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ABSTRACT	 t
1

The triple collision. integrals which determine the first density correction
i

to the transport coefficients, are derived for a gas of haa^d spheres using the

binary collision expansion. This expansion provides a convenient tEChnique for

classifying the contributions in torms of sequences of successive binary col-.

lisions between three molecules. Such sequences contain both interacting and	 ^

non-interacting collisions. It is demonstrated that for three hard spheres all.

sequences terminate after four successive collisions independent of th9 inter-

acting or non-interacting nature of the collisions. As a consequence the colli-

lion. integrals are related to a limited number of sequences with three and four

collisions only. It is shown that equivalent results are obtained from. the surface

integral forrr^ of the triple collision operator, derived earlier by Green and

Sengexs.
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THREE-PARTICLE COL]'i^ISIONS IN A GAS OF HARD SPHERES

I. INTRODUCTION

Non-equilibrium statistical mechanics predicts that the first density cor-

section. to the transport coefficients of a gas can be represented by a ter, m linear

in the density n. That is, the thermal conductivity ^ and the shear viscosity ^

can be written as1,2

.. ^ O + ^ 1 n .^. ...

r1 = ^u + ^1 
n + '' '	 (1.1)

As is well known, the transport coefficients ^ o and ^7o in the low density limit
^^.

are determined by the solution of the linearized Boltzmann equation. °The

Boltzmann equation takes into account only uncorrelated binary collisions.

The transport coefficients ^ a and ^ o can be expressed in terms of collision.

integrals which involve the velocities of two molecules before and after a binary

collision.

In the past decade many investigators have derived the integral equation.

for the coefficients ^ 1 and ^ i of the first density correction.. For a discussion.

and a bibliography we refer to a recent :review article of Ernst, Haines and

Dorfmana This integral equation leads to collision integrals :for the coefficients

^L 1 and ^ i that involve the. effects of collisions between three molecules. For a

gas of hard spheres it was shown by Green 3 and Sengers4 'gnat the triple colli-

sion integrals can be reduced to a surface integral form, analogous to the binary

f

1
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collision integrals determining %0 and 770. That is, the integrals could be ex-

pressed in terms of the initial and final velocities of three particles in specified

sequences of successive correlated collisions. Thus the problem was completely

reduced to a study of the dynamics of three spheres.

In the earlier formulation ,3 94 the dynamics of the molecules was described

i
with the aid of a time-displacement or streaming operator S_ t (1 • • ^,). The

operator S_ t (1 • • t) is a substitution operator which replaces the phase vari-

ables of t particles at a given time by their values at a time t earlier. As an
i
j	 alternative approach several investigators have proposed to describe the dy-

namics using a binary collision expansion.5

Here we reconsider the reduction of the triple collision integrals for a gas

of hard spheres from the point of view of the binary collision expansion. This

expansion enables us to decompose the triple collision integrals into a series

of terms consisting of increasing numbers of successive binary collisions. The

i decomposition, thus obtained, differs in appearance from the decomposition

derived earlier by the surface integral method .4 Nevertheless, we shall show

in Section V that the two decompositions are completely equivalent. One of the
1

advantages of the biwry collision expansion is that certain properties of the
1

triple collision operator, such as its symmetry, can be readily demonstrated.

More importantly, we shall use the binary collision expansion formalism to

eliminate those collision sequences that carrot occur according to the laws of

mechanics.

2
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The generalization of the Boltzmann equation to include the effect of three-

particle collisions is obtained from a cluster expansion of the Liouville operator.

As a consequence the collision sequences involve not only interacting collisions,

but also non--interacting collisions. In the latter type of collision the particles

pass through one another, instead of exchanging their momenta. We shall prove

that all sequences of binary collisions between three hard spheres terminate

after four successive collisions. Several sequences of three and four successive

collisions can also be ruled out as being physically impossible. Thus the triple

collision integrals will be decomposed into a limited Number of sequences with

three and four collisions only.

H. THE TRIPLE COLLISION OPERATOR

A formal solution of the integral equation which describes the effect of triple

collisions, yields for the coefficients X 1 and 771697

1
3kT2 

dpl A P i^	 I 3 A^Pi^

TMY aPi B CP l)	 I 3 B^pl) .	 (2.1)

3
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j and B('P,) which are functions of the momentum ', only,The functions A P(	 P

represent tho solutions of the linearized Boltzmann equations

5	 PI

	

I2 A(pi)	 -y kT) M

0

I
P 1 P1

B p	 (2.2)

	

2* 0 1)	 M

The mass of a,molecule is denoted by m and 0(i) is the normalized Maxwell

distribution function

(21r mkT)-3/2 exp(- p?/2m kT)	 (2.3)

0

6

I

The tensor 'P,O 'P, is the traceless tensor associated with the dyam*c  'p, 'p,. The

operators I 2 and I 3 are linearized binary collision and triple collision integral

operators. In the cluster expansion method developed by Green • and C6hen9

these operators can be related to the streaming operators S- t

I

2
1 2 	 dx2 0 12 j8(12) ;6(l);6(2 )

L
Pli	 (2.4)

f jnj

1 
3	 f 

dx 2 dx 3 
0 12 fh(123) — ,9(12) h(13) A(12) A(23)	 (2.5)

3
+ A(12)) 0(1) qb(2) 0(3) L Pli

jul

01

4

4
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with

k	
l

f

f-

r

It
`im S-t ( 1 '' ,^)	 S+^ (i)	 (2.6)

We use the notation dx i to indicate an integration over the momentum p i and

the position r i of particle i. The permutation operator Pi i interchanges the

indices 1 and i. The operator 6 i j is a differential operator

au i j	 a	 av i j	
a	 t2.7 >M • ^^	

-4 •eij	
_

Or,	 ap i *	
4

arj 	 apj 

where t T , j is the pair potential of particles i and j .

