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FLUTTER, VIBRATION, AND BUCKLING 

O F  TRUNCATED ORTHOTROPIC CONICAL SHELLS WITH 

GENERALIZED ELASTIC EDGE RESTRAINT* 

By Sidney C. Dixon and M. Latrelle Hudson 
Langley Research Center 

SUMMARY 

A theoretical investigation has been made of the flutter, vibration, and buckling char- 
acteristics of orthotropic truncated conical shells with generalized elastic edge restraint. 
The problem is simplified by making cert-ain assumptions which a r e  considered justified 
by the results for cylinders; the shell analysis is of the classical Donne11 type, in-plane 
inertias and structural damping a r e  neglected, and the aerodynamic loading is represented 
by the inviscid two-dimensional quasi-steady approximation (modified piston theory). The 
principle of virtual work is utilized to formulate the problem. An approximate solution is 
obtained by the generalized Galerkin method in te rms  of assumed displacement functions 
that must satisfy only geometric constraints. A s t r e s s  function is introduced so  that only 
the normal displacement need be assumed. The equation for the s t r e s s  function is solved 
exactly in t e rms  of the arbi t rary coefficients in the assumed displacement. 

The accuracy and limitations of the present analysis a r e  illustrated by comparing 
numerical results for buckling and vibration with results of other investigations for vari- 
ous boundary conditions, applied loads, and shell geometries and stiffnesses. Numerical 
results for flutter of conical shells reveal that trends established for  buckling and vibra- 
tion do not necessarily hold for  flutter. Increasing cone semivertex angle (up to  about 
150) for length-radius ratios greater  than about 1 increases the resistance to  flutter even 
though the buckling load and natural frequencies decrease. Also, increasing the axial edge 
restraint can decrease the resistance to flutter even though both the buckling load and 
natural frequencies a re  increased. These phenomena are attributed to  the fact that flutter 
depends on frequency spectrum as well as magnitude. Sufficient numerical results a r e  
presented to permit the determination of the flutter condition for simply supported iso- 
tropic conical shells for  a wide range of cone angle, length-radius ratio, and radius- 
thickness ratio. Results are also presented to indicate some effects of variations in axial, 
radial, circumferential, and rotational edge restraint, applied load, and ring o r  stringer 
stiffeners. 

*Part of the information presented herein was included in a thesis entitled 
"Buckling of Orthotropic Truncated Conical Shells With Elastic Edge Restraint Subjected 
to Lateral  Pressure  and Axial Load" submitted by Sidney C. Dixon in partial fulfillment 
of the requirements for the Degree of Doctor of Philosophy in Engineering Mechanics, 
Virginia Polytechnic Institute, Blacksburg, Virginia, March 1967. 
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INTRODUCTION 

Pr ior  to  about 1950 there  was a paucity of theoretical and experimental informa- 
tion on the static and dynamic behavior of truncated conical shells primarily because of 
the mathematical difficulties encountered in theoretical analyses and because thin conical 
shells had limited application as structural components. However, more recently thin 
conical shells have been used as load-carrying structural components in adapter sections 
of multistage rockets and in proposed truncated-cone nose-cap configurations for plane- 
tary entry vehicles; therefore, a thorough knowledge of the static and dynamic character- 
istics of such configurations is required. This need and the availability of digital com- 
puters to aid in circumventing the mathematical difficulties encountered in cone analyses 
have resulted in considerable research effort on the buckling characteristics of cones 
(for example, refs. 1 to 4) and on the vibrational characteristics of cones (for example, 
refs. 5 to  7); however, only limited results are  available for the effects of various classi- 
cal boundary conditions o r  elastic edge support, which have been shown to be important 
for cylindrical shells (for example, refs. 8 to  13). Also, there  is still an almost complete 
dearth of theoretical and experimental information on flutter of conical shells (ref. 14). 

The present investigation considers the flutter, vibration, and buckling of a trun- 
cated orthotropic conical shell with generalized elastic edge restraint. The problem is 
simplified by making certain assumptions which a r e  considered justified by the results 
for flutter of cylinders. The principle of virtual work is utilized to formulate the gov- 
erning equations of the problem. An approximate solution is obtained by the generalized 
Galerkin method (refs. 15 and 16); that is, a procedure in which the displacement func- 
tions must satisfy only geometric constraints. A s t r e s s  function is introduced so that 
only the normal displacement need be assumed. The equation for  the s t r e s s  function is 
solved exactly in t e rms  of the arbi t rary coefficients in the assumed displacement. 

The accuracy and limitations of the present analysis a r e  illustrated in the appen- 
dixes by comparing numerical results for buckling and vibration with results of other 
investigations for various boundary conditions, applied loads, and shell geometries and 
stiffnesses. Flutter results a r e  presented to  indicate the effects of conicity and shell 
geometry on the flutter characteristics of simply supported isotropic conical shells. 
Sufficient numerical results a r e  presented in the form of general flutter boundaries to  
permit the determination of the flutter condition for wide ranges of cone semivertex angle, 
length-radius ratio, and radius-thickness ratio. Results are presented to indicate the 
effects of applied loads, ring and stringer stiffeners, and finite elastic edge restraint  
provided by massless  uncoupled springs; the limiting cases  of free and clamped edges a r e  
also considered. 
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Certain lengthy expressions developed in this analysis a r e  required for complete 
documentation. Since they a r e  of limited interest, these expressions a re  included in a 
"Supplement to NASA TN D-5759," which is available upon request. A request form is 
included at the back of this paper. 

SYMBOLS 

The units for the physical quantities defined in this paper a r e  given both in the 
U.S. Customary Units and in the International System of Units, SI. Appendix A presents 
factors relating these two systems of units. 

cross-sectional a r ea  of stiffener 

coefficients in assumed normal deflection function 

Eh extensional stiffness, - 

extensional stiffness in y- and &direction, respectively 

in-plane shear stiffness 

1 - 1.12 

speed of sound in air 'air 

Cm speed of sound in cone material 
n 

D bending stiffness, Eh' 
12(1 - 1.2) 

Dy,DO bending stiffness in y- and &direction, respectively 

in-plane twisting stiffness DY 6 

I 

d stiffener spacing 
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E Young's modulus 

F s t r e s s  function 

Fu,FV,Fw forces in direction of u, v, and w applied to  cone edge by elastic medium 

f = e-XF 

G shear modulus 

Gij inertia coefficients 

ga 

H,V 

Pcair aerodynamic damping coefficient, - 
Y w r  

radial and axial components of force resultants 

h thickness of isotropic cone 

I moment of inertia of stiffener about its centroid 

i , j  integers 

J torsional constant for stiffener 

Kij stiffness coefficient representing restraint of elastic medium at cone edges 

kl,k2,k3,k4 stiffness of springs resisting axial, circumferential, and radial edge dis- 
placements, and edge rotation, respectively 

El ,E3 stiffness of springs resisting meridional and normal edge displacement, 
respectively 

L height of conical frustum 

L1( ),La( ),L3( ) operators defined by equations (B15), (B33), and (B59) 

1 slant length of conical frustum 

M maximum number of t e rms  in sine ser ies  
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MZ local Mach number 

M, free-stream Mach number 

My7Me,Mye moment resultants 

- 
~ y ~ z y e  externally applied moment resultants 

MW moment applied to  shell edge by elastic medium 

m7P integers 

Ny 7Ne e force resultants 

Ry,Rye externally applied force resultants 

P applied axial load, positive for compression 

Pi J’2 constants defined by equation (B53) 

