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MECHANICAL PERFORMANCE OF A 2- TO 10-KlLOWAV 

by Hugh A. /(lassen, Charles H. Winnig, Robed 6. Evans, 
and  Robert Y. Wong 

Lewis Research Center 

SUMMARY 

A single-shaft turbine-compressor-alternator package fo r  a Brayton Cycle power 

generation system was tested a t  the NASA Lewis Research Center. The rotor operates 

on gas-lubricated bearings. The testing included 1005 hours of hot operation and covered 

a wide range of pressure, temperature, and power levels. Bearing operation was stable 

at al l  t imes. There was no appreciable change in the s ize  o r  nature of any of the bearing 

component motions. Shaft orbit  diameters were approximately 0.0001 inch (0.00025 cm). 

The motions of the gimbal and thrust runner were influenced by temperature and pres- 

s u r e  level. None of the bearing component motions exceeded 0.002 inch (0.0005 cm).  

Clearance between the thrust runner and thrust stator was smaller on the compressor 

s ide than on the turbine side. The clearance on the compressor side varied between 

0.0004 and 0.0005 jnch (0.0010 and 0.0013 cm) and decreased with increasing turbine in- 

let temperature and decreasing system pressure level. Journal bearing loads, a s  indi- 

cated by film pressure measurements, remained relatively constant a t  about 15 pounds 

(6 .8  kg). During hydrostatic operation, pneumatic hammer occurred in the turbine jour- 

nal  bearing when the ratio between supply pressure and bearing ambient pressure ex- 

ceeded values of 10. Hammering was not allowed to occur during normal operation. It 

was  prevented by maintaining bearing pressure ratios below the threshold value of 10. 

Shaft orbits showed large increases in the critical speed ranges. The largest orbit di- 

ameter  obtained was 0.00085 inch (0.0022 cm) at 8100 rpm. The Brayton rotating unit 

(BRU) rotor has been accelerated and decelerated through the critical speed range ap- 

proximately 90 times without incident. With the bearings externally pressurized, the 

shaft was allowed to rotate backwards a t  speeds up to 600 rpm and then suddenly acceler- 

a t e  in the forward direction. The initial backward rotation did not appear to influence 

bearing performance. The compressor bleed flow used to pressurize the bearing housing 

was  1.2 percent of total compressor flow. There was generally good agreement between 

predicted and actual Brayton rotating unit internal temperatures. Alternator winding 
temperatures were somewhat higher than predicted. 



INTRODUCTION 

The NASA Lewis Research Center i s  investigating the potential of the Erayton cycle 

for electrical power generation systems in space. One phase of this investigation in- 

volves ground testing components designed for Brayton cycle space power plants. One of 
these components is a single-shaft turbine-compressor-alternator package. The rotor 

operates on gas-lubricated journal and thrust bearings. The package was procured un- 

der a contract with the AiResearch Manufacturing Co. of Arizona and has been desig- 

nated the Brayton rotating unit (BRU). The BRU i s  described in reference 1. 
Reliable operation of the BRU requires reliable bearing operation and safe temper- 

a tures  within the machine. The bearings must be designed for  stable operation over a 

wide range of ambient pressure levels, turbine inlet temperatures, rotative speeds, ro- 

tative acceleration rates, and power levels. In addition, the moving par ts  must not be 

subject to  rapid wear or  fatigue. Since turbine inlet temperatures vary from ambient to 

2060' R (1144 K), package temperatures must be controlled to  maintain proper clear- 

ances and bearing loads, to  protect low-temperature components such a s  alternator 

windings, and to limit thermal s tresses.  

The BRU was installed in a test loop in order to evaluate i t s  performance. The test 

loop was designed s o  that the BRU could be operated over a wide range of turbine and 

compressor inlet temperatures, pressure levels, and power outputs, including the de- 

sign values. This test loop is described in reference 1. 

This report presents results  obtained during 1005 hours of operation in the test loop 

under a wide variety of operating conditions. Turbine inlet temperatures were varied 
from 1460' to 2060' R (811 to 1144 K), and power output was varied from 1.0  to  15 liilo- 

watts. Three working fluids were used: argon, krypton, and the design mixture of he- 

lium and xenon with a molecular weight of 83.8. During most of the time, the turbine 

inlet temperature was close to  the design value of 2060' R (1144 K). 

The following information is presented: 

(1) Bearing operating characteristics, which include component motions, bearing 

loads, pneumatic hammer, hydrostatic bearing flow rates, transient behavior, 

and thrust clearances 

(2) Operating characteristics of the bearing housing pressurization system 

(3) A comparison of actual temperatures throughout the BRU with predicted temper- 

a tures  for three power levels 

BRAYTON ROTATING UNIT DESIGN CONDITIONS 

T u r b o m a c h i n e r y  
The 10.7-kilowatt design operating conditions for the BRU turbomachinery a r e  a s  

follows: 



Working fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Helium-xenon mixture 
Working fluid molecular weight . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83.8 

Mass flow rate, lb/sec (kg/sec) 

Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.33 (0.604) 
Compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.35 (0.612) 

Turbine 

Inlet temperature, OR (K) . . . . . . . . . . . . . . . . . . . . . . . . .  2060 (1144) 
2 Inlet pressure, psia ( ~ / c m  abs) . . . . . . . . . . . . . . . . . . . . .  45.9 (31.6) 

Total- to static-pressure ratio . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.75 

Compressor 

Inlet temperature, OR (K) . . . . . . . . . . . . . . . . . . . . . . . . . . .  540 (300) 
2 Inlet total pressure, psia ( ~ / c m  abs) . . . . . . . . . . . . . . . . . . .  24.2 (16.7) 

Total pressure ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.9 
Shaft speed, rpm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 000 

The difference in turbine and compressor flow results from the fact that approximately 
2 percent of compressor flow is bled into the bearing housing to maintain bearing ambi- 

ent pressure. 

