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ABSTRACT
 

Two simultaneous programs were carried out to investigate some of the
 

effects of long tem bioconfinement. Part A used classic Rhesus monkeys
 

(Macaca mulatta and a commercial monkey diet. Part B used gnotobiotic mice
 

and a comminuted Apollo diet.
 

In Part A, after six months of bio-isolation in a gnotobiotic isolator
 

(sterile air, sterile food and sterile water), 
a shifting of the indigenous
 

intestinal microflora of Macaca mulatta was 
observed. Escherichia coli,
 

originally present at 107 microorganisms (per gram of feces) dropped in
 

numbers (less than 103). Control animals, individually caged and housed in a
 

t"clean" environment, receiving the same sterile diet and sterile water,
 

reflected the shift but at a much slower rate. 
Animals in the clean environment
 

and receiving the same but non-sterilized diet (but sterile water) retained
 

the microorganism in original numbers. 
Other changes in the majority of the
 

animals kept in the isolators were a two log drop in aerobic microflora and
 

an increase in the anaerobic count. Some microorganisms, originally present
 

in numbers of less than 103/gram of sample, increased in the bioconfined animals
 

to 107/gram of sample count. After five months, the indigenous Lactobacilli
 

began to disappear in this same manner as the coliforms. In addition to
 

monitoring intestinal tract microflora, weekly samplings were taken of the
 

gingiva, groin, eye, and throat. 
Shifting of the indigenous population was
 

followed by using a marker organisms. Associated physiological studies included
 

hematology and serum proteins. Implications of these results, in the context
 

of long term space flight are possible deleterious changes in the inmunity
 

mechanisms, potential pathogen runaway and 
loss of the benefits of a protective
 

mixture of microflora.
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In Part B, radiation sterilized, communited Apollo diet was fed to
 

classic, germfree and gnotophoric weanling mice. The growth, food efficiency,
 

general appearance, reproduction and autopsy data from classic mice reared
 

in the open laboratory with either Y -radiation sterilized or non-treated
 

diet was satisfactory. Classic mice reared in isolation with sterile diet,
 

water and air showed denudation, poor reproduction and about 50% mortality in
 

50 days0 The performance of germfree mice fed sterile Apollo diet was
 

acceptable. When germfree mice were orally inoculated with Escherichia coli
 

or contaminated with Staphylococcus epidermidis, the mortality was about
 

70%. 
The diflora of E. coli with either Candida albicans or Lactobacillus
 

leichmannii did not prevent this while C. albicans in a diflora with S. epidermidis
 

did prevent this high mortality. Monoflora mice with C. albicans had 45%
 

mortality while few of the mice with L. leichmannii monoflora died: when both
 

C. albicans and L. leichmannii were orally inoculated into weanling mice,
 

80% died in 50 days. Whether present in a mono or a diflora, C. albicans reduced
 

the food efficiency of mice. C. albicans or Bacteroides monoflora provided
 

protection from the alopecia observed in other groups. It is concluded that the
 

nurture and well being of mice is profoundly affected by their intestinal
 

microflora.
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I. 	INTRODUCTION - PART A 

Bengt Gustafsson* (1968) has written, " ..... the two most hazardous things
 

an astronaut takes into his capsule on an extended flight
..... are his brain
 

and his intestinal flora... The big question here is, of course, could
.....
 

germfree 	characteristics and deficiency symptoms
....occur in man in space,
 

if the intestinal flora, for one reason or another, is changing or drifting
 

in the astronaut."
 

There are an infinite variety of microorganism-combinations, and if is
 

easy to see that an infinite number of normal and imbalance situations would
 

and do occur. Fortunately, experience has shown that imbalances are usually
 

quickly corrected by the very nature of the environment and the microorganisms
 

themselves.
 

Somehow, a microbial balance of a number of species is usually achieved
 

in the normal individual under normal terrestrial conditions that enables
 

the subject to remain healthy. When imbalance occurs, the potential for disease
 

increases.
 

Luckey (1963, 1968), Bengson and Thomae (1965) and others have discussed
 

the possibilities of microfloral simplification and potential hazards thereof
 

to astronauts. However, much of the early work (pre 1960) that gave rise to
 

the assumption that biological isolation per se is harmful has either been
 

disproved or is strongly suspect. 
 The attack on the bio-isolation discussions
 

has centered upon the techniques, the knowledge, and the conclusions drawn,
 

which are evidently based upon insufficient data. Personal examination of the
 

available facts plus interrogation of personnel that were present during the
 

course of some of the early work, though not necessarily directly involved, lead
 

*Bengt Gustafsson, Discussion Leader at 
the ONR-NASA Joint Interdisciplinary
 
Conference "Human Ecology in Space Flight", held at Princeton, New Jersey (1965).
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to the belief that the critics of the work are correct insofar as their
 

critical claim is concerned: that valid and final conclusions simply could
 

not be drawn from the data that were presented. Notwithstanding these
 

valid criticisms, knowledge that all would not be biologically static and
 

inferences that biological change could bring deleterious effects to the
 

astronaut certainly makes a reasonable statement and presents a case for
 

experiment. To this end, a General Electric program to assess the effects
 

of bio-isolation was begun in 1964. Other parallel programs, both company­

and government-funded, have been undertaken to determine the effects of
 

deliberately distorting the intestinal microecology and balance (Bengson
 

and Thomae, 1966; Thomae, Kaplan and Bengson, 1968; Bengson and Thomae, 1968).
 

One program, using mice, was primarily concerned with bio-isolation per se
 

and to a smaller extent with the effect of a modified diet on the isolated
 

animals. Its purpose and nature were purposefully very limited. It was
 

recognized early that only an extremely large experiment extending over several
 

years could fully define the hazard, if any, and the necessary corrective
 

nature of treatment if such a hazard exists.. Future plans included the
 

extension of each of the factors or problems developed during the exploratory
 

work. The programs discussed herein were designed to learn some of the effects
 

of bio-isolation with particular reference to its influence on the astronaut
 

requirements for nutrition and microfloral stability.
 

II. BACKGROUND AND DISCUSSION - PART A
 

Among the major variables that determine the composition of the body
 

microflora are diet, drugs, exposure to other living creatures, stress, micro­

organisms in the atmosphere, food and surroundings, body cleanliness, and
 

perhaps the physical state of the individual concerned. In normal life,
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manipulation of these variables is possible only in the grossest context ­

yet enormous forward progress in the well being of the human race has been 

made, even with the crude controls now practiced. For example, food 

sterilization, sewage treatment, potable water treatments, drugs and general
 

sanitation have been shown to be effective means for general controls.
 

The possibility of changing the indigenous bacterial flora for an extended
 

period, the effect on the host of the altered ecological relationships, the
 

techniques that would be involved in such a study and the possibility of
 

showing compatibility requirements (in the sense of a similar body microflora)
 

for normal humans or animals has had but few studies, although individual
 

parts of the above have been reported in gnotobiotic investigations.
 

A general picture is, however, taking shape. Investigations on mice,
 

primates, and miscellaneous other animals plus some space data on humans
 

indicates that the changes in indigenous microflora are not host species
 

specific. Animals are furnishing models that have credibility. They (animal
 

studies) do not completely take the place of studies using the eventual subject,
 

the human, but certainly furnish us guidelines to plan required testing on
 

man.
 

Simplification, Bacterial Antagonism and Control of Microflora
 

Gordon and Pesti (1969) have performed a series of experiments using
 

isolated and non-isolated, conventional mice, and ex-germfree but conventionalized
 

mice. They followed the microfloral changes in their isolated mice and
 

compared them with open laboratory controls.
 

All of their mice, at an early age, had the potential pathogens Clostridia
 

and Staphylococci in very low numbers (less than 105). As the open air
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conventionals aged, "the Clostridia and Staphylococci appeared in substantial
 

numbers (+107). The isolated mice maintained the pathogens at levels
 

comparable to the original numbers."
 

Their theory is that the open air mice were continually "reseeded" with
 

pathogens from the open air and the isolated mice were spared this burden.
 

All mice were fed sterile diet.
 

Several interpretations may be made of this experiment: Some directly
 

from the paper's evidence and others from combining the knowledge gained by
 

the work of Dubos (1967) and our previous General Electric experiments.
 

1. 	Pesti and Gordon are correct in that undoubtably reseeding encouraged
 

the proliferation of Clostridia and Staphylococci in the open air
 

colony.
 

2. 	Since all the mice were receiving a sterile diet, the multiplication
 

of some bacteria was inhibited (most probably the Escherichia coli
 

and Lactobacillus).
 

3. 	In the Pesti-Gordon experiment, the pathogens of the isolated mice
 

were inhibited by the original starting flora successfully exerting
 

the protective mix effect. A pathogen orally introduced earlier in
 

life was successfully combatted.
 

Pesti and Grodon state, "the open conventional mice (controls) displayed
 

characteristics of their own", but, "the isolator conventional and the ex­

germfree conventional mice presented essentially similar results and could be
 

combined 	into a single group.
 

Simplification of the isolated mice to the extent of disappearance of
 

E. coli was never observed in the Pesti-Gordon work. This is in direct
 

contradiction to the results of Dubos (1967). We suggest a possible explanation:
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A balance was established in the Pesti-Gordon work where, with the particular
 

microorganisms of the experiments and the diet fed, E. coli was never forced
 

out. 
 This could be the result of more than just the original microorganism
 

mix, for example; available nutrients, number of animals in the isolator
 

(Gordon, 1966) and perhaps the subtle but real differences between autochthonous
 

and indigenous microflora and the particular strains present affected the
 

course of the experiment.
 

Craven and Miniats (1969) have investigated the relationships of different
 

strains of E. coli. Bacterial antagonism between strains has been documented
 

with regard to wound healing and has-been discussed by Bengson (1968) with
 

respect to burns. Craven and his co-workers, using gnotobiotic pigs, have
 

demonstrated that one strain of E. coli can quickly become dominant (over
 

another strain) regardless of when the potentially dominant strain is introduced.
 

The complex relationship possible in the Gordon-Pesti experiment may be the
 

result of strain dominance whereby the dominant strain is kept in check by yet
 

another microorganism. The single strain or combined strains of E. coli keep
 

still other microorganisms, Clostridia and Staphylococci, in low numbers.
 

We may have thus a case of E. coli of one strain disappearing or going to
 

low numbers (simplifying) but the result hidden due to the presence of a
 

dominant and aggressive "cousin" strain. The isolation of the animals in
 

this instance, prevented any change in the balance occurring from outside
 

influence.
 

While simplification in the context of complete disappearance was never
 

observed by Pesti, there yet may have been losses of microflora originally
 

present (but undetected) in very small numbers in the conventional animals.
 

The difficulties of establishing a complete microbiological profile is one
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of the important reasons for the use of the germfree animal. In that the
 

total numbers of microorganisms is not normally subject to much change,
 

then the rise in the pathogens had to be accompanied by other losses. The
 

bio-confined animals' failure to increase the numbers of the pathogens may
 

also possibly be explained by the work of Tanami (1967). This experiment
 

is reviewed later. Van der Waaij, et al. (1969) has discussed the difficulties
 

of transference of "strange" microorganisms into animals with a-well established
 

"normal" microflora. It is of interest that following "decontamination" of normal
 

mice by orally administered antibiotics, in the treated (decontaminated) mice,
 

transference was simple. "A take was seen in all mice even after very low
 

doses with a few bacteria." Their work points out very strongly how dangerous
 

antibiotic therapy would be in space, for should some pathbgens escape anti­

biotic kill, replication to fill the vacuum created could be rapid. Without
 

the protective mix and with exposure (from crew mates) to other microflora,
 

an extremely hazardous situation is possible. It is fairly well established
 

that innocuous or beneficial organisms are among the most susceptible to
 

broad spectrum antibiotics.
 

Ducluzeau and Raibaud (1969) investigated some of the mechanisms involved
 

in the establishment of various bacterial strains in the gastrointestinal
 

tract. "In one case, interferences occurred because one of the strains
 

synthesized a metabolite that was toxic for the other; for example, the
 

inhibition of Staphylococcus pyogenes by E. coli. In another case, one of the
 

strains established physico-chemical conditions in the digestive tract which
 

were incompatible with the survival of-another; for example, the inhibition
 

of Micrococcus p2. by Staphylococcus pyrogenes."
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Even different strains of the same species of microorganism were
 

inhibited by each other! 
Ducluzeau and Raibaud also noted-that several
 

simple mechanisms may act simultaneously on the same strain and that the
 

final level at which a strain is stabilized is the result of an integration
 

mechanism.
 

All the above leads to the conclusion that the presence of, some certain
 

microorganisms at some level is critical to a healthy balance and that
 

wheh this balance is upset, a new and different balance may be struck. If
 

this new balance is not rapidly achieved or if this balance is not a healthy
 

(for the host) balance, trouble in the form of disease seems to be the certain
 

ending. The most common balance in man, monkeys, and mice seems to be dependent
 

upon E. coli being present in relatively large numbers. To iterate, a
 

potentially dangerous Micrococcus was inhibited by . pyrogenes which in turn
 

was inhibited by E. coli. The E. coli may allow just enough 
 . pyrogenes to
 

exist to keep the Micrococcus at an "acceptable" level. Although all three
 

of the cited organisms have been shown to be pathogenic, certainly the level
 

at which these organisms exist in the body determines if recognizable damage
 

is being done. The levels at which an overt pathogenic condition is usually
 

considered to exist is sometimes quoted as 
107 and above. This is, of course,
 

subject to argument and certainly very low levels can be the basis for a
 

toxic condition, recognized or not.
 

All of this tends to imply that the microbial balance may be very, very
 

sensitive. The individual immunological defenses, therefore, must assume
 

more and more importance. How the other body defenses, such as the phagocytes,
 

acid-base balance, and even the nutritional habits of the individual are balanced
 

may thus play a major part in prevention, development or limitation of a
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disease. This is not new! It does lead one to question whether there is
 

enough "overlap" among the body defenses? Can particular defenses be
 

strengthened or reinforced? Where does the primary line of defense lay?
 

Certainly among the controllable factors should be the microorganism balance.
 

We simply need to know much more in this area. 
 Simply stated one major problem
 

appears to be; given that changes in microflora can cause disease and changes
 

in microflora are inevitable under any circumstances. Can we lead or direct
 

the flora to acceptable and desirable balances from given states of imbalance
 

(Rr undesirable balance)? Basically, this is what the primate-mouse-experiment 

is all about. We are now learning what, how fast, and.why changes occur in our 

questioned environment -- long term space flight. 

Another interesting question may be raised concerning the Pesti experiment. 

What is simplification? Is the failure of the two pathogens to proliferate
 

to large numbers (in the isolated animals) simplification? Always to date we
 

have considered simplification as loss. Here we have an instance wherein an
 

identical, except for bio-isolation, situation, two organisms multiply in the
 

unprotected situation and fail to multiply in the "protected" regime. Pesti
 

and Gordon theorize "reseeding", this seems strange in that 104 are already
 

known present. Intuitively one feels that the unprotected mice did not need
 

"reseeding" to grow to 107+ contamination. Even if reseeding were true,
 

how many microorganisms would it take to reseed (104, 105, 106)? How many
 

organisms of this potentially pathogenic type are floating about in a normal
 

laboratory. Certainly enough to contaminate, but then the animals in the
 

isolator also were contaminated and they must have released organisms into their
 

atmosphere and contaminated their surroundings. Why then, unless some very
 

large number differential is involved,, did not the isolated mice reseed themselves
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and their cage mates. Abrams (1969) suggests the mucosal resistance to
 

pathogens is directly affected by the (existing) flora. His experience
 

indicates that the simple rapidity of gastro-intestinal emptying (most ­

rapid in "normal" animals) is one defense line, but this apparently did not
 

operate equally in the Pesti work. Returning to the original question, what
 

is simplification? 
The work of Pesti and Gordon forces the conclusion that
 

the definition of simplification in the bio-isolation context must also
 

-include the suppression of potential or expected growth of some microorganisms,
 

in this case, the Clostridia and Staphylococci. Ducluzeau (1969) then with
 

his theory of "integrated mechanisms' has given us a major movement forward
 

in our search for the mechanisms and reasons for simplification.
 

Dietary Influences
 

Disappearance of some strains of intestinal microflora, while nominally
 

due to extended confinement may also be due to dietary changes, either alone
 

or speeded up by the confinement. Winitz, et al. (1966) and others have
 

shown the composition of the indigenous microflora to be highly diet dependent.
 

Winitz reported almost total disappearance of microorganisms from subjects
 

utilizing a synthetic diet, but a general return (with some species missing)
 

following a return to normal diet. Schwartz Bio-Research (1967) has written
 

in their newsletter that use of their synthetic diet has an effect on the
 

composition (genera and species) of the microflora. The question is raised:
 

Is this dietary change effect equally effective in reducing or changing the
 

autochthonous as well as the indigenous microflora? Dealing only with the
 

general gut population and assuming that a given dietary regime has influenced
 

the composition, then if a species disappears for this (or any other reason)
 

then under conditions of bio-isolation, it cannot return. This would be true
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even if a return to normal eating habits and diet occurred. In fact, a
 

return to normal habits would constitute a second change and any new (for
 

crew mates in the aerospace context) microorganisms and some of those that may
 

have become numerically predominant, due to the first change, may have their
 

existence jeopardized. The second "simplification" may be the dangerous one.
 

Initial reports from Schwartz indicated that no deleterious effects were
 

caused by the microorganism changes. What was not reported is whether any
 

pathogens or potential pathogens were ever present (or available).
 

Assuming that microorganisms within the body have useful functions,
 

including nutrient synthesis, immunity build-up, and protective mixtures as
 

discussed previously concerning pathogen build-up, then the other questions
 

arise: (a)have we lost a microorganism that performs or allows to be
 

performed a critical function; and (b) have we allowed a pathogen to multiply
 

into the vacuum. We assume there is now little question that a pathogen could
 

multiply in a biological vacuum.
 

In healthy breast-fed children, bifido bacteria are the main bacterial
 

component (Mata, Carrillo and Villatoro, 1969). It has been suggested that
 

a high incidence of bifido bacteria, 1011 to 10!2/gm of wet feces, is
 

responsible for the low incidence of pathogenic microflora such as Shigella
 

(Mata, L. J., J. J. Urrutia, B. Garcia, R. Fernandez, and M. Behar, 1969).
 

These pathogens have been shown to infect the gut even though the bifido
 

bacteria count was high, but then significantly, rarely cause disease. In
 

contrast, as the bifido count drops, due to change of diet from milk to
 

"normal" adult food, the incidence of diarrheal disease rises with the change
 

in microflora. These conclusions have been suggested by several investigators
 

(Beck, et al., 1957).
 

-10­



As children age, heavy exposure to pathogens and the dietary changes
 

combine to remove the early life protective mix, and the data of Mata
 

tends to confirm Pesti's work. Where Mata's diet changed, the total influence
 

was enough to cause illness.
 

Wagner and Starr (1968) attempting to manipulate the microorganism
 

population of mono-gnotophoric mice (Lactobacillus bifidus) by means of
 

diet fed them successively: commercial diets, high carbohydrates, high
 

protein and high fat diets.
 

They established that the organisms infecting mono-gnotophores established
 

in characteristic numbers, i.e., for Lactobacillus, 107 to 108 per gram of
 

dry feces. Their dietary results were inconclusive for mono-gnotophores.
 

When the same experiments were done using two species of bacteria, (Salmonella
 

typhimurium and L. bifidus the.Lactobacillus was inhibited within a few
 

days regardless of the original relative numbers.
 

Another strain of Lactobacillus (Lactobacillus brevis) was successfully
 

established in high numbers in a S. typhimurium infected gnotobiote. In this case,
 

a high carbohydrate diet appeared to have some effect on suppressing the
 

S. typhimurium. The experiment was not run long enough to be conclusive.
 

The work of these two teams of investigators indicate suppression of
 

pathogens by Lactobacillus control (by diet) should be extended.
 

Gall (1964) describing her findings concerning the microflora of human
 

feces of young men undergoing semi-bioconfinement for thirty days reported
 

a slight simplification of the bacteria flora. 
The diet composition was
 

changed midway in the test peiod. 
The diet was not a rigidly-sterilized diet
 

but was presented to represent as nearly a normal meal as possible. She
 

reported that using their particular diet and conditions, the predominating
 

flora shifted. The subjects had preferred a rather high milk diet prior to
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confinement. Expectedly, the incidence of lactic acid producing bacteria
 

was high. By the 12th day under a new dietary regime, the flora shifted
 

to predominantly a gas and black slime producing bacteria. :This happened 
-

both when the diet was shifted from fresh to dehydrated foods and vice
 

versa. 
The new dominant forms were certainly not desirable in space
 

flight for an increase in flatulence is to be avoided whereever possible.
 

Conventionalization
 

One problem that has worried investigators considering the possible
 

loss of protective microorganisms during extended bioconfinement has been
 

what happens when the animal (astronaut) is returned to normal conditions.
 

Luckey (1966), Wilkins (1967), and others have publicly speculated on this
 

topic. 
Thomae, Kaplan, and Bengson (1967) have conducted an experiment using
 

a commercial Lactobacillus preparation on microorganism depleted primates in
 

an attempt to develop an indigenous population of Lactobacillus in the
 

subject animal. As an inducement to the Lactobacillus to establish, a high
 

lactose dairy preparation was added to the diet. 
This failed to induce other
 

than a transient population, most probably because the strains of Lactobacillus
 

used were not monkey derived. A proven non-pathogenic strain of Lactobacillus,
 

primate subject species derived, must be used for a proper repetition of this
 

experiment.
 

