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A METHOD FOR THE THERMAL ANALYSIS OF
SPACECRAFT, INCLUDING ALL MULTIPLE REFLECTIONS AND
SHADING AMONG DIFFUSE, GRAY SURFACES

By Doyle P. Swofford
Langley Research Center

SUMMARY

A new method which uses finite surface elements has been developed and used to
calculate temperature histories for spacecraft of arbitrary physical geometry. This
method assumes gray surfaces with diffuse reflection and radiation properties and
accounts for all multiple reflections. The analysis is performed in terms of the
Cartesian coordinates of the four corners of each plane quadrilateral element. Shading,
or optical blocking, is accounted for in the radiant heat exchange between each pair of
surfaces and in the thermal fluxes from external sources which are incident on each
surface.

This method has been programed for a digital computer and the program can be
used as is for the thermal analysis of any spacecraft whose surfaces may be approxi-
mated by planar quadrilateral elements which obey Lambert's cosine law. A listing of
the program and its auxiliary programs is included in the report.

An example problem of a complex, multiwinged earth-orbiting satellite is also
presented.

INTRODUCTION

For a spacecraft which has extended members with large surface areas or has
large enclosed spaces containing personnel or sensitive electronic equipment, shading
and multiple reflections among its surfaces can be critical to its thermal design.

The projected areas of the external surfaces of the spacecraft and the shape factors
between all surfaces show the effect of shading of spacecraft surfaces by one another.
The usual method of obtaining projected areas is by photographs of a model of the space-
craft. Shape factors may also be obtained by a photographic method (ref. 1, pp. 399-402).

For complex spacecraft in which temperatures are required at literally hundreds
of nodal points, computer calculation methods are the only practical approach because of
the large number of shape factors and projected areas that must be obtained.




When the computer program in this report was written, other programs were
already available which calculate projected areas and shape factors for configurations
with shading and which account for multiple diffuse reflections of thermal radiation as
well. (See ref. 2.) However, since these programs require much time to prepare and
run, a more simple, yet flexible program, such as the one in the present investigation,
was desired for development use in a wide variety of spacecraft. The thermal design
may be fairly well fixed by use of the simpler program and then confirmed by use of a
more sophisticated program.

The treatment of the multiple reflections is made tractable by the usual approxi-
mation that all the surfaces reflect and emit radiation diffusely (i.e., according to
Lambert's cosine law). Once the shape factors and projected areas are calculated, the
guadrature solution to this diffuse problem (developed by Gebhart, ref. 3) can be used.
The basis of the approach used here is to divide the irregular quadrilateral surfaces of
the spacecraft into grids by the use of two-dimensional coordinate systems embedded in
each separate surface. The division allows the required integrations to be carried out
in two-dimensional spaces. A shading test for each grid element is made by determining
whether a line from the source point to the grid point is intercepted by any other surface
belonging to the spacecraft.

Calculated temperatures resulting from the shape factors and projected areas can
be steady state or time dependent. If radiant heat transfer is predominant over conduc-
tive heat transfer, equilibrium temperatures may be found by solving simultaneous equa-
tions for the fourth power of the temperature of each surface. The nonequilibrium case
(varying external and internal heat loads) is solved by integrating the time derivatives of
the temperatures. In this case heat conduction is included in the calculation.

SYMBOLS
A area
[A] diagonal matrix of the areas of a group of surfaces
Aproj projected area of a surface
[a] diagonal matrix of surface absorptivities
B thermal flux incident on one surface from others
{B} one-dimensional array of thermal flux incident on each surface from the

other surfaces



(D]

specific heat of a material

radiation coefficient between two identically shaped, closely spaced parallel

plates, 9
1.1 4
e  ej

matrix of the radiation coefficients Dij

hemispherical emissivity of a surface

diagonal matrix of the emissivities of a group of surfaces

shape factor between surface i and surface j

square matrix of shape factors between pairs of a group of surfaces

shape factor of a spacecraft surface i for the albedo flux from a planet
surface

shape factor of a spacecraft surface i for planet-emitted radiation
square matrix which yields {B} when it operates upon {e} (see eq. (6))
sum of the thermal flux emitted by a surface and the flux reflected by it
one-dimensional array of total thermal flux moving away from each surface
conduction coefficient between nodes i and j

square matrix of conduction coefficients between pairs of a group of nodes
identity matrix

shading indicator (Ish = 0: shaded by an intervening member;
Igh = 1: not shaded)

sunlight indicator (K= 1: sunlit; K= 0: shaded by planet)

mass



Qcond
Qjnt

Qrad

&l

i

(W]

[2]

o, B,y

unit normal vector of a surface

net heat flow rate to a node

net rate of heat flow to a node by conduction

rate of internal heat generation in a node

net rate of heat flow between close parallel nodes by radiation
position vector of a point

position vector of point j relative to point i, 1"]- - T
solar flux at position of planet or spacecraft

absolute temperature, °K

equivalent blackbody temperature of a planet, °K

time

position vector of the centroid of an elemental area

position vector of the lower left corner of the jkth grid element of a plane
quadrilateral

unit vector directed toward the center of a planet from an orbiting spacecraft
diagonal matrix with diagonal W;j = Z Dij
i
coefficient for heat conduction away from a node, zi = Z hij
i
diagonal matrix of coefficients for heat conduction away from each node

parameters which each give the ratio of the lengths of two colinear vectors
having a common origin



aY’B'

abscissa and ordinate of a point in a normalized skewed coordinate system

sum of the thermal emission flux from a spacecraft surface and the reflected
portion of incident thermal flux arriving at the surface directly from
sources external to the spacecraft

one-dimensional array of the fluxes ¢ of the surfaces of a spacecraft

angle formed by vectors n; and Tjj

angle formed by vectors ﬁj and Tjj

angle formed at the center of a planet by lines to the sun and to an orbiting
spacecraft

parameters giving any vector lying in a given plane as a linear combination
of two given vectors in the plane

ratio of the projected area of a surface to its total area (unit projected area)
one-dimensional array of unit projected areas

reflectivity of a surface

diagonal matrix of reflectivities of surfaces

reflectivity, or albedo, of a planet surface for solar radiation
Stefan-Boltzmann constant

total radiative heat flow from surface j which is incident directly upon
surface i

heat flux incident upon elemental area dA; which is received from dAj
planet solar albedo flux incident upon a surface of a spacecraft

planet thermal emission incident on a spacecraft surface
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$rad net thermal radiation flux received by a plate i from identical plates j
parallel to and near it, Dji('r;1 - Tf)
qbs solar radiation flux incident upon a spacecraft surface
n. - r..\(n. - r;.
”Dji function which is integrated to yield Fji’ - ( ! 13)( ] 21])
™ (fl_] - fl])
w half the angle subtended by a planet from the position of an orbiting
spacecraft
Subscripts:
a albedo
p planetary
s solar
t thermal radiation emitted by spacecraft surfaces or planet surface

When an expréssion with an asterisk affixed as a superscript has a negative value,
it is set equal to zero; positive values are unchanged.

A bar over a symbol indicates a vector quantity.
ANALYSIS

Radiative Heat Balance

The analysis of the heat transfer by diffuse emission and reflection of thermal radi-
ation between one surface and the remainder of a group of surfaces is introduced by first
considering just two surfaces i and j exchanging thermal radiation. The two surfaces

are assumed to be isothermal.
The heat flux incident upon the elemental area dA;j of surface i which is
received from dAj of surface j is given by
d N Hj dA;
¢ji == 3 cos 6; cos 9]-
1]



where Hj is the heat flux leaving dA]-, rij is the distance between dA; and dAj,

and 6; and 9]- are the angles made with the normals to dA; and dAJ-, respectively,
by the line f'ij between them as shown in sketch A:

Sketch A

If r; is the position vector of dA;, and f'j that of dAJ-, then

o f‘] —fi ﬁl fij
cos 0; = ny 'f'] R fil Iful
and
r. -1 -(r. -r n. - 7T
cos #: =n. - 1 ]__.ﬁ (] 1)=_] 1]
bR |75 ||

where n; and ﬁj are unit normal vectors to dA; and dAj. Thus,

ay = - o1 (A 513)4(51 ) as,
r1]
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so that
Aoy = Hyy; das

If "I’ji is the total heat flow incident upon surface i from surface j, then

2 _ -
and
(I)ji = SA] H:i ‘S‘Al "bij dAy dAj
Assuming Hj constant over surface j gives
251 = H; fAj gAi Vi A1 48y = HFij A

where the shape factor Fij is the average value of ‘pij over the two surfaces. Unlike
the conventional shape factor, Fj; is not nondimensional and must be multiplied by Aj

to yield the conventional quantity fij- Also, Fji = Fij' The average flux incident on

surface i from surface j is defined as

This is the flux incident on surface i from a single surface j. For more than one sur-
face j, the total flux incident on i 1is given by the sum over j of the individual

contributions:
i

If surface i is concave, B; includes a contribution from surface i to itself.
When B; and H; are treated as the ith components of linear arrays {B} and {H},
it follows directly from equation (1) that

{B} = [Fl[al{H} @)

where [F] is a square matrix with elements Fij, and [A] is a diagonal matrix whose
diagonal A; is the area of surface i.

8



The flux Hj leaving surface j is made up of € (the emitted flux and the
reflected portion of flux incident from sources external to the spacecraft) and the
reflected part ijj of the incident flux from other surfaces, where P; is the reflec-
tivity of surface j. Thus,

Hj = ¢ + ;B (%)

and & includes the reflected part of any external radiation directly incident on j, such
as sunlight. In the array form,

{H} = {e} + [p1{B} @)

where [p] is a diagonal matrix of the reflectivities of the surfaces.

Equations (2) and (4) are two matrix equations in the two arrays {B} and {H};
therefore, unique solutions may be obtained for them. Substituting equation (4) into
equation (2) gives

{B} = [Fllal{e} + [FI[al[p]{B} (5)
and, on solving for {B},

{B} = [I - FAp] L[FAJfe} = [GHe} (6)

where [I] is an identity matrix. Since [G] is a function only of the surface properties
and geometry, it need only be evaluated once for each configuration.

The net heat fluxes are given by the difference {B} - {H} between the incident flux
and the flux leaving the surfaces. From equation (4),

{B} - {H}=[1 - Pl{B} - {¢}
or
{B - H} = [a]{B} - {¢} (7
When equation (7) is substituted into equation (6), the following equation is obtained:

{B - H} = [aG - IJ{e} (8)



where [a] is a diagonal matrix of the absorptivities of the surfaces and the matrix [G]
is given in equation (6).

Equation (8) gives the net flux on each surface due to all emissions and reflections
of thermal radiation from all the surfaces. Now, only the fluxes from external radiation
sources which are directly incident on the surfaces remain to be accounted for.

In the specific case of a spacecraft immersed in a real environment, there will be
two regimes of thermal radiation flux — the principally short-wavelength solar flux and
the principally long-wavelength emission from the spacecraft surfaces and from the
planét surface. The external thermal radiation sources are direct and planet-reflected
(albedo) solar flux and emission from the surface of a planet due to its temperature.
Heat conduction as well as radiation will be accounted for. A diagram of the heat trans-
fer for a single node is shown in sketch B:

¢s,i ¢p,i
Bs,i— Hg
Node i
B¢ J H 3
(qint )i (qrad )i
(qcond)i
Sketch B

If 9 is the net rate of heat input to member i, then the heat balance is given by

(qint)i + (qcond)i

+ A; + (¢rad)i ©)

10



where

mj mass of i

ci specific heat of i

Ty absolute temperature of i

¢s,i solar flux directly incident on i, both planet reflected and direct from the sun
¢p,i flux emitted from the planet surface and directly incident on i

(¢rad)- net radiation flux to i from j, which is parallel to and near i
i
Qing ). rate of internal heat generation
int );
(qcond)i net rate of conduction to i from other members

Equation (8) gives for the solar spectrum

{Bs - Hg} = [25Gg - I}feg} (10)

where € ; 1s the reflected part of the incident solar and albedo flux on i, that is,
(psqhs)i. For long-wavelength flux

{Bt - He} = [ eG, - i} (11)

where ¢ 4 is made up of reflected planet-emitted flux and the thermal emission of i.
Thus

_ T4
Et,i €l pt,i;tp,i
or in array form,

fe )= o[e]{T4} +[I- e]{qbp} (12)

where o is the Stefan-Boltzmann constant, [e] is a diagonal matrix of the emissivities
of the surfaces, and T4} is an array of the fourth powers of the temperatures.

11



Equation (9) becomes, in the array form,

{17 B - Hgl + By - Hy} + {65+ 6} +{qiz£t} i {qcznd}+ {oraa} (13)

Substituting equations (10), (11), and (12) into equation (13) gives

()~ (3505 - Tpelipol ol - Jtfrh ooy - 0t - o h» o + 0

q.
et o 2

and after simplification,

{&)= @)l + Gepalis)+ [elfL+ Gytt - @)} - ofellT - Geen{r?)