P lateral  pressure load on shell (positive for external pressure) 

surface loading induced by shell vibration or  flutter PS 

total surface load acting on shell, p + ps Pt 

Qy 7Q e transverse shear force resultants 

externally applied transverse shear force resultant QY 

q local dynamic pressure of airflow 

R radius of conical frustum normal to  axis of revolution 

r radius of cross  section of circular end ring 

(i,j=1,2,3) cos a 
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(S4j=Sj4, j = 1,2,3) 

R1 K44 
s44  = Gr  

Y 

t time 

US st rain energy of shell 

u,v,w displacements of middle surface of conical frustum (see fig. 1) 

radial and axial components of displacements UH 'uV 

X transformed coordinate, x = In - Y 
y2 

Y 1  
y2 

x1 = In - 

Y ,Z orthogonal coordinates (see fig. 1) 

- 
Z distance from centroid of stiffener to middle surface of conical shell, 

zc + zs  

ZC distance from neutral axis of sheet-stiffener combination to middle surface 
of conical shell 

Z S  distance from neutral axis of sheet-stiffener combination to  centroid 
of stiffener 

a! semivertex angle of cone 

Y shell mass  per unit area 
2 2  

w2 - 
A frequency spectrum parameter,  n 

u: 
651, virtual work done by generalized elastic edge restraint  

6Qf virtual work of boundary forces 
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virtual work of total surface pressure pt 651p 

6% total virtual work of all external forces 

strains at middle surface 

rl number of circumferential waves 

e 

x flutter parameter, - 

circumferential coordinate (see fig. 1) 

2qR; 

DYP 

where x = tanh x - 
A =  

A 0  = im 
A 1  9x2 constants defined by equations (B55) 

I-1 Poisson's ratio for isotropic cone 

Poisson's ratio for bending in 0- and y-direction, respectively I-1e,I-1y 

I - 1 t g 7 I - 1 ;  Poisson's ratio for  extension in 8- and y-direction, respectively 

P local density of air 

7 thickness of end ring 

x~,xy,xye curvatures at middle surface 

W circular frequency 

w1 first natural frequency for given value of n 
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second natural frequency for given value of n w2 

Superscript : 

* indicates variable is function of x only 

Subscripts: 

A 

B 

c r  

CY1 

0 

Im 

Re 

R 

S 

1 

2 

conditions existing prior to buckling, vibration, o r  flutter 

conditions existing at buckling, vibration, or  flutter 

critical value required for buckling 

equivalent cylinder 

conditions at = 0 

imaginary part 

real  part 

ring 

stringer 

small  end of cone 

large end of cone 

A subscript preceded by a comma indicates partial differentiation with respect to 
that subscript. 

ANALYSIS 

Statement of Problem 

The flutter, vibration, and buckling characteristics of orthotropic truncated conical 
shells with generalized elastic edge restraint are investigated. The configuration and 
the notation for coordinates and displacements, force and moment resultants, and loads 
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a 

a re  shown in figure 1. The cone is subjected to uniform supersonic airflow over its 
external surface at a local Mach number %, dynamic pressure q, and density p. 
Also, the cone is subjected to either internal or external lateral  (normal) pressure 
loading p and an applied axial load P. The pressure is uniform and acts in a constant 
direction. The movement of the cone edges is resisted by a general elastic medium that 
can be represented by a 4 by 4 matrix of stiffness coefficients (ref. 17). The mass 
effects of the edge support are represented by a 4 by 4 matrix of inertia coefficients Gij. 
The off-diagonal te rms  in these boundary-condition matrices account for the coupling that 
can exist between the various displacements due to the interaction of the shell and the 
elastic medium. This coupling must be considered if the edge restraint is provided by a 
ring (ref. 18). 

Kij 

The shell is stiffened in such a manner that the cone material has orthotropic stiff- 
ness properties in two orthogonal directions. The principal axes of orthotropy are  alined 
with the shell coordinate axes (0,y). The five extensional stiffness properties By, Be, 
Bye, pb, and pb and the five bending stiffness properties Dy, De, Dye, py,  and 

a r e  needed to describe the material properties. From the reciprocal theorem (for 
example, ref. 19), the following relations must hold: 

Thus, there a re  eight independent elastic constants. 

The flutter, vibration, and buckling characteristics a re  determined for various 
binations of cone geometry, stiffness properties, elastic edge restraint ,  and loadings 
and P. 

com- 

P 

Assumptions 

The stability characteristics of truncated conical shells should be basically similar 
to the stability characteristics of cylindrical shells. Therefore, the wealth of information 
on cylinder buckling and flutter should be a useful guide as to what simplifying assump- 
tions can be made without seriously affecting the accuracy of the theoretical results. 

Only flutter resulting from coalescence of the first two longitudinal modes of 
vibration (w1,w2) is considered since it has been shown theoretically (ref. 20) and experi- 
mentally (ref. 21) that this type of flutter represents the critical stability boundary for 
cylinders. This type of flutter is usually associated with a mode shape having many cir-  
cumferential waves and has been referred to as plate-type flutter (ref. 20). The plate- 
type flutter is affected little theoretically by in-plane inertias and structural  damping 

9 



(ref. 20). Thus aDonnell type theory, which should be sufficiently accurate fo r  moderate 
to  large values of q (ref. 22), is used and in-plane inertias and structural damping are 
neglected . 

Recent investigations have revealed that the aerodynamic boundary layer does not 
play an important role in shell flutter with many circumferential waves (ref. 21); thus, 
inviscid theory is used. Furthermore, it has been shown (ref. 21) that piston theory 
aerodynamics provides a convenient and useful tool for cylinder flutter and hence is used 
herein. 

A recent nonlinear analysis (ref. 23) indicates that cylindrical shell flutter can 
occur at aerodynamic pressures  below the stability boundary for infinitesimal distur- 
bances. However, to  make the present overall investigation tractable the small  displace- 
ment infinitesimal l inear flutter theory is employed. The s t resses  resulting from the 
loads p and P a r e  obtained from the linear membrane solution, because s t r e s s  dis- 
tributions from the more accurate solutions have been shown to  have only a slight effect 
for a wide class  of buckling problems. (See, for example, ref. 24.) 
effects of displacements which occur prior to flutter, vibration, or buckling a r e  neglected 
herein since they do not significantly influence cone buckling induced by lateral  pressure 
(ref. 25) o r  the flutter characteristics of cylinders (ref. 26). 

Furthermore, the 

Rings and/or s t r ingers  a r e  assumed to be closely spaced so that their  effect may 
be smeared out by use of equivalent orthotropic stiffness properties. Stiffness proper- 
ties were  calculated from the formulas given in table I. The approach used herein 
neglects the effects of stiffener eccentricity. 

Governing Equations 

The principle of virtual work is used to derive the general nonlinear equilibrium 
equations and the linearized stability equations. A s t r e s s  function is introduced so that 
the number of unknowns is reduced from three displacements to  the s t r e s s  function and 
the normal displacement. The introduction of the s t r e s s  function necessitates the use of 
a compatibility equation. 

The equations a re  solved by an assumed displacement method. The normal dis- 
placement is assumed, the compatibility equation is solved exactly in te rms  of the arbi- 
t r a r y  coefficients in the assumed displacement, and then the equation for  the displacement 
is solved by the generalized Galerkin method (refs. 15 and 16). Details of the derivation 
and solution of the governing equations a r e  given in appendix B. These governing equa- 
tions are as follows: 
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where L1( ) is an operator defined by equation (B15). 

