna platform stepper resolution.
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A second approach uses small attitude increments in orthogonal or quadrature
 

directions and measures the resulting power changes at a ground receiver
 

located off the beam axis. (Refer to paragraph 4.4.7.) This technique requires
 

the prior, accurate measurement of the antenna pattern. Figure 4-2 presents
 

the estimated error for this DSS technique. It is seen from the curve that
 

the attitude increment must be less than .100 for accuracy approaching the
 

required .050. It should be noted that making a series of these measurements
 

and averaging results should reduce error to less than that required.
 

4.2.3 DSS Integration into an On-Board Attitude Sensing and Control System
 

Figure 4-3 shows the DDS functions integrated into an on-board closed-loop
 

attitude sensing and control system. The interferometer measures the direction
 

of the line-of-sight (LOS) vectors of two transmitter beacons. From this
 

information 3-axis attitude is measured and compared with the desired attitude
 

in the computer. Offsets actuate the attitude control system. The attitude
 

correction signals may come from the ground by command override. Ground
 

receivers sense the beams to eliminate ambiguity in the phase measurement.
 

The ground beam sensing may be used as a redundant DSS.
 

4.2.4 Required Development Tests
 

Table 4-4 itemizes simple labatory tests that should be performed to verify
 

the interferometer stability and pilot-tone interferometer receiver performance.
 

The first test requires assembly of an interferometer antenna array and measures
 

the bias phase drift due to this area.
 

The second test will measure the bias error introduced by the receiver and the
 

phase measurement circuit. The interferometer antenna array output is simulated
 

by a dual signal source, which has the required phase stability; hence, the bias
 

errot due to the interferometer array is not present in the second test.
 

A third test which combines the above equipment to make an interferometer and
 

receiver combined test might be considered.
 

Note that in the above tests standard lab receivers may be used, i.e. no receiver
 

RF construction is necessary in either test.
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TABLE 4-4 

REQUIRED DEVELOPMENT TESTS 

PILOT-TONE RECEIVER TESTS 

1. 	 INTERFEROMETER ARRAY, COAX CABLE LEAD-IN AND PILOT-

TONE COUPLER PHASE STABILITY WITH TEMPERATURE VARIATION. 

* 	 INTERFEROMETER ARRAY BREADBOARD 

PILOT-TONE RF SOURCE (LAB SIGNAL GEN.) 

* 	 TWO STANDARD RECEIVERS 

* 	 LAB PHASE METER 

2. 	 RECEIVER & PHASE MEASUREMENT BIAS ERROR DETERMINATION. 

* 	 DUAL SIGNAL SOURCE (SIMULATED IDEALIZED INTER-

FEROMETER & PILOT TONE OUTPUT) 

* 	 TWO STANDARD RECEIVERS 

* 	 PHASE MEASUREMENT CIRCUIT BREADBOARD 
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In addition, the tests may be simplified by omitting noise performance tests,
 

the outcome of which are accurately predictable.
 

4.3 SPACECRAFT DSS
 

4.3.1 Spacecraft Direction Sensing: Summary
 

This section summarizes the spacecraft DSS selection considerations and describes the
 

preferred design and accuracy performance. The system organization into which
 

the spacecraft DSS function fits is introduced.
 

4.3.1.1 Approach Selection
 

The Statement-of-Work system requirements are re-iterated with study-derived
 

The DSS Requirements I state that
requirements and constraints in Table 4-1. 


the DSS will use two methods simultaneously or in sequence with command override
 

of measuring antenna system orientation and transmission pattern location.
 

This requirement implies the DSS coordinate system model illustrated in Figure
 

4-4. The ground station signals are received via one or more of the large
 

a monopulse receiver, or these signals are received
aperture antennas, e.g., 


a radio interferometer.
via an indpendent direction measuring antenna, e.g., 


relative to the
The coordinates thus measured have an alignment error 9, 


x, y, z coordinates of the actual transmission beam pattern geometrical centern.
 

This alignment error is due to angular variations between the antenna platform
 

and the beam patterns and is caused by mechanical or structural deformations
 

time varying in nature and cannot be calibrated on earth.
,which are 
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hi and ha are colinear with the
 
interferometer baselines.
 

pattern
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Figure 4-4 Model of Direction Sensing Subsystem Measurement
 
Coordinates. The on-board direction sensing
 
measurement has the coordinate system Hl, H2 , H3.
 
The plane (x, y) is normal to the actual beam
 
pattern geometric center. The alignment error
 
between on-board DSS coordinates and beam pattern
 
c6ordinates is represented by angles and 9.
 

Since the overall accuracy of transmission pattern pointing must be better than
 

+ 0.1 degrees rms, a DSS measurement accuracy of + 0.05 degrees (3a) will be
 

taken as a design goal.
 

Measurement of Orientation by the On-Board DSS - Orthogonal baseline interfero

meters receiving from or transmitting to two or more ground stations are chosen
 

to provide the required accuracy of measurement. Amplitude-sensing devices
 

(e.g., monopulse receiver) will also serve this function but are ruled-out
 

because a monopulse feed cluster in close proximity to the high-power feed
 

would cause the sidelobe level of the main antennas to be above -25 dB, thus
 

defeating those design attempts. If a monopulse receiver were used on an
 

independent antenna, there would be the disadvantage that the ground beacon
 

transmitter would be required to be located at the aiming point. A summary a
 

interferometer-vs.-monopulse characteristics is presented in paragraph 4.3.1.4.
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4.3.1.2 Spacecraft DSS Equipment Description and Performance
 

The 	selected interferometer configuration is described as follows:
 

a. 	Crossed-interferometer arms with superinsulated lead

in cables. The thermal isolation from the space
 

envitonment will minimize thermal difference between
 

,lead-ins, minimizing phase differential. The cross
 

:configuration permits making equal the lengths of the
 

-RF coupling to each horn.
 

b. 	Linearly-polarized "diagonal" horns mounted on extensions
 

to raise the horns above the large antenna surface so that
 

coupling from the 12.2 GHz feed is reduced.
 

c. 	Interferometer receiver located on the antenna platform at
 

the approximate center of the crossed arms. This receiver
 

location minimizes RF cable lengths, keeping differential
 

phase shifts small. The 12.2 GHz isolation filters are
 

located within the superin~ulatiqn envelope. This is to
 

cause the filter temperature to vary over a minimum range.
 

d. 	The coarse measurement (short baseline) horn has been omitted
 

to simplify the interferometer receiver. Omitting this
 

function is feasible because the ambiguity resolution may be
 

performed by independent means. Attitude angle measurement
 

ambiguity interval is 2.70 for the 32-inch baseline (81.28 cm)
 

at 8 GHz. Initial ambiguity resolution may be accomplished by
 

ground beam position measurements. Unambiguous measurements
 

may then continue automatically by identifying the phase quadrant
 

of each measurement.
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e. The interferometer receiver has two separate downconverter 

channels, one for each antenna element of an interferometer 

arm. Differential phase error between the two channels is 

avoided by using a pilot tone injected by the receiver input.* 

Phase is measured with respect to the pilot tone phase which 

undergores the same phase shifts as the signal. 

f. The receiver is switched to the alternate interferometer arm 

by means of PIN diode RF switches. The switching rate between 

arms and hence the sample rate is 20 Hz. 

g. Two ground beacons transmit continuously on adjacent frequencies 

in the 8 GHz band. The beacon signals are separated with bandpass 

filters at the receiver output. 

h. The receiver phase measuring circuit is switched between output 

bandpass filters synchronously with the switching between inter

ferometer arms. 

i. Phase measurement samples are presented to the Attitude Control 

System (ACS) at a rate of 20 Hz. Each measurement consists of 

an 11-bit binary number and has a signal-to-noise ratio of 34 dB 

minimum. 

j. The computer in the ACS (or on the ground) derives antenna platform 

attitude or attitude error from the samples. Yaw determinations 

should be averaged over 10 seconds to reduce noise error. 

k. The attitude determination error due to DSS in .0380 noise and 

.0230 bias error (3o-) for pitch and roll. Noise error for yaw 

is less than 0.60 (3o) for a 10 second averaging period and the 

ground beacon LOS vectors separated by more than 60. 

4-16 



1. 	Spacecraft DSS receiver (without interferometer antenna structure)
 

characteristics are:
 

(1) 	Weight: 5 to 8 lbs. (2.27 to 3.63 kgm)
 

(2) 	Power: 8 to 13 watts
 

to 300 cu. in. (31100 to 49200 mm )
(3) 	Volume: 190 

(4) 	Probability of success for 5 years: .97
 

Figures 4-4 and 4-5 in paragraph 4.3.2.2 show the functional design of the receiver.
 

4.3.1.3 Interferometer-Amplitude-Sensing Moropulse Comparison
 

Comparison of the system integration utility of the RF interferometer versus
 

the 	monopulse receiver for the purpose of antenna platform attitude sensing
 

is given in Table 4-5. The interferometer approach has-the advantages of
 

generally better flexibility and least interference with the design of the
 

large aperture antennas. The monopulse receiver has the advantage that the
 

only significant causes of reference axes shift relative to the direction of
 

the 	main pattern would be due to misalignment of the feeds and possible "squint"
 

of the pattern due to operating on a different frequency. The interferometer
 

system is chosen as the best for the DSS application.
 

Interferometer Direction Sensing Characteristics - The RF interferometer provides
 

precise spacecraft attitude measurements by making relative phase measurements on
 

a signal (beacon) which has propagated from a point source to two receiving
 

antennas separated by a known, fixed distance.' Two orthogonal baselines will
 

provide three-axis attitude measurements if two or more ground stations illuminate
 

the 	interferometer. Major error sources are due to random and bias errors
 

arising in the phase measurement and errors originating in interferometer base

line length. Measurement errors include all errors that originate between the
 

antenna elements and the attitude data readout and consists largely of differential
 

phase shifts in the antenna couplers and receiver input circuits and random
 

error. Random error (due to receiver noise and phase measurement quantization)
 

in orientation angle is related to receiver SNR by,
 

a 	 K(O) 
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TABLE 4-5 

COMPARISON OF INTERFEROMETER AND MONOPULSE ATTITUDE SENSING 

Approach Orthogonal RF Amplitude Sensing
 
Considerati~on Interferometer Pair Monopulse Receiver
 

Effect on design of large Aperture blockage in same 
 Complicates feed design;

aperture antenna. donfigurations. aperture blockage.
 

Sensitivity to attitude Proportional to arm length. Fixed for a given beamwidth.
 
change.
 

Ground Station trans- Angle lock may be achieved At antenna pattern null only.

mitter location, with arbitrarily located
 

ground station.
 

Attitude angle over which Restricted only by beam Less than 30 for a 2.70
 
ground beacon may be width of the interferometer beamwidth antenna.
 
acquired, antenna elements.
 

Uncalibrateable error Offset of the high power 
 Small boresight shift relative
 
sources, transmission pattern 
 to the high power transmission
 

relative to the interferometer pattern.
 
axes.
 

Can attitude measurement 
 No 
 Yes
 
and beam position measure
ment functions be combined?
 



where K (a) is the scale factor or ratio of &lectrical-to-geometrical angular
 

differentials and is a function of a . Bias errors arise from differential
 

phase delay in the interferometer receiver, electrical phase bias error in
 

the phase measurement and error in the effective baseline length. Phase bias
 

error is the critical source of error for the pitch and roll axes. Yaw error is
 

dominated by noise. Phase bias error is reduced to a low level by injecting a
 

sinusoid as pilot tone of constant phase into the receiver inputs. Measurements
 

are made relative to this reference.
 

Acquisition of the direction sensing and antenna platform control system is an
 

important consideration. If the on-board DSS equipment is an interferometer,
 

the ground station location is not restricted as it is the case ofa monopulse.
 

The monopulse is a nulling device, hence the ground transmitter must be located
 

at the position desired for the null. The'phase-sensing interferometer, however,
 

provides a unique phase measurement for any look-angle from the interferometer,
 

once the measurement ambiguity is resolved.
 

Interferometers may either receive or transmit.* The transmitting interferometer
 

simplifies the spacecraft (with the exception of a downlink reference channel
 

being required) but rules out a self-contained radio-reference closed-loop
 

attitude sensing-control system on the spacecraft. The receiving interferometer
 

is more conventional and permits on-board angle lock with arbitrarily placed
 

ground radio beacons.
 

The important desirable characteristics of the interferometer antenna elements
 

are:
 

* 	Fixed phase center - phase center should be constant over the field
 

of view and over the frequency spread of the received signals.
 

* 	Mutual coupling - coupling between antenna elements, which affects
 

baseline length, should be a minimum.
 

* P. Wolfert, "The Transmitting Stabilized Interferometer Navigation System," 
Philco-Ford SRS interdepartmental technical notes, August.17, 1966 and
 
September 12, 1966.
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* 	Greater than earth-coverage beamwidth - antenna element beam

width of 30 to 400 is desirable to provide superior properties
 

near beam center and permit measurements with large (up to 15°)
 

angular deviations.
 

* 	Low VSWR - should be less than 1.2:1 over the-ftequencies involved.
 

* 	Low sidelobes - reduces mutual coupling.
 

An antenna element which fits these requirements well is the diagonal horn. This
 

linearly polarized horn has a square mouth which provides identically tapered 
field
 

a fixed phase center. Sidelobesz are 31 dB down and
distributions resulting in 


cross-polarization response is -33 dB.
 

- The attitude of the antenna array can
Amplitude-Sensing Monopulse Characteristics 


be controlled to the required accuracy by angle tracking a ground transmitter 
with
 

a receiving monopulse feed on the transmission antenna. Yaw axis orientation must
 

either be provided by employing monopulse receivers on at least two of the beams,
 

The monopulse receiver provides two-plane error signals
or by independent means. 

The


proportional to the off-axis angle-of-arrival of a beacon signal from earth. 


random errors of such a direction-sensing system can be reduced to a value much
 

less than the pointing accuracy requirement of 0.10 with modest transmitter 
power.
 

The monopulse receiver approach has the advantage that time-varying distortions
 

and deflections of the associated transmitter antenna pattern are common 
to the
 

an advantage not provided by the interferometer approach.
monopulse beam. This is 


The major disadvantage of the monopulse receiver may be that the feed horns'
 

location would interfer with the transmitter radiating element.
 

Bias error originates mainly from boresight shift due to reflections and feed
 

phase error and slow time-varying feed misalignment due to thermally induced
 

It is known that bias error due to mechanical tolerances and misdeflection. 


alignment (exclusive of reflector distortions) may be reduced to much less than
 

the required 0.10 by range 
and optical calibration.
 

* Love, "The Diagonal Horn," Microwave Journal, Vol. 5, March 1962.
 

"Errors Affecting Antenna Pointing Accuracy," IR/R Note No. 553-5, 118
** 


dated June 5, 1968, Philco-Ford SRS Division.
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Similarly, monopulse boresight shift residual after calibration due to uncalibrated
 

reflections can be held to less than 0.5 if uncalibrated reflections are less
 

than -40 dB relative to peak beam response.
 

Non-Bias Error - It can be shown that for maximum slope of the monopulse difference
 

pattern of an antenna of guassian amplitude variation, the sensitivity.KA, in
 
-I
 

(degree) is
 

KA = 1.67/0HPBW 	 (4-1) 

where 9HPBW is the two-sided half-power beamwidth. The corresponding squint angle
 

is greater than would be used on a power limited link, because compared to maximum
 

theoretical gain, this pattern results in a 4.3-dB loss of reference channel gain
 

on axis. In 	this system however, the small additional loss is compensated by the
 

increased angular sensitivity.
 

Assuming equal noise temperature of sum and difference channels, the rms tracking
 

error, E, for a square law monopulse receiver with large SIN is related to S/N by
 

E2/((KA )2 (4-2)
S/N =_ %2 

where 	 S/N = predetection SNR
 

B = predetection bandwidth
 

b = post-detection bandwidth
 

Assume B = 2 X 104 Hz, which corresponds to a satellite oscillator long-term stability
 

-
of 10 6 and an 8-GHz frequency. Also assume b = 10 Hz, which is a conservative
 

estimate, since typical values may be nearer I Hz. The sensitivity constant for
 

a beamwidth of 2.70 is KA = 0.62. If the rms noise error is to be held to 0.030,
 

then the required S/N is 16. A transmitter ERP of 50 dBW readily attains this
 

SIN.
 

* "Tracking Receiver Design," Technical Note 1-582-3-VC-210, Philco-Ford SRS
 

Division, May 12, 1967, Appendix A.
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It is concluded that non-bias (random) errors of the monopulse system are
 

readily reduced to a level much less than the required accuracy of 0.1 degree.
 

Bias Errors - Bias errors are introduced by:
 

* 	Mechanical tolerances
 

* Misalignment of feed
 

e 
Boresight shift due to reflections
 

* 	Time-varying alignmeit of monopulse beam axis relative 
to trans

mitter beam
 

* 	Feed and receiver phase shift
 

The first two errors can be reduced to small values by careful 
structure/thermal
 

design and by range and optical. calibration. Calibration in orbit may. be achieved
 

independent measurement technique on the transmitting beams, 
as
 

by use of an 

can also be cali

described in Section 4.4. Reflections causing boresight shift 


the range. Residual uncalibrated reflection must be held to less
 brated-out on 


than -40 dB relative to beam peak to maintain less than 
0.03 degree of uncalibrated
 

largely self-calibrating in
 
boresight shift. Distortions of antenna structures are 


same reflector as the transmitter.
Ehis approach because the monopulse uses the 


Therefore, time-varying misalignments of the monopulse beam 
axis relative to the
 

Hence, close mechani
transmitter beam axis are largely due to feed axis motions. 


cal coupling of the two feed structures is required.
 

4.3.2 Interferometer Direction Sensing Subsystem Functional Description
 

to 	measure the attitude of
 
The function of the spacecraft DSS RF interferometer 

is 


the antenna platform. This is done by measuring the angles between the line-of

sight (LOS) vectors to two or more ground transmitters and 
the two interferometer
 

From these measurements, the direction of the normal 
to the baselines
 

baselines. 


This direction is nominally the pointing angle of the transmission
 may be computed. 


pattern geometric center, the offset being measured by 
ground beam position
 

measurement.
 

4-22 



4.3.2.1 Phase-Attitude Relationship
 

The interferometer receiver measures the relative phase of signal pairs received
 

from pairs of antenna elements on orthongonal baselines. The measurements are
 

converted to direction consines of the LOS to the ground transmitters according
 

to the relation
 

Cos 	 (4-3)
ij 	 2n LJ 
i	 (
 

where- . is the angle from arm j to LOS vector to station i
 

L. 	 is the corrected electrical separation of the antenna element's
 

phase centers on arm j
 

Xi 	 is the wavelength of the signal from station i
 
I 

Tij = epiJ + 2nn is the phase ahgle measured with ambiguities 

resolved by integer n. 

Since the electrical phase angles measured may vary through several 2r radians,
 

a 	large order of ambiguity exists. The resolution of the ground beam position
 

measuring function is ample to determine the particular integer value of n, thus,
 

eliminating any ambiguity. Once the ambiguity is resolved, a phase quadrant
 

identification circuit provides unambiguous on-board measurement for any subse

quent measurement, assuming no break in operation has occurred.
 

Previous studies have shown that the most practical phase sensing interferometer
 

receiver has the following design:
 

(1) 	frequency multiplexed signals from the two antenna elements of
 

each 	arm;
 

(2) 	use of a common IF channel for the multiplexed signals;
 

(3) 	phase measurement with a zero crossing detector gating a stable
 

clock to a counter;
 

(4) 	calibration of differential RF phase delay in the receiver circuits
 

by injection of a common phase test signal.
 

* 	 ATS-4 Study Program Final Report, Vol. 7, Fairchild Hiller Space Systems 
Division, SSD 102.3; December 1966. 

Also, An Advanced Study of an ATS Mission, ATS-4 Final Study Report,
 
Vol. 1, Book 1, General Electric Spacecraft Dept., Nov. 66.
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4.3.2.2 Pilot-Tone Receiver
 

The principle of the pilot-tone receiver for making relative phase measurement
 

of two signals S(X) and S(-X), is illustrated by Figure 4-1. The pilot tone
 

is coupled into the two input circuits where the two signals, whose phase is
 

to be measured, originate. Both the desired signal and the pilot tone, whose
 

frequency differs from the signal by a small amount, are amplified in a common
 

receiver channel. The signal with pilot tone are passed through a simple detector
 

and low-pass filter which produces the difference frequency impressed with the
 

phase information.
 

The relative phase of the A and B channel outputs is then measured giving the
 

desired phase difference of the two signals S(X) and S(-X) plus some phase error
 

components.
 

Phase error is due largely to effects in the input circuits. The phase of two
 

two pilot-tone components at the couplers may be made nearly identical by placing
 

the couplers where the input lines are in close proximity, i.e., at the center
 

of the interferometer cross-arms.
 

The major error component due to differential phase shift in the A and B paths
 

is due to non-tracking of the phase delay in the input circuits coupling the
 

interferometer antennas to the centrally located receiver. This differential
 

phase will be due to unequal temperatures of the two lead-in lines. The phase
 

differential can be reduced by using temperature compensated coax and thermal
 

super-insulation wrapped around the coax or the structure carrying the coax.
 

The pilot-tone receiver is developed in Figures 4-5 and 4-5a. the pilot tone
 

is coupled to the input circuit of the 10 GHz low-pass filters (LPF) by means
 

of hybrid power splitters (H). Phase drifts in the LPF and succeeding circuits
 

are, therefore, of no consequence if the phase delay difference (tA.7 or tp8 of
 

Figure 4-1) of received signal and pilot tone is small. The standby redundant
 

receiver includes components from the first mixer through the zero-crossing
 

detector (ZCD). Output channels A and B separate and carry phase information
 

from ground beacon transmitters A and B which transmit on slightly different
 

frequencies (about 1 MHz apart).
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Phase Measurement and Output Averaging Circuit. The sequencer samples signals A and B from
 
each interferometer arm, X and Y.
 
For Af = 10 kHz, the phase measurement quantization increment is 3.6 . If the output
 
integrator averages over 
64 samples, then the output rms phase noise components are
 
aquan. = .if for quantization noise and 0noise = 0 .g' for receiver thermal noise.
 

All circuits are digital.
 



Figure 4-5 is the phase measurement and measurment averaging circuit and comprises
 

all digital logic circuits. Channel A or B (or redundant A or B) are gated to
 

the phase meter in sequence. The phase meter.also senses transitions over the
 

2 7-radian boundary so that angles greater than 2 7F may be tracked. The 'initil
 

ambiguity of measurement is resolved by ground measurement as described in
 

paragraph 4.4.6. The value of n (the number of whole cycles offset from zero
 

phase reading) is put into the accumulator by command upon this initial ambiguity
 

resolving operation. The phase meter then tracks the phase without further
 

command unless a.break in signal causes a loss of phase tracking. The measurement
 

SNR is then improved by an output digital integrator which averages over 64
 

measurements.
 

One parameter of importance is predetection SNR. To avoid SNR degradation in
 

the envelope (square-law) detector, it is necessary to maintain a predetection
 

SNR greater than 10 dB. (A synchronous detector could be used to avoid de

gradation at 
low SNR, however the additional complexity is a disadvantage; also
 

a synchronous detector would inject 
a phase error in presence of a frequency
 

offset.) If received signal power-is drecreased significantly, predetection band

wisth must be reduced to maintain a good predetection SNR. Due to the frequency
 

drift characteristics of crystal oscillators of 1969 technology, frequency tracking
 

will be required for the pilot tone oscillator to maintaih an accurate frequency
 

difference,Aw. 
If signal power is reduced by more than 5 or 10 dB, both bandwidth
 

reduction and frequency tracking may-be'performed by replacing the envelope 

detectors by phase-lock loops and synchronous demodulators. This represents a 

reliability penalty of from .1 to .2X . (.1 to .2% failure per 1000 hours. See
 

Section 3.5 for reliability failure rate interpretation;)
 

The phase measurement circuit operates on the difference frequency, about 10 kHz.
 

Read6ut and resetting of the digital counter requires that the detector sample,
 

at most, every-other input cycle. This results in a maximum phase sample rate of
 

5 kHz. Since the noise bandwidth is 10 kHz, successiv6 samples will contain noise
 

components which are statistically indppendent.
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Variation of difference frequency will require that the period of the input
 

signal to the phase detector be measured. This will require an additional
 

counter and a division function in digital computer located in the ACS.
 

Noise Spectrum Changes in the Detection and Phase Sampling Processes - The
 

approximate noise and signal spectrum into the envelope detector and the
 

resulting detector output spectrum is as in Figure 4-6.
 

Signal Pilot Tone
 
Difference Frequency
 

2§ -----
--- 100 kHz -- 0 50 kHz 

a. Input b. Output
 

Figure 4-6 Envelope Detector Noise Spectra
 

We see that all the input noise is folded into a 50 kHz bandwidth. The envelope
 

detector output is then passed through a 20 kHz low-pass filter. The relative
 

phase of the difference frequencies of the two channels is then sampled by the
 

phase detector. Assuming that the difference frequency is approximately 10 kHz,
 

the entire noise into the phase detector (from both channels) will be folded
 

into a 10 kHz bandwidth. This is sampled at a 5 kHz rate giving independent
 

noise samples. The digital sample is then averaged over 128 samples giving an
 

SNR improvement of 21 dB and 4 additional significant binary digits.
 

Choice of Interferometer Beacon Transmitting Frequency.- The beacon frequency
 

should be chosen so that it is at least 10% different from the satellite trans

mission frequency. This is so that the isolation filter may be readily realized.
 

For this study the beacon frequency,is chosen to be 8 GHz because of the
 

availability of X-band transmitting equipment at NASA ground terminals.
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Coupling Between the Interferometer and the High Power Transmission Feeds
4.3.2.3 


Summary - Due to the proximity of the 12.2 GHz transmitter feed, a significant 

amount of power will be coupled to the interferometer antenna. This signal power 

would damage the receiver first mixer or mask the desired signal with cross

product interference. In specifying the rejection required of a receiver input
 

filter, it is found that cross-product modulation causing background noise is
 

the dominant issue. To reduce the level of this noise to the level of the
 

receiver thermal noise, a low pass coaxial or waveguide filter with 105 dB
 

This figure
attenuation at the satellite transmission frequency is required. 


If the IF were 310 MHz or
assumes a receiver IF of greater than 350 MHz. 


It is preferred therefore, that
less, 135 dB of attenuation would be needed. 


the receiver first IF be greater than 350 MHz.
 

Isolation of the interferometer horns from the 12.2 GHz feed can be improved
 

by positioning the horns in a low intensity part of the 12.2 GHz feed pattern
 

The best position is farthest from the
and minimizing the horns' aperture. 


factor favors a long
12.2 GHz reflector edge and raised from the surface. Thi 


baseline in the case of the square 12.2 GHz reflector array.
 

RF Isolation of the 8 GHz Interferometer Receiver from the 12.2 (8.2 alternate)
 

GHz Transmission - The interferometer receiver input circuit must provide the
 

following functions:
 

1. 	A phase-stable passband at 8 GHz;
 

2. 	Rejection of the 12.2 (8.2) GHz high power transmission to
 

prevent-saturation or damage to the receiver first mixer;
 

3. 	Rejection of spurious signals which would convert to the
 

interferometer receiver IF amplifier passband.
 

* Mechanical Integration IRR #2, Dept. 553-5, APSS & SS 

** 

MI-IRR-2, Dec. 12, 1968. 

It is assumed that uplink communications equipment will operate in the 

same band as the communications uplink. 
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The receiver input filtering specifications are derived according to the
 

following assumptions:
 

1. High power transmission channel separation is 65 MHz (bandcenter
 

to center) and a total of 5 adjacent channels each having a noise

like video signal.
 

