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A SYSTEMATIC METHOD OF CALCULATING REDUCED MATRIX
ELEMENTS OF SINGLE-PARTICLE OPERATORS
by William F. Ford and Richard C. Braley

Lewis Research Center

SUMMARY

The necessary mathematical apparatus for the evaluation of reduced matrix ele-
ments of single-particle operators is introduced and developed, and the matrix elements
are expressed as sums of integrals over the inelastic transition densities plLfSJ(r). A
biorthogonal set of functions called Gauss-Laguerre functions is then defined, in terms
of which the densities are expanded. The reduced matrix elements are reexpressed as
sums involving the coefficients pllf)s Jn of the transition density expansion. A number of
simple applications to static and dynamic nuclear properties is presented, and the more
complicated case of nucleon scattering form factors is treated in detail. Various prac-
tical considerations related to the method are discussed and analyzed. Appendixes are
devoted to the effects of distributed nuclear charge, the Coulomb form factor, and nu-
merical examples for neon-20 (ZONe) intended to serve as a test case for programs
based on this method.

INTRODUCTION

Recent developments in the theory of nuclear structure have made it possible to de-
scribe collective vibrational or rotational nuclear modes in terms of the motion of the
individual nucleons. This opens the way to more rigorous tests of the microscopic de~
scription, such as the calculation of elastic and inelastic cross sections, static nuclear
properties, and electromagnetic transition rates.

A great many of these calculations involve the evaluation of reduced matrix elements
of single-particle operators between initial and final nuclear states. For some of the
more complicated nuclear models, this can be a formidable task; and, furthermore, the
details vary from model to model.



If during evaluation of the matrix element, however, integration over the coordi-
nates of the single-particle operator is left until last, the preceding integrations may be
performed without any explicit reference to the single-particle operator. And, in fact,
the result depends only on the initial and final states of the nucleus and on the nature of
the trans1t10n involved. This leads directly to the concept of inelastic transition den-
sities pLS J(r), which essentially give, for the transition i — f, the probability for ab-
sorption of angular momentum J = L + S by the last nucleon as a function of its distance
from the nuclear origin.

The idea of transition densities is not a new one. Such quantities were employed,
for instance, by Haybron and McManus (ref. 1) in describing excitation of quadrupole
and octupole levels of carbon-12 (120), oxygen-16 (160), and calcium-40 (40Ca) using
the particle-hole model, and by Gillet and Melkanoff (ref. 2) in describing inelastic
electron scattering from the same nuclei. More recently, Glendenning (ref. 3) has de-
veloped a coupled-channel treatment of inelastic proton scattering using form factors
which may be obtained from inelastic transition densities, and has emphasized that the
coefficients needed for their calculation should be provided by the nuclear structure
theorist. He gives examples for some currently popular nuclear models, and Braley
and Ford (ref. 4) show how these coefficients may be constructed from projected
Hartree- Fock wave functions. (These coefficients are essentially equivalent to the nu-
clear overlap coefficients S J(if Iab) of eq. (10).) Despite these occasional indications
of interest, however, the convenience afforded by use of transition densities has been
largely unnoticed.

In this report we attempt to provide a systematic description of the use of inelastic
transition densities in calculating single-particle matrix elements. We find that these
calculations are greatly simplified if the transition densities are expanded in terms of
a biorthogonal set of functions which we call Gauss-Laguerre functions. Each density
is then specified by a number of coefficients, and evaluation of any matrix element re-
duces to a simple sum over these coefficients. In order to be complete, we present all
pertinent formulas, although some of these may be found elsewhere. Numerical examples
for 20Ne are also presented to serve as a test case for programs based on our results.

TRANSITION DENSITIES

Consider the matrix elements of an operator 2 between initial and final nuclear

states,

Qe = (IMg QT M) (1)



We define a generalized reduced matrix element of @ by

22
g1y g =L Z (I M, IM|T MY Q. )
22
with M held fixed during the summation. (When Q transforms like the Mth compo-
nent of a spherical tensor of rank J, equation (2) reduces to the standard definition of
ref. 5.) Inverting equation (2) yields

Qy =Z (3 My, TM | I M (F1R1) 0 (3)
IM

Here (J,M,, JMlJfo) is a Clebsch-Gordan coefficient and J is shorthand for V2J + 1.
Now suppose that Q is a sum of single-particle operators,

A
2=y k) (4)
n=1

with i’n = (r . ;;n) representing the radial and spin-angle coordinates of the nth nucleon.,