The boundary conditions on an edge y = Constant are to  prescribe 

N y ~  - F u ~  = 0 o r  UB ( 3 4  

NyeB - FvB = or  VB ( 3b) 

Q Y ~  - F w ~  = 0 o r  WB (3c) 

( 3 4  
WB,Y 

MyB - %B = or  

Equations (2a) and (2b) a r e  identically satisfied if  the s t r e s s  function F is introduced 
(refs. 27 and 28) so  that, for q > 0, 

o r ,  for q = 0, 

The s t r e s s  functions a re  obtained from the compatibility equations (eqs. (B31) and (B34)). 
In t e rms  of F, the compatibility equation is 

( 5 4  

where L2( ) is an operator defined by equation (B33). For  q = 0 the equation for the 
s t r e s s  function is 

The boundary conditions for  the stress function a re  the boundary conditions for 
VB, that is, equations (3a) and (3b). 

uB and 

11 



. . 

To investigate flutter it is necessary that the surface loading ps represent the 
inertial and aerodynamic loading acting on the shell. If the piston theory aerodynamic 

approximation is used to represent the aerodynamic forces  (for example, ref. 29), ps 
can be expressed as 

where in the denominator of the second t e rm on the right the Mach number 3 has been 

replaced by p = i s .  Preference for the compressibility factor p is based on its 
demonstrated usefulness for the flutter of flat plates. 

With the use of equations (4a) and (6), the governing equation for the normal dis- 
placement WB (eq. (2c)), becomes 

For q = 0, the t e rm F,yy is replaced by Fo 

cal shell a re  now completely described by the equations for F (eqs. (5)) and the equa- 
tion for wB (eq. (7)) with the appropriate boundary conditions (eqs. (3)). If the ortho- 
tropic character of the shell can be described by only distinguishing between Young's 
modulus and Poisson's ratio in the y- and &directions, equations (5a) and (7) reduce to 
those obtained by Singer (ref. 30) for  ps = 0. If the shell is isotropic, the equations 
reduce to those obtained by Seide (refs. 27 and 28) for  ps = 0. 

,Y' 
The flutter, vibration, and buckling characteristics of a truncated orthotropic coni- 

The governing equations a re  solved in appendix B. The normal displacement WB 

is assumed, and the equations for the s t r e s s  function a r e  solved exactly in t e rms  of the 
arbi t rary coefficients in the assumed displacement. The membrane s t resses  NeA and 
N Y ~  are related to the loadings p and P by the l inear membrane expressions 
(eqs. (B36)), and the forces and moments applied to  the shell edge by the elastic medium 
are expressed in t e rms  of generalized stiffness and mass coefficients and shell displace- 
ments (eq. (B46)). The governing equation for WB is then solved by the generalized 
Galerkin method (refs. 15 and 16), which yields 
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L 

I 1 

where +, go, anc, am a r e  the coefficients of the assumed normal displacc 
and 

RIP cp = - 
DY 

- 

PCair 
g, = - 

Y w r  

nent wB, 

The matrix elements bij, cij, dij, ei j ,  and f i j  a r e  given in the supplement to NASA 
TN D-5759. 

For buckling, the parameters Cw and X are zero,  either Cp or  C p  is speci- 
fied, and the remaining parameter becomes the eigenvalue. 
and C p  are specified, X is zero, and C, is the eigenvalue. For flutter, Cw is 
again the eigenvalue but in addition to specifying Cp and Cp,  X and ga must also 
be specified. For g, > 0 it is necessary to  specify the cone material, altitude (p  and 
cair), and Mach number. For buckling and flutter, the circumferential wave number q 
must be varied to determine the stability boundary. 

For f ree  vibrations, Cp 
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For flutter, solution of equation (8) requires the extraction of complex eigenvalues 
for Cw which occur as conjugate pairs. Thus, 

(3 = wRe + iwIm 

and 

The complex eigenvalues were found with the QR transform of Francis (ref. 31). As 
previously stated in the section "Assumptions," only the two lowest natural frequencies 
were examined to  determine flutter. For ga = 0, flutter is defined as the lowest value 
of X for  which Cw becomes complex and the first two natural frequencies coalesce. 
For ga > 0, the aerodynamic damping coefficient ga is related to C w ~ m  and CwRe 
by (see,  for example, ref.  32) 

Further, ga can be related to X from the defining relationships given in equations (9); 
for isotropic shells the relation is 

0.662 ( P  cm MZ 2 - ')1/3,2/3 

1/6 M: ga = 
(1 - P2> 

Thus, for ga > 0 flutter is defined as the value of h for which equations (12) and (13) 
give identical values of ga. 

RESULTS AND DISCUSSION 

Results are presented to  indicate the flutter characteristics of simply supported 
isotropic conical shells. Sufficient numerical results a r e  presented in the form of general 
flutter boundaries to  permit the determination of the flutter condition for a wide range of 
cone angle, length-radius ratio, and radius-thickness ratio. In addition, results are pre- 
sented to  indicate the trends of the effects of hydrostatic pressure,  axial load, and ring 
and stringer stiffeners. 
of finite elastic edge restraint  provided by massless uncoupled springs; the limiting cases  
of f r ee  and clamped edges are also considered. Springs resisting only the meridional 
displacement uB and the normal displacement WB (or the axial and radial displace- 
ments uVB and uHB), the circumferential displacement vB, and the rotation WB 

are considered herein. In this investigation "conical" simple support is defined by 
N y ~  = VB = wB = MyB = 0 and "cylindrical" simple support is defined by 
VB = VB = uHB =  my^ = 0; clamped support is defined by UB = VB = WB = WB = 0. 
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Buckling and vibration results a r e  presented in appendixes C and D. These results 
a r e  compared with results of other investigations to indicate the accuracy and limitations 
of the present analysis. In addition, the trends of the effects of conicity, elastic edge 
restraint ,  applied loads, and ring and stringer st iffeners a r e  indicated. Up to  40 te rms  

converged when the results (eigenvalues) for I + 4 t e rms  differed by less  than 1 percent 
from the results for I terms.  

i 

were used in the computations t o  insure converged results. Results were assumed to be 3: 
E 
!! 

Simply Supported Shells 

Effects of aerodynamic ~ damping.- The variation of the flutter parameter X with 
wave number 
in figure 2 along with the shell properties. The solid curve is for ga = 0; typical sta- 
bilizing effects of aerodynamic damping a r e  indicated by the dashed curve. The minimum 
point of the flutter boundary was increased by about 8 percent for g, based on aluminum 
at sea  level at 3 = 3.  For denser materials or  higher altitudes the effect would be even 
less.  
of aerodynamic damping on flutter increase with L/R and R/h. The magnitude of the 
effect was of the order of 20 percent for very large values of L/R and R/h but for 
practical values of these ratios is generally less  than 10 percent. 
dynamic damping a re  not considered in the remaining calculations. 

r] for an isotropic conical shell with cylindrical simple support is shown 

Calculations for cylinders based on the present theory (ref. 33) indicate the effects 

The effects of aero- 

Effects of conicity.- ~~ Some effects of conicity on the flutter of isotropic conical shells 
with cylindrical simple support a r e  shown in figure 3. 
X with cone angle a for two values of the ratio of length to radius at the small end of 
the cone L/R1. The dashed portion of the curves represent extrapolation to a = Oo. 
The extrapolated result for L/R1 = 6 is in good agreement with the result of a corre-  
sponding cylinder presented in reference 34. For small values of a (a  < 150), X 
increases with increasing a.  The phenomenon of increase in flutter resistance with 
increasing a has been obtained previously for three layered conical frustums (ref. 35). 
This trend is in marked contrast to  the trends for buckling and vibration (appendixes C 
and D); the buckling load and natural frequencies always decreased with increasing a.  
However, the variation of X with L/R1 
and vibration. 