2. 	The received interferometer signal level will be -140 dBW into
 

the first mixer.
 

3. 	The interferometer receiver signal-to-noise density (SINo) is
 

-201 dBW.
 

The major source of interference due to the high level transmission is through
 

cross-product intermodulation producing a background noise-like interference.
 

This assumes that mixer image frequencies and other first-order interferences
 

are placed so that their levels can be made insignificant. The spectrum of
 

the high power transmission must be examined to determine the magnitude of
 

these intermodulation products. The spectrum is as in Figure 4-7 assuming
 

5-channels of 1.3 channel width separations. Figure 4-8 illustrates the
 

signal path and associated power levels.
 

It is seen from Figure 4--7 that first-order cross-products will fall in the
 

IF passband if the intermediate frequency is less than 310 MHz. Therefore it
 

is concluded that, to avoid an unrealistic filtering requirement, the first
 

IF center frequency should be greater than 350 MHz.
 

An IF amplifier center frequency of 375 MHz might be considered. This value
 

has been proposed for Comsat application. Noting that significant cross

products will be produced by components only 65 MHz from band-edge of the
 

signals represented in Figure 4-7 , it can be concluded that these components
 

will be only about 30 dB down from 1.5 kw because steep-skirt filtering in
 

the high power transmitter output is impractical for these components. These
 

considerations lead to the cross-product level evaluations of Table 4-6.
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-375 MHz 

310 MHz 

spurious 
passed Vt 

f req. 

Fig. 4-.3 	High Level Transmission Spectrum Centered at 12.2 or 8.2 GHz.
 
Each channel is approximately 50 MHz in bandwidth. The
 
approximate location of the most significant spurious
 
component is shown for the first IF of 375 MHz.
 

12.2 or 8.2 GHz Transmitter
 
1.5 kw broad-band,
 
noise-like(-65 dBW/
 
Hz* S/B) -30 dB isolation of interferometer horn
 

8.0 GHz
\ 	 Interferometer 

Antenna 
Element 

-95 dBW/Hz
 

SIsolationj

Isltrs -105 dB @ 12.2 (8.2) GHz
 

-200 dBW/Hz
 
1st
 

Mixer
 

to 
receiver 

375 MHz I 

(or greater / 
*Out-of-transmission band spurious components -down 30 dB from 1.5 kW. 
 These
 
out-of-band components are separated from in-band components by a frequency
 
equal 	to the IF center frequency.
 

Fig.4 -8 	 First-Order Cross-Product Spectral Density Reduction
 
to a Level Equal to Receiver Noise Density
 

4-31 



TABLE 4-6 

EVALUATION OF INTERFEROMETER RECEIVER INPUT FILTER 
REJECTION AT 12.2 (OR 8.2) GHz 

REL. POWER 
FACTOR SPECTRAL DENSITY REMARKS 

so -35 dBW/Hz TX P/Bandwidth 

peak 

Ps /PTspuriousT -30 dB Spurious Level 

Pspurious -65 DBW/Hz Spurious Density 

Isolation of Interferometer -30 dB Minimum
 
Horn
 

Spurious Power to Inter- -95 dBW/Hz
 

ferometer Receiver
 

Required Spurious Level** -200 dBW/Hz
 

Required Filter Isolation 105 dB
 
to First Mixer
 

* S = 1500 W/(5 x 107 MHz) = -45 dBW/Hz 

Assume a signal contrast ratio of C = 20 dB 

S = S + C/2 = -35 dBW/Hz
Opeak 0 

** Receiver Noise Density 

4-32 



From Table 4-6 we may conclude that 105 dB of rejection is required at 12.2 GHz.
 

It is now easily checked to determine if 105 dB attenuation protects the first
 

mixer from saturation or damage. Total RF power is 28 dBW (four 1.5 kw channels)
 

and isolation-of the first mixer is 30 + 105 dB. Hence total power to the first
 

mixer at 12.2 GHz is -97 dBW or -67 dBm. This number compares favorably with
 

-10 dBm which is the upper limit to avoid mixer saturation effects.
 

Filter Realization - The above filter attenuation can be achieved using a lowpass,
 

bandpass or bandstop characteristic. The effect of temperature variation will
 

be to shift the transition frequency of the filter. Since phase shift effects
 

are of fundamental importance, it is concluded that a lowpass filter is preferred.
 

Several types of filter are applicable: coaxial, waveguide and interdigital
 

filters. Their characteristics pertinent to this application are given in
 

Table 4-7. The coaxial filter would be smaller than the waveguide, having a
 

diameter approximately equal to that of type N coax connector.
 

The alternate transmission frequency of 8.2 GHz would entail an alternate uplink
 

frequency. The interferometer beacon would again be chosen in the uplink band
 

to conserve ground station equipment. If the frequency between up- and downlinks
 

is reduced below the 350 MHz assumed above, it may be necessary to include more
 

sections (poles) in the isolation filter.
 

Coupling Between Antenna Feed-Horns and DSS Interferometer - To determine the
 

magnitude of this effect, the coupling between a feed-horn and the adjacent
 

interferometer element was estimated. For the purpose of the calculation, the
 

geometry shown in Figure 4-9 :is assumed, in which the interferometer lies flush
 

with the reflector aperture.
 

Taking f/D = 0.35 defines the angle subtended at the feed-horn by the radiating
 

aperture as 1400.
 

The semi-angle is therefore 700, which has an associated space attenuation factor
 

of 3.5 dB.
 

* Private communication with H. Gould of WDL.
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Number of
 
sections (poles)
 
required for 

105 dB rejec
tion at 12 GHz
 

Length 


Loss ofB GHz 

Higher-order 

mode at 12 GHz? 


Phase sensitivity 

with temperature 

change 


TABLE 4-7 

COMPARISON OF ISOLATION FILTERS 

COAXIAL WAVEGUIDE INTERDIGITAL 
(Lapass) (Lovpass) (Bandpass) 

9-10 8-9 

5-6" 5 -6" 4-51v 

.3 dB .1 dB < I dB 

No May be eliminated 3rd harmonic 
by longitudinal passband 
slots or transform
down the width. 

Small if Same as coaxial Sensitive for 
frequency is narrow bandpass 
well below 
cut-off 
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Now, required sidelobe level is approximately 30-35 dB. Therefore, required
 
aperture taper is approximately 20 dB. Hence, feed-horn must have pattern
 
which is (20-3.5)=16.5 dB down 70 off-axis. 
A circular horn of approximately
 
1.5 diameter will meet this requirement. Hence again of feed-horn is
 

G = 10.4 dB (4-4)
 

If Po = 
pdwer radiated from feed-horn, then power density at interferometer
 

element is:
 

P, =p -I 

4r 2 (in dB) + 10.4 - 20, where r = distance from center of feed-horn to center of 
 (4-5)


interferometer element 
= 16.8"
 
(from scale drawing)
 

SPI = p - 35 + 10.4 - 20 = P - 44.6 dB 

Projected area of the 25 sq. in. interferometer element = 25 
cos 74.50
 

= 6.67 sq. in.
 

,'Power intercepted by interferometer is approximately:
 

=
P = 6.67 x P1 PI + 8.5 dB
 

P = P - (44.6-8.5) dB
 

i.e., P P - 36 dB
 
0
 

Since P = I kw, P 0.25 Watt, and it will, therefore, be necessary to load the
 
interferometer arms with band-pass filters whose rejection at 
the transmit
 
frequency is sufficient to 
reduce this power to an acceptable level.
 

It 
should be noted, however, that the coupling can also be reduced by moving the
 
interferometer elements forward of the reflector apertures so as 
to increase
 
their angular displacement from the peak of the feed-horn radiation pattern.
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4.3.3 Interferometer Attitude Measurement Error
 

The investigation of attitude errors introduced by the interferometer receiver 

attitude computation circuits is divided into two parts. The first deals with
 

the noise-like and bias errors impressed on the direction cosine measurement.
 

The second part investigates the propagation of these errors into the pitch,
 

roll and yaw measurements. These two topics are developed in paragraph 4.3.3.2
 

with supporting analysis in paragraph 4.3.3.4. Paragraph 4.3.3.3 investigates
 

the effect of multipath reception which may occur in the case of reflections
 

from the solar panels when they are in the field of view of the interferometer
 

antennas.
 

4.3.3.1 Error Magnitude Summary
 

Table 4-8 summarizes interferometer direction cosine errors, i.e., errors in
 

the measurements that are the receiver output. Note that random error is given
 

at the rms (la) value. Bias errors are worst case (probability<1%) and are
 

here taken as 30r values. The receiver configuration is-the pilot-tone receiver
 

of Figures 4-4 and 4-5. Antenna baseline 32 inches (81.28 cm). (Refer to
 

paragraph 4.3.4.) Other link parameters and receiver characteristics are
 

presented in Table 4-10 of paragraph 4.3.3.2.
 

Propagation of these errors intb roll, pitch and yaw is summarized in Table 4-9.
 

Pitch and roll computations result in the measirement errors being multiplied by
 

approximately /2,depending upon location of ground beacon transmitters.
 

(See Eq. 4-11, paragraph 4.3.3.4 and paragraph 4.3.3.2).
 

The propagation errors into yaw with the two ground b.eacon transmitter configuration
 

is a special subject developed in paragraph 4.3.3.2. Table 4-9 shows that, while
 

bias errors tend to cancel in the yaw computation, random noise is enhanced. To
 

avoid undue yaw random error the beacons must be widely spaced in the spacecraft
 

view. The propagation multiplier is so large, however, that averaging over a
 

period of time is adviseable. The table shows results for an integration time
 

of 10 seconds. This is not a disadvantage to the attitude control system since
 

its response time in yaw is not required to be as small as for pitch and roll.
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TABLE 4-8 

INTERFERCOETER RECEIVER MEASUREMENT ERRORS 

Error Source 

Phase Quantization 

Receiver Thermal Noise 

Scale Factor (Baseline Stability) 

Zero Crossing Detector Bias 

RF Phase Bias 

Antenna Phase Center Motion 
(0.30 Diff.) 

Antenna Polarization Error 
(.IO Element Alignment) 

Coax Diff. Phase (.1O)
(200C Temp. Diff.) 

Directional Coupler Phase Diff. 

RCVR Diff. Phase (.1 ° ) 

RMS Random 
Direction 
Error 
De. 

.001 

.0086 

Bias & Long-Term 

Random Directions 
Error (3) 
(Deg.) 

.0011 

.001 

.0024 

.001 

.004 

.01 

.001 

RSS .0090 (la) .016 ° (3o4 



TABLE 4-9 

PROPAGATION OF ERRORS INTO PITCH, ROLL AND YAW 

COORDINATE MULTIPLIER NOISE 	 ERROR BIAS ERROR 

°Pitch or Roll V 	 0380 (3 ) .023 (3a) 

BEACON LOS
 

BIAS 'VECTOR NOISE 
COORDINATE MULTIPLIER SEPARATION MULTI. ERROR* 

Yaw < 1 7.60 	 15 .040 (3o-) 

20 .540570 


30 
 .810
3.8 


* Integration Time: 10 sec. 
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4.3.3.2 Error Sources and Magnitudes
 

This section itemizes noise-like and bias error contributions and lists design
 

"constraints necessary to minimize error magnitudes. The propagation of these
 

two types of error into the yaw computation is derived. The results are
 

summarized in Table 4-8.
 

Error in Attitude Measurement Due to Receiver Noise and Quantization Noise -


The measured values of attitude will contain a rapidly varying random error
 

(error value statistically independent from measurement to measurement) due
 

to interferometer receiver thermal noise. The magnitude of this noise com

ponent relative to the required accuracy in dependent upon the following major
 

beacon RF link parameters:
 

a. Beacon transmitter power and antenna gain. 

b. Interferometer antenna element aperture. 

c. Interferometer receiver noise temperature (including the noise 

temperature viewed by the antenna). 

d. Measurement circuit output bandwidth (or integration time). 

Other less important factor which may cause variation of only a few dB due to
 

system design variation are:
 

a. System equipment RF losses -( 1 dB).
 

b. Receiver noise temperature (+ 1 dB).
 

c. Predetection bandwidth variation effect (+0, -2 dB)
 

Factor c accounts for the eventuality where predetection SNR becomes as low as
 

0 dB. These numbers (factors 5 through 7) are given to indicate system design
 

tolerance values which should be considered in broad systems - design considerations.
 

The interferometer uplink beacon parameters are chosen on the basis of existing
 

NASA ground-satellite terminal equipment. Table 4-10 itemizes the beacon link
 

power levels, gains, losses and output SNR for the interferometer receiver

measurement averaging circuits. Note that a transmitter power of 500 watts is
 

assumed. This value is that available from 8 GHz equipment which is normally
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TABLE 4-10
 

INTERFEROMETER BEACON POWER & RECEIVER SNR SUMMARY
 

PARAMETER 


Total Transmitter Power 


Transmitting Circuit Loss 


Transmitting Antenna Gain 


Space Loss
 
@ 8 GHz, R = 38,000 kM 


Polarization Loss 


,'Receiving Antenna Gain 


Receiving Circuit Loss 


Net Circuit Loss 


System Adverse Tolerances 


Total Received Power 


Receiver Noise Spectral Density (N/B)
 
T System (T) = 3800'K 

Predetection Noise Bandwidth 

Predetection SNR 

Detection SNR degradation 

Post Detection BW "Processing Gain" 

Degradation Due to Second Channel 
Noise
 

Phase Sample SNR 


Digital Filter Processing Gain 


Measurement Output SNR 


VALUE 


27 dBW 


-3 dB 


49 dB 


-202 dB
 

-3 dB 


10 dB 


-3 dB 


-152 dB
 

-3 dB
 

-128 dB 


-193 dBW/Hz 


50 dB-Hz 


15 dB
 

-3 dB 


4dB 


-3 dB
 

13 dB 


21 dB 


34 dB 


REMARKS
 

K Watt
 

Includes Rcvr Loss
 

15' Diam.
 

Circular-to-Linear
 

2" Aperture, 110 Off Axis
 

Redundancy Hybrid Ant.
 
Noise << Rcvr Noise
 

Worst Case
 

10 dB
 

BW = 100 kHz
 

Rcvr NF 1 


Spectrum Folding
 

50 kHz/20 kHz
 

5 kHz Sample Rate
 

Avg. Over 128 Samples
 

80 Hz Measurement Rate
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used in conjunction with a 15-foot parabolic reflector. 
This may be more
 

power than is desirable to allocate to this function. The 8 GHz link may be
 

operated with less beacon station ERP by one means which involves changing
 

spacecraft receiver design. (It is assumed that interferometer antenna gain
 

and baseline are limited to their present values by the angular acquisition
 

requirement.) This is by reducing effective measurement noise bandwidth at
 

the digital integrator output. This, in general, results in a lower measure

ment rate. Receiver design complications may result to keep predetection SNR
 

greater than unity. (Refer to paragraph 4.3.2.2.)
 

Table 4-10 shows that the interferometer receiver measurement-to-noise ratio
 

is 34 dB or a factor of 2500. For large SNR, the following expression relates
 

SNR to 9 , the rms phase noise. 

Oro=V/_- (4-6) 

For SIN = 2500, a, = .02 radian = 1.15 deg. 

From eq. ( 4-3 ) we have (D = 32", X= 1.5") 

00 0: /134 = .00860 

which holds for 9 < 100 

Quantization noise is determined as 
follows. For the 1 MHz oscillator in the
 

phase detector circuit, phase quantization increment is q. = 3.60 if the
 

difference frequency tone from the receiver envelope detector is 10 kHz. 
 Since
 

the quantization noise probability density is 
a uniform distribution, then
 

a4q= qc I/T. The effect of the second channel is to multiply %,by V.
 
Therefore, after averaging 128 samples,
 

' = -2x 3.6/ (\f2 xAh = .130 

Referred to attitude, the attitude error component due to quantization error is
 

= .13/134 = .0010 

4(q)
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Scale Factor Error: Bias Error Due to Baseline Length Variation - Direction
 

error due to scale factor error is given by
 

aS.F. = cot Emin L/L (4-7)
 

where 8min is the minimum angle between the beacon L.O.S. vector and the inter

ferometer plane. (See derivation below.) The value of 8 . is that for conditions 

ishown in Figure 4-13 is 790. Therefore A@S.F. = cot (79 0)AL/32 

The baseline length variation is (from thermal analysis) AN L =.0040" in the x
direction and .0064" in the y-directtbn. The worst case direction error is
 

therefore .0020.
 

The direction error due to scale factor error is derived as follows: The
 

measured electrical phase is related to measured attitude by
 

(1) cos e = aq' (4-8) 

x
 
whee a X - is the measurement scale factor. The differential of the
27r L 

scale factor is related to the differential of the length by 

(2) 8a - aL (4-9)
L
 

Taking the partial derivative of eq. (1) with respect to 6 and using eq. (2),
 

the differential of 8 is then
 

(3) 8 = cot 8 SL/L (4-10) 

This expression shows that the error is small for LOS beacon vectors near the
 

boresight. The maximum error 6ccurs for the-maximum LOS angle off the bore

sight. The worst case geometrical situation is shown in Figure 4-10.
 

Synchronous 

-- - - ISatellite 

9.
 

LOS Beacon. 10.80 boresight 
Vector 

Figure 4-10. Beacon/Aiming-Point Geometry for Worst Case DSS
 

Error due to Baseline Length Variation
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Zero Crossing Detector Drift - The 2nd IF amplifier output should be as large
 

as possible to reduce the effect of drift in amplifiers and the zero-crossing
 

detector which follows the envelope detector. A 1-volt rms level is practical
 

for 	IF amplifiers without introducing significant waveform distortion. The
 

slope at the zero crossing of a I v rms sinewave is .025 v/deg. The input
 

offset voltage drift of a good integrated circuit operational amplifier is
 

2.4 pv/°C (RCA type CA3008A, worst case), or 0.12 mv for 500C change. The
 

input drift due to input offset current drift has about the same value for a
 

1 k-ohm source impedance (output impedance of the envelope detector).
 

The output of the envelope detector must be capacitively coupled to avoid the
 

effect of detector output mean value variation with signal strength. The
 

time constant of this coupling circuit must be high enough to result in low
 

coupling of variations of the mean value of the detector output.
 

RF Bias Error Sources - Sources and magnitudes of bias error arising from RF
 

circuit differential phase drift are as follows:
 

a. 	Antenna Phase Center Motion (0.30). Horn electrical phase center motion
 

was measured by Cubic* by rotating the horn about its nominal phase
 

center on the antenna range and measuring phase variation at the
 

receiver. This was + .3 peak over the full HPBW. There is no
 

assurance that the two antennas would "track" or exhibit similar varia

tional patterns, because of the random phase center motion exhibited
 

in the experimental results.
 

b. 	Antenna Polarization Error (0.1 phase). A previous study has
 

evaluated this source of error for the preferred polarization con

figuration where the ground antenna is circularly polarized and the
 

spacecraft antenna is linearly polarized. For small angles of pitch
 

and roll relative to the beacon L.O.S. vector, the worst case phase
 

error due to antenna polarization misalignment is nearly
 

A(p = 1.4 Rt B
 

where Rt axial ratio of the transmitter antenna
 

B = 	 tilt angle of interferometer elements 

* 	 Second Quarterly Report for RF Inferometer (I May 1967 - I Aug. 1967), OR/1ll-2, 

Cubic Corporation.
 

,** "ATS-4 Final Report," Vol. 7, F irchild Hiller, Dec. 1966
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The 1.4 accounts for 2 random errors of value B. Assuming the
 

axial ratio is 0.8 and the elements are aligned to 0.10, then
 

0.10
 

c. 	Coaxial Cable Differential Phase (0.50 phase). Air-spaced dielectric
 

temperature-compensated coax .cable is available which has a phase

temperature coefficient of less than 5 x 10-6 per °C. Assume half
 
I
 

the cable length is shadowed so that its temperature with insulation
 

is 200C different from the other half. The differential phase shift
 

is then
 

X = 	1.5"): 
L 

• cpcoax = -X 360 AT C (4-11) 

A O coax = 20X (inch)(inch) 360 (deg.) x 20 (C) x 5 x 10 
-6 (C

49 	coax
 

This gives for attitude bias, Ae - .0040 
coax
 

d. 	Directional Coupler Phase Difference (1 ). The pilot-signal directional 

couplers may show phase differential drifts of several degrees with
 

temperature variation. The couplers must be before the lowpass input
 

filters,-hence a significant temperature difference may exist between
 

them. It is assumed that the total effect will be a phase differ

ential of 10. It will be desirable to experimentally measure the
 

magnitude of this error.
 

e. 	Receiver Differential Phase (0.10). This source of bias is due to
 

phase response variation due to the signal moving about in the receiver
 

pass band. It is assumed that the receiver uses frequency control to
 

maintain the signal-pilot tone difference at close to 10 kHz. This
 

will ensure that post-detection filter differential phase response is
 

constant. The main cause of receiver differential phase will then be
 

in the most narrow-band predetection filter. This bandwidth is 100 kHz.
 

"Variation of the Electrical Length of Coaxial Transmission Lines with
 
Temperature," Tech. Bull. No. 6, Phelps Dodge Electronic Products, North Haven,
 
Conn.
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The 	phase characteristic of a second-order bandpass (simple L-C)
 

filter is approximately linear near band-center with a slope of
 

about 18 per 10 kHz in this case. If the filters in the two 

channels are made to track in phase, the differential error can be 

reduced to 1 . To avoid the major part of this error and make 

filter tracking design easier, it is advisable to use 2 or more 

pole-pairs in the bandpass filters. The phase slope can be made 

small at band-center and good linearity can be achieved. With these 

improvements, a differential phase variation (tracking error) of no 

more than 0.1 can be achieved with a frequency drift of 10% of the 

bandpass.
 

f. 	Other Bias Error Sources. Other RF differential phasp variation
 

effects will be observed due to:
 

1. 	 connector VSWR changes with temperature -- can be made small. 

2. 	 horn antenna element thermal distortion -- use radomes. 

3. 	 input lowpass filter differential -- place cutoff well above
 

the beacon frequency so that the phase characteristic is flat
 

at the beacon frequency.
 

4. 	 differential phase in hybrid-to-directional coupler lines -

use very short leads. 

5. 	 first and second IF amplifier differential phase variation -

keep bandpass much greater than 100 kHz. 

6. 	 post-detection lowpass filter differential phase variation -

keep bandpass at least twice the tone (10 kHz) frequency; use
 

AFC on pilot tone oscillator (if necessary) to maintain the
 

difference frequency within 10%; design post-detection filters
 

to track in phase.
 

The above additional sources of error are deemed to contribute
 

negligible bias error if the indicated design precautions are taken.
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Propagation of Errors Into the Yaw Measurement'- Phase measurement errors
 

propagate into the attitude estimates according to characteristics depending
 

on the type of error and the attitude axis. Error propagation into yaw is
 

markedly different from that into roll and pitch. Random error propagation
 

into yaw is greater by a factor of over 10 than propagation into roll and'
 

pitch. This is not true for bias error which tends to cancel in the com

putation of yaw. The particular propagation factors depend on the location of
 

the ground beacon transmitters as defined in the antenna platform coordinate
 

system.
 

The relations describing the propagation of errors of phase measurement into
 

estimates of antenna platform coordinates are developed in Paragraph 4.3.3.4.
 

Equation (4-11) expresses roll, pitch and yaw estimate errors in terms of
 

electrical phase errors induced by baseline length errors, random (noise)
 

errors and electrical phase bias errors. The interferometer arms along the
 

roll and pitch axes propagate errors into roll and pitch attitude approxi

mately as the RSS of thp two error components. Thp propagation characteristic
 

of main interest is that of errors into the yaw estimate.
 

Referring to Eq. (4-11), it is seen that the ratio of propagation of random
 

noise into yaw and pitch is ( 603 is yaw estimate error due to random noise,
 

etc.)
 

6_3 (b31 a11 + b3 a2 1 )F1
 

6U2 (b2 1 a1 1 + b2 3 a 2 1)FI
 

" 
where the b j are the elements of B as defined in Eq. (4-8a). Assuming
 

aii = a2j . then since they will be uncorrelated, 

!3= lb311+ Ib331
 
65 2 lb211 + 1b231 
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Substituting for bij and noting that rij are the direction cosines of the
 

angles oij,
 

:g3 cos a23 13
 

6 2 cos + cos
a2 C12 22 

For convenience in comparing noise-induced yaw and pitch errors, consider the 

case where the aiming point is ground beacon transmitter #. This will make 

cos a13 11 and cos e12 = 0. (See Figure 4-11 for description of direction 

angles.) 

45°N 

IT
 

200W 	 1 200
201
 

- -- - - - - - #2
 

1005
 

3
 
Yaw 


a2 LOS Vector to T #2 
x 

U-2 1 
4A
 

Roll
 
a22
 

2
 

Pitch
 

Fig. 4- 11 	Description of Direction Angles to LOS Vector to
 
Ground Beacon Tranamitted #2 When the Aiming Point
 
(3-axis) is Aligned with Beacon #1.
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The ratio of noise-induced yaw and pitch errors for the case where LOS
 

vector #1 is colinear with the 3 axis is then
 

8 
 1 + Cos 

:g a23 
8a2 cOs a2 2 

Clearly, the random error in the yaw estimate becomes unlimited as a22
 
approaches Tr/2. This result agrees with results of antenna control
 
subsystem computations, Section 6. As noted there, singularities in the
 
solution of the yaw estimate may be avoided by proper choice of the three
 
out of four equations contained in Eq. (4-18)for i - 1,2. 

The above ratio, is plotted for lines of constant yaw-to-pitch random error
 

in Figure 4-12. This plot is for the special case where the yaw axis is
 
aligned with the LOS vector to Beacon #1. Beacon #2 is off the jaw axis by
 

angle 723 and at an azimuth angle relative to a north-south (pitch) plane.
 
Values on this plot are within 10% of the correct value for the general case
 

where a13 
# 0, i.e., for the yaw axis not aligned with the #1 beacon LOS
 

vector. This is because the minimum value of a12 
is about 840, causing about
 

a 10% change in values. The plot is symmetrical about the
 
vertical axis. Also, the plot may be turned on its side to represent results
 
for the case where Beacon #2 is located at azimuth greater than 450 from the
 

pitch axis and the alternate set of equations as discussed above.
 

The data of Figure 4-12 has been applied to the case of Beacon #1 located
 

15 latitude and 00 longitude relative to the satellite subpoint. 
 Restrictions
 

for the location of Beacon #2 are given in Table 4-11. Only the case
 

where Beacon #2 is located due north or south of Beacon #1 is considered.
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TABLE 4-11
 

BEACON #2 LOCATION VS YAW/PITCH RANDOM-ERROR
 
RATIO. BEACON #1 IS LOCATED AT 150 LAT., 00
 
LONG.RELATIVE TO SATELLITE SUBPOINT
 

Yaw/Pitch 
Random Error Beacon #2 Must be Located 

Ratio ' , South of - or - North of 

20 180 S. Lat. 640 N. Lat. 

30 70 S. Lat. 410 N. Lat. 

40 20 S. Lat. 340 N. Lat. 

50 20 N. Lat. 300 N. Lat. 
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4.3.3.3 Interferometer Errors 
- Supporting Analysis
 

The Interferometer Equation. 
The interferometer measures 
the direction cosine
 
of the angle a between each baseline and the beacon LOS vector,
 

I 

coS anj - Mij /(2r(Lj/X ) 
 (4-12)
 

where
 

i - 1,2 beacon transmitter number 

j - 1,2 - roll or pitch - oriented baseline 

M' = the measured phase 

L/I 
 = baseline length in wavelengths
 

Lj 
 - baseline length of jth interferometer arm
 

1 =wavelength of i 
 beacon sinusoid
 

The angle a is defined as being measured from one end (the 
-x or +y axis) of the
 
interferometer arm. 
This is so that for a > 90, 
cos a < 0.
 