We can isolate the dependence of the initial nuclear wave function on the coordinates of

the nth nucleon by making the expansion

P —1/2 3 e JM ;“ -~ ol —
gMy = ATV2D N oM, g, |3y Vam, G)¥ia <x1. LR E .xA> (5)

am, JM
— m ~
Yam @ = 0,009, § ) ©)
W{?(;;) = Z leyé mg ljm>Ylml(;)X1/2 m (M)
m,mg

is a member of an appropriately chosen complete set of single-particle functions. The
reduced matrix elements of 2 may now be expressed as



(£1R2113) 1 =ZSJ(if|ab)(bHQHa)JM (8)
ab

where the generalized single-particle reduced matrix elements are given by

. _
(bIRI2) ;s =f_2 > (igmy, IM[5,my) (bmy [2(x) [am, ) )
Ip maMy,

and the nuclear overlap coefficients SJ(if Iab) by
N B . . J J?
8(if |ab) -ZU(] o133 3.5) <q>fb||q>ia> (10)
J'
with U(abcd[ef) = efW(abcd; ef). In the derivation, use is made of the relation (ref. 5)

Z<j1m1; jzmz IJ1M1> (I My, j3m3 IJM>
My

= D (igmg, Igmg |3;My) (igmy, TM, | MY UG 5pTig[3,9) (1)
IoMy

and the orthogonality of the Clebsch-Gordan coefficients.
In most of the cases considered herein Q(x) may be written

2&) = D eIy (12)
ILSIM

using the spin-angle tensors 4 I}J/IS 5 defined by

M A -~
T 155 = 2 (LM [, SMg |TM) YLML(r)oSMS (13)
M| Mg



(The operator og is a rank-S tensor in the spin-space of the particle; for spin-1/2

M
S —r —

particles c'r’o =1 and c’r’l = 28, where S is the spin operator.) This permits the radial

and spin-angle integrations to be performed separately:

(bl 12y 1y - =Z(jb"g'LSJ"ja) (0|01 5701 22) (14)
IS

(The spin-angle reduced matrix element in equation (14) is the standard one of ref. 5.)
Examining equations (8) and (14), we see that it is natural to define a set of i — f
transition densities

il (@) ZsJoflabmbu 1sglliy) er@e, @) (15)

for then we have simply

(£19Q18) 1 :Z(fufzui) LSTM (16)
LS
(FIQ14) L g oo =fo p}-fJSJ(r)wLSJM/(r;rZ dr 17)

@

EXPANSION IN GAUSS-LAGUERRE FUNCTIONS

To facilitate calculations involving the transition densities pilfs J(r), we expand them
in terms of the very useful biorthogonal set of functions suggested by Sawaguri and
Tobocman (ref. 6). These functions, which will be referred to as Gauss-Laguerre func-
tions, have the following properties:

5 (@, 60) = ()L B0 gLr1/2(52,2) (18)

~ 28%n!

fnL(a7 BI‘) = 4_—‘—‘:;' %L(l - oz,Br) (19)
I‘(n + L+ ’2—)



'é o (@, BD)F (@, prirt ar =5 (20)

2

3 sar @ Br)Fy (@, o = 2 1) (21)
n=0 r

Here & g(z) is a generalized Laguerre polynomial (ref. 7) or order ¢ and index n.
The Bessel transform of }nL(a, fr) is

/ ¥ @n)F - (e, o) ar = g3, (@) —2 S (1 - o, k) (22)
0 L nL 1 - L o - 1 fnL ’ Y
Cp(0) = 2y7 o¥/2L/2(1 - o) L/2 23)
y = [26\/01(1 - a)]'l 24)
and in the limit k - 0 this becomes
/ "l (el ar = g - o) Y 2<_2_)n (25)
0 nL™ - a -

-

In terms of Gauss-Laguerre functions, the transition density may be written

if o i~
p1sy(r) = Z P15 nFnr (@ ) (26)
n=0

the coefficients being given by
if *if 2
P1.SJn :’/0‘ plLSJ(I‘)fnL(Ol, Br)r® dr 27)

This leads directly to our basic result,

Q cO
. if ~ 2
(1211 ; gy = z ) pLSJn_/O- wI_SJM(r)ynL(a, Br)r® dr (28)
n=



The significance of equation (28) is that the radial integral involving W1 SIM and ‘?nL
may be done analytically, in closed form, and thus for any £ the evaluation of
(1) y oy 18 reduced to a relatively simple sum over the coefficients pll_f‘S Jn

ILLUSTRATIONS

Suppose, for instance, that we wish to calculate some static nuclear properties.
First, it is necessary to check the wave function normalization, that is, to evaluate

(I M| T M) = (i) gg (29)

Here the operator Q is

R-1-3 L 2253&1(" [ LOSO] (30)