Figure 3(a) shows the variation of 

(fig. 3(b)) is similar to  the trends for buckling 

The increase in X with a is attributed to the fact that the shell flutter character- 
ist ics depend on the natural frequency spectrum as well as the magnitude of the frequen- 
cies. 
critical value of the flutter parameter is proportional to A, the normalized difference in 
the square of the first two in vaccuo natural frequencies fo r  a given value of q. 
ure  4 gives the variation of A with a for L/R1 = 6 fo r  q =  6 to  9. 

For example, a two-mode analysis of cylinder flutter (ref. 20) reveals that the 

Fig- 
For a = Oo 
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the value of 17 for which A is a minimum (7 = 8) coincides with the value of q for 
which X is a minimum (table 5.2 of ref. 34). For a > Oo the values of q for which 
A and X were minimums differed only slightly; the difference tended to  increase with 
increasing a. Thus, A may be useful for predicting the critical value of wave number 
for  flutter of both cylindrical and conical shells. For small  values of a! (a! < 15O), the 
effect of increases in frequency spacing with a! is apparently greater  than the effect 
of decreases in frequency magnitude and A increases as does the flutter resistance. 
However, for large values of a! (a! > 15O), increases in a! affect the frequency spacing 
and magnitudes in such a manner that A decreases,  as does the flutter resistance. 

The variation with L/R1 of the ratio of the maximum value of q/p to the value 
(q/P)max with 
GT&- for a! = 0' is indicated in figure 5. A s  can be seen the variation of 

L/R1 is essentially linear and depends on the value of Rl/h. 
(q/p),, occurs at a! = 0' for L / R ~  5 1. 

For Rl/h = 200, 

For a cylinder, X is based on free-stream conditions, which are the same as local 
conciiilons, whereas for  a cone, X is based on local conditions behind the cone bow shock. 
In order  t o  determine the trends for  h based on free-stream conditions, the results for 
E/R1 = 6 were converted to  free-stream Conditions by use of reference 36. The free- 
s t ream Mach number M, was taken to be 3.0. The results for both local and free- 
s t ream conditions are shown in figure 6 in te rms  of X and a .  Comparison of these 
results reveals that use of free-stream conditions can significantly reduce the magnitude 
of X for a > 5 O  but does riot alter the overall trends. 

Comparison - -  with previous investigation.- - Shulman (ref. 34) presents flutter results 
for  a simply supported conical shell with L/R1 = 8.13, Rl/h = 148, and a! = 50. These 
proportions a re  such that I/Rav = 6 and Rav/h = 200. In the reference, results fo r  
the cone were compared with results for a cylinder with L/R = 6 and R/h = 200 to  
indicate the effects of conicity on flutter. The flutter analysis was formulated on the 
basis of Donne11 shell theory and piston theory aerodynamics. The stress function was 
eliminated from the governing equation for the displacement w, and the resulting eighth- 
order  equation was solved by the Galerkin method. It should be noted that not all bound- 
a ry  conditions were satisfied by the assumed displacement for the cone. 

The results of reference 34 for eight and four t e rms  are shown in the following 
tables in t e r m s  of the parameter of the present investigation along with the results from 
the present investigation for  the same two shells; for both investigations, ga  = 0. The 
results for  the cylinder f rom the present investigation were obtained by extrapolation. 
For L/RaV= 6 and Rav/h= 200 andfor  a = Oo, 

16 



and for cy = 5' 

- 

r 

4 
5 
6 
7 

r 
- 

6 
7 
8 
9 

10 

812 
492 
622 

1042 

Present investigation 

8 t e r m s  

605 
410 
355 
370 
425 

-- 

I X for - 
I 

Reference 34 1 
1 8 t e r m s  

605 
412 
352 
360 
427 

- 

3 
I: 

X for - 

Pi.t,\c:it investigation 

6 t e r i ~ ~ s  

1037 
577 
58 2 
627 

8 ternis 

1056 
588 
604 
64 3 

12 t e rms  

1074 
590 
607 
652 

Rcfei-cnce 34 

4 tcrnis 

1251 
688 
669 
7 14 

. .  

Examination of these tables reveals that the results of the present investigation are 
in  excellent agreement with the results of reference 34 for the cylinder. The results of 
reference 34 for the 5O cone indica.te that conicity has a large stabilizing effect, the cri t i-  
cal value of h being increased by nearly a factor of 2. 
tigation also indicate a s imilar  stabilizing effect of conicity but slightly less than the 
increase given by the results of reference 34. In the flutter parameter used in refer- 
ence 34, there appears a quantity defined by equation (3-31e) of reference 34 t o  be 

The results of the present inves- 

1 
6 

f(6) = In 6, = -tanh-' 6 

where 

There appears to  be a typographical e r r o r  in the first definition and it should read 

In 6, 1 f(6) = - = - tanh-' 6 
26 6 

The reasons for  the larger  difference in flutter resul ts  for the 5' cone as compared 
with the flutter results for  the cylinder are attributed in par t  t o  the use in reference 34 of 

17 
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the Galerkin method in conjunction with the uncoupled eighth-order shell equation and an 
assumed displacement that did not satisfy all boundary conditions; it has been demon- 
strated for buckling of cylinders (refs. 37 and 38) that application of the Galerkin method 
to  the governing eighth-order equation on the normal displacement can give incorrect 
results for the buckling load o r  mode. Some comments on why application of the Galerkin 
method to  the uncoupled equation can lead to erroneous results have been given by Singer 
(ref. 39). 

Flutter - mode shapes.- The effects of cone angle on flutter mode shape is shown in -- 
figure 7 for various values of a! fo r  isotropic conical shells with cylindrical simple 
support with L/R1 = 2 and Rl /h  = 200. The maximum amplitude occurs near the 
trailing edge, and the position of maximum amplitude moves towards the trailing edge as 
a! increases. The mode shapes a r e  similar to those calculated for flat plates (ref. 29) 
but differ from the one calculated for a cylinder with L/R = 1.93 
cylinder flutter mode did not have a node line away from the boundaries. 
the effect of length-radius ratio L/R1 
with cylindrical simple support with R l /h  = 200 and a! = 30°. For large values of 
L/R1 (L/R1 = 6)' several  node lines occur in the flutter mode as indicated in figure 8(c). 