Aj Unit vector in 

Lni 
vector/ 

/ 

3amJ 

positive direction 
of interferometer 

to r 

Figure 4- 13 
Direction Angle from Interferometer Arm j to LOS
Vector to Transmitter i.
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The'beicon'LOS unit vector ri may be expressed in measured attitude coordinates
 

and desired coordinates by the matrix product.
 

ri = rit ri2 i3- 1 r, i31 x
r!2 


K2 K2
 

X3 x3!
 

where
 

r!u = components of i in the x' directionu) 
u = 1,2,3 

r. - r! in required direction x of X'
 

IJ column matrix of unit vectors. 

Or, the vector i can be expressed in matrix notation-by
 

R. X = (RDX' (4-1-3) 

where R.1 and R!1 are the row matrices and k and X' are the column matrices 

defined above. 

The unit vectors xj x x' of the measured attitude can be rotated into
 

the required set x1 , x2, x3 by rotations defined by matrices T, T2, and T3
 

where
 

Ta Ta(a)= ftij(9)1
 

and
 

taa 1, ti =0
ta 


tii cos 9
 

= 
t.. ±sin 9
 
3
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Error analysis deals with the condition where attitude variations from the
 

required are small. The coordinate rotation T T T T for small angular offsets

di gives the following approximate relation between actual and required
 

coordinate orientations.
 

X - AX' (4-14) 

where
 

I
A
A d -d]31
[d2-d 3 1 

Substituting for X from eq. (4-14) into (4-13) gives
 

RIT X' . RT Ax' (4-15)
Ri 

Eq. (4-4) indicates that 

R'T - Ti A (4-16) 

To form the difference between measured and required direction cosines, 

subtract RT from Eq. (4-16). After transposing the resultant, it may bei
 
written as
 

R,' - Ri BiD 
 (4-17)
 

where
 

0 il 
r 2 -ril 
 0 
 d3
 

4-54 



If the interferometer arms are exactly aligned with the coordinate system
 

X', then
 

re. = cos a j - 1,2 

Eq. (4-6) then becomes (the measurement of c.3 is not available since the
 

interferometer has no third arm)
 

- 1 0 R. [ 1 BiD 	 (4-18)
 

0 

where
 

os 
Yia
 

The left hand side of Eq. (4-18) represents the difference between measured
 

direction cosines, Ci, and required direction cosines. Since D consists of
 

three variables the method of solving Eq. (4-18) is either to furnish a value
 

for one of the variables (e.g., the yaw offset d3) or make a second pair of
 

measurements using a second ground beacon along a new LOS vector ?2" Assuming
 

the more general case, measurements on the second beacon provide a total of
 

four equations. Using three of these in the form of Eq. (4-17), the solution 

for the offsets is
 

D = B I(c-R) 	 (4-19) 

where
 

0 all
1
 

os a21] R 21l 

B E13 	 0 ri1
 

r23 
 -r422
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"
A solution exists for Eq. (4-8) if B I is not singular. This is the case
 

if det B # 0.
 

det B - r13 (r12 r23 - r13 r22 ) 0
 

Therefore r13 # 0 and r12 r23 # r13 r22. These relations mean that the 

beacon LOS vector must have a 3-atis component, i.e., the vector cannot 

lie in the plane of the interferometer arms. Also, r12 # r22 and r13 # r23 , 
i.e., the beacon LOS vectors must be distinct. 

The inverse of B is
 

-r11 r23/r13 (r13 r22 -r12 r23)/r 13 r1l
 
B"I r1 3  0(-0
 

B det B -r22 0 r12 

-r23 
 0 r 13 _ 

Eq. (4-19)may be called the interferometer equation and provides the basis
 

from which error analysis may be developed.
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Error Analysis 

The error components in the measurement of attitude angle offsets may 

be expressed by 

+ 0F11d k(Mll1 + a11 + I 1I)(FI + C1 ) 	 r1 i 
B" Id= 	 k(M1 2 +a 1 2 + T112)(F 2 + C2) - r12  (4-21) 

d3 + 	63 k(M21 + a2 1 	+ n2 1 ) (F1 + e1 ) - r 2 1j 

where Eq. (4-12) has been substituted for C in Eq. (4-8) and the following
 

substitutions have been used;
 

M' -M + a + I = the phase estimate 

._ = F + e the inverse baseline length estimate

L
 

k - X /2T
 

Expanding products and dropping second-order terms, Eq. (4-21) gives
 

1
[] -k 	 F( + ) 

+ 12 )D + 	 0 2 B'1(C-R) + kB-1 M12 '2 + kB l F2 (a 12 (4-22) 

.63. 121 eI FI(C2 I + 1I) 

The errorless part of Eq. (4-22) can be removed by subtracting Eq. (4-19).
 

The remaining error portion may be written as the three antenna platform
 

coordinate errors 61) 62 and 63 in the matrix form.
 

6 kB I(Mr + Fa + G.) 	 (4-23) 
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where
 

2e o' 21[j 

MaE M] , F = F2 ] G F202 

M M21 0 0 0 F FI1 0 

The first term on the right of (4-11) is the scale factor error due to
 
baseline length errors e. • 
The second term is random, noise-like error
 
due to receiver thermal and quantization noise. The third term is receiver
 
electrical bias error and has two terms one for each arm and its receiver
 

channel.
 

Equation (4-11) can be readily developed into an equation for the covariance
 

matrix of attitude errors
 

PF.[ 2 U P UT + V P T + W P WT (4-24)

C ar 

where
 

=kB I 1 02 
L 

etc. 

V = k _ F 2 

WkB'I0
 

This formulation assumes that the random variables are independent and that
 
over a long period of measurements, the average error of the bias components
 
is fixed (stationary random process). Equation (4-24) may be used in computer
 

evaluation of error propagation into pitch, roll and yaw measurements.
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Nonorthogonalitv of InterferometerArms
 

To examine the effects of nonorthogonality of interferometer baselines it
 

is necesary to inject into Eq. (4-17)a term relating measurements made
 

by the nonorthogonal measurement system to the LOS vector expressed in the
 

orthogonal coordinate system.
 

Consider the case where arms I and 2 are misaligned in the plane of the arms
 

by angles 1 and P as in Figure 4-i4. 

2
 

L of arm I 

R2-2 

x2
 
Figure 4-14, Nonorthogonality of the Interferometer Arms
 

The measured direction cosines are related to the LOS vector expressed
 

in coordinate system X by
 

cos oY 1 Cos Si sin p~ 

• Sin 2 2oLii L0Ji2j 

or in matrix notation.
 

C. - TR!

1 4 

4-59 



Multiplying Eq. (4-17) by T produces
 

T(R -Ri) T B D

i
 

or
 

Ci -TR i T B iD (4-25)
 

Equation (4-25) may be used to ddtermine the effect of misalignment of
 

the interferometer arms. To determine the effect of non-orthogonality,
 

arm 2 may be assumed to be perfectly aligned and the total orthogonality
 

error be contained in angle 81.
 

Matrix T then becomes (for 1 < 1)
 

By following the procedure of the error analysis above, D becomes the true
 

offset plus the error, i.e., D becomes D + 6 and C becomes C + (measurement
 

errors). The error part is (second row only)
 

ri3 6 1 + ril 83 + 1 ri2 = k(M12 2 + F2 92 
)
 

The effect of error component O1ri2 compared to the effect of random noise
 

error may be expressed by
 

a 1/ 1 ri2
 

61/;ai2 Wk 2
 

For small angular offsets rj2 ri2 cos 012 " Substituting for kF from
 

Eq. (4-21).
 

8orthog. =_ -of (4,26)
5 L i2 
noise 

Equation (4-26) reveals that the non-orthogonality-induced error is'maximum
 

for minimum C. Also, this result shows that the attitude error due to non

orthogonality of interferometer baselines decreases with increasing baseline
 

length.
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4.3.3.4 Interferometer Measurement Error Due to Spacecraft Solar Panels
 

Summary. The geometry of the DSS ground beacon transmitter - solar
 

panel - interferometer antenna signal path has been investigated. 

It is concluded that a reflection from the solar panel can cause
 

a significant error when the solar panel is downward. Furthermore,
 

shadowing of the small-aperture interferometer antenna can occur for
 

some ground transmitter locations and the anticipated antenna mast height.
 

Recommendations include:
 

1. 	reduce reflection-induced error by increasing interferometer
 

baseline length;
 

2. 	avoid using flat surfaces on the solar panel edges to cause a
 

diffuse reflection;
 

3. 	restrict ground beacon transmitter location to places north of
 

10 S latitude (antenna platform assumed to be on north end of
 

despun axis) to reduce the minimum mast height required to
 

avoid shadowing of the interferometer by the solar panels.
 

It is not recommended that either antenna mast height or interferometer
 

beamwidth be reduced to reduce the effect of the reflection. This is
 

because the magnitude of the error can be reduced by other means listed
 

above. In addition, there is a large degree of uncertainty concerning
 

the 	error magnitude. Beamwidth reduction would increase the aperture
 

which would increase interference power from the near-by 12.2 GHz
 

source. Furthermore, beamwidth reduction below 300 would be required
 

for 	anticipated antenna mast heights, which would violate the constraint
 

that 	reception will be from uplink stations which view the spacecraft
 

with greater than 250 elevation.
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The solar panels will probably cause significant measurement error
 

due to reflections of the interferometer beacon signal as the solar
 

panels pass through the interferometer patterns. A rough estimate
 

gave an atticude error on the order of .05 
 or greater. Increasing
 

antenna mast height or decreasing interferometer beamwidth is not
 

recommended since an extreme amount of either change would be
 

necessary. The attitude measurement error due to reflection
 

can be decreased by increasing the interferometer baseline length.
 

It is recommended that the solar panel edge structure should not be
 

flat but should have a shape which causes the reflection to be as
 

diffuse as possible in character.
 

It can be shown that shadowing of the interferometer antenna elements
 

by the solar panels can occur for beacon transmitters in the southern
 

hemisphere. 
It is felt mast height should not be required to be
 

extended for the DSS function. Instead, the location of DSS beacon
 

ground transmitters should be restricted to a maximum southern
 

latitude of about 100 for a mast height of 5.7 feet (1.74 meters)
 

and a spacecraft attitude tolerance of + 50.
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4.3,4 Preliminary Interferometer-Physical Configuration
 

4.3.4.1 Summary. Reference to the ATS-4 study* provides the follow

ing physical configuration characteristics and the pertinent rationale.
 

See Figures 4-15 through 4-17.
 

1. 	Crossed-interferometer arms of superinsulated lead-in
 

cables. The thermal isolation from the space environ

ment will-minimize thermal difference between lead-ins,
 

minimizing phase differential. The cross configuration
 

permits making equal the lengths of the RF coupling to
 

each horn. Mounting points-are at each end to minimize
 

horn motion along the earth-vector. Mounting points must
 

accommodate thermal extension of the length due to truss
 

thermal flexure. This configuration is most appropriate
 

for 	the quad configuration of the large aperture antennas.**
 

The T-configuration may require an L-shaped alternate to
 

the crossed-arm configuration interferometer.
 

2. Linearly-polarized diagonal horns mounted on extensions
 

to raise the horns above the large antenna surface so
 

that coupling from the 12.2-GHz feed is reduced. Horn
 

out-of-plane motion due to thermal distortion, etc., must
 

be less than .004 inch for 1 of electrical phase error.
 

3. Interferometer receiver located on the antenna platform
 

at the approximate center of the crossed arms. This
 

receiver location minimizes RF cable lengths, keeping
 

differential phase shifts small. The 12.2 GHz isolation
 

filters are located within the superinsulation envelope.
 

This is to cause the filter temperature to vary over a
 

minimum range. The receiver and RF lines must be isolated
 

*ATS-4 Study Program Final Report, Vol. 7, Fairchild-Hiller Space
 
Systems Division, December 1966.
 

**Mechanical Integration IRR #2, APSS .& SS, Department 553-5, MI-IRR-2, 
December 12, 1968. 
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from the 12.2 GHz feed transmission lines. Thermal isola

tion of the receiver should maintain a receiver temperature
 

range of O.to 400 C. Note that the receiver will dissipate
 

approximately 5 watts.
 

4. 	The coarse measurement (Short baseline) horn has been omit

ted to simplify the interferometer receiver. Omitting this
 

function is feasible because the ambituity resolution may
 

be performed by independent means. Attitude angle measure

ment ambiguity interval is 2.70 .for the 32-inch (81.28 cm)
 

baseline at 8 GHz. Initial ambiguity resolution may be
 

accomplished by ground beam position measurements. Unambig

uous measurements may then continue by identifying the phase
 

quadrant of each measurement.
 

insulated& 
supported 
waveguide 

large 
aperture 

/antenna 
atructure 

mountingpoint I -- - -- _ ,I mountingpoint 

coa thermal
 
cable insulation
 

Figure 4-15r Crossed-Arm Interferometer'Configuration (sketch)
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FIGURE 4-17. HORN MOUNTING, ISOMETRIC VIEW 
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4.3.5 RELIABILITY ANALYSIS OF INTERFEROMETER RECEIVER
 

The interferometer receiver with various configurations for switching the
 

receiver input between interferometer arms and switching to a redundant
 

receiver has been evaluated for reliability. The input switching arrangement
 

with the best reliability was selected and overall receiver probability of
 

success for 5 years was evaluated.
 

4.3.5.1 Summary. Of five configurations analyzed, a receiver system using
 

a standby redundant receiver with PIN-diode switching between interferometer
 

arms and a hybrid power-splitter to couple to the redundant receiver has thp
 

highest probability of success over a five-year mission period. The computed
 

probability of success for the dual local oscillator receiver up through the
 

phase detector but not including the subsequent digital averaging circuits
 

is 	.97 over 5 years. It should be noted that the reliability evaluation was
 

performed for the dual-local oscillator type of receiver. The pilot-tone
 

receiver is, however, the preferred receiver design. The circuits are very
 

similar in parts content by function: the dual local oscillator (L.O.) is
 

replaced by the first L.O. and pilot tone oscillator of the preferred design;
 

the preferred design contains an addition 2nd IF amplifier, but this addition
 

will decrease the probability of success by only .004. The additional circuitry
 

of the digital filter will add only a small additional failure rate because
 

of the high reliability of digital integrated circuits. Adding a redundant
 

L.O. and pilot tone oscillator would cut the failure rate in approximately
 

half as may be seen from the calculations in Figure 4-19. Therefore we may
 

conclude the following approximate reliability for the interferometer receiver
 

and digital filter:
 

Configuration: (Pilot Tone Receiver)
 

a. 	PIN diode switching between interferometer arms
 

b. 	Hybrid coupling of signal to standby redundant receiver.
 

c. 	Redundant local oscillator and pilot tone oscillator 

multiplier chain.
 

Probability of success at 5 years: .97
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4.3.5.2 -ReliabilityAnalysis. Several receiver input configurations using
 

the receiver block as a failure rate constant were evaluated for their
 

relative ,probabilityof success. -The receiver itself was analyzed from a
 

parts-cotunt itemization first and the results used in the overall configura

tion model. The receiver input switching configuration with the greatest
 

probability of success over a five-year mission was then determined.
 

Functional block diagram for the receiver is shown on Figure 4-38 and the
 

reliability block diagram is on Figure 4-19, It appears obvious from the
 

total total failure rate for the Local Oscillator and the Double-Local
 

Oscillator that these two units will require some sort of redundatcy.
 

However, for the purpose of this study, the receiver will be as shown.
 

Of the five configurations analyzed, the receiver system using the standby
 

receiver with PIN-diode switching and the hybrid to couple to the redundant

receiver has the highest probability of success over a five-year period.
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TABLE 4-12. CONSOLIDATED RELIABILITY ANALYSIS - INTERFEROMETER RECEIVER
 

CONFIGURATION PROBABILITY OF SUCCESS RANK
 
at 5-Year
 

A Circulator Switching-Standby 0.8158 
 4
 

Pin Diodes SI, SI1 
B Circulator 0 8664 2 

Standby $2' S2 

Pin Diodes SI, Sl '
 
C Hybrid Power Splitter 0.9197 1
 

Standby $2' S2
 

A Circulators-Active 0.6732 5
 

B Pin Diodes-Active 0.8574 3
 

The reliability of the approach using PIN diode switches and a standby redun

dant receiver was recomputed f6r the case where each receiver has a standby
 

redundant local oscillator - pilot tone multiplier chain. This configuration
 

is preferred because the oscillator presents the largest reliability penalty
 

of any single block in the receiver. Using standby redundant oscillators,
 

the receiver probability of success is increased from .74 to .88. The receiver
 

system Ps is then raised from ..92 to .97.
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4.4 	 SENSING THE DIRECTION OF SATELLITE NARROW ANTENNA-BEAM AXES BY
 

PATTERN MEASUREMENT AT GROUND RECEIVERS
 

The DSS is required to perform the following additional function not performed
 

by previously developed spacecraft functions. The DSS must
 

a. 	 Measure antenna platform attitude employing signal(s) which
 

use the spacecraft large-aperture transmitting antennas;
 

b. 	 Locate the beam pattern geometric center orientation with an
 

accuracy of + .050 in antenna platform pitch and roll and
 

+ .5 	in yaw.
 

cr Convert the attitude measurements to attitude correction
 

signals 	to be transmitted to the spacecraft attitude control
 

system.
 

d. Provide spacecraft antenna platform attitude measurements
 

simultaneously or in sequence with spacecraft interferometer
 

*attitude measurements.
 

In addition the following requirements are derived from the preferred DSS
 

approach derived in paragraph 4.3.
 

e. Provide a means of redundant'spacecraft antenna platform
 

attitude measurement in event of spacecraft interferometer
 

system failure or measurement interruption.
 

f. 	 Provide a means of resolution of ambiguity of measurements
 

made by the interferometer.
 

The sections below develop a preferred DSS technique which makes direct
 

measurements of the patterns of the spacecraft transmission antennas. The
 

required ground receiving equipment is developed to a functional level and
 

special 	receiver characteristics and ground'computation requirements are
 

described. Error analysis of the developed DSS technique is presented.
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4.4.1 Direction Sensing by Beam Pattern Measurements on the Ground: Summary
 

The recommended technique of direction sensing employing signals which use the
 

spacecraft transmission antennas is making direct measurements of the patterns
 

at ground receivers. Other techniques were investigated. However, they in
 

general involve additional feeds on the transmission antennas located close
 

to the main feed. The resulting additional aperture blockage or feed mutual
 

coupling would raise the sidelobe level above the -25 dB requirement placed on
 

the design of the transmission antennas. Section 4.2 compares the various alternate
 

approaches.
 

The recommended approach makes signal power measurements on the main transmitted
 

signal (if angle modulation is used) with bandwidths up to 50 MHz. This is
 

feasible with spacecraft ERP of 63 dBW or more. For operation with less ERP
 

or if amplitude modulation is employed on the main beams, a constant power
 

signal in a vacant area of the 12 GHz frequency spectrum must be used. -In
 

this case an ERP of 50 dBW provides the necessary attitude measurement accuracy
 

if receiver bandwidth is equal or less than 2.5 MHz.
 

Two approaches are developed for spacecraft antenna platform attitude measure

ment by measuring beam pattern characteristics at ground receivers. The first
 

approach utilizes the spacecraft antenna - ground receiver site effectively
 

as aft antenna range (see paragraph 4.4.3). Since reflections at the ground
 

receiver are negligible for a dish antenna, then pattern measurement accuracy
 

is limited only by the accuracy of receiver relative power measurement equip

ment and attitude actuator oi stepper resolution. Present simply antenna
 

range practices permit location of the beam axis within 1/50 of the HPBW. This
 

corresponds to .05 for a 2.7 HPBW. Averaging data over several antenna
 

pattern cuts should reduce the uncertainty of the axis location.
 

A second approach uses small attitude increments in orthogonal or quadrative
 

directions and measures the resulting power changes at a ground receiver
 

located off the beam axis. (See paragraph 4.4.7.) This technique requires
 

the prior, accurate measurement of the antenna pattern. Figure 4-20 presents
 

the estimated error for this DSS technique. It is seen from the curve that
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the attitude increment must be less than .100 for accuracy approaching the
 
0
°
 required .05 . It should be noted that making a series of measurements
 

(incrementing attitude in a square pattern) should reduce the error.
 

Paragraph 4.4.4 develops error analyses for the relative power pattern
 

measurement techniques. Paragraph 4.4.6 itemizes the procedure to resolve
 

ambiguity in the spacecraft interferometer measurement using the ground
 

receiving equipment.
 

4.4.2 Direct Beam Pattern Measurement Techniques
 

To measure antenna patterns while in orbit, the spacecraft antenna platform,
 

antennas and ground receiver terminal may be used in a manner similar to the
 

antenna pattern-measuring range. The antenna platform attitude is adjusted in
 

two degrees of freedom in 0.06 degree steps. These relative positions are
 

telemetered to the ground in terms of the number of steps. An error in
 

attitude exists for each step position due to stepper resolution. At the
 

ground receiver, power change is measured in a constant gain receiver. The
 

power measurement is made relative to the on axis, beam peak power value,
 

hence absolute accuracy of the power meter is unimportant. The important
 

factor is resolution of the meter which may be expressed in terms of the power
 

measuring device's differential linearity.
 

The beam pattern is measured by the following procedure. The antenna platform
 

is moved in one degree of freedom until a maximum signal level is found. The
 

platform is then stepped through the orthogonal degree of freedom from beam
 

edge to edge and power readings are made at each step. This process may be
 

repeated in the perpendicular direction to get a right-angle pattern cut,
 

where the two cuts intersect near'the beam peak. Additional parallel pattern
 

cuts may be made off beam peak. Pattern data may be smoothed by computer
 

curve fitting. Pattern measurement cuts may be repeated to average error due
 

to stepper resolution and power meter resolution.
 

The above procedure provides a definition of pattern axis location. The tech

nique is called the sequential power measurement method and is developed in
 

paragraph 4.4.3. The accuracy parameter of interest in this case is the
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repeatability or uncertainty of the experimental location of the beam axis.
 
Paragraphl 4.4.4 investigates the value of uncertainty associated with this
 
definition.
 

A second sequential power measurement technique estimates the location of the
 
beam axi's as 
defined above by making relative power measurements 
over a small
 
area 
neat the beam periphery. 
This may be achieved using one ground receiver,
 
if subsequent increments 
are made in the perpendicular direction. 
This
 
techniqde does 
not have the adcuracy of the method above where thewhole
 
pattern is sampled; however, accuracy does approach the required .050. 
This
 
technique is of interest because the attitude need be stepped an amount less
 

°
than the overall 0.1
 system accuracy requirement. This procedure is termed
 
the sequential orthogonal incrementing technique and is developed further in
 
paragraph 4.4.7. Paragraphs 4.4.4.2 and 4.4.4.3 discuss error sources 
peculiar
 

to this technique.
 

Reference Signal Power Technique. 
 In this method a reference signal of low
 
power is transmitted on an earth-coverage antenna which transmits equal or
 
a known relative power level to all ground stations. The necessary reference
 
SNR at 
the receiver is obtained by achieving a narrow bandwidth by use of 
a
 
phase-lock loop. Transmission on an adjacent frequency channel is 
desirable
 
to reduce differential gain and noise density effects between the main and
 
reference receiver channels.
 

A disadvantage of the reference power technique is that variations (drift) of
 
the above parameters over a period of several hours may'exceed the 0.1 to 0.2
 
dB stability required. 
The added complexity of a low-gain antenna 
and 12 GHz
 
source 
on the spacecraft is also objectionable compared to 
the simplicity of
 
other methods.
 

4.4.3 Sequential Power Measurement Technique
 

In the sequential power measurement techniques, power measurements are made
 
relative to previous power measurements with a fixed- or known-gain receiver.
 
The basic sensitivity requirement of the ground receiver is 
set by the State
meat of Work in the RFP 
which states that operation must be feasible at ERP's
 
of 50 dBw per channel. 
 As is shown below, the on-axis receiver SNR required
 
to meet the accuracy requirenient is greater than 30 dB.
 

* RFP C-360742Q, Exhibit A, Section 10.7 
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The ground beam tracking receiver may use a constant gain receiver "front

end" plus a commercially available broad-band power meter. An alternative
 

approach is to measure the output of a calibrated AGC detector and with
 

knowledge of the receiver gain vs AGC voltage, and compute the received
 

power. If the spacecraft transmission is FM or PM, the entire signal band

width must be measured to obtain constant power at a given link gain. As
 

an alternative, a low power beacon may be transmitted on an adjacent band
 

in the case of FM or PM. This signal requires little additional circuitry
 

since it can be amplified by the same 12 GHz power source. If the trans

mission is AM, total transmitted power varies as a function of the modulation.
 

In this case the power-in a portion of the spectrum containing a constant
 

power component may be measured.
 

4.4.3.1 Relative Signal Strength Measurement Receiver Requirements
 

To make relative power measurements the receiver will be required to
 

a. make a measurement of power at the receiver. 

b. maintain a constant or accurately known gain for a period of time 
until 

c. a second power measurement is made. 

The simplest technique of signal power measurement is shown in the receiver 

model of Figure 4-21. Here a precision wide-band power meter measures the 

signal plus noise power at a point in the receiver where the receiver bandpass 

has been established. As is suggested in Figure 4-21 , the first stages of 

amplification are of constant gain. These stages do not need the usual AGC 

feature because signal dynamic range will be approximately 35 dB. Any gain 

control required for adjusting signal level (e.g., for the purpose of signal 

demodulation and monitoring) can be accomplished in subsequent amplifier 

stages. It should be noted that pne advantage of the constant gain approach is 

that the noise power component is constant for a constant receiver equivalent 

noise temperature (receiver thermal noise plus antenna noise temperature). 

This fact is useful if the noise power can be measured separately. The noise

power (watts) could then be subtracted from the power reading.
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An alternate technique is to use a non-precision power measuring device 

such as a simple detector plus lowpass filter. This approach is usually
 

restricted to a narrow range of measured signal power because of the
 

restricted range over which most detector devices retain their desirable
 

characteristics. To accommodate the wide range of signal powers the output
 

of the device may be used as an AGC voltage. The device input level
 

variation ratio would then be reduced by a factor equal to the gain
 

variation ratio. Measured AGC voltage could then be related to received
 

power by use of accurate knowledge of amplifier gain A(v) vs AGC voltage, v.
 

The receiver output power S is related to the dc amplitude out of the

2°
 

square-law detector y = Kx by
 

CONSTANT GAIN RF AND IF AMPLIFIER 

A.PASS 
BAND- IGAIN 

TO CONTROLLED 
IF AMPLIFIER . 

FROM ANTENNA 

INDICATION 
RECEIVED 
POWER 

OF WIDE-BAND 
POWER METER 

Figure 4-21. Measurement of the Total Power of an Angle-Modulated Signal
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s = v/K 

and thus the received power is given by
 

Si = So/A(v) = v/KA(v)
 

In calibrating the detector it will be found that K is also a function of v,
 

i.e., the gain constant will not be fixed over v. The accuracy required of
 

the detector is less than .25 dB error for 0.050 error in the antenna off-axis
 

angle measurement as is shown in paragraph 4.4.4.
 

