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ABSTRACT

As a first approximation, the diffusion coefficient for the silver

species in 9.94 VF Ka'.{ has been found to be 2.75 + , 70 x 10 -6 cm2 sec 1

at 25 + 0.10 . Work is continuing to improve this value and to determine

values for other conditions.

Argentic oxide has been found to decompose slowly at temperatures

at least as low as 860 and possibly lower. Both Ago and Ag.0 can be

activated to take up a substance or substances from the atmosphere at

room temperature. Activation temperatures at least as low as 66 0 are

effective. No adsorption occurs without prior heating. The substances

most likely to be adsorbed are water and oxygen. Weight increases after

temperature activation exceed weight losses during heating.

Amalgam electrodes in propylene carbonate and in dimethyl formamide

do not show good high-rate discharge characteristics. In general,

maximum discharge rates did not exceed 5 mA which would correspond to

about 1 mA/cm2 . Lithium amalgams in LiC10 4 produced open - circuit voltages

around -2.1 V vs the Hg/Hg0 electrode.

A secondary cell, K(Og) /10 VF KOH //CuC12 , DMF/Cu, produced an

open - circuit voltage of 2.13 V. Discharge at 10 mA yielded almost 100%

charge recovery. The IR drop was excessive at about 1 V.

When a K(Hg) electrode is discharged at 2,688 mA/cm2 , recovery is
1

}♦ 	 low when the total charge is low. Recovery ranges from 29% at a total

charge of 1 mA-hr/g Hg to 90% at 9 mA-hr /g Hg. In the same range, open-

Circuit voltages change from - 1.62 V to -1.76 V _ Hg/HgO.

Steady-state self- discharge rates of K(Hg) electrodes into saturated

KOH average about 0 . 071 uequiv/hr indicating complete discharge in about

l^ years .
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The objectives of the contract are four-fold;

(1) Study of the reduction of Ag(I) by zinc.

(2) Study of the thermal decomposition of Ago and A920.

(3) Study of amalgam electrodes.

(4) Study of the evolution of gas at electrodes.

This report will be limited to the first three objectives.

A. DEPOSITION OF SILVER ON ZINC FROM KOH SOLUTIONS.

Experimentalntal

Some diffusion measurements were made using the method of Anderson

and Saddington l . The capillary diffusion-cell-was modified from that

described previously 2 . No cement was found which would hold the cover-

glass bottoms securely in the presence of concentrated KOH. Therefore,

the cells were constructed by carefully sealing capillary tubing in a

flame and flattening the end while it was still hot. The bottom of the

capillary section appears to be flat as required for this technique.

Calculation of the diffusion constant by this method requires

that the cell length be known rather than its volume. The length was

measured by inserting a straight piece of wire, cutting it and care-

fully grinding i t , f lush with the open end of the cell. The wire was

removed and its length measured with a micrometer. It is a minor dis-

advantage that the cells are not of uniform length.

The main cell chamber was filled with 40 ml of 9.94 VF KOH saturated

with Ag2O. The diffusion cell was filled with 9.94 VF KOH saturated with

Ag20 which contained some 110mAg as tracer. The capillary cell was

mounted in the main cell chamber with the open end above the surface of
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Ythe inactive solution.	 The ' complete unit was installed in a water bath

controlled at 25 0+0.10 .	 The system was allowed one hour for temperature

equilibration whereupon the capillary cell was gently lowered to the

bottom of the main chamber. 	 The system was allowed to stand undisturbed

for about five days, then the capillary was removed, the contents washed

into the counting vials containing scintillator fluid3 and the samples

counted.	 Exactly the same amount of active stock solution was counted.

Samples were counted with a Nuclear-Chicago Model 703 liquid

scintillation system which has been described previously 3 .	 Sample vials

were held at 50 1 F in the sample chamber.