9int * 9cond :
+{ n Acon4}+{¢rad} (15)

The net rate of heat conduction to member i is given by

(dcona); zhuT‘T Z 13] zhijTi

] i

where hij is the conduction coefficient between nodes i and j. In array form,
{9cong} = [b]{T} - [2]{T} = [h - z}{T} (16)

where z is a diagonal matrix with z; = Z hij'
i
The net radiant heat to i from the identical panel j with which it forms an

isolated enclosure is given by
rad z Djj ( )

i

where Dji is the radiation coefficient between j and i, given by

12



Thus,
{¢pagt =D - W]{T4} m)

where W is a diagonal matrix with W; = Z Dij-
i
Substituting equations (16) and (17) into equation (15) gives the heat balance as

{%}= [ag][I + GgPgl{Pg + Pa} + [e][I + Gy(I - e)]{¢p}
- ofe]f1 - Gte]{T4}+ [D - wi{T4}

+ [}—J[h - z]{T} + {q{Tnt} (18)

Only the external sources ¢ s.ir Paj and qbp j remain to be evaluated. The
b4 td ?
solar flux d’s,i incident on 1 is the simplest, being proportional to the projection of
the sunlit area of surface i wupon a plane perpendicular to a line to the sun (Aproj).:
i

A9s,1= (Aproj); KS

o= () o
1

Or, in array form,
{ts} = KS{ug} (19)

where K has the value 0 if the spacecraft is in the shadow of the planet and the value 1
if not; and S is the local solar flux.

The planet-emitted flux is given by

B 4
bp,i* fp,i"Tp

13



and, in array form,

ol bt e

where fp,i is the shape factor of surface i for the planet-emitted radiation, and Tp
is the equivalent blackbody temperature of the planet (ng is equal to the average value
over the planet of the emitted thermal radiation ﬂux).

The planet solar albedo flux on surface i is given by
~ *
qba,i = ppSfa’icos g
or, in array form,
{0a}= ppS cos* o {f,} (21)

where Pp is the mean reflectivity of the planet for sunlight, fa,i is the shape factor
of surface i for the planet albedo flux, 64 is the angle formed at the center of the
planet by the lines to the spacecraft and the sun, and cos"‘BS = cos 0y if cos Oy is
positive and equal to 0 if cos 6y is negative.

The factors fp and f, are difficult to calculate, even without the added compli-
cation of partial shading of a surface. An approximation for them — exact when the panel
is exposed to the entire portion of the planet surface which is visible from the position of

the spacecraft — is

£, ~t s~ (s - Vo) sinw = gy 5 sin2w
a,i p,1i i p Np,1

Here \_fp is a unit vector pointing from the spacecraft toward the center of the
planet, and w is the angle included by \_fp and a tangent from the spacecraft to the
planet surface. The factor Hp,i approximates the effect of shading on fpj and fa,i'

When the relations for the external fluxes (eqs. (19) to (21)) are substituted into
equation (18), the heat balance becomes

{%}= KS[ag][I+ Ggpsliug}+ ppS cos"‘@S sinzw[as][l + Gsps:'{“p}
+ ng s'mzw[e] [I + G(I - e)]{pp} - ofe] [I - Gte]{T4}
A

+ [0 - wifr}s [L]n - aliz) + {q_m_t} (22)

14



For the equilibrium case, the net heat flow to each node is zero, and with negligible con-
duction, equation (22) can be solved for {T4}:

-1
otr4} = [e(I - Gte) + %(D - W)] KS[ag][I + GgPglits} + PpS cos*0g sinw[ag)[l + Gg Psl{tp}
+ o‘I‘g sinzw[e][I + Gy(I - e)]{u.p} + {11%} (23)

For a multifaceted node which is nearly isothermal, although its faces receive
different thermal radiation fluxes, the total net heat flow rate is given by

4= 2(%)1'Aj

where n is the number of faces of node i. For the nonequilibrium case,

dT, .
T A (&) (24)
i

Equation (24) may be integrated numerically to yield the temperature history, beginning
with given initial temperatures.

Listings of the three computer programs which calculate shape factors, projected
areas, and temperatures are shown in appendix A. They are written in the FORTRAN IV
language. The shape factors and projected areas are run in separate programs because
they need to be calculated only once for each configuration. In the main program, sur-
face properties, materials, heat loads, attitude, and flight trajectory can be varied for a
fixed configuration without recalculating the shape factors and projected areas. Punched-
card outputs from the other two programs supply shape factor and projected-area inputs
to the main program.

Computation of Geometric Shape Factors and Projected Areas

Routines were written to enable the digital computer to calculate [F] and {u,}
using as input the coordinates of the corners of each plane quadrilateral into which the
spacecraft has been divided. The factor which makes the calculation of the projected
area of a flat plate complex is the shading by intercepting surfaces.

In order to calculate the unshaded projected area of a plane quadrilateral, it is
divided into an n Xn grid. Formulas for the coordinates of the grid points and areas

15



of the grid elements are developed in appendix B. The ratio of the projected area to the
total area is given by

1 — _\¥
M= —S‘ (Vsource ' ni) Ish,i 944
Ai Ai ’
~1(7 AN VY (25)
A;\ source 1 sh,i Ay
i
where vsource is the unit vector in the direction of the source and

0 for shading
Igp = .
1 for no shading

The method of determining shading is developed in appendix C.

In the computation of the shape factor between a pair of plane quadrilaterals, both
are divided into n Xn grids as before, and each element of one is paired successively
with each element of the other. The shading test is performed by the same scheme as
for the projected areas. The shape factor Fj; between surfaces i and j is given

J
by the average (taken over both surfaces) of the function z,l/ij:

v
Fi: = V.. dA; dA;
1] AiAj A Aj ij Al A]

S .. AA: AA.

" AjA; 123 Vij AAp Ady

L1 N (B Ty)(R - Ty)

- L Z ; (Tsh);; 441 A4, (26)
SR Legt

The position vector I_'ij is given by fj - I, where 1; and 1"]- are the position
vectors of the centroids of the elemental areas AAi and AA]-. The same formulas as

for the projected-area routine are used for the area of AA; and its centroid rj.

If a surface k is nonplanar and is approximated by a set of N planar surfaces,
then py is

16



==
b =5 (27)

(28)

In this investigation the nodal surfaces into which a spacecraft is divided are called
panels. A large member may be divided into several pieces to conform more nearly to
the assumption of constant temperature over each panel. Surfaces of the spacecraft which
can intercept thermal radiation which otherwise would impinge on any of the panels are
called shaders. There will be fewer shaders than panels if any of the plane surfaces is
subdivided into more than one panel.

EXAMPLE PROBLEM

An example of the application of the computer program is the prediction of temper-
atures on the proposed Meteoroid Technology Satellite. Figure 1 is a photograph of a
model of the spacecraft shown attached to the last stage of its booster, with meteoroid-
detector panels deployed. The cubical modules attached to the central structure are
experiments for measuring velocities of meteoroids. The octagonal prism at the top is
mainly solar cell area. In this example, the spacecraft is spinning about its axis of
symmetry.

The projected areas and shape factors are calculated in separate programs to be
used later as inputs to the temperature-prediction program. The Cartesian coordinates
of panel corners and shader corners are used as input for the projected-area and shape
factor programs. Actual areas of the panels are also provided by the projected-area
program as input to the main program.

Direct inputs to the main program are absorptivities for solar radiation, hemi-
spherical emissivities, the product of mass and specific heat for each panel, radiation

17



coefficients between back-to-back panels, and orbit and spacecraft-attitude parameters.
A circular orbit with an altitude of 300 nautical miles (556 km) and an inclination of 38°
to the equator was assumed.

In this example, 104 nodes were used. No conduction is accounted for in this
example. Because of the small thicknesses and large surface areas of the nodes, radia-
tion will outweigh conduction by far.

It was necessary to use a very small time increment (0.05 min) in the numerical
integration of the temperatures. Some of the nodes consist of a sheet of plastic film
0.00025 inch (0.00064 cm) thick, with a very small thermal capacity; therefore, the solu-
tion is unstable for larger time increments.

The temperatures all converged within two or three orbits, without oscillation, to a
solution which repeated itself on subsequent orbits. The temperatures compare reason-
ably with those obtained by a similar heat-transfer computer program which does not
take multiple reflections into account.

The temperature history is plotted for seven nodes, whose locations are indicated
in figure 1. The temperature plot for the outer face of one of the upper velocity detectors
(see fig. 2) follows the heat inputs to it very closely because it has very low thermal
inertia. At the far left of the plot, the decline from maximum value of the earth albedo
and earth thermal fluxes is noted, while the solar input remains constant. The computed
value of the albedo and earth thermal flux declines to zero at about 24 min after perigee,
after which the albedo remains zero and the earth thermal flux increases. At about
31 min, the spacecraft enters the earth's shadow. During shadow, the earth thermal flux
passes through a maximum and goes to zero again at about 71 min. Sunlight appears
again at about 66 min. Albedo flux increases from zero at around 71 min to a maximum
about midway through the sunlit period. The times of maximums and minimums in the
thermal fluxes incident from external sources and in the temperature do not coincide
exactly, since the node receives radiation from other parts of the spacecraft also.

Figures 3 and 4 show the temperature variation over the orbit for a horizontal
detector and a vertical detector, respectively. A schematic illustration of the cross
section of these meteoroid detectors is given in figure 5, with the bumper shields on each

side shown.
CONCLUDING REMARKS
A method has been developed for the thermal analysis of geometrically complicated

spacecraft whose surfaces can be approximated by plane quadrilaterals with gray surfaces
having diffuse reflection and radiation properties. Optical blocking between surface

18



elements is accounted for automatically. Multiple diffuse reflections are also accounted
for. Listings of the computer programs which perform the calculations are included.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., May 1, 1970.
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APPENDIX A
COMPUTER PROGRAM LISTINGS

Spacecraft Temperature Program

PROGRAM ORBTEMP (INPUT+OUTPUT « TAPES=INPUT « TAPES6=0UTPUT)

0090

HEAT TRANSFER PROGRAM FOR DIFFUSE RADIATION ON MULTIPANELED SPACECRAFTO080

DIMENSION AR1(104)+AR2(104)+AP1(104)+APP1(104)+APP2(104)4+CSH(104)
1ETAS(104)+ETAE(104)+sFSP1(104431048)+FSPP1(104+104),FSPP2(1044+104)
PHCOND(104+104) sWATE(104)+sRRAD(104+104)sT(104)sXMU(104)«TETAS(20)
3YMU(104) s TXMU(104420)+e TTXMU(20)+sDT(104) ¢« THELAM(343)2URTH(343)

4 IPIVOT(IO4)OINPEX(IO402)

DIMENSION BTHETA(20) «BALPHA(20)BBETA(20) +RM3PN (3432 )«RM11(343)
IRM30P (3¢3)sRM3A (3e3)4sRMIB(3¢3)eRM20(3¢3)+RMINTH(3¢3) RMOB(3+43)«
PRMEB (3+43)UVEC(3+4104)VEC(3)

DIMENSION XMUSUNI(42s 7419)s TPHIS(36)PHIS(26)eAXIS1(
13450)sAXIS2(3450)« TXMUS(360)4VEL1(3)sVE2(3)

DIMENSION VE3(3)«RMIPHI (3+3)+RMPIF(3+s3)

DIMENSION PHIE(104)

FORMAT(12F642)

FORMAT(SE16.8)

FORMAT(6F13+3)

FORMAT(2X+10E1245)

FORMAT(//76H TIME=E1548418X«e22HINTERNAL TEMPERATURE =E1546/)

FORMAT (1H1 29X+ 9HTIME (MIN) s TX s 14HTHETA(RADIANS) +5X ¢ 1SHALTITUDE(MILE
1S)e5Xe15HH O=SHADE +1=SUN+s9X+s3H{AMP + 18X 7THETAS(1)//)

FORMAT (1H1 « 10X+ 14HVALUES OF UVEC//)

FORMAT(1H1 + 10X+ 14HPROGRAM INPUTS//)

FORMAT (2X +6E2066)

FORMAT(3(2144E16¢8))

FORMAT(T7F11.8)

FORMAT(7110)

FORMAT(8E16.8)

NTIME=1

READ(S+1856) NPANEL + NFACINHCOND ¢NRRADWNINSFC IFTLUPWISPIN

DO 3 I=1«NPANEL

AR2(1)=0e

APP2(1)=0.