EquattOn. (2.5) was the stutrting point of the previous reduction of the triple

collision operator .4p6 However, for the binary collision expansion it is more

convenient to use the c -method, first introduced by Zwanzig. 10 This method

uses resolvent operators G (1 • • t) which are the Isplace transforms of the

streaming operators

m
G(1 • t) =	 dt a Et S-t (1 .. '0' f6+ ;l(1 • • t)]-1,

o	 I.
(2.8)

c

where 9 (1 - • t) is the Uouville operator for the t particles

g(1 ....t)	 go (1 .. t) _ r T 6 i j	
(2.9)1<i< j 

<e

5
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6B2 (E) =	 dX 2 6 12 G(12)W(12)(;- 1 (12)(k(1) 4<2    )	 P1 (2.14)
i^ 1

I

6

s

.

s

and

Ali	 "'•

Flo (1 L^ ^ ....	 (2.10)
a r

We also need the resolvent operator Go (1 • • which generates the free stream-

ing of the particles

G0 (1 .. ,^) =	 0 ( 1 • • ,^)^ 1 .	 (2.11j

!f

The equivalence of the two methods to describe the first density correction

was demonstrated by Ernst, Haines and Dorfman. 1 Using their notation, one

finds

i

1  = lim E Bz (e)	 (2.12)
e-0 0

I 3	 1 im E B3 (E)	 (2.13)
e .. O



•

C B3 (C)	 dx2 dx3 (012 G(12) ( 013 +823) 0( 1 23) W(123)

+ Q12 G(12) g( 12 e 3)
F

A

b

	 ta i n G(12) W(P) 
0 13 `(13 ) W(13)

I

^:. 8
12 G(12) W(12) 1923 G(23) W(23)1

A

• G-' (123) 00)0(2) 0(3)	 P1x	 (2.x.5)

A=j

The statistical factors W (1 . 4)q

W(1	
t) -	 (1+f 	 (2.16)

1<i;

are related to the Mayor functions f i j
F

f
ij
	 exp (- u , . j kT)	 1	 2.17

i

	 The function g (12;3) is given by,

x#'	 g(12> 3 )	 W(12) f I  f 23 •	 (^.1$)

It is understood that the limit E -+ Q is taken after all,other operations have been

'S

	 performed.
t

t

t
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The self-diffusion coefficient can be expressed in terms of the same oper-

ators, provided one deletes the permutation operators, P 1 i .

The first term of B3 ( e ) can be simplified using the relation

6 12 G(12) ( 0 13 +623) G(123) = 
012 G(123) - 6 12 G(12) .	 (2.19)

We find it convenient to symmetrize the operator B3 ( E ), so that all three par-

ticles play the same role. For this purpose we interchange the integration

variables 2 and 3. Furthermore, we add the corresponding terms starting with

6 2 3 , since they vanish upon integration oner p 2 and p3 . Thus we obtain

RR

1	 3
E B3 (E) _ ^- dx2 dx3 T(123,	 1) 2) q6(3) 

L 
P1 i	 (2.20)

with

.

'	 T(123, E)	 1612 +0 13  + 623 , G(123) W(123) -	 0. G(a) W(a)
a

eal G(aj W (al)ffat + eat G (a2) W laz^ Go 1 (123 )	 (2.21)

a l gra2

The summations are to be taken over the three pairs 12, 13 and 23.

8
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We express the 0 1; operators in terms of resolvent operators

0 12 + 813 
+ 023	 G-' (123) - G-

1 (123) (2.22)

012 - Go 1 (12) - G` 1 (12) = Go 1 (123) - G"1 (12)
	

(2.23)

so that

T(123,) =	 Go 1 (G(123) - Go) W(123)	 Go i ( G( a ) - Go) W(a)
a

Go 1 (Gal) -Go) W \a 1 ) fat +Go 1 (G^a 2 ) -Go) W(a2) Go 1 . (2.24)
a1 %a2

From now on we oarit the arguments of the free streaming operator G o .

It is our purpose to decompose this operator into a sum of operators each

of which transforms the initial momenta of the particles to the momenta after

a specific sequence of collisions. The equations quoted in this section apply to

molecules interacting with any spherical symmetric i short range repulsive pair

potential. The remainder of this paper is specifically concerned with a gas of

hard sphere molecules.

III. BINARY COLLISION EXPANSION

A detailed study of the binary collision expansion for the case of hard spheres

was recently presented by Ernst, Dorfman, Hoegy and Van Leeuwen.5 The

9
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resolvent operators G ill • • ,) carp be related to binary collision operators by

G(1	 W(1	 Go + Go ^^ Ta G(1 .. ti) W(1 ..)	 (3.1)

i

j

W(1 .. ,^^ G(1	 W(1 . , 4L, ) Go + G(1 	 L Ta Go	 (3.2)
CL

While G (1 . • t) and W (1 • • t) do commute, the binary collision operators to be

used depend on whether the overlap exclusion, is written to the left or to the

right.