Results and Conclus ions

The equations used to calculate the diffusion coefficient were taken

from Anderson and Saddingtonl:

T

Y=	 (8/7r 2)	 exp(-e)	 (l)

0 =	 (7T 2Da)/41 2 	(2)

where Y = fraction of original activity remaining in the diffusion cell

D = the diffusion constant for the Ag(I) species

A =diffusion time in seconds.Y

1 - length of diffusion cell in cm.

The average value of D for six runs was 2.75 + .70 'x 10- 6 cm2 sec-1.

The precision is poor, but some experimental problems are being invest-

igated and it is hoped that better results will be forthcoming.

Proposed Work
a ^<x

Diffusion measurements will be continued at the same and at diff-

erent KOH concentrations. The scintillator "cocktail" will be changed
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to provide a gel-like suspension in order to eliminate the problems which

apparently are arising from inhomogeneity in the counting vials.

B. THERMAL DECOMPOSITION OF Ago AND A920

Experimental

AgO, obtained from Ames Chemical Works, and Ag 20, obtained from K $ K

Laboratories, were used without further purification.

For the analytical procedure, initial heating ( "drying") was done

in a Labline drying oven at 1050 . Thermal decompositions were carried

out in a Tempco Model 173B muffle furnace set at 230 0 for the Ago-A920

transition and at 400 0 for the Ag20-Ag transition.

Thermogravimetric and "adsorption" measurements were made with a

Cahn Model RG electrobalance mounted in a Cahn 12005 Glass Vacuum

Bottle accessory. The sample was contained in a platinum micro-pan

suspended in a 10 mm diameter hangdown tube and was heated with a

Lindberg Type 123-2 8" tube furnace. Several layers of sheet aluminum

were placed on top of the furnace to shield the balance from furnace

heat. The hangdown tube and all port caps were coated with platinum

and grounded to provide electrostatic shielding. Temperature was

controlled with an F $ M Model 240M temperature controller. Temp-

erature was recorded with a Texas Instruments Recti/Biter II 1-mV

recorder operated through a Cahn Recorder Controller. Weight changes

were monitored with a Dohrmann Model RSC-1100 recorder.

Results and Discussion

It was previously reported that a thermal method of analysis for

Ag, Ag2 , and Ago seemed feasible. The sample was to be dried at about

1000 initially where no significant decomposition was expected.

r tv
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The cold weight at this point would be considered the sample weight.

It was then to be heated at 2300 for complete decomposition to Ag20

after which it would be cooled and weighed. The weight loss at this

point would correspond to the amount of Ago present in the sample.

Finally, the sample was to be heated at 400 0 for complete decomposition

to Ag, cooled and weighed. From this information, it should be possible

to calculate the amounts of each species present in the original sample.

The results of the experiments performed according to the above

}	 plan were not satisfactory. The "drying" at 100 0 suggested that something

more might be occuring because constant weight was not obtainable and

because the "dried" samples gained weight on standing in a calcium chloride

desiccator. While this gain did not amount to more than a few milligrams,

the uncertainty amounted to several percent in the maj ir component and

as much as 10% in the minor component. While the gain took place over

several days, it left an uncertainty as to what exactly was happening.	 11

Similar phenomena were observed with both Ago and A920.

Errors in all of the analyses were high and led to calculated

total amounts of original sample 6-10% greater than was actually present.

Obviously, something unexpected was happening.

A thermogram was begun at the very slow nominal heating rate of

0.50/min to try to detect any obvious breaks in the weight-temperature

curve which would indicate what was being lost and at what temperature.

r.	
Heating was started after equilibration at 35 0 and continued for four

hours the first day. The temperature was increased to about 100
0
 in

this time with spme small loss in weight as expected. Loss of moisture,

at least, would be anticipated at this temperature. The heat was turned

off over night:and the system remained at virtual room temperature for
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about 16 hours. During this period, the sample regained all of the weight

it lost during the heating and 6S Ug over its original weight.

In a 28 mg sample, this amounts of 0.3%. While this is not a great deal,

when it represents a gain over the initial sample weight, it becomes

significant.