The techniques of signal power measurement discussed above require that the
 

signal power in the passband is not a function of modulation waveform. If
 

the signal is FM (or angle modulation in general), the bandwidth must be
 

great enough to pass all significant sidebands. The signal power will then
 

be constant at a fixed point on the beam. In-the case of an AM signal, the
 

received power (sum of entire signal spectrum) will vary with the modulation
 

waveform. In this case,,the power of a single, but fixed component of the
 

spectrum may be sampled. This can be a sync component which is always present.
 

Rather than attempt to select a narrow portion of the IF spectrum, it is more
 

practical to translate to baseband (detect) and select the signal component
 

as is shown in Figure 4-22. The variation of the power of this signal com

ponent may then be related to angle of antenna beam center. Note that AGC
 

will be required to provide an adequate signal into the detector, therefore
 

AGC voltage must be sampled to determine receiver gain.
 

FROM RCVR D " 
ANTENNA 

POWER INDICATION METR 

v 

Figure 4-22. Measurement of Power of a Fixed Spectral Component
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4.4.3.2 Receiver Noise and Satellite EPF
 

Table 4-14 itemizes the link conditions for the spacecraft-to-pattern measuring,
 

ground terminal. The power budget is carried out for variable transmitter power
 

P and receiver bandwidth B. Two cases are of interest. One (a) is where
 

measurements are made on the entire wideband angle-modulated signal (ERP> 50 dBw).
 

The second case (b) is where ERP is restricted to 50 dBw as per the REP. For
 

case
 

a. 	 P = 27 dBw (500 watts)
 

B = 77 dB-Hz (50 MHz)
 

Hence SIN = 20 dB.
 

b. 	 EP = 50 dBw
 

P 14 dBw (25 watts)
 

B = 64 dB-Hz (2.5 MHz)
 

Hence S/N = 20 dB.,
 

Note that in case (a), the SNR of 20 dB is marginal and little can be done
 

about it other than increasing receiver GIT by about 10 dB.
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TABLE 4-13. Downlink Power Budget for Beam Axis Direction Sensing
 

NO PARAMETER 

I Total Transmitter Power 

2 Transmitting Circuit Loss 

3 Transmitting Antenna Gain 

4 Transmitting Antenna Pointing 
Loss 

5 Space Divergence Factor 

@ 12.2 GHz, R = 38,000 kM 

6 Polarization Loss 

7 Receiving Antenna Gain 

8 Receiving Antenna Pointing Loss 

9 Receiving Circuit Loss 

10 Net Circuit Loss 

11 Total Received Power 

12 Receiver Noise Spectral Density 
(NIB) 

T System (T ) 38000 K 

Signal-to-Noise Density S/No 

Bandwidth 

Signal-to-Noise Ratio SIN 

VALUE 

P dBw 

-1 dB 

36 dB 

SOURCE 

--

-206 dB 

49 dB 

-

-1 dB 

-123 dB 

P-123 dBw 

-193 dBw/Hz 

P + 70 dB/Hz 

B dB-Hz 

P + 70 - B dB 

10' diam 

NF=10 dB 
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Case (b) is equally marginal; however, the bandwidth can readily be reduced
 

20 dB to 25 kHz. This is because the low power beacon may be a sinusoid
 

leaving the minimum bandwidth set only by frequency uncertainty which,for a
 

10-6 oscillator is 8 kHz.
 

It is concluded therefore that if the additional 12 GHz signal source and
 

multiplier chain are not objectionable, then the following spacecraft con

figuration is preferred for ground beam sensing purposes.
 

Spacecraft
 
Transmitter RF Ground
 
Additional Power Receiver
 
Circuit Out Bandwidth
 

12 GHz 	driver added 10 to 25 watt 10 to 25 k4lz
 

to existing pre-power
 

amplifier circuits
 

4.4.4 	 Error Analysis of Beam Axis Location by Pattern and Partial Pattern
 

Measurement
 

Two 	problems are considered in this section:
 

a. 	 Determining the repeatibility in locating (defining) the beam
 

axis by making complete pattern measurements.
 

b. 	 Finding the error in estimating the orientation of the beam
 

axis by partial-pattern measurements.
 

Problem (a) is the antenna range problem. This has been studied for spacecraft 

application in detail by groups in the past ' These studies indicate that 

antenna range error sources are largely associated with mechanical devices
 

and the resolution in reading them. Since problem (a) is concerned with random
 

errors of zero mean, the bias errors are of no concern. This leaves only
 

* 	 "Error Analysis for Mariner Mars 69," JPL MESA East Antenna Range Report
 

No. 3678-68-009 Tech Memo, Feb. 19, 1968.
 

** 	 "Error Analysis for NATO Communication Antenna," by G. H. Schennum, Philco-
Ford WDL Div., 9 Oct. 68. 
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mechanical and electrical resolution values (random error.values) to be of
 

concern. These studies show that the random error sources for the ground
 

beam-sensing DSS are
 

a. 	 antenna platform attitude stepper resolution,
 

b. 	 ground receiver power meter resolution.
 

In addition, the following sources of error have been found to be significant.
 

c. 	 the effect of the noise component in the power measurement,
 

d. 	 distortion of the pattern due to thermal distortion of the
 

reflector.
 

The effects of these error sources are brought out in paragraph 4.4.4.1.
 

4.4.4.1 Summary of Error Magnitudes
 

The techniques of pattern measurement for beam axis location definition and
 

beam axis orientation sensing by partial pattern measurement are developed in
 

paragraph 4.4.2. This section investigates the repeatibility in the axis

defining procedure and the error in sequential-orthogonal partial pattern
 

measurement procedure. Results of the error analysis are provided in Table 4-1
 

TABLE-4-14. Axis Location Uncertainty
 
(Full Pattern Measurement)
 

Power Per mAxis 	 Location Uncertainty

erMeasrment


Meter 	 (Errors averaged over
Error 
 o
Resolution 	 (increment = .060) -2.5 to +2.5 pattern) 

.00560
.0510 


.0110
 
.01 dB 


.102a
.02 dB 


It was found that error due to power meter resolution dominated error due to
 

antenna platform stepper resolution.
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4.4.4.2 Repeatibility in or Uncertainty of Beam Axis Location by Pattern
 

Measurement Data Integration. As noted above, themajor sources of random error
 

contributing to uncertainty in the definition of axis location are
 

a. antenna platform stepper resolution
 

b. power resolution of receiver power meter.
 

Antenna platform stepper resolution is estimated to be 5 to 10% of the 0.06 degree
 

step size for the Lewiis antenna. The rms uncertainty in the axis location may
 

be determined by considering the displacement of the axis definition caused
 

by each measurement error, then averaging over the number of measurements required
 

to make one complete pattern cut. Assume that the parabolic shape of the
 

pattern is prior knowledge. Then one measurement relative to a zero-error
 

measurement would cause an axis location error equal to the value of stepper
 

angular error on that test. Assuming the stepper error is statistically
 

independent from step to step with an rms value (normal density) of e , the
 

net contribution to axis location error is eI/ -f , where n is the number of
 

measurements. Therefore, for measuring the pattern from -2.5 to + 2.5 degrees,
 

the following uncertainty in axis location definition results (step size is .060):
 

rms number of rms uncertainty 
stepper >measurement in axis location definition 
resolution steps due to stepper resolution 

5% or .0030 83 .000330 

.000660
10% or .0060 83 


It is expected that pattern shape irregularity will make curve fitting more
 

difficult, thus increasing the values given here. In addition, the direction
 

of stepping may introduce-a correlation between the step error in successive
 

steps. This would tend to eliminate the averaging effect of taking many
 

measurements. The final error can, however, be concluded to be much less than
 

the .05 accuracy requirement.
 

The effect of power resolution of the receiver power meter is the other major
 

factor in causing uncertainty in beam axis location. It is assumed that for
 

the axis location definition operation a power measurement circuit SNR of
 

greater than 20 dB will be obtained. It can be shown that for large
 

SNR, the power measurement error is nearly equal to the power meter resolution.
 

4-83
 



(The error is greater than power meter resolution for low SNR). Assuming 

the slope is a linear function of off-axis anglep , (this is a good approxi

mation; see Figure 4-20) then the slope m is given by 

m = k9 = AG/Ai (4-29) 

where AP is the nominal attitude increment.
 

The variation of computed P relative to variation in measured gain change 

AG is then 

k3/ = 6(AG) /i (4-30) 

The variation in AG is identified as the power meter resolution, E. 

The per-measurement error in P is then 

e = E/kAfl 

Since k and AP are constant, then ep has the same value irrespective of
 
o 2
 

off-axis angle. For the 2.7 HPBW antenna, k = 3.29 dB/(deg.) . The following
 

axis location definition uncertainty results for stepping the attitude from
 
0 00 

-2.5 to + 2.5 . Attitude increment AP is .060.
 

Power Per- Axis
 
Meter Measurement Location
 

Resolution Error Uncertainty
 

E ep (83 measurements)
 

.00560
.0510
.01 dB 


.01120
.1020
.02 dB 


The values of power meter resolution given above are representative of two types
 

of equipment. The Scientific Atlanta Wide Range Receiver with Model 1630/40
 

series bolometer has a resolution of .01 dB. The Hewlett-Packard Model 432A
 

or 437A Wide Band Power Meter has a differential linearity better than .01 dB.*
 

Its response time is less than one second.
 

Private communication with B. Peterson of Hewlett-Packard Microwave Division.
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Measurement Sensitivity as a Function of Off-Axis Angle
 

Computer calculation of antenna pattern characteristics in a plane approxi

mately normal to the roll axis has been used to plot slope of the pattern
 

in Figure4-20. Made from this plot is the table of sensitivities below.
 

Angle Off Slope in dB per 0.1 degree
 
Boresight change in roll
 

10 0.35 dB/0.1°
 

2 .78
 

3 1.37
 

4 .93
 

5 (negative)
 

This table and the plot show that good sensitivity is available on off-axis
 

angle equal to the full beamwidth at half-power points. However, the sensi

tivity drops off rapidly beyond 3.50 as the first null is approached. Ground
 

stations should not be located beyond the 30 angle because a roll rotation of
 

° 
slightly more than l will result in an abrupt loss of sensitivity to rotation.
 

4.4.4.3 The Error in Estimating the Orientation of the Beam-Axis by Partial-


Pattern Measurements. In this technique (for example the sequential, orthogonal
 

technique of paragraphs 4.4.2 and 4.4.7) a number of measurements are made on
 

a limited area of the pattern. The technique essentially measures the pattern
 

slope to obtain off-axis angle. Orthogonal increments can be made to determine
 

azimuth of a single ground receiver.
 

Antenna platform stepper resolution has a major effect in this technique. The
 

error due to stepper resolution is determined as follows: As seen below, the
 

slope of the pattern is nearly linearly increasing in magnitude from beam
 

center to 3 off axis. Let step resolution be e step and pattern slope m.
 

Let the error in the determination of off-axis angle be called Ep
 

Then the off-axis angle p is computed from
 

m = k3 ,G/AP 
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where A G is the measured gain change andA/3 is the nominal step size.
 

Introducing the error in step size and p we have
 

+= A G (4-31)
k (AR + 6 step) 

A G
 

The error part.is
 

= 3Estp/A$ 

The error in determining off-axis angle is seen to be proportionate to off-axis
 

angle13 and the fractional step error or step resolution. This result ia
 

plotted in Figure 4-23.
 

0.2-


STEPPER RESOLUTION
 

0.1

2 3
0 0 

OFF AXIS ANGLE$ (DEG,)
 

Figure 4-23., Error in Determining Off-Axis Angle vs,
 
Off-Axis Angle.
 

Error due to power meter resolution and receiver noise is investigated in
 

paragraph 4.4.7. Those results and the above error component are combined
 

in Figure 4-2. It is seen that error due to stepper resolution dominates
 

°
 for off-axis angle greater than 1.5 . Also, power meter resolution causes
 

an increase in error as off-axis angle approaches zero. The best receiver
 

location is therefore I to 1.5 off beam axis. Note that the -3 dB point on
 

the pattern is 1.350 from the axis.
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4.4.4.4 Pattern Asymmetry and Thermal Distortion Errors. Computer-derived
 

patterns of the worst case thermally distorted antenna were obtained from the
 

antenna design task. Thermal distortion causes a change in pattern shape
 

which was found to cause significant error in the method of locating the beam
 

axis by partial pattern measurements. Therefore, the pattern must be measured
 

for the distorted condition. Since distortion will vary periodically with a
 

24-hour period, a set of two or more complete pattern measurements representing
 

distortion extremes should suffice.
 

Pattern asymmetry due to aperture blockage causes a complication of the partial
 

pattern measurement axis location technique. This will require an iterative
 

procedure to determine axis location. The first computation will assume
 

circular symmetry. The second computation will inject a correction term
 

using the results of the first computation. This one iteration should suffice
 

because the effects of asymmetry is slowly varying with aximuth (yaw).
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4.4.5 	Derivation of Antenna Pattern Geometric Center Location in Earth Coordinates
 

The analysis of the ground beam sensing subsystem is broken up into the
 

following two basic problems.
 

1. 	 Measurement of the position of the antenna patterns'
 

geometric center (derivation problem, noiseless case);
 

2. 	 Prediction of error in the measurement of geometric center
 

location in presence of system noise and bias error (tracking
 

prbblem).
 

The first problem is developed in this paragraph; the error analysis appears
 

in paragraph 4.4.4.
 

4.4.5.1 	Summary
 

The analytical development below derives expressions for
 

1. The spacecraft-to-ground receiver vector in antenna platform
 

coordinates using two ground receiver off-axis antenna angle
 

measurements;
 

2. 	 The antenna platform coordinate system-to-earth coordinate
 

system linear transformation from the results of 1. above.
 

3. 	 The beam pattern geometric center location on the earth
 

in earth coordinates using the results of 22. above.
 

It is shown that the measurement of the spacecraft-to-ground receiver vector
 

provides redundant information which may be used to measure antenna axis
 

alignment error. Ambiguity of solutions exists for some of the expressions;
 

however, the antenna platform orientation will be known approximately from
 

spacecraft attitude and gimbal data.
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4.4.5.2 	Derivation of Spacecraft-to-Ground Receiver Vector from Ground
 

Off-Axis Angle Measurements
 

The geometrical relationships between antenna platform coordinate system XYZ,
 

the boresight vector k of antenna pattern #k and the spacecraft to receiver
 

vector r1 is shown in Figure 4- 24. It is shown below that if the boresight
 

vector is known in XYZ coordinates and the off-axis angle is measured, then the
 

vector r1 can be determined by either
 

1. 	 Making off-axis angle measurements on two beams with one ground
 

receiver location, or
 

2. 	 Making off-axis angle measurements on one beam with two
 

ground receiver locations.
 

Pattern
 
Center
 

X -	 RCVR 

yk1-\
 

4~ 	
ki

41 

Z
 

ak1
 

Figure 4-24.-	 Beam Boresight and Ground Receiver Vector
 
in Antenna Platform Coordinates
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From the vector diagram it is seen that the vector to ground
 

receiver #1 is given by
 

rl = Pk + akl .(4-35)
 

The kth boresight vector is known in xyz coordinates; it is
 
• ^ Fsin 9 

k P(k)L 3 (4-36)T2

where T2 is a linear transformation representing rotation about the 2-axis
 

(y-axis) and
 

cos u 0 sin
 
0 1 0 

S-sin u 0 
 Cos uJ
 

and
 

The vector akl is
 

akl = laklI T2 (Gk) T3 (kl) 1 (4-37) 

where T is the transpose of T3 and is a rotation about the 3-axis: 

[Cos

= Cos UT (u) sin 

u 
u -sin 
u
 

0 
 0 
 a 
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and
 

Noting that Iakl I = 'okI singk1, then 

r I PkJ T2(aGk) (3 + singk1 T31(akl) i) (4-38) 

Defining the unit vector r1 by
 

where
 

1711 = I~k.I/COSskl 

then the expansion of equation (4) yields
 

[sinek + sinkl cosek Cskl( 

r I =CoS$kl sinSki silfkl (4-39) 

Losek  sinBkl sin@k CosaklJ 

In equation (4-3 the value of akl is unknown. It can be determined by 

measuring Bml, i.e., the off-axis angle to'beam #m at the same receiver. 

Then 

r = coss l T2 (m( + sinml T3(m 1) ) (4-40) 

Equating equation(4-39)and (4-40)gives three equations in two unknowns. The
 

values of a may then be determined from any two of the-resulting equations.
 

Note that there is a dual ambiguity in the solution which may be resolved
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by a second set of solutions after a rotation in roll. The difference between
 

successive solutions must be consistent with the direction of rotation. The
 

redundant equation from (4-4Q andO-3S)above may be used to solve for 9, the 

antenna boresight aligment in pitch. The general development of boresight
 

orientation calibration (in orbit) must include pitch and roll offsets and
 

hence requires further analytical consideration. This is left to the error
 

analysis problem to be considered later.
 

Coordinate Transformation
 

From Figure 2 it is seen that
 

jxyz)- - j - )(E) (4 

which, once rI has been determined by the one ground receiver approach,
 

may be solved for 1f,p and * .
 

An alternate measurement procedure to determine the spacecraft-to-receiver 

vector, solves simultaneously for angles tki and the linear transformation angles 

relating Earth coordinates to antenna platform coordinates. This procedure 

requires the off-axis angle 81kCmeasurement by two ground receivers (i - 1, 2) 

sensing the same beam (one VAlue of k). Figure 4- 25 shows the geometrical model. 

The second ground receiver defines vector r where
2 

r2 m Pk2 + ak2 
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Figure A- 25. Two Ground Receivers Sensing One Beam 

A A 

As before, expressions for r1 and r2 are derived yielding six equations
 

in eight unknowns. But, in addition, the vectors r. may be expressed in
 
1
 

terms of the satellite and receiver station vectors.
 

TI1
r._ (xyz) ._R (z . ,
 

where the superscript indicates the coordinate system and Ta(Ti, s) is a linear
 

transformation which translates vectors from earth coordinates to antenna
 

platform coordinates. Then we have
 

-l (ki)
-(E)l 


(R.i-.p) cosSk I2 (afi)
 

a Id.f 3 (ak±)
 

where
 

r. = r./ r. 
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which for i - 1, 2 gives six equations in five unknowns. The values of C and the
 

linear transformation may be determined assuming ki are known. Ambiguity in the
 

solution may be resolved by use of approximate values of antenna platform orientation.
 

Location of the Beam Pattern Center in Earth Coordinates
 

From Figure 4-26 we see that the location of the beam center in Earth
 

coordinates is the vector sum
 

R-R -+ +r
 c 1 1 C 

where r is colinear with the antenna platform z-axis. Since 

T(E) (xyz)-T 7; .T 37
 
c a c a c 

then 

1(E) . i(E) + T (-r(xyz +- 3 
c 1 a 1 3T)+Ic 

werh c is unknown but may be obtained from the fact that c a RO, the 

Earth radius. 

PATTERN
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Figure 4- 26 Pattern Center Vector Geometry
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4.4.6 	Use of the Ground Beam Position Measurement to Resolve Ambiguities in
 

the Spacecraft Interferometer Measurement.
 

During initial in-orbit calibration of the interferometer attitude sensing
 

equipment there is a multiple ambiguity in attitude measurement. This is
 

because the electrical phase measurement traverses 2f radians while the
 

angle being measured goes through 2.70 (32-inch baseline, 8 GHz). Since the
 

ground beam position measurement will be available for redundant attitude
 

measurement, this subsystem may be used to make the initial ambiguity
 

resolution computation. The procedure is simply:
 

1. 	attain the approximate spacecraft antenna orientation through
 

the command channel (command override);
 

2. 	rotate the spacecraft antenna in pitch and roll until the
 

pattern is acquired at the ground receivers;
 

3. 	make an initial, reduced accuracy attitude computation
 

using the receiving station outputs and the preflight

measured antenna patterns. Since the non-ambiguous
 

attitude range is 2.70, the initial accuracy must be
 
° 
better.than + (1.4 - e ) where % is the maximum expected
 

interferometer boresight drift (offset from antenna pattern
 

center); 

4. 	compare the ground-sensing computed attitude with the
 

ambiguous set of solutions derived from data telemetered
 

from the spacecraft.' The telemetered data should be the
 

phase measurement outputs cj where the true phase is
 

= '. + 2 n.w 	 i = 1, 2 ...cpj 
J - 1, 2 

and n is to be determined. (See paragraph 4.3.2)
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5. 	after selecting the proper values of integers 
ni, these
 
numbers are commanded into the spacecraft interferometer
 
phase-measurement quadrant-encoder accumulator.
 

6. 	the ground beam-sensing function .maybe use&periodically
 

to check the spacecraft attitude measurement function for
 

failure.
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4.4.7 Use of the Ground Direction Sensing Function as a Redundant DSS
 

4.4.7,. Redundant DSS By Ground Sensing of Beam Orientation. It is clear
 

from the derivation procedure for.antenna platform attitude as developed in
 

Section 4.5 that beam axis orientation can be calculated from signal strength
 

measurements made by ground receivers located within the beam. If the measure

ment procedure does not interrupt service (does not reduce SNR in the service
 

area below requirements), then that method of ground direction sensing can
 

act as a redundant DSS in event of satellite DSS malfunction or outage. Any
 

signal strength measurement and beam-axis direction computation procedure will
 

require that accurate pattern measurement records be available. The pattern
 

uncertainty considerations of Section 4.4 state that the main source of error
 

in on-orbit measurements will be due to platform attitude stepper resolution.
 

This resolution is about .0060. Since this is the magnitude of calibration
 

error which reflects directly on any axis-location procedure using the
 

patterns measured on-orbit, then it is concluded that such a direction sensing
 

technique is feasible provided that a suitable power measurement procedure is
 

available.
 

The only power measurement procedure which will provide the necessary accuracy
 

is a relative power measurement as discussed in paragraph 4.4.2. Of the tech

niques introduced there, the most simple and direct is method of sequential
 

power measurements while incrementing the antenna platform. An approach
 

which provides all the information needed while requiring only one ground
 

receiver site will be called the method of sequential orthogonal attitude
 

increments. While other techniques using more ground receivers might be
 

considered, this approach provides accuracy representative of any sequential
 

power measurement procedure; therefore, only this procedure will be analyzed.
 

4.4.7.2 Method of Sequential Orthogonal Attitude Increments. The principle
 

behind this technique is as follows: Consider a ground receiver at azimuth
 

angle a and off-axis angle p relative to one of the beam axes. Let the
 

antenna platform attitude be incremented A6 1 ,along the 0' azimuth axis and
 

A8 2 orthogonal to this axis. See Figure 4-27 for illustration.
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Figure 4-27: 	 Increment Angles A6, Off-Axis Angle
 

and Azimuth
 

The two power 	changes measured at the receiver are then approximately
 

A s,A, cosa1, 

21 A, sina.
AG 2 


where s, is pattern slope. If now s, s2 and a l l which holds for 

increments small compared to the half-power beamwidth, then by letting Ae 1 = 

ZA 2' the azimuth may be determibed from 

1
 a taJr


Since, in the determination of antenna platform attitude from a1 , errors in a 

are multiplied by sin 1l, then relatively large errors in a can be tolerated. 

It can be shown that for an idealized pattern (Gaussian) and 

A6 =-.050, attitude error due to the constant pattern slope assumption is less 

than .010 for P3 > 0.50. After estimating a , the off-axis angle can be 

determined from calculating the slope from the gain expressions above. The 

expression corresponding to the larger A G should be used to minimize error in 
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In addition to errors due to the constant slope assumption, the following
 
sources 
of errors contribute to the attitude determination error.
 

A
i. 	Power meter resolution plus noise effect: AG = AG + E 

p 

!2. Attitude stepper resolution: , 
A
9 = AG +E 

3. Pattern slope error:
 s=s + C. 

A closed form solution of error in the estimate of antenna platform attitude
 
is difficult if the ground direction sensing function is to be closely approxi
mated. Therefore, a computer simulation of the technique is a more economical
 
way of determining performance characteristics of this beam axis direction sens

ing approach.
 

4.4.7.3 Simulation Results. 
The simulation assumes exact attitude incrementing
 
(zero stepper resolution) and computes beam-axis direction from the simulated
 
measurements. 
Error in the measurements consists of error components intro
duced by ground receiver power meter resolution and thermal noise.
 

Results'of the simulation are presented in Figure 4-28.
 

4-99
 



0.200 

° HPBW = 2.7 

SNR = 30 dB on 
41 Beam Axis 

° w 0.15 

~~POWER METER " 0 0
 

--- RESOLUTION _
 
S0.10° 
 d --- ATTITUDET


05-B+INCREMENT 
°
 0.05
 

TI- 0 

, 0.050 

00-----

°
 2.5
2.00
1.50
1.00 


OFF-AXIS BEAM ANGLE OF GROUND RECEIVER
 

00 0.50 

FIGURE 4- 28. ANTENNA PLATFORM ATTITUDE SENSING 
ERROR VS. OFF-AXIS BEAM ANGLE
 

OF GROUND RECEIVER
 

4-100
 



SECTION V
 

MECHANICAL DESIGN ANALYSIS AND INTEGRATION 

5.1 	 CONFIGURATION 

R.F, trade offs resulted in the selection of four prime focus parabolic 

reflectors mechanically despun with respect to the spacecraft and had the
 

following physical characteristics:
 

a. Relfector diameter 28.0 (71.12 cm) 

b. F/D ratio .35 

c. Focal Length 9.8 (23.892 cm) 

Based 
on this selection mechanical design and integration trade offs were
 
performed which initially addressed the packaging of the four antennas within
 

the physical constraints imposed by the basic system requirements specified
 

in the NASA/LeRC Statement of Work, and those derived from RF/considerations.
 

The imposed and derived requirements and constraints may be summarized as follows:
 

a. 	The spacecraft body and solar array are sun oriented in a
 

geostationary orbit.
 

b. 	Minimum field of view angle over solar array is 40.
 

c. 	System requires 
a four channel RF rotary joint, for 3600 continuous
 

rotation in pitch.
 

'd. 	Antenna gimbaling is required in roll (+12°, -6 °) and yaw (+50).
 

e. 
One 	reflector requires two position capability.
 

f. 	Packaging is required within the envelope of the Atlas Centaur shroud.
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The selected antenna packaging arrangement resulting from the initial investi

gations was further examined in parallel with the structural and thermal
 

analyses. Based on the requirements generated by the analysis efforts a
 

conceptual design was developed which includes the antenna reflectors, the
 

mechanically despin motor drive assembly (integrated with the four channel
 

RF rotary joint), the support truss structure and a method of providing
 

antenna gimbaling. This conceptual design is described in paragraph 5.3.
 

5.1.1 Configuration Trade Offs
 

Based on the solar array criteria provided by NASA-Lewis (array area 350 sq.
 

ft. and aspect ratio 6:1) the height of the antenna array was determined as a
 

function of pointing error. Figure 5-1 shows' a plot of aspect ratio versus
 

antenna height above the spacecraft solar array for a pointing angular range
 
0of 6.61 and 10.610 . The maximum height possible within the fairing constraints 

is 6.3 feet indicating that the maximum attitude error of the spacecraft must
 

be maintained at 1.00 or less and the height of the antenna array must be less
 

than 6.3 feet to avoid interference of the RF beam by the solar array when deployed.
 

In order to maximize the height of the antenna array above the solar array, a
 

configuration was considered that permitted the use of the upper narrow portion
 

of the fairing for storage purposes. This configuration is shown-at the left
 

in Figure 5-2. However, when compared to the configuration shown at the right
 

it was decided that this arrangement was the least desirable of the two for the
 

reasons noted.
 

The selected arrangement permits sufficient separation between lowest antennas
 

and the solar array to avoid interference with the RF beam.
 

