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SUMMARY

A study is made of a new theoretical approach for -the description of
gas flows having strong deviations from local translational equilibrium
(sufficient "rarefaction interaction"), when the Navier-Stokes equations
become invalid. The usual approach in dealing with the limitations in the
macroscopic description is to consider the kinetic level of description,
governed by the Boltzmann equation, and perhaps to relate a kinetic analysis
to higher approximations in the macroscopic level, by the Chapman-Enskog
procedure. Because of (a) the general intractability of the Boltzmann
equation or models of it, and (B) the limitation of the Chapman-Enskog
theory to near-local-equilibrium flows, the present approach considers the
development and possible utility of a directional level of description.
Properties and equations on the directional level are obtained by integrat-
ing the molecular properties and the Boltzmann equation over all magnitudes
of molecular velocity. The resulting dependent variables (properties of a
class of molecules) then depend on space, time, and molecular-velocity
direction, but not magnitude.

The development on the directional level, between the kinetic and
macroscopic levels, is intended to exploit the significant directional
aspects of translational nonequilibrium in describing the gas flow in
regions of rgpid variations of the flow variables. It is useful to con-

sider a directional mean free path, defined as the average distance

(measured relative to the observer) travelled by a molecule, moving in a
designated direction, between collisions with other molecules. This free
path is useful in formulating a physically intuitive model for approximating

the "gain-term" collision integrals in the equations of change on the
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directional level. The gain-term collision integrals on the directional
level are replaced by terms that are related to appropriate corresponding
"oss terms" evaluated at a point a directional mean free path away and at
a mean collision time in the past. Several intuitive directional-average
collision models are proposed for use in the directional-mean-free-path
approximation.

Use of the directional-mean-free-path approximation leaves the
equations on the directional level in a form where use of Lagrange's
gxpansion for further approximation appears natural. For more than one
independent variable, generalizations of Lagrange's expansion are needed,
and simple forms that are directly applicable are derived. A perturbation-
expansion scheme based on these generalizations is also developed. This
scheme is then applied to the equations in the directional-mean-free-path
method, to simplify the theory.

The use of the directional-mean-free-path method is illustrated by
an outlined application to the problem of steady-flow shock-wave structure
in a monatomic gas. The main value of the method would be expected to be
realized only after an extension of the theory to include the effects of
boundaries, for application to problems that may not be tractable by more

detailed kinetic-theory methods.
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CHAPTER I

INTRODUCTION

This study introduces a new theoretical approach to the description
of gas flow. This approach may eventually lead to the solution of gas-
dynamic problems not accurately governed by the Navier-Stokes or higher-
order continuum descriptions, and not sufficiently tractable by kinetic-
theory methods.

The limitations of the Navier-Stokes equations, and of the higher-
order approximations of the macroscopic-moment equations on the continuum
level (obtained, e.g., by the Chapman-Enskog procedure), are well-known
in the calculation of gas flows that are too far out of translational
equilibrium (see, e.g., Grad 1958, 1960, 1963, 1966). The usual approach
is then to consider the kinetic level of description, either by synthetic
representations of the velocity distribution function, or by the theory
of the Boltzmann equation or models of it. An analysis on the kinetic
level may be related to higher approximations on the macroscopic level,
as by the Chapman-Enskog procedure.

Synthetic methods of approximating the velocity distribution function
are represented by: the bimodal-distribution method of Mott-Smith (1951);
generalizations of this, including a trimodal distribution function, by
Krook (1959) (see Anderson and Macomber 1965); the "two-stream" and
"two-fluid" methods, which are somewhat analogous to the bimodal-distribu-
tion method, by Lees (1959) (see also Liu and Lees 1961) and Glansdorff
(1961, 1962); and the ellipsoidal-distribution-function method of Holway
(1965, 1967). These approximate methods are of considerable value.

Some limitations have been discussed by Liepmann, Narasimha, and Chahine
(1966).

Models of the Boltzmann equation, in particular the BGK, or Krook-
Welander, model (Bhatnagar, Gross, and Krook 1954; Welander 1954) have
been useful. Recently a more sophisticated conceptual extension and
generalization (of the BGK model), the ellipsoidal-statistical model, has
been presented by Holway (1966). The validity of the BGK model may be



limited in some problems by: (a) its equivalence to replacing the "gain-
term” collision integral for a given point in the flow by an expression
that assumes molecules come out of collisions in equilibrium with the gas
at that point (cf. Liepmann, Narasimha, and Chahine 1962), or (b) its
equivalence to a "first iteration" of the Boltzmann equation about a
local-equilibrium velocity distribution (Gross 1954; also Rott 196L).

In spite of the possible limitations, the BGK model does retain many
important aspects of the Boltzmann equation for arbitrary nonequilibrium
and has been, and will undoubtedly continue to be, extremely useful for
kinetic-theory investigations. The noted limitations may be important

in some problems, however. In addition, the model equations are still
highly nonlinear integro-partial differential equations and are generally
difficult to deal with.

The main purpose of the present study, then, is to investigate a
new approach on what may be called the "directional level of description.”
The directional level deals with molecular quantities, or properties of
a class of molecules, that have been integrated over, or averaged over,
all magnitudes of molecular velocity; the dependent variables then all
may depend on molecular-velocity direction, as well as on configuration-
space coordinates and time. For each molecular property of interest,
the appropriate equations are developed by one integration of the
Boltzmann equation (over all molecular-velocity magnitudes). The treat-
ment on the directional level is therefore between the kinetic level
and the macroscopic level.

Theoretical analysis on the directional level may be more tractable
than on the kinetic level, and may at the same time be capable of treating
substantial translational nonequilibrium in gas flows, or substantial
"rarefaction interaction."” Detailed discussions motivating this approach
are given in Chapters II and III. The basis may be noted here: that in
many problems the translational nonequilibrium is essentially a directional
phenomenon. Classic examples are shock waves and boundary layers, which
are very thin noneguilibrium regions of rapid transition to a local-
translational-equilibrium state. 1In those cases, the flow properties

change most rapidly in a direction normal to the thin region. In



accounting for the significant directional aspects of translational
nonequilibrium, the concept of a mean free path that varies with direction
is useful.

In the most general form, the equations on the directional level are
expected to be appropriate for approximate calculation of flows in
arbitrary translational nonequilibrium because of the allowance for the
variation of the flow properties with molécular-velocity direction.

This study of the new approach on the directional level may be
considered to be preliminary. At various steps in the development,
intuitive approximations are used; and the formulation is limited to
apply only to sufficiently rarefied ("perfect') gases of similar, neutral,
spherically symmetric, monatomic molecules. Also the effects of "surfaces,"
or condensed regions, adjacent to the gas flow have not been adequately
considered. (The theory could in the future be much more highly developed,
if such further developments appear justified.)

Chapters II and IITI include appropriate definitions and interpreta-
tions that are intended to both motivate and lay a formal rigorous
foundation for the treatment on the directional level in terms of the
directional mean free path.

Then in Chapter IV the directional-mean-free-vath approximation for the
gain-term collision integrals is introduced, along with several proposed intui-
tive "directional-average collision models'"; and a scheme is outlined for
making the system of equations on the directional level determined. The
postulated intuitive models involved in the method are to be partially
Justified physically, but final justification for use of any model will
lie in the tractability and utility it provides, in the qualitative or
quantitative realism and consistency of the results it yields, and in its
possible advantages over other methods.

Use of the directional-mean-free-path approximation will be seen to
leave the equations on the directional level in a form amenable to treat-
ment by vector generalizations of Lagrange's expansion, certain useful
forms of which are developed in Chapter V. A perturbation-expansion
scheme based on those generalizations, also developed in Chapter V, is

then applied in Chapter VI to the equations for the directional-mean-free-



path method. As an illustration of the method, a description of the
solution procedure for steady-flow shock-wave structure, according to

a simplified first-order system of equations, is given in Chapter VII.
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CHAPTER II

DISCUSSION OF MEAN-FREE-PATH CONCEPT

2.1 Definition of Mean Free Path

For proper understanding of the developments to follow, it is impor-

tant to define precisely the mean free path. For a specified class of

molecules, Maxwell's mean free path is defined as the average distance
travelled by one molecule of that class between successive collisions
with all other molecules. (Refer, e.g., to Jeans, 1954, 1952; Chapman
and Cowling, 1961; or Vincenti and Kruger, 1965.) According to this

definition, if gre is the magnitude of molecular velocity measured

1
relative to some specified coordinate system, Maxwell's mean free path

is formulated for the class of molecules under consideration as

<€rgl> average for class

2 (2.1a)
class Oclass
= average distance travelled per free path
terminated by a molecule of the class (2.1v)
where
‘<grel>’av for class = average distance travelled per unit time
by a molecule of the class {measured in
some coordinate system) (2.2a)

= average velocity magnitude for molecules of

the class, measured relative to some
specified coordinate system (2.2p)
and where

0,155 = @average number of free paths terminated per

unit time by each molecule of the class

within a very small volume (say d?/;)

about the point under consideration (2.3a)



= average number of collisions per unit time

experienced by each molecule of the class (2.3b)

probable number of molecules of the class
undergoing collisions per unit time in a
small volume about the point

= — b TAS POl o (2.3c)
[?robable number of molecules of the clasj

in the small volume about the point

which is denoted as the "average collision frequency per molecule of the

class.™

In Chapter III, it will be convenient to consider various classes of
molecules, to be defined. The &ollision frequencies, Oclass’ are
calculated by considering velocities of molecules relative to another

molecule, so concern over a specified reference frame does not enter

¥Note that for the particular class consisting of all molecules within a

small differential volume d9{; about a point, the number of molecules
undergoing collisions per unit time is twice the number of collisions per
unit time, since each collision involves two molecules; thus, for this

class,

number of collisions per unit time in de/;

o = 2x number of molecules iﬁ.rdég;

However, the collision frequency of interest in eq. (2.1) is that denoted
by © and calculated by (2.3a), (2.3b), or (2.3¢c), and not just the
second factor in the above equation. For alternate, but similar,
discussion see Vincenti and Kruger (1965), pp. 48-54. The appropriate
collision frequencies will be calculated as needed, for each class
considered, in a manner that does not involve concern over the factor

of 2, namely by use of egs. (2.3).




into the calculation of Oclass; that is, the collision freguency per
molecule of the class is not affected by the mean veloclity of mass

motion (e.g., see Jeans, 1954, p. 35). However, as noted in the defini-
tions (2.2), each mean free path to be calculated will need to have the
reference frame specified in which Erel is measured. The distance
travelled in unit time, or the velocity, measured in one reference frame
is different from that measured relative to a reference frame moving with
a different velocity. This fact is important to the discussions in the
remainder of this chapter; and these discussions are important to

understanding the method developed in Chapter IV.

2.2 Definitions_for Calculation of Mean Free Paths

2.2.1 Configuration space, velocity space, phase space,

and velocity distribution function

Consider the physical configuration space in which molecules of a
gas are moving and interacting with each other, and let the reference

frame of the observer be a system of Cartesian coordinates denoted by

- -> ->
Xl’ xz, and xs, with the orthogonal unit vectors el, e2, and e3,

respectively in the directions of the three space coordinates. A point

in this space is defined by the position vector

r = e X +8 x +e x (2.4)
1 1 2 2 3 3
Denote by
d S dx dx dx 2.
Y. | dx dx (2.5)

a differential element of volume in the physical configuration space, and
denote the range of all values of T within a certain dq/; by
(;, diV;), which can also be thought of as the volume d?/¥ about a

>
certain point r.



Denote the velocity of a molecule, measured in this frame of

reference, by

2 +¢e £ +e ¢ (2.6)

—->
3

where the Ei are the Cartesian components of the molecular velocity.
-
Consider molecular-velocity space (in which £ 1is a "position vector")

and denote a "differential volume of velocity space" by
dQ/g = 4 a4t at (2.7)
1 2 3

Then denote by (g, 6}7/) the range of all values of £ within a certain
d%/ or, equivalently, the volume dq/’ about a certain point E in
veloc1ty space.

It is customary to speak of the '"phase space" of a molecule as the
six-dimensional hyper-space having coordinates x , x , x , & , & , &
A point in the molecular phase space can be definéd b; thg sii—diéensgonal
"position vector" X with components xl, xz, X3, El, 52, 53. A differen-
tial element of "volume" in this space about the point X can be denoted

by (%, d?ﬂQ, where
aY - ax ax ax dg ag ag
X 1 ‘2 3 1 2 3
= d% d% (2.8)

If the total probable number of molecules in (%, dﬁy ), (di.e.
located in (r,<17€) and having molecular velocity in the range (E d7/)),
at time t 1is denoted by ng, then the probable number density at p01nt
-,

X(r,g) in phase space at time 1+, called the velocity distribution

function and denoted by f(;,g,t), is defined Dby

£(7,6,1) d‘Vr d% (2.9)

=
oy



—).
If the total number of molecules in (r, dﬁV;) at time t is
denoted by

[ , aum (2.10a)

dN >
all 3

1t

then the number density at point T in configuration space is

-> dnN > >
n(r,t) = = = [ (r,e,t) 4%, (2.10b)
a7, alle E

2.2.2 Collision frequency of a molecule

Denote by d(ﬁc)+ the probable total number of molecules in
g

(r, dﬂ/;), (E, qu%) that experience collisions with other molecules in
unit time. Denote by Za the velocity of each other molecule undergoing
a collision with a molecule of velocity E. Let é be the relative

velocity before collision:

E = Ea - E (2.11a)

and denote its magnitude by g:

g = |g| = |£_-¢€| (2.11b)

For each Ea, consider the plane that contains the center of the Z
molecule and that is perpendicular to the relative-velocity vector E.
Let b be the distance from the center of the E molecule in this
plane, and let e Dbe an angle measured in this plane, centered at the
E molecule. (Refer to Chapman and Cowling, 1961, p. 61, fig. 6. To
aid understanding of the impact parameters b and €, see also Chapman
and Cowling, 1961, p. 57, fig. 33 and Vincenti and Kruger, 1965:

fig. 5 in Chap. II (p. 37) and fig. 3 in Chap. IX (p. 351).) Then, as



is shown in many books on kinetic theory of gases,

i 2T
aw ), = Y Y | A I:f fo s gbdbde] (2.12a)
g roE allga ga o o a

where o is an effective "molecular diameter" (which in reality is
infinite but which may be "truncated" at an appropriate value beyond
which the effects of molecular interaction are negligible, depending on
the nature of the intermolecular force potential; c¢f. Chapman and
. > > > >

Cowling, 1961), and where f = f(r,£,t) and £, = f(r,éa,t). Then,

—++ . . .+ - -
since f(r,£,t) is independent of £, » equation (2.12a) can be written

as

am ), = e, an, (2.12b)

where dN, is given by equation (2.9) and where

g
d(]&l )—) 2]‘[ o
o, = e+(r,‘£,t) = —ﬁi—‘i = [ d?é l:f f £, gbdbde] (2.12¢)
g £ ? allEa alo o

is the probable fraction of all the dN, molecules in (;,d7;), (g,d?g)

undergoing collisions per unit time. Thus ©O, 1is the collision frequency

per molecule of the class of dN,, as defineg by equation (2.3c)
3

The total number of molecules in (?,d?;) undergoing collisions

per unit time, denoted by ch, is found by integrating equation (2.12a)

>
over all §& :

21
d?é £ d% [f [t gbdbd% (2.132)
all£a ao o &

10



This may also be written as

AV = 0 aN (2.13b)

where dN is the number in (;,dﬂé) (eq. 2.10)) and where, for the class

-
of adN (all molecules in (r,dﬂg)), © is, according to equation (2.3c)
and also from (2.13a) and (2.13b),

0=o0(Ft)===2% |
Toanig ¢

This 1s the probable fraction of all the dN molecules undergoing

collisions per unit time. The collision frequencies Og and 0O depend

2

0,(%,2,t) £(¥,2,t) d% (2.13c)

on the nature of the interaction potential and on the particular appropri-

ate corresponding specification of a.

2.2.3 Average values of molecular properties; mean mass

velocity and Egsgligq_iraggpm) velocity

Each molecule may be said to have certaln properties that may depend
on its position, veleocity , and time, and are denoted generally by

> > . . >
¢ = ¢(r,E,t). Fxamples are: mass/unit mass = 1; momentum/unit mass = §

. _ 1 . >
energy/unit mass = 5-5 s E£ 3 0, ; ete. (These examples for ¢ can

>
£
all be considered to be "specific"

values of extensive molecular proper-
>

ties) For any such molecular property, ¢(;,€,t), one may define its

average value, for the class of all molecules in (r,d?é) (regardless

of molecular velocity), as

[ e(F,E,t) an,

6, (F.6) = G(rE,u) = alle 3
[, an
a11f &
= —— [, eEEe) 258 (2.14)
n(r,t) allg

.
>

11
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Particular examples of average values that are of concern in this
chapter are found as follows: First, the mean mass velocity of the gas

is defined by

V=D (2.15)

Then the molecular velocity relative to the mean mass motion, denoted as

the "random molecular velocity' or as the 'peculiar velocity" is defined

by
§-2-7 (2.168)

=2 C +e C +¢e C

11 2 2 3 3

where the Ci are the Cartesian components of G. The magnitudes of

the vectors Z and G are, respectively,

£z |E] = (af + si + g§>1/2 (2.17)
cz |8 =(c®+ 4 o2yl /2
1 2 3

Quantities that will be of interest below are the average values of ¢
and C, found by taking ¢ = ¢ and ¢ = C in equation (2.14) to obtain,
respectively, &) and {C). Note also that taking &(r,%,t) = o,

3
(the probability of a molecule in the class ng- undergoing a collision

in unit time) one finds (cf. eq. (2.13c)):

o= 0o(r,t) =<eE (2.19)



Relative to Mean Motion of the Gas, A

Maxwell's mean free path was originally calculated for a gas at
rest, that is, with no overall mass motion, and in a uniform state (see
derivations outlined by Jeans, 1952, and by Chapman and Cowling, 1961).
In that case, C = & , and the average velocity magnitude measured
relative to the reference frame of the observer (i.e., relative to the
coordinates of = space; see § 2.2.1) is then <<C:>. Then Maxwell's
mean free path for the class of all molecules in a small volume about a

point is, from (2.1a),

= ng (2.20a)

*(9=0) o

For a gas composed of rigid elastic spheres, in equilibrium, and with no

mean mass motion (see above references),

© = V21 no? <c> (2.20b)
so in that case (2.20a) becomes

L S
(§=O) e o2 (2.20c)
The notion of mean free path has been extremely useful in the exten-
sion to gases with nonvanishing mean mass motion (V # 0) for the
calculation of transport phenomena (e.g., see especially Chapman and
Cowling, 1961; Present, 1958; Lighthill, 1956; Hirschfelder, Curtiss,
and Bird, 1964; Guggenheim, 1960; and Vincenti and Kruger, 1965).
However, the mean free path used in that extension has been calculated

from equations (2.20), or

A= <> (2.21)

13



That is, the relative velocity magnitude in equations (2.1) and (2.2), or
the average distance travelled by a molecule in unit time, has been
measured in a reference frame that moves with the mean motion of the gas.
One may therefore refer to A, defined by equation (2.21), as the mean

free path relative to the mean mass motion. As noted above (at the end

of § 2.1), although O is not affected by the mean velocity of mass motion
> . . .
V, the calculation of the average velocity magnitude, <Frel>hv . does

depend on the reference frame in which it is measured. This is further

discussed in § 2.5.

2.4 Absolute Mean Free Path, A¥

It will be found useful tc consider what may be denoted as the absolute

mean free path, defined by

AR = <gz (2.22)
From the definitions (2.1) and (2.2), for the class of all molecules in
(;,dié), since ¢ is the distance per unit time travelled by a molecule

relative to the observer's reference frame (i.e., relative to the coordin-

ates of the r space defined in § 2.2.1), A¥ 1is the average distance

travelled, relative to the observer's reference frame, by a molecule

between successive collisions. The significance of A¥, and its comparison

with A, are discussed in § 2.5.

2.5 Comparison of A¥ with ); and Significance of A¥

In comparing A¥, defined by equation (2.22), with XA, defined by
equation (2.21), it will first be noted that if V= 0, \* is the same as
A. However, at least for an equilibrium distribution with v £ 0, A% > ).
For example, consider a uniform flow of a gas in translational equilibrium

with very large V. Then within the mean collision time of a molecule,

1k



tc = 1/0 , nearly all the molecules move a very large distance in the

>
observer's reference frame. In fact A¥ > o as V > = . However, A

does not depend on V. This illustration is made more precise by the
calculation in the following paragraph.
Consider calculation of A*¥ and A for a gas having a Maxwellian

distribution function

3/2 _3802
f = fe = n(Be/H) e (2.23a)

and having mean mass velocity f/t = <E> , With magnitude V, where

g = B o= Lo - X2 (2.23Db)

and where m is the mass of a molecule, k is Boltzmann's constant, T
is the gas temperature, 7Y 1is the ratio of specific heats of the gas
(cp/cv), and a = (’YRT)l/2 is the speed of sound in the gas. Without

-> ->
loss of generality, one can take V = elu for this calculation, since the

X axis can arbitrarily be aligned with the velocity vector. Then
1

CZ = (g _u)2 + EZ + €2 (2.230)
1 2 3

It is readily found by substituting equations (2.23a-c) into equation

(2.1h4) with ¢ = C that

1/2

)l/za (2.234)

ﬁ‘@
<

&y = == () - (

/nee

(cf. Chapman and Cowling, 1961, p. T4), and with ¢ = £ that

1 —Beu2 il 1/2 2
<g> = _B_E [e + (l#_Be_uT) (1 + 28 u ) erf (/é; u)] (2.23e)

e
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where, by definition, the "error function" is

n _,2
erf n = (2/V0) [ &% ac (2.24)
o}
With definition of the Mach number

M = u/a, or /E;'u = Jy/2M = M (2.25)

and with use of the appropriate asymptotic expansions in equation (2.23e)

for M>0 or M-»> o , one finds: as VBe u=M-> 0:

& = <c>(1+-%;ﬁ2-§—oM_‘++§5ﬁ6_+--- ) (2.23f)
and as /Eg u = ﬁ.+ o
—2
E>~ ull + %ﬁ‘z A vat B o %ﬁ“u + 0(178) 1} (2.23g)

Therefore, from the definitions (2.21) and (2.22), for this case of the

Maxwellian distribution,

* —
% = <§ N l+%l\—/{2+0(ML*) as M > 0 (2.23n)
and
* /2 _ _— —_— M2
% n n2 M[l+%M2+O(M5eM)] as M > o (2.231)

Hence, for small M, A*¥ & A ; and for large M, A¥/x = 0(M).

One indication of the significance of A¥ 1is the following:
Suppose we wish to consider the appropriate dimensionless parameter
characterizing a molecular flow. Let L be a characteristic reference

length of the problem, Or be a reference collision frequency per

16



molecule, and . be an appropriate reference velocity. Since A¥ = <§>/O
is the actual mean free path relative to the observer, it is suggested

that

Kn* = (%i)ref = (%)ref (2.26a)

(a "Knudsen number based on the absolute mean free path") is the most

appropriate characteristic dimensionless parameter, or

c
= I
Kn¥* = o (2.26b)
r
where
r T <g> (2.27)

The parameter Cr/LOr is Vincenti and Kruger's (1965, p. 380) parameter

£ or Liepmann, Narasimha, and Chahine's (1962, p. 1319) parameter 1/cxo

(the appropriate expansion parameter for the Chapman-Enskog procedure).

Those writers made appropriate specifications of c. for low speed flows

and for high Mach numbers. Since, from (2.23f,g), <£> " <C> as M~> 0

and <g>'\/ u as M-> o , we see from (2.26) and (2.27) that use of A%,
rather than 1, has led to a result for c (eq. (2.27)) that automatically

includes the separate specifications of c. for low-speed and high Mach

number flows that were made by both Liepmann et al. (1962) and Vincenti
and Kruger (1965).