General ~ flutter boundaries.- The variation of X with Rl/h for conical shells 
with cylindrical simple supports was found to be well correlated by the parameter h 
determined in reference 33 for cylinders, where, for conical shells, 

(ref. 21) in that the 
Figure 8 shows 

on flutter mode shape of isotropic conical shells 

- 
where x = tanh h x =  

The variation of with L/R1 is shown in figure 9 for several values of a!. Super- 
sonic flow over a cone in air at zero angle of attack is dependent on cone angle a! and 
free-stream Mach number M,. For example, at M, = 3, cy must be l e s s  than 
about 46' for Mz > 1 (ref. 36), and for M, = w, cy must be l e s s  than about 57.5'. 
However, supersonic flow can occur over part  of a cone for a! > 57.5' if the cone is at 
an angle of attack. Since 60' cones are of interest as aerodynamic decelerators (ref. 25) 
which can be at angles of attack, resul ts  a r e  presented in figure 9 for 0' 5 cy 5 60'; the 
results for CY = 0' were obtained from reference 33. The curves represent average 
values of x obtained for values of Rl/h from 100 to 2000. No calculated value of x 
differed by more than about 12 percent from the average values shown in figure 9. Thus, 
these curves provide a rapid and reasonably accurate means of predicting the flutter char- 
acterist ics of isotropic conical shells with cylindrical simple support for a wide range 
of cy, L/R1, and Rl/h. Blunt cones are significantly more susceptible to flutter than 
cylindrical shells for  the same local flow conditions when the radius of the cylinder is 
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equal to R1. Results for L/R1 5 1 could not be correlated by use of the parameter x. 
Difficulty in correlating results in this region might have been expected from the trends 

with R h for L R1 5 1 (fig. 5). / 
(q/P),, 

(s/P),=o I/ exhibited by the variation of 

Effects of applied load.- Some effects of hydrostatic pressure and axial load on the 
flutter of isotropic conical shells with cylindrical simple support a r e  shown in figure 10 
in te rms  of X as a function of the ratios p/pcr (positive for external pressure) o r  
P/Pcr  (positive for compression) for a! = loo  and 30'. The variation of X with applied 
load is nearly linear for both hydrostatic pressure and axial load. The effect of hydro- 
static pressure is slight, whereas the effect of axial load is pronounced. Compressive 
axial load can decrease X by up to  an order  of magnitude from the value for no load; 
similar trends have been shown for cylinders (refs. 40 and 41). Thus the effect of N Y ~  
(the only s t r e s s  for  axial load) is considerably greater than the effect of NeA (the pre- 
dominate s t r e s s  for hydrostatic pressure).  Results for flat plates also indicate that the 
effect of the s t r e s s  in the direction of the airflow is much more significant than the s t r e s s  
in the cross-flow direction (ref. 42). 

Effects of compressive axial load on flutter mode shape a r e  shown in figure 11 for a 
conical shell with cylindrical simple support for a! = 100. As can be seen, the effect of 
axial load is to move the point of maximum amplitude toward the leading edge and to 
increase the amplitude over the forward part  of the shell. Similar effects of compressive 
load have been observed both theoretically and experimentally for flat plates (ref. 43). 

Effects of -~ ring _. or  stringer - _  stiffening.- -- __- In order to analyze a ring- o r  stringer- 
stiffened cone by use of the present analysis, it is necessary to calculate equivalent ortho- 
tropic stiffness properties. Stiffness properties which neglect eccentricity effects were 
calculated from the formulas given in table I. Some flutter trends for ring- and stringer- 
stiffened shells a r e  shown in figure 1 2  for Q! = 30' with stiffener details also given. 
Stiffener s ize  and spacing was such that the ring- o r  stringer-stiffened shells were essen- 
tially of equal weight. The stringer spacing, which actually var ies  along the length of the 
shell, was assumed to be the constant value of the spacing at the small  end of the shell in 
calculating the equivalent orthotropic stiffness constants. Buckling and vibration results 
for the same shells a r e  presented in appendixes C and D for 50 5 a! 5 60° and in refer- 
ence 44 for a! = 0. 

The flutter results a r e  presented in figure 1 2  in t e rms  of the ratio of the value of 
q/p for the stiffened cone to  the value of q/p for the unstiffened cone plotted against 
L/R1. The addition of either rings or stringers for the present configuration increases 
the value of q/p required for flutter compared to the value for the unstiffened shell. 
The effect of stringer stiffening decreases rapidly with L/R1 up to about 3 and becomes 
essentially independent of L/R1 for L/R1 > 5. On the other hand, the effect of ring 
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stiffening increases with L R1 for the entire range of L/R1. The results presented 
in figure 1 2  suggest for the present configuration that, for L/R1 less  than about 1, 
stringers may have more effect than rings. The effect of both rings and stringers 
decreases with increasing cone angle as shown in figure 13; the reduction is more pro- 
nounced for rings. The addition of stringers has a larger effect on flutter than on either 
buckling o r  vibration. This result is attributed to the fact that the effect of stringers 
increases with the number of axial half-waves m, and vibration modes with m > 1 have 
a pronounced effect on flutter characteristics. 

/ 

The results presented in figures 1 2  and 13 neglect the effects of stiffener eccentric- 
ity. Two mode results for the flutter of flat plates with the same stiffener details shown 
in figure 1 2  a r e  presented in reference 44. These results indicated that consideration of 
stiffener eccentricity increased the flutter resistance by nearly a factor of 2. Thus it 
would appear that stiffener eccentricity effects would be significant for the flutter of shells 
also, although there  a re  no results available to verify this conjecture. 

Elastically Supported Isotropic Shells 

Effects of axial and rotational restraint.- Effects of axial restraint (kl) a r e  shown 
in figure 14, which gives the variation of X and A with the ratio kl/E; shell proper- 
t i es  a r e  also given. Increasing axial restraint results in decreases in X of up to  about 
10 percent for kl/E = 1. This result is in marked contrast to  the trends for buckling 
(appendix C) and vibration (appendix D); the buckling load and natural frequencies always 
increased with increasing kl/E. The decrease in X with kl/E is attributed to the 
dependence of shell flutter characteristics on the frequency spectrum as well as magni- 
tude. The decrease of A with kl/E indicates that the effect of decreases in frequency 
spacing with kl/E is greater  than the effect of increases in frequency magnitude. These 
results illustrate again that trends established for buckling and vibration do not necessar- 
ily hold for flutter. 

~- 

Some effects of rotational restraint  a r e  shown in figure 15, in te rms  of X and 
Rlk4 - for the same shell considered in figure 14. The lower curve is for complete axial 
D v  
.I 

constraint, the upper curve for no axial restraint. Figure 15 shows that h increases 
only slightly with increasing rotational restraint. Calculations (not presented) revealed 
that A also increased with increasing rotational restraint. The increase of h with 

R1k4 is similar to the trends for buckling and vibration. The results also indicate that 

the value of X for the essentially clamped cone is about 6 percent less  than the value of 
h for the simply supported cone. However, additional calculations (not presented) indi- 
cated that the effects of edge clamping depend on cone angle a. As a approached zero 

DY 
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(a < 150), the effects of edge clamping (primarily axial restraint) became stabilizing as 
for cylindrical shells (ref. 26). 

Effects of circumferential and radial restraint.- Effects of elastic circumferential 
restraint k2 and radial restraint  k3 a r e  shown in figure 16, which gives the variation 
of X with the ratio k3/E; shell properties a re  also given. The upper curve is for 
k2/E = 1 (vB = 0), the lower curve for k2/E = k E; for both curves k l  = k4 = 0. The 
numbers on the curves represent the number of circumferential waves in the flutter mode. 
The open circles and squares at k3/E = 1 ( U H ~  = 0) show the slight effect of changing 
the circumferential restraint f rom complete constraint (VB = 0) to  no restraint NyeB = 

for no radial displacement. The effect of decreasing the radial restraint  becomes signifi- 
cant for k3/E 5 For k2/E = 1, decreasing k3/E to 0 decreases X by over a 
factor of 2 as indicated by the solid square. However, when k2/E = k3/E, decreasing 
k3/E to  0 decreases X by over 2 orders  of magnitude as indicated by the solid circle,  
and the flutter mode changes from q = 8 to  an essentially inextensional mode at q = 2. 
The reason for the large effect of circumferential restraint as the radial restraint 
becomes weak is that the constraint vB = 0 prevents the inextensional form of flutter 
(q = 2), which is the critical mode of instability when all edge restraints a r e  relatively 
weak. The flutter trends shown in figure 16 a re  similar to  the trends for free vibration 
for the same shell given in appendix D. Since the critical value of q becomes small as 
the edge restraint becomes relatively weak, the present Donnell type theory becomes more 
approximate. Hence it might be desirable to use more exact shell theories in analysis of 
flutter of shells with weak edge restraint. 