Alternator 

The 10.7-kilowatt design operating conditions for the alternator a r e  a s  follows: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Power, kW 10.7 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Power factor 0.85 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Frequency, Hz 1200 
. . . . . . . . . . . . . . . . . . . . .  Liquid coolant flow, lb/sec (kg/sec) 0. 12 (0.054) 

Gas Bearings 

The 10.7-kilowatt design operating conditions for the gas bearings a r e  as follows: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Lubricant Helium-xenon mixture 
. . . . . . . . . . . . . . . . . . . . . . . .  Bearing pad temperature, OR (K) 845 (469) 

2 . . . . . . . . . . . . . . . . . . . . .  Ambient pressure, psia ( ~ / c m  abs) 43.9 (30.3) 



BRAYTON ROTATING UNIT DESCRIPTION 

A schematic drawing of the BRU is shown in figure l(a). The radial-inflow turbine 
rotor and the centrifugal compressor impeller a r e  mounted on the ends of the shaft with 

the alternator between. The two journal bearings a r e  located on either side of the al- 

ternator. The thrust bearing is between the compressor impeller and the compressor 

end journal bearing. 

Bearings 

Both the journal and thrust bearings a r e  designed for self-acting operation at  design 

speed. The bearings must be externally pressurized during low-speed operation, in- 

cluding startup and shutdown. During the testing described in this report, external 
pressurization (jacking gas) was supplied at speeds below 30 000 rpm. 

Journal bearings. - Each journal bearing has three pivoted pads. The pads and 

pivots a r e  shown in figure 2. The pivot location is 65 percent of the pad length from 

the leading edge. The pads a r e  made of M-41 tool steel with a Rockwell C hardness of 

60 to 65. The pivot consists of a fully conforming sliding contact ball and socket, both 

made of tungsten carbide. External pressurization is supplied through a hole in the 

pivot center to a single orifice in each pad. The balls of two of the pivots in each bear- 

ing a re  rigidly mounted to the frame. The third ball is mounted on a flexible beam. 

The purpose of this flexible beam is to accommodate small amounts of differential 

growth that tend to change bearing clearances and loads. The growth can result from 

thermal or centrifugal forces. Changes in load were minimized by selecting a low 

spring rate with a nominal value of 2000 pounds per inch (357 kg/cm). During assembly, 

the flexible beam i s  deflected to establish an initial bearing load (preload), and the 

shaft is thus clamped between the three bearing pads. The preload is required because 

of the low spring rate. The preload value is selected to provide the desired bearing 

load during operation. Bearing ambient pressure is maintained by a bleed from the 

compressor discharge. The turbine and compressor labyrinth seals (fig. l(a)) a r e  

sized to limit this bleed to 2 percent of the compressor flow. Ambient pressure control 

is required to maintain adequate bearing film thicknesses. 

Thrust bearing. - The double-acting thrust bearing is shown in figure 3. The bear- 

ing consists of a flat thrust runner and two stator plates, each with nine self-acting 

stepped sectors. Each sector i s  provided with an orifice in the land for external pres- 
surization during startup and shutdown. The thrust stator material is M-50 tool steel 

with a Rockwell C hardness of 62 to 64. The entire thrust bearing is mounted on a gim- 

bal assembly for self-alinement purposes. 



Brayton Rotating Unit Internal Temperature Control 

Various methods a r e  used lo limit the BRU internal temperatures. The design 

features of the temperatu.re control system a r e  shown in figure f(5) and a r e  a s  follows: 

(1) A portion of the back of the turbine scrol l  i s  gold plated. The gold low- 
emissivity surface reduces radiant heal transfer from the turbine. 

(2) The turbine seal  holder is rhodium plated to maximize reflection of radiant heat. 

(3) A portion of the rotor a t  the turbine end has a low cross-sectional a r e a  to min- 

imize conduction heat flow from the turbine. There i s  another a r e a  of low cross  sec-  

tion between the turbine scrol l  and i ts  mounting flange. 

(4) The turbine end curvic coupling provides high resistance to conduction heat 

flow. 

(5) A copper heat shunt ca r r i e s  heat around the turbine bearings t o  b e  removed by 

the alternator coolant system. 

(6) Two copper heat shunts inside the shaft a r e  designed to prevent thermal distor- 

tion by eliminating temperature gradients a t  the bearings. 

(7) The alternator coolant system removes heat due to alternator electrical losses 

and heat conducted through the rotor. 

(8) The compressor impeller serves  a s  a heat sink. 

(9) Seal leakage flow removes about 30 percent of the heat that i s  conducted from 

the turbine wheel toward the curvic coupling. 

APPARATUS 

The closed-loop test facility is described in detail in reference 1. It was designed 

fo r  operation at turbine inlet temperatures up to  the design value of 2060' R (1144 M). 
2 The maximum turbine inlet pressure is approximately 45 psia (31 ~ / c m  abs), corre-  

sponding to  a power output of approximately 13. 5 kilowatts a t  design turbine and com- 

pressor  inlet pressure. 

The heat source consists of direct resistance electrical heaters in the turbine in- 

let line. The cooler is a gas-to-liquid heat exchanger capable of cooling the turbine 

exit gas  to 460' R (256 K). Auxiliary systems include alternator cooling, voltage and 

speed control, simulated vehicle load, inventory control, and jacking gas. Startup i s  
accomplished either by'injecting gas into the heater inlet, thus creating a pressure 

ra t io  across  the turbine, or  by operating the alternator a s  a motor. 