The simplified calculations of the transport coefficients, from the
elementary kinetic theory, treat molecules as carrying with them values
of various properties (e.g., momentum) that are characteristic of the
location of their last collision, a mean free path away (see references
mentioned above, prior to equation (2.21)). Although A* is the actual
mean free path relative to the observer, use of A has been convenient,
and its use is Jjustified especially by the fact that the actual average

free path of the molecules moving normal to the flow (used, e.g., in

1T



calculating shear rate) is close to A. However, for flows in which %

is large and/or changes rapidly, use of A¥ (in a certain way) is suggested
to be perhaps more appropriate than A, and, in fact, use of a directional
absolute mean free path (to be introduced in Chapter ITI) may be most
appropriate in cases of significant translational nonequilibrium, where

the directional mean free path of the molecules varies significantly with

the direction of the molecular velocities.
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CHAPTER IIT

THE DIRECTIONAL LEVEL OF DESCRIPTION

AND ITS RELATION TO THE KINETIC AND MACROSCOPIC LEVELS

3.1 TIntroductory Remarks

The purpose of this chapter is to introduce the basic concepts,

definitions, and formal equations that constitute the directional level

of description. This formal development is to form the basis of a method
for treating gas flows in translational nonequilibrium (introduced in
Chapter IV). Because of the suggested importance of the directional
aspects of significant translational nonequilibrium, it is proposed to
treat each molecular-velocity direction separately, which is possible on
the directional level. The role of the directional level of description
in its relation to the kinetic and macroscopic levels is emphasized in
the formulation.

It is convenient first to discuss the Boltzmann equation (§3.2),
which involves both the collision frequency per molecule of the class
d¥+ (i.e., all molecules in (?,dz) with velocity in (2,a%); cf.
eq. (2.9)) and the inverse collision freguency per molecule cogresponding
to that class. Then introduction of spherical coordinates in molecular-
velocity space (8§3.3) facilitates the subsequent formulation.

In Chapter II, different classes of molecules have already been
mentioned. In particular were discussed: the class of all molecules in

+ 3 . . -+
(r,dﬂé) with velocity in (E,djg), and the class of all molecules in

(;,dag) regardless of molecular velocity. In this chapter (in § 3.4) it
is convenient to distinguish, and define precisely, four classes of mole-
cules. For each of these classes, one can define certain properties and
write equations of change for those properties. The Boltzmann equation
applies on the kinetic level of description. One then can define the

intermediate levels of description, involving marginal distributions of
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molecular properties. Finally, one finds the full moment level, for which
Enskog's general equation of change governs the various macroscopic proper-
ties, which are molecular properties integrated over (or averaged over)

all molecular velocities. The directional level of description comprises
an intermediate class, and its consideration will be found to be useful.

In this connection, directional properties of the molecular motion are
defined, including a mean free path that can be different for each
molecular-velocity direction. Molecules with velocity in a certain direc-
tion can be thought of as constituting a "species'" in a mixture of species
of all directions, with each direction having its own mass density, momentum
density, energy density, collision frequency per molecule, mean free path,
ete. Equations of change can then be written for each of the "directional

properties” (§ 3.12).

3.2 The Boltzmann Equation

The Boltzmann equation is an equation of change for the probable

number of molecules in (?,d?g),(g,d?é) at time t (eq. (2.9)),

an, £(r,€,t) af, d‘)g (3.1)
g

or for the probable number density, f, in phase space. Many derivations
of the Boltzmann equation have been given (cf. Grad, 1958; Chapman and
Cowling, 1961, pp. 46, 47, 63-66; or Hirschfelder, Curtiss, and Bird,
196L, pp. k4L-L52). The equation of change for dN, in phase space
involves a "net source term'" owing to collisions. %n writing the net
source term one needs an expression for the number of molecules in
(?,d?;),(g,d?g) undergoing collisions per unit time, and hence the number

lost from that class per unit time owing to collisions (cf. egs. (2.12)):

(N ), = 0, aN (3.2)
g T 2

where 0@, , defined by (2.12c), is the fraction of the number AN,
€ £
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undergoing collisions per unit time, and hence the fraction lost per unit
time, and is denoted as the average collision frequency for a molecule of
the class of dN, . One also needs an expression for the number of mole-
cules undergoing "inverse collisions" per unit time that end up in (;,dﬂé),

(Z,dﬂé) after the collisions, or the probable number gained by that class

per unit time owing to collisions:

. 2l o
a(n' = d d d £’ 'b' db' 4de! .
g = A L W [T o] oo
a
. 2]-[ ol flfl
- ra¥ ¥ | d [ [ < a) r g b(ﬂ)de] (3.3b)
r 2 allg ga o) fe) ffa a
= ) d:N_é (3-3C)
g
where
2 o /f'T!
oy = J Y. [f i ( a) f gb db dsjl (3.3d)
E aliga Ea o) o) ffa a

is defined by equation (3.3c) as the fraction of the number ng that are

. > > .
put into (r,d?i),(i,d?é) per unit time by inverse collisions. This

fraction, ©! , may be denoted as the "inverse collision frequency per

3

molecule" for the class ng . In equations (3.3),

1] = ++' 1 = >
o= flr,et,t) , £l = f(r,gl,t)
and (3.4)
- g - v _ F
g' = le'| = [E] -]

+ - . ) .
where &' and g; are the velocities of two molecules before an "inverse

- . . - 3 3 + +
collision”" or after a"direct collision." The velocities £' and Eé are
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not independent, but are related through the impact parameters and inter-
molecular potential to E and Ea. In equation (3.3b) the well-known

relations have been used:
da/'d7/'=d?/dq/; g' =g 3 b'=b, e'=c¢ (3.5)
3 € 3 £,

In terms of dN, , the Boltzmann equation is written as

>
g—t— (ng) * V- (2 dN%) + V0 i—B ng) = d(ﬁé)g - d(liIC)_g (3.6a)
= (e_é - eg) dN_g (3.6b)
or, upon dividing by dﬂg dqg
i
F ot @D e v (P60 = (ep-oy) s (3.7)
where
v.o= gléaTl +32£; +’e*3§;%3—
v, = Zl 321 + 32 3%;~ + gs 3%; (3.8)
and %B is the external body force acting on a molecule.

3.3 Distribution Function in Spherical Coordinates in

Molecular-Velocity Space

For subsequent developments it is convenient to transform the
coordinates of velocity space to spherical coordinates.
With the molecular velocity E defined by equation (2.6) and its

magnitude by (2.17), the transformation is
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El = & cos @
62 = & sin @ cos @ (3.9)
E_§3 = § sin @ sin 8

where, for a molecule located at point ? and having velocity E (see
figure 3.1), ¢ is the angle between the £, axis (which is parallel to
the x axis) and the molecular-velocity vector E 5 and 6 is the

angle éf the projection of the vector E on the plane of gz, 53 (which
is parallel to the Xy, Xg plane). The angle 6 is measured from the Ez
axis, as shown on figure 3.1.

The unit vector in the direction of E is then defined by this

transformation (3.9) and equation (2.6) as

¥
i
o e
|

= 31 cos @ + 32 sin @ cos 6 + gé sin @ sin @ (3.10a)

Noting that g+ is a function only of 6 and @ , we will also find it
£

convenient to use the notation

>

ee¢

It

>
e

N (3.10b)
£

= ee¢(e 3@)

The transformation of the velocity-space volume element, dﬁ/ s 1s

g
given by
3(E,,E,5E,)
_ _ 1°72°>3
dL‘?{E = dp dg, ag, AGRER dc de a¢ (3.11a)
= &2 sinq@ df 46 4@ (3.11b)

3(E, 5E,5E,)
3(e, 6, @)
(From Fig. 3.1, the three edges of the volume element are E4¢ , £ sing 46,
and d& which when multiplied together also give d’g as eq. (3.11b).)

where is the Jacobian determinant of the transformation.
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Figure 3.1 - Spherical coordinates in molecular-velocity space.
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Figure 3.2 - The unit sphere and solid angles at a point
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It will be found convenient to also consider the solid angles in

molecular-velocity space (see fig. 3.2):

cmeq> = sin @ dg de (3.12)
6=I
Qg = f=-n a2y, = 2T sing dg (3.13)

in terms of which equations (3.11) may also be written as

av.

£2 4t dQe«p (3.1La)

e2 at (57) ang (3.101)

(The significance of the subscripts E s 0@ , and @ is discussed in
§ 3.4.)

The velocity distribution function defined by equation (2.9) may be
written with &, 6, ¢ as arguments. Thus define

=

£(r,8,t) = £*(r,£,0,@,t) (3.15)

From this point on, however, the superscript ¥ in equation (3.15) will
be dropped, with the understanding that f(¥,£,8,¢,t) is actually £¥
defined in equation (3.15). Thus from equations (2.9), (3.11), (3.12),
(3.13), and (3.14) we now have

g
= 5000 Y,
= £ g2 4t RIoHpn (3.16a)
= 24t (g%) 4% (3.16b)
= f &2 d& A0 sin @ de (3.16¢)
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3.k Classes of Molecules Considered; Total Number

and Notation for Each Class

The remainder of this chapter involves consideration of four classes
of molecules:
>
(a) The class of all molecules in (r,d?;) and having velocity in

(g,dﬂé) contains the number

ay = a¥ d% £(7,€,0,@,t) (3.17a)

where the notation (?,dﬂé),(%,d?é) has been defined in § 2.2.1. This
class is denoted as the class ng . The subscript Z is to be used
generally to denote quantities in this class, which can be functions of
f (or of &, 6, @), as well as of ¥ and t.

(b) The class of all molecules in (;,dqg) and having velocity
direction in (8, @, an, ) (regardless of the magnitude £ ) contains

P
the total probable number

E:oo
dN =

= 2 3 .1
00 £=o a, aY, A%, £ £ g2 At (3.17b)

where (6, @, 49 ) indicates the range of 6 and @ 1in the solid angle

o

> -
dQe¢ about the vector ee¢(e,o) = eg . (See fig. 3.2.) This class is
denoted as the class dNe® . The subscript ©@ is to be used generally

to denote quantities corresponding to this class which may be functions

N
of & and @ as well as of r and t (but not functions of the velocity

magnitude £).
(¢) The class of all molecules in (?,dﬁ;) and having velocity

angles in (@,d9,.) (regardless of the values of & and 6) contains

[ 4
the total probable number

8=11 £=oo (V 1 I - )
dN = d ae_ == d f d .1
£= 2 3% 5y {H 0 g £2 ag (3.17c)

@)
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where (¢,dQ¢) indicates a direction in the range d¢ about the angle

@ anywhere in the solid angle dQ¢ (see fig. 3.2). This class is

(1

denote quantities corresponding to this class, which may be functions of

denoted as the class dN, . The subscript @ 1is to be used generally to

@, as well as of ; and t (but not functions of &£ and ).
(d) The class of all molecules in (?,d?;) (regardless of E)
contains the total probable number (cf. egs. (2.10a,b))

?:H 6=11 g:oo

I I ©

av = [ [ [ an, = aY [ aplsing) [ae [ £ 2 ar (3.17a)
=0 6=-1 E&=0 o -1 0

This class is denoted as the class dN . Quantities corresponding to this

class may be functions of * and t (but not of &, 6, or @).

3.5 Total Number of Molecules Undergoing Collisions per Unit Time in

Fach Class of Molecules

For the class dN, , the total number of molecules undergoing

collisions per unit time is given by equation (2.12b) as

d(ﬁ )—> = 0
¢ g

Lav, = a¥ ¥ o, r (3.18a)
£ ¢ T 8

where 0, , defined by equation (2.12c), is the fraction of the number
dN, that undergo collisions per unit time (cf. eq. (2.3c)).

For the class the total number of molecules undergoing

dan
o °
collisions per unit time is

. g=x . e
a(n ) = f aw ), = a¥ aq [ o, £ g2 at
c’ e £=o c'E r e¢>o £
= oe¢ dNe¢ (3.18b)
which therefore defines ®6¢ as the fraction of the number dN9¢ that

undergo collisions in unit time (cf. eq. (2.3c)).



For the class® d&p, the total number of molecules undergoing

collisions per unit time is

‘ 1T Y asgt [ as |
a(v ) = a(N ), = a7 4o, = ae o, f £2 4t
¢ ¢ ==11 E:o c g q, 2n =II o
= eq aNg, (3.18¢)

which therefore defines ®¢ as the fraction of the number &m? that
undergo collisions in unit time (cf. eq. (2.3c)).
For the class dN, the total number of molecules undergoing

collisions per unit time is

. (p:H 6=I1I E=co . il i .
aw = [ ] [ oaw)s = d?; [ age(sine@) [ a6 [ e, f &2 dg
p=o 6=-I &=o 3 o - o &
= 04N (3.184)

which defines © as the fraction of the number dN that undergo

collisions in unit time (c¢f. egs. (2.3c¢) and (2.13b)).

" Per

3.6 _Total Number of Molecules Undergoing "Inverse Collisions

For the class dNs , the total number of molecules undergoing
"inverse collisions" (molecules that end up in the class dN, after the

collision) per unit time is given by equation (3.3c) as
an'), = oy av, = a¥ a¥ ey (3.19a)
c’g [ r ' E

where 0! , defined by equation (3.3d), is the fraction of the number

dN, that are put into the class dN, per unit time by collisions.
£ g
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For the class 4N the total number of molecules undergoing

o
inverse collisions that end up in (;,d7g) with molecular velocity in

the direction range (6, @, dQe‘P) per unit time is

. g= ®
am'y. = ant), = a¥ ao oL £ £2 a
0@ £=o e’? r ¥oe (f) FA

eé‘p dNeq) (3.19b)

which defines Oé¢ as the fraction of the number dNGQ that are put into
the class dNe@ per unit time owing to collisions.

For the class dN<p , the total number of molecules undergoing inverse
collisions that end up in (;,dﬂg) with molecular velocity in the direc-

tion range (@, dQ¢) per unit time is

. 6=II g=oo . ‘?/ 1 II =) )
a(m! = a{m! = a¥Y 4aa, =— de 0y a
(W) £=_n £=O ( c)g A% = IH £ 1 f g2 d
= eq', qu) (3.19c)

which defines eé as the fraction of the number dN, that are put into

@
the class dN¢ per unit time owing to collisions.

For the class dN, the total number of molecules undergoing inverse

collisions in (?,dﬂé) per unit time is

) fv=n fe=n f£=w Gy
aN' = a(N' ),
¢ ¢= ==11 £=O c g

II i @
a¥, [ dg(sing) [ as [ o} f¢? ac
o -1 o &

@' 4w (3.194)

which defines ©' as the fraction of the number dN that undergo collisions
per unit time, and is therefore equal to 0O, a well-known result (see

§ 3.12 below).
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3.7 Molecular-Property-Dengity Distributions for Fach Class

of Molecules

3.7.1 Definition of property-density distributions

for each class

For any molecular property ¢(?,g,t) (cf. § 2.2.3 above and § 3.7.2
below) one can define expressions for the density distributions of the
property ¢ for each class.

For the class ng , the density of the molecular property ¢ per

unit volume of configuration space and per unit volume of velocity space

is defined simply as

Fhe) = ok (3.208)
b {r,t,t E = = ¢Ff 3.20a
A W,

For the class dNeQ , the density of the molecular property ¢

->
per unit volume of configuration space at r and per unit solid angle

of velocity space at 6 , ¢ is defined as

1

o, (+,0,9,t) 2o 7 = [ ¢fe?a (3.20D)
89 d?é dﬂe¢ A

For the class dN¢ , the density of the molecular property ¢ per
unit volume of configuration space at ; and per unit solid angle of

velocity space at angle @ (integrated over all 6) is defined as

6=I1 E=c
A = 6=-T &=0o I 2 3.20¢c
00(T>@,t) = T, ang = fn as i ¢ £ £2 ag
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For the class dN, the density of the molecular property ¢ per
unit volume of configuration space at T is defined as
@ =1l /=TIl g:oo

o(¥,5) = ®=2 8 Hd;,o = [ ag (sin®) [ a6 [ ¢ £ €2 ag (3.204)
r o] =1l o)

3.7.2 Specific examples of molecular properties of interest,

and their density distributions in each class

Examples of molecular properties that may be of particular interest

are:

(2) _ 2> > > > > -> '
b= ¢35 = EEE...E = e,eje ...e, & , £=0,1,2,... (3.21a)
R
. 11 £ & é& g
imes
¢ times

(which is a tensor of order &),

¢ = m ¢é2) , 2£=0,1,2,... (3.21p)
$ = =1: n oS8 ge01,0,... 4 (3.21c)
g

i=1 j=1 9 4 k=1 =1
the "double~dot" product is defined by

3 3

A:B = | | A
i=1 j=1

;5 Bjys

where the components “ij and Bkl may themselves be tensors of zeroth



(where | = glgl + Zzg2 + 2323 is the unit tensor, or "idemtensor")
H Lk et B .
o = £(¥,E,t) (3.21e)
¢ = A% (to be defined below in § 3.11) (3.21f%)
£
6 = £ . (3.21g)
6 = ¢ 0, (3.21n)
g
¢ = ¢ 6} (3.211)

g

where dAa may be any other molecular property. Some of these examples are
discussed and the property densities for each class indicated below.

The number density in each class is found by taking ¢ from equation

(o) _

(3.212) with & = 0 and using equations (3.20). Thus, with ¢ = ¢€ 1,
F20) = 2B = —k (3.22a)

N,lTs6, = r,&, = .

g ay,. a¥;

® an
> 6@

n, (r,0,@,t) = [ fE?dE = (3.22Db)

0P " d?; dﬂe¢

order or higher, i.e., scalars, vectors, or higher-order tensors. The
orders of the component tensors Aij and BkSL are by definition two
orders lower than the orders of the tensors A and B respectively;
if A and B are second-order tensors, then the components Aij and

Bkl are scalars.
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: Ll e e
n,(r,@,t) = = ae [ £ E2 8 = ———— (3.22¢)
@ on /) &, 4%
N It I o an
n(r,t) = [ de(sine@) [ a6 [ f g2 ag = = (3.224d)
o -1 o r
In particular, ne¢ may be denoted as the "directional number density"

(which is the same as n, if f does not vary with ).
P

The mass density in each class is found by taking ¢ from equation

(3.21b) with % = O and using equations (3.20), or by simply multiplying

each of equations (3.22) by the molecular mass, m, to obtain, respectively,

P, = mng , P =mn (3.23)

The gquantity Pop may be denoted as the "directional mass density."
. (2) _ . . .
If we define éclass = chass with ¢ given by equation (3.21b),
where the property densities ¢, _ are defined by equations (3.20), then
_ L
Pelass class

The momentum density (or mass flux) in each class is found by taking

¢ from equation (3.21b) with 2=1 (¢=m§) and using equations (3.20) to

obtain
(1) > >
)"/ = mEf = e, mef (3.24ka)
3 3
(1) _ (" 2e0 =m 2 Y 3
©e¢ = é mifg2dg = m S0 é f g3 dg (3.2kb)
ol o 1 fnd jw Zre2de = o= jnde(+ ) fmf 34 (3.2ke)
Py ST - 6 ! mgfgcdg = ol - eeq7 ! 3 13 3.24¢

H H @« H H oo
of = o'1) = [ ag(sin @) [ a6 [ mire2de = m [ de(sin @) [ ao(2. )f fedaz
0 -1 o] o] -II o® o

(3.2k4q)
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(1)

The quantity ®90 could be denoted as the "directional momentum density"

(or as the "directional flux of mass").
The energy density in each class is found by taking ¢ from equation

(3.21c) with 2=2 (¢ = %-mgz) and using equations (3.20) to obtain:

%-I: @éz)z %-m g2 f (3.25a)
Ly ol2): fm lprevag=2m fwf g" dg (3.25b)
2 op - L 2 2 " )
I |
1 2). 1 1 1 1
Ak qé = 55 Jae [ Fmretde =SmZz [de [ Y ag (3.25¢)
-1 o -1 o
1 T o= ; 0 T o«
51 | ap(sin@) [ as [ S mfE*dg = S m | de(sin @) [ a6 [ retae
-1 o o} -II o}

(3.254)

The quantity calculated in equation (3.25b) may be denoted as the "direc-—
tional energy density."”

The quantity

m [ £&" at (3.26)

"

is the "directional flux of momentum. The quantity

o(3) =

%op Zmg? g2 ag =3

1
2 1:

1"l
O *—
8

opzm | £E5a (327)
O

is the '"directional flux of energy."

By taking ¢ from equation (3.21g) and using equations (3.20) one
obtains for each class the density of the molecular property ¢ or the
flux of the molecular property $ . For example, the quantity
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L L

o8 = [ melM r g2 ae (3.28)
o 5 £

is the directional flux of the molecular property m.¢££—l) as defined

in equation (3.21b) with (3.21a) (the directional density of the latter

property being @éi_l) ).
By taking ¢ from equations (3.21h) or (3.211) and using equations
(3.20) one obtains for each class the density of the property $ respec-

tively lost or gained per unit time by each class owing to collisions.

For example, with ¢=1 (¢=Gg), equations (3.20) give the number density
of molecules undergoing collisions per unit time for each class

(respectively: d(ﬁc)g/dag d?é; d(Nc)&P/d%; dQGQ5 d(ﬁch,/d7; dﬂ?; and

dﬁc/dﬁé; cf. egs. (3.18)).

3.8 Average Values of Molecular Properties for Fach Class

of Molecules

For any molecular property ¢(r,Z,t), an average value of the

property possessed by the molecules of each class is defined by

f ¢ AN,
<¢> _ class W_E_ _ class (3.29)
class f AN Helass
class 3
where the @ are defined by equations (3.20) for each ¢ and the

class

N ., 8re defined by equations (3.22). 1In § 2.23, only the averages for

the class dN (all molecules in (?,d??); thus averaged over all ¢£)

were considered. However, the definition (3.29) can apply to any of the

four classes defined in § 3.L.

The subscripts E, 8¢, @ are used to indicate what part of the

molecular velocity the resulting quantity can be a function of.
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The average value of ¢ for the molecules in the class 4N, is

therefore

o
. - &
<">§ = ¢ = (3.30a)
€
The average value of ¢ for the molecules in the class dLNe(p is
[ o fg?a
e = = = o (3.300)
f £ gZ de g
o
The average value of ¢ for the molecules in the class dmp is
I [
[ as [ ¢ £ &2 at
=1 o) q)‘P
O = — (3.30¢)
P « o
[ ae [ £ &2 a
-I o

The average value of ¢ for the molecules in the class dN (cf. eq.

(2.14)) is

1 Il o
[ dp (sin@) [ dao [ ¢ £ &2 a¢
@, el T (3300
[ dp (sine) [ de [ £ g2
o el o
Note that in equations (3.30) the quantity ® 1,45 COTrTesponding to any

molecular property ¢(;,g,t) is defined by equations (3.20).

Particular average values of interest are discussed in §§ 3.9, 3.10,
and 3.11. One particular average value that is convenient to use is
defined by taking ¢ = gl (eq. (3.21d)) and using equations (3.30);

thus define

(2) _
vclass = <E$class (3.31a)
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or
(2) - 3 1 L 24
v = (& == [ r&e7" (3.31pb)
6@ < >€)q> nqu 5
() - ) _ 11 T ® 248
Vo B <g> = oo T f def f g dg (3.31c)
? 4 -1 o)
(2) ) 1 0 I ®
v SRC > = = [ de(sing) [ as [ £z de (3.31a)
o -1 o

1
The quantity V( )E<§:> has already found use in Chapter II. For the

case £=1, it is often conv@nient to omit the superscript; thus

|

- (1) N
Velass = Velass <E>class (3.31e)

3.9 Collision Frequency Per Molecule of Each Class

For each of the classes defined in § 3.k, the total number in the
class that undergo collisions in unit time was found in § 3.5. Also

defined in § 3.5 were the quantities ©0 which represent the fraction

class’
of the total number of the class that undergo collisions in unit time.
Starting with 0, , defined in equation (2.12c¢), as the molecular property

¢, one finds from equations (3.18) and (3.30) that, for each class,

AN ) lags . )
- class < Z/class .
class g
Thus :
d(Nc)g/ng = % (3.33a)
; - _ _ 1 2
AN ) oo/ Mo, = Ogo <<a_g - Sop £ o, T £2 4 (3.33b)
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I .
N = = = _l__ !'_ 2
d(Nc)q’/dN¢ - eqa <Oj§>(‘.P ng 20 -J:Hde {) Gg f g< dg (3.33c)

B

i i %
| de(sine@) [ ae | eg £ g2 ag  (3.33d)
O —

dNC/dN = 6 = <eg> = . !