Calculations for the variation of A with the various edge restraints considered in 
figures 14, 15, and 16 indicated that the qualitative effects of edge restraint on X appar- 
ently can be determined by merely examining the effect of edge restraint  on A for the 
appropriate range of q. 
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CONCLUDING REMARKS 

The flutter, vibration, and buckling characteristics of orthotropic truncated conical 
shells with generalized elastic edge restraint  have been investigated theoretically. The 
problem was simplified by making certain assumptions which have been found admissible 
for flutter analyses of cylinders. The shell analysis utilized the classical Donnell type 
theory, in-plane inertias and structural  damping were neglected, and the aerodynamic 
loading was represented by the inviscid two-dimensional quasi-steady approximation 
(modified piston theory). The principle of virtual work was utilized to  formulate the 
problem. An approximate solution was obtained by the generalized Galerkin method in 
t e rms  of assumed displacement functions that had to satisfy only geometric constraints. 
A s t r e s s  function was introduced so that only the normal displacement needed t o  be 
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assumed. 
t r a r y  coefficients in the assumed displacement. 

The equation for the s t r e s s  function was solved exactly in t e rms  of the arbi- 

Numerical results for flutter of conical shells revealed that trends established fo r  
buckling and vibration do not necessarily hold for flutter. Increasing cone semivertex 
angle (up to about 1 5 O )  for length-radius ratios greater than about 1 increased the resis-  
tance to flutter even though the buckling load and natural frequencies decreased. Also, 
increasing the axial edge restraint could decrease the resistance to flutter even though 
both the buckling load and natural frequencies were increased. These phenomena were 
attributed to the fact that flutter depends on frequency spectrum as well as magnitude. 
The flutter resistance fo r  a given circumferential wave number was shown to be propor- 
tional to the difference in the square of the first two in vaccuo natural frequencies. Thus 
the effect of a given parameter on the flutter of a conical shell can be determined quali- 
tatively by considering its effect on the natural frequencies (magnitude and spectrum) of 
the shell for the appropriate range of wave numbers. Although slightly conical shells 
(semivertex angles less  than about 1 5 O )  have more flutter resistance than cylinders with 
the same thickness and length and a radius equal to the smaller radius of the conical shell, 
blunt cones (semivertex angles greater than about 45O) a r e  significantly more susceptible 
to flutter than cylinders. Sufficient numerical results a r e  presented in the form of gen- 
e ra l  flutter boundaries to permit the determination of the flutter condition for  simply 
supported isotropic conical shells for a wide range of cone semivertex angle, length- 
radius ratio, and radius-thickness ratio. Results a r e  also presented to indicate some 
effects of finite axial, radial, circumferential, and rotational edge restraints,  hydrostatic 
pressure,  axial load, and rings and stringers on the flutter, vibration, and buckling char- 
acterist ics of conical shells. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., March 18, 1970. 
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APPENDIX A 

Conversion 
factor 

(* ) 

0.6451 X 

0.0254 
0.4161 X 10-6 
6.895 X l o 3  

- 

CONVERSION O F  U.S. CUSTOMARY UNITS TO SI UNITS 

The International System of Units (SI) was adopted by the Eleventh General Con- I 

I 
i ference on Weights and Measures, Paris, October 1960 (ref. 45). 

the units used herein are given in the following table: 
Conversion factors for 

b 
~. 

SI Unit 

_ _  

meters2 (m2) 
meters  (m) 
meters4 (m4) 
newtons/meter2 (N/m2) 

- .~ -. __ -~ 

Physical quantity 

. _ _  ~ 

Area . . . . . . . . . . . . . .  
Length . . . . . . . . . . . . .  
Moment of inertia . . . . . . .  
Young's and shear  moduli . . .  

U.S. Customarj 
Unit 

2 in 
in. 
in4 
lb/in2 

* 
Multiply value given in U.S. Customary Unit by conversion factor t o  obtain 

equivalent value in SI unit. 

Prefixes to  indicate multiple of units a r e  as follows: 

109 

centi (c) 10-2 
milli (m) 10-3 

kilo (k) 
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APPENDIX B 

GOVERNING EQUATIONS 

The principle of virtual work is used to formulate the problem of flutter of an 
orthotropic conical shell with generalized elastic edge restraint. Such a formulation 
admits a solution by the generalized Galerkin method in t e rms  of assumed displacements 
that must satisfy only geometric constraints. 
there a re  no geometric constraints (only force o r  natural constraints); thus a rather 
simple ser ies  can be used for the assumed displacements. Such a procedure is straight- 
forward and well known (for example, refs, 15 and 16) but has been used only sparingly 
(for example, refs. 46 and 47). Instead, investigators of flutter problems have obtained 
displacement functions that satisfy all boundary conditions (sometimes going to great 
lengths, for  example, ref. 48), or  have relied on psuedo energy methods (for example, 
refs. 32 and 49). 

For a generalized elastic edge restraint 

Although the use of complicated ser ies  representations can result in fewer t e rms  
required for convergence, and thus possibly justify the effort, the modification of potentid 
energy methods for  nonconservative problems seems unjustified. As pointed out in ref- 
erences 39 and 50, investigators have applied the Galerkin method to single uncoupled 
equations for systems properly defined by two or more coupled equations and obtained 
erroneous results. The erroneous results a r e  due to inadequate attention to the boundary 
conditions that result f rom the manipulations required to  obtain the single uncoupled equa- 
tion. Thus in the present investigation the derivation and solution of equations is given 
in some detail to emphasize the straightforward yet completely general character of the 
virtual work (generalized Galerkin method) approach to nonconservative problems. 

General Nonlinear Equilibrium Equations 

Donne11 type expressions for middle surface strains and curvatures of a deformed 
conical shell are given by Seide in reference 27. For this paper, these expressions a r e  
given in the following form: 

1 
€Y = uYY + 5(w,Y)2 1 

J v 1  1 --+-u +-w w v,Y y y ,@ y ,Y ,@ 
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Middle-surface force and moment resultants a r e  defined 
\ 

as  

The equations of equilibrium will be obtained by the principle of virtual work, which 
requires that 

6at = 6US 

where 
forces of the elastic edge restraint ,  and 6Us 
energy of the system corresponding to  the virtual displacements. 

