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Abstract 

Data from the SERT I1 spacecraft wqs used t o  
study the variation of spacecraft and ion beam po- 
t e n t i a l  with respect t o  space potential  as a func- 
t ion of ion thruster  and o rb i t a l  parametiers. 
urements were obtained using floating hot wire 
emissive probes. Spacecraft potentials of -6 t o  
-11 V with the thruster  not operating and -12 t o  
-28 V with the thruster at maximum beam (255 mA) 
were obtained. 
were a function of o rb i t a l  position. The effect ,  on 
spacecraft and ion beam potentials,  of varying the 
ion thruster neutralizer t o  spacecraft potential  
was determined. The ion beam-neutralizer potential  
difference was found t o  be constant for  spacacraft- 
space potentials from -77 t o  0 V with constant neu- 
t r a l i ze r  emission current. Radial potential  pro- 
f i l e s  of the ion beam were also obtained for  various 
spacecraft conditions. 

Meas- 

The spacecraft potential  variations 

Introduction 

The SERT I1 spacecraft was launced on Feb- 
ruary 3, 1970. The primary purpose of SWT I1 was 
a long d at ion (6 months) t e s t  of a mercury ion 
t h r u s t e r y l )  A secondary objective was the inves- 
t igat ion of the interaction between the ion thrust-  
er,  the spacecraft and the ambient spac 
ment. Ceresin on-board experiment datar2y%ie 
overail  spacecraft performance could be affected by 
the existence of a potential  difference between the 
spacecraft and the plasma (hereinafter called 

bient s ace plasma i n  a variety of 
gs?2,5,7987 Data concerning loca l  electron tem- 
peratures and density should be taken outside the 
plasma sheath surrounding the spacecraft. 

The potent ia l  difference between the space- 
c ra f t  and space ar ises  i n  par t  from the require- 
ment t ha t  the net current t o  the spacecraft from 
the space plasma be zero. The magnitude and po- 
l a r i t y  of VS/C is a fbnction of many variable of 
the spacecraft and the loca l  plasma  condition^.^^,^) 
The polarity and configuration of the solar ce l l s  
strongly influence the value of Vs/c. For ex- 
ample, on two E O  spacecraft Vs/c increased from 
-15 t o  -2 V when the s 1 c e l l  tabs were insulated 

dit ions such as beam current a lso strongly affect  
V s p .  Neutralizer parameters such as neutral  pro- 
pe l a n t  flow and anode keeper voltage can affect  
Vs/c. Such neutralizer parameters also affect  the 
potential  difference between the ion beam potentials 
and the neutralizer potential .  The value of beam 
potential  can strongly affect  the interaction be- 
tween the beam and space plas  as  well as influ- 
ence the neutralizer l ifetimeY3) A s  pointed out 
i n  Ref. 7, beam t o  neutralizer potentials could be 
such as t o  allow large circulating currents between 
the ion beam and the spacecraft. 

from the space plasma. ?2Y Thruster operation con- 

Such currents 
1 

could produce magnetic f i e lds  which could affect  
the local  space plasma. 

The above remarks indicate the ds s i r ab i l i t y  of 
control of VS/C. For example, some electrostat ic  
measuremen s would best be taken i f  Vs/c were 
near Zero,t2,8,9) a s i tuat ion of minimum electro- 
s t a t i c  influence. It has been suggested tha t  t h i s  
could be done with a bias supply between the space- 
c ra f t  ground and the neutralizer.  Accordingly, an 
experiment t o  verify tha t  such a bias supply could 
be used t o  control the spacecraft potential  w a s  
incorporated in to  the SERT I1 spacecraft. 

This paper presents measurements of spacecraft 
and beam potentials obtained from various emissive 
probe measurements. The r e su l t s  of a neutralizer 
bias experiment on board the SERT I1 spacecraft i s  
also presented. The data was obtained over a 
period of several weeks beginning on February 9; 
1970 and includes data obtained during the solar 
eclipse 'on March 7, 1970. 

Instrumentation 

Data for  the study of the interaction between 
the ion thruster ,  the spacecraft, and the ambient 
space environment wa obta'ned using floating hot 
wire emissive probesel0,l15 and a neutralizer bias 
supply (Appendix B).  Two s l igh t1  d ' f ferect  types 
of hotllwire probes were employed.f1l? The f i r s t  
w a s  a 
extending 1.5 M from the spacecraft (Fig. 1). 
probe was used t o  measure VS/C and extended i n  
the direction of the spacecraft velocity vector, 

is probe was operated continuously. 
Two other "beam" probes (almost identical  i n  con- 
struction) were used t o  measure the potential  of 
the ion beam of each thruster r e l a t ive  t o  the space- 
c ra f t .  These ''beam" probes were swept by means of 
ground command across the ex i t  plane of e i ther  the 
active o r  passive thruster (Fig. 1). Beam probe 1 
was swept across thruster  1. Beam probe 2 was 
swept across thruster 2. Details of the construc- 
tion, theory of operation, data accuracy and ca l i -  
bration of the probes a re  provided i n  R e f .  ll. 
However, a br ief  summary is  provided i n  Appendix A. 
It should be noted tha t  the measurements had an un- 
certainty of approximately 1.3 and 1.8 V, respect- 
ively, for  the space and beam probe due t o  the 
quantization of the data by the telemetry system. 
A brief description of the spacecraft and ion 
thruster is presented i n  Appendix B. 

space probe" which was mounted on a boom 
This 

the effects  of any spacecraft 

Results and Discussion 

The r e su l t s  from the SWT I1 f l i g h t  emissive 
probe measurements axe discussed below. The first 
section, "Passive Spacecraft," gives the resul ts  
obtained a t  the beginning of the mission, prior t o  
operation of the thrusters.  
data obtained when the thruster  was turned off 
br ief ly  due t o  a solar eclipse a f t e r  about 500 hours 
of thruster  operation. 

Also presented are  the 
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The second sec t  ion, "Active Spacecraft , " pre- 

Thruster operating data i s  contained i n  
sents data obtained during normal operation of each 
thruster.  
Ref. 13. Also included a re  the results obtained 
during the start-up of each thruster.  
periods, the ion beam current and other thruster  
parameters were varied. 

During these 

Section three, "Neutralizer B ias  Experiment ," 
contains the data obtained when a bias  was applied 
between the neutralizer and spacecraft ground. 

A l l  of the f l i g h t  data i s  presented using the 
ambient plasma as the zero potent ia l  reference. I n  
general, each graph of f l i g h t  data is  an average of 
several orbi ts  of data obtained over several weeks. 
As such, the effects  of  long t e r m  (seasonal) var i -  
ations i n  ionospheric properties and/or probe char- 
ac t e r i s t i c s  have not been considered. 