(ef. egs. (2.13c) and (2.19)).

- 3.10 "Inverse Collision Frequency' Per Molecule of Each Class

For each of the classes defined in § 3.4, the total number of mole-
cules undergoing inverse collisions in unit time that end up in the class
was found in § 3.6. Also defined in § 3.6 were the "inverse collision
frequencies," eelass for each class, which represent the fraction of the
total number in the class that undergo inverse collisions in unit time.

Starting with Oé » defined by equation (3.3d), as the molecular property
¢, one finds from equations (3.19) and (3.30) that, for each class,

d(liTe)class = o _ <®, (3.34)
— e EE = 1 )
chlass class £ class
Thus :

d(Né)g/ng = O‘é (3.35a)
d(Né)w/de = 0}y = <Oé>e¢> (3.35b)
AN )g /Mgy = 06 = <GT'§>4> (3.35¢)
dNé/ dN = o' = <O'é> (3.354)
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3.11 Absolute Mean Free Path for Fach Class, Including Directional

Mean Free Path

According to the definition (2.1a) (and with use of eq. (3.32)),

the mean free path measured relative to the observer (or the "absolute

mean free path”; cf. eq. (2.22)) for each class is

* = <E>class = <€>class (3.36) -
class OcZLaLss <®“€’>class

Thus for molecules in the class dN, , the absolute mean free path is
A = E/Og (3.37a)

(For a gas composed of rigid elastic spheres in equilibrium, this free
path is given by eq. (8) on page 95 in Chapman and Cowling (1961). Note
that c¢ in their notation is £ in present notation.)

For molecules in the class dN the absolute mean free path is

op >

foo r g3 ag
A% = <E>9<D - <£>8¢> - o (3.370)
6@ GGQ) <®—€>>9(P J'oo 0, T 52 ar

¢}

For molecules in the class di ,» the absolute mean free path is

¢

I [+
[ ae [ f &3 at
O

Qp _ <€>¢ - -l : (3.37c)

0 ZE T o
? <€>¢P [ a8 [ o»rf £ at
=11 o g

A¥ =
. 4



For molecules in the class dN (cf. eq. (2.22)), the absolute mean
free path is

i T =
| de(sine) [ def r g3 ag

A¥ = <€> = <§> = O —1'[

.374
. <®+> (3.374)
f d¢(sin @) f def o,f £2 ag
-1 3
Note that for the classes 4N, and dN6¢ one can define a vector
mean free path by: g
-> g > %
A = 2= = e, A,
z @g 7 (3.38a)
-
> _ '<E>%¢ >
pee‘p = = = Cgp Mee(p (3.38b)

. _>* . - *
Either the vector A6¢ or its magnitude, Aew .
directional mean free path. Note also that if f does not depend on

®* = )%
6, then kGQ A¢ .

It may also be convenient to define an average absolute free path

may be denoted as the

calculated in a different way, defined by:

class < >class (3.39)
thus:
Ay = A% 3.L0
g t ( a)
hog = <x+ o (3.40b)
- *
o = 0% (3.50c)
RGP (3.404)
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3.12 Equations of Change for Molecular-Property Distributions

for Each Class of Molecules

For any molecular property ¢(?,g,t) one can write an equation of

change for the property density q)class = Nqass < ¢2lass for each of

the four claesses of molecules defined in § 3.4, equations (3.17). These
will be of use, particularly for the class dNe?, in the directional
level of description, in § L.1. For convenience in the following develop-
ments it 1s assumed there are no external body forces acting on a molecule

other than those involved in the isclated molecular encounters, that is,

3.12.1 Equation of change for number density in each class

For molecules in the class dN, , on the kinetic level, the equation
of change for dNs is given by (3.6b). That equation is divided by
dig d?g to obtain an equation of change for the number density in phase

space ng = £(v,¢,t) (eq. (3.7), a form of the Boltzmann equation):
f Ze) = ro
+ t V. (&) (eg eg) 3 (3.41a)

In equation (3.kla), OE f is the probable number density of molecules
lost from (?,d?;),(g,dvg) per unit time because of collisions, and

@} f is the probable number density of molecules gained by (?}d?;),

(Efd?é) because of collisions (see §§ 3.5 and 3.6).

For the class dN6¢’ equation (3.6b) is integrated over all velocity
magnitudes, & , from O to infinity, then divided by d‘}/r Qe tO
obtain an equation of change for the number density neq(?,e,@;t), the
probable number of molecules per unit volume of configuration space at

T and per unit solid angle of molecular-velocity space, in the direction
8,9 :

an
__bo . re = v
= 4V [neq><‘5>eq>] = neq)(eeep %) (3.41b)

Lo
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In equation (3.Lk1b), is the probable number lost, owing to

ne(p Oe¢ "
collisions, per unit time, per unit volume at r, and per unit solid angle

of velocity space in the direction 6,Q; o! is the probable

"o “o@

number gained, owing to collisions, per unit time, per unit volume at

;, and per unit solid angle of velocity space in the direction 6, @

(see §§5 3.5 and 3.6).
For the class dNg , equation (3.6b) is integrated over all velocity

magnitudes & from O +to infinity and over all 6 from -I to I,

then divided by d?é dQ¢ to obtain an equation of change for the number

density nQ(;,¢,t), the probable number of molecules per unit volume at

; and per unit solid angle of velocity space in the direction @ (averaged

over all 0):

ot &EN 1 = ey - og) (3.h1c)

In equation (3.kle), ng Op 1is the probable number lost, owing to colli-
sions, per unit time, per unit volume at ;, and per unit solid angle in
velocity space in the direction of @ (averaged over all 6); ng Op 1is the
probable number gained, owing to collisions, per unit time, per unit

volume at ¥, and per unit solid angle of velocity space in the direction
@ (averaged over 0) (see §§ 3.5 and 3.6).

For the class dN, equation (3.6b) is integrated over all %: that
is, over all & from O to infinity, over all 6 from -0 to 1, and
over all ¢ from O to I; then divided by d%g to obtain an equation
of change for the number density n(r,t), the probable number of molecules

per unit volume at T

2—2 + v - [n{Pl = n(e' -0) = 0 (3.1414)

In equation (3.41d), n © is the total number density of molecules under-
going "direct collisions'" per unit time, which is the same as the total
number density of molecules unfergoing "inverse collisions" per unit time,

n 0' (see §§ 3.5 and 3.6).
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3.12.2 Equations of change for other molecular-

property distributions in each class

For any other molecular property, the eguations of change for each
class of molecules defined in § 3.4 are found as follows:

For the class dN, , the density distribution of the property
¢(*,2,t) in phase space is (eq. (3.20a)):

o) = f
g ¢

To obtain an equation of change for the distribution ¢f, multiply

equation (3.41a) by ¢ (where ¢ may be a tensor of any order):

of (2 _ '
bap *o V. (B = faley -0y
and rearrange in the form
3_ - z - éi +o — ! —
ap (fo) + v« (£e¢) - £l o5 + £-V ¢] f[¢(eg OE)] (3.k42a)

To obtain equations of change for the property—density distributions
in each of the other three classes, multiply equation (3.k42a) by
d% = £2 ¢ 30 sin @ 4@ and integrate first over di , then over de,

then over d¢ to obtain respectively the results:
L AER O BERRICW ) W COWERER XYW

= nw[<¢eé>>e@ ‘<¢@g>e¢] (3.L2b)
S5 gDyl + 7, [ngLED] - ngl 5y +CE-7,0))

= mq,[<¢>@é>qp —<¢O+¢] (3.42¢)
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S o)) + v (DT - al B> +(Fv oD

= n[<¢eé>-@eg>] (3.h24d)

In each of equations (3.42a, b, c, d) the first term on the right
side is the density, for the class, of the molecular property ¢ gained
by the respective class of molecules owing to collisions, and the second
term on the right side is the density, for the class, of the molecular
property ¢ lost from the respective class owing to collisiomns.

Note that equations (3.L42) all have a very similar form and that

equation (3.42d) is Enskog's general equation of change (with i;B = 0).
(Ssee, e.g., Hirschfelder, Curtiss, and Bird, 1964, p. 460.)
For the particular cases of ¢=m, <1>=m_£> , and ¢= —ejimgz (the

summational invariants of a collision) one obtains from (3.424) a form

of the conservation equations of gasdynamics (for which <¢ (ey - Og)>= 0):
. g

R A6 R CEE (3.432)

B+ v [ (ED = o<g(®_é -0 = 0 (3.43b)

st L5 ee + v, - [ 5 oL2E)) = o5 £2(04 - 03)) = 0 (3.13¢)
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CHAPTER IV
PRELIMINARY FORMULATION OF THE

DIRECTIONAL-MEAN-FREE-PATH METHOD

4.1 Directional-Mean-Free-Path Approximation for the "Gain-

Term" Collision Integrals in Flows Far From Boundaries

Tn this section a model for the "gain-term" collision integrals is
proposed that simplifies the treatment on the directional level of
description; that is, in consideration of the class dN6¢ (ef. § 3.L4),
or the class of molecules in (?,d??) with molecular velocity in the
direction range (6, @, dQe¢).

Up to this point, all developments and definitions made have been
completely rigorous and formal, with no approximations made other than
those involved in assuming validity of Boltzmann's equation in the form
of equation (3.7), with fﬁ subsequently taken to be zero.

The model to be proposed here involves a physically intuitive approxi-
mation of the "gain term" of the collision integrals in equations (3.41b)
d (3.42b). It makes use of the concept of the directional mean free
path, introduced in § 3.11. The form of the approximations will be seen

to be particularly amenable to treatment by certain generalizations of

Lagrange's expansion, to be developed in Chapter V and to be applied in

Chapter VI.
The equation of change for dN6¢ , or for n6¢ , can be written
as
Snew N ) .
d <+ . = ! -—
%dsze’ = v, [ne¢<g>&p] aliil) g, d(Nc)ecp
= '
(oelp )
= ¥, a9y n9q (04 -Ogp) (4.1)
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where d(Nc)ew is the total probable number of molecules undergoing

collisions per unit time in (?,d?ﬁ),(e, q, Qg ), and hence lost from

?

(;,d?;) and the solid-angle range of velocity (8,@, 4dQ,.,.) per unit

o

time because of collisions; and d(Né) is the total probable number of

o

"inverse collisions'" that occur elsewhere in phase

molecules undergoing

space (i.e., other than in any d?g dag within (?,di;),(e, P, dQe¢))

>
that are put into (r,djé),(e,,¢, dﬂe¢) in unit time at time t TDbecause

of collisions.

h.1.1 Definitions and assumptions of the directional-mean-

free-path approximation for the gain term

The aim of the directional-mean-free-path approximation is to replace
the difficult gain term on the directional level by an appropriate corres-
ponding loss term.

The inverse collisions all occur in elements of phase space, d?; deg,
back in the direction -e at locations within the solid angle opposite

0@

_> 3
to (e, @, d96¢) from the point r (see fig. L.1).

One may think of the gain term in equation (L4.1), therefore, as

resulting, on the average, from collisions occurring at a directional mean

free path, Ag0 » back from the point ? in the solid angle equal to

about and at a mean collision time in the past (corresponding

an é
0@ o0 2
to this direction), l/@e¢ . Let the representative midpoint and time of

the inverse collisions be denoted by T and t, defined implicitly by

M

>
5= F (4.2a)
t o+ 1/96(p = t (k.2pb)
where
- . 3 - . - -~
xg¢ = xgq(r,e,¢,t) = Shp <?>@¢/660 (k.32)
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ee‘p = eev(r 0,9,t) = <eg>e¢ (4.3b)
N s i1l [ 2@ £)e3
<?>@0 = [<§>®¢ evaluated at r,t] ﬁe¢ £ f(r,£,0,¢,t)g3de (4.3c)
fep = Tap (F.0,9,8) (4.3d)

in which Kg¢ and l/9e¢ are respectively the directional absolute mean
free path and mean collision time that are characteristic of the direction

8, at the point T and at time t.

The number of molecules, d(ﬁé)e¢P .

direction in (e,¢,d990) at time t per unit time owing to collisions

is accordingly assumed to be emitted per unit time from collisions in
> 4 ~ ~ .
. . = " . . .
(r,d}r) Ylth average velocity Vo <ﬁ>b¢ with direction in (e,¢,dﬂe¢)

at time t. The appropriateness of this assumption can be seen from

put into (?,dj;) with velocity

figure 4.2 and the following considerations: The volume (?,d@;) is
equal in size to the volume (?,dgg). Let B denote the area, in the

plane perpendicular to at point ¥, that subtends the solid angle

>
, oo 3
dﬂe¢ from the point zr, with point r in the center of area B. Thus

= ~* 2
B (Ae(‘,) dﬂe(p

Let dw be the solid angle, centered also at point ;, and subtended by
the cross-sectional area of the volume (?,d@g); denote the cross section

of (?,d%) by dB, so that

dB = (3% )2 ay

0@
Let the ratio of dQe¢ to dw be J; thus
dﬂew = j dw
B =j dB
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Solid angle containing all locations
of collisions that put molecules
into (T,dyy), (6,¢,d2¢,)

Figure 4.1 - So0lid angle containing inverse-collision locations;

*

and depiction of X .
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Solid angle=d{g,,

Area dB=('\)'«*9<P)2 dw

Figure 4.2 - Sketch for description of directional-mean-free-path

approximation.



Now divide the area B into J equal parts, dB, so that each subtends
a solid angle dw from the point ¥. Consider the small volume dﬁé
centered on each of the J small areas, dB. Each of these j elements
has a cone of solid angle dQ in the direction e . Each of these

o 6P

cones is subtended by a surface A in the plane that is normal to 26@
and passes through the point . Fach of these areas, A, is equal to

B, and each A may be divided into J equal parts, dA = dB, one of
which contains the cross—-section of (?,dgﬁ). The number of molecules
emitted per unit time in (6,¢,dﬂap) with average velocity §e¢ from each
d?? is assumed to be d(ﬁé)e¢

unit time is received by (?,d?;) at time t =% + l/ée¢ from-each of

A fraction, 1/j, of this number per

the j volume elements d?; on area B. Hence (?,d@;) receives
. Yalhe — A(T

3(1/3)alN) g = a(N)) o0 ;
direction in (e,q,d@w), where da(N!)

molecules per unit time at time t with velocity
op is also the number originally
assumed to be emitted from (?,daé) by collisions per unit time at time

£ with velocity direction in (e,q>,dsze ).

P .
It is significant that, on the average, the d(Né)erolecules, assumed
to be emitted from (?,d%) in (0,@,42,,) per unit time at time ¢,
~ _> ~ -~ ~
travel the distance A¥ to point r in the time interval 1/0_ =x¥ v
e o0 p /e ~ec‘,/ o
where l/@e is the average frequency of direct collisions at %, t

¢

in direction range (6, @, cmeq;). Note that d(Né)w is yet to be

determined.

h.;.2 Directional-average collision models to be used with the

directional-mean-free-path approximation for the gain term

For the directional-mean-free-path approximation partially introduced

above, all the d(ﬁé) molecules have been assumed, on the average, to

oQ -
be emitted from collisions taking place within (?,d%;) at time t,
per unit time. This number d(liTé)e(p must now be estimated in some way.

For this estimate, just as (?,dﬂ;) was taken to be a small volume at a

representative average location in which the inverse collisions occur, so

there is also now assumed to be some representative average direction

that the d(ﬁé)ew molecules had before the "inverse collisions™ in
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(%,d}?) at time € +that resulted in the final ave?age velocity §e¢=<§>%¢
in the direction range (e,¢,dﬂe¢). The number d(Né)GQ is estimated

in terms of a representative average direction (8',9') (see fig. L.3)

for the d(ﬁé)e<p molecules before collision in (%,d@é) at time t,

per unit time, according to one of several "directional-average collision
models" for the gain term, as described below in §§ 4.1.2.1, L.1.2.2, and
4.1.2.3. These models for the gain term simply represent approximate

ways of evaluating the representative direction 8',@' and of relating

the gain term collision integral, in the directional-mean-free-path approxi-
mation, to a corresponding loss term, which is easier to deal with. The
resulting collision integrals must then still be evaluated in terms of

some process of molecular interaction, with some assumed representation of

a molecular~interaction potential, to be considered in §§ 4.1.3 and L.3.3.

Thus, the number per unit time, d(ﬁé) is to be related to d(Nc)e'¢' .

0@’
the number of molecules undergoing direct collisions per unit time in
(%,d?;) at time t and having initial velocities in the solid angle

range dQ about where (cf. egs. (3.10))

>
e'q‘)' ee'(p' H

o' - eeq?(e',q)') (4.h)

is the unit vector in the direction 6',¢'
For any directional-average collision model to be discussed, one

will first need to consider the number of molecules in (?,d?;) at time

£ with velocity direction in (e',¢',dQe.¢, ) (see fig. L4.3):
dﬁev@v = ﬁévq)v d% dQe|‘pv (h-Sa)
- > ' [—
= ne‘p(r,e @' ,%) d% 3% 1 (4.5b)

(where the direction 6‘,@' is yet to be defined for the particular
directional-average collision models). During the time interval dt

after time %, a fraction,

P = o [
96'(?' at = eefp(r,e ,@',t) dt (4.6)
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Figure 4.3 - T1lustration for directional-average collision models
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of this number dN undergo collisions with other molecules that have

e!¢'~ N Luicd
average velocity vV z W#,1), where V(r,t) = <_£>> Thus, the number,
out of the original dﬁe,¢, , that undergo collisions in time dt 1is
d(NC)e'(p' at = eerv dNey@v dt (h.?a)
= nel¢' eelcp' d% dQe v@l dt ()"'"Tb)

This number is scattered in all directions and with all velocities by the
collisions. (In the center-of-mass frame of reference of each pair of
colliding molecules, at least for hard elastic spheres, they are scattered
isotropically; cf. Jeans, 1952. This has been a useful concept in the
formulation and interpretation of the BGK collision model; see Liepmann,
Narasimha, and Chahine, 1962, p.1318.)

For any directional-average collision model to be considered, it is

. . . . . >
convenient to define ecertain "inverse-collision factors," Z(r,8,{,t),

by
N sz, (0 %.8
Pog <¢9§>e¢> = I g <¢@g>e'q>' (4-8a)
and in particular
(BN - (8), = Rt
ne<P<¢ GE o © Zne,¢,<¢ Og>e'q>' (4.8b)
where ¢(2) = Ez , % =0,1,2,... . For various collision models (1, IT,
III) one can dencte Z = Z 7 =7 or 7 = ZIII'

T° IT°?
In terms of these defined inverse collision factors, equations (3.41b)

and (3.42b) becone

3t geq'» V [neqz<5%fp]
_ (o), =~ N
= Vg ne.¢.< §>e'<p' - nef?<e§>e(p (4.9a)
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? (2) - (2+1)
3t [necp<¢ >eq>] * e " Vr [necp<¢ N >e¢]

= (g 3 W) (2o, (h.9v)
- ne'(pl <¢ E '(P' - ne<p<¢ g o .

and for any other M?Eﬂ),

9 -
T Mep<) * o " 7 P [mgeCEd D) - 2 [< >e¢ ecp'<vr(€¢)>ecp]

-~ N
pS <¢eg>e,¢‘ - necp<¢eg>e¢p (4.9¢)

where, for any function F(?,e,y,t), the notation F indicates:

1
'ﬂ{(?

68,9,t)

where

¥t
m
Ry
|
>y

(L.10)
£ =+t - l/<§g>b@

and where the particular collision model considered determines the direc-
tion 6',@' corresponding to each 6,@ and determines the factors Z,
to be considered below.

A particular constraint to be satisfied by the ccllision models should
be noted: Since in local translational equilibrium (with a local Maxwellian
molecular-velocity distribution function) the sum of the collision terms
on the right side of the Boltzmann equation (e.g., in the form (3.k41a))
vanishes, the right side of each of the integrals of that eguation,
equations (4.9), must also vanish in equilibrium. It is evident then
that the specification of the collision models should allow, in the

>
to become coincident with e

e'(P' o

limiting condition of equilibrium, g
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and each 7 %o become unity. The task in the remainder of this section

is to consider various directional—average collision models for determining

Ze,w, and the corresponding factors Z +that satisfy these conditions.
4.1.2.1 The simplest directional-average collision model, T
The molecules whose number is given by equations (4.7), scattered out
of 4q in all directions during dt by collisions in (?,dﬁé),

e 1@)

tend to favor the original direction before collision (even though the
colliding molecules may be scattered isotropically in the frame of
reference fixed relative to the center of mass of each pair of colliding

molecules) because of the effect of persistence of velocities (ef. Chapman

and Cowling, 1961; Jeans, 1952; and Present, 1958). We therefore take,
for the simplest model to consider, that the representative direction
before the collisions (6',9') is approximately the same as (6,@).

Then take as a reasonable intultive asgumption that, on the average, this
number d(liIc)e‘P , scattered out of (E’-,d%), (e,qb,dszm) per unit time,
can represent approximately the number put into a volume d@é of the same

size a directional mean free path away at © = ¥ + K;¢(%,e,¢,%) per unit

time at time t = %+1/eem(¥,e,¢,%), with final velocity in the solid angle

(e,¢,dﬂe¢) at ?, owing to collisions at point T at time t. Thus we

assume for the model that

'ée,q), = é’e(p (model I) (L.11a)
and that
(O)ZI -1 (k.11b)

in equation (4.9a) (so that the right side of (4.9a) would become
n, 6. _-n__ 0 .
0@ 09 0@ "o@ ) 3 5 -
Furthermore, assume that certain other molecular properties ¢(r,£,t),

which are characteristic properties of the molecules at point ¥ at time
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t, are carried with this number of molecules, d(ﬁc)eq>’ that has been

assumed to be put into (;,d?{), (6,9,a%5) in unit time at time t.

Thus it will be assumed for this model that, for certain ¢(;,g,t) in

equations (4.8) and (4.9):

7. =1 (k,11c)

The number and nature of the properties assumed to satisfy (L4.llec)
would be specified as required to make a determined system of equations
and to provide most realistic results from the model in problems where
it can be used.

It is assumed that the main justification for use of this model in
any given problem would be determined by the realism and consistency of
the quantitative or qualitative results it yields and by the tractability
it provides in solving the equations of gas flow where significant trans-

lational nonequilibrium is present.

The next simplest directional-average collision model to be considered,
denoted here as II, corresponds in a sense to the BGK model of the
Boltzmann equation (cf. Liepmann, Narasimha, and Chahine, 1962) (also
called the Krook-Welander model; cf. Bhatnagar, Gross, and Krook, 1954,
and Welander, 195L4).

An important aspect of the BCGK kinetic model is its interpretation of
molecules being emitted from collisions in local equilibrium with the
state of the gas at the point of collision (see Liepmann, Narasimha, and
Chahine, 1962). 1In the BGK model, the gain-term collision integral of the
Boltzmann equation is replaced by the local Maxwellian distribution func-
tion times the local collision frequency; that is, the term 06} f in
equation (3.41) is replaced by © f, where f_ is the local Maxwellian
(eq. (2.23a)).
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This same notion is used here to define collision model II, except
that here the molecules are assumed to be emitted from collisions in

equilibrium with the local state at point ¥ when considering the gain

term for the point Y. For this model, the initial direction ge,¢, at
point ? is immaterial, so we take:

- >

ee,¢, = %9 (model TII) (4.122)

and assume that the right side of each of equations (4.9) is

—
Ve [0 20l e = 16p <9005

where subscript e indicates a local-equilibrium value, evaluated using
a local-Maxwellian velocity distribution function (to be described in

§ 4.3.2 and to be used in Chapter VII). This is equivalent to defining,

(2)

for each 7 in equations (4.9):

(2) : AT
(2), - Poe <¢ 02 %cp _ (ne<p)e[<¢ @§>eo]e (h.120)
IT fﬁ\_,
+>e'<p' < >

e'cp <¢

|m|

It will be seen that the first approximation in a scheme described

in Chapter VI gives a result on the directional level for this model, II,

that corresponds to direct integration of the BGK kinetic equation.