5.1.2 Description of Proposal Design
 

A conceptual layout of the design is shown in Figure 5-3. Views 1 and 2 show profile 

and back views. No attempt has been made to show detail at the Array/Spacecraft inter

face. Computer models of the structure, both thermal and structural, were constructed 

5-2 



( NA.5A, CRITERIA. 

1V

e ARRpY" AREA,
 

-~spc • AA E T 10~ql1 ~~I e 5 /PM~fEL 
- '"-----6 :1I 

(-ic0LTx 
0 1.50 C-OvWAGE 

= /. . I I ORSITAL MOTION 
4.00 'K-F BEAW CLEAR 

GI { 5.00 'TE-LLITE ERI oR
• 6 --.-.- _ _ _ -

NAX. HEIGHT5 •Poss,4I _e~L 

o4
 

1.50 CovEszArG (-IoiLsT) 
. 0 ,56.61° 1 1J ORBIAL MMO

46= 6.3 4.00 I F-.5:EA,,I CLEP,-kt'.,CE 

.00 SNThLLITE REk.OF 

4 I 

STRUCTURAL HEIC.RT (h ) F-T 

Figure 5-1 Influence of Solar Array on Antenna Configuration
 



1 Ul


4. 

0 0 

0 0 

" JPo NTEJEO.rET 

*PR'~mrr5 MAXlMUM e LoWs-T SIR'.TURAL ->Ul~*WT 
HEIGHT ABO5VE SP7ACECrZAPT WEeN4T 

*LI!FK$T EPPFIClINT STRVCrURA~L * WMJEGUIDE SYMMERACp. 

B. COMPZTIBLE V 4)lTNSE
-

* NON SylAMTRPICAL VMN%./GUIDE -OE SUrrReea ORS.
 

ARRAN cE MENT 
* * $ELEC.TEb:: co F$UI.M,'ioN 

* lTER~FE?_OME-re~ b;Des NOT
 
kLLOW USE OF SELECTSID
 
SIDE LOBE sU'PTKESSION
 

Figure 5-2 Antenna Configuration Trade-Off
 



° 

Figure 5-3 ANTENNA LAYOUT DESIGN, PROFILE OF REFLECTORS 
AND STRUCTURES (View 1) 
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Figure 5-3 ANTENNA LAYOUT DESIGN, BACK OF REFLECTORS 
AND STRUCTURE (VIEW 2) 
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Figure 5-3 ANTENNA LAYOUT DESIGN, MOTOR DRIVE AND
 
GIMBAL ASSEMBLIES (View 3) 
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Figure 5-3 ANTENNA LAYOUT DESIGN lTflEREP OETER AND 
REFLECTOR ASSEMBLIES (View 4) 



early in the program. As the layout/design developed changes were made in
 
the structural geometry (i.e. R.F. rotary joint sizes became somewhat larger
 
than original estimates forcing a change in the structure). Each of these
 
changes were reviewed and judgment made as to their effect 
on the analysis.
 

When the changes tended to make the analysis conservative (i.e. reduce the
 
frequency response, stress, etc.) 
the changes were not reflected in the computer
 

models.
 

5.1.2.1 Autenna Reflector Construction
 

In order to provide a stable R.F. reflective surface on Invar honeycomb
 
construction is selected. The reflectors consist of .003 face sheets brazed
 

to a core of .001 invar honeycomb 1.04 lb./in. 3 density.
 

The reflective surface (a paraboloid of revolution, 28 inches in diameter with
 
focal length 9.8 inches) will be pre-formed to the required shape placed on
 
a tool with the reflective surface in contact with the tool and furnanced brazed.
 

This fabrication technique will permit surface accuracies in the range of .005
 
EMS well within the accuracy limits specified in the R.F. design.
 

5.1.2.2 Truss Construction
 

Both the upper and lower trusses will be manufactured from Graphite Epoxy
 

tubing (HY-E-101). Truss joints will be of two types:
 

a. 
Ball joints, used where truss members intersect.
 

b. End fittings where the truss is joined to other components.
 

The ball joint.(a) is constructured of a 2219 aluminum alloy ball to which is
 
welded a "pencil point." The pencil point is a frustrum of a cone, the small
 
dia end of which is welded to the ball and is sized to provide a stress well
 

within the elastic limit of the material. The large end of the cone is made to
 
be the same size of the tube to which it connects. A bonding sleeve is then
 

placed around the tube end and the pencil point and a high temperature bond
 

affected (See Figure 5-3s View 3).
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End fittings are attached to the tubes in the manner of the pencil points but
 

are configured to meet attachment requirements.
 

Construction in this manner will provide a very light weight, strong and very
 

stiff nearly text book perfect truss. Philco-Ford has used this technique for
 

launching groups of satellites very successfully.
 

5.1.2.3 Gimbaling
 

Roll and yaw gimbaling motions (+120 and +56) are provided for thru a large
 

diameter spherical bearing the outer race of which forms the lower terminus
 

of the upper truss. Machined integral with this ring are the attach points
 

for the gimbal actuators (See Figure 5-3, View 3).
 

Linear actuators have been designed for this application. Four actuators are
 

used, two each for roll and two each for yaw. The actuator pair centerlines
 

are placed out of plane with each other approximately 100 in order to resist
 

the rorsional loads which will occur during launch.
 

The basic elements of the linear actuators are shown in Figure 5-4 and consist
 

of a motor, gear, ball nut and screw, and an anti-rotation device all contained
 

within a housing. The motor is a reversible brushless stepper motor which drives
 

a gear which is firmly attached to a ball nut. The ball nut is supported and
 

restrained in the housing thru the use of two ball bearings. The ball screw is
 

prevented from rotating as the ball nut turns by the anti rotation rods located
 

in and firmly attached to the housing. Rotation of ball nut causes the ball
 

screw to move in or out of the housing which changes the length of the actuator
 

assembly. This change in length provides the necessary motions about the roll/yaw
 

axes. The required ratio between input and output of the actuator can be
 

changed by selection of a suitable gear ratio or by the lead of the ball nut/
 

screw combination. The design shown in Figure 5-4 provides a ratio of 375:1 that
 

is 3750 rotation of the motor causes a 10 rotation of the axis being drive.
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Lubrication of this actuator will be by mbly disulfide impregnation on the
 

bearing surfaces of all moving parts. This lubrication technique has been
 

used successfully on several successfull space probes:Ranger, Pioneer, LSM as
 

examples.
 

5.1.2.4 Motor Drive Assembly
 

A conceptual motor drive assembly has been designed for motion on the Pitch
 

axis. This unit consists of the following basic components (see Figure 5-3
 

View 3 ):
 

1. Outer housing.
 

2. Inner support.
 

3. Two angular contact ball bearings.
 

4. Brushless motor.
 

5. Resolver.
 

6. Slip rings.
 

The outer housing is designed to support the outer races of the two bearings and
 

the upper terminus of the two bearings. The upper terminus of the lower truss
 

provides for support of the stationary portion of the R.F. rotary joint.
 

The inner support provides for support of the rotating portion of the R.F.
 

rotary joints, the inner races of the two bearings and the ball half of the
 

yaw/roll spherical ball bearing.
 

The outer housing and inner support are fabricated of aluminum alloy treated
 

with a high emissivity coating and with steel inserts impregnated with moly
 

disulfide for the spherical ball bearing on the yaw/roll axis.
 

The radial space between the inner support and the outer housing contains a
 

brushless motor, a magnetic resolver for position detection and a set of slip
 

rings for carry thru of power and signals to the rotating members.
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A set 
of angular contact ball bearings provide the rotating elements. These
 

bearings are specially manufactured of 52100 steel of the highest quality to
 

insure accurate long time service. Lubrication is provided by Ball Brothers
 

Research dorp Vac-Kote process.
 

5.1.2.5 Interfarometer Mounting
 

During the structural design study thermal distortion analysis were performed
 

in order to determine the pointing errors between the interferometer horns and
 

the antenna reflectors. . In order to maintain the angular error between the 
R axis and the axis of the interferometer horns to less than 0.05 degrees it 

was determined that the interferometer horns had to be structural support 

separate from the interferometer receiver. 

Therefore, the results of the design study of the interferometer as shown in the
 

layout drawing is summarized as follows (See Figure 3, View 4):
 

1) 	Orthogonal axis interferometer of 32 inch baseline with the horns
 

mounted directly on the truss members running between the 
large
 

aperture transmission antennas.
 

2) 	The interferometer receiver is located behind the center of the
 

cross 
of the baseline and is coupled to the horns-by non-rigid
 

coaxial cable.
 

A complete description of the results of parametric study relating to the
 

interferometer mounting in order to reduce alignment errors 
is contained in
 

the Structural Design Study portion of this report.
 

Mass Properties - Estimates of weight are shown in Table 5-1.
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TABLE 5-1 

SYSTEM WEIGHTS 

Weight, Lbs. 

Antennas - 4 ea. @ 2.97 11.90 

Feed Horns - 4 ea. @ 2.00 8.00 

Interferometer Horns - 4 ea. @ 1.26 6.00 

Low Pass Filter - 4 ea. @ 0.4 1.60 

Receiver 8.00 

Structure 20.00 

14 Antenna Drive Mechanism 3.00 

Wageguide Switches - 2 ea. @ 3.7 7.40 

Waveguide 30.00 

Thermal Control 16.00 

Thermal Finishes 8.00 

Inteferometer Structure 5.00 

Interferometer Waveguide (Coax) 2.00 

Miscellaneous Brackets and Hardware 10.00 

Interferometer Probe 1.00 

Subtotal 137.90 

Rotary Joint (R.F.) 9.50 

Pitch Axis Motor & Resolver 3.00 

Pitch Axis Bearings & HSG 13.00 

Roll Axis Gimbal 5.00 

Yaw Axis Gimgal 5.00 

Roll/Yaw Actuators 6.00 

Miscellaneous Electronics 15.00 

Subtotal 56.50 

Total Weight, Lbs. 194.40 
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5.2 THERMAL DESIGN STUDIES
 

The thermal design studies covered three basic areas: (1) reflector temperature
 

distribution, (2) truss structure temperature distribution, and (3) RF losses
 

and component temperatures. Reflector and truss structure temperature distribution
 

results were used as inputs in the structural design studies which determined
 

the corresponding deflections and distortions. The results from the component
 

thermal analysis were used to recommend minimum surface areas required to
 

radiate the RF losses associated with each component and section of waveguide
 

to maintain temperatures within the preferred rang .
 

The following discussion describes the thermal models used in these design
 

studies, describes conditions analysed, and presents the most pertinent results.
 

5.2.1 Reflector Thermal Analysis
 

As the reflector array moves around the earth in its synchronous orbit, the
 

reflectors are subjected to extremely non-uniform solar heating conditions at
 

various times during an orbit. Figure 5-5 shows solar angle as a function of
 

position in orbit. The non-uniform solar heating conditions occur when the
 

solar vector is normal to the reflector axis (9 = 00 or S = 1800). A shadowing
 

problem between reflectors also occurs for these values of 9. Note that at
 

9 = 0 (at equinox) one reflector completely shadows its adjacent reflector.
 

Thus, shadowing effects also cause non-uniformity in solar heating.
 

To determine reflector temperature distribution as a function of solar angle
 

and shadowing two thermal models were established, an isolated reflector model
 

and a dual reflector model.
 

Both of these models are based on steady-state analyses. The validity of this
 

approach is discussed in Section 5.2.4 (Reflector Transient Analysis).
 

The reflector considered is a parabolic dish 28 inches (71.12 cm) in diameter
 

with an F/D ratio of 0.35. The reflector consists of a 1/4 inch (6.35 mm) invar
 

3 -3
 

honeycomb core 2.7 lb./ft. density and 1/4 inch cell size,(4.32 kgm/meter
 

density and 6.35 mm cell size) with 0.003 inch (76.2 micrometer) invar facesheets.
 

All external surfaces were assumed to be coated with a black paint (c = 0.90 

and t = 0.90). 
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5.2.2 Isolated Reflector Model
 

The primary objective of this model was to determine reflector steady-state
 

temperatur6 distribution as a function of solar angle (orbital position) without
 

complicating the analysis by including shadowing by the adjacent reflectors. A
 

38-node model was created which had the capability of analysing axial, circum

ferential, and radial conduction effects (refer to Figure 5-6). Note that only
 

half of the reflector is modeled. By defining the solar vector in the X-Z plane,
 

the temperature distributions on either side of the X-axis are symmetrical.
 

Five solar vector orientations were analysed: (1) 9 = 900 - solar vector and
 

reflector axis coincide, (2) 9 = 540 - solar vector is normal to point on
 

reflector surface near the reflector edge, (3) 9 100, (4) 9 = 00, solar vector
 

°
 axis is normal to reflector axis, and (5) 9 = -10 .
 

From the results of these cases the maximum temperature difference between any
 

two nodes and maximum temperature gradient were determined and plotted as a
 

function of solar angle in Figure 5-7. The maximum temperature difference and
 

° 

maximum temperature gradient occur when 9 = 0 and 9 = -l0 and are presented in
 

Figures 5-8 and 5-9. The results indicated that the axial temperature difference
 

across the core is relatively small (less than 2°F) and can be neglected in
 

future analyses.
 

5.2.3 Dual Reflector Model
 

The dual reflector model is shown in Figure 5-10. Due to the negligible affect
 

of axial thermal resistance found from the isolated model results, the nodes on
 

each side of the reflector structure were combined reducing the total number of
 

nodes per reflector by a-factor of two. Other than this simplification each
 

reflector in the dual reflector model is identical to the isolated reflector model.
 

Since reflector #1 completely shadows reflector #2 when 9 = 0, the steady-state
 

approach is not realistic because reflector #2 would go to absolute zero. Instead
 

of analysing for 9 = 0, 9 0solar angle conditions were analysed for steady= +50 


state. The solar heat rate inputs to reflector #2 (the partially shadowed
 

reflector) were determined graphically.
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The temperature distribution for reflector #2 appeared to be more severe for the
 

9 = -5 orientation than for the 9 = +5 orientation. The temperature dis
0
tributions for 9 = -5 are shown in Figure 5-11. The maximum temperature
 

difference of 279 F for reflector #2 (9 = -5 ) is comparable to the maximum
 

temperature difference found for a reflector with no shadowing at G = 00 (see
 

Figure 5-7). Note that the P = -50 temperature distribution for reflector #1
 

(reflector on sun side) agrees with the temperature distributions for 9 = 00
 

and 9 = -l0O cases (Figures 5-8 and 5-9) using the isolated reflector model.
 

5.2.4 Reflector Transient Analysis
 

A transient analysis was performed for an isothermal section of reflector to
 

gain insight on the validity of the steady-state assumption used for all
 

previous analyses and to determine reflector temperatures at the end of an
 

eclipse period. The reflector temperature response for a shadow condition (no
 

solar heating) with an initial temperature of 140°F ( 333.50K) is presented in
 

Figure 5-12. The major conclusion drawn from this figure'is that for reflector
 

temperatures above -200OF the time constant is on the order of minutes and for
 

temperatures below -300°F (M8.80K) the time constant is on the order of hours
 

with temperatures between -200°F (144.5 0K) and -300°F (88.80) being the 

transition tegion. This behavior is due to the third power temperature de

pendence of radiation resistance terms.
 

Since the solar angle is changing at 0.250 per minute and at orientations where
 

9 > 100 the time constant is on the order of minutes for the corresponding
 

temperature levels, the steady-state analysis gives an accurate temperature
 
°
 estimates. For -10 < P C 100 some of the reflector temperatures are below 

-2000 (4(4.5 °K0. Below -200°F (144.5 0K) capacitance effects become significant 

so the steady-state temperature predictions are on the conservative side. 

Note that no drastic temperature drop occurs when one reflector is completely
 

shadowed'by another. From Figure 5-12 the tempezature drop of a region initially
 

(F33.5
at -220°0 0K) is approximately 400F(2780 K) for a time duration of 20
 

°
minutes which corresponds to a change in 9 from 5 to 00.
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At the end of a 1.2 hour synchronous orbit eclipse the reflector is expected to
 
be virtually isothermal at a temperature of -315°F (80.5' K).
 

5.2.5 Truss Structure Thermal Analysis
 

Thermal analyses were performed to determine temperature distributions on the
 
reflector truss structure for various truss member materials and thermal control
 
coatings. Truss member materials recommended for analysis were aluminum, invar,
 
and graphite/epoxy laminates. 
Three types of thermal control surfaces were
 

considered:
 

White Paint 0.30 0.90 0.33 
Aluminum Paint 0.25 0.25 1.00 

Polished Aluminum 0.15 0.05 3.00 

These three thermal control surfaces are practical candidates which cover a wide
 

range of ale. 

To gain insight regarding the steady-state temperature levels of the truss
 
members as a function of solar angle, at first the members were assumed to be
 
independent isothermal rods. 
 Figure 5-13 shows the steady-state rod temperatures
 

as a function of solar angle for the three thermal control surfaces. Two
 
conclusions were drawn from Figure 5-13: 
 (1) the higher a I is the greater
 

S
the total temperature range, and (2) between solar angles of 00 and 
600 the
 
decrease in absolute temperature for all three coatings is 
approximately 18%.
 
Since a majority of the truss members have solar angles less than 600 regardless
 
of orbital position of the spacecraft, the temperature range for the majority of
 
the truss members is within 18% of the maximum absolute value (9 = 00) with two
 
exceptions: (1) the few members with 9 > 600, and 
(2) those members which are
 
shadowed by the reflectors. 
With conduction effects included the low temperature
 

extremes for these two exceptions are reduced.
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5.2.5.1 Truss Thermal Model
 

To predict the temperature distribution for the truss structure when partial
 

shadowing of the reflectors occurs and conduction effects are included, a
 

33-node model was developed (refer to Figure 5-14). 
 Each joint and member
 
were represented by a node. Conduction through the members and joints was
 

considered. 
Only radiation from the members to space was considered because
 
radiation between the members and between the members and reflectors was
 

assumed to be negligible. 
Due to the large number of cases (combinations of
 
materials and surface coatings), only the most severe shadowing case (by
 
reflectors) was analysed using this model. 
For this case a few members
 

received solar radiation with 0 > 200 and the remaining members are totally
 

shadowed by the reflectors (refer to Figure 5-15).
 

5.2.5.2 Truss Temperature Distribution
 

The resulting temperature distributions are 
listed in Table 5-2 and summarized
 
in Table 5-3. No conclusions regarding the optimum combination of material
 
and thermal control coating can be reached from a thermal standpoint. The
 

case with the maximum temperature difference between members does not necessarily
 
produce the largest distortion because the coefficient of thermal expansion and
 

material stiffness must also be included. Thus, the temperature results served
 
as inputs to the truss distortion analysis which is discussed in a separate
 

section of this report.
 

5.2.6 RF Losses and Component Temperatures
 

5.2.6.1 Thermal Design Criteria
 

The preferred temperature range of the RF components, such as the rotary joint,
 
circular polarizer, and connecting waveguide is 200 to 1200F (266.50 K to
 

322.5 0K). This preferred temperature range is based on the required dimensional
 
stability of the RF chokes.
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TABLE 5-2
 

REFLECTOR TRUSS STRUCTURE TEMPERATURE ( F) 
DISTRIBUTIONS FOR WORST CASE ORIENTATION 

White Al. Polished White Al. Polished White Al. Polished 
Node Paint Paint Al. Paint Paint Al. Paint Paint Al. 

1 -216 -144 -47 -248 -177 - 70 -269 -206 -103 
2 -239 -173 -67 -305 -252 -152 -266 -231 -160 
3 -194 -129 -41 -186 -114 - 21 -142 -101 - 36 
4 -153 - 80 - 4 -123 - 50 51 -120 - 69 -- 9 
5 -224 -160 -60 -235 -173 - 86 -187 -129 - 50 
6 -235 -167 -62 -202 -234 -131 -343 -302 -223 
7 -243 -177 -69 -318 -266 -163 -366 -332 -256 
8 -229 -163 -61 -253 -187 - 97 -263 -200 -101 
9 -234 -169 -64 -285 -234 -132 -358 -326 -247 

10 -236 -165 -60 -308 -250 -139 -355 -314 -227 
11 -153 -124 -52 -125 - 99 - 52 -126 -101 - 58 
12 -138 - 99 -28 -128 - 87 - 10 -123, - 93 - 37 
13 -143 -107 -35 -124 - 95 - 40 -124 - 94 - 40 
14 -158 -133 -59 -126 -101 - 57 -127 -102 - 60 
15 -245 -179 -70 - -322 -271 -168 -354 -320 -242 
16 -209 -136 -43 -205 -125 - 25 -203 -121 - 16 
17 -160 - 75 8 -145 - 47 77 -143 - 43 88 
18 -231 -164 -61 -245 -180 - 95 -240 -172 - 86 
19 -243 -177 -69 -318 -267 -164 -361 -328 -254 
20 -237 -171 -66 -295 -238 -138 -320 -273 -179 
21 -221 -155 -57 -193 -118 - 47 -171 - 81 21 
22 -231 -167 -63 -271 -221 -121 -335 -309 -226 
23 -239 -173 -66 -306 -253 -148 -367 -331 -254 
24 -243 -174 -65 -321 -267 -160 -366 -328 -247 
25 -243 -176 -67 -318 -265 -161 -368 -333 -257 
26 -280 -160 -58 -286 -223 -115 -332 -283 -183 
27 -282 -162 -57 -302 -243 -131 -348 -305 -213 
28 -240 -171 -68 -315 -259 -151 * * * 
29 -238 -170 -64 -312 -257 -149 -347 -306 -219 
30 -202 -131 -40 -196 -115 - 16 -193 -110 - 4 
31 -154 - 75 - 2 -114 - 8 113 -109 0 141 
32 -220 -151 -53 -225 -153 - 61 -221 -146 - 49 

*Member deleted. 
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TABLE 5-3
 

TRUSS TEMPERATURE SUMMARY 

Surface Temperature, OR ... 
Material Finish Max. Nominal Min. 

Aluminum White paint 322 (12)* 244 215 (15) 

Aluminum paint 385 (17) 311 281 (15) 

Polished aluminum 468 (17) 408 390 (15) 

Invar 	 White paint 346 (31) 218 138 (15) 

Aluminum paint 452 (31) 278 189 (15) 

Polished aluminum 573 (31) 	 374 292 (15) 

Hy-E White paint 351 (31) 204 92 (25) 
Laminate 

Aluminum paint 460 (31) 254 127 (25) 

Polished aluminum 601 (31) 338 203 (25) 

Number in ()refers
u	 to nodes of thermal model Figure 5-15.
 



5.2.6.2 Preliminary Thermal Analysis
 

Since RF losses occur in these components, heat rejection capability must be
 

considered in the thermal control analysis.
 

Assuming a thermal control coating of white paint (a = 0.30, E= 0.90),
s 


the temperature of a cylindrical surface was calculated as a function of solar
 

illumination and power density and is presented in Figure 5-16. These results
 
2
 

show that the power density must be maintained between 24 to 38 watts/ft. for
 

the component to be within the preferred temperature range of 200F to'120°F
 

(266.5 K to 322.3 K). The power density of each component was computed based
 

on its RF loss and surface area. For some components the power density exceeded
 

the 38 watts/ft.2 maximum, in which case, the minimum area'to obtain 38 watts/ft.
 

was calculated. The resulting RF loss distribution minimum surface area, and
 

component temperatures are shown in Figure 5-17, A total of 12.7 square feet
 

of additional surface area must be added for a truss type structure in order to
 

dissipate the RF power losses and maintain the RF components within the preferred
 

temperature range of 200F to 120°F (266.5 0K to 322.5 °K)0
 

5.3 STRUCTURAL DESIGN STUDY
 

The structural design study for the Antenna Pattern Shaping, Sensing and Steering
 

Study included three specific efforts: truss structural analysis, truss distortion,
 

and reflector distortions.
 

5.3.1 Truss Structure
 

A preliminary structural analysis was performed for the proposed antenna pattern
 

shaping, sensing and steering study antenna configuration to assure that weight
 

requirements could be met and that structural performance met all requirements.
 

A truss was chosen for the upper support structure to fulfill geometric requirements
 

and to reduce shadowing on the reflectors. A truss and shell were considered for
 

the lower support structure. Of the two lower support structures, the one used
 

will greatly depend on the mounting structure provided on the satellite.
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The truss support structure was analyzed using computer techniques supplemented
 

by hand calculations. The shell was analyzed using hand calculations.
 

Truss member areas were determined by stiffness criteria. The inertias were
 

selected to satisfy column buckling criteria. The face sheets of the shell
 

were sized for stress and intracell buckling criteria.
 

5.3.2 Truss Distortion
 

Pointing errors between the interferometers and antenna reflectors due to thermal
 

distortions of the antenna support structure were investigated. The thermal
 

distortions result from shadowing part of the antenna support structure during
 

a critical sun orientation. Results were obtained for a graphite epoxy support
 

structure and an aluminum support structure. The maximum pointing error cal

culated using the graphite epoxy support structure was 0.018 degrees and was
 

well within the budgeted error of 0.105 degrees. For the aluminum strficture the
 

error was from 0.041 to 0.099 degrees and is dependent on the surface finish of
 

the truss members.
 

5.3.3 Reflector Distortions
 

A fininte element model of an antenna reflector and feed support was developed
 

in order to predict structural distortion of the antenna for worst-case, space

environment, temperature conditions. 
This model is used, in conjunction with the
 

computer routine entitled "Structural Analysis and Matrix Interpretive System"
 

(SA1IS), to predict thermal distortion of the reflector and feed support.
 

The reflector material was assumed to be honeycomb construction with 0.003 inch
 

(0.762 mm) thick invar face sheets with 0.250 inch (6.35 mm) thick invar honey

comb core. The feed support was also assumed to be fabricated from invar, with
 

dimensions of 0.375 in. x 0.750 in. x 0.020 in. (9.525 mm x 19.05 mm x 0.508 mm).
 

A three point support on a 6-inch (15.24 cm) diameter circle was assumed.
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Based on the worst-case, sun angle (0 = 0), temperature distribution, distortion
 

of the antenna reflector is a maximum of + 0.002" (0.05 mm) in the plane of the
 

antenna aperture. Predicted distortion of the antenna is nominal and can be
 

related as a rigid body rotation of the reflector aperture.
 

5.3.4 Structural Design Study Requirements
 

The structural design study requirements were derived from the mechanical layout
 

design which in turn is based on the RF design requirements for the antenna
 

system. Basically the structure consists of two parts; an upper structure
 

supporting the four reflectors from the gimbal and RF rotary joint platform and
 

a lower structure supporting upper structure, gimbal and RF platform to the
 

satellite.
 

The structural design load, criteria is based'on the assumed launch environment
 

for a vehicle.
 

The thermal distortion tolerance of the antenna structure, reflector assembly,
 

and interferometer support are based on the RF performance and steering require

ments of the study.
 

5.3.4.1 Structure Definition
 

Figure 5-18 shows the proposed'upper support structure. A truss is chosen because
 

(1) a minimum of shadowing occurs on the reflectors minimizing thermal distortions;
 

(2) it is judged that cantilevering a truss structure from the lower support
 

structure is more efficient (greater stiffness/weight ratio) and can more easily
 

adapt to the geometry needed to satisfy RF systems requirements; (3) computer
 

programs required to analyze the structure in detail are much easier to use when
 

the structure is a truss; and (4) the capability of fabricating a truss in-house,
 

thus reducing cost, is greater.
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Figure 5-18 Upper Truss Support Structure 
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Figures 5-19 and 5-20 are proposed lower support structures. Figure 5-19
 
shows a truss structure while 5-20 is a honeycomb shell. It is felt the two
 

structures will not differ greatly in weight. 
The structure to be chosen will
 

depend on the satellite/antenna interface which is undefined at this 
time.
 

