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ABSTRACT

The major chemical systems of the Earth ' s atmosphere are tied to absorp-
tion of radiation from the sun, and thus have a dawn and dusk dependence. Also,
total solar eclipses may cause sharp local variations.

A stud y is made of the behavior of chemically, generated waves in
a simplified atmosphere. The atmosphere is assumed unbounded, isothermal,
one-apace-dimensional and initially quiescent. At an initial time a dissociation
reaction commences and drives the subsequent wave motion. The fraction of
reactant in the atmosphere, X. is assumed to be small. The system of govern-
ing equations is then expanded in terms of the small parameter, X. and an in-
tegral solution asymptotic to X - 0 is obtained. A series solution in terms of
Young functions is also obtained. These are a subspecies of Lommel functions.

*Now at the Division of Applied Mathematics, U. & Naval Ordnance Laboratory.
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A LINEARIZED APPROACH TO WAVES
IN A DILUTE, CHEMICALLY REACTING ATMOSPHERE

PART I
ANALYTICAL TREATMENT

INTRODUCTION

Waves in a stratified fluid under the influence of gravity appear to have
been initially discussed by Burnside (1889) and Love (1891). Both authors
treated an incompressible fluid. Gortler (1943) used schlierin photography to
show experimentally that disturbances in an incompressible stratified medium
under the influence of gravity propagate along characteristic rays. Lamb (1908)
treated a compressible, adiabatic, ideal gas whose density is stratified by
gravity. Since the original contributions by Burnside, Love and Lamb there
have been many theoretical papers on varirnas types of gravity waves. Reason-
ably up-to-date treatments of the subject may be found in Eckart (1960) and Yih
(1965). However, gravity wave theory is currently undergoing an active phase
of development and contributions are being added to the literature at a rapid
rate.

Recent experimental data from the earth's atmosphere and oceans have
greatly stimulated interest in gravity-acoustic waves. Gossard (1962) has ob-
served gravity waves in the troposphere. Hines (1960) has shown that in-
ternal atmospheric gravity waves may account for many of the phenomena
observed in the lower ionosphere, and gravity waves have been observed in the
thermosphere by Newton et. al., (1969) and Harris et. al., (1969).

It seems to be generally agreed that gravity waves are generated in the
troposphere, then propagate upwards. Thus Gossard (1962) has observed gravity
waves near the earth's surface and Eberstein (1970) has illustrated the develop
ment wof gravity waves between 30 km and 120 km.

The simpler forms of gravity wave theory treat propagation through an
inviscid, non-conducting gas, while more sophisticated theories include effects
of heat transfer, viscosity, and high altitude phenomena such as ion drag. How-
ever, the effect of chemical reactions does not seem to have been adequately
considered to date.

Between the troposphere and the thermosphere there are several regions
where important chemical reactions take place.
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First, there is the ozonosphere between approximately 15 km and 45 km,
with peak ozone concentration at about 35 km. Ozone mole fraction is in the
order of parts per million (Mitra, 1952).

Between 60 km and 96 km there is Nitric Oxide (Pearce, 1969). The mixing
ratio for Nitric Oxide is also in ppm.

Between 90 km and 120 km molecular oxygen dissociates into atomic oxygen.
The dissociation ratio, a being 3 x 10- 8 at 90 km and 0.998 at 120 km (Mitra, 1952).
The oxygen is no longer a truly dilute reactant since its mixing ratio is 20 %.

The major chemical systems are tied to the absorption of ultraviolet radia-
tion from the sun, and are thus have a dawn and dusk dependence.

t	 In what follows, an initial study is made of atmosphere. Simplifying
assumptions are made to make the mathematics more tractable.

2. Governing Equations

The continuity and momentum equations (cf. Shere and Bowhill, 1969) are
not affected by the chemical reaction provided that the state variables are given
the extended definition:

P = P(p, T, a)

where P, p, T and a denote pressure, density, temperature and degree of advance-
ment of the reaction, respect:vely. These equations are in tensor notation:

Y+

n	 aUi

nT + p ax 	 ° (2.1)

i

	

and
	 A

W .	 aP	 a^	
(2.2)
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(2.4)
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where

rui 	 OU	 2	 r?uk
0*ji	 j 

+TX1 
781j

We denote time, space variable (x 2 vertical), velocity component, gravitation
vector component, viscous stress tensor, dynamic viscosity and the Kronecker
delta by t, x i• u i+ gig 'Q j i, µ and 8i i respectively. We also take g i = -g B i z and
we define D/Dt to be the total or Eulerian derivative.