INSTRUMENTATION 

Chromel- Alumel thermocouples were used to measure temperatures. Strain-gage 

transducers were used to measure pressures. The compressor weight flow was meas- 

ured with a Venturi flowmeter in the inlet line. The compressor bleed flow was meas- 
ured with a rotameter. Loop data were recorded by high-speed automatic da.ta record- 
e r s  and processed through a digital computer. 

Motions of the shaft and bearing were measured with noncontact capacitance probes. 

These probes were included in the BRU design. Four probes were used for shaft orbit 
motions. At each journal bearing, the shaft orbit was determined by two probes 90' 

apart in a radial plane. Four probes were used to  measure thrust plate motion and 

thrust film thickness. Three probes measured the film thickness on the turbine side, 

and the fourth measured film thickness on the compressor side. Eight probes measured 

the motions of the leading edges of journal bearing pads. Two probes measured the mo- 

tions of the corners of one of the turbine solidly mounted pads. Two probes measured 

the motions of the corners of the turbine flexibly mounted pads. The compressor bear- 

ing pad instrumentation was identical to that of the turbine. Two probes measured 

thrust bearing gimbal motions. Compressor and turbine bearing loads and radial mo- 

tions of the flexibly mounted pads were each determined by a probe that measured the 
motions of the beam-type springs. Sixteen of the capacitance probe outputs were moni- 

tored on dual-beam oscilloscopes. All probe outputs were continuously recorded on an 

FM magnetic tape recorder. 

Speed w a s  measured in the following ways: 

(1) Two capacitance probes produced signals with frequencies proportional to rota- 

tive speed. Six recesses on the shaft circumference produced varying clearances be- 

tween the probes and the shaft. 

(2) Alternator output frequency was measured with a counter. 

Loop data were recorded by high-speed automatic data recorders and were pro- 

cessed through a digital computer. During starts ,  50 data points were recorded a t  a 

rate of 2500 points per second. These included temperatures, pressures, thrust bear- 

ing film thicknesses, and electrical data. For steady-state operation, 200 data points 

were recorded at a rate of 20 points per second. 

PROCEDURE 

The BRU was operated with three working fluids. For the first 250 hours of hot 

testing, the working fluid was krypton, which has the same molecular weight a s  the de- 

sign helium-xenon mixture. Because of a leak to the atmosphere, argon, which is rela- 

tively inexpensive, was used for the second 275 hours. In both cases, the turbine inlet 



temperature w a s  approximately 2 0 0 0 ~  R (1  100 K), and the turbine inlet p ressure  was 
2 approximately 25.5 psia (17.6 N/cm abs). Power outputs were approximately 6 kilo- 

watts for krypton and 4 .6  kilowatts for  argon. 

During the remaining 480 hours  of hot testing, the working fluid was the design 

helium-xenon mixture with a molecular weight of 83.8. The operating character is t ics  

of the BRU were  examined over a range of conditions. The turbine inlet t empera twe  

was  varied from 1460' to 2060' R (811 to 1144 K), the power level was varied f rom 

1.0 to  15 kilowatts, and the compressor  inlet temperature was varied from 510' t o  

580' R (284 to  322 K). 

RESULTS A N D  DISCUSSION 

P a r t  of the BRU performance evaluation consisted of accumulating 1005 hours of 

operation a t  essentially steady-state conditions. During most  of this  time, the turbine 

inlet temperature was close to the design value of 2060' R (1144 K). Three working 

fluids were used: argon, krypton, and the design helium-xenon mixture with a molecu- 

lar weight of 83.8. During helium-xenon operation, the turbine inlet temperature was 
var ied  from 1460' to  2060' R (8 11 and 1144 K), and the power level was varied f rom 

2. 3 to  15 kilowatts. 

This  report  covers  the mechanical performance of the BRU. The resul ts  a r e  pre-  

sented in three sections: (1) gas  bearing performance, (2) bearing housing ambient 

pressure ,  and (3) internal temperature distribution. 

Bearing Performance 

Bearing component motions. - Bearing operation was stable throughout the t e s t  with 

no deterioration in  performance. Photographs of the bearing oscilloscope t races  were  

taken throughout the 1005 hour test .  These photographs show no measurable change with 

t ime  in the peak-to-peak values o r  in the shapes of the t r aces .  

The bearing t races  a r e  shown in figure 4. These photographs were  taken at 990 hours 

at a turbine inlet  temperature of 2060' R (1144 K) and a turbine inlet p re s su re  of 45 psia  
2 

(31 N/cm abs), corresponding to a power output of 13.5 kilowatts. Each sma l l  division 
on the grid represents  0.0001 inch (0.00025 cm), except f o r  the thrust bearing t r aces ,  

where  one division represents  approximately 0.000087 inch (0.00022 cm).  
The compressor  end journal orbit  i s  shown in figure 4(a), and the corresponding 

t ime t races  a r e  shown in figure 4(b). The orbit i s  slightly elliptical with a major axis  

of 0.000 1 inch (0.00025 em). 



The turbine end journal orbit i s  shown in figure 4(c) and the corresponding time 

traces in figure 4(d). The orbit i s  roughly circular with a diameter of 0.00011 inch 

(0.00028 cm). 

The two top traces of figure 4(e) show the motions of the corners of the leading edge 

of the flexibly mounted pad a t  the turbine end. The two waves a r e  in phase, showing 

that the pad has a plain pitching motion. The two bottom traces show the motions of the 

leading edge of one of the turbine solidly mounted pads at the turbine end. These two 

waves a r e  also in phase. The travel of the flexibly mounted pad leading edge is 0.00019 

inch (0.00048 cm) a s  compared with 0.00010 inch (0.00025 cm) for the solidly mounted 

pad. The flexibly mounted pad has the greater  motion because the flexible beam allows 

radial motion of the pivot. The t races  of the solidly mounted pad appear to  have a 
double frequency trace superimposed on a shaft frequency trace. This type of motion 

was encountered during a previous test  of a turbocompressor with pivoted pad bearings 

and i s  discussed in reference 2. 