Figure 5-21 is the computer model used to analyze the truss structure. The
 
shell will be analyzed bj hand calculations due to difficulty in using SAMIS.
 

5.3.4.2 Design Criteria
 

The structural design criteria for the structural design study is summarized
 

in Table 5-4 and discussed in the following paragraphs
 

Strength- The following flight load factors will be used:
 

(1) -6.8 g on longitudinal axis and +2.3 g laterally.
 

(2) +1.8 g on longitudinal axis and + 2.3 g laterally.
 

In general condition (1) is worst case.
 

It is assumed that the ground handling of the antenna is sufficiently controlled
 

such that the loads experienced during fabrication and transportation will not
 

exceed the flight loads.
 

In addition, the structure is'required to carry loads due to response of the masses
 

of the antenna during an PMS sine vibration of 1.0 g in the frequency range 10 to
 

60 Hertz and 2.0 g in the range of 70 to 2000 Hertz.
 

Thermal distortions will produce internal loads which must be carried by the
 

structure. 
 In general, these loads will be much less than the above load criteria.
 

Stiffness 
- With the antenna on a fixed base no structural resonance shall be
 

lower than 14 Hertz in a lateral direction.
 

Factors of Safety - Structural components shall be designed to reflect a 1.0 factor
 
of safety against yield stress and a 1.25 factor of safety against ultimate stress
 

and bucklin2.
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Figure 5-20 Alternate Tower Support Structure 
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TABLE 5-4 

STRUCTURAL DESIGN CRITERIA 

* Sustained Acceleration 
-


-6.8 g Longitudinal (Z Axis)
 

+1.8 g Longitudinal (Z Axis)
 

+2.3 g 	Lateral (X and Y Axis)
 

* Vibration 

1 g Sinusoidal Input 

* Factors of Safety
 

1.0 Limit
 

1.25 Ultimate
 

* 	 Stiffness
 

No Structural Resonance in Lateral Direction Less Than
 

14 cps (Fixed Base)
 

* Thermal Distortion 

0.05 Degree Maximum Pointing Error Between Reflectors and
 

Interferometer
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5.3.4.3 Weight Distribution
 

The weight of the RF system for the structural analysis is represented by
 

six concentrated masses: 
 one for each of the four antennas, the interferometer
 

receiver and the RF rotary joint. 
The weight summary for each of these six
 

dumped masses is presented in Table 5-5.
 

5.3.5 Structural Design Analysis
 

The truss structure, Figure 5-21, was designed on an existing truss design
 

program TDPREL. 
The input data includes a materials table, joint coordinates,
 

member cards, and dynamic design criteria.
 

The materials table includes Young's modulus and density for aluminum, Hy-E
 

Material 1101, and Boron Fiberglass. A structure is designed for each of these
 

materials.
 

The dynamic design criteria consists of unit loads at the cg of each mass for each
 

dynamic degree of freedom and a mass matrix relating forces to accelerations. For
 

preliminary dynamic analysis a simplified two node mass model is used. 
One mass
 

represents the four reflectors, interferometers, and miscellaneous electronic
 

equipment as 
if mounted to a thin plate. The other mass represents the rotary
 

joint. The weights used in the calculation of the mass and interia terms are
 

those presented in Table 5-4.
 

5.3.5.1 Preliminary Truss Design Analysis
 

Preliminary design analysis were performed to define an 
efficient truss support
 

configuration, to optimize its stiffness to weight ratio, and to compare the
 

performance of different truss materials. 
This initial analysis was performed
 

with a computer routine referred to as TDPREL which is represented in block
 

diagram in the upper portion of Figure 5-22. 
This program permits automated
 

design of hyperstatic truss structure subject to alternate resonant frequency
 

requirements.
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TABLE 5-5
 

WEIGHT DISTRIBUTION
 

Weight Lumped at Each keflector
 

Reflector 

Side Lobe Suppressor Horns 

Antenna Drive Mechanism 

Structure 

Thermal Finishes 

Misc. Brackets 


Weight Lumped at Receiver
 

Low Pass Filter 

Receiver 

Structure 

Waveguide Switches 

Thermal Control 

Interferometer Wave Guide 

Interferometer Probe 

Misc. Brackets & Hardware 

Interferometer Horns 

Interferometer Structure 


Weight Lumped at Rotary Joint
 

Structure 

Thermal Control 


Rotary Joint 

Pitch Axis Motor & Resolver 

Pitch Axis Beakings & Housing. 

Roll Axis Gimbal 

Yaw Axis Gimbal 

Misc. Electronics 


2.975
 
3.000
 
.750
 

1.000
 
2.000
 
1.000
 

10.725#
 

1.60
 
8.00
 
6.00
 
7.40
 
8.00
 
2.00
 
1.00
 
6.00
 
6.00
 
5.00
 

51.00#
 

10.00
 
8.00
 

6.50
 
3.00
 

13.00
 
10.00
 
10.00
 
15.00
 

75.50#
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The input data for TDPREL consists of static design and dynamic load criteria,
 
safety factors, configuration and joint coordinates, and material and mass
 
properties. 
The truss design criteria used for the study included: (1) a
 
minimum allowable lateral resonant frequency of 14 Hertz and (2) static load
 
factors of 6.8 g's longitudinal and + 1.8 g's lateral. 
 Several different basic
 
truss configurations were studied. In addition, joint locations in each of the
 
basic configurations were varied arbitrarily to assist in defining the optimum
 
location for each joint. The performance of three different truss member
 
materials were compared. 
These included aluminum, graphite-epoxy and baron/epoxy.
 

The output of TDPREL is optimum member size and weight. The optimum member size
 
is obtained through an iterative static and dynamic analysis in which maximum
 
static stresses and minimum design frequency are tested in each member.
 

The model of the selected truss configuration used for the structural analysis
 
is shown in Figure 5-23. 
 A list of truss member sizes and weights for both
 
the upper and lower structures and corresponding to three different materials
 
included in the study, aluminum, graphite epoxy, and boron epoxy, are given in
 
Tables 5-6, 5-7, and 5-8, respectively. As previously noted, these members were
 
sized to meet 
specified minimum frequency and static load design requirements.
 
These members will change slightly following more detailed buckling analyses and
 
dynamic response analysis as discussed in the following section.
 

It is apparent from a comparison of the data in Tables 5-6, 5-7 and 5-8 that 
a
 
significant weight savings 
can be realized through the use of high modulous
 
composite materials. The final selection of a proposed material, however, must
 
await the results of additional analyses such as the analyses to predict the
 
thermal distortion of the truss 
and the response of the antenna assemblies to
 
dynamic excitations.
 

Based on the preliminary truss analysis 
an optimum structural configuration is
 
obtained. 
The optimum size of truss members are converted to standard tube
 
sizes and further, more detailed dynamic and stress analysis of the truss structure
 
are performed. 
A flow diagram of the method and computer programs utilized for
 
the detailed analysis is shown in the lower portion of Figure 5-22. 
Details of
 
the dynamic and stress analysis are discussed in the following sections.
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TABLE 5-6
 

TRUSS MEMBER SIZES AND WEIGHTS, MATERIAL - ALUMINUM
 

Member Diameter Wall Thick- Area Intertia Weight 
Type (In.) ness (In.) (in. 2 (In.4 ) (Lbs.) 

1 1 1/4 .058 .2172 .03867 .533 

2 1 3/8 .095 .3820 .07867 .749 

3 1 1/4 .156 .5362 .08184 1.009 

4 1 5/8 .120 .5674 .16170 1.474 

5 1 .028 .0855 .01011 .188 

6 1 1/4 .095 .3447 .05787 1.272 

7 1 .028 .0855 .01011 .274 

8 1 3/8 .035 .1473 .03309 .240 

9 1 1/2 .028 .1295 .03508 .551 

10 1 5/8 .035 .1748 .05528 .456 

11 2 .095 .5685 .2586 1.319 

12 1 1/2 .058 .2628 .06841 .657 

13 1 .028 .0855 .01011 .197 

Weight of Upper Truss 14.284 Lbs. 

Weight of Lower Truss 17.162 Lbs. 

Total Truss Weight 31.446 Lbs. 

Joint Weight Not Included 
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TABLE 5-7 

TRUSS MEMBER SIZES AND WEIGHTS 
MATERIAL-GRAPHITE/EPOXY (HY-E 1101) 

Member Diameter Wall Area Inertia Weight 
Type (In.) Thickness (In.) (In3)L _(T._) (Lbs.) 

1 1 .035 .1061 .01237 .146 

2 1 1/2 .035 .1611 .04324 .177 

3 1 1/2 .049 .2234 .05885 .235 

4 1 1/2 .049 .2234 .05885 .325 

5 3/4 .028 .06351 .004145 .078 

6 1 .049 .1464 .01659 .303 

7 1 .049 .1464 .01659 .262 

8 3/4 .028 .06351 .004145 .058 

9 3/4 .028 .06351 .004145 .151 

10 3/4 .035 .07862 .005036 .115 

11 1 1/2 .049 .2234 .05885 .290 

12 1 .035 .1061 .01237 .149 

13 3/4 .028 .06351 .004145 .082 

Weight of Upper Truss 4.260 Lbs. 

Weight of Lower Truss 3.908 Lbs 

Total Truss Weight 8.168 Lbs. 

Joint Weights Not Included 
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TABLE 5-8 

TRUSS MEMBER SIZES AND WEIGHTS 

MATERIAL - BORON EPOXY 

Member Diameter Wall Thickness Area Inertia Weight 
Type (in) (in) (in2 ) (in4) (ibs) 

1 3/4 .028 .06351 .004145 .112 

2 7/8 .035 .09236 .008161 .130 

3 7/8 .049 .1272 .01088 .172 

4 3J4 .065 .1399 .008278 .262 
5 3/4 .025 .06351 .004445 .104 

6 7/8 .035 .09236 .008161 .245 

7 3/4 .028 .06351 .004145 .146 

8 3/4 .028 .06351 .004145 .074 

9 3/4 .028 .06351 .004145 .195 

10 3/4 .028 .06351 .004145 .119 

11 3/4 .065 .1399 .008378 .234 
12 3/4 .028 .06351 .004145 .114 

13 3/4 .028 .06351. .004145 .105 

Weight of Upper Truss ... .... .3.393 lbs. 

Weight of Lower Truss... ... 3.290 lbs. 

Total Truss Weight (excluding 

Joint Weights) .... ... 6.683 lbs. 
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5.3.5.2 Truss Dynamic Analysis
 

In this section modeshapes, frequencies, and modal participation factors for
 

the structure are predicted. Using the modeshapes, frequencies, and modal
 

participation factors responses in g's are calculated for each mass during
 

the first three modes of vibration. The responses are converted to static
 

loads and applied to a stiffness model of the support structure. The internal
 

loads distribution is thus obtained for use 
in the stress analysis.
 

Flexibility Matrix - The stiffness model is shown in Figure 5-21. 
 The truss
 
elements are given inertia and torsional properties to include secondary stiffness
 

effects in the flexibility matrix. These properties are given in Table 5-7.
 

A 3-D frame analysis program "frame" is used to form a stiffness matrix for the
 

structure.
 

The flexibility matrix is formed by applying unit actions, corresponding to the
 

degrees of freedom of the inertia model, to the stiffness model. The deflections
 

due to these unit loads are calculated. The flexibility matrix is then determined
 

by:
 

F = A*T D*
 

where A* = The matrix of applied unit actions.
 

F = The flexibility matrix.
 
D* = The matrix of corresponding displacements.
 

The flexibility matrix relates displacements to actions in the following matrix
 

equation.
 

Di = F A (5-1) 

Inertia Matrix - The inertia model is represented by six nodes: one for each
 

of the four reflectors, the interferometer receiver, and the RF rotary joint.
 

The mass of each node is calculated from the lumped weights given in Table 5-5.
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Assuming thin disks for the four reflectors, the inertia of each reflector
 

node id calculated by the following equations:
 

2
 
Mnr
 

nx 2
nx 
 22 Mnr2
 

ny= Inz 4
 

The inertia of the rotary joint is calculated assuming a cylinder with uniform
 

mass distribution.
 

2 + 1)
 
M (3r
 

x = y 12
 
Mr2
 

z 2
 

where 	 I = inertia
 

= mass
 

r = radius
 

I = length
 

n = node identification
 

x, y, z = 	coordinate axis
 

The mass matrix relates actions to accelerations in the following matrix expression.
 

A = -MD 

where 	 M = The inertia matrix.
 

D = The matrix of accelerations.
 

Noting that 	for harmonic motion
 

D. = -W. 2D.1 1 1 

where W = The natural circular frequency
 

Therefore,
 

A = W.2 M D (5-2)

1
 5 
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The inertia matrix M is a diagonal matrix which consists of the submatrices 

for the reflectors, receiver and rotary joint of the following form: 

Mn 0 0 0 0 0 

0 Mn 0 0 0 0 

Mn 	 0 0 Mn 0 0 0 

00 0 Inx O 0 

O 0 0 0 Iny 0 

O 0 0 0 0 Inz 

Modeshapes, 	 frequencies, and modal participation factors combining equations 

(1) and (Z) we 	obtain the following matrix equation. 

= 1FMDi 
---T-D
 
w.1 

then, 

UTF U Di = U Di 

Tlet F =U FU and D = U Di
T -	 .Ti -

then, 
1

F 	D DT-T -Ti 	 .'Ti 
1 

The matrix F is the dynamic matrix and is symmetrical. An Eigenvalue 
1 

computer routine is used to solve the above equation for the Eigenvalues (-T)-) 
W. 

and Eigenvectors (DTi.) Each of the Eigenvectors is normalized for unit 

vector length 	and stored column-wise in Matrix V. 

D. 	 = -1
 
S -Ti
 

which gives 

VN -Ti 
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where VN is a matrix of modeshapes which are normalized for unit 

generalized mass. That is, 

Y TMY =I;-N -- N 

which can be shown to be true if Di is normalized for unit vector length. 

The modeshapes VN are then normalized so the largest term in each column (mode) 

is unity. The frequencies are obtained from-the Eigenvalues. 

I I 
z f I
 

-Z 
W. 

1 

The first 6 modes occur at natural frequency of 17.1, Z.2, 28. 9, 31.6, 33.7 

and 37. 0 Hertz. 

The modal participation factors are calculated from the following expression. 

£ T 
P V TMNH 

where: H = A matrix of dimensionless distribution functions which 

correlate a given direction of base acceleration vith the 

resulting inertia forces. 

Table 5-9 contains the modal participation factors for the first ten modes of this 

problem. 

Response to Ig RMS sine input the equation of motion of the j normal mode of a 

structure due to a base excitation assuming damping exists is: 

D*,. DG.N. D* *D =PjP j fDNj + Z (DC)j Nj + SNj DNj (t) 

where: D* . = Acceleration relative to the base in normal coordinates. 

(DC)j = Decimal fraction of critical damping. 

Nj 
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TABLE 5-9 

MODAL PARTICIPATION FACTORS 

Mode X - Base Y - Base Z - Base Qx - Base Qy - Base Qz - Base 
Motion Motion Motion Motion Motion Motion 

1 0 .45004 0 -. 68339 0 .33375 

2 .47732 0 -. 12455 0 .61574 0 

3 .087621 0 .0Z8355 0 -.44940 0 

4 - 0 .057308 0 -.89853 0 -.41670 

5 0 -.11365 0 .83749 0 1.2003 

6 .15173 '0 .074847 0 -.86382 0 

7 0 -. 12375 0 -1.7534 0 -. 44362 

8 0 .20496 0 1.5875 0 -.38043 

9 .15185 0 .091980 0 -.96046 0 

10 -.10658 0 -.066255 0 .71290 0 
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D6" = Velocity relative to the base in normal coordinates.Nj 

D Nj = Displacement relative to the base in normal coordinates. 

Pj = Modal Participation factor for jth mode. 

f(t) = Forcing Function. 

Let f(5) - Foe iWt= B 

The solution of the equation is as follows: 

D . FoPj Hj (W) eiWt
 
Dj. = 
 J() 

Hj(W)= .
S(w). 

1 
.(w)
 

1-(-) i 2 (DC)j
 

Hj ~= W(WZ ManfcainFatr 

D'*= S D* = Fo Pj Hj (W) iWt 
Nj Nj Nj 

D- N Nj 

Let i Se a particular degree of freedom in the inertia model. 

n 

=D i Z VNij D Nj 
j=1
 

n
 
= Fo V.Ni Pj Hj (W) eiWt
Di 

j=l 

The calculations of the response of several degrees of freedom for the first 
three modes were made and are presented in Table 5-10. In these calculations 

which assumes the contributionsiWt of each degree of freedom to the total 
response are in phase with each other. This assumption results in conservatively 

high numbers. 
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TABLE 5-10
 

NODE RESPONSE TO ig RMS SINE INPUT 

Response, g's 

'Node Direction Mode 1 z 3 

Top Antennas 	 X 5.1 18.0 Z.9 

Y 19.5 0.3 

Z 0.9 2.5 1.z 

Receiver 	 X 11.5 Z.1 

y 9.4 

z 

Despin Drive 	 X Z. 5 

y 1.5 

z 

Lower Antennas 	 X 1. 6 5. 5 

y 5.7 

Z 0.4 1.7 



5.3.6 Truss Stress Analysis 

Based on the preliminary truss analysis the graphite epoxy tubes were selected 

for further stress analysis. 

Utilizing the weight distribution the flight'load factors and the response load 
factors calcilated in previous paragraph, static loads were calculated using 

the following expression: 

P = Weight x Load Factor 

The flight loads were applied to the stiffness model in the directions described 

in paragraph 5. 3. 5, 1. The loads from vibration response were applied according 
to the modeshapes which are sketched in paragraph 5. 3. 4. 1. The internal loads 
distribution was obtained for each load case using a 3-dimensional frame analysis 

program FRAME. 

The worst loads on each set of members was determined from the static loads 

computer output. The stresses resulting from these loads were calculated using 
factors of safety as described in paragraph 5. 3.4. 1. Bucking of the tubes was 
based on Euler theory. Since no experimental data is available to compare with the 
assumed buckling theory, an additional 50% margin of safety is maintained. 

The properties of graphite/epoxy, HY-E 1101, are as follows. 

Tensile Strength 130, 000 psi 

Young's Modulus 2 4xi 06 psi 
Compression Strength 80, 000 psi 

Shear Strength 7, 000 psi 

Based on the tube sizes listed in Table 5-6, on the material properties for 
graphite/epoxy and the static loads, the stresses 

A 
in each truss member were 

calculated and compared to their allowable stress. The ratio of allowable to 
calculated stresses determined the margin of safety. 
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TABLE 5-11
 

TRUSS MEMBER CHANGES BASED ON STRESS ANALYSIS
 

Member 
Type (1) 

Member 
(2) 

O
I

Previous 
Tube Size 

.D. Wall 
nch Inch 

Present 
Tube Size 

O.D. Wall 
Inch Inch 

6 

6 

5-7 

5-8 

1 

1 

0.049 

0.049 

1 1/Z 

1 1/2 

0.035 

0.35 

9 5-9 3/4 0.028 1 0.028 

9 5-10 3/4 0.028 1 0.028 

10 6-7 3/4 0.035 1 0.028 

10 6-8 3/4 0.035 1 0.028 

10 6-9 3/4 0.035 1 0.028 

10 6-10 3/4 0.035 1 0.028 

(1) Refer to Table 5-7 and Figure 5-23. 

(2) Refer to Figures 5-21 and 5-Z3, numerical references 
is to joint coordinates at end of each member. 
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Based on these stress analyses it was determined that tube sizes for a total of 

10 truss members have to be increased over the sizes calculated'from the preliminary 

truss analysis (TDPREL). The ten truss members are composed of three tube 

sizes and th recommended increase in sizes are listed in Table 5-11. 

5. 3.6. 1 Alternate Lower Support Structure, 

In this sectibn is presented the results of.a structural analysis for an alternate 

lower support structure. The structure consists of a shell with the geometry of 

-a frustrum of a cone. The base diameters of the cone frustrum are 36 and 1,0 inches 

and the height is 43 inches. The cone is assumed to be honeycomb fabrication with 

aluminum skins and core. The core is assumed to be 1/2 inch thick with a 3Y1,6 inch 

cell size. The minimum facesheets thickness is to be determined from the results 

of the analysis. 

The structural design study for the alternate lower support structure includes a 

dynamic and stress analysis and are presented in the following two sections, 

respectively. 

Dynamic Analysis - The dynamic analysis assumed a rigid upper support structure 

with mass distributions similar to the truss design analysis. Influence terms in 

lateral bending for the cone are obtained by equating the wbrk done to the strain 

energy and the influence term foir torsion is found using the method of virtual work. 

Shear and bending stresses are carried by the facesheets of the honeycomb, the 

core being used for stability of the.facesheets. Therefore, the properties of 

aluminum are used in calculating the influence coefficients.' 

For the vibration analysis the lowest lateral mode is assumed to occur in the Y-Z 

plane. Vibration in this plane couples translation of the mass in the Y-direction, 

rotation of the mass about the x-axis, and rotation of the mass about the Z-axis. 

The flexibility matrix is calculated using the influence coefficients calculated for 

the aluminum honeycomb cone. 

After combining the equations relating actions to displacements by 1) the inertia 

matrix, and Z) the flexibility matrix, iteration results in an equation relating face

sheet thickness to the lateral frequency of vibration. This express is stated as 

follow s: 

tf = 212' fZ (0.81 x 10-6) 
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The facesheet thickness, f, is plotted on Figure 5-24as a function of the lateral 

frequency. Based on the dynamic analysis and for an assumed lower natural 

frequency of 14 cps, the minimum facesheet thickness is 0. 003 inches. 

Strength Analysis - The stresses in the conical shell are calculated using the 

method developed by Flugge and reported in "Handbook of Engineering Mechanics". 

The loads are developed on the shell from the 6. Sg axial load factor and a 1. 8 g 

lateral load factor. The combined loads and the equivalent point load and moments 

are shown in Figure 5-25. Based on the equivalent point loads and moment, the 

membrane forces and in turn the membrane stresses are calculated as a function 

of the total skin thickness and presented as follows: 

3c = -135. 3/t psi 

=10. 8Z/t psi 

where: 
Jc = membrane stress in compression 

= membrane stress in shear
 

y = Ztf = 2 (Thickness of one facesheet)
 

In addition to the flight loads there are loads-resulting from the response of 

the antenna, receiver and RF rotary joint masses to a Ig sinusoidal base input. 

Tle responses calculated for the pure truss structure are used in order to 

calculated combined and equivalent point loads and moments.for the shell structure. 

The equivalent point loads and moment of the shell for the ig sinusoidal base input 

are shown in Figure 5-26. 

The membrane stresses for the Ig sinusoidal base input are calculated as a function 

of the total skin thickness and presented as follows: 

Jc = 394. 7/t psi 

= 59. 4/t psi 
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The total shear stress is the sum of the stresses resulting from the moment
 
and torques applied to the top of the shell resulting from response to the
 
sinusoidal base input.
 

Total = 59.4 
t 

42. 
t 
0 10.4/t 

The total shear is sufficiently low enough that its effects are neglected from
 
further considerations.
 

A more detailed investigation is required to determine the effects of the compressive 
stress on intracell buckling of the honeycomb core of the proposed conical shell
 
structure. Intracell buckling, 
 which is a local instability of the skins, is analyzed
 
by applying the method developed by Buchn and reported in "Analysis and Design
 
of Flight Vehicle Structures". The computations are made for the compressive
 
stresses only because the shear stresses 
are relatively lower. Because the analysis 
relies heavily on graphs in the referenced literature, only the method of analysis is
 
outlined and the results presented in Figure 5-27.
 

The method-of analysis is outlined as follows: 

1) Calculate S/tf 

2) Obtain Fci/n from Figure C12. 5. 2a on page Ci2.8 
3) Obtain Fci from Figure CIZ. 5. Zb on page CIZ.8 

where 

tf = t/2 = facesheet thickness 

S = cell size
 

Fci = compressive stress in skin.
 

For the assumed core and facesheets (2024-T4 Aluminum) 

S = 3/16"
 

F cy= 42, 000 psi
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The results of the strength analysis for the alternate lower support structure, 

a conical honeycomb shell, are summarized in Figure 5-27. The compressive 

stress in the shell is presented as a function of the facesheet thickness for the 

flight loads, response loads, and for the intracel bucklihg criteria assuming 

an aluminum facesheet material with a compressive yield strength df.42, 000 psi, 

it is shown in Figure 5-27 that the minimum facesheet thickness of 0. 007 inches 

is determined based on the intracell bucling criteria rather than the yield strength 

of the material. 

Weight Analysis - The weight of the conical shell of aluminum honeycomb con

struction is presented in Figure 5-28 as a function of facesheet thickness. The 

weight analysis is based on an'aluminum core 1/Z inches thick and with a density 
3

of 3. 0 lb/ft 

It was determined from the dynamic analysis that the facesheet thickness must 

be greater than 0. 002 inches to provide a minimum frequency response of l4cps. 

From the stress analysis to prevent intercell buckling the minimum facesheet thick

ness was determined to be 0. 007 inches. Therefore, a conical shell structure for 

the lower support of the RF system would weigh approximately 7. 0 pounds for a 

facesheet thickness of 0. 007 inches as determined from the results presented in 

Figure 5-28. This weight for the conical structure does not include structural 

attachment rings between the base of the cone'and the spacecraft. 

For a graphite/epoxy lower support truss structure the weight was determined 

to be 3. 9 lbs. as reported in Table 5-7. Thus, assuming that both structures are 

of equal strength or stiffness, the truss structure fabricated from graphite/epoxy 

tubes would be a more efficient structure from a weight standpoint. 

5.3.7 Truss Thermal Distortion Analysis 

The purpose of the truss distortion study is to determine the pointing errors 

between the interferometer horns (4) and the antenna -reflectors. The objective 

is to maintain the error to less than 0. 05 degrees as budgeted in the interferometer 

error analysis. 
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The 	distortion of the truss structure results from partial shadowing of the 

structure during a critical sun orientation. Temperature distributions as 

determined in thermal analysis section of this report were used as input data 

for 	the distortion analysis. 

Results are obtained for a parameteric study which includes material of truss tubes, 

graphite/epoxy and aluminum; thermal surface coating, white paint, aluminum 

paint and polished aluminum; and attachment of interferometer, cantilevered support, 

fixed rigid member., and fixed non-rigid member. The minimum pointing errors 

occur for the fixed non-rigid member support of the interferometer horns to the 

truss support. For the non-rigid fixed support the maximum pointing error 

calculated using the graphite/expoxy material for the truss tubes is 0. 018 degrees, 

and 	is independent of type of surface finish. However, the pointing accuracy of the 

aluminum structure does depend on the type of thermal finish. The only acceptable 

finish is polished aluminum, which results in a maximum pointing error of 

0. 041 degrees. 

5.3.7. 1 Computer Model 

A modification of the truss computer model shown in Figure 5-21 is used for 

the truss distortion analysis. The model is an assemblage of either graphite/ 

epoxy or aluminum frame members. The assumed Young's modulus and thermal 

doefficient of expansion for graphite epoxy are 24 x 106 psi and I x 10 - 6 inches/ 

inch/°F, respectively, and for aluminum 10 x 106 psi and 13 x 10 - 6 inches/inch/tF 

respectively. 

The 	reflectors are rigidly attached to the structure at joint 7, 8, 9 and 10 and 

the 	intereferometer horns are located at joints 19, 20, 21 and ZZ. The inter

ferometer receiver is considered located at joint 6 and rigidly attached to the 

truss -structure. Three types of support of the interferometer horns were con

sidered. 

1) 	 The interferometer h6rns cantilevered from the receiver and 

not connected to the truss supports at joints 19,_ 20, Z1 and Z. 