Malyoth and Sickel (1969) have successfully introduced L. bifidus into
 

gnotobiotic pigs. The strain successfully negated the pathogenic effects of
 

B-hemolyzing L. coli serotype 0:26. 
During later conventionalization, the
 

protective L. bifidus seemed to be eliminated (simplification during con­

ventionalization?). 
 The authors report, however, that "supplementary feedings
 

of Bifido-bacteria in milk culture had a positive influence on the health and
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and general condition of the piglets". It may be that during conventionalization,
 

a strain of bacteria was introduced or developed that prevented the Bifidus
 

from ever becoming a normal resident of the pig and that the constant
 

reseeding of Bifidus (and the lactose diet) is necessary to maintain even a
 

transient (but useful) population. Moyer and Lewis (1964) have shown that
 

some microorganisms thought to be indigenous, were truly transients and
 

maintained a population only under certain circumstances such as constant
 

reseeding because the subject had a companion in which the transient was
 

truly indigenous.
 

When considering the use of bacteria in the diet for astronauts, then it
 

would appear a wise course to determine a protective strain of Lactobacillus
 

that could be induced into the astronaut, perhaps even specific strains for
 

each astronaut, and to,have a lypholyzed supply of this microorganism stored
 

ready for use when the astronaut(s) need it. This would be a long project,
 

perhaps continuing throughout astronaut training. This concept must he
 

carefully correlated with the diet to assure that the diet fed does not nullify
 

the reseeding. When simplification occurs on a long flight, conventionalization
 

should be accomplished before return unless an extended period of isolation
 

on earth is planned. Lactobacillus may be only one of a number of micro­

organisms needed to assure the astronauts' microbial balance is a truly pro­

tective mix when he returns. The previously mentioned work of Mata and his
 

colleagues is strong support for the concept.
 

Van der Waaij (1969) demonstrated that reinfection (not conventionalization)
 

of decontaminated (by antibiotics) animals is very rapid. The organisms
 

previously eliminated (presumably pathogens) rise rapidly to high numbers.
 

This happens in contrast to difficulties experienced when trying to infect
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normal or germfree animals with specific microorganisms. If re-infection
 

should be by only one or two species, compatible with each other and
 

pathogenic to the host, the consequences are obvious.
 

Hopefully, this discussion has brought a number of problems and questions
 

to light. These questions should be answered before long-term space journeys
 

are attempted., The primate experiment was conducted to whether or not
 

microorganisms of the protective mix are lost during bioconfinement. The
 

effects of the change may not be felt for a considerable period after the
 

change in gut flora has occurred. The why the change, and measures to
 

correct or control it are natural outgrowths of the present program. Require­

ments for frequent analyses of the flora of long term space travelers is
 

indicated. When considering space stations, a bacteriological laboratory is
 

a must.
 

Other Implications - Return From Flight
 

Studies on conventionalization are not numerous. Successful methods
 

have included direct insertion of "normal" gut contents into the subject,
 

gradual exposure to selected microorganisms and several others. Generally,
 

agreement is 
found that sudden exposure of a naive mammal is frequently lethal.
 

Previously mentioned was 
the work of Van der Waaij (1969) where the "take"
 

on decontaminated animals was extremely rapid. Assuming this to be true for
 

humans, then one requirement would be to proceed with conventionalization
 

or in the space flight context "normalization" very carefully and slowly using
 

carefully selected microorganisms, probably isolated from the individual before
 

launch. 
This could be done toward latter stages of the flight; if it were
 

done following return, then the complete isolation procedure must be followed,
 

but in this case, all supplies including the atmosphere introduced to the
 

returnee must be sterile. The burden would be enormous. Time to release the
 

crewmen to normal living is at this stage only an educated guess.
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The Soviets in their year long manned test are cognizant of this
 

problem. Adamovich (1969) said, "Appreciable changes were found in the in­

testinal microflora of test subjects. The nature of the changes indicating
 

significant simplification of the mcroflora made it necessary to develop
 

specific procedures for removing the test subjects from the cabin and take
 

certain preventive measures after the accomplishment of the experiment."
 

III. 	 THE EXPERIMENT- PART A
 

Health and Treatment of Monkeys
 

Ten post-puberty, male Rhesus monkeys (Macaca mulatta) were received
 

at the General Electric Valley Forge Gnotobiology Laboratories on 25 March 1969.
 

All animals weighed between 6 and 8 pounds at the time of delivery. Cage
 

mates 	were randomly selected and then similarly distributed into five standard
 

primate cages. The experimental plan was to select eight at random from the
 

ten animals purchased.
 

During the five week quarantine period at the vendor's facilities*,
 

Thiabenazole at 100 mg/Kg was administered twice as an anti-parasite control;
 

all monkeys were also TB tested and found negative. However, bacteriological
 

testing, particularily with respect to Salmonella and Shigella organisms, was
 

not attempted. An earlier delivery date was requested by us of the vendor's
 

laboratory in order to speed up the initiation of the isolation phase. This
 

halved the intended eight week vendor quarantine period precluding bacterial
 

investigation by the vendor.
 

All monkeys were immediately placed on standard Rockland Primate Diet,
 

supplemented with slices of fresh oranges and bananas to help overcome the
 

normal trauma resulting from the delivery and change of quarters. Fresh tap
 

*Primate Imports Corporation, 34 Munson Street, Port Washington, Long Island,
 
New York 11050
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water was given ad libitum, via mechanical sipping straws. The quantity of
 

food consumed per monkey per day averaged 115 grams. This represents an
 

approximation since it was not possible to completely control food distribution
 

to each of the cage mates.
 

Two days after delivery, Monkey Number 516 was found to be in obvious
 

distress, with a portion of the lower colon protruding from the anal
 

sphincter. Food consumption, even of fruit, ceased. Palliative measures
 

were undertaken on the advice of Dr. Ramsey Buchanan, veterinary consultant
 

of the Gnotobiology Laboratories.
 

The animal continued to show signs of extreme distress through the next
 

few days; the appetite remained poor and the stools were thin and watery.
 

it was decided that the monkey represented a serious health hazard to the
 

remainder of the colony and to the laboratory personnel. Since no safe and
 

convenient means of isolation was possible within the animal facilities, and
 

with the concurrence of Dr. Buchanan, the monkey was tranquilized and death
 

induced with a large intravenous injection of sodium pentathol.
 

To secure maximum commonality of the microflora, redistribution of cage
 

mates was instituted with the use of a table of random numbers. New cage
 

mates would not be tolerated among the monkey colony and further attempts
 

at randomization were abandoned. Wounds from bites and scratches were
 

treated with a hydrogen peroxide solution.
 

Eight days after arrival, Monkey Number 512 refused food and water,
 

exhibited thin, watery stools, and became increasingly listless. A feces
 

culture'taken for bacteriological examinations showed the presence of Shigella
 

organisms. The ailing animal was isolated. Fresh orange slices were offered
 

to the monkey to stimulate his appetite, but to no avail. To overcome the
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obvious dehydration and lack of nutriment, 10 to 15 ml doses of a 10% dextrose
 

solution in normal saline were orally administered via a sterile, plastic
 

catheter inserted beyond the epiglostis of the tranquilized monkey. Ten
 

days after onset of the symptoms described above, the monkey expired,
 

apparently from the combined effects of dehydration and malnutrition induced
 

by 	the Shigella infection.
 

The remaining monkeys appeared to be in good health, eating and drinking
 

satisfactorily. No evidence of additional infections with Shigella were
 

noted in the bacteriological sampling of the remaining eight animals. Anti­

biotic therapy was not instituted.
 

Monkey Isolators*
 

New isolator covers were designed. Their construction reflects improve­

ments suggested by our previous experience with monkey isolation (Bengson and
 

Thomae, 1968). These improvements are outlined below:
 

o 	Four sets of glove ports, instead of two, placed at staggered heights
 

to permit every portion of the isolator to be reached from the
 

outside for more efficient cleaning and to allow more freedom of
 

operation during sampling.
 

o 	A parallel double zipper system, the inner one of PVC which acted as
 

a protective barrier during sterilization with peracetic acid and an
 

outer one of metal-nylon to provide strength, both set at waist height
 

for convenience.
 

o 	A series of plastic straps to provide support during opening and closing
 

of the double zipper system and to prevent premature weakening of the
 

zippers, particularily the inner one.
 

*The basic isolators used have been described in publication AMRL TR-67-177, Aerospace
 
Medical Research Laboratories, AMD-AFSC, Wright-Patterson AFB, Ohio, dated May, 1968.
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o 	A set of three drain plugs at the bottom of each isolator to
 

allow removal of waste and debris during closed-bag cleaning
 

operations and to permit outside maintenance of the urine drain
 

bottle without opening the cover.
 

Figure I shows the isolator system used. Figure 2 shows the cover
 

design.
 

Bacteriological Testing
 

Bacteriological sampling of the monkeys was begun the week following
 

their arrival. These initial tests were designed to concentrate not only
 

on the quantitative aspect of the microflora from five selected sites (feces,
 

gingiva, throat, eye, groin) but also on the identification of each species
 

isolated. Each bacterial identification, along with its relative number and
 

distribution among the primate colony, was considered in the selection of
 

"marker" organisms with which to monitor the effect of physical isolation
 

from random bacterial challenge. The specific details of how and where to sample
 

each monkey and the diagnostic bacteriological procedures used are detailed
 

in the Standing Operating Procedures (SOP) Appendix J. Table I shows the
 

initial total quantitative organism count per site in number/gram dry weight
 

of feces or number/swab sample. Anaerobic counts include facultative as well
 

as obligatory anaerobes.
 

The figures shown in Table II represent initial hematology data on the
 

animals; the figures are compared with the normal as reported by Milville,
 

Whitcomb, and Martinez (1967) on post-puberty, immature male Macaca mulatta
 

monkeys. Our data obtained is complexed by the fact that the animals were
 

still in the process of settling down from the trip from the vendor and adapting
 

to their new environment. Appendix B gives the data on each of the animals
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FIGURE 1. ISOLATOR SYSTEM USED ON PRIMATE EXPERIM4ENT
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TABLE I. SUMARY OF INITIAL BACTERIOLOGICAL ASSAY OF MONKEYS -

AEROBIC AND ANAEROBIC QUANTITATION
 

MONKEY 
CODE NUMBER 

1 512(2) 

FISCAL 
WEEK 

14 

TOTAL AEROBIC COUNT(') (48 HOUR INCUBATION @ 350C) 
SITES 

FECES GINGIVA THROAT EYE GROIN 

2.2x101 0 1.4xlO6 8.3x10 5 7xlO 2 9.4x10 3 

TOTAL ANAEROBIC COUNT(1 ) (48 HOUR INCUB. @ 35°C) 
SITES 

FECES GINGIVA THROAT EYE GROIN 

1.6x101 0  8.3x10 6 8.7xi0 5 1x10 3 9x1O 3 

2 513 

16 

14 

N.D. 

l.lxlO1 0 

N.D. 

1.3x10 6 

N.D. 

7.2xi0 5 

N.D. 

5x10 2 

N.D. 

7.6xi03 

N.D. 

3.0x10I0  

N.D. 

1.6x10 6 

N.D. 

8.4x10 5 

N.D. 

2x10 3 

N.D. 

6.2xi0 3 

16 2.5x101 0  N.D. ND. N.D. N.D. 6x101 0 N.D. N.D. N.D. N.D. 

3 514 14 4x10I0  6.3xi06 3.8x10 5 3.2x,03 3.4x10 4 1.2x101 2.Ix107 l.lxl0 6 4x103 4.4xi04 

4 518 

16 

14 

4.9xi0 I0 

3,lx1IO0 

N.D. 

4.8x10 6 

N.D. 

2.6x10 5 

N.D. 

1.5xlO4 

N.D. 

4.5x10 4 

1.4xlO11 

5.OxlOI0  

N.D. 

7.1x10 6 

N.D. 

3.7x,05 

N.D. 

4.2x10 4 

N.D. 

6.7x0 4 

16 4.2x10 N.D. N.D. N.D. N.D. 7.9xi0 I0 N.D. N.D. N.D. N.D. 

5 511 14 5.6xi0 I0  3.9xi0 5 1.3x106 1.5x104 l.ix10 5 6.6x10 I0  6.7xi05 1.4x10 6 1.3xlO4 7.4x10 4 

6 515 

16 

16 

1.4x1lO0 

2.3x10 I I  

N.D. 

6.1xlO 6 

N.D. 

4.1x10 6 

N.D. 

2.7x10 3 

N.D. 

l.lxl05 

2.2xi0O 

3.5xi0 11 

N.D. 

9.lxlO 6 

N.D. 

4.1x106 

N.D. 

4.2x10 3 

N.D. 

1.3x10 5 

7 517 16 l.OxlOI I  l.0xl06 8.6x10 5 4.7x10 3 3.3x,0 5 3.lxO 1 7.6xi06 3.6x10 6 8.5xi0 3 9.6x0 5 

8 

9 
519 

520 

16 
16 

3.OxlO11 
1.3x10I I  

3.1x10 6 

1.5x,0 7 
2.5xi0 6 

5.2x10 6 
3x102 

3x102 
1.5x10 3 

4.6x10 3 
3.4xi0 I I  

3.lxl0 I I  
1.2x10 7 

9x1O7 
8.0x10 6 

7x10 6 
1x10 3 

1x10 3 
1.7x10 3 

5.3xi03 

(1)Counts 
Feces - Organisms/Gram Dry Weight 

Other Sites - Organisms/Swab Sample 
(2)Monkey No. 512 Died F.W. 16 

N.D. = Not Done 



MEASUREMENTS DIFFERENTIAL COUNT RBC INDICES 

NOKEMONKEY 
NO. CLASS 

NB 
gm/100 ml PVC-% 

RHO6G3 
xIO /mm 

WHO33 
xl03/lnm 

TOTAL 
NEUTROS. 

% 
LYMPHS. 

% 
MONOS. 

% 
EOS. 

% 
BASOS. 

3p 
MCV 

ppgm 
MCH 

gm/tO0 
MCHC 

2 C 10.3 31.7 6.2 15.4 32 55 7 6 0 51 17 32 
10.6 31.0 6.9 12.8 33 55 4 8 0 45 15 34 

3 1 11.3 
12.3 
12.3 

33.5 
34.9 
33.4 

6.1 
6.45 
5.3 

6.1 
8.0 
7.4 

20 
39 
39 

64 
54 
46 

6 
2 
6 

10 
4 
7 

0 
1 
2 

55 
54 
63 

19 
19 
23 

34 
35 
36 

4 1 12.8 38.2 6.05 6.2 41 40 2 15 2 63 21 34 
13.6 
13.1 

39.9 
39.2 

6.23 
6.75 

8.6 
3.5 

49 
31 

42 
49 

2 
5 

6 
12 

1 
3 

64 
58 

22 
19 

34 
33 

5 1 12.8 34.4 5.8 6.1 38 45 3 12 2 57 22 37 
11.8 
12.9 

34.0 
36.8 

5.4 
6.5 

6.6 
11.0 

25 
21 

62 
64 

6 
8 

6 
6 

1 
1 

62 
57 

22 
20 

34 
35 

12.6 35.0 5.95 7.6 2 76 3 18 1 58 21 35 

6 0 11.4 35.1 5.3 9.6 20 50 3 27 0 66 22 32 
11.5 
12.2 
12.1 

35.9 
36.3 
35.1 

6.3 
5.9 
5.9 

6.7 
7.2 
8.0 

21 
31 
17 

50 
45 
57 

5 
2 
5 

23 
22 
19 

1 
0 
2 

57 
62 
59 

18 
21 
21 

32 
33 
34 

7 1 11.6 
10.7 
10.6 
10.9 
10.6 

35.7 
31.8 
32.0 
32.2 
30.0 

6.75 
5.57 
5.4 
5.75 
5.35 

8.3 
8.1 
7.9 
8.7 

10.7 

32 
38 
29 
20 
14 

57 
53 
64 
67 
81 

5 
8 
5 
6 
1 

5 
0 
2 
4 
2 

1 
1 
0 
3 
2 

53 
57 
59 
56 
56 

17 
19 
19 
19 
19 

32 
33 
33 
33 
35 

8 0 9.8 
11.9 

29.9 
35.6 

5.1 
5.1 

12.0 
7.4 

27 
22 

60 
67 

9 
4 

4 
5 

0 
2 

58 
69 

19 
23 

33 
33 

9 C 11.3 31.2 5.25 4.6 18 74 6 2 0 59 22 36 
12.6 35.3 6.25 6.5 13 73 5 9 0 56 20 36 

NORMAL 
VALUES 11-12.5 39-43 5-6 7-13 20-56 40-76 0.5-2.0 1-3 0-2 65-78 18-23 27-31 

I = ISOLATOR MONKEY 
C = CONTROL MONKEY 
 TABLE II. 
 HEMATOLOGY DATA - INITIAL MEASUREMENTS
 



through the experiment and can be compared to Table II. 
 Individual differences
 

are apparent but do not seem significant.
 

Experimental Conditions
 

During the last weeks of gentling, the animals were switched to an
 

autoclaved diet. This was done to accustom them to the taste change which
 

occurs upon sterilization and to verify that the diet planned for use during
 

the isolation period was nutritionally adequate. Since the vitamin loss
 

during autoclave sterilization is relatively severe, supplementary vitamins
 

were fed via the water supply. The water was also autoclave sterilized prior
 

to supplement action. Table VIII gives the nutritional content of the diet;
 

Table IX the contents of the vitamin supplement; and Table X the amount of
 

vitamins given contrasted to the minimum daily requirement of each vitamin
 

required by humans. The vitamins were filter sterilized by millipore filter
 

techniques. The filtering was done within a sterile flexible Trexler type
 

isolator. 
The glass outer (vitamin) container was sterilized when the isolator
 

was sterilized with peracetic acid. 
 During this pre-test period, the animals
 

were kept in open grill cages, exposed to normal atmosphere, with the usual
 

temperature (75 F and relative humidity of 50%) of the primate holding center.
 

The food after autoclaving was not kept sterile other than enclosure in
 

sealed kraft paper bags. After isolation started, food was kept in glass
 

containers and autoclaved in daily packets within the containers. Immediately
 

following sterilization, the containers were sealed.
 

Consistent with our past experience, when the animals (primary subjects)
 

were placed in the isolators, timing of the feeding would quickly induce the
 

animals to travel from isolator to isolator as desired. Thus the separate
 

sections of the isolators could be opened, cleaned, stool and urine specimens
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removed, food and water placed into the isolators and the whole resterilized
 

with 2% peracetic acid solution at times of our choice. The sterilized food
 

and water, in glass containers, was not, of course, reached by the peracetic
 

acid.
 

The temperature inside the isolators was at all times essentially the
 

same as those experienced by the controls. (Normal laboratory temperature
 

was kept at 750 F.) When for any reason the air temperature dropped below
 

75°F, quartz lamp heating units were automatically activated directly onto
 

the animal's cage areas until the air temperature was re-established to the
 

desired point. The relative humidity within the laboratory, control center
 

and interior of the isolators was automatically controlled, additional moisture
 

sometimes being required during the colder months of the year. Our desired
 

RR was 50%/. The isolators were placed near windows so that the animals at
 

their option would get both sun and shade during the day. To insure ease in
 

handling during body and skin sampling, the animals had been thoroughly gentled,
 

accustomed to the sounds of voices and personnel and a radio played 24 hours
 

a day. The animals were not cleaned before placement within the isolator
 

systems in order to remove one possible shock variable from the transfer.
 

Before taking blood samples, the animals were tranquilized by intra­

muscular injections of Sernylan*. Excellent success was found using this
 

product. No ill effects were ever noticed following usage. This greatly
 

facilitated taking samples inside the isolator. This was an important item
 

for a loose (and angry) monkey inside a plastic isolator is not a joke.
 

The primates adapted well to their bio-isolation. The isolated animals
 

all had a "view" and seemed alert and interested in their surroundings. We
 

encouraged our laboratory personnel to attract and divert the animals by
 

*Sernylan, Product of Parke, Davis and Company, Detroit, Michigan.
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various means throughout the working day. At night, radio music was played
 

in the isolator laboratory. At present, it seems as if the psychological
 

problems normally attendant upon infra-human primate isolation were alleviated.
 

The animals showed individual behavioral characteristics as might be expected.
 

One animal is a "rocker".
 

Four monkeys were placed in isolation during Fiscal Week 18- (2 May 1969).
 

One of the isolated animals shortly began to suffer from diarrhea. We did
 

not administer drugs and the condition cleared up by itself. One animal
 

reacted negatively (sulking and refusal to eat or drink); after two days he
 

was returned to the open (control) group and another, randomly picked,
 

substituted. The substitute monkey adapted immediately to his new environment
 

and the sulking monkey immediately upon return to his former cage, began to eat
 

and drink normally.
 

We found much to our surprise that there were not six microorganism
 

species (in high numbers) common to the eight animals undergoing test. This
 

was contrary to our previous experience. The animals, in spite of mixing,
 

had their individual flora. This required us to make a great many more
 

quantitative and qualitative analyses than planned in order to follow the
 

individual animal's predominant flora. The animals' total number of microflora
 

began to drop after several weeks of isolation. Table III indicates the
 

-approximate log change in microorganisms by Week 14 of the experiment. This
 

is due almost entirely to losses in the feces counts.
 

This change was slight but seemed definite. Later statistical analyses
 

verified this (Appendix D). As shown in the summary charts (Appendix B) for
 

each animal, the composition of the flora had changed. There are many possible
 

reasons for the change: (a) the diet could contain a weak antibiotic - if
 

--25­



TABLE III
 

APPROXIMATE CHANGE IN TOTAL NUMBERS OF MICROORGANISMS (LOGS)
 
THREE MONTHS AFTER START
 

ANIMAL NUMBER TOTAL AEROBES TOTAL ANAEROBES STATUS
 

2 -1 0 Control
 

6 -1 -1 Control
 

8 -2 -l Control
 

9 -2 -1 Control
 

3 -2 0 Isolated
 

4 -3 0 Isolated
 

5 0 +1 Isolated
 

7 -2 -1 Isolated
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this were so, the flora would sooner or later overcome this; (b) the diet
 

could be slanted toward encouraging certain microorganisms;
 

(c) there could be a predator upon the most successful species (in the
 

competition for certain nutrients; and (d) the conditions of the experiment
 

(bio-isolation) could be a pseudopredator. These last two possibilities
 

(c and d) have been discussed by Young and Weston (1969). They conclude, "The
 

presence of two species in the same environment with a common limiting resource is
 

paradoxical if competition for the limiting resource is the only consideration.
 