The binary collision operators Ta and T^ contain an interacting and a

non-interacting term12

Ta = 
Tai + Ta	 (3.3)

Ta - Tal + Ta 	 (3.4)

To describe the effect of the binary collision operators we consider the param-

eters that specify a collision 'between two hard spheres 1 and 2 with diameter o-

(see Figure 1). An impact vector b1 2 is defined by

b12	 r1 2	 r12	 V12 V12 	 (3.5)

wherer i Z = r 1 - r 2 is the relative position, v 1 = v 1 - v 2 the relative velocity

and v 1 2 the unit vector in the direction of v 12* For b 12 ca we define a perihelion

10
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vector

a 	 b12 
+ V 12 Cr2 - b12 (3.6)

and two contact times

i - 	 2- 2
12 	 (̂ I2 V 12	 b1 2	 )/u12	 (3.7)

The operators T12 and T1 2 are defined by5

T i1 	 =	 (c" "' b1 2) b ('r12 ) rX 	 2	 (3.8)

T 1 2 - - 8 	 - b12)  S ^T1 2 /	 (3.9)

T12	 ®Ca b12/ S ^T12^	 (3.10)

where O(x) = i for x > P and O (x) = 0 for x < 0 and 8(-r) is the Dirac 8-function.

The operator 12 transforms the, vw, ".ocities v 1 and v 2 into the velocities v 1' and

V ' before the collisionl32 

2

	

X12 V1 - V 1	 V1	 V12	 k k

	

12 V2 _ V 2	 V2 + V12
	

'-# k	 (3.11)

A product of T operators and Go operators can be interpreted in terms of a

collision sequence, when ret:.d from left to right. For example, Figure 2 shows

the collision sequences associated with the four terms of T12 Go T1 3 . Since

we consider backward streaming, the diagrams are to be read from top to bottom.

11
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The operators T 1 2 and T 12 are only different from zero, when the particles 1

and 2 are in contact at the top of the diagram. The terms in T 12 Go T13 require

that the conditions for two successive collisions be satisfied, such that T 1-2 < T 13 .

(Note that T 12 Go T 13 and T1 ^ Gp T13 may include situations where 1 and 3 are

colliding, while particles 1 and 2 are still overlapping.) For T " and T " the

	

12	 1.3

time ordering refers to the contact timer 12 and T 13 , respectively. The oper-

ator product transforms the velocities of the particles at the top of the diagram

to .the initial velocities at the bottom of the diagram. A minus sign is associated

with each non-interacting collision.

We mention some relationships between the T operators and the Mayer

1 functions:

'_ f	 = 4	 (3.12)f a Ta	 U	 q a

f

and

Ta fR = fp Ta	 ;fa fR = f^ Ta, (a^-̀ ,l3)	 (3.13)

{

We shall also need the commutation relation

Go f a	 fa Go 	 Go ( Ta - T a ) Go ', = Go (Tan - Ta Go	 (3.14)
r 	

{P

l

For a proof of these relations we refer to Ernst et. a1.5
I

The binary collision expansion is generated by successive iteration of Equa-

tions (3.1) and (3,2). For the two particle resolvent operator this procedure

12
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terminates after one iteration

G(a) W(a) = Go + Go Ta Go	 (3.15)

W(a) G(a) = Go + Go Ta Go	 (3.16)

sincel4

Ta Go Ta - 0 ,	 Ta Go Ta - 0	 Ta Go Ta - 0	 (3.17)

Substitution of (2.23) and (3.15) into the expression (2.14) for a B 2 (E) yields

2

e B 2 ( E ) =	 dx 2 T12 0(1)0(2) T,Pil	 (3.18)

which reduces to the familiar form of the Boltzmann collision operator.

Similarly we substitute Equation (3.1) for t = 3 and Equation (3.15) into the

expression (2.24) for the triple collision operator

T(123, e) _ , Ta G(123) W(123) - 
IT, 

Ta Go
a	 a

T,,,
1 

G o tf a + Ta Go	 Go	 (3.19)
2	 2	 )a1a2

As mentioned earlier, for a dynamical interpretation we read the terms from

r

f	 left to right. Therefore, we prefer to bring the overlap conditions W(123) and

13

Yy.



fa to the left. Using the commutator (3.14) we obtain

T(123, e)	 Ta W(123) G(123) --	 Ta Go +
a	 a

lr

i

Ta 
1' ( 'a

2 Go + Go Ta 2 Go ) Go 1	 (3.20)

a1^a2

In order to express T(123, E) as a sum of terms that are convergent individually,

we iterate (3.2) twice	 "

W(123) G(123)	 W(123) Go + 1: Go Ta Go +
a

+ G(123) x L L Ta
1	 2

Go Ta Go	 (3.21)

al*a2

so that

T(123, E)	 r fQ f y Ta 
+ 2 _L 

fR Ta i Go Ta 2 +

a 1 ?^ a 2-

(a1j-/3pa2 )

+ L T T. Ta W(123) G(123) Ta Go Ta	 (3.22)
1	 2	 3

aly^a2*a3

14
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(3.24)

J#

In Equation (3.22) we have indicated explicitly that the ;indices in two successive

T operators refer to different pairs of particles, However, this condition is

also satisfied automatically as a result of (3.17). Each term in (3.22) involvos

at least three conditions on the phases of the particles. In the first term, f P f  Ta

two pairs of particles overlap; we refer to this term as the double overlap
f

term. The double overlap term is the contribution according to the theory of

Enskog: 15 it is the Boltzmann collision operator associated with one pair of

particles multiplied with the excluded volume of the third particle. 4 The second

sum in (3.22) is a collection of terms that contain a single overlap condition.