In order to be sure than the gain was not simply an instrument

drift or a moisture, absorption on balance components and samp^e pan, an

aluminum weight was placed in the pan and left at room temperature for

18 hours; no weight change was observed. A further experiment was made

to see if a powdered material would absorb moisture at room temperature.

Ames Chemical Works silver Type SG powder of 99.9+ purity having an

average particle size of 1.45 micron was left on the sample pan at room

*emperature for seven hours; no weight change was observed. In this case,

tiie initial weight was 23.650 mg. This sample was then heated at 1060

for one hour and then allowed to stand at room temperature for 15 hours;

no weight change was observed. The sample was heated again at the same

temperature for six hours and then allowed to stand at room temperature

for 18 hours; again, no weight change was observed. Obviously, silver

powder did not behave as its oxides.

Evidently, the weight-gain phenomenon is a characteristic of the

oxides of silver. Thus, it seemed likely that Ago would show a slow

weight increase if left at room temperature without prior heating. A

sample weighting 24.685 mg was placed in the balance pan and left at room

temperature for 18h hours; no change in weight was observed. The temp-

erature was raised to 660 for about 95 hours, the heat was turned off

and the system left for about 50 hours at room temperature, the sample

was then heated at 760 for about 30 hours and, again, the heat was turned
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off. The current results are shown in Figure 1. The experiment 1s

continuing.

It cannot be said that the weight loss at 660 is anything other

than moisture loss, since it amounts to less than 0.3% in about 4 days.

However, there is no way of knowing from the available data whether the

weight will ultimately level off at some reasonable value. The rapidg	 Y	 P

increase at room temperature after the initial heating is striking and

amounts to 0.75% in two days. The decrease at 76 0 is not suprising now,
4

although the rate is about six times greater than that at 66 0 . The up-

ward trend at room temperature appears to be quite similar to the previous

increase.

No serious explanation for these observations is offered at this

time. Much more work is necessary. It seems reasonable to suppose that

'	 heating the oxide, even at the comparatively low temperature of 660,
i

causes a change in surface structure allowing a fairly rapid adsorption.

Water is the obvious absorbent, yet this is hard to justify because the

oxide is relatively isolated from the laboratory atmosphere, although

the system is not gas-tight. Oxygen may also be the adsorbent. One must

recall the gassing phenomenon on heat-pressed AgO electrodes observed

by Butler 4 . At any rate, the problem needs further investigation.

Proposed Work

Thermograms of the type described above will be continued with both

AgO and AgZ An attempt will be made to determine the maximum relative

adsorption b allowing the system to stand after activation until th y;rp	 Y	 8	 Y

F	

weight levels off. The minimum temperature required for activation will

be determined as well as the minimum temperature at which true decomposition
't
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occurs. Similar experiments will be conducted in vacuum, in oxygen-

free nitrogen, in dry air, and in pure oxygen. An attempt will be made

to identify the phenomenon and describe its mechanism.

C. MIALGMI ELECTRODES

Several amalgam electrod*:s show promise as rechargeable anodes for

galvanic cells. These are all alkali-metal amalgams in very concentrated

aqueous solutions. Most of the electrodes show a fairly high self-

discharge rate. The only one that seems to have a reasonable shelf-life

is the K(Hg)/KQH(satd) electrode. Therefore, an investigation of other

solvent and electrolyte systems which might retain the advantages of the

amalgam electrode performance while showing improved stand-life appears

reasonable. Of the various non-aqueous solvents reported in the

literature for battery electrolytes, the most promising seem to be

dimethyl formamide (DIV) , propylene carbonate (PC), dimethyl sulfite,

and acetonitrile. Two of these solvents were tried and. the results are

reported.

Work on discharge rates and stand life is also continuing. Theg	 _ng.

results are brought up to date.

Experimental

The method for measuring high discharge rates with a hanging-drop

mercury electrode has been described 
2. 