The ground data was obtained during f in& 
thermal vacuum test ing of the f l i g h t  spacecraft. 
The neutralizer emission current Ig, was  not meas- 
ured during these t e s t s  due t o  experiment d i f f i -  
cult ies.  And the beam probe was only operated when 
the ion thruster  was  a t  100 percent beam (approxi- 
mately 250 mA). The values of spacecraft potential  
Vs/c, were obtained by means of a voltmeter between 
the spacecraft and the vacuum chamber. This was 
necessary since, i n  the groqnd spacecraft tests, 
the space probe was not deployed. Previous t e s t s  
of the prototype spacecraft with a deployed space 
probe showed t h a t  the spacecraft potentials meas- 
ured with a voltmeter between the spacecraft and 
vacuum chamber ground agreed with the spacecraft 
potentials obtained with the space probe within 
2 v. 

Passive Spacecraft 

Space Probe Results 

The potentials obtained for the  passive space-' 
c r a f t  are  shown i n  Figs. 2(a) and (b) for sunrise 
and sunset, l oca l  time. A s  indicated i n  Appendix B, 
the spacecraft w a s  always within 9' of the t e r m -  
inator and the o rb i t  was always approximately par- 
a l l e l  t o  the Earth's magnetic f i e ld .  However, the 
alignment of t he  spacecraft velocity vector was 
pa ra l l e l  and ankipwallel ,  respectively, t o  t3e 
Earth's magnetic f i e l d  for  the sunrise and sunset 
conditions. The mean values are  -6.4 and -8 V, 
respectively, for  sunrise and sunset. These values 
a re  significant1 h i  her than those obtained on 

s i s t en t  with the data reported by KrassovskyC1') 
and Knudsen(17) who reported potentials of -6 t o  
-15 V. The o rb i t a l  variations i n  spacecraft poten- 
tial w i l l  be discussed l a t e r  i n  the section. As 
indicated i n  Appendix C, the  potential  of a passive 
spacecraft i s  usually on the order of a few tenths 
of a volt .  The results shown i n  Figs. 2(a) and (b) 
are higher by more than an order of magnitude. 

The net current t o  the spacecraft must be zero. 

many spacecraft. T f  14, 5, They are, however, on- 

In  Appendix C it is  shown tha t  the net ion current 
t o  the spacecraft i s  equal t o  the ram ion current 
and is on the order of 0.24 mA. This re su l t  was ob- 
tained using an electron number density, Ne, of 
2X104 particles/cm3 (Ref. 18) and assuming charge 
and hemperature equilibrium. By equating the ram 
ion current t o  the electron current collected, an 
expression can be derived for the electron collec- 

t i o n  area of the spacecraft. The only meas avail-  
able for  electron collection are those near (within 
a few electron volts)  or  above,plasma potential .  
For t he  potentials shown i n  Figs. 2(a] and (b), the 
only areas on the spacecraft capable of being near 
or above plasma potential  are the exposed connec- 
t ions on the solar array (Appendix B). A l l  other 
potentials were shielded from the space plasma. 
Appendix B gives the measured area of the exposed 
connections of the solar array which i s  above plas- 
ma potential  as a function of the spacecraft t o  
space potent ia l  difference. 
between the measured and calculated electron col- 
lect ing areas would indicate t h a t  the high space- 
c ra f t  Potentials obtained are primarily due t o  the 
exposed leads on the solar array. 

A close correlation 

For. the SHiT I1 spacecraft, neglecting rf, 
magnetic and photoemission effects ,  equating of 
ion and electron currents require that  (Appendix C) 

where 

ePfective electron collection area, 2 
k Boltzmann constant, J/% 

Ne 

Me electron mass, kg 

e electron charge, C 

T, electron temperature, 9( 

SS/C spacecraft velocity M/sec 

% ion collection area, I$ 
The l e f t  side of  Eq. (1) is  the ram ion c w -  

Ni = Part ic le  number density, particles/$ 

rent.  
lected by the effective collection area. 
ues of electron temperature, Te, a t  sunrise and 
sunset were found in  Ref. 18 t o  be 1700' and 2100°K, 
respectively. It is noted tha t  these values of Te 
are  for  the vernal equinox period of 1965. 
these values a re  used, the above equation reduces 
t o  the condition that: 

The r igh t  side i s  the electron current col- 
The val-  

If 

A, 1.18 $ fo r  a spacecraft a t  sunrise (Te = 

Ae 1.08 M2 for  a spacecraft a t  sunset (Te = 

1700° K) 

2100° K) 

The measured and calculated electron collection 
areas a re  tabulated i n  Table I. The r e su l t s  in- 
dicate tha t  the measured areas are approximately 
40 percent of the calculated areas. This disparity 
between the two is  possibly due t o  the existence 
of a plasma sheajhh surrounding the collecting area. 
The large negative potentials are,  however, con- 
cluded t o  be due t o  the presence of exposed solar  
c e l l  wiring at re la t ively high (+36 V with respect 
t o  the spacecraft) posit ive potentials.  In  addi- 
t ion,  the variations of spacecraft potential  with 
sunrise or sunset a r e  consistent with diurnal var- 
iations i n  electron temperatures. 
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Figs. 2(a) and (b) show t h a t  the spacecraft po- 
t en t i a l s  varied s l igh t ly  with o rb i t a l  position. 
general, for t he  sunrise condition, the spacecraft 
potential  was constant a t  all lat i tudes except be- 
tween 55' and 90' south geomagnetic l a t i t ude  where 
a s l igh t  decrease (more negative) occurred. 

the geomagnetic equator and increased (became less 
negative) towards the poles. 
both cases, a r e  a maximum of g telemetry count 
( g . 3  V) .  
b i t a l  changes i n  spacecraft potential  a t  sunrise 
and sunset with the corresponding variation 
and Te using the data from Explorer XXII. 
was not possible t o  make a direct  correlation due t o  
the rapid changes i n  Ne and Te with time at 
sunrise and sunset. It was determined, however, 
t ha t  the o rb i t a l  variations i n  spacecraft potentials 
were well within those explainable by smal l  changes 
i n  Te (and perhaps changes i n  Ne due t o  i t s  
effect  on the  effective electron collection area). 
It is t o  be noted that the observed variation i n  
spacecraft potential  might a lso be due t o  error i n  
probe ea urements caused by plasma density varia- 
t ions .?lo7 

I n  

A t  
' sunset, the spacecraft potential  was  a maximum at 

The variations, i n  

Attempts were made t o  correzate the or- 

BIB7 ;; 

Data was obtained which allowed a determination 
of the maximum contribution of photoemission t o  the 
spacecraft potential .  
spacecraft potential  data obtained during the solar 
eclipse of March 7 ,  1970 
thruster operation). 
Moon's shadow fo r  two periods of  about 15 minutes 
each. 
c r a f t  potential  did not change during the eclipse 
period within the uncertainty of the measurement. 
This indicates t h a t  the e f f ec t  of photoemission on 
spacecraft potential  was negligible. 

Fig. 3(a) and (b) shows 

( a f t e r  about 500 hr of 
The spacecraft was  in the 

A s  Fig. 3(a) and (b) indicate, the space- 

Beam Probe Resuits 

Beam probes a1 and 2 were operated prior t o  
turn-on of the thruster  systems. The resul ts  of 
these beam probe sweeps are shown i n  Fig. 4 along 
with space probe data obtained a t  the t i m e  of the 
beam probe sweeps. Under this condition, the beam 
prgbes were bein used as space plasma (Ne N, lo4 t o  

These probes, as indicated i n  Appendix A, were de- 
signed for o eration i n  a plasma of lo7 t o  lolo 

shown as a function of the angle cp between the 
probe position and the spacecraft velocity vector 
(Fig. 1). The values of cp over which beam probe 1 
and 2 could be swept were &6 t o  180' and 0 t o  
f174', respectively (Fig. 1). 