In order to develop the energy equation, it is necessary to consider the
thermodynamics of the system. The derivation of the equation of state parallels
the work of Liepmann and Roshko (1957, p. 29) and the derivation of the reaction
rate equation parallels the work of Eberstein (1966). The following discussion
applies to the reaction

J + AB - A+B+J

where J is an inert element. We assume that each component of the mixture is
a perfect gas. The mixture, however, is not a perfect gas. The partial pres-
sure of the i th constituent is

Pi = m i p Ri T
	

(2.3)

where R i = R/W i with R the universal gas constant, W i the molecular weight,
and m  the mass fraction of ith-component. Letting a be the fraction of AB dis-
sociated, n i the number of moles of i th component, and n o the total number of
moles when a = 0,

I

nAB = no Xo (1 -- a)

n A 	 n o Xo a

nB = n o Xo a

ni	 (1 - 
Xo) no



where Xo is the mole fraction of AB when a = 0. Summing the partial pressures
yields

P	 R(a)PT	 (2.5)

where

R(a) := R(0 ) ( 1 + Xo a)	 (2.6)

and

R(0) = R/ (WJ + Xo (WAB	 WJ )l

The reaction equation is as follows:

DNAB /Dt = -fkjr(T), V
 
y - kB (T) 

V

"A [nB]j N	 (2.7)

where

N =^ni

and k is a rate constant. In determining (2.7) it has been implicity assumed that
all molecules present may act as an inert element with equal collision effectiveness.



M	 W  + x  (WAS -WI)
t°
i

}

,a

For chemical equilibrium ., the rate equation reduces to

1-a = 
K	 +a X

a2 	 P	 0

Substituting (2.4) into (2.7) yields

Da
	

Xoa^

Dt	 [pkF (T)/M] 1 - a - [K( T )p/MJ [1 +X 0

,

(2.8)

where

k (T)
K(T)

,.f

and M is the mean molecular weight

4

.7

1 where use was made of the equality

KP

K - Kc - RT

In atmospheric problems the reactant fraction is generally small, and it
will be assumed that Xo '< <1. It follows that aXo « 1. The rate equation may

thus be simplified to give:

J
Da
D - [Pkt (T)/M) 1ff 1 - a - [K(T)p/M] Xa a2}	 (2 .9)
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Dh_ DP	 au i	 r3	 aT

PD 	 L1t + ^i i ax + ax. Ck .3x.
1	 1

(2.12)
Y

y.,

i

Ak

The energy equation is now developed in the usual manner (cf. Liepmann
and Roshko, 1957, p. 185+). Summing the rate of change of the internal, kinetic
and potential energy yields

f7lt- 
pe + 2 pu ; u i "` pg, x z dV

V

+	 oe + Tpuiui + pgX2 u 3 n 3 dA

1

--	 Pn i u i dA +	 u i a^ i ^ dA +	 k a x n i dq (2.10)
A	 A	 A	

i

v* -,re n i is the i th component of the unit normal of the closed surface gib, V is
the volume of 0 and A the area; a is the internal energy per unit mass and k is
the coefficient of thermal conductivity.

By applying Gauss' theorem and substituting the continuity and momentum
equations into (2.10), we obtain

De	 aui	 aui	 a	 aT
P 

Dt _ -p a x + ^, i a x +	 k a x:	 (2.11)

We now use the first law of thermodynamics,h = e + P/p, and the continuity
equation to obtain

6
^r



(2.14)

(2.1)

(2.2)

(2.5)

A^

In a reacting gas mixture the enthalpy depends on the temperature and the
degree of reaction, i.e.

h = h (T, a)

The rate of change of enthalpy per unit mass is then given by

Dh	
-p Dt + Xo B D
	

(2.13)

where B is the enthalpy of reaction Read CP is heat capacity. Both the enthalpy of
reaction and the heat capacity have a weak temperature dependence, and an even
weaker pressure dependence. For simplicity both CP and B will be assumed
constant throughout this p»per.