4.1.2.3 Directional-average collision model IIT

The following-described model, denoted as III, estimates a direction

that is different from in regions of spatially varying flow.

>
'@ )
The corresponding evaluation of the inverse-~collision factor, ZIII’

follows directly.
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For estimating g

collisions, d(Nc)e'q' s

o' ° the number per unit time coming out of
given by (4.7), is assumed to have average

velocity ge,¢, %6'¢' within dQe,¢, before collision and average velocity
> ~ <o = . s . . .

e6¢ ve@ withln dQe¢ after collision (see fig. 4.3). (The relationship
between dQe¢ and d96¢ will be given below.) Assume that the average

velocity of all the other molecules with which this number collides is
%v before collision and V after collision. An equation that could be

interpreted as a momentum-conservation equation between "pairs of average

molecules', one with original velocity gé,q, GG'Q' and final velgcity
ge¢%e¢ , the other with respective initial and final velocities ¥' ana
>

vV, 1is

> ~ ;' -z - +:> b1

ee,¢, ve,¢, + vV ee¢ VGQ v (4.13a)
The quantity

> 53 ~ :—~>'_:>=—+ -~ > ~

Vc(r,t,e,@) = Vv v o VGQ ee,¢, V6’¢‘ (4.13b)

could be called a "relative overall collision velocity change for the

direction (6,9) at (?,%).” Tt is a measure of the degree of spatial
nonequilibrium, since it wvanishes when ge,¢, = geq,. One could represent

vc by any appropriate quantity that is known to vanish in equilibrium. As
a special case that appears particularly appropriate, which we may denote

as model IITa, it is taken as a reasonable assumption that

V' -V = V-V (model IITa) (h.1L)

<
"

that is, that the average change in the overall mass velocity of the

"other molecules" colliding with the d(ﬁc) molecules can be repre-

e '¢|

sented approximately by V-V, the change in overall mass velocity in one

directional mean free path in the direction P The approximate

0@ °
validity of this model, ITTa, or of any other model for VC in (4.13v),
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could be tested by solving the resulting flow equations for a given problem.
Refer now to figure L.4, which: (a) represents the vector addition
of equations (4.13), and (b) illustrates the construction of the solid
angles for estimating d(ﬁé)ew (and consequently ZIII)’ to be discussed
in the following.
Note first that the vector equation (L4.13b), along with the trigono-

metric law of cosines:

Tog * Voqr S ¢ e

2 - i,
Ve T 2 09" So'¢’

veqve,¢,

can be solved for the direction ge'qﬂ and the magnitude %G'Q' in terms

of ge¢ . gc . %&? , and Vc’ where

v, = [V | ana e = T /v, (4.16)
and in particular,

Vo= [7—%| (model TTIa) (4.17)

Thus, taking the dot product of ge¢ with equation (L4.13b) gives an

expression which, when substituted into equation (h.lS), yields

; = 2 4 52 > 2 yl/2
Vol T [ve + Voq 2 Voo Ve (ee¢ e.)] (4.18a)

Then substitution of (4.18a) back into (4.13b) gives

e vV, -
> _ 0@ 6@ c ¢ (L.18b)
.g )]1/2
C

e =
6'e' 2 .2 >
+ _
[Vc Voo 2 Vo v, (e6¢

The direction (G',Q') is therefore defined explicitly in terms of

?c = gcvc . (Note that model IITa could be regarded as a first approximation
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Figure 4.4 - Vector addition, and construction of solid angles, in

directional-average collision model III.



for V)C, and then higher order corrections made tc ensure that

Vo= & 7 e ¥
c - %ep op” So'@' "o'q’

The factor Z = ZIII for this model is now found by the following
procedure. If each possible vector of magnitude ‘;‘e,q, , and having
eny direction within (8',q',d2.,,,) is added to Vc (see fig. L.L),

all the resultant vectors would fill a solid angle, denoted above as

dfzeq, . In general dfze«’ is not the same as dQqu . The magnitude of
d?ze@ is found as indicated by the construction in figure k.lk:
. ~2 A . ~2

The ratio of the aiea +ve? dQeq: on figure 4.L to the area ve'(p' x

dQe,q, is |cos oc| = |ee¢-ee,¢, [ « Therefore
v 2
- _ 0'q' > >
dQe(p = <——~ ) |eeq’-ee,¢,l dQe'q)' (4.19)

The number of the molecules emitted from collisions per unit time in

(;,d%) at time t in the angle r?.nge (6,¢,dﬂe@) is dQeq/dﬁeq,
times the number emitted in (e,¢,dQe ). Thus, from above assumptions

P
(with use of (L.7b) and (4.19)),

¢ 0@ ~ c’o'@! ~ c 9'(?'
an an df
oQ 0Q 0'q’
~ 2 ~ ~
v N oyt 0 tmt dg/ ds
_ < 69 > o'g' o'g' r 6@ (4.20)
Vevq’v leeq, ° eevq]vl

Now substitution of (4.18a) and of the scalar product of Zeq: with equation
(4.18b) into equation (4.20) gives for collision model III:
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a(n') !

Ve = "o %g d% e (4.21a)

= _*_,__d___nﬂ'gi",@_e_'q" d% d%(e i (k.21p)
[(Xc_)z b1 2@ 2 ic—]l/z’l Ty Lo
VGQ 6@ c v6¢ 0 ¢ vew

Comparison of equations (L.21) and use of the definitions in (L4.8) give

for collision model IIT:

2 -1/2 v |°!

0, (LN ;1 sz 2 ] |z 2,k (4. 22)
ITT Top ¢ "¢’ Voo 0p o’ v '

where model IITa can be used to estimate:

~ > >
v.oo= V-V and ER— (model IITa) (k.23)
cC C lv*__v’]

It may be assumed that certain molecular properties ¢(?,E',E), which

are characteristic properties of the molecules at point % and time €,
with velocity E' having direction (e',¢'), are carried with the number
per unit time, d(Né) on the average, as estimated by equation (4.21b)

and therefore that

g

A = Z (L4, 2k)

for use in equation (L.9b).
Further reduction of this model, and its use, are illustrated below.
It is assumed that the main justification for use of this intuitive

collision model would be determined by the results it yields.
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4.1.3 Assumption on the collision freguency per molecule, and

results

Since defined by equation (3.40b), could reasonably play

Ao >
the same role as Agv (defined by (3.37b)) in the development of the
directional-mean-free-path approximation above, it is regarded as consistent
with the rest of the development to consider 0, (cf. egs. (2.12¢c) and
(3.33a)) to be independent of the molecular—velgcity magnitude, £.

The results are that

eg = ee¢(r,e,¢,t) (k.25)

and therefore that (cf. egs. (3.37) to (3.40))

Aeq’ = qu, (k.26)
In addition to the agbove argument, another indication that the assumption
of ©0» independent of § 1is realistic is the fact that for Maxwell
molecules ©O» does not vary with any part of the molecular velocity.
Equation (L.25) still allows variation with 6 and ® , as well as with
;, and tT.

The assumption leading to (L4.25) and (L.26) leads to further very
convenient results, mainly embodied in the form taken by the directional
equations of change (egs. (3.41b) and (3.42b) or egs. (L4.9)) which, with
the directional-mean-free-path approximation described above in §4.1.1

and with any of the proposed directional-average collision models (§L4.1.2),

become

9 > 3 -
3t [necp<¢>e<p] * eeq>'vr[ne¢<€¢>e¢] - ne¢[<?%>e¢+ee¢'<vr(g¢)>e¢]

=z r~le'(p'<d’>e'cp' ée'cp' - ne<p<¢>eq> @eq) (h.27)

where for any function F(;,6,¢;t):
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F(Z,0,9,7)

F =
T o= 7 Zeq, <é>e¢/éeq, (4.28)
E o=t -1/8,

where e @ is defined by equations (3.10) and where the molecular proper-

. > >
ties ¢ = ¢(r,£,t) are to be appropriately chosen (see § 4.2 below).

4.2 Directional Equations and Some "Bounda, Conditions" in Terms of
qu Iy

Dimensionless Integrals of Directional Property Distributions

If one chooses to work on the directional level, as described above,

one should still ensure satisfaction of the conservation equations on the
macroscopic (full moment) level. A proposed method for accomplishing this
is described here and is used in the following sections (§§ 4.3 and L.kh),

as well as in Chapter VII. The procedure amounts to defining new dimension-
less dependent variables, on the directional level, that are certain
integrals of the previously defined directional property distributions.
These new variables are defined in a form such that: (a) the directional
equations of change can be written in terms of derivatives of the new
variables, and (b) the macroscopic conservation principles can be pre-

scribed as certain boundary conditions on the new variables on the direc-

tional level. The procedure also provides a convenient means for
evaluating all the macroscopic variables of interest.

Since the macroscopic conservation equations, (3.43), are integrals
of the directional equations of change (eq. (3.L42d), represented approxi-
mately by (4.27) and (4.28)), with ¢ respectively m, mg, and %—m&z ,
it is appropriate to use these choices for ¢ in equation (4.27). 1In
writing the resulting equations it is convenient to use the following

definitions (cf. §§ 3.7 and 3.8):
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Mass density:

feel

(0) - > - 2
Top * 0o (T:8P:t) = mfo £ £24€ (k.29a)
(0) R I I R
o = o(r,t) = [ a@(sine) [ a8 [pe(r,0,@,t)] (L.29b)
o =1
Mass flux, or momentum density:
o) 2 T (Fe,et) =0 (2D
) = 0@ 50 s> = p.eq, o
= Ze¢ Pog vél) = EGQ m.fm £ £3 & (L.29¢)
P? o]
(1) _ =~ _ I . n > >
o) = F(r,t) = p<€>=£ 19 (sin@) [ 60153q(7,0.00)] (k.294)
Momentum flux:
ol2) = B (F,0,9,t) = p o (EEN
0@ ~ o 0T T Pag Gl
=2 2 v(z) =e & m fwf gh dg (k.29e)
09 0¢ ‘00 0@ 0@ 0 L :
(2) A . . I ->
o "'z P(r,t) = p<£€>= jo' a@ (sin @) _j:nde[l’e‘p(r,e,@,t)} (L.29f)
Energy densi‘l;;[:-r
1., (2)_ - _ 1 1 (2) _ 1 (. .
S 0, = B (5,0,0,t) = 00K 62006 5 00 Vog = 3 T [£eha (h20e)

+See footnote on pp. 32 and 33.
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Lot S nEe) o 22> - [ ap (sin@) [ aoln, (F,0,0,0)]  (hozom)
5 l = . = p 5 £ = ! (p sin @ o e¢ r, Dq,s -29
Energy Flux:+

1, .(3) > - Lgo7
El CDS(P = ée(P(r:ea(P’t) = DGCP 2é2€>64)

- 1 (3)

- 1
= Cop 2 Pop Vop

- s 5 .
= eQQ 5 m £ f £° dg (4.29i)

(9

N+

I I
AFt) = o5 828> = [ @ (sin@) [ as[8p(F,0,9,0)]  (4.295)
o =1

Then the macroscopic conservation equations, (3.43), are

Bp/3t + Y - F = o0 (4.30a)
ad /ot + v.-P = 0 (4.30b)
IE/3t + V. -3 = 0 (4.30c)

and for ¢ = m, mg, and %-ng the corresponding forms of equation
(L.27) are:
dp.. /ot +9 - J = (O>z 0 0 - e} (4.31a)
o r 0@ 8'g' "6'q’ 0@ “o@
- _ (1) 5 ~ >
aJev/at + V. F%Q = Z Je,¢, Oe'¢' - Jew OQQ (4.31p)

tSee footnote on pp. 32 and 33.
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> _(2), = =
3E6¢/3t t VL Qe T Z Egigr %919 ~ Pog O (k.31c)
where
3 > 3 > > - ~
r = 1 - Agm = r - JeQ/p9¢ Oe¢ (4.314)
Tt = t - 1/ee¢ (4.31e)

4.2.1 Dimensionless variables and equations of change

For the purpose of defining dimensionless variables that will facili-
tate solution of the equations, consider the constant reference values:
arbitrary length 1L, density Py > velocity ua, and characteristic

collision frequency @a . Define the dimensionless constant:
e = u/Lo, (k.32)

It is convenient (here and in succeeding chapters) to consider time as a
fourth dimension, with unit vector gq that is orthogonal to 31’ gz’

>
and e3; that is

- -+
e, *+ €, ..
1 dJ 1J

1}
(eg)
)
e
<

e

|

|_l
.

n
[
w
-

e
~—

(L.33)

Il
.
e
H
o

1l

[

(A1l the three-dimensional vectors and tensors discussed above can be
considered as four-dimensional with zero component in the 34 direction.)
Then define the dimensionless four-component (space-time) position vectors

(e.g., see Karamcheti, 1967):
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> _ g > - ;[__ > + > uat
© 7 L %t FoLrte
i=1
> % > % > X3 5oyt
= e]. ‘L—-— + e2 L— + 63 :_L— + eL* _L_ (h'3&a)
b ~ u t
z = ) ez, =z T+ &
2 = L2 i1 T L 4 L
i=1
> il - iz > 23 > u,t
= ey T te i teygT +oe —g— (4.34b)

and the dimensionless vector partial derivative (holding 6 and P

. - +
constant in a function of Z, 6, and @):

2 3 Lo
G = Ly, +3, L (1.35)

1 i o

<3
"
Il o~

i

Also define (for -1 < 8 < I R 0 < @<, with v and n, respectively,
"qummy variables" for 6 and P):

. il S P (?ava ,t)-T
F(O)(Z,e,¢,e) = [ dn (sinn) [ av (4@24%——11——— (L.36a)
® -1 | Pa _J
i} ) [F (F,v,n,t) ]
U2 6,0.0) = [ an (sinn) [ av | 29 (4.360)
P-e j;P n n £H v e
I ) "P (7,v,n,t) ]
F2(2,0.00¢) = [ an (sinn) [ av|-00 (1.36¢)
(P ~1II L p u2
a o -
I 9 E (;,v,n,t)_
G(O)(Z,G,Q,E) = f dn (Sin n) f dv ( oL 4 (h-36d)
P 1 o u? ]

- o o



H e 6 (_r>9 El ’t)
6(1)(3,9,4’,&) = [ dn (sinn) | Cl\)l: o ~*"" :l
@ =II 0 u3
o a

-+ _ >
H (£,6,¢,e) = ew (r,e,cp,t)/@u

so that:
p (_r),e,(p,t) (O) z
GL - _ l 32 F (C)e3@5€)
o sin @ o 36
N (1)
t
jejér,e,¢, ) _ ee(p pe‘p VeQ_ - 1 32 F(l)(_C)ae:Qat)
Qu uot pa uot Sin @ 3¢86
N > (2)
2
PGQ(T’G’(p,t) - ee@ eelp pe(P Ve@ - —l 32 F( )(Zaeaq>s€)
o u? o u? Sin @ @99
a o o o
> > EGQ
= 2 e S
0@ 6@ 2
o u
o a
5 (2.6.0.%) 1 S(2) (0),+
0Q s 3@’ _ 2 p8<P 0@ - -1 32 G (Caea¢3€)
P A P u? sin @ @ 29
o a a a
3 (Fe.et) 2o o v ) a2
o' 2° Y _ 0@ 2 p@(p 0@ - -1 32 G (2,6,@,¢)
P u3 P u3 sin @ 9 29
o o o o
(where gew is given by (3.10)).
For any function f(z,9>¢,€), denote
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36e)
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Then define the four-component dimensionless vector

L
K(Z’G:Qae) = Z _éi Ui(zse 9@:5)

>% >
op(To0@:E) 0,

B - eLr S
eem(r,e,cp,t)

u /o
o o

L)

= _‘e*e il <6L> _ gh<®L

P\ Y %@ %@
_ 2281 22r(0)
= -(1/8) [( Qa6 3936

with which equations (L4.31d) and (L.31le) b

>
€y

ecome

_Z> = Z + £ ﬁ
where
()
5 1
T o= —J(Z,G,Q,E) = - = 8??8) + _e>’+
H 32F
81)36

> (L.ko)

(4.h41)

(L.h2)

The directional equations of change, (4.3la,b,c), are now:

53 F(O) sy - 32%»(1) 1 (O)Zﬁ' sin @ m
a;u 3P o z 0Qo6 € sin q;' 3gao
o3 2 ) s ey
agu Q3o Ia IPs 6 £ |_ sin @' APo6

) -

j

22r(0)]
30

azf(l)-

P30

(k.h3a)

(Lh.h3b)
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53 (0) 52gt1) 1 [(z) >, sin @ (M)'_ i ﬁ(o__)] (4.43¢)
€

—t 4+ V S —— = ZH' —
3c, @36 z 3930 sin @' \ %936 P30
where
BZF(Z) > > 32(}(0)
—_—— = 2¢e, € —_ (L.433)
5906 op Sop ~o@oo
and where ( )' indicates a function evaluated at o', @', according to

the collision model. We note from the definitions (L4.36) that:

when either 6 = - or @ =1 :

00 o ) _ g2 0 _ (1) _ g (4.1L)
and (cf. egs. (4.29)): when 6 =1 and @ = O:

0 = w02 10,6) = o(T,8)/p (k.k5a)

) - W@ 0,0 = TED (. 45b)

F2) = F2)2n,0,) = PEO 2 (4.15c)

0 = ¢ m0,e) = EF,)/p 02 (4.45a)

& 2 e @00 = WG W (4.L5e)

Thus, either one can regard equations (4.45) as boundary conditions on
the integral functions defined in (4.36), where the macroscopic moments
(o, 3, P, E, 4) must satisfy the conservation equations, (4.30); or the
macroscopic conservation equations (4.30) can themselves be expressed as

boundary conditions at 6 =1, @ =0 on the integral functions
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(using egs. (L.45)) in the form:

(0) >
oF "(e,M,05e) Ly .31 (T n0.e) = o (4. 46a)
L, C
(1) >
oF (L1,05e) Ly . (2 (Zq0.e) = o (4.46b)
oz, c
(0) 2
36> (£,M,05¢) v, 2T n0.e) = o (4.L6c)

8z,

Before attempting to solve a given problem using the above formulation;
one needs yet to: evaluate, or relate in some manner to the other

variables, the collision freguency O (or H); obtain a determined

o0

system of equations by some other independent means of relating the
dependent variables; and prescribe sufficient boundary conditions in the

Z domain. These will be considered in later sections.

h.2.2_ Relationships of flow-property distributions and new

macroscopic flow variables

To facilitate application of boundary conditions for solving a given
problem by the above formulation, and also to enhance physical understand-
ing, it is desired to relate the macroscopic flow properties in equations
(4.29) or (L.U45) to the more conventional macroscopic flow variables.

With the mean mass velocity of the gas (V) defined by equation
(2.15), the molecular velocity relative to the mean motion (6) defined

by equation (2.16), and the velocity magnitudes defined by

e = |E] = @DY?
v o= [T = @9 (4.47)
¢ = |8 = @Y
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Th

one has

> = oV (L4.48a)

N
i
2

P = (2> = oW + o) (4.48b)
Bz oG EEY = 2D+ 2 o2 (4.h8c)
8= oG = LoD T D

+ 5 DoV + % o V2V (h.484a)

The energy per unit mass relative to the mean motion, or the specific

internal energy, is
= L 2
e = 3 <:C :> (4.k9)

Since in equilibrium the internal energy is %-kT per degree of freedom
of a molecule, where k 1is Boltzmann's constant, the temperature of a
monatomic gas of neutral spherically-symmetric molecules in arbitrary
translational nonequilibrium is defined by

3 (% k)

1

me

or

RT

]

%e = %<Cz> (4.50)

where R = k/m is the gas constant.

For a perfect (sufficiently rarefied) gas (implicitly assumed in the
use of the Boltzmann equation), the "collisional transfer" of momentum or
energy due to finite size of molecules is neglected in comparison to the
flux of momentum or energy due simply to the "flow of molecules" (e.g.,

see Hirschfelder, Curtiss, and Bird, 196L), so that the stress tensor

and heat—flux vector are simply:




o= - L& (4.51)
I =1, c2C> (4.52)
2
The hydrostatic pressure is defined by
p* = _-_i)- l:g = %- 002> (4.53)
so that from equation (4.50) we have

p¥ = HRT (Lk.5Lh)

The viscous-stress tensor, T , is defined by

o= -pl + T (L.55)

where ©p 1is the thermodynamic pressure. Far from translational equilibrium,
the "thermodynamic pressure" has no meaning. Therefore, since sufficiently
close to equilibrium the Chapman-Enskog theory for a perfect monatomic

gas gives a zero bulk viscosity, «k, defined by

. = };_—% (L4.56)

T

"

it is assumed that the "pressure" in (L.55) is

p = p* = T = Z,o{c% (L.57)

and therefore that the viscous stress tensor is

T = - o &>+ 122D (k.58)

5



With the definitions in equations‘(h.hQ) to (4.58), equations (L.L48)

become
5o o
P= -0
= pﬁv + |p -T
E = ple + = v2)
d = pVle+=zW)+4-7 -0
= p%(e + %-Vz) + 9 -V T + pv

(k.59a)

(k.59b)

(k.59¢)

(k.594d)

(With equations (L4.59), equations (L.30) give more familiar forms of the

macroscopic conservation equations.)

in determining boundary conditions on the functions in (k.L5).

Equations (4.59) will be useful

The common macroscopic variables of interest can then be calculated

. > >
in terms of p, J, P, E, and Q as:

v o= 3/

p = (2/3)pe = = (2 -
RT = (2/3)e = plp =
g = -P + oV

T = -P + oW + pl

= —P+pﬁ+%(E—
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N =

0V2)

(B/p - 5 V2)

v2)1

(4.60a)

(L.60b)

(4.60c)

(k.604)

(Lk,60e)



>

q = Q—pff)(e+%vz)+$-a

= - -V P + pV2¥ (4.607)

Other macroscopic variables of interest are the specifiec enthalpy, h,

and the Mach number, M, defined by

h = e+ p/p = %e = %p/p = %RT
_ % (E/p - % v2) (4.60g)
and
x 2
v2 9 5 oV >
M2 = = 2 _ = (4.60n)
(573)RT 5 <E E

(where the ratio of specific heats for the perfect monatomic gas is 5/3).

Function

It is well known that the conservation equations on the macroscopic
level are an indeterminate system, containing more unknowns than the number
of equations. In the directional-mean-free-path method introduced above,
the equations on the directional level of description contain one more
unknown guantity than the number of equations if the collision frequency
is appropriately specified.

The purposes of this section are to: (a) propose a method of closure,
on the directional level, that emphasizes the molecular-directional aspects
of translational nonequilibrium and that is compatible with the known
local-Maxwellian distributions of molecular velocities in limiting regions

of local translational equilibrium; (b) determine the expressions for the

T



directional property distributions in local translational equilibrium for
applying local-equilibrium boundary conditions; and (c) consider
representations of the collision frequencies.

It is useful to consider what may be called a "local-directional
Gaussian distribution function." First the property distributions on the
directional level are to be expressed by integrating such an assumed
distribution function, for use in an "integral method," to be described.

As a special case, these property distributions are then found in terms of

a local Maxwellian distribution of molecular velocity for use in applying

boundary conditions in regions of local translational equilibrium.

L.3.1 Assumed local-directional Gaussian distribution function,

and resulting directional-preperty distributions

For making the directional equations of change a determined system,
one additional equation that relates the variables appearing in those
equations((L4.31) or (4.43)) may be found by what may be called an "integral
method." Integral methods entall assuming the form of a certain function,
and then using integrals of that function to advantage, without necessarily
implying that the original precise variation, in the assumed form of the
function integrated, is physically significant. In this same sense, a

") ocal-directional Gaussian distribution" is now chosen in the form

e = o(F.0.000) -8(7,0,0,t) [E-U(r,0,0,8)]° (h.61a)
= 4 e—czgz +2bcg (L.61p)
where
a = al¥,0,,t) = 5 o800
b o= b(F,0.0.t) = 872 L (4.62)
¢ = coF,0.qt) = 877
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are unknown functions of 6 and @ as well as of ; and t. Note that

U here is an unknown vector function having the dimensions of velocity.