DO 3 J=1+NPANEL

HCOND(14J)=00e

FSP1(1+J)=0,

FSPP1(1¢J)=0e

FSPPZ2(I1+¢J)Y=00e

READ(541856) KEXTsKINT 3+ KRRAD &KHCOND

READ (5915 )RADE ¢ALT«VEL TOsVELROSTI«DTI14TIDWS

READ (5415)TE«BOL TeGs AUWRE
FORMAT (1HOS8HSOLAR CONSTANT s S~B CONSTANT «EARTH TEMPe +EARTH REFLECT

0070

0930
0940
0950
0960
0970
098¢
0990
1000
1010

1030
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11

1313

1314

1316

1320

1492

1776

1861

APPENDIX A — Continued

1IVITY)

WRITE(641322)

WRITE(6417) S«BOLTTEWRE

READ (54 1S )ABETA AINCE+AINCO +ALPHA 4 COMEGA ¢y DOMEGA  OMEGAP sPHINS THETAQ
IF(IFTLUP) 11411012

READ (5S¢ 15)BALPHA

READ(5,15)BBETA

READ (5. 15)BTHETA

READ(S5415) (AR1 (J)esJ=1NPANEL)
READ(Ss14) (AP1 (J)eJ=1+NPANEL)Y
READ(S+14) (APP1 (J)s+J=1NPANEL)
READ(S+14) (CSH(J)eJ=1«NPANEL )
READ(S+14) (WATE(J) «J=1NPANEL)
WRITE(6+1313)

FORMAT(1HOIOHEXTe AREAS)

WRITE(6+17) AR1

FORMAT (1 HO25HEXTe SURFe ABSORPTIVITIES)
WRITE(641314)

WRITE(6417) AP1

FORMAT (1HO23HEXTe SURFe EMISSIVITIES)
WRITE(6+1316)

WRITE(&+17) APPI1

FORMAT (IHO7HWEIGHTS)

WRITE(641318)

WRITE(Se¢17) WATF

FORMAT (1HO14HSPECIFIC HEATS)
WRITE(6¢1320)

WRITE(6+17) CSH

READ(S5+14) (T(J)eJ=1+NPANEL)
IF(KEXTeEQeO) GO TO 1111

DO 1492 K=1.NFAC

READ(S5+¢1984) [114J1+FSPRI(I14J1)el120J2¢FSPPL(124J2)913¢J34FSPP1(130
1J3)

FSPPI(J1+I11)=FSPP1(11+J1)
FSPP1(J24+12)=FSPP1(12+:.J2)

FSPP1 (J342I3)=FSPP1(I34+J3)

DO 1776 1=1NPANEL

DO 1776 J=1NPANEL
FSPI(1+4J)=FSPP1 (I +J)*AR1 (J)
FSPP1(1¢J)=FSP1 (1 4J)
RRAD(I4J)==FSP1(lsJ)*(1e-AP1(J))
IF(]eEQeJ) RRAD (! ¢« J)=RRAD(I4J)+10
CALL SIMEQ(RRAD ¢NPANEL ¢ FSP1 «NPANELDETERMIPIVOT+104,4ISCALE)
FORMAT(1H160X6HFSP1I~=S///)

21
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APPENDIX A — Continued

WRITE(641861)
WRITE(6+:1305) (( FSP1{JeKIeK=14NPANEL ) e J=1 sNPANEL )

DO 1849 1=1NPANEL

DO 1849 J=1,NPANEL

RRAD(14J)==FSPP1(1+J)%(1e~APP]1(J))

IF(1eEQeJ) RRAD(I+J)I=RRAD(Ie¢J)+1e

CALLSIMEQ (RRADsNPANEL « FSPP]1 +NPANEL+DETERMIPIVOT 1044+ ISCALE)
FORMAT (1H160X7HFSPP1-S///) ’

WRITE(6+41862)

WRITE(641905) ((FSPP1 (JeK)eKK=1¢NPANEL ) e J=1 4 NPANEL)

CONTINUE

RADO = RADE + ALT 1120
THETA = THETAO 1130
P = RADO*VELTO 1140

COSEGA=COS(COMEGA)

SINEGA=SIN(COMEGAY}

COINCE=COS(AINCE)

SINCE=SIN(AINCE)

IF(KINT«EQe0O) GO TO 1033

READ (S+14) (AR2(J)sJ=1+NPANEL)

READ(S5414) (APP2(J)eJ=1 NPANEL)

DO 7011 I=1.NINSFC

READ(541984) 114J14FSPP2(114J1)¢120J2+FSPP2(124J2)4134JU3+FSPP2(13s
1J3)

FSPP2(J1 411 )=FSPP2([14+J1)

FSPP2(J2412)=FSPP2(12+J2)

FSPP2(J3413)=FSPP2(13.J3)

DO 1929 I=1NPANEL

DO 1929 JU=1.NPANEL

FSPP2(1+J)=FSPP2(1«J)*ARZ2(J)

RRAD (1 ¢ J)=~FSPP2(1,sJ)%(1e—-APP2(J))

IF(l1eEQeJ) RRAD(I+J)I=RRAD(I eJ)+10

CALLSIMEQ(RRAD yNPANEL ¢+ FSPPZ2NPANEL+DETERM IPIVOT 104« ISCALE)
FORMAT (1H1 60X7HFSPP2-S///)

WRITE(6+1863)

WRITE(691905) ((FSPPZ2(JeK)sK=14NPANEL ) e J=1 ¢NPANEL)
IF(KHCOND«EQe0) GO TO 1030

DO 1010 1=1«NHCOND

READ(S5+41984 )11 +J]1 «HCOND(I10J1)e12¢J2+HCOND(I2+¢J2)013+4J3+HCOND(I30J
13)

HCOND(J14113=HCOND(I14J1)

HCOND(J24¢12)=HCOND(12+J2)

HCOND(J34I3)=HCOND(13+J3)

CONT INUE



1324

1030

207

1011
1020

1311
420
4891

1312
4893

2849
1701

4897

246

APPENDIX A — Continued

FORMAT (1H123HCONDUCTION COEFFICIENTS)
WRITE(641324)

WRITE(6+417) HCOND

CONT INUE

DO 207 1=1e+NPANEL

DO 207 J=1 «NPANEL

RRAD (1+J)=0,

IF(KRRADEGQs DY GO TO 1020

DO 1011 I=1+NRRAD

READ (541984 )11+ U1 ¢RRAD(11¢J1)e12¢J2¢RRAD(I2¢J2)¢134J3+RRAD(I34U3)
RRAD(J1 + 11 )=RRAD(I14J1)
RRAD(J2+12)=RRAD(12+¢J2)
RRAD(J3+I3)=RRAD(I3+J3)

CONT INUE

CONT INUE

READ(S5¢1856) NETAS«NPHIS

IFCISPIN) 1312.131241311

DO 420 !=1NPANEL

READ (5410101 ) (TXMU(I4J)aJ=1,NETAS)
FORMAT (1HO12HMU BAR TABLE)
WRITE(6+4891)

WRITE(6417) ((TXMUCI4J)eJ=1+NETAS) s I=1NPANEL)
READ(5414) (TETAS(M)M=1.NETAS)
FORMAT ( IHO10HETAS TABLE)

WRITE(6+4893)

WRITE(6417) (TETAS(M)M=14NETAS)

DO 7 M=1NETAS
TETAS(M)I=TETAS(M)*¥0174532925
IF(ISPINeEQel1) GO TO 103

DO 4 T1=1NPANEL

DO 4 J=1.NETAS

READ (5410101 ) (XMUSUN(T sJeK) e X=1NPHIS)
FORMAT(1H120HMU(ETAS«PHIS) TABLES)
WRITE(64+4895)

DO 2849 1=1NPANEL

DO 2849 J=1+NETAS

WRITE(641701) (XMUSUN({IsJeK)eK=14NPHIS)
FORMAT(//2X+10E1265)

READ(S5¢14) (TPHIS(NP) NP=1sNPHIS)
FORMAT (1HO10HPHIS TABLE)

WRITE(6+4897)

WRITE(G6+17) (TPHIS(NP)JNP=1,NPHIS)

DO 246 M=1+NPHIS

TPHIS(M)=TPHIS (M) ¥,01745329252 '

23
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APPENDIX A — Continued

READ(S5e¢16) ((AXIS1(KeJ)eK=193)eJ=1¢NPANEL)
READ(S+¢16) ((AXIS2(KeJ)sK=143)eJ=1NPANEL)

READ(S5416) ((UVEC(K+J)sK=1s3)¢J=1 ¢ NPANEL)
DO 8 L=1sNPANEL
STOR=AXIS1 (1 L)
AXISI(1+L)=AXIS1(24L)
AXIS1(24L)=AXIS1(3.L)
AXIS1(3+.L)=STOR
STOR=AXIS2(1.L)
AXTIS2(1L)=AXIS2(24L)
AXIS2(2L)=AXIS2(3.L)
AXIS2(3+L)=STOR
STOR=UVEC(1.L)
UVEC(1aL)=UVEC(2sL)
UVEC (2.L)=UVEC(3.L)
UVEC(34L)=STOR

PROGRAM TO CALCULATE ENVIRONMENT OF SPACECRAFT

1610
1620

ROTMTX(MsNETA) COMRPUTES THE ELEMENTS OF A ROTATION MATRIX M ABOUT AXIS N

(N=1 TO 3) THROUGH ANGLE ETA

CALL ROTMTX(RM3PNe«34PHIN)

CALL ROTMTX(RM11s1«¢AINCO)

CALL ROTMTX(RM30P +3+0OMEGAP)

CALL MULT(RMIPHI +RM114+RM3PN)

CALL MULT(RMPIF 4RM30PRMIPHI)

TIFCIFTLUP) 10241024101

CALL FTLUP(THETA+ABETA+1+20+4BTHETABBETA)
CALL FTLUP(THETA+ALPHA+1+20+BTHETA+BALPHA)
SINTHE = RADE/RADO
COSTHE=(1 e =SINTHE*%¥2)%%¢5
OMEGA=T [ ¥*DOMFGA

THETAN==-THETA

CALL ROTMTX(RM3NTH. 3, THETAN)

CALL ROTMTX(RM3A+3.ALPHA)

CALL ROTMTX(RMIBe14+ABETA)

CALL ROTMTX(RM20+2+0OMEGA)

MULT (MP+M1 ¢M2) MULTIPLIES 3X3 MATRICES M1 AND M2,GIVING

CALL MULT(RMEB«RM3ARMPIF)
CALL MULT (RMEB.RMI1BRMEB)
CALL MULT(RMEB.RM20.RMEB)

(MP)Y=(M1) (M2)

1660
1670
1680

1630

2540
2550
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RMEB 1S COMPLETED 2560

RCTATION MATRIX RMEB ROTATES THE INERTIAL REFERENCE FRAME (Z-AXIS COINCIDENT
WITH PLANET SPIN AXISe«X—-AXIS PASSES THROGH THE VERNAL EQUINOX) TO COINCIDE
wITH THE SPACECRAFT BODY AXES

170

DO 170 J=1+3

VEC(J)=RMEB (J+1 ) #COSEGA+RMEB (J¢2)*SINEGAX¥COINCE+RMEB (J+3)*SINEGA*
1 SINCE

CALL MULT (RMOB +RM3A +RM3NTH)

CALL MULT (RMOB+RM1B+RMOB)

CALL MULT(RMOBRM20.RMOB)

ROTATION MATRIX RMOB GIVES ORBIT POSITIONe COLUMN 1 GIVES COMPONENTS OF UNIT
VECTOR IN DIRECTION OF CRAFT FROM CENTER OF PLANET

1809
1810

1918
160

IF(ISPINEQel) GO TO 1

DO 160 I=1NPANEL

DO 9 J=14+3

VEL(J)Y=AXIS1(Je1)

VE2(J)=AXIS2(Je 1)
COSE=—UVEC(1+1)%¥RMOB (141 )—UVEC(2+]1)*¥RMOB(2+1)-UVEC(34+1)*RMOB(34+1)
SINE=(1e~COSE*COSE)**e5

I1F ¢ COSE el.TeelE~-7) ETAE(I)1=1e¢57079633

1F( COSE eGFeelE~7) ETAE(I)=ATANZ2(SINE«COSE)
IF((1e~ABS(COSE))el.TelsE~8) GO TO 1809

COSE=-RMOB (1 41 )*VE1 (1)~-RMOB (241 )%¥VE1 (2)-RMOB (3+1)%VE1 (3)
SINE=~RMOB (141 )%VE2(1)~-RMOB (2,1 )¥VE2(2)-RMOB (3.1 )*VE2(3)
PHIE(I)=ATAN2(SINZ.COSE)

GO TO 1810

PHIE(I)=0.

CONT INUE

COSE=UVEC (1 + I )Y¥VEC(1)+UVEC(2+,1)*¥VEC(2)+UVEC(3+1)*VEC(3)
SINE=(1e~COSE®COSE)*¥#e5

IF( COSE eLTeelE=7) ETAS(1)=1¢57079633

IF( COSE oGFeelE-7) ETAS(1)=ATAN2(SINE+COSE)
IF((1e—-ABS(COSE))elLTeleE-8B) GO TO 1918

COSE=VE1 (1 )%VEC (1)+VE1 (2)*VEC(2)+VE1(3)*VEC(3)

SINE=VE2 (1) *VEC (1 )Y+VE2(2)*VEC(2)+VE2(3)*VEC(3)

PHIS (1 )=ATAN2(SINE,,COSE)

GO TO 160

PHIS(1)=0.