One or the other of the species must be-eliminated. This analysis shows that
 

a normally unsuccessful competitor for the limiting resource may persist however
 

when there is a predator upon the otherwise successful species." Their
 

model is of bacterial growth in a chemostat. Our experiment comes quite close
 

to simulating in life their experimental conditions.
 

In the second quarter, it was noted that the E. coli count for the isolated
 

animals was beginning to drop, indicating that simplification was beginning.
 

This trend continued. Table IV illustrates the progressive reduction in the
 

counts of this microorganism. Table V shows the same phenomena also began
 

for the Lactobacillus.
 

The animals undergoing bioconfinement showed simplification first and
 

then the control animals! Only one control animal continued to show E. coli
 

in normal numbers. This animal (Number 6) was the one that received normal
 

(non-sterilized) Rockland Monkey Chow. The other control animals received
 

the same sterile diet as the isolated primates. (All animals had sterile water.)
 

The quarters of the control animals were separately air conditioned, and the
 

air within the room was constantly being swept through a HEPA) bacterial filter.
 

This is closely equivalent to a "clean" room. Very low numbers of microorganisms
 

were thus present in the air.
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TABLE IV
 

SUMMARY OF CHANGES IN LOG NUMBERS OF E. COLI IN
 
FECES OF MONKEYS DURING BIO-ISOLATION
 

LEVEL OF E. coli IN -

ANIMAL CONDITION DIET WEEK OF ISOLATION 
NUMBER 1 10 20 23 27 37 

2 Control Sterile 7 4 <3 c3 3 43 

6 Control Non-Sterile 6 7 7 7 7 7 

8 Control Sterile 6 3 5 4 <3 43 

9 Control Sterile 6 43 <3 43 <3 <3 

3 Bio-Isolated Sterile 7 4 e3 x3 -3 z3 

4 Bio-Isolated Sterile 8 43 <3 43 <3 3 

5 Bio-Isolated Sterile 5 <3 z3 <3 <3 '3 

7 Bio-Isolated Sterile 7 6 6 <3 <3 <3 
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TABLE V 

CHANGES IN LOG NUMBERS OF LACTOBACILLUS* IN 
FECES OF MONKEYS DURING BIO-ISOLATION 

LEVEL OF LACTOBACILLUS IN 
ANIMAL CONDITION DIET WEEK OF ISOLATION 
NUMBER 1 10 13 16 19 22 25 28. 36 

2 Control Sterile 10 9 8 8 9 9 8 8 9 

6 Control Non-Sterile 10 9 8 8 10 10 9 9 10 

8 Control Sterile 10 9 8 8 10 10 8 8 10 

9 Control Sterile 10 9 9 9 9 9 9 9 9 

3 Bio-isolated Sterile 10 9 8 8 10 10 8 7 8 

4 Bio-isolated Sterile 10 8 7 7 8 8 7 6 7 

5 Bio-isolated Sterile 10 10 10 10 10 10 9 6 9 

7 Bio-isolated Sterile 10 9 8 8 8 8 6 3 8 

*This includes all strains of Lactobacillus 



These results are in agreement with those of Dubos' (1967). Dubos
 

placed conventional mice in bio-isolators and noted the animals lost their
 

E. coli by the third generation. Of importance here is the verification of
 

the phenomena in a second animal species. If this can be related to data 
on
 

man, then a firmer groundwork is laid for relation of the whole experiment
 

to man in spacecraft isolation.
 

Thus, in 4 months, a shift away from the normal flora and "normal" 

levels has been shown to occur in all the isolated animals. The change was
 

slower in the clean air animals than in those that were bio-isolated, but
 

it still occurred. In one isolated animal (Number 5), Proteus, not previous
 

detected probably because it was present in less than 103 per sample, climbed
 

in numbers. The aerobic organisms decreased and the anaerobes increased.
 

Figures 3 through 10 and Table VI presents our findings on total organisms.
 

Proteus numbers increased presumably to fill the void left by the disappearance
 

of E. coli. Of interest is the fact Proteus was present only in very low
 

numbers at the start of the experiment.
 

The decrease (disappearance?) of E. coli in two species of animals
 

(mice and monkeys) is interesting from another viewpoint. The requirements for
 

water analyses usually use E. coli as the marker species. If checks of the
 

astronaut drinking supply (or any other water) do not disclose E. coli, it
 

obviously does not mean the water is safe from a bacteriological standpoint.
 

It would appear that the standards for water analyses should be checked to make
 

certain not too much reliance would be placed on normal presumptive testing using
 

the presence or absence of E. coli as a standard.
 

E. coli has been shown by Tanami (1967) in Japan (using germfree animals),
 

to promote the antibacterial power of sera (against Salmonella typhosa). The
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loss of this organism (E. 221i) may have an effect on the natural or acquired
 

immunities of the astronaut. This action of E. coli may be strain specific.
 

The E. coli and the Lactobacillus were judged the most important members
 

of the protective mix* in that most is known about the interactions of
 

E. coli and Lactobacillus with other indigenous genera, both qualitatively
 

and quantitatively. The results of Part B of this program are illustrative
 

of the complex interactions and how changing the variable of diet alone reflects
 

changes in the interactions.
 

Animal Number 7, an isolated animal, suffered from a bad skin rash
 

acquired about a month after isolation started. Almost pure cultures (107 to
 

108) of microorganisms (Staphylococcus epidermidis) were recovered from the groin.
 

He seemed normal, other than his red blotched skin and heavy dandruff. We did
 

nothing about his condition. If his health had failed, we had planned this
 

animal would be the prime isolated candidate for a massive dose of antibiotics.
 

The whole course of the experiment could then have changed (at least for this
 

animal) and his control partner. Much would have depended upon the antibiotic
 

used to attempt cure of the S. epidermidis infection. If enough of the
 

protective mix were removed from his microbial ecology, the possibility of
 

runaway Candida or an antibiotic resistant Staphylococcus infection setting
 

in were very real. For this reason, we did not give an antibiotic and the
 

animal survived the entire period with the rash.
 

It must be pointed out that this potential of a "runaway" infection is
 

exactly what could happen if the same situation (a need for antibiotics) were
 

to occur on a long space flight. Phillips (1966), Seelig (1966), and many
 

others have written at length on the causes and consequences of "runaways" of
 

normal commensals. The study of the effects of antibiotic therapy during
 

*It must be iterated that the total sum of the effects of all the microflora make up
 
the protective mix. Our information as to the contribution of many genera is almost
 
nil other than the fact they are a factor.
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bioconfinement is planned as a normal portion of the work proposed for
 

1970.
 

Serum Protein Studies
 

Attached as Table VII are the results of serum protein analysis
 

(Electrophoresis).
 

The plasma proteins are the most readily accessible proteins in the
 

body, and we followed protein metabolism of the animals by this method. The
 

autoclaved diet is supposed to be adequate in nutritional value and the loss
 

of vitamins had been covered by supplementary feeding of vitamin concentrates.
 

The extent of protein damage or loss due to the sterilization process is
 

unknown (Browning reactions normally tying up lysine).
 

The plasma proteins are an indication of the general health of the animal.
 

While the list of physiological problems that are contributory to an inadequate
 

supply of protein to the body is long, usually specific dietary deficiency
 

may be suspected. No particular reason existed to suspect liver damage
 

(another possibility) in both the control and experimental animals, thus our
 

finding of low albumin content were more indicative of inadequate protein
 

supply.
 

An area of concern to us was the early failure of the animals to gain weight.
 

The diet given the animals was exactly the same as that given on a previous
 

primate test when satisfactory growth (.1 Kg/mo) was observed. Table VIII
 

lists the diet constituents and Tables IX and X, the vitamin supplement. We
 

increased the animals' food ration and changed the diet of one (Number 6) of
 

the control group to unsterilized food. We thought it possible that the
 

sterilization may be affecting the food content in some different manner other
 

than the vitamin loss which we compensate for, i.e., "Browning reactions".
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TABLE VII 

SERUM PROTEINS OF REPRESENTATIVE PRIMATES AT FISCAL WEEK 48 OF EXPERIMENT 

TOTAL AU TOT % 0(2 % 'd % y % ALBUMIN 
PROTEIN ALBUMIN TOTAL TOTAL TOTAL 
 TOTAL 
 TOTAL GLOBULIN 

PRIMATE gm/100 ml gms PROTEIN gms PROTEIN gms PROTEIN gms PROTEIN gms PROTEIN RATIOS 

No. 3 I-S 5.9 2.64 44.7 .52 8.8 .77 13.1 .57 9.7 1.40 23.7 .89 

No. 7 I-S* 7.8 2.85 36.5 .70 9.0 .76 9.7 1.23 15.8 2.26 29.0 .67 

No. 6 C-NS 7.6 3.50 46.0 .36 4.8 .60 7.9 .97 12.7 2.17 28.6 1.13 

No. 9 C-S 6.3 3.12 49.5 .40 6.3 .51 8.1 .62 9.9 1.65 26.2 .98 

Versatol 7.2 4.0 55.5 .32 4.4 .28 10.9 .79 11.0 1.31 18.2 1.25 
(Human) 

Literature 7.8 4.9 62.8 GLOBULINS = 2.9 1.67 

*Has violent skin rash - S. epidermis 108/gm
 

I = Isolated S = Sterile Diet
 

C = Control NS = Non-Sterile
 



TABLE VIII
 

CONSTITUENTS OF PRIMATE DIET BEFORE AUTOCLAVE
 
STERILIZATION ROCKLAND PRIMATE DIET
 

Crude Protein 17.0 percent minimum 

Crude Fat 5.0 percent minimum 

Crude Fiber 3.0 percent maximum 

Ground Yellow Corn 	 Pyridoxine Hydrochloride
 

Dried Skimed Milk 	 Thiamine Hydrochloride
 

Dehulled Solvent Extracted Vitamin A Palmitate
 
Soybean Meal
 

D-Activated Plant Sterol (Source of
 
Animal Fat (Preserved with Vitamin D-2)
 

Propylene Glycol, BHT, Citric
 
Acid) Vitamin E Supplement
 

Ground Whole Wheat 	 Choline Chloride
 

Dehydrated Alfalfa Meal Ascorbic Acid and Traces of
 
Manganese Sulphate
 

Brewer's Dried Yeast
 

Iron Carbonate
 
Cane Sugar
 

Iron Oxide
 
1.5 	percent Calcium Carbonate
 

Copper Oxide
 
0.75 percent Salt
 

Cobalt Carbonate
 
Vitamin B-12 Supplement
 

Potassium Iodide
 
Ribolflavin Supplement
 

Zinc Sulphate
 
Calcium Patothenate
 

Niacin
 

Folic Acid
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TABLE IX 

CONTENTS OF WATER SOLUBLE VITAMIN SUPPLEMENT 
GIVEN TO EACH MONKEY, EACH DAY 

VITAMIN QUANTITY 

A (Palmitate) (1.8 mg) 6,000 USP units 

D (30 mg) 1,200 USP units 

C (Ascorbic acid) 60 mg 

B (As Chloride) 2 mg 

B2 (Riboflavin 5' Phosphate Sodium) 1.2 mg 

B6 (Pyridoxine Hydrochloride) 0.5 mg 

B12 (Cyanocobalamin) 2 mg 

Niacinamide 10 mg 

Pantothenic Acid (As Pantothenol) 3 mg 

-44­



TABLE X 

DAILY VITAMIN SUPPLEMENT 

VITAMIN PROPORTION OF MINIMUM DAILY REQUIREMENT 

A 4 

D 3 

C 6 

B1 8 

-B 2
2 


Niacinamide * 

*MDR not established 

The above figures are for human infants. The daily ration was in all
 
cases equal to or above the MDR for human children and adults
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This change in diet increased the number of analyses for we had to consider
 

any "new" microorganisms brought to this animal by the food and any possible
 

differences due to change in internal conditions within that (Number 6)
 

primate. The unsterilized food would set up a different environment for the
 

indigenous microflora and thus a change in relative numbers probably would
 

occur even if a change in kind is not evidenced. It is emphasized that the
 

failure of the animals to gain weight was exactly that and was not a substantial
 

weight loss. The animals were all quite active throughout the program. It
 

could very well be that we attained a balance and that the animals desired
 

just enough food to maintain their weight. Some food wastage began to appear
 

following the diet-quantity increase. All the animals visually appeared quite
 

normal. The hematology showed normal although our serum protein analyses
 

indicated that protein intake could be low. Increasing the quantity of food
 

given seemed to alleviate this condition.
 

Our overall expectation of growth was that the animals should have gained
 

about a half to two-thirds of a kilogram during the isolation period. This was
 

generally not realized. The growth curve of the one animal with an unsterilized
 

diet and the low serum protein results of all the animals indicate that perhaps
 

more or better protein could have been utilized in the diet unless a normal
 

requirement of primate nutrition is the presence of certain types of gram­

negative microorganisms.
 

Hurst (1965) studying weight gain of growing rhesus monkeys did not
 

correlate weight with age but rather studied weight gain per month on a particular
 

diet. His daily diet weighed from 200 to 230 grams per day depending upon the
 

fruit fed (water percentage unknown) and contained from 223 to 117 calories
 

per kilogram. Our original daily food portion (without fruit) averaged 125 grams
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per day dry weight. Our animals, like those of Hurst, were taken from the
 

wild, thus exact ages could not be determined. The average weight shortly
 

after receipt in our laboratories was 3.81 kilograms (high 4.10, low 3.52
 

and an average of 3.7 kg at experiment start). Eight months later, the
 

weight was 3.5 kilograms. For a period, their average weight dropped' to 3.38.
 

No animal confined or control varied much from the average.- Foll6wing the
 

shorter sterilization cycle and increased food allowance, loss of weight
 

ceased. Previously referred to was the weight gain of the animal receiving
 

unsterilized food 
(3.6 to 4.4 Kg) (and having a near "normal" flora throughout).
 

The confined animal with the least change in total microflora (Number 5) was
 

3.8 kilograms, up from 3.5 kilograms.
 

Table XI illustrates weight changes during confinement. (Weights were
 

measured weekly on isolated animals and on controls, bi-weekly.) Figures 11
 

through 18 graphically represent the individual changes. Two animals stand­

out from the overall picture. The animal (Number 6) receiving unsterilized
 

food from Week 18 immediately started gaining weight. His microfloral profile
 

shows no loss of E. coli or Lactobacillus. Animal Number 5, although losing
 

E. coli as his mates, hung on to Lactobacilli longer than his mates. This
 

animal also was the only animal to have substantial numbers of Proteus
 

internally. These two animals thus were the only animals to have high numbers
 

of aerobic gram-negative microorganisms in their intestinal tract. There
 

is, therefore, an indication that the cause of non-food utilization may be
 

due to loss of gram-negative microorganisms. This point should be further
 

studied in detail. The possibility of E. coli (and perhaps others) being able
 

to synthesize some required element of the diet is very real. 
E. coli is a
 

known vitamin and nutrient synthesizer. Smith, Beamer, Vellios and Schultz (1959)
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TABLE XI
 

ABBREVIATED RAW DATA OF PRIMATE WEIGHTS (Kg)
 
RECORDED DURING EXPERIMENT
 

AIMAL 
NUMBER 1* 4** 17 

WEEK 
27 35 36 37 NOTES 

3 3.9 3.8 3.5 3.1 3.2 3.2 3.0 

4 3.5 3.0 3.0 2.9 3.0 3.0 3.0 

H 
C 

o 

p 

5 

7 

4.1 

3.6 

3.5 

4.0 

4.0 

3.5 

3.5 

3.0 

3.8 

3.0 

3.8 

3.0 

3.8 

2.9 

Has High Proteus 

o 2 3.9 3.7 3.3 3A 3.2 3.2 

0Co 

* z 

6 

8 

3.6 

3.9 

3.6 

3.9 

3.2 

3.4 

3.9 

3.3 

4.2 

3.4 

4.3 

3.4 

4.4 

3.4 

Normal Diet (Non-Sterile) 

9 3.9 4.1 3.8 3.4 3.5 3.5 3.5 

*Arrival Weight 

**Isolation Start 
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have speculated that the coliforms play a significant role in normal
 

digestive processes and the assimilation of nutritive materials. A
 

different diet, of course, may remove the requirement for E. coli if there
 

truly is one. Again, before long term missions occur, the role of these
 

microorganisms must be clarified. In Part B of this program, other rather
 

unexpected effects of E. coli and the Apollo diet are shown. Studies on these
 

possibilities should include synergistic and combined actions.
 

Table XII, microbiological profile of Animal Number 2, illustrates the
 

complexity and number of the total isolates found in our animals. Our
 

original plan to follow only six marker organisms quickly gave way to
 

following the course of the predominate genera in each animal. The data,
 

qualitative and quantitative on the eight animals are shown in Appendix B,
 

Tables B-I through B-VI1.
 

Most of the organisms numerically stayed approximately the same. There
 

was some cycling within a range of about two logs, but in no case did an
 

overt pathogen rise to levels that appeared to endanger the animals. It is
 

our belief that a new protective mix was gendered, and that under the conditions
 

of the experiment, enough harmless (to the animal) commensals remained, to
 

inhibit rise of the potential pathogens indigenous to the animals. This is no
 

reason to believe that we were other then fortuitiousl The particular diet,
 

the general well-being of the active animals plus the continuous attention
 

are probably factors in the animals' survival. Animal Number 7 was fortunate
 

that his skin Staphylococci infection was evidently annoying rather than
 

lethal. In a previous experiment (Bengson and Thomae, 1968) where a runaway
 

rash developed (Pseudomonas aeruginosa) severe methods were called for to save
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TABLE XII
 

ISOLATION AND IDENTIFICATION OF MICROFLORA
 
FOR ONE CONTROL MONKEY
 

Week 2-70, samples were taken from Monkey Number 2 for bacteriological
 

examination. The sites sampled were: feces, gingiva, throat, eye and groin.
 

Procedures for sampling and methods of analysis as per S.O.P.'s.
 

Tentative identification of genera as follows:
 

ISOLATES LOST ON
 

SITE MICROORGANISM UNIDENTIFIED TYPES SUB-CULTURING
 

AEROBES ANAEROBES AEROBES ANAEROBES
 

Feces Streptococci sp. 7 0 1 4 

Streptococci sp. 

Streptococci sp. 

Corynebacterium sp. 

Staphylococci sp. 

Staphylococci sp. 

Neisseria sp. 

Lactobacilli sp. 

Lactobacilli sp. 

Veillonella sp. 

Bacteroides sp. 

Bacteroides sp. 

Bacteroides sp. 

Gingiva Streptococci sp. 4 1 4 0 

Liptotrichia sp. 

Neisseria sp. 
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TABLE XII (Continued) 

ISOLATES LOST ON 
SITE MICROORGANISM UNIDENTIFIED TYPES SUB-CULTURING 

AEROBES ANAEROBES AEROBES ANAEROBES 

Streptococci sp. 

Neisseria sp. 

Staphylococci sp. 

Staphylococci sp. 

Corynebacterium sp. 

Haemophilus sp. 

Haemophilus sp. 

Bacteroides sp. 

Bacteroides sp. 

Veillonella sp. 

Bacteroides sp. 

Diplococci sp. 

Vibro sp. 

Fusobacterium sp. 

Fusobacterium sp. 

Actinomyces sp. 

Mycoplasma 

Eye Staphylococci sp. 

Staphylococci sp. 

Groin Staphylococci sp. 

Staphylococci sp. 

Throat Similar microflora to gingiva but fewer types. 
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the animal. We were forced to bathe (complete immersion and wetting) the
 

animal in 0.1% peracetic acid to destroy the infection. This is hardly
 

treatment to attempt with human astronauts.
 

The potential for disease was always present. Tables B-I through
 

B-VIII show every animal was possessed of sufficient variety of pathogenic
 

organisms from the start, to furnish basis for disease. So little is known
 

about the interrelationships of overt pathogens with the other microflora
 

of the body, not to mention the physiological and psychologic states that
 

could contribute, that any precise statement as to why something did or did
 

not happen is at present speculation. Empirical knowledge is all we possess.
 

Summary and Conclusions
 

Eight primates (Macaca mulatta) were studied with the objectives of
 

determining the effects of altered ecological relationships on the host by
 

monitoring the changes in the indigenous microflora during long-term bio­

isolation. Four of the animals were supplied with sterile air, sterile food,
 

and sterile water. Three control animals were supplied with normal air,
 

sterile food, and sterile water and one control animal with normal air,
 

normal (non-sterile) food, and sterile water. The animals were isolated for
 

seven and one-half months. Initial microbial analyses of body surface areas,
 

body cavity areas, urine and feces of each animal disclosed each animal to have
 

an unique indigenous microflora with regards to variety, location, and
 

numerical counts. General agreement was found only in total numbers of micro­

flora and a few specific genera.
 

Bio-isolation was verified by regular sampling of the isolator interior
 

surfaces, filters, and the circulating air systems. All materials to be
 

introduced into the isolator were sterilized and sterility verified by test
 

within a transfer (holding) isolator.
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Following baseline isolation of micibbial isolates to select the
 

marker organisms, weekly enumeration of the selected tracer (marker) organisms
 

was 	done. When isolates indicated non-tracer organisms were increasing,
 

identification to genera was performed. -

During the course of the experiment, most of the animals lost E. coli
 

by simplification. Total number of Lactobacilli also declined. In one
 

instance, a gram negative organism, Proteus, rose in number to partially
 

fulfill the void left by E. colt loss. This animal was the only animal in
 

which Proteus had been found, but the rise in numbers was not thought to
 

be atypical but rather to be expected.
 