10 particles/cm s ) potential  measuring probes. 

particles/cm 5 density. The beam probe data are 

Fig. 4 shows that the potentials measured by 
the two beam probes were constant and ident ical  over 
a large range of cp. 
(orbi t  ra is ing thruster)  decreased one telemetry 
count (-1.8 V) a t  absolute values of cp greater 
than 110 degrees. 
angles beam probe 1 was i n  the wake of i ts  own 
support structure.  
cp 
grees. 
beam probe 1 would have pointed direct ly  a t  the 
support s t ructure  of beam probe 2 (Fig. 1). It is 
possible that t h i s  i s  why no evidence of a wake 
effect  occurred on beam probe 1 at  smal l  values of 
cp. 

The potential  of beam probe 1 

It is possible that  at these 

The minimum absolute value of 
that  could be attained by beam probe 1 was 6 de4 

This angle was larger than tha t  at which 

Fig. 4 also shows tha t  the beam probe potentials 
were one telemetry count (-1.8 V) l e s s  than the 
space probe potential .  
ference is  due t o  telemetry uncertainty or the  pre- 
viously mentioned off design operation of the beam 
probes. This r e su l t  is, however, consistent with 
the view that a sheath surrounds the spacecraft. 
Such a sheath would probably have a thickness on 
the order of the  Debye length ("4 cm). The beam 
probes a re  a maximum of about +12 cm from the 
thruster,  but i f  they were i n  the wake or sheath of 
the spacecraft, -the potentials measured would be 
s l i gh t ly  lower than those of the  space probe. This 
was the case for the data of Fig. 4.  

It is.,uncert?in i f  t h i s  d i f -  

Active Spacecraft 

This section presents the space and beam probe 
voltages obtained with an operating thruster.  A s  
with a passive spacecraft, the equilibrium poten- 
t i a l  of a spacecraft with operating ion thruster(.s) 
(active spacecraft case) i s  determined by the cur- 
rent interchange between the spacecraft and the 
ambient space plasma. The various potentials w i l l  
adjust t o  provide zero net current t o  the space- 
craft .  However, for  the SERT I1 spacecraft, the 
ion beam current (-0.25 A) ,  and hence the minimum 
neutralizer emission current a r e  f a r  i n  excess of 
any other currents existing between the spacecraft 
and the ambient space plasma. The ram ion current 
was calculated t o  be -0.24 mA. A s  a resul t ,  for  
spacecraft with operating ion thruster(  s ) ,  the 
equilibrium potential  i s  probably largely deter- 
mined by the interaction between the ion thruster  
currents and the ambient space plasma. 
space plasma, ion beam and spacecraft interactions 
which could occur are discussed i n  Ref. 7. These 
interactions include those between the space plasma, 
the ion beam, and the spacecraft and possibly be- 
tween the neutralizer, spacecraft and space plasma. 

Many of the 

Results of both ground and f l i g h t  tests are  
presented. Several differences existed between 
ground and flight t e s t s  which r e l a t e  t o  possible 
interactions. These are: 

existing during ground tests were greater than 
those i n  space by more than three orders of magni- 
tude. A s  the background plasma density decreases, 
the interaction betwee 
ion beam may decrease. g7) 

(2)  The interaction distance between the ion 
beam and the local  background plasma i s  l imited i n  
ground tests by the vacuum f a c i l i t y  dimensions. 
Ref .  7 indicated that  the space plasma - ion beam 
interaction distances are  of order 10 M or greater. 

(3) I n  f l i gh t ,  the spacecraft i s  exposed t o  
variation (positional, seasonal, etc. ) of local  
plasma parameters not experienced i n  ground tests. 

(1) The background neutral  and plasma densi t ies  

the space plasma and the 

Spade Probe Results 

Fig. 5 shows the variation of the spacecraft 

A s  stated previously, the spacecraft ve- 
potential  with geomagnetic l a t i t ude  a t  sunrise and 
sunset. 
l oc i ty  vector was nearly pa ra l l e l  and ant iparal le l  
t o  the Earthrs magnetic f i e l d  a t  sunrise and sunset, 
respectively. 
was near maximum value a t  the geomagnetic equator 
and decreased towards the poles. This trend was 
essent ia l ly  reversed a t  sunset. It i s  also seen 
that  considerable variation existed, especially 
over the south .geomagnetic pole. 

A t  sunrise, the spacecraft potential  

The mean value of 
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spacecraft potential  i n  both cases was 20 t o  22 V 
negative. This i s  close t o  the ground t e s t  value 
of -14 V. The maximum value of spacecraft potential  
shown on Fig. 5 i s  -28 V. These r e su l t s  are lower 
than those reported by Cybulski, e t  al. add Hunter 
for the S T I and ATS-IV vehicle, respective- 
ly. ( 1 9 , 2 0 7  Cybulski reported spacecraft potentials 
of between 40 and 150 V positive. However, the 
SERT I potential  data was obtained indirectly from 
E-field meter measurements. And as concluded by 
Seklen and Cybulski i n  Ref. 21, the E-field meas- 
urements were strongly influenced by par t ic le  cur- 
rent collection from the ambient space plasma. I n  
Ref. 20, Hunter reported spacecraft potentials of 
-43 and -132 V. 
neutralizer might have been emission limited. 
i s  t o  be noted tha t  preliminary data, which i s  not 
presented, has been obtained which indicates space- 
c raf t  potentials of greater than 60 V negative dur- 
ing some orbits. 

However, he indicated tha t  the 
It i s  

Attempts were made t o  correlate the o rb i t a l  
variations inspacecraft potential  with ambient 
plasma variations observed on the Explorer XX I 
spacecraft during the vernal equinox of 1965.f”) 
Except a t  high southern la t i tudes  during sunrise 
(where diurnal variation i n  plasma parameters are 
rapid), the spacecraft potentials did correlate with 
changes i n  the electron number density Ne. As of 
t h i s  writing, it i s  not def in i te ly  known why t h i s  
correlation exists. 

Beam Probe Results 

Fig. 6 presents beam probe potentials obtained 
with an operating thruster during both ground and 
flight tes t s .  For reference, beam probe potential  
measurements obtained over the inactive thruster 
are also included. Only the r e su l t s  obtained when 
the orbit  ra i s ing  thruster w a s  operated are shown. 
However, the r e su l t s  for both operating thrus te rs  
were similar. 

The f l i g h t  data has been divided in to  Northern 
and Southern hemispheric results.  
hemispheric data was obtained when the spacecraft 
was a t  geographic la t i tudes  greater than 30’. 
Similarly, the Southern hemispheric data was ob- 
tained when the spacecraft was south of -30 geo- 
graphic lati tude.  

