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THE CALCULATION OF N-MENsIONAL

PROBABILITY ELLIPSOIDS

E. R. Lancaster
Theoretical Mechanics Branch

ABSTRACT

The problem is to find a real number c such tlu%t the probability

is p that a normally distributed random variable x will lie in an

z-	 ellipsoid defined x'Ax = c, where A is the inverse of the covariance

matrix of x. This problem arises, for example, in orbit determination
;KJ*	

when it is desired to know the dimensions of an ellipsoid centered about

+he nominal value of the state vector at a given time such that the

probability is p that the state error vector will be in the ellipsoid.
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THE CALCULATION OF N-DIMENSIONAL

P:30BABILITY Emmons

INTRODUCTION

"	 If y is a real normally distributed random vector, the probability

that y is in a region S is

p = i
s
 f(x)dw	 (1)

where	 f(x) * e
-* x A x	 (2)

dw = dxl dx2 ...dxn,	 (3)

and

A . +AIi/(29)*n .	 (4)

The real vectors x and y have n components, x' is the transpose

of x, and A is an n-by-n symmetric positive-definite matrix of real

numbers with determinant J AI.

The equation

x' A x n c,	 (5)

-W,

r:

M̂a

where c is real, defines an ellipsoid in n-space with center at

x = 0. The problem is to find c, given that p is known and that S

is defined by (5). The matrix A is the inverse of the co-variance

matrix of y. The mean, of y has been taken to be 0.

This problem arises, for example, in orbit determination when it

is desired to know the dimensions of an ellipsoid centered about the
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nominal value of the state vector tit a given time such that the

probability is p that the state error vector will be in the ellip-

soid. Instead of the full state error vector y we can have the error

vector for a subspace of the entire state space, i.e., a vector of

dimension less than n whose components form a subset of the full

error vector. This is true since the marginal distribution of any set

of components of y is normal with mean 0 and variances and co-

variances obtained by taking the proper components of the inverse of A.

INTEGRALS OF QUADRAATIC FORMS

As a step toward solving the problem described in the introduction,

we consider integrals of the form

g(A) =	 f(x' A x) dw,
	 (6)

S

where A and dw are defined in the introduction and S is the ellipsoid

of (5). Since A is positive definite, there exists a nonsingular

matrix C such that

$' AC=2,	 (7)

where I is the identity matrix and C' is the transpose of C.

Let

X = Cz.	 (8)

Then	 x' A x= z' C' A C z= z 1 z.

The Jacobian of the transformation ( 8) is C, the absolute value of the

determinant of C. Thus (6) becomes
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g(A)	 C 
J

R f( z'z) do	 (9)

where do' = dz 1 dz2 ... dzn , and R is the sphere with center at z = 0

defined by

z'z = C.	 (10)

We now transform to generalized spherical coordinates by

zi	 = r cos cQl

i-1

zi = r ( TT sin cp) cos 9,; 1 = 2 1 31 ..., n-2

3=1

n-2
zn_1 = r ^ sin cp,) cos 0

j=1

n-2
z  = r Cxl sin cp J ) sin 0

j=1

where	 0 t cpi it Tf;	 0 t r< , n z 3. If n=2, zl = r cos 0,

Z2 = r sin e. The Ja,cobian of this transformation is

n-2

J = rn-1 TT sinn-1-j cPj, n Z 3.
J=1

Also	 z'z = r2.

If n=2, J=r.

Thus (8) becomes

c	 2Tr	 n-2 IT

g(A) C	 rn-1 f( r' drJ' de TT Jo  sinn-l- j '
Pi^0	 o	 J=1
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From (7)
	

C - l/) Aj .

I

n-2 TCr
J=l Jo

sinn-1-,j C^ dye :8 rn-2 (J) /r(n/2) ,.

where r is the gamma function. Thus we have

c

g( A) = C K f . rn-1 f(r2) dry	 (11)
0

where	 K = 271 rn (J) /r( n/2) ,

i.e.,	 K = 2Tf /( A-1) :	 if	 n = 2,N,

K = 2'h+l 0/(1 . 3 . 5 . 7 .. .(2'h-1) ] if n = 2* + 1,

where A is an integer z 1.

THE NORMAL PRU1iABILITY ELLIPSOID

Applying (11) to (1) gives

c
2

p	 so'-1 1
	 r24t-1 e-* r dr,	 n = 24k^	 (12)

c

- 1At 	 J 0
 r2A e_i r2dr, n = 2A + 1.	 (13)

These irate ,als can be evaluated by formula 313.3 of reference 1.
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The function p(c) is monotone increasing on the interval (0, a) and has

a single inflection point in thz interval. Thus the Newton-Raphson

method will find the value of c for a given value of p if we use the

value of c corresponding to the inflection point as the starting value.
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