CONT INUE 2620
GO TO 2

CONT INUE

25
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COSE=VEC(2)

SINE= (1 e~COSEXCOSE) ¥%¢5

IF(ABS(COSE)elLTeelE~7) ETASUN=1,57079633

IF (ABS(COSE)eGE e 1E~-7) ETASUN=ATANZ2 (SINE COSE)

COSE=-RMOB (241)

SINE=(1e~COSE*#COSE)*¥%¢5

IF(ABS(COSE} el Tes 1E~7) ETARTH=1457079633

IF(ABS(COSE)eGEee1E-7) ETARTH=ATANZ2 (SINE +COSE)

DO 6 1=1,NPANEL ’

ETAS(I1)=ETASUN

ETAE (I J=ETARTH

CONT INUE

AMP=RMOB (141 )#*VEC(1 )+RMOB (241 ) ¥VEC (2)+RMOB (341 )#VEC(3)

H=140 2730

IF (=AMP ¢GTeCOSTHE) H=0e0 2740

IF(AMP 4LT+040) AMP=0,0 2750
2920

DO 1000 J=1NPANEL

1IK=0

IF(ISPIN) 1357,13574+1358

DO 680 I=1+NETAS

DO 680 K=1.NPHIS

IK=1K+1

TXMUS (1K) =XMUSUN (Je 1 4K)

NY=NETAS*¥NPHIS

CALL DISCOT(ETAS(J) +PHIS(J) 2+ TETAS s TXMUS s TPHIS 22 4NY«NPHIS XMU(J))

CALL DISCOT(ETAF(JI+PHIE(J) ¢ TETASs TXMUS s TPHIS 22 ¢NY «NPHISYMU(J) )

GO TO 1000

DO 1001 1=1.NETAS

TTXMUCTY=TXMU(Js1)

CALL FTLUP(ETAS(J)+XMU(J)+s2+NETAS+TETASTTXMU)

CALL FTLUP(ETAE(J)sYMU(J)s2sNETAS+TETAS s TTXMU)

1000 CONTINUE
* AT THIS POINT PROJECTED AREAS FOR SOLAR AND PARENT BODY ARE AVAILABLE

00

26

DO 1002 1=1.NPANEL
DT(I)=HXSXARL (1) ¥XMU(I ) XAP1 (1 )+BOLTXTE®X¥4XSINTHE**2%AR1 (1) *YMU(1)

1%APP1 ([ )+SHREXAMPX¥SINTHE*®2¥AR1 (1) ¥*YMU(T)*¥AP1 (1)

(DIRe SOLAR+DIR, PLANET EMISSION+ PLANET-REFLECTED SOLAR)

TEMP =04

DO 1003 K=1«NPANEL

TEMP=TEMP+ (APP ] (K)¥BOLTX*¥T(K)*¥*¥4+BOLTHTEX¥AXSINTHERRZ2RYMU(K ) * (1 e~

1APP1 (K))) FFSPR1I (1 «K)¥ARI (1Y *APPI (I) 2955



APPENDIX A — Continued

1003 CONTINUE

C
C (TEMP ADDS EXTERIOR LONG WAVELENGTH CONTRIBe TO PANEL I FROM ALL PANELS.
Cc DIRECTLY AND BY ALL MULTIRPLE DIFFUSE REFLECTIONS. CONSISTS OF
c EXTe THERMAL EMISSe BY PANELS + REFLECTED PORTION OF PLANET EM
Cc
SEMP=0,
DO 1004 K=1.NPANEL
SEMP=SEMP+ (H*S*XMU(K)+S*¥RE¥AMP¥SINTHEX*¥2%¥YMU(K) )% (1e—-AP1 (K)) 2975
1 *FSP1(1+K)*AR1 (I)¥AP1 (1)

1004 CONTINUE

Cc
C (SEMP ADDS SOLAR SPECTRUM CONTRIBe FROM ALL PANELS INCLe AtLL REFLECTIONS
C CONSISTS OF PANEL-REFLECTED PORTION OF DIRe AND PLANET-REFLe SOLAR
C
UEMP=O.
DO 1005 K=14sNPANEL
UEMP=UEMP+BOLT*APP2(K)*T(K) *¥4 *#FSPPR2 (1 +KIXARZ2 (T ) *APP2(1) 2995

1005 CONTINUE

(UEMP ADDS INTERIOR LONG WAVELENGTH CONTRIBe. TO I IF IT IS PART OF AN
ENCLOSURE o+ CONSISTS OF EMISSIONS AND ALL REFlLe FROM SURFe OF
ENCLOSURE)

OO0

VEMP =0, .
BO 1006 K=1 +NPANEL
VEMP=VEMP+HCOND (K¢ 1} ¥ (T(K)~T (1))
10C6 CONTINUE
C
C (VEMP IS THE CONDUCTION TO I )
C
WEMP =0,
DO 1007 K=1.NPANEL
WEMPSWEMP+RRAD (Ko I )X (T(K)IXHA4-T (] )%%4)
1007 CONTINUE
WEMP=z=WEMPX¥AR1 (1)

C
C (WEMP GIVES RADIATION FROM ANOTHER PANEL PARALLEL TO I AND FORMING A FLAT
C ENCLOSURE WITH le EXAMPLE IS FLAT PRESSURE CELL METEOROID DETECe
C
XEMP=—BOLT*T (1 )#%¥4% (APP1 ([} ¥AR1 (1 )+APP2(1)*AR2(1))}
C
C (XEMP GIVES LOSS BY EMISSION FROM 1 )
C

27
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DT(1Y=DT (1 Y+TEMP+SEMP+UEMP+VEMP+WEMP+XEMP
DT(I)=DTC(IY/WATE(I)/CSHI(T)

CONT INUVE

DO 9843 I=1+NPANEL
TCI)=T(I)+DT(1)Y*DTI
IF(MOD(NTIME+100)eEQe0)GO TO 113
GO TO 114

CONT INUE

WRITE(6¢17) (T(I)el=1sNPANEL)
IF(TIeLTeTID) GO TO 99

GO TO 999

ROUTINE TO CALCULATE RADIUS IN ELLIPTICAL ORBIT

CONT INUE
DDTI=e1%DTI
DO 992 J = 1410

ACCEL = (P*%2)/RADO¥%¥3 —-G¥* (RADE/RADO)Y*%*2
ACCEL1 =ACCEL
DO 991 1 = 1.5

RAD1 =RADO+VELRO#DDT I+ (2« *¥ACCEL +ACCEL 1 )*¥DDTI¥%¥2/6,
VELR1=VELRO+ 5% (ACCEL+ACCEL1)Y%DDTI

ACCEL1 = (P*%2)/RAD1%*%3 — G*(RADE/RAD1 )*%x2
RADH = RADI1~RADFE

ANVELO =P/RADO*x2

ANVEL1 = P/RAD1x%*2

THETA = THETA + (ANVELO+ANVEL1)/2¢0%¥(DT1/1060)
RADO = RADI

VELRO = VELRI

RATIO = RADH/ALT

HIHT = RADH/S5280e0

TI=DTI*FLOAT (NTIME)

IF(MON(NTIME +20)eNTe0) GO TO 30
WRITE(64+25) TI+THETAJHIHTsHIAMPETAS(1)
NTIME=NTIME+1

GO TO 100

STOP

END

SUBROUT INE ROTMTX(ROTOR«MsROTANG)
DIMENSION ROTOR(3+43)

ROTOR(M«M) =140

COSE=COS(ROTANG)

SINE=SIN(ROTANG)

DO 1 1=143

3100

3140
3150
3160
3170
3180
3190

3200
3220
3230
3250

3290
3300
3310
3320
3330
3340
3350
3360
3380

3390

3400

3410
3420



IF(IeEQeM) GO TO
ROTOR(I «+M)=40
ROTOR(Me13=60
ROTOR(141)=COSE
CONTINUE
IF(M4EQel) GO TO
IF(MesEQe2) GO TO
ROTOR(1+2)=SINE
ROTOR(241)==SINE
RETURN
ROTOR(243)=SINE
ROTOR(3+2)==SINE
RETURN

ROTOR(1 «3)==SINFE
ROTOR(3e1)=SINE
RETURN

END

APPENDIX A — Continued

AX1IS NOe AND THE CCW ANGLE OF ROTATION
SUBROUT INE MULT (A+BeC)
DIMENSION A(3¢3)¢B(343)4C(343)¢D(343)

CO 1 I=1,3
DO 1 J=1,3
D(14J)=0e0
DO 1 K=143

D(IosU)=DU(T e )I+B (I 4KIHC(KeJ)

DO 2 I=1.3
DO 2 J=1.3
A(I+J)=D(1eJ)
RETURN

END

3430

SUBROUTINE ROTMTX CALCULATES THE ELEMENTS OF A ROTATION MATRIXe.GIVEN THE

3450

3470
3480

3550
3560

29
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APPENDIX A -~ Continued

Definitions and Instructions for the Temperature Program

HEAT TRANSFER PROGRAM FOR DIFFUSE RADIATION ON MULTIPANELED SPACECRAFTO80

SYMBOLS USED IN PROGRAM

_ABETA
AINCE
AINCO
ALPHA
ALT

AMP

AP1(J)
APP1 (J)
APP2 (J)
AR1 (J)
ARZ2(J)
AU
AXIS1
AX1S2
BALPHA
BBETA
BTHETA
BOLT
COMEGA
CSH((U)
DDEL
DEL
DOMEGA
DT(I)
DT
EP1
ETAE (J)
ETAS (J)

THE SHAPE FACTORS
WHICH TAKE INTO ACCOUNT ALL REFLECTIONS AND ALL RE-REFLECTIONS ARE COMPUTED

IN THE PROGRAM USING GEOMETRIC FACTORS AND THE REFLECTIVITIES OF EACH NODE.

FSP1 (KeJ)

FSPP1 (KsJ)

FSPP2(KWJ)
G

H

HCOND (K s J)
IFTLURP

ISPIN IS ZERO

FOR DAYLIGHT,

0090
0100
ANGLE OUT OF ORBIT PLANE OF SPIN AXIS (YAW)
ANGLE BETWEEN ECLIPTIC PLANE AND EQUATORIAL PLANE 0140
ORBIT INCLINATION ANGLE 0150
NEGATIVE ELEVATION ANGLE (PITCH) 0160
ALTITUDE OF SPACECRAFT (FT) 0170

AMP=COS (ANGLE BETWEEN LINES TO THE SUN AND SPACECR
AFT DRAWN FROM THE CENTER OF THE EARTH) FOR DARKNESS+AMP=0
ABSORPTIVITY OF EXTERNAL CAVITY TO P ENERGY«DIMENSIONLESS
ABSORPTIVITY OF EXTERNAL CAVITY TO PP ENERGYDIMENSIONLESS
ABSORPTIVITY OF INTERNAL CAVITY TO PP ENERGY+DIMENSIONLESS
EXTERNAL CAVITY AREA.INCH SQUARE

INTERNAL CAVITY AREA.INCH SQUARE

DISTANCE FROM SUN (ASTRONOMICAL UNITS)H 0200

UNIT VECTOR IN PLANE OF PANEL

CROSS PRODUCT OF UVEC AND AXIS!
PITCH TABLE (20 PARTS) 0240
YAW TABLE (20 PARTS) 0250
ORBIT ANGLE TABLE (20 PARTS) 0260
STEFAN~BOLTZMANN CONSTANT
SUN ANGLE IN ELLIPTIC PLANE FROM VERNAL EQUINOX 0320
SPECIFIC HEAT OF JTH COMPONENT +BTU/POUND/DEG
TIME DERIVATIVE OF ORBIT ANGLE (RADIANS/MIN) 0340
ORBIT ANGLE (RADIANS) 0350
SPIN RATE OF SPACECRAFT ABOUT 2-AXI1S
TEMPERATURE INCREMENT OF THE ITH PANEL 0370
TIME INCREMENT (MIN) 0380
ANGLE OF SUN OUT OF ORBIT PLANE 0390

PARENT BODY ASPECT ANGLE
SOLAR ASPECT ANGLE

INPUT TO THE PROGRAM ARE ONLY GEOMETRICe THE FACTORS

/INCH SQUARE
/INCH SQUARE
/INCH SQUARE

EXTERNAL SHAPE FACTOR ELEMENT FOR P ENERGY.
EXTERNAL SHAPE FACTOR ELEMENT FOR PP ENERGY,
INTERNAL SHAPE FACTOR ELEMENT FOR PP ENERGY.