Hence,

Var

“rsim® ==~ %roso (1)
Using equation (25) with L = 0 in equation (28), we find that
. . 4 -3/2
(in1ii) g4 =1A: 1- / E ( ) pooon (32)

It will turn out that if is nearly always accompanied by the factor [a/(a - 1) n
pLSJn A )

and so we define

~if o \ if
P1sin = (oz _ 1) P1SIn (33)



Hence,

‘/4 _3 2 2] ~id
(IM;|IMp = == (1 - @) /2~ Booon (34)
A
n=0
Since
2~ 1 9 ~
r’# . (a,pr) =— — # - (a,Br)
nL 9 3o nlL‘\™?’

B

differentiation of equation (25) with respect to @ may be used to evaluate the integral

involving

(35)

From this we deduce the following expression for the mean square matter radius:

J1M1> _ Vi )52 2(;’;— + g)%},io(,n (36)
n=

J.M.
1 1
AB%

1 & 2

To obtain the electric quadrupole moment Q of the nucleus, we must evaluate

(119111 9, Where

1/2:& . fiiT
Q=e<l(;_”> erzleo(rn)< > L (37)

and 7. is the z-component of the isospin operator for the nth nucleon. Comparison
of equations (37) and (12) shows that for this case

1/2
wrgym® = e(lz_"> r2<1 “2“ T)a 15550 (38)



Since the operator (1 + 7)/2 picks out the proton part pI]iS J(r) of the transition density

p1s5() = pYgs(r) + prgs(r) (39)

(the superscript if will be dropped for clarity when necessary), use of equation (25)

with L =2 in equation (28) yields

Q-= <12n> 1/2 - o) -7/2 Z Poon (40)

To conclude this section, let us evaluate some simple dynamic nuclear properties.
Here we are usually concerned with the absolute square of the matrix element £ i

averaged over initial states and summed over final states:
1 1 2
1 ﬁ,2 z 1 |<fHQH1> JM, (41)

Consider, for example, the reduced electromagnetic transition probability B(EX)

for the i - f transition. Here the operator © is given by

A
Q=-e E Y. (r )<1 ! T“) (42)
- n" Ay n 9
n=

and the sum over final states includes a sum (not shown above) over the photon orienta-
In this case, the reduced matrix element is independent of ;, so that the sum

tion .
over p gives a factor of A2(=J2); use of equation (25) then yields

7
B(EM) = —
22

I3

B—A(l - _A B/ZZp?\OKn (43)




As an example of a case where wWisSIM (and hence the generalized reduced matrix
element) depends explicitly on M, let us evaluate the Born approximation electron
scattering form factor |F(q)| which is defined as above with

A iq-r. l+7
sz:lz e “( “> (44)
Z 2

Here we have

1+7

op g = 2L ]L(qr)YLM(Q)< ) sobLs (45)
and so (using eq. (22))
2 ©
- 2 It oD 41 Lox 03 ~ 2
IF(Q)I = —5 P1.0Ln ; 1 LM(q)B CL(a)fnL(l - a,yq) (46)
J1 LM n=0
The sum over M is readily carried out by using the addition theorem for spherical
harmonics, yielding
‘2
2 f
|F@|% = P cL(a)S PP ornFar @ - @) (47)

32
Jy L

Equation (47) does not contain modifications which arise when the finite size of the pro-
ton charge distribution is considered. These are treated in appendix A.

NUCLEON SCATTERING FORM FACTOR

A more complicated application occurs in the analysis of inelastic nucleon scatter-
ing, where we need reduced matrix elements of (for example) a central nucleon-nucleon

interaction

10



A
V= Z V(i'nffo) (48)
n=1
where Sc’o denotes the projectile coordinates and

Vs(1F - Ful)s@ - s (49)

M-

V(Xn, Xo) =
S=0

Following Tobocman, we introduce the Fourier transform of VS:
ik. ¥, -ik. ¥,
- —_ -3 —
Vg (l rg-T, |> =(2n) /vs(k)e ¢ gk (50)

If each plane wave is expanded in spherical harmonics, the angular integration over k
is trivial and leads to

V@& %) —( ) D (SN g M G f vg )iy (erg)iyp er Yk di
LSIM (51)

By comparing this with equation (12) we can identify WL.IM’ then from equation (28) we
have

Vi gy = GO G g5 (52)

where the nucleon scattering form factor fLS J(rO) is given by

15500 =<—i—)2piﬁan L7 e s [ vg0o Gergip G @ (59
n=

To evaluate fLS J(ro), we first carry out the integration over r by means of equa-
tion (22): '

trasteo =(%)s ey @ [ vsmegF 0 - amtas o0
n=0

11



Next suppose that VS(r) can be expanded in Gauss-Laguerre functions,

V) = D Vg Finol@’s ') (55)
m=0
Vom= [ Vst o’ ar (56)