Eliminating h between (2.12) and (2.13) one obtains tie enthalpy equation in
the form:

DP	 aui	 a	 aTPip Dt ^' X  B Dt = Dt * O' ik axk + aXi k a xi

To summarize, we have found the system

aui
D + P ax.

Du i 	 OP, +P Dt - Pg i - ax i	axi

P = p R (a) T

7
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Da	 kF(T)	 K(T)Xo a^
Dt - P M	 1-o,-p	 M (2,9)

pC, Dt + Xo P  D =	 D + o- i j axi + axi (k-LaxT— 	(2.11)
i i

The dependent variables are P, p, T, u i , and a; the independent variables
are t, x ;. k F , K, c P and B are known Parameters of the system, X U is a small
(known) parameter.

For the remainder of this paper we assume that the atmosphere is inviscid
and nonconducting. Hence, the governing equations are

^-	 Yf

rY

DP	 aui
Dt + P ax, 	 U	 (2.15)

1

Du i 	 OP	 2.1E

	

,`Dt  - Pg i - axi	 (	 )

	

P = p RT	 (2.17)

Dp 
M	

1- a P -^- X0 a2	 (2.18)

DT	 Da	 DP

	

Pip Dt + X o B p Dt	 Dt	 (2.19)

3. Nondimensionalization of the Governing Equations

Since mathematical operations are performed on pure numbers it is proper
to non-dimensionalize the governing equations.

8



Some of the non-dimensional,ization is almost trivial, as shown immediately
below:

R/R(0)

Cp/R (0)

R/p^

M/;'^1 = 1

kFp*^ws

Kpw /Mc^B

where R(0) is the gas constant for a = 0.

p * is a reference density.

Other non-dimensiorializationB have a more direct physical or kinematic
meaning. Thus, distance is defined in terms of scale height and time is related
to the Brunt-Vaisala frequency, i, e.

x i ' = xi/H

t' = tc^B

Further non-dimensionalizations .are:

R'

C 'P

p^

M'

k 'F

K'

T'

B'

S
►

P'

R(0) T/ms 's H^

B/^BZ d2

g^^62

P/,c•* WBZ H2

9
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It is seen that in the primed System we have

P' = p• R' T

In general, the non-dimensional system. of governing equations looks very
similar to the dimensional system.

The quantity ^BZHz is proportional to the energy contained in ^ wave
oscillating with the Brunt frequency, and having amplitude equal to a preg®ure
scale height. The quantity Hcvs is a measure of the acceleration experienced
in such a wave. Since such acceleration must be less than that due to gravity
we would expect

g' > 1

One may estimate the magnitudes of the non-dimensional parameters.

Taking a scale height of 6 km and a Brunt period of 5 minutes, one obtains

(cvB H) 2 ^^ 0. 1 calories/gram

and

g' ^' 200
cv z H ^ 5 cm/sec t , giving	 ,
s	 T ti 200

Further, taking B = 10 kcal/gmole one obtains B ' ^10^^.

4. Asymptotic Development.

The .non-dimensionalized system of equations will be expanded about the
.parameter Xo, i.e., we expand each dependent variable in a possible series of

10
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the form:

f(t, x, z) - ^ f^ N > (t ► x, z) Xo N 	 (4.1)

Nom°

where higher order terms may be dropped as X ° -► 0.

Assume that the atmosphere is initially stratified, quiescent, and bounded
below by the earth.

Hence we have defined an initial value problem with initial conditions:

u i (0, x, z) = 0	 (i = 1, 2)

(4.2)

a(0, x, z) = 0

and. boundary condition:

u^(t, x, 0) = 0

Using. the equation of state to eliminate F' from (218j - (2.19) and substituti"ng
(4.1) into xhe resultant system yields the zero-order solution

_	 (4.3)

a^° > (t, x, z) = 1 - exp ^-kFp<°^ t^

11
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i	 (1>

c3 t	 a x	 z r 2

°

_ a^ + 1 a-=) + u r l) _ -^ as t	 (4.'7>

at	 y =-^ ^ t	 2

a^ a( ) + ati)

where

^ = To - 1

,.,.,,-	 _

Defining T(1 > = T ^ °) T(1) ., P(1) _ p (° > P(1)	 and a( 1 ) - a (^) a(1 ^ , we get the

first. order system

au 2 ^ i ' )	 a_i) _ T T	 + To â Z = To a ( ° )	 (4.5)
at	 + T o az	 (a> (1>	 az

,>	 x

The above forms a linear' system of four partial. differential equations in
four unknown functions. The system is nhomogeneous. The solution of (4.8)
for a i is needed only for the calculation of second order terms. In this paper
we determine only the first order terms.