This work was continued to

determine the effect of total charge on recovery and open-circuit voltage

and to determine the resistive (IR) voltage drop in the electroYyte

and electrode-electrolyte solution interface during very high discharge

rates.

Gas evolution experiments us ` ng Warburg equipment is being continued.

The method has been described.
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Stand-life experiments are being continued, these have been described

previously 3 , They consist of charging an electrode to some pre-determined

value, transferring the amalgam to a separate tube containing fresh

electrolyte solution, and letting the system stand at room temperature

for a selected time. The amalgam is then transferred back to a cell

and discharged. The percent recovery of ch arge gives an indication ofg	 p	 rY	 g g

stand--life.

Experiments with different solvent systems were performed in simple

containers equipped with a cup to hold the amalgam. Contact with the

amalgam was made with a platinum wire sealed through the bottom of the

cup . In some cases, the containers were connected b a crossarm to makb^	 Y
an H-cell. Counter electrodes were usually platinum wire although a

different arrangement was used occasionally. When different electrolyte

solutions were used in the same cell, a polarographic H-cell containing

a sintered- glass separator in the crossarm was employed. Reference

electrodes were H /Hg0, 20% KOH,g 

e The non-aqueous electrode systems were usually discharged through

a constant-current power supply; occasionally, they were discharged

through a decade resistor.

+	 Results and Discussion

Polyproplene catbonate (PC) shows little promise as a solvent

for electrolytes which would be useful with amalgam electrodes. KHCO3,

KOH, KCI, and potassium acid phthalate (KHC8H404) were only slightly

soluble in PC while maximum current-densities obtainable were less than

100 PA. The alkali-metal perchlorates are more soluble in PC and showed

better operating characteristics. These are shown in Table 1. Even

^*	 so, they do not perform at a level desired for amalgam electrodes.
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Dimethyl formamide (DMF) is little better as a solvent. Results from

several alkali-metal perchlorates are shown in Table 2. Output currents

are low and, except for the Li(Hg) electrode, open-circuit voltages are

no better than those found in aqueous systems.

A complete cell employing a Li(Hg)/l.iC10 4 - DMF anode and a

Cu(Hg)/CUCI 
20 
2H2-	 P0 DMF cathode accepted a charge of 2.5 mA-hr and

produced an open-circuit voltage (Eoc) of 2.25 V. However, it yielded

a maximum discharge rate of 2 mA with only 60% charge recovery.

A cell employing a Na(Hg)/NaC10 4 - DMF anode and a Cu/CuC1 2 - DMF

cathode accepted a charge of 3.3 mA-hr and yielded an E oc =2 V. The Cu

anode was a wire. When discharged through a 300-ohm resistor, a

steady current of 2 mA was" produced until 98% of the charge was recovered.

This is not exceptional performance and the system would be of little

advantage unless is should show phenomenal cycle life.

An H-cell construction was adopted to make a cell containing a

K(Hg)/10 VF KOH//C'uCl 2 - DMF/Cu(wire) system. The cell showed an

intolerably high resistance which is not suprising since a copper oxide

or hydroxide  formed at the sintered-glass separator almost immediately.

The short-circuit -urrent for the cell was 10mA.

A similar cell was constructed, the only difference being that a

46 cm  copper plate was used in place of the copper wire. This cell was

charged at 50 mA for 6 min where it produced Eoc = 2,13 V. The cell was

throwdischarged	 h a decade resistor. With R = 0, the current was 20 mA.g	 g

With R = 140 ohms, a nominal current of 10 mA was maintained at about

1.1 V for 35 min. At the end, the cell voltage dropped abruptly to

0.5 V. The charge recovery is calculated to be somewhat greater than

100%. The charge rate and, hence, the total charge is quite accurately
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known since charging is accomplished with a calibrated constant-current

supply.	 The discharge current was measured with a simple VOPI and was

observed to fluctuate considerably making the total energy release on

discharge difficult to determine. 	 Nevertheless, good recovery

is evident.	 A better cell design might provide better current-voltage

characteristics.	 The cell operated at a, voltage about one volt belowp	 g

the open - circuit value; this was probably largely IR drop.