The choice L =0 is appropriate because of the central nature of VS' Again using
equation (22), we find

3 D~
vgl) = 476" Co@”) ) Vg F ol - @, v'k) (57)
m=0

This leaves us with

t1 550 = 86877 cL(a)co(a')Zo Plsim D Vem
n= m=0

cO
x f i) F, (1 - 0, 70F o1 - o,y Rk dk  (58)
0

The last step in the analysis is to observe that the product of the two Gauss-
Laguerre functions may be written in the form

9 m4+n
> Qg (59)

2
F (-, (1 - at,yk) = kle ™ /4
=0

where

1

c2

= 4a'y2 + 4a"y'2 (60)

12



The coefficient QxI;mN is obtained by multiplying together the two series expansions for
the Gauss-Laguerre functions, the result being

N
3 2N+L (_N " b- l)
T P I s T
\/FI‘(N+L+§) <§-)K K/\N-K/\v
2 2
K=0

The integration over k may now be carried out with the help of

0 2 /402
/0 KL/ frg® a2 VT N 0P e (62)

This yields an expression for fLSJ(rO) which, after some rearranging, may be written

f155(ro) = i S grg) (63)
N=0

where the form factor coefficients flS JN are given by

N 1
(N-L-g
frsan = CL(O‘)C()(OI')[OZO!'(I - a)( - a'):,'3/2(_1)N(2,y§)2N+L K

K=0

n2K
X (-1)K<Z_> pLSJn le Sm (64)
Y n=0

Although the series above look somewhat formidable, they are easily handled by the
computer and, in practice, converge quite rapidly for short-range forces. (The ex-
ceptional case of the long-range Coulomb force is treated in appendix B.) Only the

m = 0 term is necessary if Vs(r) has Gaussian shape, for instance, and only a few val-
ues of p]ifs Jn 2are nonzero if harmonic oscillator single-particle functions are used.

13



Even when the more realistic Wood-Saxon single-particle functions are used, it is
demonstrated in appendix C that an accurate description of pllf'S J(r) is provided with
about 20 terms.

PRACTICAL CONSIDERATIONS

From the foregoing analysis, there emerges a straightforward recipe for calculating
matrix elements of single-particle operators from a knowledge of the nuclear wave func-

tions:

(1) The overlap coefficients S J(if Iab) are obtained, and then, by means of equa-
tion (15), the transition densities pilfSJ(r).

(2) The densities are expanded in a series of Gauss-Laguerre functions, whose coef-

ficients are obtained by means of equation (27).
(3) The coefficients p}_fs Jn may then be used in relatively simple formulas to ob-

tain the desired matrix elements.
In this section we shall discuss some of the practical aspects of this recipe.
To begin with, the symmetry properties of the overlap coefficients can be simpli-

fied by defining a related coefficient

S tlab) =)W1, 33534,) (ol &5 )
J'

S -(if | ab)
=th (65)
Ii¥p
for then
~ Jomided,
3 [ba) = (-1 P 715 (it]ab) (66)

(The §J are the nuclear structure coefficients discussed by Glendenning.)
The reduced matrix element of the tensor flgs I’ which is needed for constructing
the transition densities by means of equation (15), is conveniently expressed in terms of

the quantity

ig*+(1/2)
g = jf” G sl (67)
a

14



which has the symmetry property

b
gLaSJ = (-1) L+S+JgiléJ (68)

When triangle inequalities are satlsﬁed by the triads (la, [ L), (Ja, ]b’ J), and (L, S, J),
and the sum ¢, +, + L) is even, gLS g is given by

ab . 1.1
810L = < ok |J<> (69)
L+ /2+]
ab .1
11 = D ? < 7 IJ> (70)
gah 2LoL®* A) a1
L11z1 5 \/—

where A=(L+J+1)/2, B= A, + Xy, and A = ¢ -2 +1) - (1/2); otherwise gaﬁ’sJ
vanishes.