The top trace in figure 4(f) shows the motion of one corner of the leading edge of the 

compressor flexibly mounted pad. This t race shows a motion of 0.00015 inch (0. 00038 

cm) and is similar to the traces for the turbine flexibly mounted pad. The bottom trace 

is for the compressor fixed mounted pad. The motion i s  only 0.00005 inch (0.00013 cm). 

The radial motions of the flexibly mounted beam and pad assemblies a r e  shown in 

figure 4(g). The top trace shows the motions a t  the turbine end. Both have a magnitude 

of 0. 00013 inch (0.00033 cm). The two traces a r e  almost 180° out of phase, indicating 

that shaft motion i s  essentially conical. 

The motions of the two opposite sides of the thrust runner with respect to  the thrust 

stator a r e  shown in figure 4(h). The two probes used for these t races  were in line with 

each other. The top trace i s  the turbine side. Both motions a r e  about 0.00008 inch 

(0.00020 cm). Figure 4(i) shows the motions caused by the thrust bearing gimbal mount. 

The t r aces  show the motions of the thrust stators with respect to the frame. The two 

gimbal probes a r e  located on the compressor side of the thrust bearing a t  the same 

radial distance from the shaft centerline. The probe axes a r e  perpendicular to the 

thrust stator faces and a r e  separated by an angle of 90°, measured in a radial plane. 

The probe for the top trace is in the same axial plane a s  the thrust bearing probes for 

figure 4(h). The movements a r e  0.0001 inch (0.00025 cm) for the top trace and 0.00005 

inch (0.00013 cm) for  the bottom trace. In both cases, most of the motion i s  caused by 

a subsynchronous motion superimposed on the 600-hertz gimbal motions associated with 

rotative speed. The subsynchronous frequency i s  approximately one-fifth to one-sixth 

of the shaft frequency. 

The bearing component motions were independent of the working fluid. In general, 

these motions were also independent of operating conditions. However, when turbine 

inlet pressure was increased well above the 6-kilowatt design point of 25.8 psia (6'9.8 
2 N/cm abs), a slight increase in the motion was indicated by the lower gimbal trace. 



This increase was due to the subsynchronous motion mentioned in the preceding para-  

graph. At higher turbine inlet pressures,  both gimbal motions increased as the turbine 

inlet temperature was decreased below the design value of 2060' R (1144 K). In addition, 

the motions of the thrust runner relative to the thrust  stator also increased with decreas- 

ing turbine inlet temperature. Figure 5 shows the effect of high turbine inlet pressure  

and low turbine inlet temperature on the gimbal and thrust motions. Figure 5(a) repre- 

sents the 6-kilowatt design operation. (A complete se t  of t races for  the 6-kW design 
2 

condition is shown in ref. 1. ) Turbine inlet pressure is 25.8 psia (17.8 N/cm abs),  and 

turbine inlet temperature is 2060' R (1144 K). Figure 5(b) shows the thrust and gimbal 
2 motions a t  turbine inlet conditions of 45 psia (31 N/cm abs) and 1660' R (922 K). Both 

thrust  t races a r e  for the turbine side of the bearing. The bottom t race  corresponds to 

the turbine t r ace  in figure 5(a). At the 6-kilowatt design operation (fig. 5(a)), there is 
no subsynchronous component in the bottom gimbal t race  o r  in either thrust t race.  At 

the high pressure and low temperature (fig. 5(b)), this component is present in all these 

traces.  None of the motions shown in figure 5(a) exceeds 0.0002 inch (0.0005 cm). 
Bearing loads. - Journal bearing loads were computed from the difference between 

hydrodynamic film pressures measured at the orifice and bearing ambient pressure.  

Experimental data obtained with argon indicate that bearing load is equal to approxi- 

mately 0.80 t imes this pressure difference. The data were obtained using the BRU bear- 

ing configuration installed in the simulator version of the machine described in ref er -  

ence 3. A discussion of the correlation between load and bearing pressure differential 

is given in the appendix. Journal bearing loads were nearly constant for all  working 

fluids and operating conditions. These loads were in the range of 14 to 15 pounds (6.4 to 

6 . 8  kg). The relatively constant bearing loads a r e  an indication that clearance between 

the bearing shoes and shaft remained almost constant. 
Pneumatic hammer. - When jacking gas i s  applied to the bearings, pneumatic ham- 

m e r  sometimes occurs in the journal bearings. Tests  were made a t  zero  speed t o  de- 

termine the conditions at which pneumatic hammer occurs. Jacking gas pressures  were 
2 varied from 70 to 180 psia (48 to 124 N/cm abs). Pneumatic hammer could be induced 

over this entire pressure range. At a given jacking gas pressure, pneumatic hammer 
can be induced by decreasing housing pressure and can be eliminated by increasing 

housing pressure.  The minimum jacking gas-to-housing pressure ratio required to  in- 

duce pneumatic hammer varied from 10 to 16. Between a pressure ratio of 10 and 16, 
pneumatic hammer did not always occur spontaneously but could sometimes be started 

or  stopped by striking the BRU with a mallet. Above a pressure ratio of 16, pneumatic 

hammer always occurred. Below a pressure ratio of 10, pneumatic hammer was never 

observed. In some cases after the hammer was induced, the ERU shaft was allowed to 
rotate backward at speeds up to 300 rpm. The hammering continued during rotation, 

and the oscilloscope traces were unaffected. Pneumatic hammer was not a problem 



during the test program because jacking gas-to-housing pressure ratios were kept be- 

low the threshold value of 10. 