6at represents the total virtual work of all the external forces and the restoring 
represents the change in the internal strain 

The virtual work of the total surface pressure can be expressed by the surface 
integral 

while the virtual work of the boundary forces  can be expressed as 

where 6 represents virtual change in variable and @ = 6' sin a. The effects of the 
generalized elastic edge restraint can be introduced into the analysis by the virtual work 
expression 
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APPENDIX B 

where Fu, Fv, Fw, and Mw a r e  the forces  and bending moment exerted on the shell 
by the elastic support at the shell edge. The total virtual work of all the external forces 
is given by 

= 6% + 652f + 652, (B9) 

The strain energy of the shell can be expressed in t e rms  of middle surface force 
and moment resultants by the surface integral 

If the force and moment resultants, strains,  and curvatures a r e  expressed in t e rms  of 
displacements by equations (Bl) to (B4), if the variation of Us is taken with respect to 
these displacements, and if  equation (B9) is utilized, equation (B5) becomes, after integra- 
tion by parts,  

Jy: s,”asin@{b. (B12g6u + [q. (B13g6v + [eq. (B14d6w d@ dy 1 
- Io2” sin (kq. (B16ag6u + [eq. (B16bg 6v + [eq. (B16cg6w 

y2 
- Eq. (B16dd 6 w , d  y / d@ = 0 

I Y 1  

where the general nonlinear equilibrium equations a r e  given by 
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with 

I II 

and the boundary conditions on an edge y = Constant are to  prescribe 
- 

Ny - Fu - Ny = 0 or U 

Nye - Fv - Ny6 = 0 o r  V 
- 

- 
Q~ - F, - Q~ + $(Eys),@ = 0 or  W 

- 
w,Y M y - M w - M  Y -  - 0  o r  

with 

ye,@ 
2M 

Y Me + (yMy),y + 
N w  

Qy = N ~ W , ~  + - - 
Y Y 

(Bl6a) 

(B16b) 

(B16c) 

(B16d) 

Linearized Stability Equations 

The total surface pressure loading pt can be expressed as 

Pt = P + Ps ( B W  

where p represents an axisymmetric uniform lateral pressure loading that exists prior 
to  flutter and ps 
and flutter of the shell. 

represents the asymmetric surface loading resulting from vibration 
Because the loading prior to  flutter is axisymmetric 

where the subscript A denotes quantities that exist pr ior  to  flutter, vibration, or 
buckling. If equations (B19) are utilized, equation (B13) is identically satisfied and equa- 
tions (B12) and (B14) become 

(yNyA),y - NOA = (B20a) 

- PNYAWA,Y),y - y p = o  (B20b) 
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and the boundary conditions on an edge y = Constant a r e  to  prescribe 

(B21a) 

(B21b) 

(B21c) 

(B21d) 

wA Q Y ~  - F,A - Qy = 0 

 my^ - M,A - My = 0 

o r  

o r  
- 

wA,Y 

If the exact nonlinear s t r e s s  distribution prior to flutter were desired, it would be neces- 
sa ry  to  solve equations (B20) subject to the boundary conditions given by equations (B21). 

To investigate flutter, the total displacements a re  expressed as the sum of the axi- 
symmetric displacements that exist prior to  flutter and the infinitesimal asymmetric dis- 
placements uB, vB, and wB that occur at flutter. Thus 

U = U A + U B  

v = v  B 1 
w = w  A + "BJ 

Similar expressions can be developed fo r  the s t r e s s  resultants, moments, and forces 
applied by the elastic edge support. 

If these expressions and equations (B18) and (B22) a r e  substituted into equation (Bl l ) ,  
if equations (B19), (B20), and (B21) relating subscript A te rms  a r e  subtracted out, if 
products of the displacement WA and the s t resses  N y ~  and NyeB are  omitted, and 
if t e rms  nonlinear with respect t o  subscript B a r e  neglected, the virtual work expres- 
sion governing stability of the conical shell becomes 

ly2 s,"" sin 
(B24g 6uB + b. 

Y 1  

- Jo2" sina@q. (B27ag 6ug + kq .  (B27b) I d  6v + eq. (B27c))6wB 
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where the linear stability equations are 

and the boundary conditions on an edge y = Constant a r e  to prescribe 

UB N y ~  - FuB = 0 o r  

VB NyeB - FvB = or 

WB,Y  my^ - M,B = 0 o r  

In obtaining equation (B26), use  has been made of the identity 

(B27a) 

(B27b) 

(B27c) 

(B27d) 

From equation (B20a), the t e rm in brackets in equation (B28) is 0. 

Equations (B24) and (B25) a r e  identically satisfied if the s t r e s s  functions F or 
Fo (refs. 27 and 28) a r e  introduced such that, for 7 > 0, 

1 1 
NyB = 7 F,y + - F,@@ 

Y2 
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and, for v =  0, 

where q is the number of circumferential waves. 

Thus, the number of unknowns is reduced from three (uB, vB, and wB) to two 
(F and wB). However, in order  t o  use the stress-function approach an equation is 
needed to  define F. The appropriate equation is the compatibility equation which is 
obtained by eliminating UB and vB from the linear form of the middle-surface strain- 
displacement relations and is given as follows: 

or ,  in t e rms  of F, 

L2(F) = - B o k  - 1-1' P')W cot CY 
y B,YY 

where 

The boundary conditions for F a r e  the boundary conditions for uB and VB 

(eqs. (B27a) and (B27b)). 
exist and the compatibility equation becomes 

For 7 = 0, the symmetry conditions NyeB = vB = ( )B,@ = 0 

or ,  in t e rms  of Fo, 

The boundary condition for Fo is the boundary condition for uB (eq. (B27a)). The 
linear membrane stress distribution is adequate to express NeA and N Y ~  in  t e rms  of 
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the external hydrostatic pressure  p and externally applied axial load P (positive in 
compression). Thus, 

N ~ A  = -y tan a! p 

N y ~ = - % t a n a ! p -  P 
2a sin a! cos a! 

To investigate flutter it is necessary that ps represent the inertial and aerody- 
namic loading. If the modified piston theory aerodynamic approximation is used to  repre- 

sent the aerodynamic forces (ref. 29), ps can be expressed as 

where the first t e rm on the right is the inertia loading, the second t e rm is the static aero- 
dynamic loading, and the last  t e r m  is a viscous loading corresponding to  the aerodynamic 
damping. In the denominator of the second te rm on the right, the Mach number has 

been replaced by p = M 1. Preference for the compressibility factor p is based 
on its demonstrated usefulness for flutter of flat panels. 

\IT 
With the introduction of the s t r e s s  function and equations (B36) and (B37), the virtual 

work stability criterion becomes 

2a s in  a! ly2 kq.  (B39g6WB d@ dy + lo2nSina! {k. ( B 2 7 ~ )  1 6wg 
y1 0 

where the governing equation for  the normal displacement wB is given by 

,Y' For  7 = 0 the t e r m  F,yy is replaced by Fo 
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Solution of Equations 

The equations for the s t r e s s  functions (eqs. (B32) and (B35)) and the equation for 
the normal displacement (eq. (B38)) a r e  solved by an assumed displacement method. 
Equation (B32) has variable coefficients that reduce to constant coefficients by use of the 
transformation of coordinates (ref. 51) 

Y = Y p X  0340) 

Thus, y = y1 corresponds to x = 0 and y = y2 corresponds to x = x1 = In 2. For 

simple harmonic motion the displacement wB is assumed to be 
Y 1  

WB = w*,(x) cos n@ eiwt (B41) 

where 

am sin - m m  c x1 
* w (x) = a, + iiox c B 

m= 1, 

and 

The expression for 
tions and rotations to exist at the ends of the cone. 

wB is continuous in the circumferential direction and permits deflec- 

The boundary conditions (eqs. (B27)) a r e  now specialized. The shell s t resses  and 
displacements a re  of the form (neglecting the te rm eiwt) 