However, it should be remarked that the products of three T operators also in-

elude single overlap configurations implicitly.16

The triple collision operatorator can be expanded into sequencesuences with increasing

numbers of successive correlated collisions by further iteration of (3.21). Noting

1 that

Ta l W(123) G o Ta 2
	

(1 + f,8 ) Ta I 
Go Ta 2

	 (3.23)

ta i	 a2!

we obtain



s

with

T (3) (123, E) =	 fA f y Ta +	 fA Ta Go Ta +

(a^A^y^a)	
a 1^ a 2

(a1Y-A^a2)

+T L (1+ fa) Ta 1 	 2	 3 

Go Ta Go Ta(3.25)
alfa2,0a3
(aj,^Ayia2)

T (4) (123, E ) - T. AL IT, T (1 + f,,) Tai Go Tae Go Tai Go Tao
a 1 $ a 2,* a 3 ,* a 4
(aIYAAa2)

(3.26)

i
1

ff{
1

T(S) (123, E) - 	 LE(1  + fA ) fa Go Ta Go Ta` Ge, Ta Go Ta (3.27)
+	 1	 2	 3	 4	 5

a VA a 2 ,s a 3,* a 4# a 5

a2
etc.

In the derivation of (3.24) we have not used explicitly the fact that the operator

T (123 9 E) operates on a function of the momenta alone. We shall show in Section

V that with the latter restriction, T (3) (123 9 E) can also be written in the more

compact form

	

T (3) (123, E ) - !.^	 (1 + fA Ta Go Ta Go Ta	 (3.28)

	

^--+	 2	 3
{	 ai,#a2,50a3

	

aI	 a2 )

16
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Ta GO V Go Ta = 0 . (4.1)

r

t

4

Each term TO) (123, r:) in the expansion (3.24) corresponds to sequences of s

correlated binary collisions between the three particles.

IV. REDUCTION OF TRIPLE COLLISION OPERATOR

A decision as to when the expansion (3.24) terminates requires a study of

the dynamics of three particles. We first mention some rules that are immediate

consequencos of the definition of the T operators.

Ta Go Tp Go Ta 	 0

These equations express the fact that a pair of particles cannot recollide after

a collision, unless the trajectory of at least one of the two particles is deflected

by an interacting collision with the third particle.

Ta G O Ta GO Ta GO Ta = 0
1	 2	 3	 4

Ta Go TaGo Ta" G O Ta = 0
1	 2	 3	 4 (4.2)

s

The reason for (4.2) is that in the given sequence, none of the pairs is aimed

to collide after the first three collisions.

We list a number of lemmas, each of which expresses the impossibility of

a specific collision sequence for three hard spheres.

'	 Lema is	 Ta Go Tai Go Tai Go Tai Go Ta	 = 0	 (4.3)
1	 2	 3	 4	 5

17
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A,

The lemma that three hard spheres of equal amass and diameter cannot undergo

more than four successive collisions was stated by Sandri and coworkers 17 and

.^ proved in detail by Murphy and Cohen. 18019 however, in the original formulation of

the lemma, no distinction was made between real collisions and interacting col-

lisions. A real collision is a collision with the condition that it is not preceded

by a non-interacting collision. 20 Strictly speaking, in order for three spheres

not to undergo more than four collisions, it would be necessary to prove

Ta (1* GO T An )Go T,,i (1+GoT^ 1GoTai (1+GOTn )GoT41
 2 	 2/	 3 	 3	 4

;l	 x C 1 G o T 4 ) G o Ta s ^ 0 ^ (4.4)

The factors 1 + Go TR ensure that the succeeding interacting collision is con-

sidered only when it is real. Equation (4.3) implies (4.4), but not vice versa.

The reason is that according to (4.4) the conditions for five successive inter-

acting collisions conceivably could be met, in which case the sequence would

be rendered hypothetical as a result of the interference of a non-interacting

collision. An examination of Murphy's proof shows that the latter argument is

never used and that the conditions for five successive interacting collisions

indeed cannot be satisfied regardless of whether the collisions are real or by-
a

pothetical. Thus Murphy's proof justifies the stronger conclusion (4.3).21

In the formulation of the subsequent lemmas, we denote the three pairs of

particles by a,,8, and y. Thus we shall always use the convention a ?^ f5 ^ y r a.

.

18
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Lemma 2:	 Ta Go TAI Go Tal Go TA = 0	 (4.5)

Lemma 3:	 Ta Go TQ Go Ty G3 Ta = 0	 (4.6)

Lemmas 2 and 3 enpress the fact that those Inrticular four collision sequences

cannot occur. 17919 Again -,,ve use the stronger interpretation for four succes-

sive interacting collisions, independent of whether they are real or hypothetical,

Justified on the basis of Murphy's proof.

Lemma 4:	 Ta Go T,61 GU Ty GO Ta	 0	 (4.7)

Ta G^ Tai Ga Ty Go Ta = 0	 (4.8)

Lemma 5:	 Ta Go Ty Go Tp Go Ta	 -	 0 (4.9)

Ta Go 'fy Go ^ 6 G0 Ta	 -	 0 ► (4.10)

Lemma 6:	 fy Ta Go TQ Go Ta = 0	 (4.11)

Cy Ta Go T) Go Ta = 0	 (4.12)

Lemma 7	 f y Ta Go Tp Go Ty = 0	 (4.13)

f y Ta Go Te Go Ty = 0	 (4.14)

Lemmas 4-7 are new. They are various representations of a theorem which

says that once the conditions for a recollision, Ta Go T,61 G4 Ta , are satisfied,

19
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pair ,y cannot be in contact during the entire recollision process. A proof of

the lemmas 4-7 is given in the Appendix.