The form (4.61b) is especially convenient. This form for f is specified
only for the purpose of integrating it to obtain an appropriate relation
among the directional property distributions. Its use (as in other integral-
approximation techniques) does not imply that the molecular-velocity
distribution at any (;,e,@;t) is thought to be Gaussian. However, the
assumed directional-Gaussian distribution is especially convenient in that

it becomes the correct local Maxwellian distribution in any limiting

region of local translational equilibrium, where o, 8, and U become

independent of 6 and ¢>(ﬁ becomes V(?,t), R becomes B, = m/2kT(?,t),

and o Dbecomes n(7¥,t)[m/2m kT(?,t)]3/2). A usual procedure in studying
nonequilibrium phenomena (e.g., see Vincenti and Kruger, 1965, p. 225) is
to use to advantage certain relations that are known to be true in
equilibrium and assume that they hold approximately in arbitrary non-
equilibrium; one may then ascertain that the use of such assumptions
does not adversely affect the nonequilibrium results obtained:; in other
words that the relationship between the mathematics and the physics of
the problem is not overly sensitive to the arbitrary assumptions made.

If one defines the dimensionless guantities;

N 2p (cu)? o ,
A = Alr,e,@,t) = —2 -2 <_9‘2> (L.63a)
am u3 po(,
a
c = —C_(?,G,ﬂo,t) = CuOL (4.63b)

and (ef. eq. (2.2L4))

/2

2
B(b) = %-nl &P (1 + erf b) (4.63¢)

and puts equation (4.61b) into the definitions of directional property

distributions in equations (4.29), one obtains
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A(T,8,@,t) = (1+2b2) B(b) + Db (4.6ka)

(1),>
ve‘p (raestpat) 1 -
A ——— = = [b(3+202) B(b) + 1 + b2] (k.6kp)
a (¢4
(2) >
v, (r,0,@,t)
PRl SR s Ei—f [(3+12b2+4b%) B(b) + b(5+2b2)] (L.6ke)
ua ¢
Vé;)(;aeatpst) 1
A T s = [b(15+20b2+4b") B(b) + (L+9b2+2b%)] (Lk.6ka)
u c
o

One could regard equations (U4.6Lka,b,c) as three equations for the three
unknowns: A, b, and c¢. "In principle", the three equations could be

solved for A, b, and c as functions of v(l)/ua and v(z)/u2

¢ 8¢ ' o
These results could then be substituted into equation (4.64d) to give
v(g)/u3 in terms of v(l)

0 " a G177
equation (4.63a),

/u and V(Z)/u2 . Then one could find, from
o 5@ o

i .3 =3
= mu (p../p )T
<__2____°£>a - %@ o (4.65)
Py A

In this way, two things would be accomplished in principle:

(1) (2) (3)
¢ ° Ve@ » and Ve¢

(a) A relationship among v would be

determined; and

(b) The quantities a, b, and c¢ would be determined in terms

(1) (2)
of pe¢ s v6¢ 60

A perhaps less obvious, but more tractable, procedure for determining

, and v

equivalent relationships is the following: By considering the four

equations, (4.64), all at once, one can first determine b and ¢

. . (1) (2) (3) . .
explicitly in terms of v6¢>’ Veq , and Ve¢ 5 then find A and B
(1) V(Z) (3)

0 ° op ° and ve¢

also explicitly in terms of v Then the expressions
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(1) v(z) (3)
o > o’ o
the definition (L4.63c), provide an implicit equation relating v

(2) (3)
ve s EQE ve¢

T are determined, equations (4.65) could again be used to determine a

(1) and v(z) (since v(s)

Yop * 0@ 0@
and vé;)), so that a, b, and c are all determined (cf.

and Vv along with

(1)
@

(cf. the statement (a) above). Again, since A and

for both b and B in terms of v

in terms of pe¢, is implicitly related

(1)
0@

the statement (b) above). Following are the details of this more tractable

to v

procedure just described:

Combining equations (k4.6la,b,c), one finds

V(2) v(1)

2 8 _ .7 JLE = -S— (L.66a)
ui o

and combining equations (L.64b,c, and 4), one finds

NE) (2) (1)

2 8P _ T e - 9, 8¢ (L.66b)
ud u? ™
Q o

From equations (L4.6L4a and b) one finds

(1)
v
(e —Sg;———b)A— obB = 1 (k.66c)

)
and it is convenient to write equation (L.6lka) as
A-(1+2b2)B = b (k.664)

If now b 1is eliminated from equations (4.66a and b) to obtain

2(v(1))2 _3,(2) 1/2

< = o 2 6
© = Y [y, <2§’)2 (h-67e)
Voo ‘e (Velv

81



82

then (L4.66a) gives

(L.67p)
— . (2) (1) _(2) 3 _(3)
. - cz(ve? ;u§)~3/2 _ 2 Ve vew -5 Ve
— 1
(vpg' /u) (10\2_ 3 (2] [ (1) _(3)_ /1 (2)\2] /2
0 "o {[2<VB(P ) - Evecp] [vew Vo~ <ve¢)]}
Equations (L4.66¢c and d) are easily solved to obtain
A = b (1) (}-L.6TC)
1 - (1+202)(1 + b2 - bE'vew /ua)
and
B(1 + tF - v v )
B = ) (4.67a)
1 - (1+202)(1 + b2 - bE've¢ /ua)
where b and T are given by (L4.67a and b). Now if we define:
o= P e = )Y (1.682)
(2) _  (2),> o (2) (1),2
¥ = ¢y (r,e,@,t) = Vo /(Ve¢ ) (L.68D)

we can, as described above, use equation (4.63c) with (4.67d) to obtain

the following convenient form of the desired relationship among the

directional property distributions that is used to close the system of

equations on the directional level:

2 2
B(b) = %-nl/z (1 + erfr b) = b(1 + b7~ bs) (4.695)

1 - (142b2)(1 + b2- bs)

where (from (L4.67a) and (4.67b)):



(3)

b = (4.69b)
1) 1/2
[2 _ %,w(z)] [w(a (w(z)) }
and
/
s = T —— = 5 (4.69¢c)
o ¢(3) _ (¢(2>)

Tmplicitly, equations (L4.69) define a direct functional relationship

3) (2)

between w( and ¢ » Wwhich may be written in the following form

that will be found convenient for later use:

(2)

b ¥(v) (L.70a)

where

v o= (w(z))%(s) (1.70b)

This relationship can be computed from (4.69) and tabulated, once and for
all, for use in the method described above. One method for computing and
tabulating the functional relationship (L.70) would be to specify various
values of b ranging from -« to +» and, for each of these values of

b, calculate s from (L.69a) as

1 + b2+ (3b+2b3)B(b) (4.71)
b + (1+2b2)B(Db)

(2)

then find both and ¢(3) by solving (4.69b) and (4.69c) to obtain

(2) _ _3_ b
v g2 T s
(k.72)
(3) _ 2_ b/ 3 b
v - g2 * S ( 0g2 * S)
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and evaluste y from (4.T70b).

Other relationships that are equivalent, but more convenient for later

use, are found as follows: From the definition of the function B(b) in

(h-630)3
@(b)/dab = 1 + 2b B(b)
and
N(b) = %5-[b B(p)}] = 2 e PV 2 gy
(]
= b + (1+2b2)B(Db)
-, _ a4 = ® w2 2p
N'(b) = G N(b) = L £ APCE VT B
= 2[1 + p2 + (3b+2b3)B(b)]
T'(b) = Z%ﬁ(b) = W b+ b3+ (24 662e2n")B(b)]
- ko ® 2
N(k)(b) = g—E-[N(b)] = oltk [ eV %OV L3R 4 x=0 1,2,...
db o

from which can
-l\T"(b) -
and

T (p) =

Thus, it 1s se

be found the differential equations:

2b N'(b) + 6 N(Db)

7E=2) (4,

2b ﬁ(k—l)(b) + 2(k+1) N , (k=2,3,4,...,)

en that equation (k.71) is simply

s = N'(b)/2 N(b)

8L

(L.73)

(L. 7ha)

(h.7L4b)

(4. 7he)

(Lk.7La)

(L.75a)

(4.75b)

(4.76)



for use in (4.72), or in fact, from (4.64), (4.68), and (4.70), that

) = W) F(o) /1 (0) 12 (4.77a)
3 = J®)1° T o) T ) (4. 770)
o= [E(B)I1*/N'(v) N'''(b) (4. 7Tc)

For large negative b, it is extremely difficult to calculate B(Db)
(2) w(3)

to sufficient accuracy to obtain ¢ 2 s and Y. In that case,
the functions can be calculated simultaneously by numerical integration of
the ordinary differential equations (4.73) and (4.75), starting at large

negative b with values of the functions found from the asymptotic expan-

sions: as b > —» :
o n+1
B(b) = Z‘ ,(,'_l) . éi:—l])-' (L.78a)
n=0 n! (2b)
k_ o] n+k
d " N(b) v Y (~1) (2n+k)! (
d Nib) BN VA , (k=0,1,2,...) (L.78b)
o™ n21l (2)°P (n-1)1 poRETL

The accuracy of this evaluation of the functions B(b) and dkﬁ(b)/dbk
is then easily checked by comparing the values obtained at b=0 with the

exact values:
B(0) = J/m/2 , N(0) = Vi/2 , N'(0) = 2 (4.79)

and with the values of the higher derivatives of N at b=0 found
directly from (k.75b)
(2) (3)

The variation of ¢ and ¢ with b can be examined locally

by asymptotic expansions. Tor example, one finds:
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as Db > - 1

w(z) oy %—[ 1 - 1/2b2 + 15/bb* + 0(1/0°)1] (4.80a)

w(s) ~ g8—[1 - 3/2b% + 0(1/p")] (4.80b)

as b >0 :

o = (e - (3nt/? - 28/3112) b o+ 0(v2)] (k.80c)
(3) _ 1/2 1/2 )
¥ = (n/2)[1-(21n7/7/8 - 8/1°"°) v + 0(b2)] (4.804)
as b > 4w
w(z) vl o+ 1/2b2 - 3/2b% + 15/bb® -+ ... (4.80e)
o030 14 37202 - g/opt & 1U/BE - 4 - (4.80f)

Use of equations (L4.68) through (L4.80) is illustrated later. Figure 4.5
(2) ¢(3)

shows ¢ 5 and Y +versus D.

k]

4.3.2 Special case of local Maxwellian velocity-distribution function

In order to apply boundary conditions in regions of local translational
equilibrium, it is convenient to express the directional property distribu-
tions in terms of the macroscopic variables. If it is assumed that in
regions of local translational equilibrium the assumed directional Gaussian
distribution, (L.61), becomes the local Maxwellian distribution function,
(2.23a), then the functions o, B, and T in equations (L4.61) and (L4.62)
become independent of 6 and @ . Comparison of equation (L4.61a) with
(2.23a) then shows that, as a region of local translational equilibrium

is approached, we have the asymptotic relations:
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Figure 4.5 - Functions in the closure equation.
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-> -> 3/2
0(Z,0,@t) v n(E.t) [-————EL:fak1 (1.81a)
o kT (r,t)
T(F,0,@,t) ~ V(F,t) (k.81p)
8(,0,9,t) ~ m/2kT(F,t) (k.81c)

Then, with B = Be(;,t) defined by equation (2.23b) and with unit vector

- >, >

g = 3(r,t) = V/V (eq. (4.13)), equations (4.62) and (L4.81) give, as local

equilibrium is approached:

> 3/2 'BeVZ

a(r,0,@,t) ~ n(se/n) e (L4.82a)
b(7,0,@,t) ~ si/z (Eecp -8V (4.82p)
c(F0,qst) o 8. (4.82¢)

and the definitions (k.63a) and (L.63b) give, as equilibrium is approached:

> 3/2 BeV2
A(raea(Pst) no 21 e (peq/p) (Ll».82d)
E(;aestt) v B;/z uOL (L4.82¢e)

With equations (L.82), equations (L4.63c) and (L.6ha,b) now give as

equilibrium is approached:

> 3/2 -8,V? 1/2 » >
peq)(r,e,cp,t)/pa N (p/pu)(l/EH / ) e © {Be/ Sop " © v
+ 1+ gee@e@.g)zm B(B;/z g £V (4.83a)
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and

-8 V2
°op” 0@ (M), 0,qst)/p u, (p/pa)(l/2H3/2 B;/Z u) e T
2 1/2—> s T 2you2 1/2 » >
+ 8 (ee¢ 2)2y2 + B, Cop" S v[3+2 Be(ee¢ e)2v2] B(Be ®op ev)}  (4.83b)

where the function B(b) is defined by (4.63c). Equations (4.66a) and
(4.66b) then give also:

(2),> > > (1)
Poleq F00) 3 aglta) | oSt <pe¢vw> (1.83
v i . C)
p u 2 B u u p u
o a e o o o o
3z 1) > = (2)
PopVoq (T309t) 2 °op’ 6y co9'%" [ Pog'eq
N ey - 2 (4.834)
o o e a Paa o oo
4,.3.3 Estimated or assumed forms of collision frequencies
Tn § L.1.3 it was assumed that O 1is independent of velocity
magnitude &, so that 05 = ®e¢ . To calculate both 66¢ for use in

the directional equations of change (4.31) (or in (L.37) and (L.L0) -
(L.L43)), and © for the characteristic value Oa in (h.32) and (4.37),
one now needs expressions of assumed or estimated forms of these collision
frequencies per molecule of the respective classes (cf. § 3.9).

For Maxwell molecules {(with the intermolecular force assumed to vary

inversely as the fifth power of distance between molecules) one finds
=
o, = 0 = 04 = 0 = k' p(r,t) (L.84)

If one takes k' +to be a constant, then (cf. eq. (4.37))

s
1

Po

€] >
Oap = p(rat) (h.85a)
o
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This relation could be assumed as qualitatively appropriate for use in
the directional-mean-free-path method. It may be more realistic, however,
to use a relation equivalent to what has been used in the BGK model (see
Liepmann, Narasimha, and Chahine, 1962, pp. 1319 and 1321, where their A

is proportional to our k' ; see also discussion by Vincenti and Kruger,

1965, p. 38k4):

ju=
i
O] ‘€®
e |o
&

g—e & [%] S— (4.85b)
o o o
where n 1s a coefficient of viscosity to be evaluated from some appro-
priate temperature-dependent viscosity law. For Maxwell molecules, the
bracketed factor in (4.85b) is unity, to give (L4.85a). For rigid spheres,
the factor is (T/Ta)l/z, which is obtainable also by use of equation
(2.20b) with (2.23d). Liepmann, Narasimha, and Chahine (1962) used the
Sutherland viscosity law for n. In (1966) they used n « TO'816. The
latter is appropriate for argon gas up to L000°K (see Camac, 1965, p. 2u48).
Any other appropriate calculation of @e(p from equation (3.33b),

where @g is given by (2.12c), could also be used.

4,4 A Determined System of FEquations in a Simplified Form of the

Directional-Mean-Free-Path Method for One-Dimensional Flow

Flow in one dimension is simplified by the fact that the velocity-
distribution function depends on only one configuration-space variable,
Xy and time t, as well as on § and ¢ but is independent of 6.
The resulting directional-level and full-macroscopic-level equations can
then be written simply in scalar form. (There is only one non-zero velocity
component and one non-zero component of heat flux on the macroscopic
level; and only one component of the viscous-stress tensor is of particular
interest.) In that case it is convenient to reformulate part of the
method described above in somewhat simpler terms, as described in the

following.
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4.4.1 Dimen ionless variables for one-dimensional flow

Let

w = cOos

Then, in one-dimensional flow, where the distribution function £

@

(L4.86)

is

independent of 6 (and where the velocity vector is V= glu), we have

oY

>
[S]

If the one-dimensional flow is allowed to be time-dependent, the components

o " e

>
S

0@

-
e = cos(p= w

1

of Z that are of concern are

g, = xl/L

(see § L.2.1).

(with n now as a dummy integration variable for

BKZ,w,e)

E(Z:w,f':)

:—P_(Z’(D;E)

-E—(Z:wse)

-Q;-(Z,U.HE)

1l

21

21

2n

and gq =

-

=

(4.87)

We now define the new dimensionless dependent variables

(4.88a)

(4.88b)

(4.88¢c)

(4.883)

(L.88e)
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which are related to the functionsdefined in equations (4.36), evaluated

at

=1, by:
PO a,pe) = 5Zawe)
f(l?(z,n,¢,e) = Zl T(Z swse)
#zNam@e)= .8, PlTawse)
+ (2,3, + 22 [EZaw,e)- 5 F ()]
O Zmpe) = EZ.we)
&“)@uh@e>=:zlmZMﬁ>
We then have:
/Py = (1/2m) 3p/%w
qmvél)/paua = (1/21 w) 93/%w
pqvéz)/paui = (1/21 &?) 3P/3w

(3) 3
p¢v¢ /puuu

(1/21) (2 3E/3w)

(1/21 w)(2 3Q/dw)

We note from equations (L4.88) that

>
w=-1, all ¢ :

and from equations (L4.89), (L4.45), and (L.59),
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89a)

.89b)

.89¢)

.894)

.89¢)

90a)

90b)

90c)

.904d)
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+
for w=+1, all [ :

7 = 8(Z1le) = olxt)/o (k.92a) -
T = 3(Z.1.e) = (/o) pulx,t) (4.92b)
P o= P(Z,l.e) = (1/p ud)lpu? + plx,t) - 1y, (x,t)]

= (1/p u)lpu® - o, (x,t)] (k.92c)
E = 8Ea.e) = (1o u2)lpelx,t) + 5 ou’] (4.92a)

T = UZL.e) = (o udlpule + 3 u?2) + alx,t) - u(r -p)] (4.92e)

From equations (4.92) one finds (cf. egs. (4.60)):

JERIN TR (4.93a)
a
u(icl,t) =(%§l) E(Z,l,e) (4.93b)
a
. 2
B - S )] e
met) g st . 2 (Hren0 3] oo
E’M = [ ll__z P(Z,1,¢) (4 )
puu(zx = <9a>(ua> - z,1l,e .93e
M - ()3 3R - P 12
o o a a
abet) - = AL,1e) - (3) [E(Z2,e) + B(T,1,0)] +(g—)(—3——)3 (4.93¢)
o u o o o



hix,t) _ gR_T (4.93h)

u2 u2
o [0}
2
Sy - w2 o_ fu RT .
- - (59

which can be used to evaluate the conventional macroscopic variables after
0, 3; 5; E; and 6' are determined.
For use in the directional equations of change for one-dimensional

>
flow, in which for any function F(r,w,e), we denote (cf. eq. (4.39))
f‘ = F(;,m,e) (4.ok)

where

SR
=¥

= T +¢ (4.95)

we have now (cf. egs. (L4.40)):

)+ S, + 2y £ 8, () (4.96)

> ( - 33 /3w
1 H

eI
U C,(D,E H aa/aw

(The components Uy and Uz are not significant, since there are no

variations in the x, and X, directions.)

L. 4.2 Equations of change for one-dimensional flow

The directional equations of change (4.3la,b,c), for one-dimensional

flow in terms of the functions in equations (4.90) (with use of egs. (L4.38)),

become (cf. egs. (L4.43))
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2 = 27 —, (3 I
c ( 3¢ p + < J ) — (O)ZH’ (%&) - EE. (h.97a)

ch ow 8;1 ow W ow
32 J 32 P ()= (aNE)' 3J
_ = 4 _— - _ .
€ (ar,u 3w 3z, aw) 2 \5e T e (k.970)
—_ _ ~ 1 -
32 E 32 Q (2) (BE) 3E
+ —2—] = ' (=) - — .
€ (agq ™ ac, 8w> ZE' 30 55 (k.9Tc)
where
3 _ 1 3P
dw | 2wl w (k.97a)
where ( )' indicates a function evaluated at w' = cos ¢' according

to the directional-average collision models discussed in § 4.1.2; where
(’v) is defined by equations (4.94) - (4.96); and where
7 = E(Z,w,e) = Z(;,e,¢,t) for one-dimensional flow.

The macroscopic conservation equations (4.30) become, in terms of
the functions in equations (4.88) evaluated at w = 1 (ef. egs. (L.L6)

and (4.89)):

] — 9 =

5?} 0(Z,1,e) + a J(Z,1,e) = 0 (4.98a)
2 FF.1,e) + = B(Z,,6) = o (4.98b)
va Lsl,e acl Cslse - .

2 F(Z,1,0) + = QF,1,e) = 0 (4.98¢)
BCH Calse acl Q C,l,e = .98¢

h.4.37”Di;gpgipnaleaqsgian claosure eguation

The equation used to close the system, derived in § 4.3 by relating
various integrals of a local directional-Gaussian distribution function,

is given by equations (4.69) and expressed implicitly by equations (k.70).
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2 3
The quantities w( ), w( ), and ¢ defined by equations (L.68) and

(L.T70b) are written in terms of the one-dimensional-flow variables as

(2) (2),,.(1),2 (5P/3w) (3p/5w)
¥ E /( o= (4.99a)
o e (37 /3w)2 >
W3 v4()3)/(‘711(’1))3 - 202(30/8w)(35/3w)? (4.99D)
(57 /3w)3
p o= (w(Z))Z/W(s) E??YBm)i_ i (h.99c)
202 (3Q/3w) (3J/3w)

Note in particular that ¢ does not contain 9p/%w , so that if the
quantities on the right side of (4.99c¢c) are known, one can: calculate
¢ from (L4.99¢)3; obtain w(z) from (L4.70a); then obtain 23p/3w from
(4.99a). This procedure will be used later.

4.h. L Local-equilibrium property distributions

In regions of local translational equilibrium, where the molecular-
velocity distribution function, f, is Maxwellian, the directional property
distributions (egs. (4.83)) for one-dimensional flow are simplified.

The gquantity sé/zv for a monatomic gas is V5/6 M, and

ge¢-g = cos @ = w. Then (ef. egs. (L.62) and (L.82)),

b = b = Mv = w (4.100a)
where

M V576 M (4.100b)

and equations (4.64), or (L.83), (with the definitions (k.63¢) and (L.bLT7))

become

96

st



i

where

can be integrated with respect to o

subscript e

denotes a local equilibrium value.

(Lk.101a)

(L.101Dp)

(4.101c)

(L.1014)

(L.101e)

Equations (4.101)
(with use of egs. (4.75) where

needed) to obtain, in regions of translational equilibrium in one-dimen-

sional flow:

E)_e(Z:w:E)

_J-e(z,w,e)

Fe(z ,Ll.).:E)

= ;>
Ee(c ,w,e)

Ee(_gaub E)

Il

§:>;2;]u;m5)+ﬁBbﬁH

1 _M2

E[H_T/%J [ N@) + M NM) - 7 3(z) - ¥ B(10)]
1 P e—_z ] —3 ¥(— M3 N _™
54§E_>4;?7%E5_ o2 N(@) + M3 N(-M)]

-
1 P e_M = -, —
g‘i(p-) W [N'(T) = N'(-M)]

1[ye 2 M2 _ _ _ — - -
L <_4%> = | [W'(F) - W' (M)-10 W' ()+10 N'(-M)]

(L.1028)

(4.102Db)

(Lh.102¢)

(L.1024a)

(k.102e)
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Equations (4.102) have been made to satisfy the following conditions

(which are consistent with conditions (k.91) and (4.92) and the definitions

in (4.93)):

—->
at w=-1, all ¢ :

N

b = J, = P, = E, = Q, =0 (L.103)
and
at w=+1, all ¢
Ee(_g:l:f‘:) = E(Z’lgs) = O/Da (h.lO}-La)
- > - >
Je(C,l,E) = J(Csl,e) = ou/paua (L.10Lb)
— 2 2
P (Z,1,e) = ZEL - B ( 1+ iéf—) (4.10kc)
u
L Pala M
— 2
O (F,1,e) = OB(Z,1,e) = &% (1432 (h.104a)
g M2
[o e}
— 2 pu(h + %’uz) u3 5/2
2Q_(2,1,e) = 3 = =1+ 225 (k.10ke)
© pu P u 2
a o o o

Therefore the guantities p/pa and M in the local equilibrium expressions

(egs. (L4.100) to (L4.102)) are, from (4.10ka), (L.104b), and (k.10LA):

o/o, = B(Z.1.e) (4.1052)
1/2
3/2 : (L.105p)

[:zﬁ(‘c*,l,e)Ha(Z,l,e)T_l
E(Z’lae) E(Zalae)

which may be evaluated in a nonequilibrium solution of the equations.