The Northern 

Fig. 6 shows the ion beam potentials VB, as a 
function of rad ia l  distance R, from the axis of 
the ion beam and the ion beam half angle 8. The 
half angle i s  defined as shown i n  the sketch on the 
figure. A s  stated previously, the data was ob- 
tajned about 1 2  cm downstream of the thruster ac- 
celerator. However, a s  the probe traversed the 
ion beam, the ax ia l  downstream distance changed 
slightly. 
calculation of the half angles shown on Fig. 6. 

And t h i s  variation has been included i n  

The r e su l t s  fo r  both f l i g h t  and ground t e s t s  
are i n  good agreement. The maximum beam potential  
remained essentially constant out t o  a rad ia l  dis-  
tance oorresponding t o  the diameter of the beam 
forming electrode. 
a plateau at about 13 t o  18 cm. 
tance i s  a t  a half angle corresponding t o  the neu- 
t r a l i ze r  position. The potential  difference be- 
tween the peak and the plateau was approximately 
constant f o r  a l l  t e s t s  and equal t o  about 40 V. 
The voltage remained constant out t o  about R = 
35 t o  40 cm and then decreased sharply t o  values 

The potential  then dropped t o  
This rad ia l  d i s -  

below the ambient space potential. 
and ground data, respectively, the spacecraft poten- 
tialwas about 20 and 1 4  V negative with respect t o  
the space potential. It i s  possible tha t  a t  large 
values of ,R(>40 cm) the beam probes were strongly 
influenced by the spacecraft‘s e l ec t r i c  fields.  
i s  a l so  seen tha t  the potentials measured by the 
beam probe adjacent t o  the inactive thruster were 
between about 8 and 13  V negative with respect t o  
the loca l  space potential. This i s  about a factor 
of two t o  three times those measured with both 
t h r w t e r s  off (Fig. 3). This i s  i n  agreement with 

sheath of the spacecraft. 

The data of Fig. 6 were used t o  obtain ion beam 

R = 0 (beam center) and 

For the f l i g h t  

It 

- the view tha t  the- beam probes a re  immersed i n  the 

t o  neutralizer potential  differences. 
tabulated i n  Table 2 for 
R ~ r .  1 7  cm (neutralizer position). 
t ha t  the ion beam-neutralizer potential  was constant 
for a fixed value of R and was approximately equal 
fo r  both f l i g h t  and ground tes t s .  It i s  of in te res t  
t o  note tha t  t h i s  agreement between ground and f l i g h t  
data ex is t s  even though the ambient plasma density 
during the ground t e s t s  was greater than the space 
plasma density by more than a factor of lo3. This 
similari ty between ground and f l i g h t  data indicates 
tha t  ground t e s t  neutralizer l ifetime and perform- 
ance data are probably applicable t o  f l i g h t  con- 
d i t  ions. 

These are 

The table shows 

Neutralizer Bias Experiment 

The spacecraft contained a parer supply which 
could b ias  the neutralizer re la t ive  t o  the space- 
c raf t  by a nominal 25 or 50 V positive o r  negative. 
This neutralizer bias supply was used t o  investigate 
whether the spacecraft potential  with respect t o  the 
space plasma potential  could be varied so a s  t o  
minimize the e lec t ros ta t ic  influence of the space- 
c raf t  on the space plasma. 

Table 3 presents the experimental r e su l t s  a t  
the various neutralizer bias and thruster operating 
conditions, fo r  both f l i g h t  and ground t e s t .  The 

.f l ight data has been divided in to  Northern and 
Southern hemispheric r e su l t s  as i n  the section, 
“Active Spacecraft.5T 
are labeled I through V i n  order of decreasing 
positive b ias  of the neutralizer with respect t o  the  
spacecraft. 
si tuation tha t  ex is t s  when the neutralizer i s  pos- 
i t i v e  ‘qith respect t o  the spacecraft. A s  pre- 
viously indicated, the spacecraft, neutralizer, and 
beam voltages are a l l  given with respect t o  the 
loca l  space potential  as determined by the ambient 
probe. It i s  seen from Table 3 tha t  the f l i g h t  and 
ground data are i n  general agreement. 

The various b ias  conditions 

A positive b ias  i s  taken t o  be tha t  

The spacecraft potential  as a function of neu- 
t r a l t z e r  bias with respect t o  the spacecraft i s  
shown i n  Fig. 7. The spacecraft equilibrium poten- 
t i a l  w a s  approximately -20 V i n  both the Southern 
and Northern hemisphere and -14 V during ground 
t e s t s  with the neutralizer a t  spacecraft potential. 
A s  indicated previously, preliminary data, which i s  
not presented, has been obtained fo r  which the 
spacecraft equilibrium potential  was greater than 
-60 V. 

When a bias was applied, the equilibrium poten- 
t i a l  changed. In  the Southern hemisphere, and on 
ground t e s t s ,  tQe change i n  spacecraft potential  
with bias was approximately equal t o  the applied 
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voltage. Similar results were obtained i n  the 
Northern hemisphere except t ha t  when the negative 
b i a s  was applied, the spacecraft potent ia l  did not 
become posit ive but reached a saturation value 
approximately equal t o  plasma potential. From the 
table it i s  seen tha t  the neutralizer emission cur- 
r e n t .  I , i n  f l i g h t  was constant fo r  posit ive 
biases ?cases I and 11) but increased for  negative 
biases (cases IT and V) t o  a maximum of 343 mA. As 
indicated i n  Appendix B, t h i s  i s  near the constant 
current l imit  of the bias  supply. The value of the 
applied negative bias  was thus l imited by loading 
down of the power supply t o  a maximum of 28.7 V i n  
f l i g h t  and 39 V on ground tests. 

Fig. 8 shows the neutralizer potential  a s  a 
function of neutralizer t o  spacecraft potential. 
It i s  seen tha t  the potent ia l  difference between 
the neutralizer and the local  space plasma remains 
nearly constant with applied b i a s  i n  the Southern 
hemisphere. However, i n  the Northern hemisphere, 
variations of a s  much as 10 V are  obtained. The 
variations were, however, l e s s  than the applied 
bias. 

Fig. 9(a)  t o  ( e )  show the change i n  beam po- 
t e n t i a l  with r ad ia l  distance R, from the axis  of 
the ion beam and the half angle 9 corresponding 
t o  that  r ad ia l  distance fo r  various bias conditions. 

The results for both f l i g h t  and ground t e s t s  
were similar. The beam potentials decreased mono- 
tonically with increasingly posit ive bias. The 
radial  variation of  beam voltage was not sensit ive 
t o  applied bias. It, therefore, seems l ike ly  tha t  
the beam shape remained unchanged with neutralizer 
bias. The maximum beam potent ia l  fo r  a given bias  
remained constant out t o  a radial distance cor- 
responding t o  the diameter of the beam forming 
electrode. The potential  then dropped t o  a plateau 
a t  about 13 t o  18 cm. This radial distance i s  at a 
half  angle corredponding t o  the neutralizer posi- 
tion. The voltage then remained constant out t o  
about 35 cm. 
peak and the plateau was approximately constant fo r  
all biases and equal t o  about 44 V. 