The lemmas presented above are to be supplemented with the following

rules. First, the lemmas are valid when the left-most and right-most T operators

are either interacting or non-interacting. Secondly, since a non-interacting col-

lision does not change any of the velocities, the lemmas remain valid upon addi-

tion of any number of non-interacting collisions.

From these lemmas, we deduce the following theorem:

r	 TO) (123, E) = 0	 for s >_ 5	 (4.15)

{
t
Y

!	 Proof:22 First we note that in each term of T ( ' ) (123 9 E), for s > 5 9 the subgroupi

of five left-most operators is equal to a term in T M (123 1, E). Thus it is suf-

ficient to prove that each individual term of T ES) (123 9 E) vanishes.

E
For this purpose we consider all possible combinations of five T operators.

From lemma, 1 we conclude that at least one of the intermediate collisions must

{	 be non-interacting. Equation (4.1) says that such a non-interacting collision

cannot be inserted between two T operators with the same index. Equation (4.2)

rules out the possibility that two successive intermediate , collisions are both

non-interacting. The remaining combinations are listed in Table L Upon in-

spection, we conclude that all terms vanish, since each contains a subgroup of

four collisions that are ruled out by the lemmas. The appropriate lemmas for

the individual terms are listed in the second column of Table I. The term
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Ta Go TR Go Ty Go Tpt Go Ty vanishes according to lemma 2, since T  can be re-

placed with - T^ Go Tp

As a next step we investigate the terms of T (4) (123 9 E ). The various com-

binations of four T operators are listed in Table IL Again we conclude that

several sequences are impossible. Thus (3.26) reduces to

T (4) (123, E) _ ^^ (1 + fy )L T Go TR Go Ta Go Ty
a ,# A

+ Ta Go TA Go Tyi Go TA	(4.16)

Furthermore, the terms with f y can be deleted as a result of lemmas 6 and 7.

In the terms of T (3) (19-R. E) containing three T operators we can delete the

overlap exclusion for the same reason. %mmarizing our results we find

T(123, E) = T ( 3 ) (123, E) + T( 4 ) (123, ,-: )
	

(4.17)

with,

T (3) (123, E) = L fQ Cy Ta, + L IT, fA Ta
L	 2

Go Ta +
a	 al^a2

(0,8R ,y,Oa)	 ( a llp ,8^'a2)

+	 Ta 1Go Ta2Go Ta 1+Ta1Go Ta 2Go Ta ]	 (4.18)
aV"2

(a 1 ,P' AAa 2 )

r
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4	 T('4) ( 123,	 [ Ta Go. Tal Go Ta Go TA
1	 2	 1

al^`a2
(a13'Rta2)

+ Ta Go Ta Go TQi Go Ta 	(4.19)
1	 2	 2

Thus the dynamics is restricted to a limited number of collision sequences with

at most four successive collisions.

V. COMPARISON WITH SURFACE INTEGRAL METHOD
r

The fact that the triple collision operator can be decomposed into a sum

j	 of operators, each of which is related to a particular collision sequence, was

demonstrated earlier by one of the authors. 4 That derivation stated from the

expression (2.5) for I 3 in terms of the streaming operators A (1 •	 This

operator was symmetrized following the same arguments as those used in the

f	 derivation of (2.20). For the configurational part of the integral we considered

the positions of the three particles along their free trajectories. A surface in-
i

tegral was obtained by integrating over Ta which is the time relative to the

time of the first collision encountered when streaming backwaeds. The result

r	 was

3
I 3 =	 dX 2 dX 3 	 s Ta	 T a 1 ; a2 )dk(1)0(2)0(3)	 P 1,(5.1)

L	 1 /	 f4	 1

a I 3 a 2	u 	 1
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where the summation over I.L represents a summation over the six diagrams of
x.

Figure 3, indicated by R1, R2 9 C1 9 C2 0 H1, and H2. Just as in Figure 2, the

diagrams should be read from top to bottom. For convenience, we have re-

'	 tamed the S -function to indicate that the integrand is evaluated at the time

•	 Ta = 0 of the first collision. The successive collisions are time ordered ac-

*	 cording to the contact times 7 Although not indicated explicitly, the trajectories

in R1 and Cl should be continued until no further interacting collisions are en-

countered. The effect of the operator associated with each diagram is to trans-

form, the velocities at the top of the diagram into the velocities at the bottom of

the diagram. In this convention each diagram of Fig. 3 represents actually two

diagrams: one in which the third collision is interacting and another in which

the third collision is non-interacting. The operator has a minus sign, when the

number of non-interacting collisions is odd„ For a derivation of this surface integral
f

form of the triple collision operator we refer to the earlier publications 4,6,23
j

it should be noted that the diagrams of Figure 3 do. not specify the collision

sequences completely, but that in addition some auxiliary conditions have to be

a	 imposed. The first auxiliary condition requires that the phases of the particles

at the surface 7- a	 0 should be restricted not only to non-overlapping con-..	 i

figurations, but also to receding phases. Thus any collisions that mxglxt occur

•
when the trajectories are extended into the future, should be excluded. The

second auxiliary condition says that all collisions up to and including the first

non-interacting collision should be real. Lastly„ as mentioned earlier, the three

collisions of Rl and Cl could be followed by a fourth interacting collision.
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On comparing (5.1) with (2.20) we see that 1 im T(123, e) should be identified
C-Q

with

T(123) -	 b(T )al	 J 	 T. (a,; °`2 i

aOfa2	
`	

µ
(5.2)

I

The six diagrams of Figure 3 represent a decomposition of the triple collision

operator which differs in appearance from the decomposition (4.17) derived from

the 'binary collision expansion. It can be shown that the auxiliary conditions men-

tioned above represent a concise formulation of the combined effect of all operators

T ( s) (123, E) in (3.24) for s >_ 3, regardless of the validity of the lemmas quoted in

the previous section. For convenience, we shall demonstrate the equivalence by

considering only those collision sequences that are dynamically possible. Thus,

we first investigate how the lemmas simplify the T. (a,; a 2 ) operators.