M

1
W
~
=
1l

These expressions are useful later.
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L.4.5 Reduction of directional-average collision models

for one-dimensional flow

The quantities in equations (4.97) that are denoted by ( )' are
functions of  evaluated at ', where, for one-dimensional flow, with

V/V z e = gl,

= coSs = g g
©o= ® o
(4.106a)
w' = cos @ = e - &
@ o'@'
and where, in general,
o' = 0w (Zauwse) (4.106b)

' (Q)Z

However, for collision model I, ' =1 and =1, so equations

(4.97) are simply written without the 2 factors and without the "primes"

on the gain terms.

For collision model II, with equations (L.12), equations (L.97)

become:
2 — 2 7 AT =
e (2o . B°J = (__%> - g (e (4.107a)
BEH dw 3@1 ow e \duw dw
(323, 2P _ ; <Ef£9 o (32 (4.107D)
ng dw 8;1 dw € \duw dw
- _  E —
32 i 32 Q ~ < e) ok
+ = g |—) -mg (& L.10
€ (a@L+ Y 5, dw e \3u b ( Te)
E 1 P
%_. - = %_. (4.1074d)
w 2w

where Bﬁé/aw , Bjé/am , and aﬁé/aw are given by equations (4.100) and
(4.101), with p/pa and M given by (4.105).
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For collision model IIIa (from egqs. (4.18b), (4.22), (L4.23), (k.2k4),

and definitions in (h.90)\and (L.92)):

2 wﬁp - (u-u)
w' = w'lZ,w,e) = ———e= - o e m e
[(ﬁ-—u)2 + ""? - 2w W~r",(ﬁ—u)]l/2
2)- 7
= T:)T [1-A(Z,0,e)] {[1-A(Z,w,e)]2'+ i(—;%—} (4.108)
and
(2), 2 du) T 2 G |t
ZIIIa(C,m,s) = [(W) +1 - 2w (?;j )l - w(—wz-))
-7
= ol At s BT s + 5 i109)
where
N [BETEZw,Qq . >
MZwe) = 22 o 220 ifflllﬁ) - Jleale) (L.110)
| 4 [BJ(Zzw,El] D(Z,l,E) -p—(C 3195)
Jw

The use of the equations given in this section (§ L.k4) is illustrated

below in Chapter VII in steady-flow shock-wave structure. The equations

can first be appreciably simplified by a suitable approximation scheme,

developed in Chapter V, with its application in the present method indicated

in Chapter VI.

100



CHAPTER V

VECTOR GENERALTZATIONS OF LAGRANGE'S EXPANSION,

AND A PERTURBATION-EXPANSTON SCHEME

5.1 TIntroductory Remarks

Lagrange's expansion is a generalization (first derived by Lagrange
in 1770) of Taylor's expansion in which the independent variable is defined
by an implicit equation. Recently Sack (1965a) has reviewed a number of
approaches to, and applications of, Lagrange's expansion and has discussed
generalizations of certain forms of the expansion to several variables
(see also Sack, 1965b, 1966; Sturrock, 1960; and Good, 1960).

In addition to the forms that have been given, an especially simple,

direct, and useful generalization to N variables of the standard form of

Lagrange's expansion can also be found, and 1s derived here. It can be
written completely in vector form, which is useful in application to vector
formulations of physical problems, especially where transformations to
different coordinate systems are to be considered.

Two simple derivations of Lagrange's expansion with one independent
variable are first outlined (§ 5.2), and the development of a perturbation-
expansion scheme shown (§ 5.3). It is then shown (8§ 5.4.1) how each step
in the first derivation of the standard form of Lagrange's expansion in
§ 5.2.1 can be simply generalized to two independent variables; and the
analogous steps in the generalization to arbitrary N dimensions then
become clear, as shown in § 5.4.2. An alternate derivation which is a
generalization, to N independent variables, of the alternate derivation
outlined in § 5.2.2, is then given in § 5.4.3. It is advantageous to
consider both these derivations because: (a) the first derivation results
in the more concise final form for one independent variable (although the
expanded forms are termwise identical), (b) the alternate derivation
results in the more concise final form in arbitrary N dimensions (although

the expanded forms are termwise identical, and (c) the two derivations are
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independent and are believed to be both new. The development of the
perturbation-expansion scheme for arbitrary - N independent variables

follows in § 5.5 by analogy with the one-dimensional development in § 5.3.

5.2 Lagrange's Expansion in One Variable

If an independent variable z 1is defined implicitly by the equation
z = z(z,e) = ¢+ eylz) (5.1a)

where eu(z) is sufficiently small, the standard form of Lagrange's

expansion (ef.Whittaker and Watson, 1927, or Sack, 1965a) for any function
f(z) 1is

© n n-1
f(z) = f(g) + § 5 S [ " (z) ggég;] (5.1b)

n=1 dg

5.2.1 Firstrderivation

A simple derivation of equation (5.1b) is given here (for convenience
of comparing the steps in the later generalizations).

Differentiation of (5.la) gives

dz = dz + eu'(z) dz + p(z) de
from which

1 u(z)
= +
dz Tz dz T et (2] de (5.2a)

Also

dz 2, dg + z_ de (5.2b)
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h
(where 2,

with (5.2b); or, equivalently, by combining (5.2a) with (5.2b) +to obtain

9z/3r  and z_ = 3z/9¢) so that, by comparison of (5.2a)

{[1 - eu'(Z)]zC— 1lag + {[1 - eu'(Z)]ze— u(z)}lde = 0 (5.2¢)

and by equating the coefficients of dz and of de in (5.2¢) to zero
(because the differentials dz and de are arbitrary, so that equation
(5.2c) must apply for any dr and any de independently, the coefficients

of dz and of de must vanish); one obtains

- 1 . _ (z)
2t T T en'(z) Ze T T —uei'(z) (5.3)

For any function of z: TF(z) = F[z(c,e)], one may write

aF[zgz,e)] = 2 %g (5.k4a)
and
éfégi. = 2, %g (5.4b)

so that, with use of (5.3), equations (5.4) give

3F(2) _ Ze aF(z) _ AF(z)
T 55- e - M) T (5.5)
From (5.5),
32F _ 3u(z) 3F(z) 3 3F(z)
32 gez Bcz + u(z) FI3 [ Bez J

[U(Z) 8;\22)] 8137'5;2) + ].l(Z) 'g_c[u(z) agéZ)}

= [w2) el ] (5.6)
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EEE. = 2_.{u2(z) 9 [ﬁfigl] + Bgéz) auziz)}

- .2_{ 12(2) 2—-[u(z) EEIEL] . 23F(z) () Buz(Z)}

Y4 3T 3T 14 oz
_ 82T 3 EELEL]
- 5 [u (2) (5.7)

Purther, by induction, one finds

27F(z) _ 2 n 3F(z)
v el = [ () 222 ] (5.8)

A direct derivation of equation (5.1b) that uses (5.5) through (5.8)
€

is now the following: TFrom Taylor's expansion about = 0, one writes:

o n n
£(z) = flz(z,e)] = £la(z,00] + ] ﬁT-[ﬁ—ijfifféll] (5.9)
n=1 de =0

Since at €=0, z=¢ , use of (5.8) in (5.9) gives directly

e2) = o)+ ] 5 o [wo 2] (5.10)

which is equivalent to the result sought, (5.1b).

The steps in this derivation from equations (5.la) to (5.5) and from
(5.8) to (5.10) are equivalent to the corresponding steps in Laplace's
derivation in 1780 (e.g., as outlined by Sack, 1965a). However, the steps
from (5.5) to (5.8) do not employ one additional identity that was used by
Laplace, but are carried out quite naturally without the additional identity,
and in a manner that will be seen to provide a simplification in an analogous

procedure in the generalization to N dimensions, considered in later

sections.
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5.2.2 An alternate derivation for one independent variable

An independent, alternate derivation of Lagrange's expansion in a
form that istermwise identical to (5.1b) is the following: With (5.la),

one may write Taylor's expansion as

£(z) = £(z) + nzl (Z;f)n dZZQC)
o nzl %; [u(z) ] ézfﬁil (5.11a)
Therefore also
u(z) = wu(g) + E g? [u(z) ™ gfgégl (5.11b)
m=1 az

Although not as concisely expressed as equation (5.1b), equations (5.11)

give the same result as equation (5.1b) to any desired order. For example,

to order €2, (5.11a) gives

2
are) . L [u(z)]

= > + 0(e3) (5.12a)

£(z) = £(2) + en(z) 2 a%£(z)

dg

where, from (5.11b)

+

ulz)

u(z) en(z) Buled o £ 1y (a)]2 Sfe) 4 o(ed)

4

+

= ule) + elu(e) + en(z) Bled 4 o(c2)) dule)

+

£ ()12 + o(e)) TBEL 4 o(e)

2
ek Ez{u(c) [ %]

+

u(z) + eulz)

+

%-[u(c:)]2 gg%%gl } + 0(e3) (5.12b)
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thus (5.12a) becomes

£(z) = f£(z) + en(z) 9%%51 . Ezgu(c) dgéc) d§§C)
+ %-[u(c)]2 9§§Q£l€ + 0(e3) (5.12¢)

which is equivalent to (5.1b) to order €2 .

Obviously, the form of equations (5.11) is not as convenient as the
concise form (5.1b), but this derivation has been given because its
generalization to N independent variables (§ 5.4.3 below) provides a

more concise final form than does the generalization of the first deriva-

tion.

5.3 Lagrange's FExpansion in One Variable with Additional Parameters,

and Development of Perturbation-Expansion Scheme

In a development exactly analogous to that in § 5.2, it is easily
shown that equations (5.l1a) and (5.1b) may be generalized to include an

arbitrary number of parameters; thus, if

z 5 Z(Cse,05BsYsec+) = T * eul(z,0,8,7500-) (5.13a)
then (5.13b)
vt ot n 3f(z ,a )
= = 9LilC05-.0)
£(2,0585750+) = F(Z,058575000) + ) =5 — [u (2203BsYsees) T ]
=1 ° or

Equation (5.13a) has the expansion

o En an—l n
z = ¢+ ) o7 /3 lge.8,v,..0)] (5.13c)
n=l 77

ag

Consider now the special case of equations (5.13) in which only one

parameter, a, is included, and suppose f(z,o) and u(z,a) can be
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expanded in power series in o :

Il
~1
Q
7
[

f(z,a) fk(z) (5.1ka)

Lo (e) (5.1kb)
k=1

U(Z,d)

Then equations (5.13b) and (5.13c) become

f(z,a) = ) ot £ (2)
n=1
e T k-1 L SR N
Cb & S LD el [ e ] o
where
_ o En 3n—l o kel n

These equations may be further specialized to the case where a =¢, for

which the terms of equations (5.15) to order €3 are:
f(z,e) = fl(c) + E[fz(C)+u1(C)fi(C)] + 82{f3(C)+ul(C)fé(C)
sy, ()21 (0)+(1/2) (a/a0) [u2 ()2l ()]} + S12,(c)
(D04, (D£3(0) + u (D)£](0)
+ (1/2)(d/dc)[u§(a)fé(g) + 2 ul(c)uz(c)f{(g)]
+ (1/6)(dz/dcz)[u%(c)fi(c)]} + 0(eh) (5.16a)
z = ¢+ eul(C) + 82[u2(§)+u1(c)ui(£)] + ea{us(g)
+ ul(C)ué(C)+u2(Q)ui(C)+(1/2)(d/dc)[HT(C)Ui(C)]} + 0(eh) (5.16b)
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(Equations (5.16) have been found to be useful in applying Lighthill's

uniformization technique; see Martin, 1967a.)

5.4 Generalizations of lLagrange's Fxpansion to N Variables

The standard form of Lagrange's expansion (eq.(5.1b) with (5.1a))

can be generalized to N dimensions in vector form. The independent

variable z (cf. eq. (5.1a)) is defined implicitly by

z = z(Z,e) Z + en(z) (5.17)

> o> > . .
where 2, z, and u are vectors each having N independent components,

and thus are considered to be vectors in the N -dimensional space having
orthogonal unit base vectors gk (k=1,2,...,N), in the directions of the

respective ;k coordinates (e.g., refer to Karamcheti, 1967). The vectors

may therefore be written as

z = kgl -ék 2, (gl,gz,...,cN,e) (5.18a)
> N
¢ = kzl ey Ty (5.18Db)
> N
L = kgl ey Wy (Zl’Zz""’ZN) (5.18¢c)

where the unit vectors satisfy the orthogonality condition (which also

defines the "dot product'):

g, - e, = 6., =1 for i =
1 J 1J
(5.19)

in which i and j may have values from 1 to N.
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-5
Then, for any function f(z) = f(zl,zz,...,zN) , (which itself may
be a scalar, vector, or higher order tensor), the result (to be derived
below) for the extension of the standard form of Lagrange's expansion to

N dimensions, in vector form, is

£(z) = £(Z) + e(N(Z) - v, £(2)}

+

(e2/21){u - VC(K-va) + (K-VCK) - v, 1)

+

(e3/30){} ‘V;[:'Vg(ﬁ'vcf) + (ﬁ-vcﬁ) . Vz;f]

-+

> > > -> -> >
2(n-v -V (v f) + [0-v (n.v
(n Cu) C(u C') (u C(u Cu)

+

(K-vgﬁ) . VCK] - 7€} + 0(e") (5.20)

where z 1is defined implicitly by equation (5.15); where the argument of

each function of the right side of (5.20) is Z ; and where
N R 5
Vo= ) e —— (5.21)

Formulas for the higher order terms will be given below.

It is to be noted that if 3 is a constant vector, then equations
(5.17) and (5.20) reduce to the vector form of Taylor's expansion in N
dimensions (ef. Korn and Korn, 1961). If, on the other hand, N=1l, so
that f and u are functions of only one variable, 1z, equation (5.20)

reduces directly to the standard form of Lagrange's expansion in one

variable, equation (5.1b).
To derive equation (5.20) (to any order in €), one can proceed
in a manner directly analogous to that in either § 5.2.1 or § 5.2.2, as

demonstrated in the following.
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5.4.1 The two-dimensional case, N = 2; first derivation

The generalization for N=2 1is carried out most simply, which will be
outlined here. The extension to arbitrary N then follows directly.
A1l major steps in this section are analogous to those in § 5.2.1.

From equation (5.17), for N=2,

Zl = Zl(clsCZ’E) = Cl + Eul(Zl,Zz)
(5.22)
z, = 2,(c;,0,,e) = g, +eu(z,z,)
Then
Bul Bul
= —_— + —_—
dz, dz, * e 2z, dz, *+ e 3z, dz, + u, de
8“2 3u2
d22 = dcz + ¢ SE:-dZI + ¢ gzz-dzz +u, de
from which
ou \ Bul
<l -t a—zl'/dzl - € g'zzdzz = dgl + Uy de
(5.23)
ou Buz
-e-a_i—dzl +(l— EE—>dZ2 = dz +U2 de
2
Also:
821 azl 9z
= — + —— 4 + — 4
dzl a;l dgl agz C2 e €
(5.24)
822 az2 8z2
= — + —— d + — 4
dz, 9z, dz, oz, “f2 T ae °F

which may be substituted into equations (5.23) to obtain:
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2 2
. . aul le aul Bzz .
Y 3e %oz, e ~ ™ €
1 2
and

The factors multiplying dcl, dcz, and de

(5.25b) must vanish (as in eq. (5.2¢c); see discussion of egs. (5.2)

above), so the six equations for the six unknowns ,

821/36 R Bzz/acl s Bzz/Bcz s 322/88 , yield, with

Bul Bul
1-e ] T € 9z
1 2
D =
8u2 Buz
- € 3z, 1-e 3z,

Bul 8u2 ) Bul
={t-ea J\1- ¢33 - € 3z
1 2 2

the following:

auz

le

BZI/BCI s

(5.25a)

(5.25Db)

in equations (5.25a) and

le/ac2 >

(5.26)
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W
iz_l_.1_<l_€fl‘z). s W R S
8z, D 8z,) ° 3L, D 8z,
3 9 9 d a
[ P A = 1T I A
€ z, z, Z, z,
EEE = (J. € E-1—1—1-> H EE& =+ [(l € EE&)U € 3U2 U]
= - : = - —=
8;2 D le de D le 2 le 1 J
>
For any function of z only,
- >, >
F(Z) = F[Z(€,€)] = F[ZI(CI’CZ’E) ’ ZZ(Cl’CZ’E)]
we have
\
or(z) _ 2% oar_ . %2 aF
x> o€ le de 322
oF(Z) _ °%1 oF ) \ (5.28)
Bgl 8;1 le agl 822
oF(z) _ %1 oF %%, aF
3;2 Bcz 821 322 3Z2 J

from which,

with use of equations (5.27), it is readily found that

37(2) BF(Zl,zz) BF(zl,zz) SF(zl,zz)
= u(z_,z) + yu,(z.,2,)
o€ o€ 1717 2 3C1 271272 3C2
or
3F(+) >, >
382 = u(z) - v, F(z) (5.29)
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Equation (5.29) may be differentiated as follows:

D < o [5R] + [H2] g

D g o [ PR [0

de3 3e2

[ o

and by induction one finds

2'F(Z) _ 151 N G L, [ R
i L : 3 ¢ ]
e j=0 J Jde

where the Binomial coefficient is defined by

a al
b )  (a-b)lo!

Equation (5.30) is then used as follows:

>, >
Taylor's expansion about e=0 for fl[z(cC,e)] is

o] n n >, >
> >, > >, > 9 f
£(3) = flaZe)] = f3E0]+ | & [ﬂ—————[z“’e”}
n! n
n=1 o€ e=0
> >
Since at €=0, z=f , this is also

bt n n, >,
r@) = 1@+ ] 5 [a f[Z(ng,e)]]
n=1 de =0

where the terms in the summation are found (using 5.30)) from:

(5.30)

(5.31)

(5.32)

(5.33a)
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ez (el | Y (i‘l> [afilziilgzl]..v [ai'j'lf[g(zze)]] (5.33b)
. ] C '

ye* j= 3 aed Bel_j—l
and also
s u[2(Z,e)] _ 151 N alEEe1 ] | [2TEEE ) (5.33¢)
5 i 20 . J z i-j-1 ‘
€ j= J d¢e o€
and where
7 = z(Z,e) = 7+ en(z) (5.3k4)

Each of the terms on the right side of equations (5.33b) and (5.33c) can

be found using equations (5.33b) and (5.33c) for a smaller order i. Thus,

to any order, the terms of equation (5.33a) must be found successively from

equations (5.33b) and (5.33c). The procedure is illustrated as follows:

(a) First take 1i=1 +to find, from equations (5.33b) and (5.33c):

o2(2) - 23) . v £(2) (5.35a)
de C '

3_>(_z>) >, .—> ->

u(z) _ .

. = qu(z) v, u(z) (5.35b)
> >

Since z=¢ at e=0, we have from (5.35a) for use in (5.33a):
3f(+) >, > >
[ = ] = w(@) - v, £(T) (5.35¢)
e=0

(b) Next take i=2 1in equations (5.33b) and (5.33c) to obtain

B2 oo g e, [ME] L [2E) o e

and, with use of equations (5.35a) and (5.35b),
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225(3) - )

S = - vc[ﬁ(é)-vcf(%)] + [K(E)-vcﬁ(%)] : vgf(%) (5.35d)

Similarly ,

azgéZ) = u(z) - vc[ﬁ(’z’)-vcﬁ(’z')] + [;(;).vcg(;” v, 2(2) (5.35¢)

>
Z

Since 2=¢ at e=0, we have from (5.354) for use in equation (5.33a):

[ﬁf(—’] = 3@ v @) - v, e@)]

de?
£=0
+ [W(Z) - v, MENEE v, £(Z) (5.35f)

(¢) Higher order terms follow similarly. Thus, for N=2, the
"standard form" of lLagrange's expansion in vector form has been derived,

the first few terms of which are given by equation (5.20).

5.4.2 Arbitrary-N dimensions; first derivation

For arbitrary N +the major steps in the derivation are directly analo-

gous to those above (§ 5.4.1) for N=2. Differentiation of equation (5.17):
Z = ;(Z,e) = Z + EK(E) (5.17)
(with arbitrary N in equations (5.18)) gives
dz = dz + ¢ dz - VZK + 1 de (5.36a)
from which

dz - [ I - ¢ v, WZ)] = 4z + qu de (5.36b)
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where

> 9
a 5;;. (5.37a)

<
N
i
X
e~
f_t

and where I is the idemtensor (unit tensor):

I = 1§ §++6 _ §+—> ( )
= A ei ej i3 = L el ei 5.3Tb
(ef. eq. (5.19)). Also, since Z = ;(Z,e), one may write
> > > 3;
dz = dg * V_ z + == de (5.38)
4 €
Substitution of equation (5.38) into (5.36) gives
az -+ ((vz) - [ -ev, u@]- 1}
3_> >, > >
+ def 35- (0 -« v, u(z)l -y = o0 (5.39a)

Equation (5.39a) is a vector equation with N components. In each of the
N equations for the components, the coefficients of de and of each dgk
must vanish (as in eds. (5.25) and (5.2¢)). One therefore obtains

N(N+1) equations to evaluate the N(N+1) unknowns, azi/a;j and

azi/ae (i,j =1, 2, «.. , N), as follows:

From (5.39a):

i - (vCZ) Il -ev W) = & (5.39b)
and

3; -> ->

3¢ [ - VZ ul = (5.39¢)
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From (5.39b)

3z 2z 2z > >
dg +dg, o + -er +dr | [0 - eV u]l=adag
1 3@1 N Z

By expanding this equation into its components and setting the coefficients
of each dgkA equal to zero, one obtains finally a set of N2 equations
for the N2 gquantities azi/agj, (i,j =1, 2, ... , N), that may be

written in the form:

. i
CJ J

N aui sz
) <6ik— er) — = §,., , (i,3=1,2, ..., N) (5.40a)
1 %k

Similarly, from (5.39c), one obtains N equations for the N quantities

sz/ae (j =1, 2, ... , N) that may be written in the form

s

g Bui ) dz X
8i0 = € T = . , (1=1,2,...,0N) (5.40p)
k=l< 1k oz, ) 3¢

Equations (5.40a) and (5.L40b) now represent N(N+l) equations, consisting
of N+1 sets of N equations each. The ©N(N+l1) unknowns azk/a;j and
sz/ae can be found by Cramer's Rule (see, e.g., Hildebrand, 1952) from

these N+1 sets of N equations each. Define

I - Bui/azk (5.41)
and define the minor of aij as Mij and the cofactor of aij by
= i+J
Aij (-1) Mij (5.42)
Denote the determinant of the matrix aij by |§J . Then
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N 3
el = k_z__l 21k Pik
and f (5.43)
N
2l =L e J
and also
N '
Z &y Aik = 0 for r#i
k=1
and ?  (5.LL)
N
kZl 8 A.KJ. = 0 for s # J

Then Cramer's Rule gives the solutions of equations (5.40b) and (5.40a)

for each J as

92

N
r 1 1
— = ) A, S8, = A, (r,3=1,2,...,N) (5.45a)
9z al &, ir 71 al Jr
and
aZr 1 N
ryanlls ET ) LTS (r=1,2,...,N) (5.h5D)
= i=1

Now, since for any function
>
F(z) = Flz(g,e)] = F[zl(gl,gz,...,cN,e), zz(cl,...,cN,e),...,zN]

one may write
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N 02

oF Z r oF h

o - X = (3 =1,2, ... , M)

Bcj o1 a;j YA
and } (5.16)

I B

o€ r=1 de Bzr J
substitution of equations (5.45) into (5.46) gives

5F 1 g oF

. = A, o (j =1,2, ... , N) (5-’473)

Bcj QJ po1  OT Bzr

N N

oF 1 z z oF

- = A, . (5.47b)

] al 27 427 ir i Bzr

Upon multiplying equation (5.47a) by My and summing over j from 1 to

N, one finds

> N >
oF aF
o) - uy(2) aéz) (5.1482)
J=1 J
This result may also be written in the form
aF(_)) >, > >
et = (@) - v, @) (5.48b)

The remainder of the development for arbitrary N 1is identical to that

from equations (5.29) to (5.35). Thus, an extension of the "standard

form" of Lagrange's expansion has been derived for arbitrary N dimensions,
with the first few terms given by (5.20).