Dropping the (1) sa^bscript or superscript and eliminating we obtain the
equation

4

a z a 2 _ z^_ Z , a	 * Cz a -r Ca a z T= f ^a ( '° )^
z ^ ^ aX^ ^ az^	 Z^	 y^	 aXZ
at	 at	 (4.9)
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where

o 82 a2	 a2_ 
T a

2 a(0)	
.

f(a( )) = - Cy - 1) 13at2 at e _T ° ax e 	° aZ2

2 a(0)

at aZ
_ C y - 1) 13 a3	 + (y- 1) T a e , a- 

ax
=z (4.10)

and

0	 y To

Using the results of Garding (1950), A. Lax (1956), and Courant and A. Lax

(1955) it can be shown that (4.9) is a well-posed hyperbolic equation.

After (4.9) is solved the other dependent variables are determined by the

equation

2 (o)
a2 + T a P = 

l l ag 
2 . - Toaz + To T + a 2 + To a(°)(4.11)

a t 2	 0 az	 y	 at	 at

aui	 aP	 1 a 2 T	 1 aT +	 a a _ 	 a(° ) (4.12)
ax	 at az	 + y- 1 at 49Z y- 1 at	 at (az

and

_ a P	 1 ^ _ ^ a a.-^. ( ° ^	 (4.13)
U 2	 ^ "7-1

x



R

^i

P

%T

y

y f

... .	 _	 - 9 x

The above definition allows the temperature perturbation to grow exponentially
with altitude without a corresponding growth in 6.

Substituting the definition of 6 into (4.9) yields:

a2	 a2	
2	 C2 	C2(7-1) at e -

at 2 	 a	 yte	 C D +7- 6-	 2	 axe	
a-:/z 

f(a) (4.15

f (a(° )) was defined in Equation (4.10).

The dispersion equation of (4.15) is:

Xt -C 2 (XX + )i +4)X t2 	 + t(y -1)C4 /y] X 	0
	

(4.16)

where ki is the wave number of i.

For a discussion of dispersion relations and how these are obtained for
partial differential equations reference is made to Courant and Hilbert, especially
p. 588.

5. Solution of the First-Order System

In this section we .first demonstrate that the governing temperature Equa-
tion (4.16) is reducible to an inhomogeneous telegraph equation with homogeneous
initial conditions. For a nonreacting atmosphere which is initially perturbed,
Lamb [1909] ^obtained a homogeneous telegraph equation with inhomogeneous
initial conditions.

We take for initial conditions of 0 (t , x, z ) ,

e(0, x, z) = B t (0, x, z) = 0	 (5.1a)

O tt (0, x, z)	 -(y 1) T kF exp (-5z/2)	 (5.1b)

e ttt( 0, x, Z) _ ^^'- 1 ) [Bk2 p(0)2 + T o]exp (-3z/2)	 (5.1c)

14



Conditions (5.1b) and (5.1c) are determined by the requirement that 0(t, x, z)
remain bounded as t - •00 . The negativeness of 8 t t implies that the atmosphere
initially cools. This is in correspondence with the endothermic reaction chosen.

Since the inhomogeneous parts of (4.15) - (5.1) do not depend upon the hori-
zontal space variable, neither does the solution; this is obvious from a considera-
tion of the Fourier representation of 6(t, x, z) . Thus (4.15) reduces to

a2
M[B]	 =	 e z/2 g(a)	 (5.2)

ate

where M [ • l is the telegraph operator

M[ • ]	 _	 a 2/at e -C2a ?la z 2 + C 2/4	 (5.3)

It is worth noting that the initial conditions and the alpha dependence chosen
are such as to imply the relevance of only one space dimension. Other initial or

' boundary conditions would require that the second space dimension be kept. In-T
tegrating (5.2) with respect to time twice,

M[6]	 =	 w(t, .z)	 = kF (y - 1)	 [(1 -Tot e ) Bk f e Z

(213 + 1) (C2/y)t^e^3z /2 -k F e-zt	 (5.4)

subject to initial conditions (5.1a).