To specify the auxiliary conditions explicitly, we introduce the following

functions

Aa - 6(0- -bj O('r )	 (5.3)

Z 	 = 6 	̂ ba ) 6(-'ra' 	(5.4)

Na = 6 ( ba - a-) •	 (5.5)

a

'a

F

I

Thus A. = 1 when pair a is aimed to collide in the past, Za = 1 when pair a is

aimed to collide in the future, and Na 1 when pair a is not aimed to collide in
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either direction. These functions were used previously by one of us in a discus-

sion of the Lorentz gas.24 Since fa can be written as

f 
a _ - 0(o- - ba ) 6

1 
(
 ,r 1 t9(,r ) ► 	 (5.6)

we note

Aa + Za + Na _ f a = 1 .	 (5.7)

The Tµ ( a , ;  a 2 ) operators can be transcribed in terms of these functions

and the binary collision operators used in the previous sections. As an example

we consider TR 1 (12; 13).

S (T i2) TR 1 ( 12; 13) _ (A13+ N 13) ( A23 +N232 (1 +Go T23 )Go

X r13 1 * 'o T2 3) Go ( T12 +T1'2 Go T2 3)	 (5.8)

The factor ( A., + NY guarantees that the receding phase condition is satisfied

for ,/. The function (7-i 2 ) is incorporated in the first T12 operator. The fac-

tors 1 + Go T23 guarantee that the second and third collisions are real. The last

term T12 Go T23 gives the correction if a fourth collision is encountered. Lemma

2 implies that such a collision can only involve p4. les 2 and 3. Again it is

understood that the limit E — 0 is taken just as in the preceding paragraphs.

Similarly the other T. (12; 13) operators ca.	 represented by

b ( T 12 ) TR2 (12; 13) = 1 A2 3 + N23) T 1 ^ Go Tl s Go T 12	 (5.9)

25
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5(r12)Tci(12; 13) _ (A 13 1N 13)( A23 *N23) Ti1 2(1+GoT23)Go

x Ti 3 ^ 1 + Go T1 z^ Go 1 T2 3 + T 2 3 Go T13)

S 1 T 1 2 / Tc2 (12; 13) = C A23 + N 2 3 / T12 GO T13 GO T23

5( r - ) Tftl ( 1 2; 13•) _ (A1 3 + N 13 / ^ A23 +N23 ^ T112 Go Ti3 Go T23

1 (7- 12 ) TH z (12; 13) = Ti Go Ti3 Go T 2 3 .

(5.10)

(5.11)

(5.12)

(5.13)

Ih describing TR1 and Tcl we have used the fact that only one particular col-
{	

lision could be added to the three successive interacting collisions. Lemmas 4
r

and 5 lead to further simplifications in TR 1 and Tc 1

5 ( T- ^ TR1 (12; 13) = (A13 N13 /(A23 + N23) Tip Go T i3 Ga (T12 + T' Go T23)(5.14)

05 
 1

T 12 ! Tcl (12; 13) = ( A13 + N13) (A 23  +N 23 / T 112 G o ` T113 G 0  T23

+ T^ 3 Go T 113 Go T2 3 + T i13 Go T i a Go T2 3 +T i 3 Go T^ 3 Go T13	 (5.15)
i

Note that the term T12 Go T2 3 Go T 13 Go T2 s Go T13 in (5.10) vanishes according
,a

to lemma, 2, since T 2 3c an be replaced with - T2 3 Go T2 30

In contrast to the derivation of (4.17), the surface integral (5.2) was derived

under the explicit assumption that the operator operates on a function of momenta,

as is the case for the triple collision integrals (2.1). Therefore the two decomposi-

tions of the triple colMAon operator (4.17) and (5,2) will only yield identical
	

i
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\Ta T 

n
a Go = f a (5.17)

f

results in the spatially homogeneous case. Since

1
C^X 2 dX 3 Go F r 2i , r 31 , P 1 P2 P3 ^ = 0 (5.16)

z

r
	 if F is a function of the relative positions r 21 and r 3 It we can use a simplified

version of the commutator (3.14)

Furthermore we note that

1 A23 +N23J T12 _ \ 1 + f 23 — Z 23 / T12	 \I + f 23 +T 23 G 0) T 12 •	 (5.18)

The replacement of - Z2 3 T 12 by T 2 3 G o T 12 represents a shift of the surface

from 12 = 0 to T 2 3 = 0, which is again justified in the spatially homogeneous

case. Similarly A 13 + N 13 can be replaced with

A 13 +N13 - 1 +T n Go ► 	 (5.19)

where the term wits: f13 vanishes due to the presence of the succeeding T 13

operator. By substituting (5.18) and (5.19) into the expressions for T,, (12; 13)

and working out the products, we can express T(123) in terms of products of T

operators.25 However, many terms vanish, again as a result of the lemmas

quoted in the preceding section. Since the arguments are precisely the same

27
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as those used in the reduction of T (4) (123, E) and TO) (123 9 E ), we do not dis-

t

i

d

f

cuss the intermediate steps, but simply state the result.