Serological and immunological studies were made on all subjects. A
 

Standing Operating Procedure (SOP) was written to cover all phases of the
 

Gnotobiology Laboratory operations-.
 

An extensive bibliography has been compiled (Appendix M) in conjunction
 

with the literature review. Statistical analyses verified tHe loss of micro­

flora under the experimental conditions, was not an individual phenomena but
 

could (98%+ certainty) be expected to occur in bio-isolation (Appendix D).
 

IV. 	RECOMMENDATIONS FOR EXPERIMENT - PART A
 

1. 	 Further investigation be conducted to find suitable ways and means of
 

"conventionalizing" personnel that have simplified 
or distorted their
 

protective mix of microflora.
 

2. 	 The effect of introducing "strange" microorganisms to subjects depleted of
 

their normal flora should be studied.
 

3. 	 Long term effects on natural body defenses of changed microflora should be
 

studied.
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4. 	 Methods of achieving or holding an individual microflora mix
 

compatible with those of an associated group should be searched out.
 

5. 	 The effects of antibiotic therapy on protective mixes and the results
 

of re-exposure to normal flora carrying individuals are unknown for
 

other than persons with relatively high immuno defenses. The problems
 

involved in treating individuals that are-borderline normal or have
 

delicately balanced indigenous flora or unbalanced flora- should be studied-.
 

6. 	 The effects of different diets on the microorganism balance be further
 

pursued. In particular, diets that tend to encourage the growth of
 

certain microorganisms species should be investigated.
 

7. 	 That as space flight time increases (per mission) that attempts to
 

develop a more comnmon microflora prior to flight be continued.
 

8. 	 The role of particular microorganisms in relationship to nutrient
 

utilization must be calrified.
 

9. 	Methods of identifying one or more protective mixes for individuals must
 

be sought out.
 

10. 	 Experiments on bio-isolation be conducted to extend at least one year
 

and preferably to cover the entire period contemplated for'a mission.
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INTRODUCTION - PART B
 

The two hypotheses tested during this program are based on historically
 

important concepts. The first began a century ago when Liebig and others applied
 

the principles of organic analysis to foodstuffs with the preconceived idea
 

that the analytical data from feeds could be used to determine the most
 

economical system for livestock production. Tables of protein, carbohydrate
 

and lipid composition of foods were accumulated and used widely. Discerning
 

experimenters added mineral ash to this list beginning about 1880. 
 About 1900,
 

doubts arose concerning the validity of the basic concept (McCollum, 1964).
 

During the first decade of this century, the work of Hopkins in England and
 

Osborn and Mendel of U.S.A. showed that one misconception was that proteins
 

were equal; the total nitrogen of feeds actually does not provide a reliable
 

index of the biological value of proteins because it cannot reflect the
 

content of individual essential amino acids. 
The next two decades confirmed
 

as fact that the gross composition of foodstuffs does not accurately reflect
 

biological value. Proximate analysis, it was learned, does not reveal the
 

vitamin and trace element contents. Thereafter food tables were developed
 

which included vitamin and mineral (including some trace element) data. It
 

was believed this data combined with information on known requirements would
 

allow the formulation of diets adequate for man or beast. 
That this too was
 

a misconception was shown by the dramatic failures obtained from feeding
 

U.S. Army K rations to rats and monkeys. These results are as yet unpublished
 

to our knowledge and both the-reporter (Dr. C. A. Elvehjem) and the principal
 

investigator (Dr. H. Spector) are deceased. Others associated with the work
 

are reluctant to provide concrete data. Disregarding this lack of reference,
 

the fallacy of the concept was shown when attempts were made to correlate
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TABLE XIII
 

LOCKED FLORA STUDIES
 

STATE* SPECIES FINDING 	 DATE AND AUTHOR
 

3 	 Dogs, Rabbits, Decreased N2 utilization .1895-1916, Kianizin
 
Guinea Pigs, and death
 
Pigeons
 

3 Guinea Pigs Weight loss and death 	 1901, Charrin and
 
Guillemonat
 

5 	 Guinea Pigs Weight loss and death 1931, Reagen
 

3 Guinea Pigs 	 Survival with flora 1941, Nelson
 
simplification
 

4 Rats 	 Survival and dramatic 1942, Reback
 
flora simplification
 

6 & 7 Rats 	 Complete microbial 1963, Luckey
 
sterility attained
 

0 Man Cross infection 1964, Moyer and
 
Lewis
 

0 Man 	 Increased bacteria on 1964, Gall and
 
body Riely
 

0 Man 	 Simplification toward 1966, Boeing
 
pathogens
 

7 Monkey Microflora changes 	 1967, Bengson, Prince
 
and Thomae
 

6 	 Mice Bacteria free status 1967, Van der Waaij
 

7 Monkey Simplification 	 1969, Bengson and
 

Gea ting**
 

*CODE
 

0 = Virtually no aspetic procedures within the closed chamber.
 
I = Sterile food.
 
2 = As 	1, plus sterile air.
 
3 = As 	2, in sterilized environment.
 
4 = As 	3, with bacteriostatic and/or bactericidal drug administration.
 
5 = As 	3, with frequent cleaning or transfer.
 
6 = Procedures of 4 and 5.
 
7 = Gnotobiotic conditions.
 

**Reference, this present report Part A.
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biological activity with microbiological assay of some of the B-vitamins.
 

- The classic work of Snell (1945) showed that elements of the vitamin B6 

complex were more than one thousand times as active for assay microorganisms 

than for animals. The work on folic acid, vitamin B6 and biotin (Luckey et al., 

1944-46) complexes are less dramatic but confirm the idea that some members
 

of the B-vitamin complex are more active for microorganisms than for animals.
 

This was the background that makes it important to evaluate the Apollo
 

diets biologically. The diet (used in this experiment) was designed to be
 

adequate according to calculations from food analysis, and it had been found
 

to be adequate according to subsequent chemical and microbiological assays for
 

individual nutrients. 
But was it actually adequate for rearing mammals? Are
 

our analytical methods presently adequate to give assurance of biological
 

value without bioassay? This is the conceptual basis for the major hypothesis
 

tested herein.
 

The second hypothesis involved is: prolonged isolation will cause a
 

simplification of the flora in the intestine. The consequences of this may
 

include the formation of a dominant flora which will markedly alter the
 

nutritive requirements of the host. Therefore, it was pertinent to feed
 

Apollo diet to mice which had known microorganisms representing different
 

parts of the intestinal flora. The base for this hypothesis has been previously
 

reviewed (Luckey, 1968) and is summarized in Table XIII. This concept is
 

partially validated by the disastrous effects of adding potentially pathogenic
 

strains of bacteria from the intestinal tract to germfree animals; i.e., the
 

resultant deaths when Escherichia coli was added to germfree guinea pigs
 

by Tanami (1959). These and other experiments were reviewed in "Onotobiology
 

and Aerospace Systems" by Luckey (1968).
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Isolator Problems
 

Of the wide variety of things which may happen to germfree animals,
 

gnotophoric animals and astronauts, only one will be discussed in detail.
 

Psychologic problems of claustrophobia or of agoraphobia, sociologic problems
 

of maintaining discipline for a long period of time, physical problems for
 

disuse of certain organs, from the inefficiency of physical operations
 

without a toe hold, and from a variety of stresses which will arise, will not
 

be discussed. An appropriate concept to present is the potential for microbial
 

disturbance in prolonged manned aerospace system which has been reviewed by
 

Luckey (1968).
 

Evidence from the exploratory isolation experiments which have been
 

done to date suggests that the simple act of isolation of a single animal in
 

a cage may have profound effect upon that animal; however, data from control
 

animals are generally missing. If a contaminated animal is isolated in a
 

sterile environment and provided with sterile food, water and air, a dramatic
 

change is apparent in the microbial flora within a few months. The microflora
 

of the intestine will simplify and often the total flora of the animal and
 

environment may be reduced by autodisinfection to very few species of micro­

organisms. Usually one of the microorganisms found is a mold which does not
 

affect the intestines, and often one of the microorganisms found in the
 

intestines is a yeast. The bacterial species found seems to vary according
 

to unknown variables. Reagan (1931) found only E. coli and Bacillus subtilis,
 

with no other bacteria present in the flora of isolated guinea pigs.
 

Nelson (1941) could only find one bacterial species and one yeast in the
 

intestinal flora of isolated guinea pigs. The pattern of autodisinfection was
 

confirmed by Rebeck (1942) who sometimes found two microorganisms and no yeast.
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Work with J. R. Pleasants in the Lobund Laboratory indicated that .germfree
 

rats which became monocontaminated could be decontaminated. No organisms
 

could be detected. To the extent that laboratory tests were reliable, 

the rats were again germfree. In these experiments, the animals were trans­

ferred daily with germicidal (0.1% peracetic acid) baths from one isolator to the 

other. Detergents and bacteristatic drugs were used only in the Reback 

and Lobund experiments. The earlier studies of Bengson, Prince and Thomae (1967) 

are reported elsewhere. Unfortunately, the early work of Kianizin (.916 ) 

and of Charrin and Guillemonat (1901) was done before vitamin destruction by 

heat sterilization was appreciated. Thus, their results showing a decrease
 

of nitrogen utilization, weight loss and death in isolated animals may be
 

open to this interpretation. It is interesting to note that both Schmidt (1965)
 

and Zablotny (1928) have found hibernating animals to be resistant to
 

infectious microorganisms. Starvation and low carbohydrate diets were shown
 

to reduce the microflora in animals by Porter and Rettger (1940).
 

Evidence from the animal work cited above and that of Part A of this
 

experiment suggests that there will be a predictable simplification of the flora
 

of any astronaut in isolation for a prolonged period of time. The effects
 

of more than one animal per cage and the introduction of other variables have
 

not been studied. These locked flora animal studies suggest that there are
 

no truly indigenous microorganisms of the intestinal tract which are not
 

subject to change by diet or other conditions. There must be an interaction
 

and equilibrium established between the intestinal microflora and the external
 

environment. Luckey's (1965) review of studies on monoflora in animals suggests
 

that any given species in the intestinal tract will populate that area to about
 

the same density as there are total microorganisms of a mixed population.
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The.experiments with human subjects have been less vigorously controlled,
 

and show few consistent effects. 
They should be repeated, with conditions
 

closely simulating those of astronauts on prolonged flights. Studies On
 

the changes of microflora in men isolated in small groups gave varying
 

results. 
 In one experiment (Boeing Company, 1965) the limited bacteriologic data
 

indicated a simplification of the microflora of the nose, throat and mouth with
 

an almost pure culture of Staphylococcus aureus in the throat and nose and
 

primarily Vincent's organism in the-mouth. boyer and Lewis (1964) found
 

evidence of cross-infection between confined men. Examination of the fecal
 

flora of men in group isolation by Gall and Riely (1964) showed a shift in
 

both the anaerobic and aerobic flora. Shigella and enteropathogenic types
 

of E. coli were frequently cultured. Candida species occurred with unusually
 

high frequency. Unusual organisms were noted; 
a decrease in enterococci seemed
 

to complement the rise seen in coliforms; and new types of cultures of
 

anaerobic bacteria were found. 
 It would be most interesting to have these
 

experiments on humans repeated under strict isolation, with sterile food, water
 

and air provided for several months. Feeding synthetic diets to humans was
 

associated with fast, 
dramatic decrease in the intestinal microflora according
 

to Winitz and co-workers (1966).
 

Since the change in intestinal microflora may cause discomfort and disease,
 

better isolation conditions and other variables should be imposed in future
 

studies. Manned aerospace systems will eventually involve periods of time
 

which will be long enough to allow natural decay rates of bacteria on surfaces
 

and dry foods to greatly reduce the numbers of microbic species within the
 

environment. 
It is anticipated that filtered air and manufactured or condensed
 

water will be provided for the astronauts. Much of the food will be processed
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in such a manner that bacterial contamination will be low. This may be
 

considered a modified locked-flora system with the potential that the flora
 

will simplify. The "control" primates of Part A were subject to such
 

conditions and E. coli was lost. The dominant species may or may not be
 

compatible with the well-being of the host. 
The effects of stress, disease,
 

medication, radiation and possible sources of re-inoculation should be
 

systematically presented 
to study their effect upon intestinal microflora
 

simplification. Studies of Tanami (1959) previously discussed in Part A
 

suggest that certain strains of E. coli should not be allowed to become
 

dominant, although E. coli seems to be an important member of the human
 

"protective mix", If harmful microflora became dominant, disaster would be
 

eminent. Administration of germicidal drugs will lead to further flora
 

simplification, possibly to germfreeness (Van der Waijj, 1969). 
 This suggests
 

that a Streptococci or Lactobacilli inoculum should be routinely provided
 

if a balance with predominantly innocuous microorganisms is to-be maintained.
 

However, if a microflora of such an innocuous microorganism is maintained, this
 

does not seem to provide adequate stimuli to maintain our defense mechanisms.
 

This was illustrated (Figurel9) in the experiment of Wagner (1959) 
in which
 

second and third generation Lactobacilli monoflora rats did not develop anti­

bodies against their monoflora. If the Lactobacilli were inoculated into
 

these monoflora rats, then antibody was produced. Apparently the defense
 

mechanisms of the mucosa membranes are more than adequate to keep out Lactobacilli
 

with low invasive potential. This robs the body of the stimulus needed 
to
 

provide other defense mechanisms. If the prolongation of the manned aerospace
 

system included the establishment of a colony in a hostile environment where
 

there was no recontamination, the astronauts, and particularly the second
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generation astrobabies, may not be exposed to the continuous microbial
 

attack which must be important to the normal development of their defense
 

mechanisms.
 

II. THE EXPERIMENT - PART B
 

Procedures
 

The gnotobiologic evaluation of Apollo-68 diet was carried out in the
 

Gnotobiology Laboratories at the Valley Forge Space Center (VFSC) of the
 

General Electric Company at King of Prussia, Pennsylvania.
 

Classic mice in the "open" laboratory were reared in the conventional
 

manner. The isolated mice were reared in standard plastic isolators with
 

strict adherence to accepted gnotobiotic procedures (Figure20). Each isolator
 

(20 mice) were equipped as shown in Table XIV. The procedures and protocol
 

used were according to conventional Standing Operating Procedures with
 

examples of the onds used, directed to this experiment, attached to Appendix K.
 

Where applicable, the procedures of Huempfner (1967), the GF* Supply Division
 

Instructions for Isolator Set-Up and Use and the Report of the Committee on
 

Standardized Procedures for the Microbiological Monitoring of Gnotobiotic
 

Animals issued by the Association for Gnotobiotics, were utilized.
 

Experimental Design
 

The original experimental design proposed a preliminary experiment with
 

commercial** mouse food to check out the methods and personnel skills. This
 

experiment, using Groups 11-14, is discussed in detail in Appendix L. Following
 

this, mice fed the Apollo diet were to be maintained through three generations.
 

The diet, environment and microbic state for each group of 20 mice is shown
 

in Table XV. As the program developed, events and results made it expedient to
 

deviate from the original design to a revision. This design is given in
 

*G.Fo Supply, A Division of Standard Safety Equipment Company, 431 North Quentin Road,
 
Palatine, Illinois, 60067
 

**Commercial food used was Purina Lab Chow Diet 5010C, Product of Ralston-Purina
 

Company, St. Louis, Missouri
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FIGURE 20
 

OPEN ISOLATOR LABORATORY CONDITIONS
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FIGURE 20 (Continued)
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TABLE XIV 

MOUSE ISOLATOR EQUIPMENT LIST (INTERNAL) 

ITEM 	 QUANTITY 

I. Cages Polycarbonate 	 5
 
2. Lids, Stainless Steel 	 5
 
3. Water Bottles, Molded Plastic 	 6
 
4. Stainless Steel Sippers 	 6
 
5. 	Rubber Stoppers Size One Hole 6
 

Bel-Art Size #6 Solid 2
 
6. Triple Beam Balance, Ohaus 	 1
 
7. Forceps, 250 c Stainless (AHT) 	 1
 
8. Surgical Scissors, 6 " (Clay Adams) 	 1
 
9. Plast-O-Mat Ribbed Plastic Floor Mat 	 I
 

10. Protective Working Gloves (Canvas) 	 I Set
 
11. 500 ml 	Square Pak Water Bottles (AMSCO) 2
 
12. Wire Grid Gage Floors 	 5
 
13. Culture Tubes, Screw Caps 	 24
 
14. Cotton 	Swabs, Sterile (Swubes) 24
 
15. Test Tube Rack 	 1
 
16. Wide Mouth Jars Mayonaise 	 2
 
17. Rubber 	Tips for Forceps 3
 
18. Tall Form Weighing Beakers 	 i
 
19. Food Cans 	 2-8
 
20. Feeders (Small Cones) 	 40
 
21. Can Opener Wind Up Type 	 i
 
22. Sterile Dyes
 
23. Tweezers, Long 	 I
 
24. Aluminum Foil, 12 x 8 Sheets 	 5
 
25. Toweling
 
26. Disposal Bags, Plastic 	 10
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TABLE XV
 

PART B 

GROUP IDENTITY IN PROPOSED EXPERIMENTAL DESIGN 

DIET 
GROUP* DIET STERILITY ENVIRONMENT MICROBIC STATE MICE 

1 Apollo + Germfree Germfree 20 

2 Apollo + Gnotobiotic Coli 20 

3 Apollo + Gnotobiotic Lactic 20 

4 Apollo + Gnotobiotic Candida 20 

5 Apollo + Gnotobiotic Coli + Lactic 20 

6 Apollo + Gnotobiotic Coli + Candida 20 

7 Apollo + Gnotobiotic Lactic + Candida 20 

8 Apollo + Germfree Classic 20 

9 Apollo + Classic Classic 20 

10 Apollo No Classic Classic 20 

11 Lab + Germfree Germfree 20 

12 Lab + Germfree Classic 20 

13 Lab + Classic Classic 20 

14 Lab No Classic Classic 20 

*All received sterile distilled water. 
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Table XVI. One design change resulted from the receipt from the vendor
 

of monocontaminated mice on the first order for germfree mice. Following
 

confirmation in our laboratory that the monocontaminant was Staphylococcus
 

epidermidis, it was decided to use two additional groups of animals
 

incorporating this microbe: Group 15 with Staphylococci alone and Group 16
 

with a diflora of Staphylococci plus Candida. A second change was inaugurated
 

when it became obvious that most animals in isolation were not reproducing.
 

New colonies of germfree mice were purchased and used with one modification
 

to the environment: filter paper squares were added as bedding following
 

the food efficiency determination (Figure 21).
 

A preliminary experiment (Groups 11-14 inclusive) is presented in
 

Appendix L in the form that it was given at the AALAS Meeting by H. Kaplan.
 

The preliminary work assured us that the major experiment (this contract)
 

was feasible and that the routines developed were satisfactory for vigorous
 

germfree and gnotobiotic experiments. Figure 22 graphically illustrates the
 

results.
 

All animals were of the ICR strain and purchased from a single source:
 

Charles River Breeding Laboratory, Wilmington, Massachusetts. Table XVII
 

provides information on the receipt, condition and use of animals from the
 

commercial source. This table does not reflect groups of animals begun from
 

young weaned during the course of this experiment. Each group began with
 

20 mice divided into four cages with three males and two females placed
 

together. The polycarbonate cages had stainless 3/8" wire screen floors and
 

tops. These were changed weekly in all groups excepting 8 and 26 where they
 

were changed daily. Food and deionized or distilled water (resistance
 

> 1 million ohms) were provided from glass containers ad libitum. A 
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TABLE XVI 

PART B 

FINAL EXPERIMITAL DESIGN 

GROUP DIET AND
 
IDENTIFICATION STERILITY ENVIRONMENT MICROBIC STATE
 

I A+ GF GF
 
2 A+ O E. coli
 
3 A+ On Lactobacillus
 
4 A+ Gn Candida
 

5 A+ Gn Coli + Lactic
 
6 A+ Gn Coll + Candida
 
7 A+ Gn Lactic + Candida
 
8 A+ Iso Classic
 
9 A+ C Classic
 
10 	 A- C Classic
 
ll L+ GF GF
 
12 L+ Iso Classic
 
13 L+ C Classic
 
14 L- C Classic
 

*15 	 A+ Gn Staph.
 
*16 A+ Gn Staph. + Candida
 

17 A+ Gn Bactericides
 
18 as No. I A+ GF GF
 
19 as No. I A+ GF GF
 
20 as No. 2 A+ Gn E. coli
 
21 as No. 2 A+ Gn E. coli
 
22 as No. 3 A+ Gn Lactobacillus
 
23 as No. 3 A+ Gn Lactobacillus
 
24 as No. 4 A+ Gn Candida
 
25 as No. 5 A+ Gn Col + Lactic
 
26 as No. 5 A+ G Coli + Lactic
 
27 as No. 6 A+ Gn Col + Candida
 

28 as No. 6 A+ Gn Coli + Candida
 
29 as No. 7 A+ GO Lactics + Candida
 
30 as No. 7 A+ GOn Lactics + Candida
 
31 from No. 8 A+ Iso Classic
 
32 from No. 31 A+ Iso Classic 
33 from No. 9 A+ C Classic 
34 from No. 10 A- C Classic 
35 from No. 33 A+ C Classic 
36 from No. 34 A- C Classic 
37 as No. 11 1+ GF GF 
38 Cont. No. 2 A+ Gn E. coli + Staph. 
39 Cont. No. 3 A+ Gn Lactic + Staph. 
40 Cant. No. 5 A+ Gn E. coli + Lactic + Staph. 
41 Cont. No. 6 A+ Gn E. coli + Candida + Staph. 