Some care must be taken in generating the Gauss-Laguerre functions to avoid ex-
cessive roundoff error. A simple, but highly accurate, scheme based on the recursion
relation satisfied by the functions is as follows: Let ®o = 1 and AO =0, and calculate

S, = <L - %)An - 610, (72)
Pnel =Pp+ B+ (04 1)-lsn (73)
Anel1 = Pny1 ~ %n (74)
Then
#, 1 (@,Br) = (Br)Te “‘Br) (15)

To evaluate the sum of a series of Gauss-Laguerre functions, let ONel = AN+1 =0
and calculate

15



- 3 2
Sn = An + <L + E)An+1 - (Br) Pnsl (76)

-1

Pn= sl * Ppe1t Sy )
Ap=%n " Pns1 (78)
Then
N 2
S AT (b = (er)Le=*r)s (79)

n=0

Similar formulas may be developed for the functions .;;1 L(a, Br). For large values of
Br, double-precision arithmetic may be required.

It is desirable to calculate the coefficients pgs Jn oY direct numerical integration
of pllfs J(r) (although this could be avoided if harmonic oscillator single-particle functions
were used), for the method is then independent of the choice of the set ¢ a(r). The
number of terms needed can be determined by comparing the original density pgs J(r)
with the truncated Gauss-Laguerre series representation. When harmonic oscillator
single-particle functions are used of course, p}_fs J(r) will be a polynomial in r2 times
a factor of the form exp(-vr ), hence, in this case, truncation error can be avoided
completely by putting (1 - @)p2 = v,

If nucleon scattering form factors fLS J(ro) are desired, it is necessary to calculate
the coefficients VSm‘ When the potential has terms of Gaussian shape, the following
integral may be used:

F_ - (a,B'r)r“ dr =
mL™ 3 2 2

* 2,9 I‘(m+L+§) L o\
~ 1 4
Lg-r*/R 2 2/(B" (1-__3 (80)
2m!'y y y

with L = 0, where y2 =ap? rRZ. Only the m = 0 term is nonzero if the param-

eters are adjusted so that y = B, that is, (1 - a')B'2 = R'z. If it is desired to employ
several potentials with different ranges using only one parameter set, it is best to
choose y = ' for the largest range.

16



The Yukawa force

e-r/R

r

VS(r) =V (81)

presents some problems, for good convergence of the series for Vs(r) cannot be ex-
pected. Fortunately, all that is really required is that a' and B' be selected so that
the series (eq. (57)) for vs(k) is accurate enough for use in equation (54). The first two
coefficients in this series are given by

v 2
Vg =[—2=)]} - xe™ Erfe() (82)
a'B'z 2
3. 9
Ve =(3+ -2\ (83)
s1 (2 aa'> S0

where x = (28'R \/Ez_')_l, and the rest satisfy

_ a'-1 _ 1 1 1 a'-1
VSm+1 - VSm +< o >(VSm VSm— 1) + o+ 1[<OI’B'R 2)VSm + o' VSm-l]
(84)

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, April 13, 1970,
129-02.
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APPENDIX A

EFFECTS OF DISTRIBUTED NUCLEON CHARGE

When the operator 9,(1?) arises from the interaction between an eleciron and the
nucleon at X, it should be replaced by

2@ = [ o - PRGN @y

where p. represents the charge distribution of the nucleon. In this section, we shall
indicate how this modification may be accomplished by simple changes in «, B, and
P1SJIn°

Suppose, for example, that only the proton is to be considered charged, and its dis-
tribution is to be Gaussian with an rms radius of Rp:

2.2
— - - '-’-» _'-..-. -(1/6)k R —
po( - F) = (21) 3/;11{ ro-ik-r’, P gk (A2)

Then if Q(z_f) possesses the expansion (eq. (12)), it can easily be shown by expanding the
plane waves in equation (A2) that

2@ = D, wEm@ITs®) a3)
1SJM

where

00

-(1/6)k2R2
w%SJM(r) =(—:-> A k2 dk jL(kr)e

P /0 it w g2 drt (Ad)

(it is understood that w;¢ JM(r') contains the factor (1 + 7)/2.)
Now in evaluating a reduced matrix element of @ by means of equation (28), we

encounter the integral
© C ~ 2
1= /0' oS @ F, 1 (@, Br)r? ar (A5)

18



With the substitution of equation (A4) for w(I.:.S JM(r), the integration over r may be
carried out by means of equation (22), leaving

o0

-1 2,2
Iz(z)ﬁsco(a)( - >n k® dk e (1/6)k Rps
U a - 0

o0
fnL(l -a, Yk)L jL(kr')wlsm(r')r'z dr'

(A6)
Next we observe that

-(1/OK’RY -
e Far, (1 - 2,9k =#,: (1 - 0, 7k) (ATT)
where

2
2 2
ag=a +6_:; = a[l +3 (1- a)<BRp>] (A8)

with ¢ unchanged. A second application of equation (22) (this time to the k-integration)
then yields