The potential  difference between the 

Figs. 8 and 9 can be used t o  obtain the beam 
t o  neutralizer potential  as  a function of applied 
neutralizer bias. The r e su l t s  are  shown i n  
Figs. 10( a),  (b) , and (c) for  two r ad ia l  distances. 
Fig. 10 shows tha t  when the neutralizer was posi- 
t i v e  with respect t o  the spacecraft, the  beam t o  
neutralizer potential  was insensit ive t o  changes i n  
neutralizer bias. On the other hand, when the neu- 
t r a l i ze r  was negative with respect t o  the space- 
craf t ,  the beam t o  neutralizer potential  increased 
rapidly. 

The above data can be used t o  discuss the na- 
t u re  of the interaction between the spacecraft and 
the local  space plasma during the bias experiment. 
A t  bias conditions, where the bulk of the space- 
c ra f t  was below local  plasma potential ,  the space- 
c ra f t  potential  was easily varied. 
spacecraft potential  was equal t o  the applied neu- 
t r a l i ze r  bias. And the ion beam and neutralizer 
emission currents were approximately equal. The 
effect  of the posit ive bias was t o  adjust the 
spacecraft potential  so t h a t  the ion beam- 
neutralizer potential  difference remained nearly 
constant (Fig. lo). This is t o  be x cted f o r  - 
constant electron emission current. fz8 It should 

The change i n  
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‘be noted that i n  f l i gh t  as the neutralizer bias was 
increased from zero t o  +50 V, the  area of the ex- 
posed connections on the  solar array that is above 
plasma potential  decreased t o  zero. 

When the negative biases were applied (cases 
I11 and V) the results differed s ignif icant ly  from 
those of the posit ive neutralizer bias condition. 
I n  f l i g h t  , the neutralizer emission current 
increased while the ion beam current remained con- 
s tant .  As previously noted, no measurements of I9 
were obtained in . the ground test. For cases I?? and 
V the difference between the neutralizer emission 
current and the ion beam current was about 63 and 
85 mA, respectively. This r e su l t  could a r i s e  for  
two reasons. F i r s t ,  when the spacecraft potential  
became close t o  plasma potential ,  large electron 
currents could be collected by the spacecraft from 
the space plasma. In t h i s  case, the neutralizer 
injects  into the  ion beam the sum of the ion beam 
and the electron current drawn from space i n  order 
t ha t  the net current t o  the spacecraft remain zero. 
Secondly, loop currents could ex i s t  from the neu- 
t r a l i z e r  direct ly  t o  the spacecraft. 
mechanisms a re  discussed separately below. 

19 , 

These two 

In a,,manner similar t o  tpt discussed i n  the 
section, Passive Spacecraft, an estimate can be 
made of the current t o  the spacecraft i n  orbit .  
The t o t a l  conductive area of the spacecraft i s  on 
the order of 30 Mz. Using a number density Ne, 
of 2x104 particles/cm2 and an electron temperature 
TeJ of 2000° K, the electron current t ha t  could be 
colleched by the spacecraft is about 7 mA. This 
current i s  about an order of magnitude l e s s  than 
the difference between the neutralizer emission and 
the ion beam current at the two negative bias 
conditions. This calculated value of electron cur- 
rent  is, of course, dependent on the  values of Ne, 
Te, and spacecraft area used. The values of Te 
and N, are  representative of data from a n 
of spacecraft a t  a 1000 I ~ M  altitude(?8,23,24 
over a wide variety of seasonal conditions and 
o rb i t a l  positions. It was noted, however, i n  
Ref. 25 tha t  the electron number density increases 
with solar act ivi ty .  The SWT I1 data w a s  obtained 
during a period of high solar act ivi ty .  It i s  thus 
possible that the number density used i n  calcu- 
l a t ing  the collected electron current i s  lower than 
the number density existing during the SERT I1 
f l igh t .  A number density of about 3x105 part ic les /  
cm3 would be required t o  provide the 85 mA ob- 
served with the -27 V b ias  (case V) . 
collection area of 30 Mz represents the physical 
area of the conductive portions of the Agena ve- 
hicle.  Due t o  sheath effects,  the effective elec- 
tron collection area might be larger than 30 Mz 
by an appreciable amount. 

Yber taken 

The spacecraft 

. 
and the effective electron collection area of the 
spacecraft a r e  such tha t  the spacecraft collected 
currents from the space plasma of approximately 
68 t o  85 mA, then it is  expected that  the beam- 
neutralizer potential  would change. As indicated 
previously, the only mechanism for  electron emis- 
sion from the spacecraft, neglecting photoemission 
which has been shown t o  be negligible, i s  emission 
from the neutralizer into the ion beam. The ion 
beam-neutralizer potential  difference would thus 
change with electron emission by ju s t  t ha t  amount 
necessary t o  extract  the additional electrons. 
Fig. 11 gives ‘the variation of neutpalizer emission 

I f  the space plasma electron number density 



current with ion beam t o  neutralizer potential.. 
indicated by Ref. 22, the v i r tua l  anode for  the 
neutralizer hollow cathode is  probably very close, 
within 1 t o  2 cm, t o  the neutralizer keeper anode. 
Thus, the value of beam t o  neutralizer potent ia l  a t  
the half angle corresponding t o  the neutralizer 
position has been used. 
R e f .  22 is also included on Fig. 11. 
f l i g h t  and ground data curves have the same general 
form. The r e su l t s  indicate tha t  the be? t o  neu- 
t r a l i z e r  potent ia l  was approximately constant for  
all applied biases for  constant electron emission 
curr ent . 

As 

Ground t e s t  data from 
As seen, the 

As indicated, the difference between the ion 
beam and neutralizer emission current could be 
at t r ibuted t o  loop currents from the neutralizer t o  
the spacecraft. Such loop currents could exist i f  
the spacecraft were posit ive with respect t o  the 
neutralizer keeper. The value of the spacecraft 
potential  was approximately equal t o  the keeper 
voltage fo r  case IV and about 6 V posit ive with 
respect t o  the keeper for case V i n  the Southern 
hemisphere. And as indicated i n  Appendix B, the  
thruster  ground screen, which was always a t  space- 
c ra f t  potential ,  was within 1 . 2  cm of the neutra- 
l i z e r  cathode. 

From the above discussion and data, it is  not 
possible t o  conclusively determine the exact mech- 
anism tha t  causes the increase i n  19 a t  negative 
neutralizer biases. It is noted, however, t ha t  the 
existence of a difference i n  the data over the 
Southern and Northern hemisphere indicates t h a t  the 
resul ts  may be due t o  currents drawn from the loca l  
plasma rather than loop currents t o  the spacecraft. 
Ground tests could possibly determine whether sig- 
nif icaht  loop currents between the neutralizer and 
portions of the spacecraft could exis t .  

SUmmary and Conclusions 

The emissive probes flown on the SmT I1 
spacecraft i n  conjunction with the prime ion thrust-  
er experiment allowed an investigation of the inter-  
action between the spacecraft, the ion thruster  and 
the ambient space plasma. The parameters measured 
were the spacecraft-space potential  difference and 
the spacecraft-ion beam potential  difference. The 
probes md the spacecraft d i g i t a l  telemetry system 
resulted i n  a maximum measurement uncertainty of 
approximately 1.8 V. 