42 Cont. No. 7 A+ Gn Lactic + Candida + Staph. 

KEY: 
Diet A = Apollo 

L = Laboratory Mouse Diet (Purina Autoclavable No. 5010C) 
Sterility + = Sterile 

- = Non-sterile 

Environment 	 GF = Germfree
 
Gn = Gnotobiotic
 
C = Classic
 
Iso = Classic Animals in isolation with germfree procedures
 

*Arrived contaminated with Staphylococcus epidermidis
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FIGURE 21
 

FILTER PAPER BEDDING AND ITS USE
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FIGURE 22
 

RESULTS OF PRELIMINARY FOOD EFFICIENCY EXPERIMENT
 

GROUP 11 - GERM-FREE 

30 - - GROUP 12 - ISOLATOR 

.............. GROUP 13 - DIET STERILE 

/00000 .41 . GROUP 14 - CLASSIC 
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Body weight of weanling mice under 
varying conditions related to time. 
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TABLE XVII
 

ACQUISITION, APPARENT CONDITION AND DISTRIBUTION OF CD-I MICE AT TINE OF RECEIPT
 

DATE MICE APPARENT 

RECEIVED NUMBER SEX CONDITION TYPE 

3/6/69 36 Female Good Classic 
24 Male Good Classic 
12 Female Good Germfree 

8 Male Good Germfree 

5/19/69 120 Female Good Classic 
80 Male Good Classic 
86 Female Good Germfree* 

58 Male Good Germfree* 

6/10/69 86 Female Poor Germfree 

58 Male Poor Germfree 

8/29/69 45 Female Fair Germfree 

15 Male Fair Germfree 

10/6/69 86 Female Good Germfree 
56 Male Good Germfree 

DISTRIBUTION GROUPS
 
3 FEMALES/2 MALES 


12 and 14 

12 and 14J 

11 and 13
 
11 and 13
 

8, 9, and 10 
8, 9, and 10 
I through 7** 
1 through 7** 

I through 7 
i through 7 


17, 18, 19, 20, 22, 

25, 27, and 29 


1 	1 


f 	 19, 21, 23, 24, 26, 
28, and 30 

*Group received contaminated with Staphylococcus epidermidis.
 

**Groups 15 and 16 added to experimental design. All other mice destroyed.
 

USE
 

Control studies using Classic
 
Diet-Sterile and Unsterile
 

r 	 First Generation on Apollo 
Diet 

r 	 Restart of mice due to con­

taminant in mice received
 
5/19/69 

To avoid total loss of
 
Groups 1, 2, 3, 5, 6, and 7
 

plus start of Group 17.
 

f 	 Restart of Group I through 
7 in lieu of progeny 



12-hour light cycle was followed. The temperature was maintained at
 

26 +40C. The Air flow was +1.5 cfm and the laboratory relative humidity
 

was 50%.
 

Food Efficiency
 

Food efficiency data were obtained during a 5-day period. Weighed
 

quantities of food were placed in conical feeders which were placed on
 

15 cm petri plates. Aluminum foil was placed under the 3/8" wire mesh
 

floor. This provided adequate provisions for the minimizing of waste and
 

the collection of wasted food with excreta. This waste was collected, dried,
 

weighed and an estimate made of the fecal and food contribution to the whole.
 

The food lost plus that which remained in the feeder were deducted from the
 

total food intake. The total food consumption and the weight increment of the
 

mice provided the data needed to obtain the food efficiency.
 

Food efficiency = gm gain x 100.
 
gm food
 

The Apollo-68 diet preparation, its constituent parts and other pertinent
 

information are to be found in Appendix E. The Radiation Sterilization is
 

discussed in Appendix F.
 

III. DISCUSSION.OF THE EXPERIMENTAL RESULTS - PART B 

Data from the many parameters measured to provide an overall judgement
 

of the biologic and gnotobiologic value of the Apollo diet are discussed below.
 

Classically, the growth data (Table XVIII) provide one of the most reliable
 

indices. Here the averages for each sex is presented separately. It is noted
 

that at some period of the growth the females were as large or larger than
 

the males in about half of the groups; therefore, a single average value for
 

the growth of each group is given in the last column. It should be noted
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TABLE XVIII
 

SUMMARY OF MOUSE GROWTH DATA
 

1969 AGE MALE WEIGHT, GM FEMALE WEIGHT, GM 
GROUP DAY-MONTH DAYS NUMBER AVERAGE RANGE NUMBER AVERAGE RANGE REMARKS 

I 10-6 20 8 8.5 6.4-10.7 12 7.7 6.1-9.5 
19-6 29 8 13.0 9.8-18.5 12 12.0 9.8-14.1 
24-6 34 8 16.5 11.9-20.2 12 15.5 11.8-18.8 
22-7 63 5 17.8 14.8-21.6 Autopsy 
6"8 77 2 15.3 14.6-15.9 3 25.4 24.6-26.3 

2 10-6 20 8 7.5 6.,6-9.3 12 6.7 6.1-8.2 
19-6 29 7 12.6 10.4-16.4 11 10.7 9.1-13.4 
24-6 34 7 16.2 14.1-19.9 11 14.1 11.5-17.3 
22-7 63 5 19.6 17.7-22.7 Autopsy 

3 10-6 20 8 8.2 6.8-9.9 12 7.3 6.0-9.2 
19-6 29 8 12.4 16.8-14.5 11 10.8 10.1-13.3 
24-6 34 8 15.5 13.0-16.6 11 13.9 12.5-16.0 
22-7 63 5 17.5 14.7-20.4 Autopsy 

4 10-6 20 8 8.8 7.5-11.4 12 8.6 6.3-11.7 
19-6 29 8 12.3 9.5-17.4 12 12.3 10.0-16.5 
24-6 34 8 14.1 12.2-19.4 12 14.7 10.5-18.2 
22-7 63 5 14.6 13.2-16.4 Autopsy 
6-8 77 5 17.9 14.0-20.8 

5 10-6 20 8 9.2 7.2-11.6 12 8.0 7.1-9.2 
19-6 29 8 12.3 9.4-16.3 10 11.4 10.6-12.8 
24-6 34 8 17.0 13.0-21.3 10 15.4 13.2-17.0 
22-7 63 2 20.9 18.0-23.8 Autopsy 

6 10-6 20 8 7.4 6.2-8.8 12 8.2 5.5-9.5 
19-6 29 6 11.3 8.0-13.3 11 11.7 9.6-16.4 
24-6 34 6 15.6 12.9-18.9 11 14.3 10.9-14.6 
22-7 63 2 15.9 13.7-18.0 Autopsy 
6-8 77 2 19.5 17.0-21.9 

7 10-6 20 6 8.4 7.0-9.4 12 7.4 5.2-9.3 
19-6 29 5 12".9 10.9-13.7 10 11.1 7.0-13.0 
24-6 34 5 13.4 11.6-14.1 10 14.3 12.6-17.4 
22-7 63 4 15.5 11.6-20.8 Autopsy 

8 20-5 22 8 11.1 10.5-11.6 12 10.1 9.0-11.3 
26-5 .28 8 13.0 10.7-15.5 12 11.2 10.0-12.5 
30-5 32 8 15.7 12.3-19.5 12 14.8 12.6-17.2 
9-6 42 8 20.4 15.2-25.9 11 17.1 15.1-18.7 

12-6 46 5 25.4 17.9-23.6 9 17.2 13.8-20.3 
27-6 60 5 20.0 15.1-24.6 Autopsy 
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TABLE XVIII (Continued)
 

1969 AGE MALE WEIGHT, (M FEMALE WEIGHT, GM
 
GROUP DAY-MONTH DAYS NUMBER AVERAGE RANGE NUMBER AVERAGE RANGE REMARKS 

9 20-5 22 8 10.9 10.2-11.5 12 9.7 9.1-10.8 
26-5 28 8 13.0 11.8-15.4 12 12.0 11.3-14.3 
30-5 32 8 18.7 16.0-20.9 12 18.4 15.4-20.1 
9-6 42 8 24.4 18.1-28.1 12 22.3 18.6-25.8 

13-6 46 8 22.1 16.8-27.8 11 20.8 19.1-23.4 
27-6 60 4 28.0 25.1-31.6 1 23.8 Autopsy 
20-7 83+2 3 32.8 29.7-36.0 Female at 

weaning 

10 20-5 22 8 11.2 9.9-11.3 12 10.2 9.2-11.9 
26-5 28 8 13.0 11.5-13.8 12 12.3 10.3-14.2 
30-5 32 8 20.2 19.4-23.4 12 18.5 16.1-20.6 
9-6 42 8 22.4 19.4-26.9 12 22.0 19.4-25.7 

13-6 46 8 22.4 21.1-24.8 11 20.5 17.0-23.9 
27-6 60 5 27.6 25.2-29.4 Autopsy 

11* 

12* 

13* 

14* 

15 20-5 21 8 11.1 8.7-13.2 12 8.1 7.1-9.0 
26-5 27 8 12.8 10.8-15.0 12 10.5 8.7-12.2 
30-5 31 8 17.7 14.9-20.5 12 14.5 12.6-17.6 
9-6 41 7 22.6 19.0-26.9 12 17.4 14.6-24.3 
13-6 48 6 24.5 20.1-28.8 12 17.7 14.6-22.5 
27-6 62 5 25.5 16.8-31.8 Autopsy 
6-8 102 1 1 25.4 

16 20-5 21 8 9.2 7.5-11.7 12 8.5 7.0-10.4 
26-5 27 8 10.9 10.0-12.8 12 9.7 8.1-11.2 
30-5 31 8 14.1 10.9-16.3 12 12.9 9.7-15.3 
9-6 41 8 19.1 16.4-23.2 12 15.4 11.3-19.5 

13-6 48 8 20.5 17.2-24.4 11 13.5 11.4-18.7 
27-6 62 5 23.5 21.9-26.6 Autopsy 
6-8 102 8 20.1 14.3-26.1 Sex ? 

17-8 113 3 15.3 14.2-17.5 Sex ? at 
death 

24+8 120 2 15.2 14.6-15.7 Dead 

17 29-8 4 10.7 9.3-12.8 14 12.4 8.5-17.4 
8-9 14 16.7 10.3-21.5 Not sexed 

12-9 3 18.3 16.1-20.5 11 17.7 12.0-20.8 
21-11 1 25.6 3 30.5 25.8-35.4 Autopsy 
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TABLE XVIII (Continued) 

1969 AGE MALE WEIGHT GM FEMALE-WEIGHT, GMGROUP DAY-MONTH DAYS NUMBER AVERAGE RANGE NUMBER AVERAGE RANGE REMA'S 

18 1 29-8 25 1 10 3" 17.3 16.0-18.9 

19 1 6-10 
10-10 
10-12 

30 
34 

95 

11 
9 

5 

15.6 
17.1 
28.4 

12.9-20.1 
12.9-20.9 
26.2-31.1 

8 
8 

13.1 
14.5 

10.2-17.0 
11.5-17.4 

20 29-8 

2-9 
25 

29 
2 

2 
10.9 
13.3 

9.6-12.1 
12.6-14.0 

6 11.0 8.4-15.5 

21 6-10 
10-10 
10-12 

30 
34 
96 

8 
8 
5 

15.0 
16.0 
23.5 

12.7-19.0 
12.9-21.3 
21.4-25.4 

12 
12 

14.0 
13.4 

10.6-19.3 
9.3-17.8 

22 29-8 25 1 9.5 3 12.1 8.8-14,5 

23 6-10 
10-10 
10-12 

30 
34 
96 

8 
8 
5 

14.4 
15.4 
31.5 

10.0-17.6 
10.0-18.1 
24.3-36.7 

12 
12 

16.6 
18.4 

9.5-21.7 
10.9-24.7 

24 6-10 
10-10 
11-12 

30 
34 
96 

8 
8 
3 

13.7 
15.2 
27.2 

9.5-18.0 
13.3-16.9 
23.6-32.5 

11 
11 

12.9 
18.3 

10.2-18.4 
14.5-24.8 

25 29-8 25 2 10.4 8.4-12.3 5 14.8 12.6-16.8 

26 6-10 
10-10 
11-12 

30 
34 
96 

8 
8 
5 

14.6 
16.0 
32.2 

10.5-17.2 
13.3-18.8 
27.1-38.2 

11 
11 

18.1 
17.2 

12.9-19.5 
14.0-20.4 

27 29-8 25 2 11.9 11.9-11.9 4 12.5 9.3-15.3 

28 

29 

6-10 
10-10 
11-12 

29-8 

30 
34 
96 

25 

7 
7 
5 

2 

14.0 
15.4 
33.1 

9.6 

10.4-18.4 
12.4-17.4 
30.0-36.2 

9.3-9.8 

10 
9 

5 

16.0 
18.0 

11.5 

11.8-20.5 
13.4-25.2 

9.7-15.7 

Autopsy 

30 

31 

6-10 
10-10 
11-12 

4-9 
8-9 

12-9 
27-10 

30 
34 
96 

20 
24 
28 

Ca74 

8 
7 
5 

3 
3 
3 
4 

12.9 
13.6 
31.7 

10.5 
10.3 
16.0 
25.4 

9.4-15.3 
9.3-16.5 
29-32.8 

9.2-11.2 
10.5-11.9 
14.2-17.2 
16.7-36.1 

10 
8 

1 

17.1 
16.8 

20.3 

13.0-22.4 
14.0-22.2 

Autopsy 
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TABLE XVIII (Continued) 

1969 MALE WEIGHT. GM FEMALE WEIGHT, M-AGE ..... 
- GROUP 

32 

DAY-MONTE 

18-11, 
21-11 
28-12 

DAYS 

22? 
25 
32 

INUMBER AVERAGE 

10 11.1 
10 18.3 
2 22.1 

RANGE 

10.3-12.4 
7.8-23.3 
22.0-22.2 

NUMBER 

10 
9 

AVERAGE 

11.0 
14.1 

RANGE .REMARlXS 

8.1-13.3: 
9.0-22.7 

Autopsy 

33 

a 
b 

4i-8 
18-8 
23-8 
2-9 
8-9 

12-9 

27-10 

24 
31 
36 
24 
30 
34 

90+10 

10 
8 
8 
5 
7 
7 

4 

8.6 
13.6 
15.0 
7.6 
9.2 
11.7 

22.9 

7.8-9.1 
12.8-14.7 
14.1-16.3 
1.2-8.0 
7.4-10.1 
9.5-13.0 

20.1-26.2 

2 
2 
7 
4 
4 

1 

10.8 
12.3 
6.9 
7.8 

10.9 

22.8 

10.5-11.0 
12.0-12.6 
6.3-7.5 
7.2-8.3 
10.0-12.2 

Sex ? 

Autopsy 

34 

a 
b 

11-8 
18-8 
23-8 
2-9 
8-9 
12-9 
27-10 

22 
39 
34 
21 
27 
31 

90+10 

13 
4 
4 
4 
4 
4 
4 

6.7 
9.6 

13.3 
9.0 

11.6 
14.5 
26.9 

5.5-9.8 
9.0-10.0 
12.7-14.3 
8.3-10.0 
10.6-13.7 
12.9-17.0 
21.8-32.8 

6 
6 
7 
7 
7 

10.3 
12.9 
7.8 

10.1 
12.9 

9.5-11.1 
9.8-14.9 
6.6-9.1 
8.5-12.4 
10.9-15.1 

Sex ? 

Autopsy 

35 24-12 
31-12 

19 
26 

11 
2 

5.9 
22.1 

4.4-6.7 
20.0-24.1 3 21.3 20;0-23.8 

Mixed Sex 

36 24-12 
31-12 

19 
26 

11 
4 

5.9 
33.,2 

4-4-6.7 -

29.,3--38-.3 1 25.2 
As No. 35­

37 21-11 4 26.4 25.6-27.8 Autopsy 

38 Cont. 2 20-5 20 8 10.1 7 . 9-13.5 12 8.6 7.1-10.0 Run 5 Days 

39 Cont. 3 20-5 20 -8 10.7 - 8.3-11.9 12-- 8.7 '7.0-11.0 Run 5 Days 

40 Cont. 5 20-5- 20 ­ 8 9.,1 _7.3-i0.5 . 12 9.-6 9.1-11.5 Run 5 Days 

41 Cont. 6 20-5 20 8 -10.1 8.7-11.8 .12 9.7 7.7-12.3 Run 5 Days 

42 Cont. 7 20-5 20 - 8 . 9.4 .8.0-11.9 1-2 9;2- 6.-8-10.9 Run 5 Days 

*Groups 11 to 14 used in Food Efficiency-Studies; 
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that the growth rate data was taken early in the life of each group in
 

order that a maximal value could be obtained before the beginning of the
 

decreased growth rate at maturity. The food efficiency data (Table XIX)
 

also was 
taken during the early period of each experiment; it usually started
 

within one week after the weaned mice were fed Apollo diet. Each value for
 

food efficiency was obtained from one cage containing three females and
 

two males. These two parameters are summarized in Table XX to give a view
 

of food utilization under different microbic conditions. 
 These values
 

obtained involving classic mice showed considerable variation when the
 

experiment was reported but the values obtained were generally high. 
Mono­

gnotophoric mice with Candida and Staphylococcus gave growth rates equivalent
 

to those obtained for the classic mice. 
Bacteroides monoassociated mice had a
 

good growth rate greater than that of the other gnotobiotic mice. The only
 

group which had a low growth rate were the diassociated mice carrying
 

Candida plus Lactobacillus. 
 This group also showed a lower food efficiency
 

than most groups. Lowered food efficiency was also noted in germfree coli
 

monoassociated and Lactobacillus monoassociated mice. 
Surprisingly, the
 

poorest food efficiency was found in the Bacteroides monoassociated mice whose
 

growth and general appearance were excellent. The lowest value (5.6) may
 

correlate with later deaths from E. coli. 
The best food efficiency was obtained
 

with classic mice fed non-sterile diet and the Staphylococcus monoassociated
 

mice. 
Since this latter group showed the greatest alopecia, there appears to be no
 

correlation between food utilization and appearance nor was 
there good correlation
 

between growth rate and food, efficiency for this group.
 

The quantitative data available at autopsy is given in Table XXI and
 

summarized in Table XXII. 
Each of the parameters shows a difference between
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TABLE XIX
 

MICE FOOD EFFICIENCY DATA
 

GROUP 
BODY WEIGHT gm 

ST= --END- CA STfT 
FOOD gm 

WAT END( USEW 
OM GAIX/GM 
F00 £-0 AVERAGE 

1 
A 
B 
C 
D 

63.6 
56.8 
57.7 
66.0 

75.1 
74.4 
71.9 
88.0 

11.5 
17.6 
14.2 
22.0 

111.3 
96.0 

115.6 
114.5 

52.1 
65.3 
56.0 
44.o 

50.9 
.63.7j 
54.6 
42.9 

6o.4 
32.3 
61.0 
70.5 

19.0 
51 .5 
23.3 
31.2 

32.0 

2 
A 
B 
C 
D 

31.5 
60.2 
57.7 
57.4 

45.9 
75.7 
71.2 
75.9 

14.4 
15.5 
13.5 
18.5 

101.7 
111.4 
112.9 
1o6.6 

58.1 
6o.8 
59.7 
52.6 

56.7 
59.3 
58.2 
51.3 

54.o 
52.1 
54.7 
55.3 

32.0 
29.8 
24.7 
33.4 

"30.0 

3 
A 
B 
C 
D 

57.8 
58.7 
42.8 
58.4 

74.4 
72.3 
54.7 
74.0 

16.6 
13.6 
11.9 
15.6 

102.1 
110.1 
116.9 
101.5 

52.2 
58.7 
76.8 
50.1 

50.9 
57.2 
74.9 
48.9 

51.2 
52.9 
42.0 
52.6 

32.4 
25.7 
28.3 
29.7 

29.0 

4 

5 

A 
B 
C 
D 

A 
B 
C 
D 

73.0 
63.6 
55.9 
53.9 

39.0 
57.2 
58.2 
57.9 

84.9 
73.6 
64.8 
69.4 

52.4 
79.9 
76.9 
81.0 

11.9 
10.0 
8.9 

15.5 

13.4 
22.7 
18.7 
23.1 

102.7 
98.2 

102.5 
105.8 

113.1 
107.1 
123.2 
107.1 

54.4 
57.4 
58.6 
61.o 

64.5 
42.9 
60.8 
32.8 

53.0 
65.0 
57.1 
59.5 

162.9 
1 41.8 
1 59.3 
32.0 

49.7 
42.2 
54.4 
46.3 

50.2 
65.3 
63.9 
75.1 

23.9 
32.7 
19.6 
33.5 

26.7 
34.8 
29.3 
30.8 

25.2 

30.4 

6 
A 
B 
c 
D 

44.0 
52.7 
61.9 
39.2 

60.0 
64.5 
69.4 
53.9 

16.0 
11.8 
7.5 

14.7 

109.7 
101.6 
106.8 
107.8 

57.7 
49.2 
58.8 
59.9 

56.0 
477. 

j 57.0 
1 58.0 

53.7 
53.9 
49.8 
49.8 

29.8 
21.0 
15.1 
29.5 

24.1 

7 
A 
B 
C 
D 

46.7 
49.4 
34.8 
44.9 

41.6 
54.9 
49.7 
56.6 

5.1 
5.5 

14.9 
11.7 

106.7 
103.3 
lO9.6 
104.6 

66.8 
63.1 
(6o.) 
53.5 

1 64.8 
61.2 
6o 

1 51.9 

41.9 
42.1 
49.6 
52.7 

12.2 
13.1 
30.0 
22.2 

19.4 

8 
A 
B 
C 
D 

53.6 
63.9 
55.2 
59.8 

71.2 
84.3 
66.1 
81.6 

17.6 
20.4 
10.9 
21.8 

110.8 
104.7 
128.0 
111.2 

66.5 
49.1 
85.1 
39.7 

1 66.5 
49.1 
85.1 

i 47.6 

44.3 
55.6 
42.9 
63.6 

39.7 
36.7 
25.4 
34.3 

34.0 

*END = Waste corrected for fecal contamination. Where data could not be obtained
 

3% of the waste was deducted.
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TABLE XIX (Continued) 