T(123) - L-j E 8(ra1 )	 Tµ (a 1 , a 2 )	 T(3) (123) + T (4) (123) ,(5.20)

a 17"2	 µ

with

T (3) (123) = 11 IT, [ Ta Go Tai G o Ta + Ta Go Ta Go TA 	(5,21)
1	 2	 1	 1	 2

a ? a 2

( a I #A7fa2 )

T(4) (123) _	 [Ta1 
Go 

Tat 
Go Ta 

1 
Go TA + Ta 1 Go Tae Go TAi Go Ta 2 . (5.22)

a1#a2	 '
(a1#Asa2)

The terms of T (3) (123) are precisely the terms associated with the six diagrams

of Figure 3, if the auxiliary conditions are disregarded. The terms of T (4) (123)

which are identical to those in (4.19) represent the effects of the auxiliary

conditions.

In order to show that T (3) (123) is identical to (4.18) we need to shift the

surface from ra = 0 to-ra 
1 

= 0, when the first collision is non-interacting;.
1 

Using (5.17) we obtain

T(3) (123) —	 [fa
1
 G o Tat Go Tal + Tal G o Tat Go Tp +	 fat Tat Go TA

a1# a2	a 1# a 2

(a l #A#a2 )	(a1#Q#a2)	 (5.23)

v
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Repeating the procedure once more for the last term, we find

La fa 1 ^Ta 
Go TA _

T-Lfa1 
Ta 2 

G o TA +f a 1 f a
Z 
Tp(5.24)

1 3'a 2 	2
( a 1 90 a 2	 Ca1#A#a2)

In the double overlap term f a1 f a TA we can replace TA with TA , since both

operators reduce to the Boltzmann operator in the spatially homogeneous case.

Therefore on comparing these results with (4.13) we confirm the identity of the

two forms of the triple collision operator.

The operator can be transformed into a form which elucidates more clearly

its symmetry upon time reversal. For this purpose we rearrange the terms of

T (3) (123)

T (3) (123) _	 fA f  Ta + L T [ Ta 
Go Tai Go Ta

1	 2	 1
a	 a1#a(aA'Y#a) 	 (a1#A#aZ)

+ Ta 
1 ffa 2 G

o + Go Ta 
2 

Go} TA , (5.25)

f 
aZ 

Go + Go Ta 
2 
Go = Go f a Z

 + Go Ta 
2 

G o .	 (5.26)

fi

where from (3.14)

3

y
y

t

C
8

x
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Using (5.26) and lemma 7, TO) (123) can be written

T(4) (123)
IT, T Tat 

G Q Ta2 Ga 
Ta1 

G0 TQ +Ta1 
G0 Ta2 Cr

0 '!' 
Go Tat	 (5.27)

al" a2

The time reversed operator is obtained by reversing the order of the operators

and interchanging T and T. As mentioned above, the double overlap term

f 
18 

f y Ta is itself symmetric when operating on a function of momenta, Thus

T(3) (123) is symmetric upon time reversal according to (5,25) and (5.26) and

T(4) (123) according to (5,27). This time symmetry is not sufficient to prove

a generalized P.-theorem, but it does ensure that the matrix elements of the

triple collision operator in a Sonine polynomial representation 4 are symmetric,

VI, SUMMARY

Using the binary collision expansion we have decomposed the triple col-

lision operator into a series of terms related to collision sequences involving

increasing numbers of successive correlated binary collisions. The expansion

turns out to be equivalent with a decomposition of the triple collision operator

derived previously by a surface integral method. We have presented some dy-

namical lemmas which imply that all collision sequences between three hard

spheres terminate after four successive collisions regardless of whether the
r
r collisions are interacting or non-interacting. This is a generalization of a lemma

presented by previous authors which stated that three equal spheres cannot

k
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undergo more than four interacting collisions. The dynamical lemmas lead

also to some interesting simplifications in the sequences of three and four suc-

cessive collisions.
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APPENDIX

Our proof of the new lemmas 4-7 is based on an analysis of the recollision

sequencer T12 o T 13 ^'0 T i z, (see Figure 4) . The contact times of the three

collisions are, indicated by r x , T ^ , r 2 , r 3 , T 3 . For convenience we follow

the motion in the forward time direction. Lemmas 4-7 are consequences of the

:following theorem

r32 (T) > a,	 for	 T1 < T < 7-

:F

In view of the symmetry of the recollision sequence, it is sufficient to , prove,

r32 (-r) ? ,a for r  < T T3 .

The theorem is most easily proved by examining the actual trajectories of

the thre..: particles in three dimensional- space, For.this purpose we considera

coordinate system. with the center of the action sphere of .1 at the origin O. for

times 
ri _< -r< T2 '; The coordinate . System .is oriented such that for times r. > 7, •y

sp
sphere 2 is in the XZ plane, moving in the positive Z direction (see Figure 5)

The relative. separation of par 21 at time Sri , is the vector from 'O to A

OA
+^ _ .	 l

— i' 2 1 7 1	 cos B^ 0, a sin 6	 0 < 6^	 1 < 2	 (A,2)

The center of sphere 2 is at point A at T ? 1+ , For times T > T 1 it moves

along line AB in the positive Z direction,
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At time T = r 2 , the center of sphere 3 lies at point C on the action sphere

of it

OC = r32 (?2) _ - a cos 0 sin 0 2' Q sin (k, a cos 0 cos 02) ,	 (A.3)

where 0 is the angle that OC makes with the XZ plane, and e2 is the angle be-

a
	 tween the Z axis and the projection of OC onto the XZ plane.