ACCELRATION O GRAVITY (FT/MIN*%2) 0420
SUN INDICATOR«DIMENSIONLESS
LINEAR HEAT CONDUCTION COEF«BTU/MIN/DEG
INTFGER TO INDICATE USE OF BBETABTHETABALPHA 0490
USE 0 FOR CONSTANTS AND 1| FOR TABLES 0500

FOR A STABILIZED VEHICLE «NON-ZERO FOR SPINNINGe
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KEXTsKINT+KRRADAND KHCOND INDICATE WHETHER THERE ARE NON-ZERO ELEMENTS OF
FSP1/FSPP1.FSPP2+RRAD+AND HCOND RESPECTIVELY

NETAS NOe OF VALUES IN TABLE OF ETAS

NFAC IS THE NOe OF CARDS USED TO LOAD THE NON-ZERO GEOMETRIC SHAPE FACTORS
BETWEEN EXTERNAL SURFACES(3 TO A CARD)«FSPP1 IS INITIALLY USED AS A DUMMY
NAME FOR THIS ARRAY.

NHCOND 1S SIMILARLY THE NOe OF CARDS FOR HCONDNRRAD FOR RRADWNINSFC FOR THE
INTERNAL GEOM. SHAPE FACTORS(READ IN AS FSPP2).

NPANEL NUMBER OF PANELS 0S10
NPHIS NO. OF VALUES IN TABLE OF PHIS

OMEGA ROLL ANGLE OF BODY

OMEGAP ARGUMENT OF PERIGEE 0530

P DENOTES SOLAR SPECTRUMPP DENOTES THERMAL RADIATION SPECTRUM PEAKING A
T MUCH LONGER WAVELENGTHS

PHIN ARGUMENT OF ASCENDING NODE 0560
PHIS (J) SOLAR AZIMUTH ANGLE
RADE FARTH RADIUS (FT) 0590
RADH AL TITUDE OF SPACECRAFT (FT) 0600
RADO INJECTION RADIUS OF ELLIPTICAL ORBIT (FT) 0610
REFE REFLECTIVITY OF PARENT BODY TO SOLAR ENERGY DIMENSIONLESS
RRAD (KeJ) RADIATION COEFFFICIENT.WITH NET HEAT TRANSFER RATE=
AREAXRRAD (Ko J )X (T(K) ¥ ¥4-T (J)%%4)
S SOLAR CONSTANT«BTU/INCH SQUARE/MINUTE
SINTHE SINE OF THE EARTH VIEW ANGLE 0690
T TEMPERATURE OF JUTH COMPONENT «DEG
TE TEMPERATURE OF PARENT BODY«DEG
TETAS+ TPHIS s TXMU o TXMUS TABLES OF ETAS+PHIS«XMU
THETA ORBIT ANGLE FROM PERIGEF 0720
THETAOQO INITIAL THETA (ARBITRARY) 0730
T1 TIME (MIN) 0760
TID CALCULATION TIME LIMIT 0770
UVEC UNIT NORMAL VECTOR TO PANEL
VELRO INUECTION VELOCITY NORMAL TO THE EARTH (FT/MIN) 0810
VELTO INJVECTION VELOCITY TANGENTIAL TO THE EARTH(FT/MIN) 0820
WATE (J) MASS OF JTH COMPONENT +POUNDS
XMuU(J) UNIT PROJECTED AREADIMENSIONLESS«SOLAR
XMUSUN(K s ¢eJ) TABLE OF xXMU OF EACH PANEL FOR GIVEN ETAS AND PHIS
YMU (D) UNIT PROJECTED AREAWDIMENSIONLESSPARENT BODY
0850

ARRAY DIMENSIONS FOR AN INDIVIDUAL CASE ARE-
BTHETA+BALPHAWBBETA~-SIZE OF TABLES OF PITCH AND YAW VERSUS ORBIT ANGLEe
UVEC (3+NPANEL)
AR1 ¢ARZ2 AP 1 +APP | s APP2 s CSHsETAS«ETAE~ALL (NPANEL ) e
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FSP1+FSPP] «FSPP2sHCOND s RRAD ¢ (NPANEL s NPANEL ) e

WATE «TeXMUsYMU—ALL (NPANEL )

TETASI(NETAS ) « TXMU (NPANEL ¢NETAS ) ¢ TTXMU(NETAS ) +DT (NPANEL ) »

XMUSUN (NPANEL ¢ NETAS yNPHIS) « TPHIS(NPHIS) ¢ PHIS (NPHIS ) e

AXIS1 (3sNPANEL ) JAXIS2({3+NPANEL )+ TXMUS (NETAS#NPHIS) ¢ FAR (NPANEL yNPANEL ) e

IPIVOT (NPANEL ) ¢ INDEX (NPANEL +2)

INPUT DATA LOADING ORDER
1 (8110) NPANEL NFACNHCOND+NRRADSNINSFCs IFTLUPsISPINe
2e (BI110) KEXToKINTKRRAD+KHCONDS
3¢ (5E1648) RADECALTWVELTOWWELROTI / DT1+TIDeSe
4, (S5E1648) TE+BOLT+GeAUWRE S
S5e (5E16e8) ABETAWAINCE +AINCOJALPHA 4COMEGA/DOMEGA sOMEGAP +PHIN4 THETAO »
6o IF(IFTLUPeGT40)+(SE16e¢8) BALPHABBETAWBTHETA,.
T7e (5E1648) ARI1 Be (12F6e2) AP1 Fe (12F6e2)APP1] 10e (12F642)CEH
11 (12F642)WATE 126 (12F6e2) T
136 IF(KEXTeGTeO) FSPP1 (3(2144E168))
14e¢ IF(KINTeGTe0) (12F642) AR2/APP2 15¢ IF(KINT«GTe0) FSPP2 (3(214.E1648
16e¢ IF(KHCONDeNFE«0O) HCOND (3(2144+E16.8))
17¢ IF(KRRADWNE,0) RRAD (3(2144E1648))
184 (8110) NETASNPHIS
19e (7F11e8) TXMU 20. (12F6e2) TETAS
IF(ISPINeEQeD) =~ 21e (7F11e8) XMUSUN«22s (12F6e2) TPHISe 23e¢ (6F13e3)
AX1IS1 sAXIS2,UVEC

PROGRAM OUTPUT -~
le IF(KEXTeNE«O)s(BE16e8) FSP1FSPRPI-CONVERTED TO ACCOUNT FOR REFLECTIO
2ZeIF(KINTeNE(0) s (8E1648) FSPP2-~-ALSO CONVERTED
3¢ EACH MINUTESTI(MINa) s THETAWALT e (STATeMIa)eH(1e FOR SUNLIT)AMP (MEA-
SURE OF PLANET-REFLECTED SUNLIGHT) ETAS(1)e (2X+6E20e6)
44 EVERY TEN MINUTES«TEMPs OF EACH PANEL +DEGeR (2X+10E125)
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Shape Factor Program

"PROGRAM SHAPE ( INPUT + OUTPUT « PUNCH + TAPES= INPUT + TAPEG=OUTPUT)

SHAPE FACTOR PROGRAM FOR DIFFUSE RADIATION

INSTRUCTIONS MUST BE FOLLOWED WHEN USING THIS PROGRAM
IN THE MAIN PROGRAM CHANGE DIMENSION STATESMENT TO READ

DIMENSION C(Me443)sD(NeSe3) s NUMBL (M) ¢NUMB2 (N) s COEFFA (LWL +4)+COEFFR (L ¢L +4)

SUBROUTINE ZAP CHANGE DIMENSION STATEMENT TO READ

DIMENSION Z(N¢S5+3)
SUBROUTINE AREA,CHANGE DIMENSIONS TO READ
DIMENSION COEFFA(LeL +4)+COEFFR(L¢L+4)

SUBROUTINE BLOCK CHANGE DIMENSION STATEMENT TO READ

DIMENSION B(NesS¢3)NUMB2(N)

WHERE M IS THE NUMBER OF PANELS AND N IS THE NUMBER OF BLOCKING PANELS. L IS

THE GRID SI1Z2Ee

VARIABLE DEFINITIONSWNO 1S THE NUMBER OF PANELSNBLOCK 1S THE NUMBER

OF
D1

NUMB2 IS AN ARRAY OF THE

BLOCKING PANELSs C 1S AN ARRAY CONTAINING THE COORDINATES OF
S AN ARRAY CONTAINING THE COORDINATES OF THE BLOCKING PANELS
NUMB1 IS AN ARRAY OF THE NUMBERS ASSIGNED TO THE PLANES OF EACH
NUMBERS ASSIGNED TO THE PLANES OF EACH

PUNCHED OUTPUT-

(3(2144E16¢8)) NON-ZERO SHAPE FACTORS FOR PANELS

PANELS

PANEL
BLOCKER

AND J«3 TO A CARD

I10J1eSHPFAC(114J1)0120J2¢SHPFAC(I24J2)4134J3+SHPFAC(I134U3)

DIMENSIONC(100440¢3)4D(75¢543)4,A(433)4B(443)
DIMENSION NUMB1 (100 ) NUMB2(75)

DIMENSION TENT(3)4NZ1(3)sNZ2(3)

DIMENSION COEFFA(10410+4)+sCOEFFR(104104+8)
COMMON/ONE /D

- COMMON/ TWO /NUMB 2

COMMON_ /THREE/ COEFFA+COEFFR _
FORMAT(7110)

FORMAT(3E16e84214)

FORMAT (12F6e1)

FORMAT (3(214,E16.8))

READ (5486 YNO yNBLOCK

- READ(S411)(((C(1laJaK)aK=143)4J=138)0e1=14NO}

T T WRITE(647)

READ(S5411) ({(D(TsJeK)sK=113) s =144)+1=1,NBLOCK)
READ (5486 ) (NUMB1 (1)41=14NO)
READ(5+86) (NUMB2 (1) s 1=1 ¢NBLOCK)

WRITE(645) _

FORMAT (1H 14HNO., OF PANELS15HNOe OF BLOCKERS)
WRITE(6486) NOJNBLOCK

7 FORMAT (1HO17HPANEL COORDINATES)
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WRITE(6¢11) (((CIToJeK)sK=143)9Jd=144),1=1,4NO)
WRITE(6419)

FORMAT(1H 19HBLNOCKER COORDINATES)
WRITE(G6e11) (((D(leJslK) s K=143)9J=1+4),1=14NBLOCK)
WRITE(646)

FORMAT (1HO18HPANEL PLANE NOS.)
WRITE(6+86) (NUMBI(I)s1=14NO)

WRITE(648)

FORMAT ( 1HO18HBLOCKER PLANE NOS.)
WRITE(6486) (NUMB2(1)e1=1sNBLOCK)
WRITE(649)

FORMAT (1H14H 14H J3XOHARFA OF 17X9HARFA OF J)
NZ=1

NG=5

NG2=NG*NG

FOURN2=FLOAT (4%NG2)

TWONA=FLOAT (2ENG2*#NG2)

DO 75 M=1 NG

11=M-1

121=11+M

NI=NG~M

NT1=2%#NI1+1

DO 75 N=14NG

J1=N=1

J21=J14N

NJ=NG-N

NJ1=2%NJ+1
COEFFA(MaN¢1 )=FLOAT (NI ®XNJ+(NT+1 )% (NJ+1))/TWONS
COEFFA(MJN¢2)=FLOAT (I 1%* (NJ+1)+MENJ) /TWONS
COEFFA (M Ne3)=FLOAT((NI+1)*J1+NI*N)/TWONA
COEFFA (M4Ns8)=FLOAT (1 1%J1+M*N) /TWONSE
COEFFR(M4N4+1)=FLOAT(NI1¥NJ1)/FOURN2
COEFFR(MN«2)=FLOAT (121 %NJ1 ) /FOURNZ
COEFFR(M4N¢3)=F_OAT(121%J21 ) /FOURNZ
COEFFR(M4N+8)=FLOAT (NI 1 *J21 ) /FOURN2

CALL ZAP (NBLOCK)

IX=NO-1

DO 3 I=141IX

IX=T1+1

DO 3 J=JUXWNO

DO 1 K=143

DO 1 L=144

A(LeKI=C (T ol oK)

B(LeKI=C(Jel oK)
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NA=NUMB1 (1)

NB=NUMB1 (J)

IF(NA«EQeNB) SAR=00

IF(NAsEQ.NB) GO TO 4

CALL FAKTOR(A+B 4SABsSDA s SDB«NAWNB « NG «NBLOCK 4NG2)
CONT INUE

IF(SABeGTe1eF=-10)GO TO 333

IF((IeEQeIX)eANNs (JeFQeNO)) GO TO 333

GO TO 3

TENT (NZ)=SASB

NZ1(NZ)=1

NZ2(NZYy=J

WRITE(6+213) 14548

FORMAT(214,E16.8+8H VIEWFAC)

NZ=NZ+1

IF(NZeEQesqa) GO TO 335

IF((leFEQalIX)eANDe (JeFQeNO})) GO TO 335

GO TO 3

PUNCH 3304NZ1(1)eNZ2(1)+TENT(1)eNZI1(2)eNZ2(2)«TENT(2)eNZ1(3)eNZ2(3
Y« TENT(3)

NZ=1

CONT INUE

STOP

END

SUBROUTINE ZAP (NBLOCK)

DIMENSION Z(754533)eC1(3)4C2(3)14C3(3)eCA(3)IsCS(3)9AMI(3)sAM2(3)
1v(3)

COMMON/ONE/Z

1=1

DO 1 J=1,3

C2(JY=Z (1424 J)-7(1sle )
C33(II=ZZ (1444 J)=Z(1s14sJ)

CALL CROSS(CS+C24+C3)

CALL CROSS(C14C34C5)

CALL DOT(DETWC1,C2)

CALL CROSS(AM2,4C24C5)

DO 2 K=1,3

AM1 (K)=C1 (K)/DET

AM2 (K)Y=AMD (K)Y/DFT

DO 3 J=1,43

VII=Z T a1 o) 4+Z(T 030 J)=Z(1e2+U)=2Z(1044J)
Ca(1)=AM 1 (1I)*V(1)+AM 1 (2)¥V(2)+AM 1 () %V (3)
CAa(2)=AM 2(1)I)XV(1)1+AM 2(2)%V(2)4+AM 2(3) ¥V (3)
Ca(3)=0.