None of the cells tried so far has been very satisfactory.	 It

appears that aqueous systems are much more satisfactory and the major

emphasis will be in that direction in the future.

The effect of total	 e charge on open - circuit voltage and charg	 p	 g	 g

recovery is of interest. 	 A hanging - drop K(Hg) electrode was operated

in saturated aqueous KOH at a discharge rate of 2,688 mA/cm 2 .	 A fresh

drop was used for each experiment. 	 The total charge ' was varied and the

Eoc and percent recovery determined for each case. 	 The results are

^•F,. shown in Table: 3.	 It can be seen that the recovery is poor at the low

concentrations and increases fairly steadily with increasing concentration.

However, the recovery seems to stabilize at 4 or 5 mA -hr/g Hg with only

a slow increase up to 9 mA-hr /g Hg.	 The Eoc also decreases steadily

with increasing amalgam concentration.	 This decrease is not suprising

but the magnitude of the change is.	 If the Nernst equation were valid,

a maximum change of 59 mV would be expected as compared with the observed

change of 140 W.	 There should be no effect from non-ideality in the

aqueous phase because its composition remains constant. 	 Thus, non-

ideal behavior in the amalgam is indicated.	 The loss of recovery at

low total charge is not explained.	 One would expert the effective

recovery to decrease during a given discharge as the remaining charge

decreased. This does not occur, apparently.
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	 Figure 2 shows the effect of discharge rate on IR drop for a hanging

drop system in which the tip of the Luggin capillary is positioned

about 0.5 cm from the drop. All drops were charged to 9.1 mA-hr/g. The

linear relationship between current-density and voltage drop suggests

2
that it is, indeed, a resistive effect. The point at 8.15 A/cm may

be in error since it represents a single measurement while the others

represent duplicate measurements and because discharge times are very

short at th`sur ent-dec r	 nsity and the high TR drop is difficult to

measure accurately. This experiment was conducted to verify that the

low voltages observed during high discharge rates are probably not

electrode-reaction effects.

Warburg experiments on the gas evolution from amalgams are still

unsatisfactory . The lack of reproducibility evident in Figure 3 isi'Y	 P	 Y	 g

disturbing. Since the oxidation of the potassium in the amalgam is

very slow, one can assume that its activity is changing very slowly.

Thus the curvature observed in the early part of the curves must be

attributed to slow diffusion of the active material to the electrode

surface. If diffusion is the controlling actor, a stead state shouldg	 Y

be reached at which the oxidation rate would be a constant over a
Yy,

considerable period. This has generally been the case'as is indicated

by the constant slopes over the major portion of each experiment. The

differences in slope from one experiment to another are not expected.

Two slopes  agree fairly well at 0.046p equiv./hr and 0.050 equiv/hr

_.	 while the third is further off at 0.078 u equiv/hr and the fourth is

considerably higher at 0.11 u equiv/hr. It is hoped that future

experiments will result in better reproducibility. The average self-

discharge rate into the saturated KOH solutions is 0.071 + 0.035 u equiv/hr.
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At this average rate, 548 days would be required for complete discharge

of the electrode.

Only one run has been made using a 9.9 VF KOH solution. The results

are shown in Figure 4, An essentially constant slope of 1.61 U equiv/hr

i develops quite quickly. At this average rate the electrode could beP a	 q	 Y	 B	 ,

expected to discharge completely in about 24 days This corresponds

fairly well with the results shown in Table 4 for conventional stand-

life measurements.

The results of stand-life experiments are shown in Tables 4 and S.

The K(Hg) electrode in 10 VF KOH has a relatively poor stand-life_	 YP	 ,

discharging completely in periods ranging from 25 to 60 days. None of

these retained more than 50% charge for more than about 300 hours.

This behavior would be expected after considering the data from the

Warburg experiments.