00
~ ' v2 '
I=D; '/(; wLSJM(r')fnL(aC, Bcr yrt“ dr (A9)
where

Be = [27‘/ac(1 - ac)]'l =8 ol -a)

e (A10)
ol -

c)

n+(L/2) 4 _ o \n+(L/2)+(3/2)
b . [ c (a11)
nL Qe 1-u«

Comparison of equations (A5) and (A9) shows that the effect of using wgs JM(r) in-
stead of wIs JM(r) in evaluating I is equivalent to carrying out the latter evaluation
with parameter values on and BC and then inserting the factor DnL' Consequently,

19



all subsequent formulas (such as eq. (46) for |F(@) |2, for example) remain valid if the
replacements

o~ 0aq D
f~Ec 3 (A12)
f  _p i
PLSJn ™ “nLPLSIn

are made throughout.
It is instructive to apply this method to obtain the mean square nuclear charge ra-

dius. Writing
1 + 7
(A13)
=1
we obtain (cf. eq. (36))

MiIQFJ M,) = \/Z;B 1-o0) 5/22<_+§)p800n (A14)

n=a2

After the substitutions noted in equation (A12) are made throughout, the resulting ex-

pression simplifies to

Var g2y _ )5/2 3 2\ op
M, [Rc]IMp = (I M;[Q]I My + - B - / PS00n
n=0

(A15)
To evaluate the sum over BSOOn’ consider the following (cf. eq. (34)):

lA 1+7

Z

1= JiMi

4 -3/2 R~
“) JiM> = _‘/Zi - Y Eopgmn (A16)
n=

n=1
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Using this and equation (A8) in equation (A15) we find that

(IM;le.1IMy = (IM|elIMy + R

as expected.

2
p

(A17)
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APPENDIX B

COULOMB FORM FACTORS

For the long-range Coulomb force

2 1+7
o R) w5 ( “> ®1)
lro - rnl 2

the series derived earlier for nucleon scattering form factors converge only condition-
ally, and a different method should be used. We begin with the familiar multipole ex-
pansion of IFO - Fnl-l, which leads to

(ENVIE) p g rar = Y"l‘M(ro)fL(ro)iiSO&SLJ (B2)
4 2 © L -L-1 2

Bl =223 P / 215 @, pr)e? ar (B3)

2L +1 =0 0

where r <(r>) is the smaller (larger) of (ro, r).

Consider first the integral
To
I(ry) =gt /0 rL%  (a,pr)r? ar (B4)
=1 (Bro)'L <pn(32r3) (B5)
To
where
o = [ @y Ligay (86)
0
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and

GmL+ia
vig) =y /2 p N 2 ) (B7)
I‘(L + 2)
2
Now it can be shown (ref. 7) that
SvEway =y o) = vl - vE o) (88)

Thus, integrating equation (B6) by parts gives

00 = & Tyl 1 (1 - o0 - 0y, (] (B9)

This two-term recursion relation for gan(x) is readily solved, yielding

n-1
1 - ~-(1- L+l
@) =<—a—“3> 0o®) - ;m§= ("‘ ) e (o)X y Ly (B10)

Consequently, the integral %(ro) may be written

n-1
n r
In(ro) = <aa- 1) Io(ro) - 2—(10"5 E ; <Cz' - > mL+1(a Bro) (Bll)
m:

The integral Io(ro) cannot be put into elementary form, but a change of variable so that
the limits of integration are 0 and 1 leads to

(1, L+ x>
Io(rg) = 1 (Br0>L+3 e"xlF1 N2 (B12)

oy rfL+3
2
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where x = (1 - oz)(Bro)z. For small x, the confluent hypergeometric function may be

developed in a power series. For larger x, the following equation may be used:

>L+3 Erf(yx) e ¥ x~I+k

1
I,(r,) = —|(Br
0*0 ro( 0 L+(3/2)r(> r<k+§)

2

Next we turn to the integral

L (7 -L-1~
Kn(ro) = ro./r. r - L(a Br)r dr
0

o +L+3
2

=L(Bro>1‘+1 r(ﬂ n! > ¢n<ﬁzrg>

where now
O
_ ay., L
¢, = /}; e Yy (y)dy

with
yE(y) = e Vgt 1/D)
In this case, z//rI;'(y) satisfies
SvEway = vE 1w = v 0 - vE®)

and so proceding much as before we find that

n
1 - 1\ L-1
gon(x)—(;%) Pt + —— > Z("‘a > )
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In this case, <p0(x) can be easily evaluated, with the result

' n g2
Ky(rg) = —— 3)(0, . 1> 2 Zﬂx " 1) mr-11 - @ Frp)

I'n+L+-=
2

(B20)
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APPENDIX C

NUMERICAL EXAMPLES

To illustrate parameter values for a typical case, we present some numerical re-
sults for 2()Ne as examples of the various formulas given previously. These results are
representative only, and are not intended as a serious effort to reproduce the experi-
mental data.