In a collision between two turd spheres the velocity components along the

a
	 line of centers are exchanged. Therefore for times T > r 2 the center of sphere 1

moves along the extension of line CO, i.e., from O toward D and the center of

sphere 3 moves in the plane perpendicular to CO at C.

i
	 We examine the conditions on the location of point C (the center of sphere 3

at time r = 'r2 ) such that pairs 12 and 32 aim to collide at some time 'r > 'r2  .

Since at time T 7-2 the center of 1 is at O and the center of 2 is between A

and B, 1 aims to collide with 2 only when the path of 1 is directed toward the

tangent plane perpendicular to OA at point A; this requires C to lie in the op-

posite hemisphere from A. Now, since at time r = r 2 the center of 3 is at

point C and the center of 2 is between A and B, and A and C lie in opposite

hemispheres, it follows that r 32 (r2) > o-. Therefore 3 can aim to collide with

2 only when the plane of the path of 3 intersects line A.B.The above conditions

Imply for 9 2 and
7T

B 1 < e2 
< 2

_ 2 < 0 < + 2	 (A.4)
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Consider the distance from the points on the path of 2 to the plane of the

path of 3. Since the plane of the path of 3 intersects AB, there are two points

on line AB whose distance to the plane of the path of 3 is o-. We denote as point

E the position of 2 at the earlier time T E, when the distance I EF I	 For all

times T < TE v r 32 (T^ > o , so that the time T a of first contact of pair 32 is

greater than or equal to TE :

	

T4 >_ T E	 (A.5)

Next we consider the distance from the points on the path of 2 to the plane

through the Y axis and line OD. Since the distance from point A to the plane is
if

a sin(02 - 81 
< Q, , at some time TG > T i the center of 2 is at point G, such that

the distance from G to the plane of OD and the Y axis is equal to o-. Thus the

time T3 of the last contact of pair 12 must be smaller than or equal to TG

	

T3 < TG	(A.6)

We examine the distance from point E to the plane of the Y axis and line
a

OD. This distance is given by the line EO. Line EO lies in the XZ plane and is }

therefore perpendicular to the Y axis; it is also parallel to CF and hence per-

	

pendicular to line OD. The length of EO is	 }

E0 = 0- cos 81 /cos 8 2 ,	 (A,7)
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and thus, according to (A.2) and (A.4) EO > a , . This implies AE > AG and hence

TE > TG	 (A.8)

On comparing (A.8) with (A.5) and (A.6) we conclude

T a > T 3	 (A.9)

An equivalent statement is

r 32 (T) > Q ,	 for	 Ir < 
7

. < r +	 (A.10)

Lemmas 4, 5, and 6, Equations (4.7) - (4.12), follow from (A.1) since they

involve the recollision sequence a 13 a with pair y in contact or overlapping dur-

ing the recollision sequence. Lemma 7 also follows from (A.1) since TR must

be an interacting T operator in Equations (4.13) and (4.14), which results in the

recollision sequence y,8 ,1 with contact of pair a during the sequence.

i
1	 3
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Ter LN•€; x1 4f 	 70

CAMMA Sequence

` GO 
T 

GS 
Ta ' G o T^" G o 'Id ` ^ 1 0` ^.. ^- 2 ^'.+ „'T

Ta G o T'Q' G o Ta' G o 'I'y G o T^	 pT of ', i ^a '^►, .jJ y f

Ta Go T113' G^ Ty' G o T x" G o T 4 ' PT AJ . r r, J '-,1,4 0 ,,T

Ta G^ T^' G o Ty' G o T^3' G o TU	 R^' ^. Ir..
	 3

Ta G o TQ' G o TQ G^^ Ty` G o TO }1 Q1 () D iZ fl '; 3	 , ?

Ta Go T^i Gt T'an Go Tyi 
Go T•^'	

Q ^^D 'Y T i1 J-,,40' :? rT

T G T G T"G T' G T9 = T 0',,To;)
a0 Q	 y	 0 a	 0 ,.	 Ur^L a

Ta G o Tp' G o Ty G o T a' G o	 "t-)Tq 	 ^'i o^ ' [ oC ' f̂r o DI

Ta G o TF'' G o Y 'G 0 T a' G^ T^ = 0	 5

Ta G o TQ G o 'ry' G o Ta' G o Ty = 0	 2,5

Ta G o Tn G o Ty' Go TQ' G o Ta = 0	 3

Ta G o TQ G o Ty' G 0 TQ' G o ry = 0	 2

Ta Go T^ G o Ty' G o Ta" G o Ta = 0	 5

Ta G o TJ3 G o Ty G o TO G o Ta = 0	 4,5
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Table II

Terms in T (4 ) (123, e)

Collision Sequence	 Lemma

Td GOT18' G o Tai G O TO = 0	 2

Ta G o Tfl' G o Td' G o Ty	0

T  G o To' G o Ty G o T. = 0	 3

Ta G o TA'Go Ty'G o TQ f 0

Ta Go T
10
' G o Ta G o Ty 0

Ta G a TQ' Go Ty G o TQ = 0	 4

T  Go TA G o Ty G o Ta 0	 5

Ta G
0 0  G o Ty Go T0 X0
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Figure 2. The four collision sequences associated with the four terms of T 12 G o T 13 . The lines
represent particle trajectories and the shaded areas indicate regions where two particles overlap.
Diagrams are to be read from top to bottom.
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lision operator.4,6,23 The lines represent particle trajectories and the circles indicate collisions
between the two particles whose trojectot ies are enclosed. The dotted circles indicate non-
interacting collisions.
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Figure 5. / Geometrical representation of a recollision showing the particle trajectories.
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