It should be noted that in equation (5.17) and the result (5.20) the
appearance of € is extraneous (since it appears only in the product eﬁ),
and so € could be taken to be unity. The nature of the convergence of
(5.20) then depends on each of the components ui being sufficiently
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small (rather than each eui). Each 4 could then be replaced in (5.17)
and (5.20) by Eiﬁ£ » and since the My 's are independent, the €; 's
could be considered as representing different orders of magnitude (such

as el =€ , €, = g2 log € , €3 = g% , 84 =¢e¢ , etc.) (Actually the
same results had originally been found by carrying out the entire derivation
starting with arbitrary different € 's, rather than the simpler deriva-
tion in terms of one € given above. Since the results are equivalent,

the simpler derivation that uses only one e has been given here.)

5.4.3 An alternate derivation for' N independent variables

A generalization, to N independent variables, of the derivation
given above in § 5.2.2 is described here. The final result is somewhat
more concise than that given in §§ 5.4.1 and 5.L.2 above. The expanded

terms are identical.

It is convenient to first introduce some additional vector and
tensor notation not previously used. Consider the vectors E, Z, ﬁ, and
the Cartesian base vectors gk defined as in equations (5.17) to (5.19),
and the vector operators VC and v, defined as in (5.21) and (5.37a).

For arbitrary N -dimensional vectors

N N
k= 1«:21 gkAk , B kZl Ek . (5.49)

1]
joe)

define the nth order tensors

A v v Uy SRR ORI -5 SO (5.50)

e Nmrten,, tvvnmanr”
n times n times

(We might call K(n) and ﬁ(n) "polyadics," since the special cases for
n=2,3, and U4 are known respectively as dyadics, triadics, and
tetradics; c¢f. Morse and Feshbach, 1953.) Further, define the scalar
products (which follow from (5.19)):
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> >
AB = ) A, B,
i=
> > > > 2 N N
AR:BB = A-(A-BB) = J
i=1 j=1
> > > > > > N N
AAAIBBB = A-[A-(R-BBB)] = J 7§
i=1

j =] k=

) A, A, B, B,
173 7371

N
21 A;AAB BB,

(5.51a)

(5.51b

(5.51c)

)

and, in general, define the following notation for the nth scalar product:
N N N
i) g oy J ... ] A A A B B B, (5.514)
1=l i=1 i=1 "1 200 tp 1ttt hy
Then, in particular,

. (5.52a)
>, > (n) >, >, >, > N N N—> > > >
[u(z)] = w(ulg)...ulz) = ¥ Looee L oes weees oy (D)o (2)

- Rl B . . i i i i
~ i=1 1i=1 i =1 1 n 1 n
n times 1 2 n
and
N N N n
vén) = VeV, = ) Yoo ) Ei Ei TRET: 9 5% (5.52Db)
— , 11=1 12=l 1n=l 1 n 1l 12. 1n -
n times
and with equation (5.17) the N -dimensional Taylor's expansion is
N (L) 5Tysenesly)
£z 52 50052g) = f(cl,cz,---,cN)+ 'Z (z;-c,) BT
i=1 i
N N 92F( T, sl s e sly)
1 1272 N
+ == ) Y (z.-z.)(z.-z,) + e (5.53)
1
21 5= 3=1 i ~i J 73 8§i acj
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which, in the above-defined notation, is equivalent to:

(compare with eq. (5.11a)). Then also

o n
eI B C IS NSl r1C AN MR O RACUNCY
n=1 :

(ef. eq. (5.11b)), and these latter two equations determine the

sional Lagrange's expansion to any desired order. For example, to

€7
£(z) = £(@) + i@ - v, 1D
+ %— e2[n(z)n(z)]: vcvcf(Z) + 0(e3)
where
W@ = 0@+ ei@ - v U@ + ole?)

= T + enl(z) - v, WZ) + 0(e2)
Thus (5.55a) becomes
£(z) = f£(Z) + enl(z) - v, £(Z) + e2{[u(Z) + v. W(D)T - v, £(7)
+ 5 WEND: 7,7, £3)1 + 0(e?)

Since it is easily verified that

MEIMEINE vy, £(7) = w(z) - vg[ﬁ<2> $ v, £(7)]
- W) - v W@ - v £(32)
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(5.5b)

N —-dimen-~

order

(5.55a)

(5.55b)

(5.55¢)

(5.56)



equation (5.55c) is seen to be equivalent to equation (5.20) to order e2.

5.5 Inclusion of Additional Parameters in the N~Dimensional Tagrange

Expansion, and Development of Perturbation-Expansion Scheme

As in § 5.3 one may also include additional parameters as arguments
of T, :, and z in equations (5.17) through (5.20) or in equations
(5.33) and (5.34).

Thus, equations (5.33) and (5.3k4) may be generalized to:

If
7z = 2(0,6,0,8,...) = T + en(z,0,8,...) (5.57)
then
(5.58a)

oo n n >, >

f(;,u,e,_..) = f(g,a’s’...) + Z €_' a fLZ(ELE,a,B,...), Q.,B,...]
n! n

n=1 e €=0

where (5.58b)

@if[E(Z,EauaB:-';)a a383°--] = iil (i—l> [aiﬁ(;,a,s,_._)].v [ai—j—lf(;,a,s,..)
3 . z

yet j=0 J aeY get=d—1
and BIK(E,OL,B,---)/381
i-1 /7i-1 j> i-g-1
— * EJU(;,G,B,---) 31 J :(;aaasa---)
= I 5 -, ) (5.58¢)
j=0 o€ o€

The expansion of (5.57) may also be found from (5.58a) by taking
f = K(;,a,s,...). In more explicit form for the first few terms, the

corresponding generalization of equations (5.17) and (5.20) is:
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Z = 2(24,0,Bs00.) = T+ en(Z,0,8s...) (5.59a)

then

P(2,038y0ee) = £(Zy0,8,.0.) + e{K(Z,a,B,...)-vC £(Z,0,8,...)}

+ [terms same as in eq. (5.20), but with f

and K having arguments (Z,a,B,...)] (5.59b)
and
W(Z505Bsens) = N(Z,058,...) + e{ﬁ(Z,a,B,--->'Vcﬁ(2,a,s,...)} ++++  (5.59¢)

Consider the special case of only one parameter o (as in egs.

(5.14)); +that is,

£(z,0) = [ o g (2) (5.60a)
k=1

iz, 0) = ] & THE) (5.60b)
k=1

£(Fo0) = § o £ (2)
k=1
vefl 7 SFTR v T e (D)1 + 0e2) (5.61a)
= k C k=1 k
where
o= Tl ] o))+ 0(e?) (5.61b)
=1
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In particular, for a = € ,

(z,0) = f(z,e) = fl(;) + e f2<2) + g2 f3<E) + e
(5.62)
R(Ee) = W(ze) = 0 () + e (3) e U (2) + e

and equations (5.59) become (ef. eq. {5.20)):

£(z,e) = fl(Z) +¢ef () +e2 £ (7)+ 0(e3)
2 3

+

a{[ﬁl(2>-vc + g :2(Z>-vc + ---][fl(Z) + e f2<z) + een]

+

(1/21) e[ (D)7, + 0(e)[T (D)+v, £, (2) + 0(e)]

z

+

(5, (D)9, 5 (D1ev, £ (D) + 0(ed)

where
2= T el (D) + e () +0(e2))
+ 82{31(2)-VC u (2) + 0(e)} + 0(e3)
or
£(z,e) = £(2)+ elf (2) 31(2)-vC £ (2)3

+ 52{f3<z> + :1<Z>-vC fZ(Z) + ;Iz(Zwg fl(Z)

+(1/2) 1 (D)9, [0 D)y, £ (D] + (1/2)[0 (D)9, w (D]+v £ (D)}

+ 0(e3) (5.63a)
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where

z o= T+ e (D) + e20,(0) + W (D)7, W (D)) + oed) (5.63b)

This result (egs. (5.63)) has been derived for use in the method of
Chapter IV, to be shown in Chapter VI.
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CHAPTER VI

APPLICATION OF LAGRANGE-EXPANSION PERTURBATION SCHEME

IN THE DIRECTIONAL-MEAN-FREE-PATH METHOD

6.1 Introductory Remarks

The Lagrange-expansion perturbation scheme can be applied, purely
formally, directly to the gain term in each of the directional equations
of change (i.e., to the first term on the right side of each of egs.
(4.43a,b,c), or of egs. (L.9Ta,b,c) in the special case of one-dimensional
flow).

For validity of the scheme (sufficient convergence or asymptotic
convergence), it is not necessary that e Dbe small. In fact, € can be
taken to be unity (so that L = ua/ea)’ since the"arbitrary length,'

I, has not previously been defined. Lagrange's expansion is often written
without a small parameter (cf.Whittaker and Watson, 1927), which is equiva-
lent to taking e = 1 in the forms given in Chapter V. It is only necessary
that the product ez be "sufficiently small" in equation (L.41) or in
equation (L4.95), that is, that z-¢ be sufficiently small. However, the
parameter ¢ can still be left in the equations for convenience in
"ordering" of the terms, discussed further in § 6.3 below. (See also

related discussion of "
820-825.)

Each of the vector and scalar functions of z (denoted by ()

artificial parameters' by Chang (1961), pp. 816,

in the right side of equations (L4.L3a,b,c) for general three-dimensional
flow can be expanded by use of equations (5.63), and subsequently treated
by the scheme discussed below in § 6.3.

It may be instructive at this point to recall that the relation

(cf. eq. (L.41))

z = ¢+ en(z,0,¢¢) (6.1)
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is a dimensionless vector equation with four components (cf. egs. (L4.2),

(4.3), (4.28), (4.3%4), and (h.}40)) representing

Xl = Xl - (COS q)) )\-)6&(‘7(;{1 ’;CZ 3X3 »0 atps:ﬁ)
iz = x, - (sin @ cos 9“3@(;‘1’5‘2 ,5{3,6,?,%)
i o N $ (6.2)
x, = %, - (sin® sin 6) )\g@(xl,xz,xs,e,(?,t)
. xg¢,(i1,i2,x3,e,w,f)
R ) z
Voo (xl,xz,x3,e,¢,t) J

Since the procedure in three configuration-space dimensions (with time
as the fourth dimension) is directly analogous to that in the simplified
one-dimensional-flow case, for simplicity and economy of space only the
latter is treated in detail in §§ 6.2 and 6.3 below. In one-dimensional
flow, only the components Cl and ;q of Z are of significance, and

K is therefore a function only of ¢_, gq, w, and ¢ (but is independent

1
of 1, in steady flow).

6.2 Expansions for One-Dimensional Flow

In the equations for one-dimensional flow (§ L.L), assume that each

function of Z and e, or of Z, ws and e, can be expanded in a power

series¥® in ¢:

o
—_
Y
-

™
~

1]

F(Z) + e F (2) + 2 F (2) + 0(e?)
(6.3)
FL(Z,0) + e F(T,u) + €2 F (T,0) + 0(c?)

o
—~
Y

‘t

.

™
I

*¥ These expansions may be only asymptotically valid as € + 0, and

mn_tn

not "analytic" in €, but this does not preclude use of the symbol
because the order symbol (e.g., 0(e3) as e+ 0) is used (see, e.g.,

Erdélyi, 1956, or Martin, 1967b).
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and each function of ;, w, and € has the expansion

F(Z,0,¢)
Thus:
p(Z,0,e)
T(Z wse)
B(Z0se)
E(Z,0,¢e)

QUT wse)

H(Z,w,¢e)
Z(Z,w,e)
K(stﬁe)

M(Z’€)

Fl(;,m) +

= Hl(z,w)

= 7,(Z,0)

>

>
1,y (2,0)

]

MI(Z) + €

€ Fz(g,w) + g2 F3(Z,m) + 0(e3)

+
m
N
~
€
+

MZ(Z) + 0(e?)

0(e2)

0(e?)

0(e2)

0(e?)

0(e?)

0(e?)

0(e?)

0(e?)

J

(6.1)

> (6.52)

5 (6.50)

Since for one-dimensional flow the functions vary with only two components

- >
of ¢ (or z), as well as with w,

scheme for

>
Z

> >, >
= ¢ + ep(z,w,e)

the Lagrange expansion perturbation

(6.6)

and for any function such as (6.4), takes the form (ef. egs. (5.63)):
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-

F(Z,use) = Fl(z,w) + e[Fz(Z,w) + KI(Z,w)-vg Fl(z,w)]

b ¢
"

+ 0(g2)

= F(Zw) + elF,(T0) + () E.w) 5%;-F(Z,w)

* (1), (50) gz B (€014 0(e?) (6.7)
where (see eq. (4.69)):

5 J T 2
.23 _ -33/3u 89, /0w + e 3J, /3w + 0(e?)

el'u(C,m,e) = H aayaw

[Hl + ¢ H2 + O(EZ)][BS;/Bw + ¢ 35;/3w + 0(eg2)]

- _ _ (6.8a)
- 3J. /3w 3d, /ow 3, /ow H AP, /9w
St St e S5 (it CAGot e JONF- + 0(e2)
H 8p1/3w H aa&/aw H, 3p, /3w H 97, /3w
= (i) (Thw) + elu)), (Zaw) + 0(e?) (6.80)
and
H,(Z,0)
> _ 1l _ -1 2
eq.u(CSPQE) =-F = HI(Z:N) + € H%(Z,w) + O(Ez) (6.9&)
= (1), () + elu,) (T,u) + 0(e?) (6.9v)
Thus, in the expansion form of equation (6.7), for any function F(;,m,e):
N 37, (Z,0) . 9 (2w
(ul)l(c,w) = - T HI(C,w)'——T;;——* (6.10a)
and
- ->
(uk)l(c,w) = - /K (g,w) (6.10b)
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For equations that use collision model IT, only the expansion forms

(6.3) and (6.7) with (6.10) are needed. Thus the directional equations
of change for that case {(egs. (4.107)) become:

2= 27 - T

P Py 34dy ) 82p2 82J2 3

€ + + € + + 0(e?)
a;uaw Bglaw agqam aglaw

3p 3p. 3p. (35' 3p. )

le 1 2e 0 le 9 le

= H - H — +¢ + — + _
1€ dw 1 3w Hle [ dw (ul)l Bcl ow (uu)l oz dw

5% o W) 3 3H, 3, 39,
+ H o+ H, — - —
dw 2e 11 g (uy)y 3z, 1 Qo 2 o
+ 0(e?) (6.11a)
32 J; 32 Py 32 J, 32 P,
€ Y + 5 + €2 5 + + 0(e3)
Z,0w Bcl w gqaw 3;48m
J J J
- ) le _ g d + " J2e () 9 (8 le) + (u) 9 ) le
e 30 13 €)1 Me| 1’1 3t dw My 1 8z, \ w
3d1e 5 e () dH, () 0Hj ¢ 3, 3y )
dw 2e M1/ 3z Huly 3T, 1 3w 2 Jw j
+ 0(e?) (6.11b)

92 B, 232 Q 32 E, 32 Q,
€ + + g2 |- + + 0(e3)
32,00 3 3w 37,30  3C,9w

= | aEle - H aEl + elH aEZe + ( ) 9 3E].(:‘: + ( ) ) 9 aEle
1e dw 1 dw le w LSS 35, dw Uy agq dw

le BH, o 8H, ¢ 3E, 3F , _
+ ™ HZG + (1,11)1 —B—C.l- + (“4)1 - Hl T - H _U)-— + 0(8 ) (6.11C)
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and

3F. 3E. - 9P 3P,

1 2 1 1 1 2

_ < R L - 2

s Y€ 3m + 0(e?) 57 3w + € 57 W + 0(e?) (6.114)

Tor other collision models, evaluation of functions of 'Z and w'
in equations (.97) is required. Since w' 1is given in general by

(4.106b), it is convenient to write the expansion

>

w' (Cyw,e) = wi(z,w) + € wé(g,w) + 0(e?) (6.12)

and then to write (ef. egs. (6.3) and (6.7)):

F(Z,w,e) = Fl(z,w) + e FZ(Z,w) + 0(e2) (6.13a)
F'= F(Z,0',e) = Fl(z,w') + e[Fz(Z,m')+ (ul)l(z,w) 5t F (c,w )
1
+ (u, ) (C,w) 2 F (Z,0")] + 0(e2) (6.13b)

Bgu 1

and, writing each Fj(g,w‘) in terms of a Taylor's series about

w' = wi(z,w)

>

(') A M
= + -
Fj T s Fj Lrw, w'=w; Bwi
2 >
(w'-w!) 32F . (z sw!)

+ 1 ‘—J 1 d e e

1 12
21 awl

one obtains (6.13b) in the form (with use of (6.12)):

~ > aFl(Z’w]'.) >
F' = F(z,0'",e) = (C,w ) + elo, (Z,w) — ot Fp(Tauw])
1
+ (u)),(Z0) 32 FL(Z0]) + (u,),(Z0) gg:-F1<z,w;>] + 0(e2) (6.13c)
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As a corollary of (6.13c) one may also write

~ -»> -> 2 > '
oF ' _ BF(E;w';E) BELEE:Eil- + € EEE(C’%il + 0" (T,0) E—?l(c’wl)
<8w) = dw' - awi Bwi Wyrlsw Bwiz
(6.134)
oF (Z,w') oF (Z,w')
. > ) 1 1 > ) 1 1 2
(1), (Zaw) aC, ol + (u,), (Zs0) A, 2 + 0(e2)

Note that, for any function G(Z,wi) in these expressions, one may write

N (ac[z,w;<z,w)])
BG(Z;,wl) - 3 hd (6 1)4)
Bwi ( 8wi(z,w)> )
dw

For collision model IITa, the terms in (6.12), from (L.108), are

1
V(2 - W > > 2 l—w2 -7
0 Ga) = 721 (A Faw)] : -8, (2,01 + 1 } (6.152)
> >
UJ'<C50.))A (?;,w) 2 -1
0! (Zyw) = ————2 { [(1-A1> * l:g-} - 1} (6.15b)
2 1-A (Z,0) L w
where the expansion
A(E,w,e) = Al(z,w) + e Az(z,w) + 0(e2) . (6.16)
has been used. The expression for ZiIIa from (4.109), combined with
(4.108), is
Zyppa(Bome) = o' (Z,05¢) (6.17)
IITa 52%2¢ .

w[l—A(E,w,E)] l—sz(Z,w,e)
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With the expansion of (6.17) given in (6.5b), one finds

N 0] (Z,0)
z.(g,0) = ——e - (6.18a)

o[1a, (20T [L-ua, (F0) |

.+

N N w) (Z,w) A, (T ) w? Az(z,w)
ZZ(C’w) = Zl(C,w) > + > + —'—___>—

w! (2 50) 1-4 (2 50) 1-w?A, (Z,0)
or, with use of (6.15),
_ . Z,(2,0)A,(Z,0) .2 w2(1-4,)
Z,(g,w) = — : 5 + (6.18b)

1-4,(T,0) w?(1-A,) "+1-w? 1-w?A,

From the definition in (4.110) one finds, upon using the appropriate

expansions,

. [aal(‘c’,w)/aw}['51<Z,1>][<u1)1(2,w> 27, (2,1)
A(zw,e) = O+ ¢ > - >
c

33:1(29“)/803 -D_l( ,l) Jl(cal) 3C1
(), (2 5w) 83&(2,1) (b)), (2ou) 93p (2,1)
+ -
3,(2,1) °% 0,(2,1) °%
(u). (Z,w) 3p,(Z,1)
- i& S - p; ] + 0(e?) (6.19a)
pl(c,l) cy
= A(Z,0) + € A,(Z,0) + 0(e?) (6.19p)

The vanishing of the first term in (6.19a), its consequences, and a remedy

are discussed below in § 6.3.
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In the following, denote by superscript (

w with w replaced by w! ; that is

1

F' o= F(T,e!)

Then, in terms of the above expansion forms ((6.13) with (6.10)),

equations (4.97) become:

o—
0 e,

2= 27 27
(a L, d J1) . 2( 323,
€ €
acqaw a;lam a;uaw

3
+ 3C13w) + 0(e3)

-1 - -1t 2=
= (0)g o 21 -H 0y + 07 g —-——3p + ! —2-3 o
171 Bwi 1l 3w 171 Bwi 2 Bwi
82611 32511 BB-H
1 1 (0)= 1 1"
+ (uy), 3¢ Bu] * (uy), sz, 0w | 2 ey Hy+wo

"
BHI
dw!

[

"
3H1

‘.U' —
2 L
Bwl

oH" oH" 9 5" 97,
1 1 (O)"" " 1 2
+ (uy)y 8L, + (uy),y agq] + Z,H) dwl T H 3%
3p. )
- H2 -BT* + O(E )
27T 25 2T 25
€(3J1+ BPl) b2 (a J, . 3P2> v oled)
Bcuaw Bglaw chaw a;law
-n e T a1l
(g g AL g 273 N 8au
171 dw! 1 3w 171 ] 3w! 2 Jw!e
1 1 1
3 z'JTn 3 2‘3!1 ajﬂ
1 1 (1)— 1 "
f ), i () |+ T |y
1 1 1 1
11 8;13w1 a;lawl Bwl 2
dH" JH" g 3d.
1 1 (L) gn 1 2
+ (), T, + (u,)) 3?;4] + 284 7wl Hy3o

+ 0(e?)

)" a function of z
z and

(6.20)

(6.21a)

(6.21b)
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-
. ( 9 E1 .
Bguaw
AEY

- (2)— " 1
B Z,Hy ) - i

32E" 32"
+ (u))) 37 ai' + (w37 a;']
1 1 L 1
aH" aH"
1 1 (2)=
+ i) 5 * () 5 ] + (2
1 L
aiﬁ
—_— 2
- Hz dw + 0(e?)
and
3E1 ‘e 3E2 + 0(62) = _iz_ Eil—
dw ow 2w w

32Q 32E.
1 + 62 ! +
aclaw a;Haw

o=
9 Ql

oE, (2)=

-_—

aE"
1" 2 |
2,8 [ W, Ter?

3y .
a;law> +0(e?)

y 21
9 El

\
duwy 1

8 1" aH"
(2)7 [H..+ 1

SE" 3E
H"__l _H ___2_
271 Bw{ 1 3o
3P
1 2 2
+ —= +
© 5 3wt O

(6.21c)

(6.214)

The macroscopic conservation equations, in the form of equations

(4.97) for one-dimensional flow, become:

—_— -
37, (z,1)
8z,

45, (2,1)

az

+

.

N

37, (2,1)  oP (Z,1))]
+
3T, 8z,

86:1 (Z’l) 1
9T, 9y ]

The expansions of the functions

equations (L4.99) for use in the implicit closure equation (L4.T0a),
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—_ - > .
[90,(2.1)  3J,(z,1) (.2)
+ + 0 =
) 9T, %, | )
—_— > —_ B
[37,(Z,1)  95,(2,1) )
+ € + O(gc) =
d
i ty SO
_ — > -— —
3E,(T,1)  9Q,(Z,1) ,
+ + 0 =
€ 3z, 7T, J (e?)

v 03, ana %)

(6.22a)

(6.22b)

(6.22¢)

defined by



representing equations (4.69), are:

o2 = 12y (2) o)
(a?i/aw)(aaa/aw) [a?é/aw 80, /3w
= 1+ ¢ —_— +
(aE}/aw)z BPl/Bw Bpl/aw
aﬁé/aw
- 233—/3-;] + 0(62) (6.238.)
1

o3 = wga) + e wéa) + 0(e2)

2w2(aaa/3w)(33&/3w)z a@é/am aaé/aw
— 1+ el =" + 2 —/]/—
(33, /5w)? 3Q, /3w 35, /3w

aié/aw
-3 5§TF$§ + 0(e?) (623b)

and

<
]

by + ey, + 0(e2)

(aﬁ}/aw)z
= = — + 0(e) (6.23¢)
2w2(8Q1/8w)(8J1/8w)

6.3 A Truncation Scheme by Introduction of an Additional

Artificial Parameter, Illustrated in One-Dimensional Flow

As alluded to briefly in § 6.1, an asymptotic expansion in an

"artificial parameter" e may be used in a scheme of successive

137



138

approximations in different ways: (a) In a most conventional manner, one
may substitute the expansions into the problem and let ¢ > 0 successively
to obtaln equations and boundary conditions for the respective terms of the
expansions; or (b) one may let ¢ =1 (thus defining the "arbitrary
length" in the definition of €) and suitably truncate the expansions

to obtain the solution at each step of the approximation scheme. (An
important illustration of one way of using the latter approach is the
Chapman-Enskog procedure of kinetic theory; c¢f. Chapman and Cowling,

1961, Chap. T; or Grad, 1958, pp. 253, 259-266.)