The nuclear wave functions were projected from axially symmetric intrinsic
Hartree-Fock states with 20 orbits, employing for the most part harmonic oscillator
single-particle functions spanning the 1s, 1p, 2s-1d, and 2p-1f shells. From these wave
functions the nuclear overlap coefficients S J(if[ab) were determined by the methods of
reference 4. These overlap coefficients, which are listed in table I, form the point of
departure for the results given in the following paragraphs.

Using a modified Simpson's rule algorithm with end-point corrections, with 100 in-
tervals of 0.1 fm width, the density coefficients p}_fs Jn Were computed numerically for
the elastic 07 — 0% transition and the inelastic 0+ -~ 2+ transition. The values
a=0.5593 and 8=0.8 fm'1 were chosen to match roughly the harmonic oscillator
parameter v = 0.282 fm—z. The density coefficients are listed in table II; nonzero
values for n= 2 (LSJ = 000) and n= 3 (LSJ = 202, 212) are indicative of roundoff and
truncation errors, but they are gratifyingly small.

In table III we give the calculated and experimental nuclear matter radius and tran-
sition rate B(E2), and in table IV the Born approximation electron scattering form
factors for selected values of q2. For the nucleon scattering form factors, the
Glendenning-Veneroni force (ref. 8) was used:

. 2
V@) =-52.0 " /1-89%p . 0.6 Byp) (c1)

Here we used B' =1 and adjusted @' so that only VSO was nonzero. The form factor
coefficients f are listed in table V.
LSJN 20

As a last example, we consider a Hartree~Fock wave function for “ Ne using Wood-
Saxon single-particle functions spanning the 1s, 1p, and 2s-1d shells (ref. 9). No parti-
cular attempt was made to search for optimum values of @ and B; for a typical choice,
the transition density pllfS J(r) and its truncated Gauss-Laguerre series representation
shown in figure 1. (A larger number of terms is required than in the harmonic oscil-
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lator case because the Wood-Saxon transition density falls off exponentially with dis-
tance, whereas the individual terms in the series representation have a Gaussian en-
velope.) The correspondence is quite good, except for the regions where the densities
are very small,
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TABLE I. - OVERLAP COEFFICIENTS? FOR ELASTIC

AND INELASTIC TRANSITIONS IN 2ONe
Elastic Inelastic transition,
transition,b ot - 2%
ot - o*

a,b SJ(iilab) a,b sJ(if[ab) a,b SJ(iflab)
1,1 | 1.93009 1,3(-4.48480 (-2) | 6,10 6.74103 (-2)
1,2 | 2.9913 (-1)|1,4| 8.53831 (-2) | 7,6 1.40121 (-2)
2,2 | 7.01152 (-1) | 2,3 | 1.24356 (-1) | 7,8 5.23539 (-2)
3,3 | 1.29565 (-1) | 2,4 -3.92796 (-1) | 7,9 | 8.93141 (-3)
4,4 | 1,23920 3,1 1.92589 (-2) | 8,5 |-1.16449 (-2)
55 | 1.95365 3,2|-4.50232 (-2) | 8,6 | 1.56179 (-2)
5,7 | 2.39522 (-1)| 3,3|-3.03809 (-2) | 8,7 | -3.90190 (-3)
6,6 | 3.83722 3,41~-4.93584 (-2) | 8,8 7.07764 (-3)
6,8 | 7.49017 (-1)| 4,1} 3.83128 (-2) | 8,9 | -6.94078 (-3)
7,7 | 3.07065 (-2) | 4,2 |-1.81644 (-1) | 8,10| 1.13321 (-2)
8,8 | 1.49829 (-1)| 4,3 | 6.20682 (-2) | 9,5 | 3.34721 (-2)
9,9 | 1.83771 (-2)| 4,4 -3.10634 (-1) | 9,6 | 2.29125 (-2)
10,10| 1.02197 (-2)| 5,6 | -3.03551 (-3) | 9,7 | 3.77817 (-3)
58| 2.27451 (-2) | 9,8 | 4.12532 (-3)
5,9 7.96833 (-2){ 9,9 | -4.24863 (-3)
6,5 1.62547 (-3) | 9,10| -1.02218 (-3)
6,6 |-5.02013 (-3) [10,6 | 3.46070 (-2)
6,7|-1.37811 (-2) [ 10,8 | 6.02385 (-3)
6,8 2.18438 (-2) [10,9 | 9.47013 (-4)
6,9 | -3.85836 (-2) |10, 10| -2. 59567 (-3)
2The single-particle states ¢, are labeled by a = (1,...,10)

for ¢, = (181 /5, 28y s, 1dg 5, 1dg /5, 10y /9, P35,
2p; s9» 203790 590 g /).
Ps (i [ba) = § 5(ii]ab).
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TABLE II. - DENSITY COEFFICIENTS pyg
FOR ELASTIC AND INELASTIC
TRANSITIONS IN 2ONe