GROUP 
BODY WEIGHT GM 

START END CHANGE START 
FOOD GM 

WASTE r END USED 
GM GAIN/GM 
FOOD x 100 AVERAGE 

9 
A 
B 
c 
D 

63.8 
57.1 
64.1 

1 66.2 

95.1 
83.2 
94.9 
96.5 

31.3 
26.1 
30.8 
30.3 

1o8.8 
112.3 
119.4 
111.6 

32.6 
41.7 
41.8 
35+1 

32 
41 
41 
34 

77 
71 
78 
78 

40.6 
36.7 
39.5 
38.8 

38.9 

10 
A 
B 
c 
D 

56.1 
56.9 
68.4 
62.3 

94.1 
93.1 
96.6 
99.6 

38.0 
36.2 
28.2 
37.3 

103.8 
116.3 
105.9 
118.2 

31.8 
41.1 
32.7 
42.9 

31 
40 
32 
42 

72. 
76 
74 
76 

52.7 
47.6 
38.1 
49.1 

46.9 

11 
A 
B 
o 
D 

6o.4 
83.4 
92.0 
84.1 

76.1 
1oo.6 
106.2 

55.4 

15.7 99.8 
17.2 173.9 
14.2 102.2 
---- 94.4 

46.o 
94.2 
21.2 
80.6 

40.0 
77.1 
13.6 
73.4 

53.8 
80.6 
75.0 

3.8 

29.2 
21.4 
19.0 

23.2 

12 
A 
B 
C 
D 

108.3 
108.3 
108.8 
116.2 

120.3 
105.6 
121.7 
126.7 

12.0 
2.7 

12.9 
10.5 

128.5 
177.6 
172.6 
157.9 

51.7 
90.0 
80.3 
71.8 

43.7 
82.0 
72.3 
63.8 

76.8 
87.6 
92.3 
86.1 

15.6 
----
14.0 
12.1 

13.9 

13 
A 
B 
C 
D 

111.8 
11.4 
103.1 
119.6 

134.1 
128.8 
118.9 
130.5 

22.3 
17.4 
15.8 
10.9 

199.2 
160.7 
183.5 
168.5 

99.4 
55.4 
96.6 
77.3 

92.4 
54.9 
89.4 
69.2 

99.4 
95.4 
86.9 
91.2 

22.4 
18.2 
18.2 
12.0 

1717 

14 
A 
B 
C 
D 

123.2 
119.8 
115.9 
95.5 

130.8 
127.5 
122.3 
104.1 

7.6 
7.7 
6.4 
8.6 

129.6 
111.7 
120.0 
121.7 

42.7 
23.4 
30.8 
52.6 

34.0 
16.4 
21.6 
46.6 

86.9, 
88.3 
89.2 
69.1 

8.7 
8.7 
7.2 

12.4 

9.3 

15 
A 
B 
C 
D 

53,9 
55.9 
54.7 
63.0 

73.2 
79.1 
78.7 
84.8 

19.3 
23.2 
24.o 
21.8 

112.1 
113.6 
100.2 
119.2 

71.4 
50.9 
59.9 
54.7 

69 
49 
56.9 
53 

43 
64 
43.3 
66 

44.9 
36.3 
55.4 
33.1 

42.4 

16 
A 
B 
C 
D 

49.7 
50.9 
54.1 
41.9 

66.2 
74.5 
61.6 
64.5 

16.5 
23.6 
7.5 

22.6 

104.3 
118.7 
129.7 
103.8 

72.9 
57.5 
81.4 
58.0 

69.9 
55 
80 
57 

34.4 
64 
50 
51 

48.o 
15.0 
15.0 
44.4 

36a1 

17 
A 
B 
c' 
D 

67.7 
52.0 
45.4 
68.4 

68.1 
55.7 
50.4 
75.2 

.14 
3.7 
5.0 
6.8 

80.4 
80.4 
82.0 
83.5 

43.1 
46.8 
52.8 
44.8 

42 
46 
52 
44 

38 
34 
30 
39 

1.1 
10.9 
16.7 
17.4 

11.5 
(15.0) 

19 
A 
B 
C* 
D 

74.o 
69.3 
35.6 
63,5 

80.8 
78.1 I 
42.6 
68:of 

6.8 
8.8 
7.0 
4.5 

80 
80 
80 
80 

37.2 
36.5 
53.3 
46.7 

36.2 
43.5 
52.8 
45.4 

43.8 
20.3 
27.2 
34.6 

15.5 
18.7 
25.7 
13.2 

* Only 3 animals carried to end. 

Group 20 not applicable -91­



TABLE XIX (Continued)
 

BODY WEIGHT GM FOOD GM GM GAIN/GM
 
GROUP START END CHANGE START WASTE END USED FOOD x 100 AVERAGE
 

A 67.4 67.0 -.4 80 50 49 31 0
 
21 B 78.7 81.1 2.4 80 48 47 33 7.2 5.6
 

C 66.o 64.7 -1.3 80 61 6o 20 0
 
D 69.9 76.2 6.3 80 40 39 41 15.4
 

A 74.1 79.0 4.9 8 33.3 33 47 10.4
 
23 	 B 87.3 90.8 3.5 80 38.1 37 43 8.1 20.0
 

C 78.0 88.5 10.5 80 36.8 36 44 23.8
 
D 75.2 85.5 10.3 80 43.5 43 37 37.8
 

A 77.5 91.3 13.8 80 41.o 4o 40 34.5
 
24 	 B 73.9 55.1 18.8 80 53.4 52 28 ---- 4o.4 

C 64.0 78.1 14.1 8o 38.6 38 42 33.4 
D 58.9 81.2 22.3 80 38.8 38 42 53.2 

A 86.2 79.3 ---- 80 
26 B 86.8 85.8 ---- 8o 

74.8 71.5 ---- 8o No Record SpilleC 

D 60.2 67.2 7.0 80
 

A 65.4 75.3 9.9 80 58.7 58 22 45.1
 
28 	 B 70.2 86.2 16.0 80 50.4 49 31 51.7 35.5 

C 62.3 44.4 ---* 8o 25.0 25 55 ----
D 59.1 63.7 4.6 80 33.4 33 47 9.8 

A 83.5 41.2 --­* 80 73.5 .... 
30 B 80.1 80.6 .5 80 44.2 43 37 1.4 27.1 

c 55.8 61.6 5.8 8o 69.4 69 11 52.7 
D 54.7 . 46.7 --­* 80 50.7 50 30 ---­

31 	 A 33.9 48.1 14.21 84.1 41.3 43 33.0 33
 

A 56.0 53.4 ---f*60 39.5 39 21 ---­
32** B 55.6 47.9 neg., 60 4o.6 25 25 ......
 

c 54.3 105,5 51.5! 60 27.0 21 39 ?
 
D 55.5 114.7 59.21 60 26.4 24 36 ?
 

A 66.2 71.8 5.61 100 42.0 41 59 9.5
 
33 	 B 64.4 72.2 7.81 100 37.2 36 64 12.2
 

C 48.4 68.2 19.81 80 32*** 48 41.2
 
D 47.3 57.1 9.8; 80 32*** 48 29.4
 

A 50.4 59.8 9.4 100 42.1 41 59 15.9
 
34 	 B 49.9 70.8 20.9 100 42.8 42 42 58 36.1
 

C 56.7 71.5 14.8 80 32*** 48 30.8
 
D 60.6 77.0 16.4 80 32*** 48 34.2
 

* One died so no data are valid for cage C. 

** 3 	days only. 

* Lost in processing - Assumed 40 for estimate (40 x 4/5 = 32 since only ran 4 days).
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TABLE XX 

APOLLO DIET FOOD UTILIZATION 

GROUP NUMBER STATE GROWTH RATES AVERAGE FOOD EFFICIENCY AVERAGE 

1, 19 Germfree .57, .37 .47 32.0, 18.3 25.2 

2, 21 Gn, Coli .58, .25 .46 30.0, 5.6 17.3 

3s 23 Gn, Lactic .50, .35 .48 29.0, 20.0 24.5 

4, 24 Gn, Candida .41, .89 .65 25.2, 40.4 32.8 

5, 26 Gn, Coli + Lactic .55, .35 .45 30.4 30.4 

6, 28 Gn, Coli + Candida .51, .44 .48 24.1, 35.5 29.8 

7, 30 Gn, Lactic + Candida .43, .18 .31 19.4, 27.1 23.3 

8, 31, 32 Classic, Isolation .47, .69, 1.07 .74 34.0, 33.0 33.5 

9, 33 a.b., 35 Classic, Food Sterile .83, .42, .41, 2.3* .55 38.9, 20.8 29.8 

10, 34 a.b., 36 Classic, Non-Sterile Food .87, .54, .53, 3.3* .64 46.9, 36.1 41.5 

15 On, Staph. .65 .65 42.4 42.4 

16 Gn, Staph.' + Candida .47 .47 36.1 36.1 

17 Gn9 Bacteroides .54 .54 15.0 15.0 

*Not used in the average value. 



TABLE XXI
 

AUTOPSY DATA
 

AGE CECUM gm lb, % WBC/Mm3 

GROUP DAYS AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE REMARKS 

1 63 3.9 2.4-5.7 11.1 10.4-11.7 2990 1430-4070 
2 62 3.3 2.3-4.4 6.7 5.4-8.7 2008 440-5280 
3 63 3.7 3.1-4.8 10.5 7.7-12.8 3610 1760-5610 
4 63 3.0 2.2-4.7 9.9 6.7-11.9 4303 1925-6490 
5 63 1.9 1.8-2.0 5.8 5.6-5.9 1925 1430-2420 
6 63 2.8 1.5-4.0 7.9 6.7-9.0 4565 3740-5390 
7 63 3.0 1.6-5.5 9.7 7.7-12.9 2227 1100-2970 
8 60 0.3 0.2-0.4 13.5 12.1-14.2 2200 1430-3630 
9 60 0.5 0.3-0.7. 13.9 13.3-14.2 4246 2530-6710 

10 60 0.4 0.2-0.6 10.1 5.9-13.2 4312 2640-5280 
11* 
12* 
13* 
14* 
15 3.0 2.2-3.3 12.5 11.8-13.0 5874 1320-12,760 
16 3.2 2.6-4.0 12.3 11.4-13.2 6864 2750-8690 
17 1.1 0.9-1.3 15.6 14.2-17.4 2273 1430-3630 3 Females 

Pregnant 
18 
19 1.4 0.9-2.4 13.9 12.5-15.3 5555 2750-7480 
20 
21 1.9 1.2-2.6 15.2 13.9-17.0 1625 660-2420 4 Only 
22 
23 2.1 1.3-2.7 13.5 13.2-15.6 2222 1210-3630 
24 1.0 0.6-1.7 14.4 12.8-16.0 5573 4070-8140 
25 
26 1.7 1.4-2.3 15.5 13.6-17.0 2222 1430-3080 
27 
28 1.4 0.9-1.8 15.7 14.2-16.8 2585 880-3630 
29 
30 2.5 1.8-3.5 14.0 12.2-15.0 3384 1980-4730 
31 0.6 0.6-0.8 13.6 12.9-15.3 2127 1430-2530 
32 41 0.6 0.5-0.6 16.3 15.0-17.5 2070 1610-2530 
33 90+10 0.5 0.4-0.6 10.1 3.8-14.6 2250 990-3410 
34 90+10 0.5 0.4-0.6 10.8 8.7-13.0 4195 880-3830 
35 28 0.4 0.3-0.5 16.1 15.3-17.0 6792 5170-7810 
36 28 0.9 0.9-1.0 15.6 15.0-16.3 3476 2090-6490 
37 0.8 0.3-1.1 15.9 15.6-16.0 3527 2310-4420 

*Not Autopsied (Food Efficiency Study) 
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TABLE XXII 

AUTOPSY DATA SUMMARIZED - PART B 

WBC/mm3 
GROUP STATE CECUM, gm Hb, % 

1, 19 GF 3.9, 1.4 11.1, 13.9 2990, 5555
 

2, 20 Coli 3.3, 1.9 6.7, 15.2 2008, 1625
 

3, 23 Lactic 3.7, 2.1 10.5, 13.5 3610, 2222
 

4, 24 Candida 3.0, 1.0 9.9, 14.4 4303, 5573
 

5, 26 Coli + Lactic 1.9, 1.7 5.8, 15.5 1925, 2222
 

6, 28 Coli + Candida 2.8, 1.4 7.9, 15.7 4565, 2585
 

7, 30 Lactic + Candida 3.0, 2.5 9.7, 14.0 2227, 3384
 

8, 31, 32 Classic, Isolation 0.3, 0.6, 0.6 13.5, 13.6, 16.3 2200, 2127, 2070
 

9, 33, 35 Classic, Sterile Diet 0.5, 0.5, 0.4 13.9, 10.1, 16.1 4246, 2250, 6792
 

10, 34, 36 Classic, Non-Sterile 0.4, 0.5, 0.9 10.1, 10.8, 15.6 4312, 4195, 3476
 

Diet
 

15 Staph 3.0 12.5 5874
 

16 Staph + Candida 3.2 12.3 6864
 

17 Bacteroides 1.1 15.6 2273
 

37 GF Lab Diet 0.8 15.9 3572
 



classic and germfree mice. The enlarged cecum of germfree animals seemed to
 

be somewhat alleviated in the second experiment when filter paper bedding
 

was used. The mice which were monoassociated with Bacteroides showed a
 

good reduction in cecum size in the first experiment. The Coli diassociated
 

mice (with either Lactobacillus or Candida seemed to have smaller ceca than
 

other gnotobiotic mice (excepting Group 17 as noted above). The effect of
 

diet on cecum size can be noted by comparing the germfree mice fed laboratory
 

chow (Group 37) to those fed Apollo diet. Presumably, the reduction is due
 

in part to the fiber content of the diet. This has been reported to reduce
 

the cecum size in germfree rats (Luckey, 1963).
 

The hemoglobin values obtained in the first experiment were generally
 

less than those found in the last experiment for each group. Mice mono­

associated with Coli or diassociated with Coli plus Lactobacillus or Candida
 

were found to have very low hemoglobin values in the first experiment. These
 

seemed to be alleviated when the filter paper bedding was used in the second
 

experiment. The hemoglobin of Bacteroides monoassociated mice was comparable to
 

the best obtained under any condition. The hemoglobin of classic mice changed
 

from 12 ±2 gm per 100 ml of blood in the first two generations to 16 +4 in the
 

third generation. The reason is not understood. However, in general, the
 

third generation mice showed better characteristics than did first or second
 

generation mice. This phenomenon was seen previously in the experiments of
 

Luckey, et al. (1955) with mice fed a radiation sterilized, syntype diet.
 

The Apollo diet, it contents, preparation and handling is discussed in
 

detail in Appendix E and the radiation sterilization of this diet in
 

Appendix F.
 

-96­



Identification of the Gnotobiotes
 

The mice in Groups 2 through 7 and Groups 15 through 17 were all either
 

mono or dignotobiotes. See Table XXIII.
 

The mono and dignotobiote groups were, with the exception of Groups 15 ­

and 16, established by inoculation with organisms previously isolated from 

mice. The specific groups and bacteria strains used are also presented in 

Table XXIII. 

The 	bacteria were grown in media as reconmended by the ATCC or in the
 

case of the Bacteroides by Dr. Carl Abramson (Pennsylvania State University)
 

prior to inoculation into the animal per os.
 

The Bacteria
 

1. 	 E. coli was grown in Trypticase soy broth after isolation on MacConkeys
 

medium from the feces of monobiotes maintained in our laboratory.
 

Incubation was aerobic at 37 C for 24 hours.
 

2. 	 Lactobacillus leichmannii was isolated in pure culture on Bacto B12
 

inoculum broth from a freeze dried culture purchased from ATCC. Incubation
 

was at 370C for 24 hours under anaerobic conditions.
 

3. 	 Candida albicans was isolated in pure culture from a lyophilized stock
 

obtained from ATCC on Mycophil broth. Incubation was at room temperature
 

on a shaker for 24 hours.
 

4. 	 Staphylococcus epidermidis was a contaminant of the original group of
 

mice received as "germfree".
 

5. 	 Bacteroides sp. is an indeterminant strain supplied by Dr. Carl Abramson
 

of Pennsylvania State University and purported to have been originally
 

isolated from a mouse. Subculture was made upon receipt into Fluid
 

Thioglycollate and blood agar plates incubated anaerobically for 48 hours
 

at 240c.
 

-97­



TABLE XXIII
 

IDENTIFICATION OF BACTERIAL SPECIES USED TO ESTABLISH
 
GNOTOBIOTIC CLASSIFICATIONS
 

MOUSE GROUP CLASSIFICATION 

2 Monobiote 

3 Monobiote 

4 Monobiote 

5 Dibiote 

6 Dibiote 

7 Dibiote 

15 Monobiote 

16 Dibiote 

17 Monohiote 

BACTERIAL SPECIES
 

Escherichia coli ATCC #15144
 

Lactobacillus leichmannii ATCC #7830
 

Candida albicans ATCC #10231
 

E. coli + L. leichmannii
 

E. coli + C. albicans
 

L. leichmannii + C. albicans
 

Staphylococcus epidermidis
 
(contaminant)
 

S. epidermidis + C. albicans
 

Bacteroides sp. (Abramson, 1969)
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Cultures were checked for purity, prior to use, by subculturing them
 

into differential media and/or microscopic examination of wet and gram­

stained slides.
 

The cultures were inoculated per os by diluting the original cultures
 

one to ten in sterile 0.85% saline and adding approximately 5 ml of this
 

solution directly to the water, food and mouths of the mice.
 

Establishment of Bacteria
 

Confirmation of the establishment of the organisms in the animal was
 

made by culture of fecal swabs (from random representatives) of each cage on
 

media and under conditions suitable for the specific organism; Verification
 

was made by gram stain slides of the isolated cultures.
 

Fecal pellets, having an average weight of 0.0265 gm, were analyzed to
 

approximate total counts of the specific organisms after establishment.
 

Analyses were by plate counts on specific media for the various strains.
 

The pellets were taken, aseptically and serial dilutions made in sterile
 

physiological saline. Mixing by mashing and ultrasonics assured a representative
 

mix.
 

The total counts per 0.0265 gm samples are given in Table XXIV.
 

Maturation Rate
 

Details concerning maturation rate is presented in several sections of
 

the report. These include: growth rate, body size at maturity, and breeding.
 

Development of young born during this project and other items of maturation
 

are presented below. Other facets of the topic are to be found in the autopsy
 

and histology data. The weekly recorded observations are listed in Table XXV.
 

Many details about the maturation of each group have been summarized in
 

Table XXVI. This information is distilled further (Table XXVII) to provide
 



TABLE XXIV 

CONFIRMATION COUNTS OF BACTERIAL SPECIES INTRODUCED 

ADJUSTED COUNT/GRAM 

MOUSE GROUP ORGANISM COUNT/0.0265 gm COUNT x 1.0 = ADJUSTED 
SAMPLE 0.0265 gm COUNT 

I Axenic No Growth
 

1.2 x 10123.2 x 1010
2 E. coli 


5.7 x 106
1.5 x 104
3 L. leichmannii 


2.1 x 10105.7 x 1084 C. albicans 


1.5 x 109 5.7 x 1011

5 E. coli 


4.9 x 106
1.3 x 104
L. leichmannii 


1.7 x 10124.5 x 10106 E. coli 


3.2 x 1098.4 x 107C. albicans 


7 C. albicans 5.4 x 107 2.0 x 109
 

4.9 x 1061.3 x 104L. leichmannii 


15 S. epidermidis 5.4 x 109 2.0 x 1011
 

16 S. epidermidis 9.9 x 109 3.7 x 1011
 

10 7 1.6 x 1094.3 xC. albicans 

8.8 x 109
2.2 x 10817 Bacteroides sp. 
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TABLE XXV
 

WEEKLY RECORDED OBSERVATIONS
 

ITEMIZED LIST RECORDED EACH WEEK BY A TRAINED 

OBSERVER (Dr. Terry Hand) 

1. Size 

2. Health
 

3. Posture
 

4. Response to Irritation
 

5. Fur Coat
 

6. Skin
 

7. Ears
 

18. Eyes 

9. Nares
 

10. Tail and Extremities
 

11. Rectal-Genital Area
 

12. General Body
 



TABLE XXVI 

MATURATION 

GROUP DEATH (1)  HAIR (2) SKIN (3)  GENERAL APPEARANCE 

1 
2 
3 

4 
11 
9 

2-3 
3 
4 

1-2 
1 
2 

Scrawny at start; 2 weeks, large abdomens. 
Looked ill until 3 months when lone survivor grew new hair. 
Fair at start; at I month hypoactive and looked ill, abdomen distended. 

4 
5 
6 

9 
16 
16 

3-4 
3 
3 

3 
1 
3 

Fair at start; 1 month, all look ill; later extremely sluggish.
Fair at start; I month, all look ill to the end, no cecal enlargement noted. 
Very poor at start; eat well, hypoactive, all subnormal large abdomens, 

7 
8 
9 

10 
15 
16 

13 
11 
2 
1 
9 
1 

2 
3-5 
0-1 
0-1 
3 

4-5 

2 
2-4 
0 
0 
4 
1-2 

anemia, ill. 
Scrawny at start; look ill at 1 month, bulging abdomens, anemia. 
Good at start; 1 week look wet; after 2 months, looked better. 
Good at start; active and good, fur best after 2 months, breeding OK. 
Good at start; active and good throughout; breeding OK. 
OK at start; 3 weeks big abdomen, look ill, look moribund. 
Start OK; fur bad in 2 weeks, big abdomen at 3 weeks, all ill, little more 

17(4 ) 
18 

4 
1 

0 
1 

0 
0 

meat. 
Start good; appearance best of any in isolation to date. 
OK throughout; good appearance and movement. 

19 9 3 1 As 18. 
20 
21 

12 
2 

0 
2 

0 
0 

As 18, with large abdomens at 6 weeks. 
As 18, with anemia in some. 