To circumvent nonuniformities in the mathematical solution in the
first approach, it is often necessary to prevent the system of equations
from degenerating (e.g., because of elimination of higher -order derivatives)
in the limit as € -+ 0 by some means such as introducing suitable trans-
formations of variables (see, e.g., Van Dyke, 196L4; or Martin, 1967b).

For similar purposes, the "suitable truncation" in the second approach

above can be taken to be whatever appropriate means prevents the degeneracy.

The second approach, including the "suitable truncation”, can be
formalized by: leaving the parameter € 1in the equations, to aid in
ordering the terms, and by introducing another artificial parameter ¢'
(which in the final analysis will also have the value unity) at appropriate
places in the equations; then letting € + -0 to obtain an asymptotic
solution and at the same time letting €' > O such that, for example,

e'/e = 0(1) as € = 0. This procedure and its motivation are discussed
and illustrated in the following treatment of the equations from § 6.2.

Consider first equations (6.3) to (6.23) in which e is not yet
defined. Suppose we used these equations as they stand and let e > O
to obtain an asymptotic solution (i.e., the first approach mentioned above).
If we used either collision model I or collision model IIIa (with E&
and Zé found from egs. (6.15) to (6.19)) in equations (6.21), we would
find (for the steady-flow shock-structure problem of Chapter VII) that
the first-order term on the right side of each of equations (6.2la,b,c)
would vanish identically; and with the resulting set of equations, in

the 1imit as € > 0, it would not be possible to obtain variations of

the flow variables with the independent variable x because there would



be no way to determine a length scale in this formulation. (Any scale

factor on ¢ would cancel out.) The only possible solution that would
satisfy both upstream and downstream boundary conditions would be discon-
tinuous in x, and a continuous shock-structure solution could not
therefore be obtained.

On the other hand, the 1limit e - 0 in equations (6.11) for collision
model IT would cause the equations to degenerate to lower-order differential
equations. The first approximation would then correspond to local~-transla-
tional-equilibrium flow (with a local-Maxwellian velocity distribution),
goverened by the Euler equations of inviseid flow, as found in the Chapman-
Enskog procedure, with only a discontinuous shock solution possible for
collision model II (as for I and IIIa).

The nonuniform limits deéhribed above can then be prevented for
collision models II and ITIa as follows:

For collision model II: Arbitrarily divide the left side of each of

equations (6.1la,b,c) by &' and require e'/e =1 as e > 0. (This

step is motivated also by the fact that the left-side and right-side terms
of the Boltzmann equation are of the same order very near and within a
shock; cf. Grad, 1960, p. 117.) By this procedure we obtain the first-

order equations as e > 0 with e'/e = 1:

32y 327 3 3.

L 4 L - g le _ —1 6.2L
bz, 30 3z 2w e aw ES (6.2ha)
327 32P 3 3T

1 1 le 1
+ = H —= - — .
agqam Bglaw le oW Hl ow (6.2kp)
32E 32q 3E 3E
1 1 le 1
+ = H  — — .
agqaw a;law le dw Hl dw (6.2ke)
3E. 3P
1 1 1
50 - 207 3w (6.2k4a)
where, from equations (4.100), (4.101), and the expansions (6.5),
w, = ﬁi w = V576 M, w (6.25)
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and

-2
— — ->
% 5 (Z,1)e 1| _
9w i II1/2 1
- [
% My m
le - }.¢ L W)
3w H1/2ﬁ§ 2 1
—_ _—2
3E [ M
le - e T @)
— 1/2=2
T PR TS

(6.26a)

(6.26Db)

(6.26c)

where Eﬂ = ﬁ;(Z) is given by (L4.105b) with subscript 1 on all functions.

For collision model IIIa: Divide the left side of each of equations

(6.21a,b,c) by e' and at the same time divide the right side of equation
q

(6.192) by e' (to prevent degeneracy of the collision term);

require
as e » 0 for collision model IITa are obtained:

25 327 30 3
", Lo 21y 2L
acqaw Bclaw 171 aw{ 1 duw
327 92P, 3J" 57

1 + 1 = ”Z " 1 H ___:L
BCHBw a;law 11 Bw{ 1 dw
32E 22Q AE" 3E.

L + Ql = g g" —1 - H 1
a;uam a;lam 11 Bwi 1 duw

BEl _ 1 BPl
dw 202 dw

where w
(6.18a), in which A, from equations (6.19), becomes
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then

e'/e =1 as e » 0. By this procedure the first order equations

(6.27a)

(6.27b)

(6.27¢)

(6.274)

' = wi(z,w) is given by (6.15a), 2& = E}(Z,w) is given by



A (Tow) = <331/3m> I @D )y 2y (2,1) . () 33(z,1)

37, 3w/ | 5, @,1) || T, (2,1) 3z, 7, (Z,1) ’z,
(w), 97, (Z,1) (w,); 29, (Z,>1)

- — - (6.28)
o, (2,1) 3z, p, (2,51) 3L,

and where (ul) and (Uu) are given by (6.10).

1 1
For either collision model ITI or collision model IITa, the systems

of equations (6.24) or (6.27) are closed by

NI (6.29a)
where
b= GEDHZLE) (6.290)
and where (2) (3) i in (6
¥, > ¥ ', and ) are the first terms in (6.23). Also

imposed are the conditions from macroscopic conservation of mass, momentum,

and energy (from (6.22)):

9 - >

— (> -
ac, pl(z,l) + _32;1 Jl(c,l) 0 (6.30a)
) - /> 9 = /> -
o, Jl(z;,l) + —Ml Pl(;,l) 0 (6.30b)
9 = > 9 - > =
——3€L+ B (2,1) + _3‘?1 Q, (z,1) 0 (6.30¢)

For a given problem in one-dimensional flow, these equations would of course
have additional initial and boundary conditions in the Z domain, as well

as the conditions at w = -1 (cf. § L.L):

Q. (z,-1) =0 (6.31)

7,(2,-1) = T,(Z,-1) = P (Z,-1) = E(Z,-1)
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Recall that w = cos @, w' =cos @' , and that

g, = xl/L and g, = uat/L
where (with e' =eg=1) L= u,/0, . In a given problem, H, and O
would be suitably determined as discussed in §§ 4.1.2 and 4.3.3. For

. . . > _ >
example if equation (4.85a) is used, then from (L4.92a): H1 = Hl(c) = pl(c,l).

Recall also now.that the above procedure has simply constituted a formal
means for truncating the equations to obtain a nondegenerate first approxi-
mation, and that actually €' = ¢ = 1. Just as the initial introduction
of the arbitrary length L was a convenient artifice, so also is the
introduction of €', to obtain a first-order system of equations that is
nondegenerate. We take it to be significant that the form of the above
first-order equations is very similar to the original unexpanded equations
in § 4. 4.2. The expansion process and the truncation scheme have simplified
the first term on the right side of the directional equations of change in
the first approximation and have provided a means for obtaining higher
approximations. The utility of higher order solutions by this scheme may
be limited in a manner similar to that in which the Burnett equations, and
higher order equations, are limited in the Chapman-Enskog method (see
Grad 1963, p. 1493 or Vincenti and Kruger 1965, pp. 416-418). However,
in view of the very recent findings by Khosla (1967) that nonuniformities
in the Chapman-Enskog expansion are artificial, and are removable by use
of Lighthill's technique (1949, 1961) with the extension by Kuo (magnifica~-
tion of the independent variable; see Tsien 1956) , the present higher-
order solutions may be expected to be valid (see further discussion below).

Although this method is certainly not equivalent to the Chapman-
Enskog procedure, there are similarities that can aid understanding of
some aspects of this method with sufficient prior understanding of the
Chapman-Enskog procedure. (Substantial understanding of the Chapman-
Enskog procedure can be gleaned from the discussions by Chapman and
Cowling, 1961; Grad, 1958, 1963; or Vincenti and Kruger, 1965; on the

respective pages of those works referred to earlier in this section.)
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Conversely, because of similarities, understanding of the present method
may also contribute to understanding some aspects of the Chapman-Enskog
procedure. The most striking similarity between the present method and

the Chapman-Enskog procedure is the occurrence of successively higher

derivatives in the higher approximations, which are seen to occur here
directly by introduction of the Lagrange-expansion perturbation scheme,
developed in Chapter V above, into the formulation of the equations of the
directional-mean—-free-path method. (However, Khosla, 1967, finds that use
of the PLK method eliminates the higher derivatives in the Chapman-Enskog
expansion. Similarly, in the higher order terms in the present method,
the higher derivatives are only those of previously-determined lower-order-
approximation functions; so there is no increased number of boundary
conditions required.)

The first approximation in the Chapman-FEnskog procedure (resulting
in the Fuler equations of inviscid flow) would correspond to the method
described here in the first approximation if we did not introduce €' = ¢
into the equations, as described above. The second approximation in the
Chapman-Enskog procedure (first translational-nonequilibrium correction
to the local Maxwellian distribution function, or to the Fuler equations)
yields the Navier-Stokes equations. The mathematical mechanism by which
the higher order approximations in the Chapman-¥Enskog method eliminate the
degeneracy, and hence the discontinuous solutions of the first (REuler)
approximation, is described by Grad (1960), p. 119.

In the present procedure, the use of the truncation scheme with
e' = £ gives a nondegenerate solution in the first approximation, and
so is fundamentally different from the Chapman-Enskog procedure in that
respect. The first nonequilibrium approximation here is not a correction
to local translational equilibrium. It is suggested therefore that it
may be capable of describing the flow approximately, but realistically,
for arbitrarily large deviations from local translational equilibrium,

which the Navier-Stokes equations can not.
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CHAPTER VII

AN TLLUSTRATION:

PROBLEM OF SHOCK-WAVE STRUCTURE

7.1 Introductory Remarks

As an illustration of the method developed above, consider the
equations in § 6.3, for the first approximation in the directional-mean-
free-path method, applied to one-dimensional steady flow through a normal
shock wave in a perfect (sufficiently rarefied) gas composed of neutral
spherically-symmetric monatomic molecules.

Since this chapter is not intended as a thorough study of the shock-
structure problem, but only as an illustration of the method, the reader
is referred to works such as: Lighthill (1956), Hayes (1960), Vincenti
and Kruger (1965), Sherman and Talbot (1960),and Talbot (1962) for

comprehensive treatments and further references on shock-wave structure.

The conditions at upstream infinity (x1 -») are denoted by sub-

script o, those at downstream infinity (x1 = +®) by subscript B.
Since there is only one component of particular interest in one-dimensional
steady flow, we drop the subscript 1 corresponding to the direction X,

and denote the dimensionless coordinate ¢, (with € = 1) as
t = (6 /ulx (7.1)
o Ta

where u 1is the macroscopic average velocity in the +x direction, and
@a is the upstream collision freguency, which could be represented, for

example, by equation (2.20b) with (2.23d). Thus

u
2 = =z /L M (7.2a)
OOL (8].[)1/2 0_2 pa 2 o



for use in equation (7.1) if desired, where m is the mass of a molecule,
o is an "effective molecular diameter" (see § 2.2.2 above), vy(=5/3)

is the ratio of specific heats, and Ma is the upstream Mach number.

It is also convenient, for comparison with other results, to find the
results simply in terms of x/Aa (e.g., see Vincenti and Kruger, 1965,

sec. X-9). Thus from (2.21) and (2.234):

- 1/2 1/2
u /o, = (1/2)n A (¥/2) M (7.2b)
where y = 5/3, so that (7.1) may be written
1/2
x . I 2 -
" = =3 ( g‘Ma)C (7.3)

where Ad is the upstream mean free path relative to the mean mass motion
(ef. Chap. I1).
In the following sections of this chapter, use is made of equation

(4.85p), with (4.92a) and (6.5), to represent the function H as

no= () = T (/e (D) (7.ba)

where

T n\
K (T) = ol H (z)

and where n 1is a specified temperature-dependent wviscosity coefficient.

1]

o, (z,1) (7.Lp)

It is also convenient to define

i

- 4
z - [ [yx (7)]ag (7.k4e)

E*

where ¢¥*¥ 1is some value of ¢, to be defined later. Directional-
average collision models ITI and ITIa are considered, and a numerical

solution scheme is outlined for collision model IT.
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7.2 Equations and Boundary Conditiomns

For simplicity, in the following we denote partial derivatives with
respect to ¢ by subscript . Since Hl’ as represented by equations

(7.4), does not depend on w, equations (6.2L4) for collision model IT

are written for steady flow as:

92_ - _ 9 T e =
K37 Uy T U1 HPley = 71, (7.5a)
K, & (P ) = -&(F ) = HIJ T, 1] (7.5b)
1 3¢ 1w 3T 1w 1" 1ey 1w *
S (0. V= -2 (o9 ) = T _
K, 3% (2Q1w) BZ'(Q lw) Hl[gElew 2E1w] (7.5¢)
— _ _l_ _—
F, = i P (7.54)
where Tley —&ew , and E&ew are given by equations (6.26) with (6.25).

Note now that equations (7.5a,b,c) are directly integrable to obtain

K, %E (3,) = - % T) = Hls, -7l (7.5€e)
2 _ 3 _ /5 _ T o= -

K = () = -3=(®) = KT -7 (7.5¢)

K, 3 (2) = - 3=(2q)) = H[2E - 28] (7.5g)

J
1e .
replaced by H1 and subscript 1 on M and w (cf. eq. (6.26)).

where ©)_ , , and E&e are given by equations (4.102) with p/p
a

For collision model III equations (6.27) become, for steady flow,

k. & (T

— 3_ T - T 7 = —
1 3; ].U)) - - BE (J ) - Hl[zl plwy - pl ] (7'68-)

1
W 1L W
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2 P = 3__ by - T g _ =
% 3¢ (le) = - af(le) = H [z, o! le] (7.6b)
G e PR = - gE () = R (228, - 28] (7.6¢)
_ =
Fiu (H/6%) By, (7.64)

where w{ = w{(c,w) is given by (6.15a) and E} = E}(g,w) is given by

(6.18a), where A is given by (6.28) (which is considerably simplified

by conditions given below).
With equation (7.k4), either equations (7.5a) to (7.54) or equations

(7.6) provide four differential equations for the five unknown functions
of ¢ and o : p_l,El,Pl,'ﬁl,

(the "closure equation") is provided by equations (6.29), obtained from

and E’)‘-l . The needed fifth equation
equations (4.70) (which represent (4.69)), in the form:

w§2) = P, p—lm/(Elw)2 = ¥(y,) (7.7a)

where
- (2)y2/ (3)  _ 2 = =
v, = () )/wl = (le)/sz Uy T (7.7b)

A sufficient number of boundary conditions on the dependent variables

in ¢ and ¢ must be provided.

At w=-1 (all ), the functions p; » J, » P; » Bj , and @

vanish identically (egs. (6.31)).

At u=+1 (all ), equations (6.30), with use of equations (k4.92)

and (4.60), give, in the first approximation

3&(@,1) (l/paua)(pu) = constant

(7.8a)

3-1‘(_00,1) = 1
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f}(c,l) = (l/pauz)(pu2 +p - 1) = constant
(7.8b)
= P (-=,1) = 1+3/5 M J
2q,(z,1) = (2/p u’)[pu(n +-% u?) + q - ut] = constant
(7.8c)
= 2 (-=,1) = 1+ 3fM

Note that the usual forms of the exact one-dimensional steady-flow conserva-
tion equations are contained in equations (7.8a,b,c) and that their
evaluation at x = o , where g and T vanish, gives the well-known

Rankine-Hugoniot equations:

paua - pB uB
2 2
+ = + .
Pyt P, Py Vg * Py (7.9)
1 2 _ 1l 2
ha + 5 ua = hB + 5 uB

For the perfect monatomic gas, with specific heat ratio of 5/3, one can

obtain from equations (7.9) (see, e.g., Liepmann and Roshko, 1957, pp. 56-
59):

” 3+M2
wo- e (7.10a)
5 M°-1
o
i M2 L
o,/p. = ¢ = (7.10b)
B a M43 1+ —2L2 '
o (5/6)M

At 7 = to (all w), equations (4.102) give the conditions on

E, and Q in terms of p/pa , M, and ® = Mw , where,

|

-
&
el
]
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at g == : M = Ma
plo, = 1
(7.11)
at T = +e M = MB , given by (7.10a)
o/pa = pB/pa , given by (7.10b)
J

With conditions (7.8a) and equation (7.4b) we now note the simplified
results from (4.105b) and (6.28):

1/2
5 3/2
c M = — (7.12)
L= /e 2F, (2, 1), (£)-1

=|
[

1

and

aH
S
AL = I T (1.13)
Hy

for use, respectively, in (7.5) and (7.6). Equations (4.102) and (7.11)
are used in the first approximation simply by putting subscript 1 on

H, M, and » (cf. egs. (6.25) and (6.26)).

7.3 Description of a Solution Procedure for Collision Model TT

Since
w
o, (gw) = {1 ), (7.1ka)
and
w
Eloe) = [ By, (7.1kb)
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we can regard the set of ten equations including: (7.1ba,b), (7.5a) to
(7.5g), and (7.7a), as a complete set to determine the ten dependent

variables:

Q (7.15)

as functions of ¢ and w (with Z(z), ﬁ;(c), and ﬂ&(;) given by
(7.4p) and (7.12)). (To avoid, as much as possible, numerical integrations
over w except for equations (7.1l4), all of equations (7.5) can be treated

as independent.) For each value of w, equations (7.5) can, in fact,

then be regarded as a set of seven ordinary differential equations in the
¢ direction, with ww as a parameter, and with the needed values of the

three quantities Blw(c,w) . 5&(@ &) , and f&(c,w) at each step in ¢
calculated respectively from (7.7), (7.1ka), and (7.14b) for each w.

Thus, the following numerical solution procedure can be used:

(a) First, for a large number of values of b, compute and store,
versus b : w(z), w(a), and ¢ from equations (4.69) through (4.78).
The computer program can be designed to interpolate between values in this
table to obtain a value of w(z) corresponding to any specified value of
Y in the range calculated. This provides the functional relationship

(L4.70a).

(b) Define ¢ = 0 as the location where p = (l/2)(pa + pB). The
numerical integration can be started at a location in ¢ where the state
of the gas is very nearly that at either upstream infinity (g = -=) or
downstream infinity (g = +»). The choice appears arbitrary, However,

it has previously been found in the Navier-Stokes solution of shock

structure that it is easier to integrate from the downstream state to the
upstream state rather than vice versa (Gilbarg and Paolucci, 1953),
because of a saddle point in the temperature-velocity phase plane.
Therefore the integration in the present approach will be started at

r = ¥ where the state of the gas has a specified arbitrary small devia-
tion from the downstream state. It is presumed that the values of the ten

dependent variables in (7.15) can be approximately determined for all w
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from -1 to 1 at ¢ = ¥ from the known conditions at downstream
infinity (see § 7.3.2 below). The .values of ﬁ& and ﬁi are then also
known from (7.4b) and (7.12), and the local-equilibrium values of all the
dependent variables can be computed, for subsequent use in equations (7.5).

Then it is convenient to define the new independent wvariable

3 t* - g (7.16)

so that ( cf. eq. (T.ke))s

ar/dt = - ag/at = K (T) (7.17a)
T =T =0 a ¢ = g% (starting point for (7.17v)
integration)
and
y "
T = t* at £ = O (where p = %-(pu+ps)) (7.17e)

and the integration proceeds upstream with increasing positive values of

T (as ¢ decreases from z¥).

{(¢) Divide the range -1 <w f.l into an odd number, &, of

intervals (Aw = 2/2), such that

w, = =1+ JAw = =1+ 23j/% , j=0,1,2, ... , 2 (7.18)

Calculations are to be made at each wj, and the specification of £ as
an odd number insures that no calculations are made at exactly w =0
(where there would be numerical difficulties introduced by dividing zero

by zero).

(d) Starting at T = 0 with the known values of the variables in
(7.15), increase 7 by AL . At T; =0+ AT , and at each of the Wy
in (7.18), calculate Eiw’ E&w’ a&w’ 3}, 51, and 6& from equations
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(7.5) and from values at Z-= 0, wusing a standard technique for ordinary
differential equations. With each value of F&w calculated, evaluate
E from (7.5d4). Also, with known Elw’ §iw , and @iw at each w ,

1w
calculate wl from (7.7b), then find the corresponding wgz) from the

previously-computed relationship between ¥  and ¢§2) (cf. eq. (7.7a)
and step (a) above), and determine p,, from the definition in (7.7a).
Finally, determine 51 and E1 at each w by the integrations indicated
in (7.14). Then, again, El and Ml are known from (7.4b) and (7.12),
and the local-equilibrium values of all dependent variables are computed

for subsequent use in eguations (7.5).

(e) At each z, and at w = 1, evaluate all flow quantities of
interest (to first order) from equations (4.93). Evaluate ¢ wusing
(7.17a,b).

(f) Increase 7 again by a small increment, and repeat the procedure.

Continue the integration until all the quantities no longer vary with

increasing T , so that the upstream equilibrium state has been reached.
— 1
(g) Vnere p,(z,1) =75 (1 + ps/pa)’ evaluate ¥ (eq. (7.17c)),

so that ¢ 1is known versus 7 from (7.16) and X/Aa is known from
(7.3).

The values of the dependent variables at each w at 7 =0, for
starting the numerical integrations, can be evaluated from integrations of
the Chapman-Enskog distribution function for a very small deviation from
the downstream state. This procedure is simple and straight forward,
either in terms of the BGK model or for Maxwell molecules, in combination
with the method of Gilbarg and Paolucci (1953) for evaluating flow
variables near the downstream state. It is hoped in the future to obtain

numerical results for the shock-structure problem by the procedure outlined

above.

152



CHAPTER VIII

CONCLUDING REMARKS

The most important results of this study are considered to be:
(a) the development of concepts and equations for the directional level
of description; (b) the introduction of the directional-mean-free-path
approximation for the collision integrals in the directional equations of
change; (c) the development of new forms of vector (higher dimensional)
generalizations of Lagrange's expansion, and a perturbation-expansion
scheme based on those generalizations; and () the outlining of the
calculation procedure for shock-wave structure according to the direc-
tional-mean-free-path method.

After successful performance of the numerical calculations outlined
in Chapter VIi for shock—wave'étructure, it may be desirable in the future

to extend this study in the following several directions:

(a) inclusion of the effects of boundaries, in some approximate

manner, in the formulation of the general method;
(b) inclusion of body forces in the equations;

(¢) calculation of higher order solutions in the shock-structure

problem;

(@) attempt to solve the shock-structure problem with collision-

model IIT;

(e) possible extension of the concepts in an approximate manner

to polyatomic gases; and
(f) possible extension of the concepts to gas mixtures.

The first extension suggested, (a), probably will be the most important
next step in further development of the directional-mean-free-path method.
Future application of the method to any problem with boundaries, however
simple, will depend on inclusion of the effects of boundaries in the

formulation of the directional-mean-free-path approximation. The main
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value of the directional-mean-free-path method would therefore be realized
only after such an extension of the theory has been made so that it can

be applied to problems that may not be tractable by kinetic theory methods.
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