[Expansion parameters: @ = 0.5593;

g=0.8tm 1]
Elastic Inelastic transition,
transition, ot - 2t
ot - ot

Density coefficient

=

Pooon P202n P212n

5.3423 (-1) | 5.1295 (-2) | -2.6324 (-3)
-2.2250 (-1) | -1.2736 (-1) | 3.0126 (-3)
-5.2752 (-4) | -4.3476 (-3) | 1.1925 (-4)
-4.6650 (-3) | 6.6777 (-7) | -1.8232 (-8)
6.0398 (-7) | -4.4295 (-9) | 2.5105 (-10)
.0555 (-8) | 5.4102 (-10) | 4.5131 (-11)
4.7921 (-9) | 6.8837 (-9) | -2.3466 (-10)
1.0035 (-11) | 6.7184 (-9) | -3.2639 (-10)
-9. 5549 (-10) | -1.0776 (-9) | -1.4097 (-10)
5.2544 (-11) | -9.5644 (-9) | 1.4020 (-10)

W 00 -0 D U W= O
-

TABLE IIl. - NUCLEAR MATTER RADIUS AND REDUCED

ELECTROMAGNETIC TRANSITION

PROBABILITY FOR 2%Ne

Calculated | Experimental

Nuclear matter radius, 2,774 2.179
r, fm
Reduced electromagnetic transition ] 160, 34 286.5

probability, B(E2), ezfm




TABLE IV. - BORN APPROXIMATION ELECTRON

SCATTERING FORM FACTORS FOR ELASTIC

AND INELASTIC TRANSITIONS IN 20Ne
Square of momentum | Elastic transition, | Inelastic transition,
transfer, ot - oF ot~ 2t
q2, 7 2
fm—2 Form factor, lF(q) |
0 1.0 0
0.5 2.6856 (-1) 6.4541 (-3)
1.0 6.5945 (-2) 6.8279 (-3)
1.5 1. 3860 (-2) 3.5390 (-3)
2.0 2.1062 (-3) 1,1193 (-3)
2.5 6.2199 (-4) 1. 5903 (-4)
3.0 3.1148 (-5) 2.0261 (-6)
3.5 1.3677 (-4) 9.0944 (-5)
4.0 1.6683 (-4) 1.7703 (-4)
4.5 1.4272 (-4) 2.0258 (-4)
5.0 1.0329 (-4) 1.8223 (-4)
5.5 6.7898 (-5) 1,4233 (-4)
6.0 4.1961 (-5) 1.0117 (-4)
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TABLE V. - PROTON SCATTERING FORM

FACTOR COEFFICIENTS fLSJN FOR

ELASTIC AND INELASTIC

TRANSITIONS IN 20Ne?

[Expansion parameters: « = 0.5593;

B=0.8fm 1]
Elastic transition, Inelastic transition,
ot ~ ot ot - 2t
Form factor coefficients

N fooon fo0on fo1on
0 -3.1382 (+3) -9.0077 (+2) [-4.5644
1 1.0660 (+3) 5.8531 (+2) 2,2725
2 -8.6744 (+1) 2.5171 (+1) 1.1510 (-1)
3 2.7019 (+1) 1.4187 (-2) | 4.0569 (-5)
4 -3.0411 (-3) -2.6422 (-2) | -8.4441 (-5)
5 -7.7322 (-4) 2.4913 (-2) | 7.7467 (-5)
6 4.1770 (-4) -1,5616 (-2) | -4.6899 (-5)
7 -1.2930 (-4) 6.2597 (-3) | 1.7943 (-5)
8 1.8187 (-5) -1,4507 (-3) | -3. 8944 (-6)
9 -7.0469 (-7) 1.4755 (-4) 3.6049 (-7)

45ece text for details of the nucleon-nucleon inter-

action and its expansion.
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Figure 1. - Effect of truncation on Gau?s—Laguerre series representation for a Wood-
Saxon inelastic transition density pj's (). Inelastic transition 0% -~ 2* for
neon-20; expansion parameters: a= 8 5 B=0.8 fm~L
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