Z) 	 The interferometer horns fixed at joints 19, 20, 21 and Z2 to 

the truss structure and connected to the receiver (joint 6) by 

rigid members. 
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3) The interfereomter horns fixed at joints 19, ,20, Z and 22 

to the truss structure but connected to the interferometer 

receiver (joint 6) by non-rigid members. 

For the latter case the support members (functional coaxial cable) extending 

from the interferometer horns to the receiver are assumed very flexible and 

were not included in the model. 

A box beam is used to support each interferometer horn from the receiver. The 

box beams may be cantilevered from the receiver or cantilevered and supported 

by the main structure" at the end which supports the horn; the method of support 

depended on the case to be analyzed. The size of the box beam is determined 

assuming a cantilevered condition. It is sized for stiffness criteria assuming a 

frequency of 50 cps. 

5. 3. 7. 2 Distortion Analysis 

From the temperature distribution analysis for a criticalsun orientation, temperatures 

of each member of the stiffness model were obtained as a function of member material" 

and surface finish (refer to Thermal Analysis Section). An existing frame analysis 

computer program (SAMIS) is used to derive the stiffness matrix for the support 

structure, calculate fixed and actions for each member using the member temperatures 

and coefficient of thermal expansion, superimposes all actions, and calculates 

corresponding deflections, rotations, and internal Loads. The structure is assumed 

undistorted at 70OF. 

Representative.results of the parameteric analysis are presented in Figure 5-29. 

The results presented'in this figure depict the linear displacement in the Y-Z plane. 

of joints 7, 8, 9 and 10 for the reflectors and joints 19, Z0, 21 and 22 for the 

interferometer horns. It should be noted that the depicted diflections are an order 

of magnitude greater for the aluminum tubes than for the graphite/epoxy material. 

Also the minimum displacement of the interferometer relative to the reflectors occurs 
for the graphite/epoxy material and for fixed non-rigid support members between 

the interferometer horns and the receiver. 

5-71 



Aluminum Tubes (X10) 

White Paint Aluminum Paint 

I 

Polished 

I / 

Aluminum 

Rigi 

( 

WiedPin 

Aluminum 
(X 10) 

MebeCatlvro-ii 

/ 
---------

A t/ 

I -4-

Almiu 

Graphite Epoxy 

-

PanFoised 

-

4 

Auiu 

" 

Graphite/Epoxy -AluminumPaint 

Rii eme aniee No-ii 

FIGURE 5-29
 

REFLECTOR AND INTERFEROMETER DEFLECTION STUDIES
 

5-72 



The angular rotation of the reflector support joints relative to the interferometer 
are summarized in Tables 5-12 for the case of fixed support and non-rigid members 

The angle 0v is the pointing error in the X-Z plane and the isangle f the pointing 

error in the X-Y plane. 

The maximum pointing errors for a graphite epoxy structure are between 0. 016 
and 0. -:4018 degrees (160 to 180 x 10 degrees, as presented in Table 5-12) for 
the three surface finishes considered and well below the allowable budgeted error of 
0. 050 degrees. However, if an aluminum structure is used, the finish must be 
polished aluminum which gives a maximum pointing error of 0. 041 degrees. White 
and aluminum paint are not satisfactory and result in pointing errors of 0. 099 to 

0. 066 degrees, respectively. 

The parameteric distortion analysis for the truss structure has been made for two 
materials, three surface finishes, and three attachment and support methods. The 
distortion analyses assuming 1) the interferorneter horns cantilevered from the 
receiver, 2) the interferometer horns fixed to the truss structure and supported from 
the receiver with rigid members, and 3) the truss members fabricated from aluminum 
tubes produce pointing errors that exceed the allowable tolerance. It is recommended 
that the truss members be fabricated from graphite/epoxy material and that the 
interferometer horns be rigidly fixed to the truss and connected to the receiver with 
flexible coaxial cable which will provide minimal stiffness. 

5. 3. 8 Reflector Thermal Distortion Analysis 
The distortion of the four antenna reflectors is a consequence of partial solar il
lumination of reflector surfaces. The temperature distribution as a function of 
solar illumination is determined in the thermal analysis section of this report. 

Temperature distributions for two sun angles are investigated with regards to the 
distortion of the reflector. The maximum temperature difference across the 
diameter of the antenna reflector is experienced at a sun angle of 9 = 00 (sun's 
rays parallel to plane of the reflector aperature, Y-Z plane) and the maximum 
distortion also occurs for this case. The maximum thermal stress in the 
reflector facesheets is experienced when the temperature gradient is a maximum 
and this condition occurs at a sun angle of 0 = -10 ° . 
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TABLE 5-12
 

POINTING ERRORS
 

Truss Member 

Material Surface 
Finish 

Graphite/Epoxy White Paint 

Graphite/Epoxy 	 Aluminum 
Paint 

Graphite/Epoxy 	 Polished 
Aluminum 

Aluminum 	 White Paint 

Aluminum 	 Aluminum 
Paint 

Aluminum 	 Polished 
Aluminum 

Reflector 

Joint 
# 

7 
8 
9 

10 

7 
8 
9 

10 

7 
8 

9 
10 


7 
8 
9 

10 


7 

8 

9 


10 


7 

8 

9 


10 


Error, Degrees 

x 04 

23 46 
73 160 
12 18 
49 78 

62 27 
65 180 
Z1 19 
33 70 

11 10 
19 180 
54 43 
16 33
 

36 12 
96 740 

980 620
 
510 510
 

400 210 
zoo 590 
660 200 
7Z 12 

41 350 
24 370 
36 53 
16 230 



5. 38. 1 Reflector Distortion Model and Analysis 

A finite element model of a reflector was developed in order to predict the 

reflector thermal distortion. The model is shown in Figure 5-30 and consists 

of 201 nodes, 348 facets and 4 beam elements, Similar to the thermal model 

only one half of a reflector is modeled to predict distortion due to symmetry. 

This model is used in conjunction with the computer routine entitled "Structural 

Analysis and Matrix interpretive System" (SAMIS), to predict thermal distortion 

of the reflector. 

The SAIMIS computer routine is based on finite element principles. The program 

can accommodate both triangular shaped elements of constant thickness and frame/ 

truss elements. A stiffness matrix is formulated for each element, based on 

energy principles, and summed to form a stiffness matrix for the entire model. 

A loading matrix is formed which is equivalent to the imposed temperature distribution. 

Appropriate boundary conditions are imposed, and nodal displacements are calculated 

using a Chaleski decomposition routine. 

5. 3. 8. 2 Reflector Distortion Analysis Results 

The results of the reflector and 'feed horn distortion analysis are summarized in 

Figure 5-31. Distortions of the reflector are shown in the X-Y and in the X-Z 

plane. The maximum distortion occurs at the sun lit edge and corresponds to 

deflection of 0. 002 inches. The distortion shown in Figure 5-31 can be compared 

to a small (0. 009O) apparent rigid body rotation of the reflector. 

The deflection of the feed horn was calculated for both aluminum and invar supports, 

For the aluminum support the maximum deflection is 0. 018 inches and occurs in 

both the X and Y direction. For the invar support the deflections of the feed horn 

is an order of magnitude less and is negligible with respect to degradation of RF 

performance. 

The distortion results presented in Figure 5-31were for the sun condition that produced 

the maximum temperature difference across the diameter of the reflector. This case 

occurs when the solar rays are parallel to the reflector aperature (9 = 0). The effect 

of other sun positions and shadowing of one reflector by another were also studies. 

The results of these analyses confirmed that the maximum distortion of the antenna 

occurs for the ease when the temperature difference is a maximum (9 = 0). Also 

the maximum stresses, substantially lower than the yield stress or buckling stress 

of the reflector, occur for the maximum thermal gradient case (0 = -10°). 
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SECTION VI
 

ANTENNA CONTROL SUBSYSTEM 

6.1 REQUIREMENTS 

Two sets of requirements have been considered: a set of baseline requirements,
 

and a set of alternate requirements. The baseline requirements are the following:
 

a) Point an antenna array at a particular-spot on the earth's surface, 

b) Rotate 360 per day to permit the spacecraft to track the sun, 

c) Change from pointing at one spot on the earth's surface to another 

within 15 minutes, 

d) 	Operate for a minimum of 5 years,
 

e) 	Maintain a pointing accuracy of +0.1 degree RSS in the presence of
 

i) satellite errors of +5.0 degrees, 2) satellites rates of 1.0 degree/
 

minute, 3) a 0.5 degree inclination, 4) satellite station longitude
 

errors of +0.5 degree, changing at 0.1 degree per day,
 

f) 	The accuracy shall be maintained while looking at any point on the
 

surface of the earth within 20 degrees longitude of the satellite sub-point
 

and between 45 degrees north latitude and 10 degrees south latitude.
 

The alternate requirements considered were the same as those given above, but with
 

two changes made for one set of alternate requirements, and three changes made
 

for the other set. The two changes common to both sets of alternate requirements
 

are:
 

a) 	Assume spacecraft attitude is controlled to within ±0.10,
 

b) 	Maximum spacecraft rate is 0.20 /day
 

One further change in the baseline requirements was considered, which when combined
 

with the two above made up the second set of alternate requirements. This additional
 

change was the elimination of the 3600 /day pitch rotation that allowed the spacecraft
 

to track the sun. Thus, instead of pointing the whole spacecraft at the sun, only the
 

solar panels are pointed at the sun while the rest of the spacecraft points at the
 

center of the earth to within +0.1 degree.
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In addition to the, imposed requirements there are what can be called derived
 

requirements. The derived requirements in this case include the total angular
 

excursion required of the antenna control system and the maximum gimbal rate that
 

is required. These are governed by the desired coverage on the earth, the time
 

in which it is to be changed; spacecraft attitude, and spacecraft attitude rates.
 

Table I summarizes these derived requirements.
 

Another derived requirement'is the requirement for a yaw gimbal. At first it
 

was not obvious that a yaw gimbal would be required, but several computer runs
 

were made to determine the effect a 50 yaw error had on the geographic location
 

of the antenna beam. The following cases were studied for antenna pattern "a"
 

of Figure 6-1.
 

(1) OE, ON, 0 Yaw
 

° 
(2) 00E, 00N, -5 Yaw
 

(3) OE, 45 N, 0 Yaw
 

(4) 0E, 45°N, -50 Yaw
 

(5) 20°W, 450N, +50 Yaw
 

(6) 200 W, 450 N, 0' Yaw
 

(7) 20°W, 45'N, -50 Yaw 
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TABLE 6-1 - DEVISED REQUIREMENTS 

Total Angular 

Excursion Req'd 

Roll 

Yaw 

Pitch 

Baseline 
Requirements 

+11.860, - 6.610 

+50, - 50 

Continuous (3600) 

Alternate 
Requirements #1 

+6960, - 1.710 

+0.0 , - 0.0 

Continuous (3600) 

Alternate 
Requirements #2 

+6.96 6, - 1.71 ° 

+0.0 , - 0.0 

+3.650, - 3.65' 

Maximum Gimbal 

Rate Required 

Roll 

Yaw 

Pitch 

±1.23 deg/min 

±1.0 deg/min 

±1.13 deg/min 

±0.55 deg/min 

d0.0 deg/min 

: .46 deg/min* 

±0.55 deg/min 

±0.0 deg/min 

±0.46 deg/min 

*Excluding nominal pitch rate. 



Figure 6-1 Sketch of Antenna Patterns
 

The patterns were "cut off" at their inters'ection with the 50 elevation cone.
 

That is, Earth-pattern intersections where the vehicle's elevation would be
 
° 
less than 5 as seen from a ground station were excluded.
 

The plot (see Figure 6-2) shows the yaw effect qualitatively and indicates
 

the necessity of having a yaw gimbal to remove 
as much of the effect as
 

possible. For the alternate set of requirements, the effect is negligible
 

and therefore the need for a yaw gimbal is eliminated.
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6.2 CONTROL TECHNIQUES
 

In general, two methods of antenna control are possible for a spacecraft: (1) ground
 

control via a command link, or (2) automatic on-board control. A given control
 

system can use either of these or a combination of both, depending on mission and/or
 

spacecraft requirements. Each technique has its own set of advantages and dis

advantages, some of which are discussed below.
 

6.2.1 Ground Commanded Antenna Control
 

In the ground commanded antenna control system the interferometer data are fed 

to the ground terminal via telemetry. At the ground terminal a computer uses 

the interferometer data to calculate the orientation of the antenna array. The 

measured antenna orientation is then compared with the desired orientation and
 

the changes required in each of the three gimbal angles is computed. These required
 

gimbal angle changes required in each of the three gimbal angles is computed.
 

These required gimbal angle changes are then sent via command link to the spacecraft
 

where they are used to actuate the gimbal drives- The gimbal drives reorient
 

the antenna, providing a new set of interferometer angles, which are sent to the
 

ground as before. If additional control is required the computer recalculates the 

gimbal angle changes, and sends them to the spacecraft. This cycle continues all
 

the time that control is required, and represents the biggest disadvantage of this
 

technique.
 

For the primary requirements, where spacecraft rates are I degree/minute and attitude 

is only maintained to +5 degrees, the ground commanded control technique requires 

a telemetry and commmand link all of the time and the ground based computer is 

always required at least on a time-shared basis. Further, the lag due to transmission 

time (-0.2 second), and computation time on the ground increases the loop stability
 

probelm. Offsetting these disadvantages are a simpler satellite and the ability
 

to change the computation algorithm if desired. Figure 3 summarizes the advantages 

and disadvantages.
 

For the alternate requirements this control technique becomes more attractive
 

because the much lower spacecraft rates and higher pinting accuracy allow the
 

gimbal angles to go unchanged for periods as long as several hours, thus eliminating
 

all of the disadvantages.
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Comm'd Gimbal 
InerermeerILVIecoder 

Drives O 

Spacecraft / 	 Spacecraft 
Ground Ground 

Cmputer 

ADVANTAGES: 1. Satellite is simpler. 

Z. 	 Changes in computations are easy to do, by merely changing program in 
ground computer. 

DISADVANTAGES: 1. Uses command and 	TLM link all the time. 

2. 	 Ground computer is tied up and always required. 

3. 	 Time lag between actuation and measurement increases stability problem. 

rigure 6-3 Ground Commanded Control Technique 



6.2.2 On-Board Antenna Control 

The on-board antenna control technique uses the angles measured by the inter

ferometer in an on-board computer. The computer has stored in it a set of 

desired interferometer angles which are used in conjunction with the measured 

angles to compute the required changes in the gimbal angles. The required gimbal 

changes are used to drive the gimbals and hence the antennas. The change in 

antenna orientation is measured by the interferometer, thus closing the loop. 

Because it is desired to point the antenna at different spots on the earth's 

surface the desired interferometer angles will change. Also, the location of 

the interferometer beacon may be moved from time 'to time, again requiring a 

new set of interferometer angles. It is therefore necessary to be able to 

change the desired angles that are stored in the on-board computer. This is
 

accomplished via the command link.
 

The system recommended for this application is a combination of the ground commanded
 

and the on-board control techniques, as shown in Figure 6-4. A command override 

has been provided to ensure control if -the computer becomes inoperative, The
 

telemetry readout of the interferometer angles, computer state, and gimbal drive
 

response is optional.
 

The main disadvantages of this technique are the complexity added to the spacecraft 

by the on-board computer, and the inflexibility in the solution algorithm. However, 

the self-contained- feature relieves the requirement for telemetry and command 

channels on a full-time basis, and eliminates the continuous requirement for computa

tion equipment on the ground. Also, there is less time las in the control loon. 

easing the stability problem. 

For the alternate requirements the command override allows a failure of both the
 

computer and the interferometer, if ground power levels can be used to determine
 

beam position. This is a result of the accurate spacecraft attitude control.
 

The ground commanded technique also has this capability for the alternate
 

requirements.
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 The on-board computer adds complexity to the satellite
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Figure 6-4 On-Board Control Technique
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Another derived requirement is placed on the location of the interferometer Deacons
 

on the ground. To obtain 3-axis information from the interferometer it is necessary
 

to have two beacon stations separated by some minimum distance. This minimum distance
 

is a function of the accuracy desired- and is treated more fully in the error analysis
 

section.
 

6.3 COMPUTATION REQUIREMENTS
 

The computation requirements can be divided into two categories: (1) ground
 

computation, and (2) spacecraft computations. The ground computations depend
 

to some extent on whether the control is by ground command or an automatic
 

on-board system. The spacecraft computations are heavily dependent on the type
 

of control being used.
 

6.3.1 Ground Computations
 

The purpose of the ground computations is to define the desired interferometer 

angles, and in the case of the ground commanded system to use the desired
 

interferometer angles with the actual interferometer angles to define the required
 

changes in the gimbal angles. For the on-board control system only the desired angles
 

are computed on the ground, the generation of gimbal angle changesbeing done on
 

the spacecraft.
 

Defining the desired interferometer angles requires a knowledge of the position
 

of the interferometer beacons in antenna coordinates. This means that the-trans

formation between the earth frame (in which the interferometer beacon locations
 

are known) and the antenna frame must be known for any point to which the beam
 

pattern must be centered on the earth's surface.
 

If p is the position vector-of the center of the beam pattern, (see Figure 6-5),
 

in earth coordinates it can be expressed as:
 

P= re sin EI + r e CGS tp sin XpE 2 - Te cos tp cos Xp E3 
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Sj = Vector from earth's center to I-th interferometer beacon
 
Vector from earth's center to desired location of.center of beam pattern
p = 

= Lattitude of beacon or pattern center 
X = Longitude of beacon or pattern center referenced to the satellite subpoint 

SATELLITE 

Satellite "us-po/fT
 
Orbit 
Reference
 
Frame (X/)
 

FIGURE 6-5. SMOL DEFINITION
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and in the satellite orbit reference frame asg (ignoring orbit inclination
 

and station drift.)
 

T = r8 sin R +r. cos p sin XpR2 + rsre Cos p osxQR 3
 

The transformation between the R frame and the K can be expressed in terms 

of three Euler angles representing successive rotations about the 1, 2, and 

3 axes and denoted herein by 7, 2 , O.nly the first two rotations, i.e., 

TI and 72 are necessary to point the interferometer 
boresight (A3) at the
 

point p. The third rotation, Y3 , is necessary to ensure that the three or
 

four antenna pattern centers maintain a roughly constant latitude.
 

In orbital coordinates the vector to the location of the desired pattern
 

center is given by '. After two rotations, Y1 and 72, it is desired to have
 

t
 
coincide with the interferometer boresight j o Thus it is desired that
 

,,3,
 

F R" = P 
3
 

where
 

= sinY 2 R - sin 1 Cos R + co 

Solving for "I and '2 from the above gives:
 

cos p sin X.
tan T = -re
1a r -r cos Cpcosxp
 

- sin , sin %p
 

tantaly=22Z sin p cos XP
 

The third Euler angle, Y3 , is found by defining a constant latitude tangent
 

to the earth's surface at the desired pattern center location, and ensuring
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that this vector is in the plane defined by three of the beam centers. Doing
 

this defines the third angle to be:
 

sin (X + Y
 

3 'cos (7p " 1) (sin 72 - cos Yi cot 2.
 

With the transformation between the orbital reference frame and the desired
 

antenna frame known it is possible to write down the expressions for the
 

desired interferometer angles. If the position vector to the i-th inter

ferometer beacon is defined by its relative longitude X. and latitude t.
 

then in orbital coordinates it is expressed by:
 

r. = r sin RI + r cos ti sin XiR2 + (r -r Cos i Cos Xi)dR3 

Performing the dot product between the above and the desired axis of the
 

horizontal interometer arm gives the cosine of the desired angle between
 

that arm and the i-th station:
 

r.r 
cos l. = - le sin ti cos Y. sin 73 +- cos i sin X. (cosT cos 

1 i 2 3o t in X, 1 osY3s'Y 
1 

- sin Y. sin Y2 sin 7) 

1 2 3 
(r r Cos i cos 2.) 

+T (sin TI cos 3 - cos YI sin-2 sin Y3
ml 

And likewise for the vertical interferometer arm:
 

r r 
cos ji = -s-- sin cos cos + cos . (cos 7 sin Yci Y Y - sin 

1i ~2 73 17 (coIB 1 73 

+ sin Y/I sin 2 cos 73) 

Crs - re cos lcos A.) 

+ '(sin yi sin 3 - cos sin y2 cos 73)1 
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For an orientation system that is contained on the spacecraft and has the
 

loop closed on board, these calculations represent the only capability
 

required on the ground at the command center. As can be seen, all of the
 

calculations use subroutines generally available even to a desk-top com

puter, and hence present no problem in implementation. Figure 6-6 schemati

cally summarizes the ground computations.
 

If the effects of inclination and station drift are included, two more rota

tions are necessary to define the transformation between earth coordinates
 

(in which the beacon locations are known) and the desired antenna orientation.
 

The two additional rotations make the algebraic expressions very long and'
 

messy looking, but the same calculations are performed, i.e., sin, cos,
 

arctan. Also rotation subroutines are available, or can be easily generated
 

that eliminate the need for doing all of the messy algebra'required to obtain
 

a closed form expression on paper.
 

If the antenna orientation is controlled entirely from the ground, then addi

tional computation on the ground is necessary to generate the required gimbal
 

angle changes from the actual vs desired interferometer angles. To obtain
 

three axis information it is necessary to have two interferometer beacons on
 

the ground. Let the vectors to the two beacons from the spacecraft be Iland
 

1 Dfine a reference axis system IXVsuch that A3 is the axis along which it 

is desired to point the pattern center. Then rl and r2 may be defined by: 

T p + p A-

P1 1 +2 2 3 3
 

r2 r1 X= 2>2+ 3 3 

The desired interferomter angle can then be expressed as:
 

P1
P2 

cos aID = 'li cos jID = l 

Cos = I 
cos 2D= t2 
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Now it is necessary to introduce the antenna coordinate axis system [a] where a3 

is along the interferometer boresight axis, and a spacecraft frame r]. The 

spacecraft frame (3] is defined to coincide with r] when all gimbal angles are 
zero. Thus 5] and r] are related by three transformations corresponding to the 

roll gimbal angle §A' pitch gimbal angle 0A, and yaw gimbal angle *A 

[b] = [- 3-][§A ][a 

Now define nominal gimbal angles § n n such that the antenna pointing error is
 

zero when the actual gimbal angles AA' A' *A equal the nominal gimbal angle. Thus,
 

the gimbal angle error is given by:
 

=A f 

=6 A ftO 

=A
 

Also, it is known that the desired antenna frame [A] is related to [b by:
 

-I=r~nl[n ren~ 

Also:
 

r7]= [ A - 843r*A - 6*ItOA - 63b 

'where the frame [A) has been expressed in terms of the gimbal angle transformations 

and their errors, and the frame [b]. By substitution, the relationship between 

the desired antenna frame rX] and actual antenna frame [a) can be expressed in 

terms of the following set of successive transformations: 

CA]6 - 8[A - 64J[QA - &eJ[OoA[-*A[-§Aitul 
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or more compactly:
 

[A] = [K]taj 

where:
 

[AA-E69'AlAI'[K] = 8l[A- A' 

Now it can be shown that:
 

Cos =A2 '1= 1---[pIKI2 + p2K2 2 +p 5 1
 
I r'A I K12 P2K22 '721
 

Cos 5IA = 172 1 ]
r 2 EIK 2 + a2K22 + a3 512


Cos A '2 - 11 [PKl 72'21 + a3K311
 

Ii 

cos 1r2r1 - Ka223= a1 - f 2 I-21 K' 

Assuming small angles and linearizing, it can be shown that:
 

K 11 K2 =
 

K1 2  -K2 1 = -8
 

K32 80
 

K31
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so that:. 

CosLY "Pl 6v + P2 + P3
 

r7~ 	 171 1-1

* -pI 2 p 3
 

*- C1 	 + a2 + _3 6
 
cos .	 - 84+- +0 8e
 

12 1 r21 1r 2 1
 

CsPl 	 P2 P3 

o IA 1 Ir7 171
 

cos 2A 1 +a 2
 
1r21 1r21 1r2
 

But since _- cos aI , etc., these can be rewritten: 

cos a1D -	 cos IA = Cos 0ID 6 0 Cos 1
 

cosa cA = cos $2D 6- 6@ cos X2 

cos B1D -	 Cos 0IA CosBlD+ 6§ Cos X
 

o -8cos 2D 	 Cos cos a2D + 8 cos 2
 

where X 	 is defined as: 

C=os-1[ r, k3 ] 

2 cos-U [ 2 3] 

2.1 
6-18 



There are 4 equations and only 3 unknowns, so any three of the equations may be
 

solved for 60, 6, and 6 in terms of ai and 8i" If the data from the horizontal
 

interferometer arm is used twice (ice., angles to both beacons are used)-then
 

the three equations are:
 

64 cos D - 60 cos XI = cos 0i1 - cos IA 

= T
6* cos 2D 68 cos X2 cos '2D - cos C2A
 

-5* cos YID + 6 Cos XI = Cos 8ID - cos 81A 

Solving for 6, 68, and 684givesi 

6= Cos %l[eos V2A " Cos c 2D] -cos X2[eos oIA -Cos (YID ] 
cos 2 Cos 2D os 

CO 1D -LCosDJ I ' OS ID O 

Cos%I Cos XI 

Cos ?2A- Cos 0!2D os 2D 

Cos X 2 cos X2 

The angles given are the angles that the gimbals are in error and are the numbers
 

to be sent to the spacecraft for a ground controlled technique. Computation of
 

these numbers is easily implemented (given the appropriate constants) on a modern
 

computer.
 

6.3.2 Spacecraft Computations
 

For the ground'controlled technique no calculation of any kind is required on the
 

spacecraft. A command decoder would be necessary to sort out the required changes in
 

each channel and drive the appropriate gimbal drive logic.
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For an automatic system the equations of the previous section would need to
 

be solved by an on-board computer. For the pitch and roll gimbals the gen

eration of a drive signal is quite easy once one has a solution for 6*.
 

To solve for 60 the computer must be supplied with the following constants
 

via the command link:
 

cos AI 
 cos aiD cos j3 D
 

Cos A2 
 cos a2D Cos #2D
 

With these six numbers supplied to the computer from the ground and two
 

interferomter measurements from on-board, the computer can continuously
 

generate the required error signals for all three gimbals.
 

Regarding the ease of constructing a computer with the above capability it
 

should be pointed out that the only operations involved are addition, sub

traction, multiplication, and division, operations very common even to desk
 

top computers. The generation of cos aiA and cos iA is done automatically
 

by the interferometer and supplied to the computer.'
 

To summarize the computation requirements, for a ground controlled system,
 

all of the calculations of the previous section must be performed on the
 

ground. For an on-board controlled system the last set of equations in the
 

previous section must be solved on board.
 

6.4 HARDWARE IMPLEMENTATION
 

In the implementation of the antenna control system several trade-offs had
 

to be performed. Two of these trade-offs were the choice of open loop versus
 

closed loop control, and stepper motor versus brushless dc motor. To perform
 

the trade-offs it was necessary to know as many of the characteristics of
 

each option as possible.
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6.4.1 Open Loop Systems
 

Open loop drive systems (i.e., systems closed through ground stations) have
 

the advantage of simplicity and high-reliability of on-board equipment (see
 

Figure 6-7). An integral part of such a system would be a stepper motor
 

which would, on command from the ground station, be rotated a desired number
 

of steps to re-orient the antenna to the desired position. A ground com

puter would be required to calculate the number of steps to be taken and the
 

direction of rotation. In addition, commands for the pulse width of the
 

pulses for each step, possibly the pulse repetition rate and whether to stop
 

with motor power on (a particular winding) or power off, must be sent. The
 

variability in pulse width and pulse repetition rate is included in order to
 

alleviate possible step-skipping problems which may occur in operations par

ticularly under environmental extremes.
 