22 6 0 0 OK at start; short experiment. 
23 9 2 0 As 18. 
24 
25 

5 
3 

2 
0 

0 
1 

As 18, with ear bleeding on one at one time (fighting ?). 
As 18. 

26 
27 

7 
3 

2 
0 

0 
0 

OK at start; fur looks woolly, animals look ill. 
As 26, with better fur coat. 

28 
29 

0 
9 

1 
0 

0 
0 

As 18, with fuzzy fur coat. 
Underweight at start, development OK. 

30 
31 
32 
33 
34 
35 
36(5) 

13 
8 

18 
0 
7 
0 
0 

2-3 
0 
0 
0 

2-3 
0 
0 

0-1 
0 
0 
0 
0 
0 
0 

Very active group - all OK. 
Looked good throughout. 
OK until catastrophic deaths at 2 weeks (18 of 20 died). 
OK at start; looked anemic at 2 weeks otherwise better than 34, breeding OK. 
OK at start; some look ill at 2 months, breeding OK. 
Good throughout, short experiment. 
As 36. 

(1) The number dead at 60 days of age (prior to autopsy) is based (4) Filter paper bedding was added to this
 
upon 20 mice per group; where a group had fewer animals, a and all subsequent groups reported herein,

correction was applied to give comparable data. 
 (5) Group 38-42 inclusive looked good at the
 

(2) Hair loss scale 0 (normal) to 5 (completely nude), start. All were terminated at 1 week.

(3) Skin erythema scale 0 none and 4 severe erythema with edema, 
 when the contamination'was confirmed.
 



TABLE XXVII
 

MATURATION - APPEARANCE
 

GROUP (1)  CATEGORY DEATHS APPEARANCE 
NO./20 AVERAGE FUR2 SKIN GENERAL 

1, 19 GF 4, 9 7 3 1 Poor and OK at start, large abdomens. 

2, 20 Gn Coli 11, 12 11 0-3 0 OK and ill with large abdomen. 

3, 23 Gn Lactic 9, 9 9 2-4 1 OR at start, some ill, large abdomen 

4, 24 Gn Candida 9, 5 7 2-4 2 OK at start, one group ill. 

5, 26 Gn Coli + Lactic 16, 7 12 2-3 1 OR at start look ill later. 

6, 28 Gn Coli + Candida 16, 0 8 2 2 Fair at start, ill later, large 
abdomen. 

7, 30 Gn Lactic + Candida 13, 13 13 2 1 	 One poor at start and ill, one OK, 
large abdomen. 

8, 31, 32 Classic, Isolation 11, 8, 18 12 0-5 0-4 	 All good at start, sproadic illness
 
and death.
 

9, 33 Classic, Sterile Diet 2, 0 1 0 0 All good throughout, breeding good.
 

10, 34 Classic, Non-Sterile Diet 1, 7 4 0-3 0 All OK at start, some ill later,
 

breeding fair.
 

15 Gn Staph. 9 9 3 4 OR at start, big abdomen, moribund.
 

16 Gn Staph. + Candida 1 1 4-5 2 Start OR, big abdomen, look ill.
 

17 Gn Bacteroides 4 4 1 0 Best of any in isolation.
 

(i) 	Other groups were not maintained long enough to receive comparable consideration, i.e., 40 days for the
 
evaluation of the death rate.
 

(2) Fur rating scale is 0-5 where 0 indicates a normal quantity of hair and 5 	is given for nude animals.
 
(3) 	Skin rating scale is 0-4 where 0 indicates a normal skin and 4 is much erythema with edema.
 



a more easily grasped concept of the effect of different environmental
 

Only one
conditions and microfloras upon mice fed the sterile Apollo diet. 


category (Groups 10, 34, and 36) received the non-sterile diet.
 

Survival to maturity is indicated as the number of deaths corrected
 

from groups of 20 mice each at 60 days (which is prior to autopsy). The
 

average of the groups in each category has been used for comparative con-


Usually only one, or possibly no, animals would be expected to die
sideration. 


during this time period if the animals were healthy at the start, the diet
 

were adequate, the environment good and infections did not occur.
 

This was actually the case with Group Number 9, the classic mice fed the
 

radiation sterilized diet. Comparable animals fed non-sterile diet showed
 

more than the average mortality. The difference is probably not in the
 

nutrient content of the diet as much as in the bacterial content, which even
 

though low could contribute as many as 103 microorganisms per gram of food
 

fed. The only other mice fed the radiation-sterilized diet, Groups 8, 31,
 

and 32, were placed in isolation and treated as gnotobiotes. Here 60 of
 

the mice died during the first 40 days of the experiment (60 days of age minus
 

the 20 days at weaning before the experiment started). All other mice were
 

received as gnotobiotic and were not strictly comparable dispite the fact they
 

same strain and obtained from the same supplier. The animals were
were the 


definitely less vigorous and smaller. Therefore, the germfree animals with
 

7 dead form a new base for comparing the other categories. The E. coli
 

monognotophoric mice gave increased deaths, and, particularly in the first
 

series, di-association with Candida or Lactobacillus did not alleviate this
 

deadly action of E. coli. The di-association of Candida plus Lactobacillus
 

seemed to be a detrimental combination since two-thirds of the mice died in
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each experiment. Bacteroides alone or the diflora of Candida plus
 

Staphylococcus produced lower number of deaths than was found for germfree
 

mice. This indicates a protective factor was negated by these floras. In
 

view of the low B-vitamin content of the diet, the intestinal synthesis of
 

nutrients may be a factor here.
 

The appearance of the animals may be compared in Tables XXVI and XXVII
 

and from the photographs in Figures 23 to 33. The only consistently good
 

animals were those fed radiation-sterilized diet in the open laboratory;
 

those in isolation were among the worst of all. Mice fed non-sterile Apollo
 

diet in the open laboratory (Groups 10, 34 and 36) looked good most of the
 

time; however, they occasionally had rough fur and sometimes loss of fur was
 

noted. The breeding in this group was not as consistently active as that
 

found in Groups 9 and 33. Consistently, the group which appeared to be the
 

worst was Number 16, gnotophoric mice carrying both Candida and Staphylococcus.
 

Other groups looked seriously ill much of the time in the first experiment
 

and occasionally ill during the second series. The picture of abundantly
 

healthy mice with eyes bright, glossy fur and good skin color was rarely,
 

if ever, seen in any group. This may be attributed to any of the serious short­

comings for the diet noted in the composition section. Monognotophoric mice
 

associated with Bacteroides looked good most of the time, but their fur was
 

often matty and not glossy.
 

The Alopecia observed in the mice in several isolators is rated by
 

severity in Table XXVIII. Table XXVIII describes the observed severity, the
 

diet fed and the microbiological status of the mice. It appears that the
 

presence of Candida alone is sufficient to forestall this condition. In other
 

animals with a normal microflora, the hair and skin seems normal regardless of
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FIGURE 23
 

APPEARANCE OF TYPICAL MICE
 

CATEGORY GF (GROUPS 1, 18, 19)
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FIGURE 24
 

APPEARANCE OF TYPICAL MICE
 

Gn. E. coli (GROUPS 2, 20, 21)
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FIGURE 25
 

APPEARANCE OF TYPICAL MICE
 

Gn. Lactobacillus (GROUPS 3, 22, 23)
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FIGURE 26
 

APPEARANCE OF TYPICAL NICE 

Gn. Candida (GROUPS 4, 24) 
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FIGURE 27
 

APPEARANCE OF TYPICAL MICE
 

Gn. E. col. + Lactobacillus (GROUPS 5, 25, 26)
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FIGURE 28 

APPEARANCE OF TYPICAL MICE 

Gn. E. coli + Candida (GROUPS 6, 27, 28)
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FIGURE 29
 

APPEARANCE OF TYPICAL NICE 

Gn. Lactobacillus + Candida (GROUPS 7, 29, 30)
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FIGURE 30
 

APPEARANCE OF TYPICAL MICE
 

Gn. Bacteroides (GROUP 17)
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FIGURE 31
 

APPEARANCE OF TYPICAL MICE
 

CF MICE IN ISOLATION (GROUPS - PURINA LAB CHOW 5010C) 
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FIGURE 32
 

APPEARANCE OF TYPICAL MICE
 

CLASSIC ICE, OPEN LAB. STERILE DIET (GROUPS 9, 33, 35)
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FIGURE 33
 

APPEARANCE OF TYPICAL MICE
 

CLASSIC MICE, OPEN LAB. NON-STERILE DIET (GROUPS 10, 34, 36)
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TABLE XXVIII
 

COMPARISON OF HAIR CONDITION OF MICE
 
UNDER DIFFERING MICROFLORAL REGIMES AND WITh DIFFERING DIETS
 

GROUP DESIGNATOR REGIME DIET HAIR CONDITION 

Germfree Isolator AS Bald ++ 
Germfree Isolator NS Normal 

Classic Open Colony AS Normal 
Classic Open Colony N Normal 
Classic Open Colony A Normal 

Classic Isolator AS Normal 

Monognotophoric Isolator AS Bald -+ 
(Lactobacillus) 

Monognotophoric Isolator AS Bald + 
(E. coli) 

Monognotophoric Isolator AS Normal 
(Bacteroides) 

Monognotophoric Isolator AS Normal 

(Candida) 

Dignotophoric 
(Lactobacillus and Isolator AS Normal 
Candida) 

Dignotophoric Isolator AS Normal 
(E. coli and Candida) 

Dignotophoric 
(Lactobacillus and Isolator AS Bald + 
E. coli) 

A = Apollo Diet Bald ..+ = Very Severe 
N = 5010C Bald ++ = Severe 
S = Sterile Bald + Moderate 

Normal = No trace of hair loss 
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which diet (Apollo or 5010C) is fed and the sterilizable 5010C mouse diet
 

seems entirely adequate. Where germfree or gnotobiotic mice received the
 

Apollo diet, the mice became bald unless Candida or Bacteroides are present.
 

These observations were made within 30 days of start of the feeding of the
 

Apollo-68 ration.
 

Reproduction and Lactation
 

Reproduction and lactation was obtained in only seven of the groups
 

(Table XXIX). Only one of the germfree mice had a litter and it did not
 

survive to test lactation. Since three of the Bacteroides monoassociated
 

mice had litters, the gnotobiotic conditions were compatible with reproduction.
 

The lactation was very poor in this group. This may be attributed partially
 

to the diet as well as the environmental conditions being marginal. Surprisingly,
 

when one considers their poor appearance, the classic mice in isolation
 

(Group Number 8) did reproduce and weaned several young. Equally good performance
 

was noted in the classic mice fed the radiation sterilized diet (Group Number 9).
 

Here 35 mice were weaned for six litters. Some of these were used for Groups 33
 

and 34 in order to continue the study into the third generation. First
 

generation mice fed the non-sterile Apollo diet (Group 10) reproduced and
 

lactated less well than those fed the irradiated diet. However, the second
 

generation mice performed as well whether the diet was irradiated or not
 

(compare Groups Number 33 with Number 34).
 

These data suggest that the Apollo diet used is adequate under classic
 

conditions, but is inadequate under a variety of conditions in isolation where
 

the flora is not "normal". The results from gnotophoric mice were slightly
 

better in the second experiment than the first; due possibly to the reduced
 

humidity and filter paper bedding.
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TABLE XXIX 

REPRODUCTION AND LACTATION DATA 

LACTATION 

GROUP STATE PREGNANT* LITTERS DAYS NO. WEANED 

1, 19 GF 1, 0 1, 0 0 0 

2, 20 Coli 0 

3, 23 Lactic 0 

4, 24 Candida 0 

5, 26 Coli + Lactic 0, 1 0 

6, 28 Coli + Candida 0 

7, 30 Lactic + Candida 0, 1 0 

8, 31 Classic, Isolation 6, 1 5, 0 21 37 

9, 33 Classic, Sterile Diet 6, 3 6, 3 21 35, 12 

10, 34 Classic, Non-Sterile Diet 2, 5 2, 4 21 14, 12 

15 Staph 0 0 

16 Staph + Candida 0 0 

17 Bacteroides 4 3 2 0 

*Includes Autopsy Findings 
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Maturation Rate of Young
 

Litter Number 3 of Group 8 was born on August 14, 1969. Six survived
 

five days during which the mother was not noted for her care of the young.
 

At five days of age, the ears were free and the young seemed to move little.
 

At ten days of age, the eyes were still closed, white fuzzappeared on the
 

skin and they were crawling weakly and with the typical unsteady gait of
 

animals in this stage of development. They had a good appearance at 21 and
 

34 days. The weaning weights of the three survivors were 11.0 and 9.2 gm.
 

These are quite satisfactory.
 

Litter Number 5 of Group 8 was born on September 12, 1969. Eight young
 

survived. At four days, they were quite inactive, eyes and ears were not
 

open and they appeared to be well cared for. At seven days, a white fuzz
 

was observable. Four survived to weaning and looked quite normal.
 

At maturity, the above mice became Experiment Group Number 31. They
 

subsequently gave birth to two 3rd generation litters. The first of these
 

on October 17, 1969 contained 12 young and the second had 14 young born
 

October 20. Both litters developed well, showed white fuzz at the end of
 

seven days and were weaned on November 11, at the age of two weeks. They
 

looked well, with good fur and posture, their eyes were open and appeared to
 

be within normal limits of development. Their weights at one month of age were
 

11.1 for males and 11.0 for the females. Further data on their development
 

is seen under the heading Group Number 32.
 

Three of the five litters born in Group Number 9 on July 18-21 were
 

weaned on August 11, 1969. The records show development at 5 +2 days was
 

normal. They seemed active and at seven days a fine coat of fur had started.
 

At weaning, they were active, alert and showed every sign of good development and
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maturation. The fur coat was complete and intact, the eyes showed luster and
 

normal aperture, the ears were somewhat yellow and looked anemic, the skin
 

was within normal limits. The extremities and tails were within normal
 

limits, the anal-genital areas were clear with well developed scrotems
 

and the general body development looked good for this age group. The
 

averaged weights at weaning were 8.6 gm for the mixed sexes. 
 They appeared
 

well at 35 days of age excepting anemia. Groups Number 33 and 34 were
 

comprised of these animals.
 

Two litters from dams in Group Number 9 did not survive. The sixth
 

litter born on October 9, 1969 comprised 12 animals. At eight days, they
 

appeared to be in good health with both ears and eyes just opening. White
 

fuzz covered them and they were able to crawl. 
This is better development
 

than was noted in comparable animals in isolation (Groups 8 and 31). At 13
 

days, the eyes were open, the fur was good,-the general development was rated
 

as good. The animals were moving about well and nibbling at material in the
 

cage. These (Litter 6, Group 9) were also used for Group Number 33 data.
 

Their weaning weights were 7.6 for males and 6.7 for females at 24 days.
 

This is somewhat lower than expected.
 

The first litter from Group Number 10 died within two days. The second
 

litter, born October 12, 1969, comprised ten young. At five days of age, they
 

appeared to be having a good development. The ears were up with the eyes
 

still closed. A trace of white fuzz could be seen. 
At ten days, the eyes
 

were still closed, the mice had a normal fur coat, would crawl actively and
 

showed normal development and maturation. These mice were weaned at 21 days.
 

Their average weaning weights were 9.0 for males and 7.8 for females. This
 

is acceptable. These mice were used as Group Number 34; 
thus later information
 

on their development is shown by that number.
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The second generation classic mice in the open laboratory reproduced
 

well. Six litters were weaned from December 1-3, 1969. The growth, develop­

ment and maturation was acceptable. These third generation animals were
 

used for Groups Number 35 and 36. Detailed information for these mice is
 

found under discussion of various aspects of those groups.
 

Maturation Rate - Reproduction
 

Data on reproduction as a component of maturation is presented in
 

Table XXX. It is noted that all groups reared to maturity in the open
 

laboratory did reproduce lactate and produce viable off-spring at weaning.
 

This is a critical part of the evaluation of the Apollo-68 diet; to allow
 

the third generation mice to be fed the diet whether or not it was radiation
 

sterilized. The reproduction performance of classic mice in isolation
 

(Groups 8 and 31) is evidence of the viability of the species under sub-marginal
 

conditions. The animals looked ill, particularly Group 8, the diet was
 

partially deficient in several nutrients and the environment was suboptimal.
 

The reproductive performance of gnotobiotes under the conditions of the
 

experiment was minimal. The best was noted in the Bacteroides monognotophoric
 

mice; even here the best of the three litters cast survived only two days.
 

It appears that in isolation the conditions (diet plus environment) used
 

approached the limit beyond which reproduction and maturation to give continuity
 

to this species was impossible.
 

Body Size
 

The body size data are summarized in Table XXXI. The data taken at
 

autopsy at 60-63 days provides a uniform group of young males in the first
 

experiment. It is apparent that all groups in isolators excepting Group 17
 

were stunted when compared to Groups 9 and 10 which were reared in the open
 

-122­



TABLE XXX
 

MATURATION - REPRODUCTION 

GROUP CATEGORY 

1 GF ( ) 

26 Coli + Lactic (1 )  

30 Lactic + Candida (I )  

17 Bacteroides (I)  

8 Classic - Isolation (1)  

31 Classic - Isolation 

9 Classic ­ 1Y Diet (') 

33 Classic - I' Diet(') 

10 Classic Control(2 )  

34 Classic Control(2 )' 

LACTATION, NUMBER 

LITTERS (3) DAYS WEANED 

1 -

0 -

0 -

2 2 None 

6 21 7 

3 21 20 

6 21 35 

4 21 11 

2 21 11 

7 21 12 

(1) 	The Apollo diet fed these mice was sterilized by -Y radiation.
 

(2) 	The Apollo diet fed these mice was not sterilized.
 

(3) 	Mice in all categories listed were found to be pregnant. Those
 
with no litters were confirmed by autopsy.
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TABLE XXXI 

BODY SIZE DATA 

EXPERIMENT A 
AUTOPSY LATER 

EXPERIMENT B 
AUTOPSY DATA 

GROUP STATE AGE* AVERAGE* AGE AVERAGE AGE AVERAGE 

1, 19 GF 63 17.8 15.3 77 95 28.4 

2, 20 Coli 63 19.6 96 23.5 

3, 23 Lactic 63 17.5 96 31.5 

4, 24 Candida 63 14.6 17.9 77 96 27.2 

5, 26 Coli + Lactic 63 20.9 96 23.2 

6, 28 Coli + Candida 63 15.9 19.5 77 96 33.1 

7, 30 Lactic + Candida 63 15.5 96 31.7 

8,31,32 Classic, Isolation 60 20.0 74 25.4 

9,33,35 Classic, Sterile Diet 60 28.0 32.8 83 90+ 22.9 

10,34,36 Classic, Non-Sterile Diet 60 27.6 90+ 26.9 

15 Staph 62 25.5 25.4 102 

16 Staph + Candida 62 23.5 20.1 102 

17 Bacteroides (105) 29.3 

*Age in days and body size in gm.
 



aboratory. It should be noted that Groups 1-10 were begun on June 10, 

coups 15-16 on May 20, and Groups 17 on August 29. Since these separate
 

ssembleges of mice were involved, it may be unwise to consider Groups 15-17
 

a exactly the same category with Groups 1-10. The mice of Groups 17 were
 

iso older at autopsy. The status of these groups did not change as later
 

ata became available. Thus it was probably less a factor of age than either
 

a intrinsic factor in the mice, the way they were handled or a slight change
 

unknown) in their environment. Given the conditions as they were for Groups 1-10,
 

t is noted that the most stunted were those with Candida while mice mono­

ssociated with Coli or disassociated with Coli plus Lactobacillus were heavier
 

Ean germfree mice. This represents microbial antagonism (by Candida) and
 

robably the alleviation of dietary shortcomings by Coli. In both conditions,
 

he presence of Lactobacillus as a diflora of Candida plus Col gave body size
 

ata equivalent to Candida, while that of Candida plus Staphylococcus gave
 

ata comparable to the Staphylococcus monoflora. Thus the microbial dominance
 

a this first experiment is clearly Staphylococcus ;Candida >Coli >Lactobacillus.
 

"The worst is greater than the best.') This is the type of information which is
 

ich needed. In the second experiment, the diet was the same, the mice were
 

ifferent assemblege of the same strain from the same source and the conditions
 

are altered alightly. The temperature was never low (as it was at the
 

aginning of the first experiment), the humidity was probably lower as the experi­

ant was begun on October 6, 1969 (the first experiment was run during summer
 

ad the second during fall), and filter paper bedding was provided. The
 

asults of body size were quite different; there was no pattern as seen in the first
 

Kperiment. The results can be appreciated readily by rearranging the groups
 

a order of body size at maturity:
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BODY SIZE IN GRAMS FLORA
 

33 Coli + Candida
 

32 Coli + Lactobacilli
 

32 Lactobacilli + Candida
 

31 Lactobacilli
 

28 Germfree
 

27 Classic (Non-Treated Food)
 

27 Candida
 

25 Classic in Isolation
 

23 Coli
 

23 Classic (V-Food)
 

Under these conditions, Coli gave an adverse effect which was converted
 

into a positive effect by either Candida or Lactobacillus; Candida showed
 

nor harmful effect and Lactobacillus was helpful in all categories. The
 

differences between the results in the two experiments cannot be explained.
 

Serum Protein Analyses
 

Tables XXXII and XXXIII give the results of our serum protein study of
 

the mice. The gnotobiotic animals and the germfree animals show remarkable
 

similarity to the conventionals. The albumin to globulin ratios tend to
 

indicate protein is present in sufficient amount bearing out our original data
 

using food efficiency studies as a guide. Table XXXIII compares our results
 

with another investigator (Phillips, 1967) who also used C. albicans as a
 

challenge organism. His results are reported as averages of mice. The data
 

from the animals in our experiment uses pooled blood samples from four mice in
 

each group. All animals in our experiment were fed the Apollo diet.
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SA &IPLEGROUP 

DESIGNATOR G1 

Versatol 

Versatol 

TABLE XXXII. SERUM PROTEINS IN CONVENTIONAL, 

TOTAL PROTEIN ALUISGLOBULINS 
WEIGHT ALBUM INS o . 1 

NUMBER (gins) (gins) % (gins) % 

1*** 7.1 3.73 52.6 .38 5.3 

2*** 7.2 4.10 57.0 .38 5.3 

GERMFREE, AND GNOTOBIOTIC 
42 4 'l 

(gms) 7o (gins) % 

.80 11.3 .75 10.5 

.71 9.8 .76 10.6 

MICE FED APOLLO DIET 

. 