The K(Hg) electrode in saturated KOH behaves much better. The loss

is only about 6% over a period of about 75 days. Relatively few

J. experiments have been made in the saturated electrolyte because of the

long times involved. It is evident that concentrations mustg	 approach

saturation if the electrodes are to be kept for any length of time.

Proposed Work

Work on stand-life aad self-discharge rates will be continued. The

effects of surface area and stirring on the latter will be considered.

r:
Careful measurement of open-circuit potentials have begun

and will continue. The effect of amalgam and electrolyte concentrations

will be determined. Drift and temperature effects will be investigated.

Attempts to find a suitable cathode for use with the amalgam anodes

will be continued.

i



r

-13-

Tab le 1

Amalgam Electrodes in Propylene Carbonate Solutions

Hg/Hg0 electrode E = -0.924 V vs standard H2 electrode

Charge	 Eoc vs HgjHgO Discharge Recovery
Amalgam , Electrolyte (=	 ?V) (mA)

Li(Hg) Lic104 7.5	 -2.0 5 75

Li (Hg) LiC104 1.5	 -2.08 5 20*

1 66*

Na(Hg) NaC10 (satd) 3.3	 -1.75 5 45*
4'

2 66*

K(Hg) KC104(satd)' 5.0	 -1.86 2 ----
1

*	 Total recovery of an electrode after discharge at the indicated rate.

u
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Table 2

Amalgam Electrodes in Dimethyl Formamide Solutions

Hg/Hg0 electrode E _ -0.924 V vs standard H2 electrode,

Charge	 Eoc vs Hg/HgO Discharge Recovery
Amalgam Electra (r ' 7V) (mA)

Li (Hg) Li.C104 5.0 -2.25 5 75

Na(Hg) NaC104 4.0 -1.70 5 96

T

K(:Hg) KC104 (satd) 6.7 --1.90 5 9*

2 9.1*

1 24.8*

2 45.7*

5 88

Total
a4

recovery of an electrode after discharge at the indicated rate.
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Table 3

Effect of Amalgam Concentration on Open -Circuit Voltage and Recovery

K(Hg) electrode.	 Discharge rate = 2,688 mA/cm2 .	 Hg/HgO electrode

E _ -0.924 V vs standard H 2 electrode.

n	 tCo cen ration	 Eoc vs Hg/Hg0 Recovery
(mA hr/8 Hg) 7V) -- (M,—

1 -1.62 29

x 2 -1.64 61

3 -1.66 74

4 -1.69 85

5 -1.70 85

Iff 6 -1.73 87

7 -1.74 88

8 -1.75 89

9 -1.76 90

4

3
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Table 4

Stand-Life of K(Hg) Electrodes in 10 VF KOH

Eoc is the measured value at the end of the stand time and

before discharge. Discharge rate w SOmA. Each value

represents an individual electrode.

Charge	 Stand Time	 Eoc vs Hg/HgO	 Recovery
( A-h)	 (hours)	 ?V)
68	 0.17	 -1.68	 81

35 -1.70 84

157 -1.67 68

302 -1.67 43

45S -1.59 0

101	 0.08 -1.73 96

311 -1.67 25

312 -1.SO 0

312 -1.60 2

105	 1.15 -1.69 54

1348 -1.S4 0

1348 -1.69 47

1561 -1.66 15

105	 0.5 -1.67 21

1370 -1.00 0

1371 -1.64 7

1371 -1.67 16
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Table 5

Stand - Life of K(Hg) Electrodes in Saturated KOH

1
'rl

!F

i^
,f+

6

l

Q

it

L

Charge Stand Time
mA-h r) (hours)

105 768

1802

Eoc vs Hg/HgO	 Recovery

_ ),	 (%)_

	

-1.68	 98

	

-1.64	 94
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1	 2	 3	 4	 S	 6
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Figure 4. Self-Discharge Rate of K(Hg) in 10 VF KOH
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