Some of the oscilloscope traces obtained during pneumatic hammer a r e  shown in 
2 figure 6 .  Journal bearing pressure was I49 psia (103 ~ / c m  abs) with a pressure ra- 

tio of 16.2 across  the bearings. Shaft t races a r e  not shown, since shaft motion was 

very small  compared with bearing pad motion. The top two traces in figure 6(a) show 

the motion of the corners of the leading edge of the turbine end flexibly mounted pad. 

The bottom two t races  show the corners of the leading edge of one of the turbine end 

solidly mounted. pads. The leading edge movement for the flexibly mounted pad is ap- 

proximately 0.0006 inch (0.0015 cm). Motion for the solidly mounted pads is about 

0.000 1 inch (0.0002 cm). The top trace of figure 6(b) shows the motions of one corner 

of the leading edge of the compressor end flexibly mounted pad. The bottom trace 

sho~.vs the same motion for a compressor end solidly mounted pad. The movement of 

the flexibly mounted pad i s  approximately 0.0008 inch (0.00030 cm). The motion of the 

solidly mounted pad i s  only about 0.00001 inch (0.000025 cm). Figure 6(c) shows the 

radial motions of the turbine and compressor end flexibly mounted pivots. Turbine end 

pivot movement i s  shown in the top trace. The turbine and compressor end pivots move 

0.0006 and 0.0001 inch (0.0015 and 0.00025 cm), respectively. 

The frequencies of a l l  t races  a r e  approximately 1000 hertz, except for the turbine 

end solidly mounted pad which shows frequencies of about 2000 hertz. Because of the 

solid mounting, these t races  must represent a pitching motion. The wave form of the 

traces for the turbine end flexibly mounted pads can be produced by summing two sine 

waves, one of which has twice the frequency of the other. Since the turbine flexibly 

mounted pivot has a radial motion with a frequency of 1000 hertz, the leading edges of 

this pad should also have a component of radial motion with the same frequency. It 

seems likely that the t races  for the turbine flexibly mounted pads a r e  the sum of a 1000- 

hertz radial motion and a 2000-hertz pitching motion. All the compressor t races a r e  

considerably smaller than the corresponding turbine traces. This difference may be 

caused by the shaft motion originating at the turbine end of the shaft rather than by 

pneumatic hammer a t  the compressor end. Figure 7 shows the traces a t  the same jack- 

ing gas pressure with the pressure ratio increased to 22.4. In this case, amplitudes of 
the turbine end motions changed with time, producing amplitude-modulated waves. 

Hydrostatic flow -- rates.  - Design information for jacking gas systems was provided 

by measuring jacking gas flow ra tes  a t  zero speed. The supply pressure to al l  bearings 

was approximately 150 psia (103 lV/cm2 abs) a t  a temperature of 540' R (300 K). The 

total flow to the journal bearings was 1. ~ ~ x I o - ~  pound per  second ( 5 . 5 9 ~ 1 0 - ~  kg/sec). 

The total flow to the thrust bearings was 6. 7 2 ~ 1 0 - ~  pound per second ( 3 . 0 5 ~ 1 0 - ~  

kg/sec). 

Thrust bearing clearances. - The clearance between the thrust runner and the com- - - 
pressor thrust stator i s  always smaller than the clearance on the turbine side of the 



bearing. For self-acting operation, these clearances a r e  approximately 0.0004 inch 

(0. O O i O  cm) for the compressor side and 0.0021 inch (0.0053 em) for the turbine side. 

This  difference in clearances shows that the load i s  always toward the compressor. 

The thrust bearing load i s  composed mostly of the rotor weight and the net aerodynamic 
load of the compressor and turbine. Since the BRU was tested in a vertical position 

with the compressor down, the rotor weight acts  toward the compressor. The thrust 

loads of the turbine and compressor act  in opposite directions, away from the BRU. 

Clearance between the thrust runner and the compressor thrust s tator  is measured 

by a single capacitance probe. The probe readings did not show a clear  correlation be- 

tween turbine inlet pressure and thrust clearance. The lack of correlation may be  due 

t o  the dampers that were built into the gimbal system. Damping, which was provided for  

stability, could cause variations in the alinement between the thrust s tator  and the thrust 

runner. The pressure differential between the hydrodynamic film and the bearing hous- 

ing (bearing A P )  should provide a more reliable indication of changes in thrust clear- 

ance. Film pressure is measured by a pressure transducer in the jacking gas line. 

During hydrodynamic operation, this measurement provides an average of the film pres- 

s u r e  at the nine orifices. This pressure should be affected less  by smal l  alinement 

changes than by the single probe reading. As the turbine inlet pressure was increased 

at constant temperature, the bearing A P  decreased. This decrease indicates a de- 

c r e a s e  in net thrust load and an increase in thrust clearance on the compressor side of 

the  bearing. Since clearance increases with pressure level, the thrust bearing is ade- 

quate for any power output which can be obtained. As the turbine inlet temperature was 

decreased at constant turbine inlet pressure, bearing A P  and the capacitance probe 

both indicated an increase in clearance. 

Bearing transient performance. - During startup and shutdown, two journal bear-  

ing critical speed regions a r e  encountered. In the critical speed regions, large in- 
c reases  occur in the shaft orbits. The orbit s izes depend on the amount of shaft unbal- 

ance and on the ra te  of rotative acceleration. The largest orbits occur during shutdown 

because of the low rate of deceleration. At 6600 rpm, during shutdown, the turbine and 

compressor end shaft orbits a r e  0.0007 and 0.0008 inch (0.0018 and 0.0020 cm), re-  

spectively. At 8100 rpm, the increase in the turbine end orbit i s  small, but the com- 

pressor  end orbit increases to 0.00085 inch (0.0022 cm). If the shaft i s  sufficiently 

well balanced, the critical speed regions a r e  not a hazard. The BRU rotor has been 
accelerated and decelerated through the critical speed range approximately 90 times 

without incident. 