—
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DO 6 J=1.3
Z(1+24J)=C2(Y)
Z(1434J)=C30Y)
Z(leasJY=CaJy
Z(1eSeJ)=CS5(J)
I=1+1
IF(lelLTe (NBLOCK+1)) GO TO S
RETURN
END
SUBROUTINE FAKTOR(A4B+SITIJeSDA+SDB«NAZNB NG NBLOCK 4NG2)
DIMENSION A(443)4B(443)+DAC100)DEBII100)IsRAIICO+2)IaRB(1I00¢2)0AV(3),
IBVI3)eCVI3)IeDV(RI4EVIZ) eFVI3) 4 X(3)aY(2)
DIMENSTION XA (3)4CB(3)YsRIJ{1643)+RDOTN(1662)sGV(3)+HVI(3)
S1U=0.0
1=t
DO 1 N=143
AVINI=A(14N)
BVINI=A(2N)
CVINYI=A(3,N)
DVINI=B(1.N)
EVIN)I=B (2.N)
FVINI=B(34N)
GV (N)I=A (4 4N)
HVIN)I=B (4 4N)
RIJV(1 «N)=DVIN)Y-AV(N)
RIJ(2+sNI=ZEVI(N)Y=-AV(N)
RIJ(3«NI=FVINI~AV(N)
RIJ(44N)Y=HV(NY=-AV(N)
RIJ(S«N)I=DV(N)Y~-RVIN)
RIJ(B«NI=EVIN)-RV(N)
RIJ(7+N)=FV(N)Y-RBV(N)
RIJ(B«N)=HV (N)-RVIN)
RIJ(9«NIZ=DV(NY=CVI(N)
RIJ(10«N)Y=EV(N)=CV(N)
RIJV(11WN)=FV(N)~-CV(N)
RIJ(124N)=HV{(N)~CV(N)
RIJ(13«N)I=DVIN)Y~-GV (N}
RIJV(14«N)=EV(N)Y~-GV(N)
RIJ(1S«N)=FV(N)=GVI(N)
RIJ(16«N)Y=HV(N)=-GV(N)
AVIN)I=BV(N)~=AV(N)
BV (N)Y=CVIN)-BV(N)
DVINY=FV(N) =DV (N)

1 EVIN)Y=FV(IN)~FV(N)
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CALL CROSS({CVeAvV.BY)
CALL CROSS(FV.DV.EV)
DO 14 U=1.16

DO 14 N=1,2
RDOTN(JsN)=0s

DO 15 J=1,16

DO 13 N=1.3
RDOTNI(J+1)=RDOTN(Js 1

APPENDIX A — Continued

YHRIJIJ«NIRCVINY

RDOTN(J+2)=RDOTN(Js2)+RTJI(JoNIXFV(N)

IF((RDOTN(J41)eGEeDe1)eANDe (RDOTN(J42)eLLEe—0el1)) GO TO S

CONT INUE

S1J=Ce

SDA=1.

SDB=1.

RETURN

CALL DOT(SACV.CV)
CALL DOT(SB+FVFV)
SA=SARR LS
SB=SB¥%.5

DO 2 N=1,3
CVI(N)I=CV(N)I/SA
FVINY=FV(N)/SB

CALL AREA(A+DAWRAWNGING2)
CALL AREA(B+DB«RB¢NGNG2)

DO 3 L=1.NG2

DO 3 J=14NG2

DO 4 N=1.3

X (N)=RA (L +N)

XA (N)=X{N)
YIN)I=RB(JN)
XAN)=X(N)=~-Y (N)
CALL DOT(S1+CVeX)
CALL DOT(S2¢FVeX)

IF((S1eGFEe0e0)eORe (S2elL,EeDe?)) GO TO 3
CALL BLOKK(XAY NBLOCKsGIaNAINBL 1)

IF(GelLTees5) GO TO 3
CALL DOT(S3eXeX)
S3=S3%¥%2

S1J==S1#S2/S3IXDA(LI*¥DB(II+STJ

CONTINUE
SDA=0.0
SDB=0.0

DO 7 N=14NG2
SDA=SDA+DA (N}
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7 SDB=SDB+DB (N)
S1U=SIJ/(SDAXSDR®X3,1415926536)
IF(C(STIJXSDA) e . Tel1eFE=5)eAND e { (STIXSDBYelLTel eE~5)) S1J=0se
RETURN
END
SUBROUTINE AREA (A+DARAWNGING2)

DIMENSION A(4+3)¢DACI00)sRA(I10043)¢AV(3)4BVI3)4CVI3) DV I(3)
1sT1(3)eT2U(3)+T3(3)esTA(3)eTS(3)4TE(3)¢TT(3)4TBI(3)
DIMENSION COEFFA(10+1044)sCOEFFR(1041044)
COMMON /THREE,/ COEFFA.COEFFR
18 FORMAT (4E1648)
DO 2 N=1.3
AVIN)I=AC(] +N)
BV(N)=A(24N)
CVIN)I=A (34N)
DV(N)=A {4 4N)
T1(N)=BV(N)=AV(N)
T2(N)=CV(N)=BV(N)
T3(N)=CV(N)~DVI(N)
2 T4(NYI=DV(N)I-AV(N)
CALL CROSS(TS.TasT1)
CALL CROSS(T6+T24T1)
CALL CROSS(T7+T44T3)
CALL CROSS(TBsT2+T2)
CALL DOT(Z14T5.TS)
CALL DOT(Z24T64T6)
CALL DOT(Z34T7+T7)
CALL DOT(ZA+T8,T8)
Z1=Z1%% .5
Z2=72%%e5
Z3=73%%.5
Zaz=Z4%% 5
K=1
DO 1967 1=1.NG
DO 1967 J=1.NG
DA(K)=Z1#COEFFA(T o Je 1 V+Z2HCOEFFA(] 4 )42 )+Z3%¥COEFFA(] +J93)+28%COEFFA
1(1eJea)
DO 3 M=1,3
3 RA(K ¢M)IZAVIMIRCOEEFR (T 4 Jo1 )+BV(M)XCOEFFR (14 Je2)+CV(MI*¥COEFFR (I ¢J 4¢3
1)+DV(M)IRCOEFFR(T+Je8)
1967 K=K+1
RETURN
END
SUBROUT INE BLOKK (UV ¢ VV ¢ NBLOCK ¢+ G s NU NV ¢ T )
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DIMENSION UVI(3)aVVI(3) B (7545¢3)eCI2(3)+CI3(3)eC15(3)
DIMENSION NUMB2 (7S5)sAM(3)YsAMI 1 (3)4AMI2(3)4,AMI3(3)4RIMINA(3)
COMMON /ONE /B

COMMON/TWO/NUMB2

EPI=1,0E-06

1u=1

CALL SUB(AMJUVVV)

CONT INUE
IFCINUSEQeNUMB2 (1)) eORe (NV.EQaNUMB2(I)))IGO TO 100
DO 7 L=1+3

CI2(L)=B(1+24L)

CISLYI=B(14+45.L)

CI3(LY=B(1+34L)

CALL DOT(DETsAMCIS)

IF(DET®%24,LTeEPI)Y GO TO 100

CALL CROSS(AMI1 AMC12)

CALL CROSS(AMIZ2,CI3+AM)

DO 8 M=1,2

AMI1 (M)=AMIY) (M) /DET

AMI2(M)Y=AMI2 (M) /DET

AMI3(M)=B(I1+S+M)/DET

RIMINA(M)I=UV(M)-B(Ts1leM)

CALL DOT(V3+sAMI3+RIMINA)Y

IF((VY 3 oeGEe1¢0)e0ORe(V 3 eLEsDe)) GO TO 100

CALL DOT(V]1+AMI1+RIMINA)

IF(V 1 «LTe0e0) GO TO 100

CALL DOTI(V2.AMI2«RIMINA)

IF(V 2 «L.Te0eO) GO TO 100

IF(((V 2 =140)%(1e0+R(144e¢2))1=V 1 %¥B(1+4441))1eGTeOe0) GO TO 100
IF(CIV 1 ~160)%(1e0+8(10801))=V 2 *¥B(14442))eGTe0e0) GO TO 100
G=0.0

GO TO 60

CONT INUE

IF(IJeEQeNBLOCKY GO TO 98

IF(T+EQeNBLOCK)Y GO TO 10

I=1+1

GO TO 11

I=1

1U=10+1

GO TO 3

G=140

CONT INUE

RETURN

END
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SUBROUTINE SUB(CeAWB)
DIMENSION C(3)+A(3)eB(3)

DO 1 J=1.3
C(Ur=A(N)=-B(D)

RETURN

END

SUBROUT INE CROSS(CsAB)
DIMENSION C(3)4A(3)sB(3)
C(1)=A(21*¥B(3)-R(2)*¥A(3)
C(2)y=B(1)1*A(3)-A(1)*B(3)
C(3)=A(1)*B(2)-B(1)1*A(2)
RETURN

END

SUBROUTINE DOT(Ce+A«B)
DIMENSION A(3)R(3)
C=A(1)%¥B(1)+A(2)*B(2)+A(3)*B(3)
RETURN

END
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Projected Area Program

PROGRAM PROJAR ( INPUT+OUTPUT + TAPES=INPUT s TARPES=0UTPUT « PUNCH))
PROGRAM FOR PROJECTED AREAS OF PLANE QUADRILATERALS.ACCOUNTING FOR SHADING
ARRAY DIMENSIONS WIitL BE AS FOLLOWS-
MAIN PROGRAM~ A(NPNL+4¢3)+B(NSHDR+S+3) ¢+ NUMP (NPNL ) +NUMS (NSHDR ) +ETAS(NM) ¢
PHIS (NN) +RETAS (NM) s RPHIS (NN) s ARPAN (NPNL ) « XMUAV (NPNL ¢NM) s AND UNRMVEC (NPNL +3) e
SUBROUTINE PLANE~Z (NSHDR4543)
SUBROUT INE SHADE~B (NSHDR 5+ 3) «NUMB2 (NSHDR)
WHERE NPNL 1S THE NUMBER OF PANELSNSHDR IS THE NUMBER OF SHADERSNM IS
THE NUMBER OF VALUES OF ETA-S+AND NN IS THE NUMBER OF VALUES OF PHI-Se
IN THE PROJECTED AREA PROGRAMWNG 1S THE NUMBER OF EQUAL SEGMENTS INTO
WHICH EACH SIDE OF FACH PANEL IS DIVIDED TO FORM A GRID OF ELEMENTAL AREAS.,
IF NG 1S DIFFERENT FROM 10,THE DIMENSIONS MUST BE DA (NG¥%#2) 4RG (NGH¥%243)
COEFFA(NGsNG 44 ) ¢ COEFFR(NGWNG+4) IN THE PROGRAM=AND IN THE SUBROUTINE AREA.
DA(NGH*%2 ) RA(NG¥%#243) 4 COEFFA(INGINGs4) s AND COEFFR(INGeNGe4 ) e
DEFINITIONS OF VARIABLES-~
COEFFA (M«NyK) IS ONE OF THE FOUR COEFFICIENTS IN THE FORMULA FOR THE AREA
OF GRID ELFEMENT M,N OF A PANEL
COEFFR(MyNok) IS THE COEFFICIENT OF THE COORDINATES OF THE KTH CORNER OF THE
PANEL IN THE FORMULA FOR THE CENTROID OF ELEMENT M.N
NUMP 1S AN ARRAY OF NUMBERS IDENTIFYING THE PLANE OF EACH PANEL
NUMS IS A SIMILAR ARRAY FOR THE SHADERS
A(l4JaKIGIVES THE CARTESIAN COORDINATES OF CORNER J(J=1 TO 4) OF PANEL !
K=1 TO 3 CORRESPONDS TO XsY+AND 7 COORDINATES RESPECTIVELYs.
B GIVES THE SHADER COORDINATES.
ETAS IS THE ARRAY OF ETA-S VALUES,PHIS OF THE PHI-S VALUES.