I)uring periods i n  which the thruster  systems 
were not operated, the mean SWT I1 spacecraft 
eqqilibrium potential  was -6 and -8 V, respectively, 
for  suurise and sunset. It was concluded tha t  
these relat ively high negative potentials were due 
t o  the presence of exposed solar array intercon- 
nections at high (36 V) posit ive potentials.  This 
was concluded from a comparison of the measured and 
calculated electron collection area of the solar 
array. 
s e t  were found t o  be consistent with small varia- 
tions i n  electron temperature. O r b i t a l  variation 
i n  the spacecraft potential  of the order of 5 V 
were observed. 
these o rb i t a l  changes with variations i n  space 
plasma parameters such as Ne and Te. However, 
the variations were w e l l  within those explainable 
by small changes (on the order of several hundred 
degrees K) i n  Te. 

The change i n  voltage from sunrise t o  sun- 

It was not possible t o  correlate 

The spacecraft was i n  the Moon's shadow during 
the solar eclipse of March 7, 1970. The r e su l t s  of 
the space probe measurements indicate that photo- 
emission had no detectable effect  on spacecraft po- 
tent ia ls .  

Data obtained during operation of the ion 
thruster  systems indicated mean spacecraft poten- 
tials of '-20 V for  both sunrise and sunset condi- 
t ions.  This result is close t o  the  ground test 
l eve l  of -14 V. Considerable var ia t ion i n  space- 
c ra f t  potentials with o rb i t a l  posit ion were ob- 
served; on the order of 16 V. These o rb i t a l  var- 
iations were found t o  roughly correlate  with or- 
b i t a l  variations i n  electron number density Ne, 
data reported by Eqdorer XXII. 

!Fhe.results of beam potent ia l  measurements 
for  f l i g h t  and ground t e s t s  were i n  general agree- 
ment. It was found tha t  the maximum beam potential  
(measured about 1 2  cm downstream of the ion thrust-  
e r  accelerator grids) remained constant a t  about 
+45 V out t o  a r ad ia l  distance corresponding t o  the 
diameter of the beam forming grids.  The potentials 
then decreased sharply. 
potential  was found t o  be equal for  f l i g h t  and 
ground tests. This was t rue for  the beam axis and 
at an ion beam half angle corresponding t o  the ion 
thruster neutralizer position. 
ment between f l i g h t  and ground data indicates t ha t  
neutralizer l i fe t ime and performance data obtained 
i n  ground t e s t  i s  probably applicable t o  f l i g h t  
conditions. 

The ion-beam t o  neutralizer 

This close agree- 

During portions of the f l i g h t  a bias power 
supply was applied between the neutralizer and the 
spacecraft. The power supply was capable of biasing 
the neutralizer a nominal 25 or 50 V posit ive or 
negative with respect t o  the spacecraft. 
sults of the f l i g h t  ver i f ied tha t  such a bias 
supply could be used t o  control the spacecraft po- 
t en t i a l .  
c r a f t  potential  could be easi ly  varied over the 
range of 0 t o  -77 V. Therefore i t  should be pos- 
sible t o  control the potential  aifference between 
the spacecraft and the space plasma so  as to min- 
imize electrostat ic  influence on the space plasma 
of an ion thruster bearing spacecraft. 

The re- 

By applying a sui table  bias the space- 

The variation i n  spacecraft potential  was ac- 
complished without noticeable detrimental effect  on 
the thruster system performance. In  addition, the 
ion beam-neutralizer potential  difference was con- 
s tant  for a l l  neutralizers biases with a constant 
neutralizer emission current. 

Increases i n  the neutralizer bias current was 
obtained a t  negative bias conditions. 
possible t o  conclusively determine whether these 
increases i n  neutralizer emission current resulted 
from large electron currents drawn from the  space 
plasma t o  the spacecraft or resulted from loop cur- 
rents from the neutralizer cathode t o  nearby sur- 
faces a t  posit ive potentials. 

It was not 

Appendix A 

Each probe system consisted of an emissive 
assembly and an electronic package (which included 
the power and signal conditioning). 
ment had a nominal range of -50 t o  +lo0 V. 

Each instru- 
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Ambient Probe 

The ambient probe was desi y d  t o  operat3 i n  a 
low density plasma of 104 t o  10 particles/cm . 
The ambient probe emissive assembly (Fig. 12) con- 
sists of a support structure,  a shield,  and an 
emitter. 
diameter. It weighs approximately 13 g. The 
emitter is a 1 cm long by 0.076 mm diameter W$Be 
filament. The small diameter shield i s  connected 
t o  the emitter through r e s i s to r s  t o  maifitain it at 
the mean emitter potential .  
close t o  emitter potential  aided i n  reducing the 
effect  of other nearby surfaces on the  probe's po- 
t e n t i a l  measuring ab i l i t y .  This was considered 
necessary since it was determined that for  cer ta in  
ion density-plasma potential  combinations, the 
plasma sheath thickness could be as much as 100 cm. 
In additon, for  a similar reason, the emissive 
assembly was mounted on t he  end of a boom (Fig. 13) 
which, when extended, placed the filament 150 cm 
(one spacecraft diameter) ahead of the spacecraft 
surface i n  orbi t .  The boom was electr ical ly  in- 
sulated from the spacecraft. 
the  requirement for  electron collection t o  measure 
negative potentials i n  the low density plasma, the 
probe is biased by -60 V with respect t o  the space- 
c ra f t .  

The assembly is  7.6 cm long by 0.64 cm i n  

This "shield electrode" 

In order t o  eliminate 

An electronics package located within the 
spacecraft supplies filament heating power (2 W) 
and provides signal conditioning for  heater cur- 
rent  telemetry and plasma potential  telemetry. 
package is  7.6 by 7.9 by 14.2 cm, weighs 0.9 kg 
requires 3.8 W. 

The 

The potent ia l  measuring c i r cu i t  consists of a 
res is tor  divider network. A f ract ion (0.0013) of 
the p o t e n t i a  between the filament and spacecraft 
i s  conditioned t o  be presented t o  telemetry. The 
probe telemetry output i s  0 t o  5 V for  plasma t o  
spacecraft poten-bials of -52 t o  +109.5 V. 
d ig i t a l  telemetry system translates  the 0 t o  5 V t o  
0 t o  61 counts. Thus, the telemetry introduces a 
measurement uncertainty of g.32 V (i1/2 count). A 
second telemetry output t o  monitor filament heating 
current was  a lso obtained. 

The 

Ground calibration was  accomplished using a 
low energy argon ion source and a reference probe. 
The plasma from the ion source was  s tabi l ized a t  a 
particular ion density and a t  a potential  as close 
t o  the vacuum chamber as  possible. 
characterist ics were generated with the reference 
probe cold and emissive. 
two disagreed was taken as the plasma potential. 
The f l i g h t  probe was  then swung in to  the position 
of the reference probe and the telemetry output 
recorded. This procedure was  repeated for  various 
bias voltages i n  the range of +50 t o  -100 V t o  ob- 
t a i n  a curve of telemetry output versus plasma po- 
t en t i a l .  