When jacking gas i s  applied to the bearings, the shaft rotates backwards because 

of the bearing design. Since the pivot i s  closer to the trailing edge than the leading 

edge, the gas pressure forces the leading edge away from the shaft so  that most of the 
flow i s  in the direction of the leading edge. The resulting net drag force toward the 



leading edge produces the backward rotation of the shaft. This rotation can be prevented 

by bleeding gas into the turbine o r  by energizing the alternator field. One possible s t a r t  

mode for  other installations is to allow the shaft to rotate backwards before starting. 

Tests were  run to determine if the sudden reversa l  in direction was a hazard to thebear- 

ings. The shaft was allowed to rotate backwards at speeds up to 600 rpm and then was 

accelerated forward a t  rates  comparable to  those occurring in actual starts. The initial 

backward rotation did not appear to affect bearing performance during acceleration. 

Bearing Housing Ambient  Pressure 

The bearing ambient pressure was maintained by bleeding a portion of the compres- 

sor  discharge flow into the bearing housing. P a r t  of the bleed flow passes through the 

compressor labyrinth sea l  and enters the compressor diffuser inlet. The remainder 

passes through the turbine seal  and enters the turbine rotor inlet (see fig. l(a)). Be- 

cause of the low flow through the seals ,  the bearing housing pressure is essentially 

equal to the compressor discharge pressure.  The measured compressor bleed flow was 
1.2+0. 1 percent of the compressor flow for  a l l  operating conditions. Since the corn- 

pressor bleed flow lowers the thermodynamic efficiency of the powerplant, it should be 

kept a t  the lowest value consistent with safe seal  clearances. 

Brayton Rotating Unit Internal Temperatures 

As part  of the BRU design procedure, the contractor prepared thermal maps show- 

ing predicted temperatures throughout the package. These maps were essential in 

setting such design standards a s  

(1) Materials 

(2) Initial clearances and control of clearance changes 

(3) Cooling requirements for alternator and bearings 

(4) Shunting and removal of waste heat from the remainder of the package 

(5) Rotor tie bolt tension 

(6) Control of bearing load changes 

In table I, predicted temperatures for  power levels of 2.25, 6.0, and 10.5 kilowatts 

a t  a power factor of 0.85 a r e  compared with measured temperatures at approximately 

the same electrical outputs. The actual value of power factor was approximately 0.95. 

The working fluid is helium and xenon, the turbine inlet temperature is 2060' R (1144 K) 

and the rotative speed is 36 000 rpm. Figure 8 shows the thermocouple locations corre- 

sponding to  the thermocouple numbers given in the table. In reference I ,  predicted and 

actual temperatures a r e  compared for krypton and argon working fluids . 
12 



The BRU internal temperatures generally a r e  in good agreement with the predicted 
temperatures. The only potentially serious temperature control problem is the alterna- 
t o r  armature winding temperatures that a r e  measured by thermocouples 1 to 8. These 
windings were designed for  continuous operation a t  428' F (220' C). Table I shows thzt 
at 10.5 kilowatts, which is close to the alternator nameplate rating of 10.7 kilowatts, all 

the  temperatures a r e  below this value. The maximum temperature is 403' F (206' 6 ) .  
Figure 9 shows the maximum winding temperature a s  a function of alternator power out- 
put for  the design turbine inlet temperature of 2060' R (1144 K). The maximum recom- 
mended winding temperature is 428' F (220' C). This temperature is reached a t  a 
power output of 11 .3  kilowatts. At 15 kilowatts, the winding temperature reaches 495' F 
(257' C). The alternator windings a r e  the limiting factor in determining the maximum 
continuous power output. At 10.5 kilowatts, table I shows discrepancies of 92' F (51' C )  
and 103' F (57' C) between the actual and predicted temperatures for  thermocouples 3 
and 4, respectively. According to the manufacturer, thermocouples 1 to 8 may be  im- 
properly labeled. In this case, the  actual discrepancy might only be about 25' F (14' C). 

Because the winding temperatures were higher than predicted, alternator coolant 
flow was increased from the design value of 0. 12 pound per second (0.054 kg/sec) to 

0. 15 pound per second (0.068 kg/sec). This flow increase did not produce an appreci- 
able decrease in winding temperatures. During the 1005-hour test, alternator coolant 
inlet temperatures varied from approximately 520' to 535' R (289 to 297 K). Since 
these variations occurred a t  t imes when other operating conditions were changing, no 
general correlation was established between coolant inlet and alternator winding tem- 
peratures. 

SUMMARY OF RESULTS 

This report presented the results  of an investigation of the mechanical performance 

of a single- shaft turbine- compressor-alternator packige designed for a Brayton cycle 
power generation system. The results include the gas bearing operating characteristics, 
the operation of the bearing housing pressurization system, and the temperature distri- 
bution through the package and a r e  summarized a s  follows: 

1. During the 1005-hour test of the Brayton rotating unit (BRU), the oscilloscope 
t r aces  of the bearing component motions showed no measurable change in the s izes  of 

the motions o r  in the wave shapes. Bearing operation was stable with no deterioration 
in bearing performance. 

2. Shaft orbit diameters were approximately 0,0001 inch (0.00025 cm). None of 
the  bearing component motions exceeded 0.0002 inch (0.0005 cm). 



2 3. At turbine inlet pressures above 35 psia (25.5 N/cm abs), gimbal and thrust 
bearing motions increased a s  the turbine inlet temperature was decreased from the de- 
sign value of 2060' R (1144 K). 