DIMENSION A(S50444¢3)4B(60+5¢3) NUMP{50) ' NUMS(E0)ETAS(37)
1ePHIS(72)4C(443)4C1(3)4C2(3)4C3(3)¢CA(3)9sVNORM(3)aV2(3)4SUNI(3)»
2RETAS(37)+RPHIS(72)¢DA(100)+sRG(10043)4RSUN(3)RCGR(3)

CIMENSION COEFFA(10+1044)+COEFFR(1041044)

DIMENSION ARPAN(S50) « XMUAV( 19 ) +sUNRMVEC(50+3)

DIMENSION VEEL1(3)+VEF2(3}

DIMENSION XMUPHI (72)

DIMENSION AXIS1 (50+43)eAXIS2(5043)

DIMENSION CSET(37)+SNET(37) +SNPH(72)¢CSPH(72)

COMMON /ONE/B /TWO/NUMS

COMMON /THREF/ COEFFA.COEFFR

30 FORMAT(7110)
31 FORMAT(12F641)
READ(S+30) NPNL +NSHDR,. ISPIN
READ(5430) NG
READ(5+30) (NUMP(1)4I=1NPNL)
READ(5+430) (NUMS(1)s1=1sNSHDR)
READ(S5431) (((A(TaJaK)sK=143)eJ2144)4I=1NPNL)
READ(S«31) (((B(lsJeK)eK=143)eJ=1+4)41=1,NSHDR)
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32 FORMAT(1H 10HNO, PANELS11HNO. SHADERS)
WRITE(6+430) NPNL +NSHDR
WRITE(6+34)

34 FORMAT(1HOI12HSIZE OF GRID)

WRITE(6+430) NG
WRITE(6435)

35 FORMAT(1IHO16HPANEL PLANE NOS.)
WRITE(6+430) (NUMP(1)eY=1eNPNL)
WRITE(6436)

36 FORMAT(1HOI THSHADER PLANE NOS.)
WRITE(6430) (NUMS(I1)s1=1NSHDR)
WRITE(6+37)

37 FORMAT(IHOl17HPANEL COORDINATES)

97 FORMAT(12F7.1)

WRITE(6+97) (((ACTaJeK)eK=143)0eJ=1448),41=14NPNL)
WRITE(6438)

38 FORMAT (1HO18HSHADER COORDINATES)
WRITE(B+¢397) (((R{TsJeXK)eK=193)4J=144),41=1NSHDR)
NG2=NG*NG
FOURNZ2=FLOAT (a%*NG2)

TWONG=FL.OAT (2%¥NG2¥NG2)

DO 75 M=1 NG

I11=M-1

I121=114M

NI =NG-M

NI1=2%¥NI+1

DO 7% N=14NG

J1=N=1

J21=J1 4N

NJ=NG—N

NJ1=2%NJ+1
COEFFA(MJNG1ISFLOAT (NI NI+ (NI+1 ¥ (NJI+1) )/ TWONS
COEFFA(MeN+2)=FLOAT (11 ¥ (NJ+1)I+MENJ) /TWONAS
COEFFA(M¢Ns3)I=FLOAT((NIT+1)*J1+NI*N) /TWONS
COEFFA(MJN+4 )=FLOAT (11 ¥#J14+M%¥N) /TWONA
COEFFR (M N+ 1)=F_OAT (NI 1%¥NJI1 ) /FOURNZ
COEFER(M¢N2I=FLOAT {121 %NJ1 ) /FOURN2Z2
COEFFR(MyNI3)=FL OAT (121 %J21 ) /FOURN2

75 COEFFR (MeN4)=FL OAT (NI %¥J21 ) /FOURN2
CALL PLANE (NSHDR)

51 READ(5¢30) NM NN
IF(EOF ¢5)1998 999

998 STOP

APPENDIX A — Continued

WRITE(64+32)



APPENDIX A — Continued

999 CONTINUE

a3

39

40

150

175

68

READ(S+31) (ETAS(I)eI=1+NM)
READ(S5e¢31) (PHIS(I)eI=1sNN)
WRITE(6433)
FORMAT (1HO12HNOs OF ETA~S12HNOe OF PH!-S)
WRITE(6420) NMNN
WRITE(64¢39)
FORMAT(IHO14HETA~SUN VALUES)
WRITE(6¢31) (ETAS{I)e1=14NM)
WRITE(6+:.40)
FORMAT(1HO14HPHI~SUN VALUES)
WRITE(6+Z1) (PHIS(1I)seI=1sNN)
TOT=FLOAT (NN)
ISHDR=1
DO 150 LM=1¢NM
RETAS(LM)=ETAS (LM)IX1 ,745329252E-2
CSET(LM)=COS(RETAS(LM))
SNET(LM)I=SIN(RETAS(LM))
DO 175 MN=z=1 oNN
RPHIS(MN)=PHIS(MN)¥1 ,745329252E-2
SNPH (MN)I=SIN(RPHIS (MN))
CSPH(MN)=COS(RPHIS (MN ) )
DO 1 IP=1NPNL
NI=NUMP (TIP)
DO 2 JA=14+3
DO B8 JC=1.4
C(JICsJAI=A(TPsJICe JA)
Cl(JA)Y=C(2+JAY-C(1sJA)
C2(JA)Y=C(84JAY=C (1 +5A)
C3(JAI=C (A +sJAY-C(34JA)
CAa(JAY=C(PeJAY=C(34JA)
CALL CROSS(VNORMC1+C2)
CALL CROSS(V2+C3+Ca)
CALL. DOT(D+VNORM, VNORM)
CALL DOT(D1+V24Vv2)
D=D%*%e¢5
DO 68 JQ=1+3
UNRMVEC (IP+JQ) =YNORM (JUQ) /D
D1=D1%¥%45
ARMAC= 5% (D+D1)
ARPAN(IP)Y=ARMAC
CALL AREA(CsDARGeNGING2)
ARTOT=04
DO 13 J=1NG2
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APPENDIX A — Continued

ARTOT=ARTOT4+DA (J)
WRITE(6+16) 1P

FORMAT(1H111H PANElL NO.=12)

WRITE(6415) ARMAC

FORMAT({ 1HO20X + SHAREA=FE16e842Xs 7HSGe INe)

IF ((ABS(ARTOT/ARMAC—1+))eGEee01) WRITE(Se148)
FORMAT (1HO37HARFEAS DO NOT AGREE WITHIN ONE PERCENT)
WRITE(6¢25) ARTOT

FORMAT (1H 23HSUM OF ELEMENTAL AREAS=FE16¢842X+7HSQe INe)
DO 3 KN=1,3 '

VNORM (KN ) = VNORM (KN) /D

DO 4 LM=1\M

SUM=O-

WRITE(&417)

FORMAT{ LHO3XAHE TASAXAHPHIS3X6HARPROJ10OX2HMU )
DO 5 MN=1 NN

ARPROJ=0

IF(ISPINGEQ.1)Y GO TO 27

GO TO 21

SUN(1)=SNET(LM)%CSPH (MN)

SUN(2)=SNET (LM)*SNPH (MN)

SUN(3)=CSET(LM)

CALL DOT(SDOTN+VNORM,SUN)

IF(SDOTN.LELOs} GO TO 23

GO TO 47

CONT INUE

DO 29 K=1.3

VEE1 (K)=C1(K)

SDOTN=CSET (LM)

CALL DOTI(VV!«VEF1 s WEF1)

VVI=VWI %% .5

DO 24 K=1,3

VEE1 (K)=VEE1L (K ) /VV1

CALL CROSS(VEE2,VNORM,VEE] )

DO 26 K=14+3

AX1IS1 (1P +K)I=VEE1 (K)

AXIS2 (1P 4K )=VEE2 (K)

SUN (K ) =VNORM (K ) ¥CSET(LMI+VEE ] (K)*SNET(LM)#CSPH(MN)+VEE2 (K)¥SNET (LM
) *SNPH (MN)

DO 7 N=1,¢3

SUN(N)=1000¢*SUN(N)

DO 9 J=14NG2

DO 10 K=1.3

RSUN (K )=RG (J+X ) +SUN(K)
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APPENDIX A — Continued

RGR(KI=RG (J+X)

CALL SHADE (RGR«RSUN+NSHDRsHNT ¢ ISHDR)
IF(HeLTeeS5) GO TO 9

ARPROJ=ARPROJ+DA(U)

CONT INUE

ARPROJ=ARPROJ*SDOTN

XMU=ARPROJ/ARTOT

WRITE(6+18) ETAS(LM) ¢PHIS(MN) 4 ARPROJ ¢ XMU
XMUPHI (MN) =XMU

FORMAT(2FBel +2E1648)

IF(ISPIN) S+54100

SUM=SUM+ARPROJ

CONT INUE

IFCISPINY 77477478

PUNCH 88+ (XMUPHTI (LP)+LP=1sNN)

GO TO &

ARPJUBR=SUM/TOT

XMUBAR=ARPJUBR/ARTOT

XMUAV(LM)=XMUBAR

WRITE(6419)

FORMAT (1HOI1SHMFAN PROJe AREA,7X+10HAVFRAGE MU)
WRITE(6+420) ARP_JBR,XMUBAR

FORMAT (2E1648)

CONT INUE

IF{ISPINGEG.0) GO TO 1

PUNCH 884+ (XMUAV (LM) oL M=1 4NM)

CONT INUE

FORMAT(7F1148)

FORMAT(SE1649)

PUNCH 49+ (ARPAN(IP)s IP=14NPNL)

FORMAT (6F1349)

IF(ISPIN) 72472473

PUNCH S0+ ((UNRMVYEC(IP+JQ)eJA=143)e IP=1 ¢ NPNL)
PUNCH SO« ((AXIS1{IPsK)eXK=1e¢3)IP=1¢NPNL)
PUNCH S0« ((AXISP2 (TP ) e K=143)4IP=1sNPNL)
PUNCH 30+ NMJNN

PUNCH 314 (ETAS (M) ¢M=1¢NM)

PUNCH 31+ (PHIS(N) «N=1 ¢ NN}

GO TO 51

END

SUBROUT INE PLANE (NBLOCK)

DIMENSION Z(60+5¢3)9C1(3)eC2(3)14C3(3)+4CA(3)sCS5(3)eAMI(3)+AM2(3)

1vV((3)
COMMON/ONE/Z
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1=1
DO 1 JU=1,43
C2(UI=Z(1424U)=Z(1a1a0)
C3(J)I=Z(1+84J)1~-Z 101 4)
CALL CROSS(CSeC2,C3)
CALL CROSS(C1+4C34C5)
CALL CROSS(AM2,4,C54C2)
CALL DOT(DETC1 4C2)
DO 2 K=1,3
AM] (K)Y=Cl1 (K)Y/DET
2 AM2(K)I=sAM2(K)Y/DET
DO 3 JU=1,3
VEII=ZCT el eI+ Z(Te30U0)-Z(16424J)=2(1444J)
Ca(1)¥=AM 1 (1 )I¥V(I1)I+AM 1 (2)IXV(2)+AM 1(3)I*V(3)
CA(2)1=AM 2(1)1¥V(1)Y+AM 2(2)¥V(2)+AM 2(3)%y(3)
C4(3)=0.
DO 6 J=1,43
Z(1424J)=C2(D)Y
Z(14344)=C3 (N
Z(1+4+0)=Ca (D)
Z(14540)=C5(J)
I=1+1
IF(TeLTe (NBLOCK+1)) GO TO S
RETURN
END
SUBRes PLANE OPFRATES ON ARRAY Z (BODY COORDINATES OF THE 4 CORNERS OF FEACH
SHADER) TO FINN PARAMETERS NEEDED BY THE SHADING SUBRRe (SHADE)Y
SUBROUTINE AREA (A+DARANGING2)
DIMENSION A(442)+¢DA(100)+RA(I00+3)I¢AVIZ)IeBVI3)I4CVI3)DVI(3)
1eT1(3)sT2(3)1aT3(3)1sTA(3)eTS(3)sTHE(3)eT7(3)+TB(3)
DIMENSION COEFFA(IO010+4)+COEFFR{10410044)
COMMON /THRES,/ COEFFA+ZOEFFR
FORMAT (4FE1648)
DO 2 N=143
AVIN)I=A(]1+N)
BV(N)Y=A(2+N)
CVIN)I=ZA(3,N)
DVINI=A (4 4N)
T1I(N)Y=BV(I(N)-=AV(N)
T2(N)=CV(N)=BVIN)
T3INYI=CV(N)I=DV N}
2 T4 (N)=DV(IN)I=-AVIN)
CALL CROSS(TS+TasT1)
CALL CROSS(T64T2sT1)
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APPENDIX A — Continued