Current voltage 

The voltage a t  which the 

Beam Probes 

The second probe type was designed for  oper- 
ation i n  a high density plasma of lo7 t o  lG0 
particles/cm3. This density range is  typical of 
the ion densit ies i n  the Hg ion thruster  beam. 
beam probe emissive assembly (Fig. 14) is  7.6 cm 
long by 1.3 cm by 0.64 cm and weighs approximately 
30 g. 
e ter  Ta wire. 

The 

The emitter i s  a 1 cm long, 0.178 mm diam- 
The shield or "guard electrode" on 
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the t i p  i s  e l ec t r i ca l ly  floated.  The higher density 
of the ion beam plasma did not necessitate main- 
taining the shield at filament potent ia l  since 
sheath thicknesses a re  more than an order of mag- 
nitude smaller than i n  the ambient density range. 
A probe and a portion of the system circui t ry  axe 
mouhted on an actuator (Fig. 13) adjacent t o  each 
thruster.  means of the spacecraft command sys- 
tem, the actuator i s  energized t o  sweep the probe 
t i p  through the beam. The probe electronics auto- 
matically comes on when the sweep begins. The path 
of the probe t ip.  i s  a 22 cm radius, 340' arc  which 
passes through a point within 1.75 cm of the beam 
axis and 12.5 cm from the accelerator plate.  The 
sweep takes 48.520.5 sec so  that the probe passes 
across the accelerator i n  5 t o  6 sec. The beam 
probe electronics is almost ident ical  t o  that of 
the ambient probe. However, the probe bias c i r c u i t  
was not included, since the ion thrust  beam par- 
t i c l e  density i s  great enough t o  ensure electron 
collection by the emitter when the probe potential  
i s  posit ive with respect t o  the spacecraft. The 
circui t ry  also contains protection against high 
voltage breakdowns (arcs) from the thruster.  

The probe potential  telemetry range is  0 t o  
61 counts for  -46 t o  +99 V plasma. This intro-,, 
duces an uncertainty of a . 7 7  V ( a / 2  count) i n  the 
potential  measurement. The emitter current telem- 
etry range i s  0 t o  37 counts fo r  0 t o  3.2 amps rms. 

Ground calibration w a s  accomplished i n  a man- 
ner similar t o  the ambient probe. 
used was a mercury ion thruster.  
t e n t i a l  was  determined by heating the floating 
reference probe from the nonemissive t o  the 
emissive condition and observing the emitted or 
collected current. 
the current versus voltage curve was  taken as the 
plasma potential .  

The ion source 
The plasma po- 

The potential  at the knee of 

Appendix B 

Detailed descriptions &.the SEBT I1 mission 
and f l i g h t  objectives a re  presented i n  Ref. 1. 
However, cer ta in  spacecraft and ion thruster char- 
ac t e r i s t i c s  t ha t  are  pertinent t o  probe measure- 
ment a b i l i t y  or spacecraft equilibrium potent ia l  
are ftescribed below. 

Spacecraft 

The spacecraft i s  i n  a nearly circular,  
1000 km, retrograde, polar orbit .  The inclination 
angle i s  99'. For t h i s  orbi t ,  t he  spacecraft w i l l  
be in continuous sunlight for  280 days, wiCE the 
exception of solar eclipses. The orbit ,  with the 
Earth's rotation, then r e su l t s  i n  the spacecraft 
passing over nearly all points on the  Earth at an 
alt4tude of 1000 km at either sunrise or sunset, 
local  time. The orbi t  thus allows a complete map 
of spacecraft potential  variations as a function of 
both l a t i t ude  and longitude t o  be obtained. 

In orbit ,  the orientation of the spacecraft, 
shown i n  Fig. 15, i s  such that the plane of the 
solar array is  aligned along the velocity vector. 
This, coupled with the orbi t  inclination, means 
tha t  the plane of the solar array i s  also approxi- 
mately pa ra l l e l  t o  the Earth's magnetic f ie ld .  
Variations from t h i s  position (yaw misalignment) 
were estimated t o  be l e s s  than 2 degrees. The 
major axis of the spacecraft i s  aligned along an 



Earth radius l i ne .  Deviation from t h i s  was  l e s s  
than 2 degrees. 

The complete spacecraft i n  orbi t ,  shown i n  
Fig. 15, consists of two basic cylindrical  struc- 
tures plus a solar army. One structure is 1.1 m 
long and 1.5 m i n  diameter. 
ments and accessory instrumentation. This struc- 
ture is d i r ec t ly  attached t o  the empty Agena roc- 
ket. 
section 4.6 m long and 1.5 m i n  diametei., plus a 
1.5 m section containing the rocket nozzle and 
solar array. 
ram ion current collection of 10.4 mz which i s  the 
frontal  area of the spacecraft. 

It houses all experi- 

The empty Agena consists of a cylindrical  

mese factors result i n  an area for  

A variety of surface coatings resulted from 
thermal control considerations, i .e. ,  paint, 
polished Al, and Al tape. All paints used were of 
a nonconductive type. A l l  unpainted metal surfaces 
on the main cylindrical  section were  e l ec t r i ca l ly  
connected t o  a common spacecraft ground. The ther- 
m a l  control pattern resulting, therefore, allowed 
the possibi l i ty  of s m a l l  potent ia l  gradients across 
the spacecraft surface. 

A l l  portions of the solar array were t reated 
with nonconductive paint with the exception of the 
soldered connections between the cel ls .  These un- 
painted connectors had nominal dimensions of 
10 cmX 1.52 cm each. The solar array was wired 
such tha t  approximately 43 percent of the unpainted 
area of the array was below spacecraft potential ,  
and approximately 57 percent was above spacecraft 
potential. This i s  i l l u s t r a t ed  i n  Fig. 16 where 
the spacecraft-space potential  difference is plot ted 
as a function of exposed solar array area which is  
above'plasma potential .  

All of the on-board experiment data is cm- 
mutated for  ground transmission. Ground trans- 
mission is  accomplished with 350 m- at 136 MHz. 
With this system, the ambient probe data i s  sampled' 
once every 4 minutes. This, coupled with the 
106-minute o rb i t a l  period, r e su l t s  i n  one ambient 
probe data point per 13' of geographic l a t t i t u d e  
being obtained. Beam probe data i s  obtained once 
every 4 seconds t h a t  the probe is  sweeping. 

Thrusters 

Two ion thrusters were on-board the spacecraft. 
Both systems were operated consecutively. 
thrusters were of the Kaufinan electron bombardment 
type, u t i l i z ing  mercury as a propellant (Fig. 1 7 ) .  
&,shown i n  Fig. 1, the thrusters  w e r e  canted a 
nominal 10' from the  spacecraft longitudinal axis. 
Consequently, one thruster,  when o erating, ra ised 
the o rb i t  by approximately 3.6 kmKeek. The other 
thruster,  when operated, lowered the orbi t  by a 
similar amount. The majority of the data reported 
herein was  obtained when the o rb i t  raising thruster  
was operated. 