An open loop system has the disadvantage that it places considerable burden
 

on the ground station computer and operational procedures especially during
 

non-normal behavior. Also, the slew rate would be restricted by the duration
 

of each step transient and may become unduly slow under environmental extremes.
 

Another disadvantage is that for satellite attitude drift rates of 1-2 deg/min,
 

large errors in antenna attitude could accumulate before corrections could be'
 
made (access to command link is usually restricted to once every few seconds
 

or minutes during which time the errors can accumulate to intolerably large
 

levels). Thus, although the open loop system has the advantages of simplicity*
 

and reliability, it is not recommended for the reasons stated above.
 

6.4.2 Closed Loop Systems
 

Two possible closed loop systems with stepper motors are shown in Figures
 

6-8 and 6-9. The closed loop system of Figure 6-8 employs the same philosophy
 

of the open loop system (i.e., stabilize the transients of each step before
 

the next step is taken) except that most of the computation is done on board.
 

The pulse control system is used to increase the pulse width and decrease the
 

pulse repetition rate in the event that the step and sign change detector
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indicates a non-normal operation (i.e., steps not taken or antenna position
 

exceeds desired position). The primary disadvantage of this system is that
 

the antenna slew rate may become unduly slow under environmental extremes.
 

When friction levels decrease, the transients become longer leading to step

skipping problems when stepped too soon. In order to prevent step-skipping
 

problems, the pulse applied to each motor winding is made longer and the
 

pulse repetition rate is made lower. This system is feasible but may result
 

in very low slew rates. Figure 6-9 shows one of the more promising closed
 

loop systems. It consists of an inner loop which includes the translator
 

and the step detector. This inner loop prevents step-skipping and permits
 

very high slew rates. Step-skipping is prevented by permitting a succeeding
 

stlep to be taken only after a step change has been detected. The high slew
 

rate is obtained by supplying pulses for the next step change at the initial
 

detection of a step change, i.e., at the first "zero" crossing of a step
 

transient. The outer loop (containing the switching logic) stabilizes the
 

system by supplying the proper CW, COW or stop commands as a function of
 

the position error and velocity.
 

Another of the closed loop systems uses a brushless dc motor in the control
 

loop shown in Figure 10. The incremental encoder and encoder electronics
 

provide to the computer the relative rate information necessary for damping
 

and loop stabilization. The interferometer provides antenna angle information
 

to the computer. The computer then generates a digital motor drive signal
 

using data from the encoder, interferometer, and stored command decoder
 

information. The digital motor drive signal is fed to the D/A converter
 

through a command override selection switch where, by ground command, control
 

can be changed from the automatic system to direct ground control. The
 

analog motor drive signal coming from the D/A converter is fed to a modulator
 

that modulates a carrier capable of being transmitted across the rotary
 

transformer.
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The DC brushless torque motor employs a rotary transformer type resolver
 

which, when properly aligned, acts to commutate the synchronous permanent
 

magnet motor. This is accomplished by the use of an integrally mounted
 

motor, resolver and rotary transformer. The resolver and rotary transformer
 

are actually combined into a single unit. The resolver has an input winding
 

which is excited at 1000 Hz and two output windings which have an output
 

proportional to the input at the input carrier frequency modulated with a
 

trigonometric function of the angular position of the rotor. The rotor
 

is a variable reluctance element having shorted windings, whose turns and
 

winding distribution are controlled to obtain an optimum modulation wave
 

shape on the output winding and a desired phase relationship between the
 

two windings. Schematically, the resolver is shown in Figure 6-11. The
 

figure also shows the relationship between input and output signals where 0
 

is an electrical phase shift between the carrier frequency input and output
 

and 0 is the angular position of the rotor. The motor, whose rotor is on
 

the same shaft as the resolver rotor, is a permanent magnet two-phase
 

synchronous motor having 8 pole pairs.
 

The magnet is of Alnico 9 which has the highest energy product of the
 

common magnet materials and has a coercive force of 1600 oersteds, thus
 

exhibiting extremely good stability which assures minimum degradation during
 

satellite life. The motor is energized from the demodulated resolver outputs
 

as shown in Figure 6-12.
 

The direction of rotation and peak torque per unit power is controlled by
 

the relative positions of the resolver stator and motor stator. This
 

position is mechanically fixed such that the stator rotating field in the
 

motor always leads the rotor rotating field by7r/2 electrical radians.
 

The output from the resolver is demodulated and power amplified to drive
 

the corresponding motor sine and cosine windings.
 

6-27 



OUTPUT I
 
VIP) SIN(WT+$ cos e 

INPUT
 

9 SIR WT
 

-ELCTWCAL PHASE SMIFT OUTPUT 2 
7R-TRA4IVORMAriOf RATIO (Tr) 5IN(WT+t) SIN e 
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6.4.3 Stepper Motor/D Motor Trade-Off Analysis
 

In the comparison of the two types of motors it became obvious fairly
 

early that the stepper motor would not be suitable for the pitch gimbal,
 

but was acceptable for the roll and yaw gimbals. The reason the stepper
 

motor is not suitable for pitch is as follows. In-this application the
 

required increment in antenna orientation ( 0.050) is much smaller than
 

practical step sizes for stepper motors, meaning that a large gear ratio
 

At the same time the high overall accuracy required eliminates
is required. 


those designs having more than .020 of backlash. Usually, anti-backlash
 

gear trains have been avoided in space applications requiring long life
 

because of the higher friction levels inherent in their design. The
 

harmonic drive can provide a high gear ratio with virtually no backlash
 

but it is necessary to mount it with its output/input shaft on the axis of
 

desired rotation. For the roll and yaw gimbals this presents no problem,
 

but for the pitch gimbal the R-F rotary joint also has to be on the axis
 

of rotation. Since the two objects obviously cannot occupy the same space,
 

the harmonic drive unit would have to be offset, with a gear coupling to
 

But the purpose of
transfer the drive torque to the rotary joint housing. 


the harmonic drive was to avoid gears and their backlash, so nothing has
 

been gained that couldn't be accomplished with a direct drive DG motor.
 

The harmonic drive could be used on the roll and yaw gimbals if separate
 

in fact originally designed that
gimbals were being used, and the system was 


However, with the use of the spherical bearing and recirculating
way. 


ball drive, the required 375:1 gear ratio can be easily-obtained using a
 

22 1/20 stepper motor.
 

For the stepper motor control loop the computations can all be done digitally,
 

since the stepper motor is inherently adaptable to digital control logic.
 

On the other hand, for the brushless DC motor control loop a digital-to

spot in the loop, as the interferometer
analog converter is necessary at some 


output is digital and the motor requires an analog drive signal.
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The stepper motor control is less affected by noise than the DC motor
 

control. If noise exists in the DC motor control loop, as 
it must, this
 

will appear at the motor shaft in varying degrees of attenuation or'
 

amplification depending on the noise frequency and the antenna natural
 

frequency. The stepper motor does not respond to control loop noise until
 

the noise level reaches an amplitude sufficient to cause steps to occur.
 

The stepper motor does have another problem: an offset from the nominal
 

step location will exist that is a function of the slope of the detent
 

torque and the coulomb friction on the shaft.
 

Static friction (stiction) has been shown to cause low amplitude stability
 

problems in some cases in analog control loops. The stepper motor would
 

be unaffected by stiction unless the stiction exceeds the torque capability
 

of the motor.
 

The translator required for the stepper motor control loop (to shift the
 

excited poles sequentially around the motor) is a simple logic design
 

consisting of "AND" gates. This contrasts with the requirement for a
 

modulator, brushless resolver, demodulator and rotary transformer for the
 

brushless DC motor.
 

For the alternate requirements where changing the gimbal angles will be
 

fairly infrequent the stepper motor is particularly attractive because,
 

being of the permanent magnet type, it will hold the last position commanded
 

without application of power to the windings. The only way this would be
 

possible for the brushless DC motor in roll or yaw is if the recirculating
 

ball drive pitch were chosen such that the inertia loads on the antenna were
 

not able to drive the motor, i.e., the torque is only transmitted in one
 

direction, namely from the motor to the antenna.
 

Table 6-2 summarizes the trade-offs.
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TABLE 6-2
 

MOTOR TRADE STUDY
 

Brushless DC Motor 	 Stepper Motor
 

1. 	No gears are required between motor and 1. Needs high gear ratio (375:1)
 
load resulting in neater packaging
 

2. 	Digital interferometer output makes D/A 2. All computations can be performed digitally
 
converter necessary in loop
 

3. 	Noise on error signal will show up at 3. Unaffected by noise until noise is large
 
output enough to cause step
 

4. 	Power is required continuously to hold 4. In the event of a power failure, the last
 
a given orientation, unless worm gear desired position is automatically held
 
is used
 

5. 	Stiction may present a stability problem 5. Stiction no problem unless it is larger
 
than maximum available motor torque
 

6. 	Modulator, brushless resolver, demodulator 6. Translator consists of "AND" gates
 
are required (+ rotary transformer for pitch)
 

7. 	Direct drive is feasible on pitch axis 7. Harmonic drive plus gear train required
 
for pitch axis
 



6.4.4 Stepper Motor Control Simulation
 

The simulation of the stepper motor control loop was performed to verify
 

the control concepts and to ensure that the motor characteristics chosen
 

were compatible with the approximate antenna inertia load. The parameters
 

assumed in the simulation were:
 

Step Size: 22 1/20 (at motor) 

Gear Ratio: 0.060 (at antenna) 

Slew Rate: 375:1 

Antenna Inertia: 17 slug-ft.2 

Motor Inertia: 1.5 x 10 -4 slug-ft.
2 

Peak Motor Torque: 15 in-oz. 

Bearing/Gear Drag 
(coulomb): 1 in-oz. 

Detent Torque: 5 in-oz. 

Viscons Drag: 10 -2 in-oz./rad/sec. (at motor) 

.768 in-oz./rad/sec (at antenna) 

Backlash: zero 

Gear Teeth Spring 3 
Constant: 1.8 x 10 in-oz./rad 

Motor Excitation: 30 volts 

Motor Winding 
Resistance: 300 ohms 

Computer runs were made with the slope of the control law set at 3 different
 

values. Figures 6-13 through 6-15 show the antenna and motor response along
 

with the rates and motor torque, for increasing values of 'a', the slope of
 

the control law. No attempt was made to optimize 'a' as optimization criteria
 

were not known.. However, when the system is being built and inertias and
 

required response rates defined it would become possible to in some way
 

optimize 'al.
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The simulation demonstrates the feasibility of making the required
 

control logic, and also demonstrates the soundness of the approach.
 

There wasn't time to simulate the brushless DC motor control loop,
 

but more previous experience exists with this type of loop so it was
 

felt feasibility was certain.
 

6.5 ERROR ANALYSES
 

In a system of this complexity there are many elements, each non-perfect,
 

and.hence contributing to the antenna pointing error. Some of these error
 

sources are subject to meaningful analysis and estimation at this stage;
 

others are not. For example the effects of station drift and orbit
 

inclination are fairly readily estimated from preliminary calculations,
 

wh~reas the amount and frequency spectrum of noise in the DC control
 

loop is.more difficult to estimate until a more detailed definition of
 

the amplifiers and logic elements in the loop is available.
 

6.5.1 :Summary of System Errors
 

Since different errors arise in the different axes, a separate error
 

tabulation for each axis is given below in Table 6-3. The errors
 

represent 35 numbers or worst case, as applicable.
 

6.5.2 Gear Ratio Selection/Step Resolution
 

Since a direct drive DC motor is being used on the pitch axis the
 

selection of a gear ratiolapplies only for the roll and yaw axes. In
 

all of the following a-permanent magnet stepper motor is assumed with
 

a 22 1/20 step size. The measurement accuracy of the interferometer was
 

assumed to be + 0.020 of which + 0.0150 was caused by receiver noise and
 

other sources of rapid variation.
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TABLE 6-3
 

SYSTEM ERROR SOURCES
 

Pitch Axis (Brushless DC Motor Drive)
 

+.018-
Alignment of Interferometer to Antenna Structure 

±0.060
Thermal Deflection in Horn 


Interferometer Measuring Accuracy (20 Hz) +.02
 
+0.02
Computer Quantizing Errors (10 bit) 

+0.02
Station Drift 

+0.01
D/A Conversion 

+0.05
Yaw Gimbal Error 


RSS Total +.088
 

Roll Axis (Stepper Motor)
 
°
 +0.05
 

Alignment of Interferometer to 
Antenna Structure 


+0.060

Thermal Deflection in Horn 


+0.03
Step Resolution 

Interferometer Measuring Accuracy +.02
 

+0.01
Linear Actuator Backlash 

+0.02
Computer Quantizing Errors 

+0.03
Inclination (0.50) 

+0.05
Yaw Gimbal Error (±10) 


RSS Total +0.095
 

Yaw Axis (Stepper Motor)
 

+0.95
Interferometer Measuring Accuracy 

+0.03
Step Resolution 

+0.01
Linear Actuator Backlash 

+0.02
Computer Quantizing Errors 


+0.950
RSS Total 
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Tne selection oZ a gear ratio is based on the desire to keep the motor
 

from responding to the high frequency noise, i.e., "hunting" about the
 

nominal position when the nominal position remains fixed. Thus, it is
 

desired to have the step size at the antenna at least twice as large as
 

the jitter in the interferometer signal. For a jitter of : 0.0150 the
 

step size should be about ± 0.03', or since a step can only be taken in
 

one direction, a total size of 0.06c per step has been selected. This
 

is the step size at the antenna0 The required gear ratio is the ratio
 

of the motor step size to the antenna step size or 375:1. This gear
 

ratio'applies to the roll axis where the roll measurement sensitivity
 

to interferoneter errors is about 1:1. For the yaw axis though, the
 

sensitivity is not 1:1 but is determined from the equations of
 

paragraph 6.3.
 

The yaw gimbal error is determined from two interferometer measurements
 

and the equation:
 

Cos Xl[COS 02A - Cos 52D - Cos X2 cos PIA " cos OLD] 

84
 
C os1 0 2D Cos 12 Cos aID
 

2(84) CosX
 
-- " ..... (for Sz 9Q0)
 

2 2D - Cos UCOS ar92A Cos Cos 2 

Suppose that the interferometer toresight is pointed at one of the
 

interferometer beacons, i.e.,
 

X 0 and 90° 

Then:
 

2(6 ) 1
 

202 A os "MD
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Now, if the second interferometer beacon is located at roughly the same
 

latitude and about 200 longitude away from the first beacon then
 

02D 86.50 and the sensitivity is:
 

2(84)
 

16.4 
2 
2A
 

Thus, an interferometer jitter of ± 0.0150 corresponds to about a ± 0.250
 

jitter in yaw uncertainty. A yaw step size of 10 is out of the question
 

so it is necessary to have the computer provide some filtering of the yaw
 

gimbal drive signal. The amount of filtering necessary to reduce the
 

jitter by 10:1 would depend on the jitter bandwidth, etc., and could be
 

defined more accurately when the interferometer receiver design is
 

finalized. A 375:1 gear ratio is still planned for the yaw axis if this
 

creates too much of a design problem it can be lowered considerably.
 

6.5.3 Yaw Measurement Accuracy
 

The yaw measurement accuracy is a function of two things: beacon separation
 

and interferometer errors in phase measurement.
 

The equations relating the angles measured by the interferometer to the
 

attitude angles are:
 

(R - Rli)) cos r sin + R2 (i)(cos v cos 6- sin ' sin y sine) 

+R 3 (W)(cos ' sin cp sin e + sin If cos e) = I [ni + 
~~R~i)) -R2 Ci) i.sionpR 


(R - Rl )i p 2 Ws y cos p + R3 W Cos T cos Cp 

Pi I [mi + 2 .d' 
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where:
 

R =radius of satellite from center of earth
 
0
 

RI M = 	component of i-th ground station location along line
 
between satellite and earth center
 

R2 	 component of i-tb ground station location along nominal
 
velocity vector
 

3
R3i) 	 component of i-th ground station location along polar axis
 

1P = 	roll angle of antenna platform
 

= pitch angle of antenna platform
 

= yaw angle of antenna platform
 

iA = angle measured by interferometer nominally in orbit plane
 

BiA = 	 angle measured by interferometer nominally out of orbit 

plane
 

.1pil = distance from satellite to i-th ground station 

= wavelength received by interferometer
 

d = 	separation between interferometer receiving antennas
 

n,m = 	interferometer ambiguities in sensing iA' OiA
 

The above equations were linearized for the small angle case. Assuming
 

a priori knowledge of n,m exists, and that signals from two ground stations
 

are available, there exists a unique solution for the angles e,(p,7 when
 

given aIA' 2A' OIA' 02A* Because two stations yield four equations, one
 

equation is redundant, and one can therefore choose which three equations
 

to use. However, the selection is not entirely arbitrary, but is influenced
 

by ground station location. With one ground station at 150N latitude from
 

the satellite sub-point, the location of a ground station on a constant
 

longitude line represents a singularity for one set of equations, and an
 

almost constant latitude line at I150N latitude represents a singularity
 

for the other set. Thus, if the second ground station is at l50 N latitude
 

or 00 longitude (with respect to the satellite sub-point) one is constrained
 

as to which interferometer arm may be used to supply the third equation.
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In the presence of perfect interferometer data a perfect knowledge of
 

0, cp, can be obtained by using the appropriate three equations.
 

However, the interferometer data will at best give phase information
 

accurate to ± 20 and will more likely be around 30. With noisy inter

ferometer data and a required accuracy on e,cp, Y, there will exist a
 
region near the first ground station, where the second ground station
 

may not be placed. The size of this region was calculated for a 30
 

error in phase measurement and an accuracy requirement of ± .05 degree
 

for e,y, and 0.95 degree for Y. Fig. 6-16 shows the minimum separation
 

between station one and two to meet the above accuracy requirements.
 

The solution for the angles in linearized form is:
 

0 = aliA + a2 02A + blm I + b2m2 

= CliA + +c2 nI c3
 

d I + d202A + d3m +I d4m2
 

where:
 

(~
2) 1P11 
a 


3
a 2TrdER (2 (R  _ - R(2)) 
3 o0 1 3'0 1 

R ") Ip2
 
a2 = 2d(2)( R( ) R )(Ro R 2)
 

b = 2T a
 

b2 
 21 
 a2
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2Trd (R - R 

c 2 2r c I 

R(1)
 
c3 -R - R ( I )


° 


I ) )
R R-

- R ( 2 ) (R Rp12d[R~1) 
3 32 (R (2)R
 

0 1
 

P2
d2
 
2( R(2)
 

21Td[R~2 - R 13 

3 (R R()
 

d3 = 2n d1 

d 4 2n d2 

With this set of equations it is possible to locate the second ground
 

station anywhere in the region of coverage except near 150N latitude
 

and subject to the constraints of Figure 6-16.
 

More detailed analysis of the interferometer receiver indicates that
 

the 35 phase error (per measurement) will be on the order of 4.80, 
so
 

to obtain a 0.950 yaw measurement accuracy the shaded area of Figure 6-16.
 

must be increased in size, or the data must be averaged over more than
 

one phase measurement.
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6.5.4 	 Effects of Yaw Gimbal Error in Pitch and Roll
 

seen from the equations of paragraph 6.3, the sensitivities
As can be 


of the roll and pitch gimbal errors are given by:
 

2() cos D
 

2(8 ) cos
 

2(SS) 	 003 2D 

Cos 
k
2(8T) 	 Cos )2 

From a casual inspection of the geometry it can be seen that:
 

- 10 < 	x2 < 10
 

< < 	93w
and: 	 870 aID 

870 < 02D < 9 30 

cos aID 	 . .0525 

cos D2D 	 ! .0525
 

Therefore, if 6T is + 0.950 the uncertainty in the other gimbal 
angles
 

is:
 

.050A(61) 	 ± . 

A(8e) 	 1b .050 
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6.5.5 Computer Quantization
 

In trying to estimate computer quantization errors it will be assumed
 

that the maximum angle to accomodate is 100 and that .the computer works
 

with a 10 bit word size. This gives an uncertainty of:
 

£ 10 = 01 0 12 .01 ° 

1024
 

per calculation. Assuming 4 calculations per gimbal angle and that the
 

cis add in an RSS fashion gives a total error due to computer quantization
 

of h 0.020 per channel.
 

6.5.6 Inclination and Station Drift Errors
 

The effect of inclination and station drift is to change the desired
 

interferometer angles if the antenna is to remain pointed at a fixed
 

spot on the earth's surface.
 

Fig. 6-17 shows the geometry, exaggerated for analysis. The north-south
 

situation is chosen because greater latitude differences can occur than
 

longitude differences. It is desired to know the maximum difference that 

can occur in yII and Y12 as the satellite moves from p1 to due to anP2 


orbit inclination of 0.50. The angles YII and Y1 2 represent the
 

complement of the angles measured by the vertical interferometer am.
 

L = 2 r sin 150e 

re sin 150- sin 1/2 = 122.0330l 1200 + tan-I rs 
r - r 

s e 

62 1200 + tan1 [r sin 150 + r sin 1/20 123.2170 r - r 
s e 
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Thus:
 

tan y L cos (61 90) 2 re sin 150 os, (32.030) = .077670
 
rI - r 5.65 r
 

sin 150 cos (33.217)

L cos L 92eo - 90) 2 r -= .07665
 

tan y12 r - r 5.65 r e 
S e e 

= 40 26.48'Y 


Y12 = 40 23.0'
 

= 0.0580 
= 3.48'Y12
YII-

Therefore, the worst case north-south pointing error would be about 

; 0.03 degree. 

For the east-west pointing error it is only necessary to observe that the
 

maximum required east-west deviation of the pattern center is about 2/3
 

of the north-south range in pattern locations, and in addition, 61 and 62
 

are much closer to 900 making the sensitivity cos (ei - 90) much smaller.
 

Also, the effect could be taken out on a daily basis so that not all of
 

the 0.5 degree station error need be included. For these reasons it has
 

been estimated that no difficulty would be encountered in keeping the
 

east-west error from this source below ± 0.01 degree.
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6.6 Alternate Requirements
 

The effects of the alternate requirements on the antenna pointing control
 

system have been mentioned briefly, but all of the effects have not been
 

summarized yet. The effects of two major changes in antenna pointing
 

requirements have been evaluated. One of the changes is to control the
 

spacecraft attitude to within + 0.1 degree about all three axes, with'a
 

maximum rate of 0.2 degree per day. The other change is to require the
 

3600 rotation per day of the solar array rather than the antenna system.
 

Tightening the accuracy requirements on the spacecraft attitude to
 

± 0.1 degree eliminates the practical need for a yaw gimbal, which has
 

been verified in the changed requirements. Thus, instead of 3 gimbals
 

being required, at most 2 will be necessary. The two required gimbals
 

are pitch and roll, with the pitch channel requiring continuous rotation
 

of 3600 per day. The choice of a stepper motor drive is natural for this
 

(roll gimbal) application, since the only time the system will need to
 

operate is when the beam direction is changed (for zero inclination and
 

eccentricity). The stepper motor will hold its position until commanded
 

to change. If inclination control isn't used, then the antenna pointing
 

control system will have to remove its effects. This will require
 

changing the stepper motor position more frequently than indicated for
 

the maximum rate of 0.2 degree per day. However, the updating interval
 

for the desired antenna pointing angles is still probably long enough
 

to eliminate the need for an on-board computer. Since this is relatively
 

infrequent it is possible to do all of the necessary computation on the
 

ground, without requiring a telemetry and command channel full time.
 

The preceding has assumed that the antenna control system pointing
 

reference is different than the spacecraft attitude control system
 

reference. If the spacecraft attitude control system uses the inter

ferometer as its reference, two changes to the foregoing are necessary.
 

First, the pitch-roll gimbals will require angle encoders (14 bit), so
 

that the relative angles between the antenna system and spacecraft are
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available. Second, to avoid the need for continuous updating of the
 

desired relative pitch gimbal angle from the ground, some type of clock
 

drive would be desirable on the satellite to perform the updating
 

automatically. Figure 6-1&is a schematic of an automatic updating
 

system that could be used. It is assumed that the clock could be made
 

accurately enough so that the phase update would be required at most
 

every 1/2 to 1 day (I part in 104 is long term stability requirement
 

on oscillator).
 

For the change eliminating the 3600 per day rotation requirement on the
 

antenna control system it is to be assumed that the attitude accuracy
 

is maintained to within + 0.10 and that no yaw gimbal is necessary, as
 

before. Again, two choices are available for the attitude control
 

Another
reference: the interferometer, or a separate reference system. 


interesting possibility presents itself when no continuous rotation in
 

that of having only a roll gimbal and pitching the
pitch is required: 


whole spacecraft through the angle that would haye been performed by
 

the pitch gimbal. This would mean a slight additional tracking motion
 

would be required of the solar array, which shouldn't cause any problem.
 

If a separate reference is used for the spacecraft attitude control
 

system then the required computations for control can be done either on
 

the ground or in the spacecraft. Doing the computations on the ground
 

would simplify the electronics required on the spacecraft.
 

Using the interferometet as a spacecraft attitude reference would require
 

gimbal angle encoders, just as before. However, the clock updating
 

circuit is not required. To determine whether or not the control computa

tions could be done on the ground would require an analysis of the
 

The level of confidence
attitude control system and the expected rates. 


in the predicted rates would also have to be evaluated since the accuracy
 

and stability of the attitude control is a functional of the required vs.
 

available bandwidth in the control computation loop. That is, the
 

processing of data on the ground can be looked at as a very low bandwidth
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portion of the system, and if greater bandwidth is required for stability,
 

or accuracy in overcoming the expected torque environment, then the
 

computations will have to be done on the spacecraft to avoid the lag
 

inherent in the ground computation scheme.
 

Tables 6-4 and 6-5 summarize the effects of the alternate requirements.
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TABLE 6-4 

EFFECT OF ALTERNATE REQUIREMENTS
 

ALTERNATE REQUIREMENTS 

a) SPACECRAFT ATTITUDE CONTROLLED TO ± 0.1 DEGREES 

b) MAXIMUM SPACECRAFT RATE 0.2 0 /DAY 

EFFECT:
 

* YAW GIMBAL ELIMINATED 

• ON-BOARD COMPUTER ELIMINATED 

* ROLL GIMBAL GROUND CONTROLLED 

* PITCH GIMBAL ON-BOARD CONTROLLED 

or 

WITH CLOCK DRIVE UPDATED BY GROUND COMMAND 

• ONLY ONE BEACON STATION REQUIRED 

* SOLAR PANEL INTERFERENCE WITH ANTENNA BEAM ELIMINATED 
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TABLE 6-5 

EFFECT OF ALTERNATE REQUIREMENTS 

ALTERNATE REQUIREMENT 

* SPACECRAFT ATTITUDE CONTROLLED TO :E 0010 NORTH 

* MAXIMUM SPACECRAFT RATE 0.2 0 /DAY 

• ELIMINATION OF 3600 /DAY ROTATION IN PITCH
 
(SPACECRAFT EARTH POINTING, SOLAR ARRAY
 
ARTICULATED)
 

EFFECT
 

* YAW GIMBAL ELIMINATED EARTH
 

" ROLL AND PITCH GIMBAL LIMITED MOTION
 

* ON-BOARD COMPUTER ELIMINATED 

* ROLL AND PITCH GIMBAL GROUND CONTROLLED 

* RF ROTARY JOINT ELIMINATED 

* ANTENNA SUPPORT STRUCTURE REDUCED HEIGHT 

* RF LOSSES REDUCED BY 0.4 db 