4. Turbine and compressor journal bearing loads were computed from fiim pressure  
measurements. These loads remained approximately constant a t  about 15 pounds (6.8 
kg) for  al l  operating conditions. 

5. During hydrostatic operation, pneumatic hammer sometimes occurred in the tur-  
bine journal bearing. The hammering star ted when the pressure  ratio between the bear- 
ing supply and the bearing cavity was increased to a value between 10 and 16. Frequency 
of the hammer was about 1000 hertz. Hammering did not occur during normal hydro- 
static operation because bearing pressure  ratios were below the threshold value of 10. 

6. Clearance between the thrust runner and the compressor thrust s tator  was always 
smaller  than the clearance on the turbine side of the thrust bearing. The compressor 
thrust bearing clearance increased with increasing pressure and with decreasing turbine 
inlet temperature. The clearances for  the test conditions covered in this report varied 
between 0.0004 and 0.0005 inch (0.0010 and 0.0013 cm). 

7. Shaft orbits showed large increases in the critical speed ranges. The largest 
orbit diameter obtained was 0.00085 inch (0.0022 cm) at 8100 rpm. The BRU rotor has 
been accelerated and decelerated through the critical speed range approximately 90 times 
without incident. 

8. When jacking gas was applied to the bearings, the shaft rotated backwards. The 
shaft was allowed to rotate backwards a t  speeds up to 600 rpm and then was suddenly ac- 
celerated in the forward direction. The initial backward rotation did not appear to affect 
the bearing performance. 

9. The compressor bleed flow used to pressurize the bearing housing was 1 . 2 4 . 1  
percent of the total compressor flow for  al l  operating conditions. 

10. In general, there was good agreement between actual and predicted BRU internal 
temperatures from 2.25 to 10.5 kilowatts. The alternator winding temperatures were 
somewhat higher than predicted. The maximum recommended winding temperature of 
428' F (220' C) was reached at a power output of 11.3 kilowatts with a design turbine 
inlet temperature of 2060' R (1144 K). 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 24, 1970, 
120-27. 



APPENDIX - DETERMINATION OF BEARING LOAD FROM BEARING FILM 

PRESSURE AND AMBIENT PRESSURE 

For BRU-type journal bearings, there i s  an approximate linear relation between 

bearing load and the bearing A P .  The bearing A P  i s  defined a s  the difference be- 

tween the film pressure a t  the pad orifice and the bearing ambient pressure. Figure 10 

shows the variation of load with bearing AP. The bearing ambient pressure  was 
2 16 psia (11 N/cm abs), and the rotative speed was 36 000 rpm. These data were ob- 

tained using the BRU bearing configuration installed in the simulator version of the 

machine described in reference 3. 

The flexibly mounted pads in the simulator a r e  mounted on diaphragms rather  than 

beams. The f i rs t  step in obtaining data for figure 10 was to determine a zero-speed 

curve of diaphragm deflection against bearing load. The bearing load was varied by 

loading the shaft with weights. Diaphragm deflection was measured with capacitance 

probes. The data of figure 10 were then obtained at 36 000 rpm by measuring bearing 

A P  values a t  various loads. The load was varied by applying differential pressures  

across  the diaphragm. The total bearing load i s  the algebraic sum of the load corre-  

sponding to the capacitance probe reading and the force due to the differential pressure  

ac ross  the diaphragm. 

Since figure 10 shows a straight-line relation between load and bearing A P ,  bear- 

ing load i s  the product of bearing A P  and the slope of the line. A value of 0 .8  was 

used for  the slope to compute bearing loads for the BRU tests described in this report.  

During self-sustaining operation, BRU journal bearing loads cannot be obtained 

from capacitance probe readings. Experimental curves of load against beam deflection 

a r e  only valid when internal temperatures a r e  maintained near room temperature. At 

actual operating temperatures, the clearance between the flexible beam and the probe 

i s  apparently influenced by thermal effects such a s  expansion and distortion. The in- 

direct method actually used for load determination was necessary because of e r r o r s  

caused by elevated temperatures. Although the data of figure 10 also depend on capaci- 

tance probe readings, e r r o r s  were minimized by operating the simulator at tempera- 

tures  close to ambient. The simulator i s  driven by a small  drive turbine that operates 

on cold a i r  rather than with high-temperature working fluid. The turbine and compres- 

sor  ro tors  a r e  not enclosed and act  a s  heat sinks to remove heat generated by the bear- 

ings. Cooling gas i s  pa'ssed over the bearing pads for additional heat removal. 
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TABLE I. - COMPARISON O F  PREDICTED AND ACTUAL TEMPERATURE 

DISTRIBUTION FOR OPERATION WITH HELIUM-XENON MIXTURE 

Thermo- 

couple 

I Compressor inlet pressure, psia ( ~ / c m '  abs) 1 

Design I Actual I Design I Actual I Design I Actual 

Turbine inlet pressure,  psia ( ~ / c r n '  abs) 

I Compressor inlet temperature, OR (K) 1 

13. 7 (9. 45) 

Turbine inlet temperature, OR (K) 

14. 7 (10. 1) 25.8 (17.8) 

540 (300) 

22.7 (15.7) 

1 
2 

3 
4 

5 
6 

7 
8 

9 

10 
11 
12 

13  
14 

15 
16 
17 

18 

19 

20 

21  
22 
23 

24 

25 
26 

27 
28 

29 
30 

31  
32 

33 

34 
35 
36 

a ~ o t  

534 (297) 

- 
OF 

225 

225 

170 
170 
250 

170 

170 

170 
130 
130 
130 
128 

380 
380 
380 

185 
185 
185 

170 
350 
210 

185 

380 
380 

(a) 
(a) 
316 
316 

(a) 
(a) 

380 

380 
340 
750 

1025 

900 
available. 