(gins) % (gins) 

-

4 

% (gins) 

1.44 

1.25 

r 

20.3 

17.3 

A____________I 

ALBUMIN/GLOBULIN 

RATIO 

1.11 

1.32 

Versatol 3* 7.2 4.07 56.5 .34 4.8 .79 11.0 .70 9.7 - 1.3 18.0 1.30 

Germfree 1 5.8 3.12 53.9 .48 8.3 .32 5.5 **1.50 25.9 .93 16.1 .57 9.8 .38 6.5 1.18 

E. coli 

Lactobacillus 

2 

3 

5.6 

4.9 

3.23 

2.77 

57.5 

56.5 

.40 

.40 

7.2 

8.2 

.35 

.35 

6.3 

7.2 

1.27 

1.04 

22.6 

21.2 

21 
.55 

.46 

9.7 

9.4 

.73 

.58 

13.0 

11.8 

.35 

.34 

6.3 

6.9 

1.36 

1.30 

Candida 4 6.1 3.58 58.5 .44 7.2 .32 5.3 **1.38 22.6 .69 11.3 .69 11.3 .38 6.2 1.42 

*4 E. coli+ 5 5.0 2.76 55.2 .40 8.0 .40 8.0 1.09 21.8 .34 6.8 .74 14.8 .35 7.0 1.23 

E. coli + Candida 6 6.6 4.13 62.5 .41 6.3 .41 6.3 1.24 18.6 NON SEPARABLE .41 6.3 1.68 

Candida 
Lactobaclllus + 7 5.0 2.96 59.0 .46 9.2 .30 6.0 1.02 20.4 .35 6.8 .69 13.5 .36 7.2 1.39 

Classic in GFE 8 4.8 2.60 55.4 .46 9.6 .23 4.8 **1.10 23.0 .57 12.0 .53 11.0 .35 7.2 1.18 

Sterile Diet 
Classic, Cony. .,j 9 5.2 3.01 57.9 .49 9.5 .28 5.3 **1.09 21.0 .54 10.5 .55 10.5 .33 6.3 1.38 

Non-Sterile Diet 

Staph. 

Staph. + Candida 

15 

16 

5.1 

5.3 

2.91 

2.88 

57.0 

54.4 

.55 

.59 

10.7 

11.1 

.38 

.41 

7.5 

7.81 

*.93 

*1.01 

18.3 

18.9 

.35 

.48 

6.8 

7.2 

.58 

.56 

11.4 

11.7 

.33 

.41 . 

6.5 

7.8 

1.33 

1.19 



TABLE M0(11 (Continued) 

SAMPLE 

DESIGNATOR 

GROUP 

NUMBER 

TOTAL PROTEIN 
WEIGHT 
(gms) 

ALBUMINS 
-----

(gms) 
_ 

% 
" 

(gins) 
I 

% 
PC 2 

(gIs) 

GLOBULINS 
d T 

(grs) %oI 
61 

(gros) 
16 2 

(Ems) (gms) % 
AALBUMIN/GLOBULIN 

RATIO 

Bacteroides Sp. 17 4.8 2.61 54.3 .57 12.0 .40 8.4 .87 18.1 ,35 7,2 1.83 

Germfree 19 2.9 1.43 49.4 .31 10.9 .32 10.9 .60 20.6 NON SEPARABLE .24 8.2 0.97 
E. colt 21 4.8 2.79 58.1 .46 9.7 .31 6.4 .93 19.4 .36 7.5 .57 -11.8 .31 6.4 1.38 

Lactobacillus 23 4.2 2.39 56.9 .44 10.4 .29 7.0 .74 17.5 NON SEPARABLE .34 8.2 1.32 

Candida 24 4.1 1.58 38.5 .50 12.8 .59 14.3 1.12 27.2 .30 7.2 0.62 

E. colt + 

Lactobacillus 

26 4.0 2.39 59.8 .49 12.2 .25 6.1 .63 15.8 .24 6.1 1.49 

E. coli + Candida 28 7.0 2.76 39.4 .31 4.5 .58 8.3 2.87 41.0 2.13 30.4 .74 10.6 .48 6.8 0.65 

H 

Lactobacillus + 

Candida 
30 5.3 3.04 57.4 .57 10.7 .31 5.8 .97 18.4 - - - - .41 7.7 1.35 

I Second Generation 

from Group 8 

31 4.3 2.25 52.4 .51 11.9 .25 5.9 .87 20.3 .36 8.3 .51 12.0 .41 9.5 1.10 

Third Generation 
from Group 81 

32 4.6 2.45 53.3 .49 10.7 24 5.2 1.00 21.8 .46 10.0 .54 11.8 .39 8.5 1.14 

Second Generation 

from Group 9ati 

33 3.7 2.08 56.3 .42 11.2 .23 6.3 .65 17.5 .32 8.7 1.28 

Second Generation 
from Group 108 

34 4.6 2.59 56.2 .51 11.2 .31 6.7 .83 18.0 .36 7.9 1.28 

Third Generation 

from Group 91 

35 4.0 2.39 59.8 .40 10.0 .25 6.1 .63 15.8 - - - .33 8.2 1.48 

Third Generation 

from Group 10 

36 4.6 2.54 55.1 .51 11.2 .28 6.1 .91 19.8 - - - - .36 7.9 1.23 

Conventional 37 5.4 2.73 50.5 .56 10.3 
Germfree 
*Specimens showing prominent double peak in a globulins 
**Specimens with marked homogenous double peak in & region 
***Control #1 run with Groups 1-7 
***Control #2 run with Groups 8-10, 15, and 16 
***Control #3 run with Groups 17, 19, 21, 23, 24, 26, 28, 30-37 

.39 7.2 1.28 23.8 .39 

All groups except #37 

7.2 .89 16.6 

on Apollo Diet 

.44 8.2 1.02 



TABLE XXXIII 

SERUM PROTEINS IN CONVENTIONAL AND GERM-FREE MICE AND IN THE GERM-FREE 
MOUSE AFTER ASSOCIATION WITH CANDIDA ALBICANS
 

GROUP
 
1 2 3 4 5 6 7 

GERM-FREE GERM-FREE CVN CVN CVN MICE MICE MICE 

MICE MICE MICE MICE (STERILE DIET) WITH C. Albicans WITH C. Albicans
 

38.3 54.5 57.9 53.0 58.5ALBUMIN 57.4 53.9 

L/1 GLOBULIN 10.4 8.3 8.0 11.1 9.5 9.0 7.2 

5.30(2 GLOBULIN 17.1 5.5 6.2 5.5 5.3 9.4 

)0 GLOBULIN 14.9 25.9 35.8 21.1 21.0 23.3 22.6 

6.2GLOBULIN 0.5 6.5 11.7 7.8 6.3 6.0 

TOTAL PROTEIN 6.2 5.8 6.3 4.6 5.2 4.7 6.1
 

(g/100 ml)
 

GROUPS 1, 3, and 6 - Results of Phillips, A. W. (1967).
 

GROUPS 2, 4, 5, and 7 - Results of this experiment
 



Groups.l and 2, comparison of the work of Phillips and this experiment,
 

using germfree mice, differ primarily in the 4 and y globulin fractions. 

Other investigations have shown germfree animals are low in d6 globulins and 

particularly low in ' globulins when compared with conventional mice. It 

would appear, therefore, that the Apollo diet tested contains sufficient 

antigens to activate the bodily defenses of the germfree mice. Not taken 

into account are the strain differences. Phillips used ND4 mice from 

Manor Farms, reared as a colony in Phillips' laboratory. We used CRL-CDl 

from Charles River Laboratory. The previous feeding history of the animals 

may have included antigens in the diet. The results are comparable. Our 

standard autoclaved Purina Lab Chow (Diet 5010C) probably contain antigens 

in sufficient number to activate the bodily defenses. It'has been demonstrated 

that a function of the microflora is to activate bodily defenses (the synthesis 

of gamma-globulin and other immuno-globulins) and thus provide a defense 

against infection. This stimulus can also be dead microorganisms as well as 

other antigens in the diet. Wostman (1965) has shown even highly purified 

diets can serve as such a stimulus. The Apollo diet was known to contain 

substantial numbers of microorganisms before sterilization and the bacterial
 

analyses of the Apollo diet showed high numbers of S. fecalis in the diet as
 

received from the original vendor. They were, of course, killed, but the
 

antigenic properties could have remained.
 

Table XXXIV compares the protein fractionation data of CRL-CDl mice.
 

The only difference known to us is the diet. The mice fed the Apollo diet
 

have a somewhat lesser total protein with a percentage depression appearing
 

primarily in the o'. 2 fraction and a far higher percentage appearing in the
 

/9 globulins. All other fractions are comparable. As yet, no reason is clear
 

for the higher & fractions in the Apollo diet mouse.
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TABLE XXXIV 

PROTEIN FRACTIONATION
 

(CRL MICE) 

PERCENT TOTAL PROTEIN ALBUMIN 
TOTAL GLOBULIN 

0 MOUSE NUMBER PROTEIN ALBUMIN I d%2 RATIOS 

121 7.23 58.9 8.02 15.76 9-26 8.02 1.3 

-~z 122 6.64 60.09 9.33 14.90 9.78 5.87 1.5 

123 7.16 57.54 8.65 17.17 8.51 8.10 1.4 

124 7.08 59.32 9.18 16.94 8.19 6.35 1.4
 

125 7.19 54.10 9.17 15.99 8.34 2.37 1.2
 

0 Germ-Free 5.8 53.9 8.3 5.5 25.9 9.8 1.18
 
r4 CJ
U w 

*Calculated from data furnished by Charles River Laboratories
 
Courtesy Foster, H.L. (1969).
 

**Pooled blood sample from four mice.
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Reticuloendothelial System and Phagocytic Activity Studies in Gnotobiotic
 

Mice Using Apollo-68 Diet
 

"There is no significant difference between strains of mice in their
 

rate of carbon clearance except as related to the relative combined weights
 

of liver and spleen" (Doll, 1962). Thorbecke and Benacerroff (1959) earlier
 

had found that the combined weight of liver and spleen is significantly lower
 

in germfree than in normal control mice. There may be strain differences,
 

however, in the overall innunological defenses. The aforementioned studies
 

of Phillips (1967) and those of Wostman (1952) have shown that some strains
 

of germfree mice have appreciably lower r'globulins when compared with
 

conventionals. The d-2 fractions and the d fractions are also generally
 

low in these germfree mice. When the mice were -exposed to normal microflora, these
 

fractions all increased within two weeks of exposure. In that the total serum
 

proteins, except in certain pathological and malnutrition cases, seemed to be
 

about the same, this increase was marked by a concurrent decrease in serum
 

albumin.
 

Bauer and Horowitz (1964) investigating the relationship of phagocytosis
 

and stress have discussed some of the changes occurring in the immunological
 

competence when germfree animals have access to antigens in their diet. In
 

our discussion of the serum protein findings of this experiment, this was
 

covered in some length. Challenge with antigenically inert colloidal carbon
 

removes to some extent the influences of the antigenic stimuli (Doll, 1962).
 

We have compared the K and-'-values of our strain of germfree mice and
 

their conventional counterparts in Table XXXV. The carbon clearance rates in the
 

Notre Dame strain, when germfree and gnotobiotic animals are used, are shown
 

as literature values. Our data correlates well and reinforces the concept
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TABLE XXXV 

PHAGOCYTIC INDICES OF GERMFREE, GNOTOBIOTIC AND CONVENTIONAL ANIMALS FED THE APOLLO DIET 

NUMBER 

GROUP 

DESIGNATOR 
ANIMAL'S WEIGHT 

(gas) 

WEIGHT OF LIVER 
AND SPLEEN 

(gas) 

WEIGHT OF LIVER 
AND SPLEEN/100 gm 

MOUSE K REMARKS 

I Germfree 22.8 0.9555 4.19 .009 4.93 

2 E. coli 10.8 
14.2 

0.5700 
0.6215 

5.28 
4.38 

.006 

.021 
3.46 
6.29 

Average 4.87 

3 Lactobacillus 31.9 1.5068 4.72 .034 6.82 

4 Candida 19.0 0.8369 4.41 .024 6.51 

5 E. coli and 
Lactobacillus 

29.0 
22.8 

1.3062 
0.9555 

4.51 
4.19 

.029 

.014 
6.76 
5.66 

Average 6.21 

6 E. coli and 
Candida 

20.1 
16.2 

0.9768 
0.9375 

4.86 
5.80 

.029 

.025 
6.29 
5.02 

Average 5.63 

7 Lactobacillus 
and Candida 

28.7 1.0597 3.69 .041 9.65 

8 Classic in G.F.E. 30.2 
31.0 

1.5181 
1.5462 

5.02 
4.99 

.033 

.018 
6.36 
5.29 

Average 5.82 

9 Classic, Cony. E. 
Sterile Diet 

31.2 
35.1 

1.7618 
1.9577 

5.65 
5.59 

.012 

.044 
4.09 
6.25 

Average 5.17 

10 Classic. Cony. E. 
Non-Sterile Diet 

37.0 
30.0 

2.0033 
1.3546 

5.44 
4.52 

.022 

.008 
5.12 
4.40 

Average 4.76 

15 Staphylococcus 26.9 1.3723 5.12 .007 3.67 

16 Staphylococcus and 
Candida 

26.2 
24.1 

1.3521 
1.0255 

5.15 
4.25 

.003 

.004 
2.81 
3.71 

Average 3.26 

Literature Germfree 
Conventional 

4.68* ,QD19 
.0095 

o .0116 

4.04* 
3.99* 

*These values 
represent average 
from Doll (1962) 



of Bauer and Horowitz, that "microbial flora stimulates the immunologic
 

functions but does not increase phagocytic functions of lymphatic tissue,
 

and in healthy animals, living in a microbial environment, immunologic
 

events derive mainly from the flora".
 

To this concept, we iterate the effect of antigenic stimulus from most
 

probably diet and certainly from ingestion of heat killed bacteria.
 

Phagocytic Index data for the complete experiment is found in Appendix I.
 

Interferon Data for the complete experiment is to be found in Appendix H.
 

This data is negative and indicates the mice had not been challenged prior to
 

analyses.
 

Complete hematology data for the mice is to be found in Appendix G.
 

Data was obtained at time of autopsy.
 

IV. SUMMARY OF PART B - BIOLOGICAL EVALUATION OF AN APOLLO DIET
 

A research effort, primarily concerned with an evaluation of the Apollo-68
 

diet and its effects on the indigenous microflora (particularly the digestive
 

tract) and the general well being of the body was performed. Physiological
 

and pathological effects due to feeding germfree mice sterile, inoculated,
 

and nominal (untreated) space foods were studied and compared.
 

Forty-two colonies of classical and germfree mice were studied and
 

evaluated during the course of this experiment. The colonies were evaluated using
 

morphologic, hematologic, and biochemical examinations including the following:
 

growth rate; food utilization efficiency; body size, maturation rate, reproduction
 

and lactation; autopsy with histology of appropriate tissues; immunologic
 

defense mechanisms (antibody response, phagocytic index, interferon, and
 

properidin); and hematology (hemoglobin, total white blood cells, differential
 

white blood cell count, serum protein, and gamma globulins). The germfree mice
 

were fed Apollo-type diets as follows: sterilized; inoculated with a B-vitamin
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synthesizing bacteria; inoculated with a B-vitamin requiring bacteria;
 

inoculated with a yeast; variations of the above; and addition of other micro­

organisms such as Staphylococcus epidermidis. Classical mice served as
 

controls and were fed sterilized and non-sterilized Apollo-type diets as well
 

as commercial mouse diets.
 

The formula for the Apollo-68 diet was compiled from actual food
 

consumption data of four pre-flight members of the Apollo astronaut team in
 

the fall of 1968. This diet was prepared by the Whirlpool Corporation in
 

conninuted form and sterilized at Brookhaven National Laboratory with 5 million
 

rads gamma radiation. The mice accepted this diet readily. The food
 

utilization efficiency seemed to be somewhat depressed by the presence of
 

Candida albicans either alone or when in combination with E. coli or
 

L. leichmannii. When the extremes of the data are compared, it was noted
 

that a two-fold difference in food efficiency may result due to differences
 

in the indigenous or inoculated microflora of the G.I. tract. The data
 

demonstrates that Apollo-68 diet is adequate for classic mice into the third
 

generation when growth, food utilization efficiency, general appearance, and
 

reproduction are evaluated. This is true whether the diet was sterilized or
 

not.
 

The results under different gnotobiotic conditions suggest that microbic
 

stress may be playing an important role in nutritional efficiency and in the
 

evaluation of the diets as well as in the general well being of the subjects
 

eating the diet. In the first 50 days, the results of the experiments
 

indicated a dramatic effect due to the presence of different "indigenous"
 

microorganisms on the well being of the mice. Mice carrying .. epidermidis,
 

E. coli, Lactobacillus with E. coli, Candida with E. coli, Lactobacillus with
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Candida, or the classic animals in isolation survived poorly. Two-thirds
 

of all animals in these groups expired, the exception being only 50% of the
 

classic animals in isolation died. The survival of other gnotophoric groups
 

was relatively good. One could conclude from this experiment that it is not
 

desirable to have E. coli alone or with Candida or Lactobacillus as a pre­

dominant microorganism. Although Candida did not appear to affect the
 

mortality; the presence of E. coli and Candida resulted in a lower mortality
 

that the S. epidermidis. In turn, it was noted that this was the only group
 

which carried Candida and the only group which had acceptable food utilization
 

efficiency. Therefore, the Staphylococcus-Candida interaction appears to be
 

beneficial to the animal while the Candida-Lactobacillus combination was
 

lethal to a greater extent than either organism alone.
 

In the initial feeding experiment with Apollo diet, hair loss was
 

observed in most groups reared in isolators while none of those reared without
 

isolation showed apparent alopecia. The most serious hair loss to the point
 

of being almost completely hairless, was observed in both the S. epidermidis
 

gnotophoric mice and the classic mice in isolators. A second experiment was
 

performed with many possible factors which could stress the animals eliminated.
 

Cellulose filter paper was placed in the cages for bedding. This bedding may
 

have given the mice a sense of security since they could hide. In the second
 

experiment, hairlessness was not observed: some degree of alopecia was found
 

on the backs of the germfree animals and on those carrying the Lactobacillus
 

species and E. coli only as well as those harboring both E. coli and Lactobacillus.
 

Under these conditions, alopecia was apparently prevented by the addition of
 

a Bacteroides or Candida species and of course by the variety of indigenous
 

microorganisms of classic mice in isolation.
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The above observations indicate that the diet is adequate for classic
 

mice under normal conditions, but it appears to be only a marginal diet
 

inadequate under a variety of stressful environmental conditions.
 

V. 	 RECOMENDATIONS - PART.B 

1. 	 Specific problems in the control of the microflora should be'studied.
 

These include:
 

a. 	use of experimental marginal and abundant diets to control microflora;
 

b. 	the effects of stress as part of an evaluation of any astronaut diet;
 

c. 	a search for the exact reasons for the E. coli caused deaths and
 

for the denudation and alopecia observed.
 

2. 	 A computer program should be initiated to afford some elements of prediction
 

when considering the interactions of microflora and astronaut diets.
 

3. 	 A continuously updated literature search and evaluation should be planned
 

and the information placed into the computer program recommended above (2).
 

4. 	 Periodic symposia for knowledgeable scientists working in the area of
 

microbial ecology and human nutrition should be organized.
 

5. 	 An experiment, similar in design to the diagrammed in Table XXXVI should
 

be started to further define effects of marginal diets under space flight
 

conditions.
 

-137­



TABLE XXXVI
 

EXPERIMENTAL DESIGN
 

DIET ENVIRONMENT AND MICROBIAL INOCULUM**
 
GROUP DIET* STERILITY CLASSIC GNOTOBIOTIC OTHER
 

1 Lab Chow No +
 
2-3-4 Lab Chow Yes (2) + (3)+(Germfree) (4)+(Classic-isolated) (a )
 

4 Abundant No +
 
6-7-8 Abundant Yes (6)+ (7) +(Germfree) (8) +(Classic-Isolated)
 

9 Marginal No +
 
10-11-12 Marginal 
 Yes (l0)+ (11) +(Germfree) (12) +(Classic-Isolated)


13 Marginal Yes +(E. coli)
 
14 Complete Yes 
 +(Z. coli)
 
15 Marginal 
 Yes +(I. coli + S. faecalis)

16 Marginal Yes +(E. coli +
 

Bacteroides a.)

17 Marginal Yes +(E. coli + Human strain
 

E. coli)

18 Marginal Yes 
 +(E. coli + Human strain
 

Sco (b)(c)
 
19 Marginal Yes 
 +(E. coli + Lactobacillus 

castei)
A 20 Marginal Yes +(E. coli + Lactobacillus 

00c as e MTS(c7­21 Marginal Yes 
 +(E. coli + specific
 

phage) C)
 
22 Marginal Yes +
 

(with E. coli toxins)
 

N.B. All microorganisms will be mouse adapted unless otherwise stated.
 
(a) Classic animals placed in complete microbial isolation with only sterile food,
 

water, bedding, and air provided.

(b) Prior establishment of the second bacteria.
 
(c) Repeated or continuous inoculation (i.e., incorporate into sterile diet).
 

*Diet to be fed to animals during test.
 
*kClassic - naturally occurring indigenous microflora
 
Gnotobiotic - refers to the intentional inclusion of specific microorganisms
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