CALL CROSS(T7:.T4¢T3)
CALL CROSS(T84.T24:T3)
CALL DOT{Z14T5.TS)
CALL DOT(Z24T6+T6)
CALL POT(Z3sT7T7)
CALL DOT(Z4+,T8.T8)
Z1=Z1%% .5
Z2=72%% 45
Z3=73%%¢5
Z4=Z4%% S
K=1
DO 1967 1=1NG
DO 1967 J=1+NG
DA(K)I=Z1#COEFFA (14 Je1)+Z2%COEFFA (]l ¢ Je2)+Z23%COEFFA(T+Je3)+ZAXCOEFFA
1(leJea)
DO 3 M=1,3
3 RA(KoM)IZAV(MIXCOEFFR (I 4 Js 1 Y+BVIMIKCOEFFRIIT s Je2)+CVIMIRCOEFFR (T oS0 3
1)Y+DVIMIXCOEFFR (14 J04)
1967 K=K+1
RETURN
END
SUBRe AREAJUSING THE COORDINATES OF EACH CORNER AND THE ARRAYS COEFFA AND
COEFFRCOMPUTES THE COORDINATES OF THE CENTROID AND THE AREA OF EACH GRID
ELEMENT OF A PANELe
SUBROUT INE SHADE(UVeVVINBLOCK«GeNUs 1)
DIMENSION UVI(3)4,VVI3)sB(60e¢543)+CI2(3)4CI3(3)eCIS(3)
DIMENSION NUMB2(60)sAM(3) s AMI1 (3)sAMIZ2(3) sAMIZ (3 )4 AMINX(3)
COMMON/ONE /B
COMMON /TWO /NUMB >
EPI=1,0E~06
1J=1
CALL SUB(AMVV.UV)
3 CONTINUE
IF (NUEQeNUMB2 (131)GO TO 100
DO-7 L=1+3
CI2(L)=B(1+24L)
CIS(L)I=B(T+5,4L)
7 CI3(LYI=B(1+3,L)
CALL DOT(DET+AMCIS)
IF(DET*%2,LT«EP1)Y GO TO 100
CALL CROSS(AMI1 ,AMC13)
CALL CROSS(AMI2,C124sAM)
DO 8 M=1¢3
AMI1 (My=AMI1 (M) /DET
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8 AMINX(MI=B (141 ¢M)I-UV (M)
CALL DOT(V34AMI3AMINX)
IF((V 3 oGEe16¢0)eORe(V 3 oLEeOe)) GO TO 100
CALL DOTI(V1AMI1 ¢+ AMINX)
IF(V 1 «LTe0es0) GO TO 100
CALL DOT(V2+4AMIZ2+AMINX)
IF(V 2 oL TeDe0) GO TO 100
IF(IVI-16)%(1e4B(134+2))-V2%¥B(14431)31eGTe0s) GO TO 100
IF((V2=14)%(14+B(T14441))~-VIAB(I¢442))eGTeOe) GO TO 100
G=0e0
GO TO 6C
100 CONT INUE
IF(1JsEQeNBLOCK)Y GO TO 98
IF(1aEQeNBLOCK)Y GO TO 10
I=1+1
GO TO 11
10 1=1
11 TU=1J+1
GO TO 3
98 Gz1e0
60 CONT INUE
RETURN
END
SUBRe SHADE DETERMINES WHETHER THE LINE BETWEEN TWO GIVEN POINTS INTERSECTS
ANY OF THE SHADERS.
SUBROUT INE SUB(CeA«B)
DIMENSION A(3)4.R(3)eL(3)
DO 1 I=1,43
1 C(1)Y=A(1)~B(1)
RETURN
END
SUBRe SUB GIVES VFCTOR C=B-A
SURBROUT INE CROSS(CeA+B)
DIMENSION A(3)+B(3)+C(3)
C(1)Y=A(2)Y2B(3)Y-A(3)*B(2)
C(2)=A(3)I*B(1)-A(1)%8(3)
C(3)=A(1)%XB(2)-A(2)*¥B (1)
RETURN
END
SUBRe CROSS GIVES VECTOR C=CROSS PRODUCT OF VECTORS A AND B
SUBROUTINE DOT(CeA«B)
DIMENSION A(3)8(3)
C=A(1,*B(l)+A(2)*B‘2)fA(3)*B(3)
RF TURN
END
SUBRe DOT GIVES C=DOT PRODUCT OF VECTORS A AND Be
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AMIZ2 (M)Y=AMIZ2 (M) /DET
AMI3(M)I=B(T+SeM)/DET



APPENDIX B

DERIVATION OF CENTROID AND AREA FORMULAS
FOR ELEMENTAL GRID SECTIONS OF A
PLANE QUADRILATERAL

The plane quadrilateral is divided into an n X n grid by dividing each side into
n equal segments and connecting the corresponding dividing points on opposite sides.
(See fig. 6.) Counterclockwise from the lower left, the position vectors of the vertexes
are A, B, C, and D. Any vertex may be taken as the starting point, so long as the
order is counterclockwise. This gives the proper sense to the computed normal vector
to the plane.

The lower left corner of each elemental area is denoted by (j,k), where j and k
are integers increasing from 1 to n; j, from left to right; and k, from bottom to top.
Now, each segment of the line between A and B represents a change in position

of B 1; A Thus, the position vector of the point (j,1) is given by
o x o 0B A 1 e DA (- DE
Vii=A+G-DEZ2-2[m -5+ DA+ (G - VB (B1)

Similarly, along the line from D to C (where k=n + 1),
G - l[(n _j+ D+ G- 1)6] (B2)
j,n+1 " n J J

The position vectors of the points (1,k) and (n+1,k) correspondingly will be given by

Vix- %[(n ~k+ DA+ (k - 1)13] (B3)

Vel k= 5|0 - k+ DB + (< - DT] (B4)

If a line is drawn between Vj,l and Vj,n+1

Vn +1.K their intersection will be Vj K the position vector of the lower left corner of
? b

and another is drawn between ‘7’1 Kk and
b

element jk. The line between Vj 1 and V is divided by the intersection point
b

j,n+1

in the same ratio as sides BC and AD are divided. Thus, in terms of V’j 1 and
s

1

§,n+1° Vj,k may be expressed as
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APPENDIX B — Continued

— _ 1 — —
VK= ﬁ[(n -~k DT g+ G- 1)vj’n+1] (B5)

Substituting equations (B1) and (B2) into equation (B5) yields

\_fj,k=r—11§[(n i+ D@ -k+ DA+ (G- D@ -k+ 1B

+G-DEk-DC+ @ -j+ k- 1)13] (B6)

This is the exact value of the position vector of the lower left corner of elemental area
jk of the quadrilateral. The position vector of the centroid of the elemental quadrilateral
may, except for extremely irregular shapes, be well approximated by

v ~ ¥ A sy D -k DA (- n-x+ 1)
(Vc)j,k = Vj+%,k+l~ ) [(n ]+ 2>(n k + 2)A+ (] 2)(n kK + Z)B
2

w -k - e+ n-j+l(-lﬁ (B7)
2 2 2 2
This is the mean of the position vectors of the four corners of the grid element and would
also be the point of intersection if the grid were twice as fine.
The area of the element jk is found by dividing it into two triangles and taking

half the magnitude of the cross product of two sides of each triangle. Since the upper
right triangle of element jk is congruent to the lower left triangle of element j+1, k+1,

the area of element jk is given by

p—

(“5k=3 l(Vj+1,k ] Vj,k) X (Vj,k+1 ] Vj,k)

1 — — . -— -—
3 (Vj+2,k+1 - Vj+1,k+1) X (Vj+1,k+2 - Vj+1,k+1) (B8)
Substituting equation (B6) into equation (B8) yields
(AA), | = _1_|[(n “k+ DB - B+ k- DEC -D) x [t -j+ DO - B +( - HE - B)]
I on%
+ [(n -k)(@B - A) + k(C - 13)] X [(n -)® - &) +j(C - E)]I (B9)
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APPENDIX B — Concluded

Expanding equation (B9) gives
(A4); 1 = ﬁ {[(n i+ D@-k+1)+(@-i@- k)]l(ﬁ -A) x @ - &)
+[G- D0 -k+ 1)+ i - W]|E - B)x @ - B)|
+ [(n Sje D& -1+ (o - j)k]‘((—) D)y x @ - Z\)I

+ [(j - k- 1)+ jk]l((‘: -D)x (C - ﬁ)l}

(B10)
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APPENDIX C

DETERMINATION OF SHADING

Five tests are made in the computer program to determine whether points X
and Y are shaded from one another by the planar quadrilateral ABCD:

C

The first test determines whether the point of intersection P of the plane of ABCD by
the line XY falls between points X and Y. Then for each of the four sides of ABCD,
it is found whether P lies toward the inside or the outside of ABCD {rom that side.

The position vector of a point on the plane of the quadrilateral ABCD may be
expressed as a linear combination of two vectors in the plane added to the position vector

of a corner, say corner A:
I_'pla,ne =A+a'B-A)+p(@D-A)

If P is the position vector of the point of intersection of the plane by the line con-
necting X and Y, then

P-X=9%»(Y-X)
Setting P = ryjane gives
(A-B)+B(A-D)+ 1Y -X)=(A-X)
or
a’\_fl + B'\_fz + '}/\_/'3 = \74

This vector equation is, of course, three simultaneous linear equations in o', #',
and v — one for each vector component.
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The solution for v will be carried out first, sinice the quadrilateral ABCD will
be immediately eliminated as a shader if the condition 0 <y <1 is not met;:

(Vi) (Vo) (Va)

V1), (V2)y  (Va),

—~
<
—
e’
N
~
<
[a]
p —
N
~
<
NS
N’
N
<
(=N
|
[\
<l
eS8
[’

<

[\
X | X
<

[J]

N

(Vi)y  (Va),  (Vs),

(V), (Va), (Vs),

If o <0, the point lies to the left of side AD and if B' <0, the point lies below
side AB. These will also be evaluated one at a time:

o = Vg (7% 7s) vy (7,
vy (\72 ><\73) vy (

If o' and B' are both greater than zero, more testing is required.

The reason for the primes is that &' and p' are actually quadratics in the two
linear parameters for the skewed coordinate frame formed by the quadrilateral. Let «
be a linear parameter characterizing a point moving from A to B or D to C
as «a varies from Oto 1. Let B be the parameter for peints along AD or BC as
shown in the following sketch:
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APPENDIX C — Continued

Then,

F-A+a - B+ p{[5+al-D)]-[E+ab - D]}

=A+aB - A+ pD - A)+ ap(A-B+C-D)

The vector (A-B+C-D) lies in the plane of the quadrilateral and thus can be given as a
linear combination of (B - &) and (D - A): (A-B+C-D)=2{(B - A) + Xy - A). The
parameters x; and iy may be found by use of the vectors reciprocal to (B - A) and

(D - A), denoted by superscript R and characterized by

B-AR-B-B=1
B-HF-®-8=0
G-HF B-5=0
®-AR - O-8=1
where, if N= (B - A) x (D - A), then
6-Kf-__ O-BxN
(6 - &) K] (B - &)
G -HF= N X (B - A) _
Nx@-B)] G- 5
Now,
B - HR - (A-B+C-D) = 1,
and
® - B - (A-B+C-D) =1,
Thus,

P=A+a®B-R)+p0 - B)+app B -8+ 21,0 - 3)
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APPENDIX C — Continued
or
P=A+ a(l + AIB)(E -A)+ 3(1 + 7\201)(15 - A)
and
@' = (1+xp)a
g = (1+250)8

from which the values of @ and g can be found directly.

An advantageous alternative to finding @ and g is found by plotting the quadri-
lateral ABCD in a«',8' coordinates:

g Q",B") C(1+7\1, 1+>\2)

\

pO.1) Pa',6)

e '

A(0,0) B(1,0)

The @' and p' coordinates of the corners are found from the two equations for o'
and B' intermsof o and g, with @ and g having a value of 0 or 1 at the corners.

The points P and Q represent possible points of intersection between the plane
of ABCD and a line connecting two points of interest. If point P lies on the right-
hand side of line BC, then the single nonzero component of the cross product of
vector (P - B) upon (C - B) will be positive. Thus for no shading, this third component
will be given by

[(B-B)x(C-B);= (@ - D(1+25) - B2y >0

If this quantity is zero or negative, P lies on or to the left of line BC. Similarly, the
condition that the point lie above line CD is

[('C -D)x@Q - 13)]3 = (1+ )\1)(3' -1) -2x5a' >0
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APPENDIX C — Concluded
The five tests for shading, in the order of execution, are thus
(1) 0<y<1
2) a'20

() Bz0

il
o

@) (a' - 1)(1+A2) - B A S

A
o

B) (B - 1)(1 + 7‘1) -a' g

If any one of these fails, there is no shading between the two points by the quadrilateral
ABCD. They must all hold for shading to occur.
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