43. 2 (29.8) 

--- - - -- - - -  - 
Power output, kW 

34.4 (23.7) 

540 (300) 

2. 25 

534 (297) 

Operating temperature 

3.5 

540 (300) 

6 . 0  

535 (297) 

6 . 4  10.5 10.5 



TABLE I .  - Concluded. COMPARISON O F  PREDICTED AND ACTUAL TEMPERATURE 

DISTRIBUTION FOR OPERATION WITH HELIUM-XENON MIXTURE 

a ~ o t  available. 

60 

6 1  

66 
67 

68 

69 

70 

7 1  

72 

73 
74 

75 

76 

77 

78 

375 

375 

700 

1000 

1300 

1300 

1300 

1600 

1600 

1600 
1500 

1500 

1500 

(a) 

(a) 

191  

191  

371  

538 

704 

704 

704 

8 7 1  

871  

871  
816 

816 

816 

(a) 

(a) 

428 

414 

909 
1164 

1357 

1339 

1351 
1516 

1510 

1509 

1462 

1456 

1461 

1223 

1172 

220 

212 

487 

629 

736 

726 

733 

824 

8 2 1  

8 2 1  

794 

791 

794 

622 

633 

300 

300 

700 

1000 

1400 

1400 

1400 

1600 

1600 

1600 

1525 

1525 

1525 

(a) 

(a) 

149 

149 

3 7 1  

538 

760 

760 

760 

8 7 1  

8 7 1  

8 7 1  
829 

829 

829 

(a) 

(a) 

449 

436 

944 

1190 

1384 

1364 

1380 

1544 

1543 

1543 
1495 

1487 

1492 

1229 

1189 

232 

224 

507 

643 

751  

740 

749 
840 

839 

839 

813 

808 

8 1 1  

665 

643 

350 

350 

800 
1000 

1400 

1400 

1400 
1600 

1600 

1600 

1525 

1525 

1525 

(a) 

(a) 

177 

177 

427 

538 

760 

760 

760 
8 7 1  

8 7 1  

8 7 1  

829 

829 

829 

(a) 

(a) 

461  

451 

976 
1211 

1406 

1383 

1409 

1569 

1570 

1570 

1523 

1515 

1518 

1233 
1201 

238 

233 

524 

655 

763 

7 5 1  

765 

854 

854 

854 

828 

824 

826 

667 
6 4 9 ,  



(a) Main components. 
w 



Figure 2. - Journal bearing assembly. 

Figure 3. -Thrust bearing stators and runner. 



( a )  Shaft o rb i t  at compressor j o u r n a l  bearing. ( b )  Shaf t  motions at compressor j o u r n a l  bearing; or thogonal  probes. 

( c )  Shaft o rb i t  at t u r b i n e  jou rna l  bearing. ( d )  Shaft motions at t u r b i n e  j o u r n a l  bearinq: dtithoqonal probes. 

( e l  Mot ions of leading edges of t u r b i n e  j o u r n a l  bear ing pads. ( f )  Mot ions of leading edges of compressor j o u r n a l  bear ing pads. 

F igure  4. - Oscilloscope traces of bear ing component motions. 



( g )  Radial motions of f lexibly mounted pads and pivots; t u r b i n e  and 
compressor jou rna l  bearings. 

( h )  Mot ions of t h r u s t  r u n n e r  relative t o  t h r u s t  stators o n  t u r b i n e  and com- 
pressor sides of t h r u s t  bearing. 

( i )  Motions of t h r u s t  stator w i th  respect t o  frame; gimbal traces. 

Figure 4. - Concluded. 



Motions of t h rus t  r u n n e r  relative to t h rus t  stators on t u rb ine  and Motions of t h rus t  stator w i th  respect to frame; gimbal traces 
compressor sides of t h rus t  bearing 

(a) Turbine in le t  pressure. 25.8 psia (17.8 Nlcm2 abs); tu rb ine in le t  temperature, 2060" R (1144 K). 

Motions of t h rus t  runner ;  tu rb ine side of bearing Gimbal traces 

(b) Turbine in le t  pressure, 45 psia (31 Nlcm2 abs); tu rb ine in le t  temperature; 1660' R (922 K). 

Figure 5. - Thrust  bearing and gimbal motions. 



( a )  M o t ~ o n s  of leading edges o f  t u r b i n e  jou rna l  bear ing pads. 

(b)  Mot ions o f  leading edges of compressor jou rna l  bear ing pads. 

( c )  Radial motions of f lexibly mounted pads and pivots; t u r b i n e  and com- 
pressor jou rna l  bearings. 

F igure 6. - Pneumat ic hammer;  bear ing pressure ratio, 16.2; zero speed 

(a)  Mot ions of leading edges of t u r b i n e  l o u r n a l  bear ing pads. 

( c )  Radial motions of f lexibly mounted pads and pivots; t u r b i n e  and com- 
pressor jou rna l  bearings. 

F igure 7. - Pneumatic hammer, bear ing pressure ratio, 22.4; zero speed. 
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Alternator  electrical output ,  kW 

Figure 9. - Var iat ion o f  a l ternator  a rmatu re  w ind ing  temperature w i th  a l ternator  
e lectr ical  output. Turb ine  i n l e t  temperature, 2060" R (1144 10. 
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6L l 2 2  12 14 Bear ing 16 pressure 18 differential, 20 AP, 22 psid 24 26 

8 10 12 14 16 18 
Bear ing pressure differential, AP, ~ l c m ~  

Figure 10. - Var iat ion o f  bear ing load w i th  bear ing pressure d i f -  
ference. Ambient  pressure, 16 psia (11 ~ l c m *  abs); speed, 
36 000 rpm. 
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