The 

The schematic of the thruster  system is  shown 
i n  Fig. 18. It shows the various power supplies 
necessary for  operation of the thrusters.  
thrust  beam ex i t s  from the accelerating structure 
which consisted of a beam forming electrode and an 
acceleration electrode (Fig. 17). Each electrode 
contained 847 holes within a 15  cm diameter. There 
is no decelerating electrode. The electrons, - 
necessary for  neutralization of the ion beam, were 

The 
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obtained from the neutralizer located downstream of 
the accelerating structure.  A perforated metal 
screen, at spacecraft p o t e n t i d ,  surrounded the 
thruster.  This metal screen was within 1.2 cm of 
the neutralizer cathode t i p .  

The nominal potential  p ro f i l e  of a thruster i s  
shown i n  Fig. 19. The thruster  normally produced 
a 253 mA ion beam at a nominal accelerating poten- 
tial of 3000 V. However, each thruster  was oper- 
ated for  short  periods a t  95 and 205 mcL ion beam 
current. 

u t i l i z ing  a hollow cathode.a38. The neutralizer was 
electr ical ly  isolated from the thruster  system. 
power supply (V,) was provided t o  allow biasing the 
neutralizer r e l a t ive  t o  the spacecraft. This bias- 
ing supply was capable of changing the neutralizer- 
spacecraft potential  difference, on command, from 
zero t o  a nominal &25 or rf50 V. 
current l imited at about 360 .d .  

The neutralizer was a 1 sma discharge device 

A 

The supply was 

Appendix C 

The equilibrium potent ia l  of a spacecraft i n  
orbi t  w i l l ,  i n  general, be different  from tha t  of 
the surrounding space plasma. 
the magnitude of the spacecraft p t n t i a l .  Among 

Many factors affect  

significant factors are: P9T 

Electron temperature, Te 

Debye length 

Spacecraft-ion velocity ra t io ,  sS/c/si 

Ionic mass, 

Electron and ion densit ies (2, and Zi, 
respect i v e w  ) 

V X  B effects 

Exposed posit ive potentials 

Photoemission 

RF f i e lds  

vehicles orbiting i n  the upper F2-layer 
(BlOOO km), these factors generally result-in a 
spacecraft potential  negative with respect t o  the 
space plasma. This negative potential  difference 
is  usual y on the order of several electron 
volts.  (gf The exact value being dependent on the 
r e l a t ive  weights of the various effects.  For such 
vehicles, i n  sunlight, generally the controlling 
factor on the potential  i hotoelectric emission 
from spacecraft  surface^.^^^ However, it i s  shown 
that  for  the SERT 11 spacecraft, exposed surfaces 
a t  posit ive potentials seem t o  be the controlling 
factor on the equilibrium potential .  

ferred from the work of Bourdeau and 
and ~ e ( 2 6 ) ,  the effect  of RF f i e lds  

should be no greater than a few tenths of a vo l t  
with the SERT I1 spacecraft, the effect  of R F  w a s  
neglected . 

For a spacecraft i n  orbit ,  neglecting RF, 
magnetic, and photoemission effects,  equating of 
ion and electron currents require tBat 



eAiNiSqC f eAjNiSi = eAeN, (;Texp - (E) (1) 
where 

Effective electron collection area 

Ion number density.  

Boltznam constant 

Spacecraft velocity 

Electron mass 

Ion velocity 

Spacecraft-space plasma potent ia l  difference 

Electron temperature 

Ram ion current collection area 

Electron number density 

Rect ron  charge 

Electron temperature. 

Thermal. ion current collection area 

The first term on the  l e f t  s ide  is the  ram ion 
current. The second term i s  the thermal ion cur- 
rent.  The term on the r igh t  s ide  is  the collected 
electron current. 
brium i s  assumed, then t h i s  reduces t o  

If charge and thermal equi l i -  

Further, fo r  a spacecraft moving with orb i ta l  
velocity through the F2-1ayer, VS/C >> V i .  U S O ,  
for  the SERT I1 spacecraft, A j  2 4Ai. 
the above equation reduces t o  

'Pherefore, 

For spacecraft potent ia ls  s ignif icant ly  (-10 
kTe/e) below plasma potential, the above equation 
reduces t o  

or 

(4) 

9 

It is  of interest t o  calculate  the  ram ion 
The ram ion current is given above by current. 

Now = 10.4 $ (Appendix B) 

'Ni = 2U04 particles/cm3 (Ref .  18) 

SSlc = 7.35>(103 M/sec 

Therefore 

Ji = 0.24 mA. 
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difference vB: 
V 

R = O c m  
(beam center) 

R = 17 cm 
(Neut. position) 

TABLE 2 I O N  BEAM-NEUPIALIZER POTENTIAL DIF-  
FEREZTCE DURING FLIGHT AND GROUND TEST 

AT TWO BEAM PCX;ITIONS 

10 



Ground Test Data 

vg> vS/c> (-1, '5' 
v v  V mA 

52 -66 >38 250 
26 -40 47 255 
0 -14 47 250. 
0 --- --- 205 
0 --- --- 90 
0 0  0 0 

-24 8 54.5 255 
-39 22 64 Z55 

Flight Data 

'9, 'S/c vB ( m ) J  15' 19' 
V V v mA mA 

52.0 -77.7 -75.1 X6.3 >28.9 258 253 258 250 
26.7 -46 -46 43.7 39 258 253 258 258 
0 -19.5 -19.5 46.4 41.6 258 253 258 258 
0 -16.8 -16.8 37.2 ----- 205 205 205 205 
0 -16.8 -19.5 25.3 --,-- 95 95 94 95 
0 -6.4 -9.0 0 0 0 0 0 0  

-22.6 -2.3 1.7 58.8 53.3 258 253 325 316 
-28.9 -0.9 7.0 65 63.4 258 258 343 343 
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Figure 1. - SERT-I1 spacecraft. 
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F igure 4. - Spacecraft potential as measured by the  
space probe and beam probe. Abscissa i s  t h e  
angle between t h e  beam probe a r m  and the  space- 
craf t  velocity vector. Ion beam current ,  zero, 
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Figure 5. - Spacecraft potential as a func t ion  of 
geomagnetic \attitude for sunset and sunrise. 
Ion  beam c u r r e n t  253 ma. 
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Figure 6. - Beam potential as a function of perpendicular 
distance from beam axis. Neutralizer bias zero. Ion 
beam current  250 ma. 
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Figure 7. - Spacecraft potential as a function of neutrali- 
zer bias voltacre. ion beam current, I,, 253 ma. 
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distance from beam axis in the northern hemisphere. 
Ion beam current, 15, 253 ma. 
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Figure 9. - Concluded. 
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Figure 10. - Ion beam-neutralizer potential difference as 
a function of neutralizer bias voltage for the northern 
and southern hemispheres. ion beam current, 15, 
253 ma. 
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Figure 12. - Ambient probe emissive assembly. 
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Figure 13. - SERT-I1 spacecraft. 
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Figure 14. - Beam probe emissive assembly. 



Figure 15. - SERT-I1 spacecraft in orbit (artist conception). 
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