The inhomogeneous part of (5.4) is the effect of the chemical reaction. For
a realistic approximation to the atmosphere, the inhomogeneous part of (5.4) must
be multiplied by a suitable weighting function, since the chemical contribution only
extends over a finite altitude regime. We also note that at each fixed altitude the

"	 solution must tend asymptotically to zero in the Poincare sense as t 	 00

The assumptions used in this paper are also suitable for a multilayer ap-
proximation of the atmosphere. In this case we would consider either an initial-
boundary or pure boundary value problem for (4.15). The x-dependence may not
generally be eliminated for this case.

.,n
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t 

8( t , z)	 -	 W (t, z; T) d^r

0

(5.5)

:o-#1

The solution of (5.4) - (5.1a) is well-known [cf. Courant and Hilbert, II',
pp. 695, 202 and is given by

r	
where

fo

C

W(t, z; T ) - e^(tcT) /z 	 Io 2 t - 712 _ ^ 2	 Q( zd7l (5.6)

 1

and

Q( z , 71)	 [ W( t, z'+ 77 ) - W ( T , z ­0 1  /C 2 	(5.7)

Although (5.5) - (5.7) provides an exact solution of (5.4) - (5.1a) 9 this solution
is complicated and does not easily yield qualitative information.

The first order terms are from (4.12) - (4.13) :

T(t, z) = ez/z 6(t, z)

Z a
	 T

u^ (t, z) = -	 - 1 + 8a ,dzfZs

where z is at the earth surface and

t	 8U2
dt [U2	 3'

o

r 	
16
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To obtain qualitative information we consider the Laplace transform of (5.4):

	

-Wzz(Z+,at) + 
(a.2+ 1/4)W	 (y-1) ( 2 +1)(kF/yC)

	

e- 3x/2	 13(kF/C)2 (y -1)e-Sz/2

x 
a + k 

/C ,e_ z 2	 +	 [o• + (kF/C)e-z]

l (kF /C) 2 [(y-1)/y]e- s: /2
+

	

[a + 
(kF

/C) a-.z]3	 (5.8)

k,

where W(z, a) {9(z , -r)1 and or = tc

Equation (5.8) is most readily solved by superposition. We obtain

OD

W ( Z ► )	 (kF/C) (y 1 ) ^N + 1 a.2 _( N+3 N+2	 e -
( 5/2
 + N :

[	 ) c	 )]
N n 0

O (n +1) (-kF/C)n
-(3/2 + n)z

k	 +	 (y-1) ( 2 ^ +1 ) ( kF/yC ) Q^+2 a.2 _ n+1 n+2 e

+

T

D	 ( kF/C ) 2 (y - 1) (n + 1 ) (n + 2) (-'yCa) n 
e	

)

_ (S/2 i+ n z

2'Y	 ,a.n + 3 (,Q 2 -(n + 3) (n + 2 )],	 (5 . 9)
n=Or	 11

1
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Using Bateman's formula (10) (Erdelyi, et. al. I, pg. 238, 1954 we take the
inverse Laplace transform:

	

(y- 1) 8 (-kFt)n + 2	
n +3 n +	 (n+ 2)(n +3)C2 t2

0(t, z) 	 T	 I''(n+,)	 1F2 1;	 2	 2	 4

n " 0

+ (y-1)130 2 (-kF t) n +4 
F 

( 1; n+5 n+6. (n+2) (n+3)C2t2 e-(5/2+n):

2yk 2
F  P (n + 5)	 1 2	 2	 2	 4

{y-1)(213+1)C2 (-kF t)n +a	 n+4 n+5 (n+1)(n +2)C2t2 ' 3/ 2 +n> z
A F P(n + 4)	 1F`2 1 ' 2	 2	 4 e 

" s 0	 (5.10)

We identify the generalized hypergeometric functions appearing in (5.10) as
Young's functions Young, 19121, a special case of Lommel functions.

It had been noted earlier that d(t z) must be asymptotic to zero ask.	
t co . This behavior in time can be obtained byapplying  Luke's formulae

R°	 5.11.2 (T) and 5.11.2 (9) [I, 1969, pg. 199) . The series (5.10) is rapidly covergent.

f} The results of some calculations on the chemical effect are given in Part If.
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