I * UB = uB COS n@ 

VB = vB sin n@ 

wB = wB cos n@ 

N y ~  = NyB cos n@ 

* 

* 

* 

NeB = N i B  cos n@ 

NyeB = sin nq5J 
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From equations (B27) it follows that (the expressions for QYB and  my^ being 
considered) 

I * 
F,B = FuB cos n@ 

FvB = F:B sin n@ 

FwB = FkB cos n$ 

MwB = MkB cos n$ 

The forces FuB, F:B, FwB, and MwB a r e  now expressed in t e rms  of the shell dis- 

placements u;, v;, w&, and w$ . The most general relations for a shell of revolu- 

tion supported by some generalized unloaded elastic support at its boundaries can be 
written in matrix form as (ref. 17) 

* * * 

,Y 

The te rm Kij represents the elastic restraint of the support at the shell edge, and the 
t e rm Gij represents the mass effects of the elastic support. By utilizing equa- 
tions (B44) to (B46), the boundary conditions (eqs. (B27)) become 

where the minus sign applies at Y = Y1'  

* '11 VB 
(i,j=1,2,3,4) 0347) 

wB 1;" 
.'.,YJ 
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For uncoupled massless  springs all G i j ~  t e rms  are 0, and, for conical 
coordinates , 

K i j ~  = 

or ,  for cylindrical coordinates, 

KijB = 

where 

0 

0 
- 

- 

kl 
0 

kl 3 
0 

- 

0 

k2 
0 

0 

0 

k2 
0 

0 

0 

0 

k3 
0 

kl 3 
0 

kg 
0 

k13 = (kl - k3) cos a! sin a! 

and 4 and Ei are spring constants. 

0 

0 

0 

k4 

- 
0 

0 

0 

k4 - 

0349) 

The nondimensional forms  of Kij and Gij are Sij and Mij; expressions for 
relating the stiffness and inertia characteristics of end rings to  the ring 

For flutter (or 

Sij and Mij 
and shell material properties and geometry were obtained from equations (A5) to (A8) of 
reference 17 and are presented in the supplement to NASA TN D-5759. 
vibration), the eigenvalue appears in the boundary conditions unless all Gij t e rms  
are 0; thus, it is necessary to  iterate on the eigenvalue until the value used in the bound- 
ary conditions differs by a negligible amount from the calculated eigenvalue. 

w2 

Compatibility - - . .  equations.- The procedure for  solving the compatibility equation for 
the s t r e s s  functions is outlined in this section. The details of the solutions are given in 
the supplement to  NASA T N  D-5759. If the s t r e s s  function F is taken to be 

F = exf(x) cos nG ei& 0351) 

and equations (B40) and (B41) are utilized, equation (B32) reduces to  the ordinary differen- 
tial equation 
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where 

By use  of equation (B51), equation (B52) contains only even derivatives of f with 
respect to  x, The homogeneous solution is readily found to be 

-x1x -x2x 
fh = AlehlX + A2e + A3ehZx + A4e 

where 

x 1 =  

0354) 

and A1 to A4 a r e  constants of integration. The particular solution for an M-term 
approximation in w& is obtained by substituting 

+ em sin - fp  = do + f (dm cos - mrx 
x1 m= 1 

into equation (B52) and matching coefficients. With f = fh + fp  known in t e rms  of A1 
to A4, the s t r e s s  resultants a r e  obtained from equations (B29) and (B30), the s t ra ins  a re  
obtained from the constitutive equations (B3), and the displacements UB and VB a r e  
obtained from the linearized strain-displacement relations (eqs. (Bl)). The constants of 
integration A1 to  A4 a r e  determined from the boundary conditions for UB and VB, 

the first two of equations (B47). Expressions for the stress function, s t r e s s  resultants, 
displacements, and constants of integration a r e  given in the supplement to  NASA 
TN D-5759. 

Stability equations.- - By utilizing the transformation of coordinates (eq. (B40)) the 
virtual work expression for the stability of the conical shell becomes 
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where the equation for wB is given by 

cot a(f xx + f x) + 
9 9 

DYL3(wB) p,xx - WB,x) 2 2s(yl+f sin a! cos 
P P tan a! - + ~ 

(B58) 

and L3( ) is defined as 

cot a Fo 
,X For q =  0 the t e rm in equation (B58) is replaced by 

Y;eX YlG 

If FwB and MWB in equations (B27c) and (B27d) a re  expressed in te rms  of Kij, 
Gij, and the shell displacements by use of equation (B46), if the moments, transverse 
shear,  f ,  uB, vB, and wB are expressed in t e rms  of the assumed ser ies  for wB, and 
if the integration with respect t o  @ is performed, equation (B57) becomes the general- 
ized Galerkin solution of equation (B58) where 6wL and 6wB 
as 

* are taken successively 
,x 
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6w*B = o  
?X 1 

If the integration with respect t o  x is also performed, equation (B57) becomes M + 2 
simultaneous algebraic equations which can be written as 

L 

I 

where 
R1P cp = - 
DY i 

" I  * 

and bij, cij, dij, eij, and f . .  are given in the supplement. 
11 
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BUCKLING RESULTS 

Simply Supported Shells 

Effects of conicity.- Some effects of conicity on the buckling of isotropic truncated 
conical shells with cylindrical simple support subjected to  hydrostatic pressure are 
shown in figure 17. Figure 17(a) shows the variation of CP with cone angle a! for  
two values of L/R1. The dashed portion of the curves represent extrapolation to zero 
cone angle. These results a r e  in excellent agreement with the results obtained in ref- 
erence 44 indicated by the circles. As would be expected, the buckling load for a fixed 
small-end radius R1 decreases considerably with increasing a!; for  a! = 45O the 
buckling pressure is about an order  of magnitude less than the pressure required to  
buckle a cylinder with the same 
Cp with increasing L/R1 for  a = Oo and 30°. Again, the extrapolated results for  
a! = 0 are in excellent agreement with the results of reference 44. 

L/R1 and Rl/h. Figure 17(b) shows the decrease of 

Buckling results for isotropic conical shells have been correlated (ref. 52) by use  
R1 
R2 

of the taper ratio 1 - - where 

R2 L 
R1 R1 
- = l + - t a n a  

and the concept of an equivalent cylinder. Calculated resul ts  for  3 O  S a 5 75O, 
L R1 1 5 - 5 6.28, and 250 5 - 5 1000 are presented in figure 18 in t e rms  of the ratio 
R1 h 

where p is the buckling pressure for 1 - - R1 
Pcyl R2 CY1 

as a function of the taper ratio 

an- equivalent cylinder. If the normal equivalent cylinder transformations 
. I R1 -I- R2 R -  

2 cos a 

L -  R2 - R1 
sin a 
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a r e  substituted into the cylinder buckling equation (eq. (17) of ref. 53), the following 
expression for  pcyl f o r  unstiffened o r  ring-stiffened shells is obtained for buckling 
into one-half wave (m = 1): 

G J  
(1 + p2)2 + p2  

dR 

dR 
E hdR L 

(1 

cos2 CY P / R 1 )  + 
- 

where 

- 277 (R2IR1)- 
= 7~ sin CY (R2/R1) + 1 

+Ti4(1- .2,1 

It should be noted that equation (17) of reference 53 contains expressions multiplied 
by I,, which can be either positive o r  negative. These te rms ,  which account for eccen- 
tricity (one-sided) effects, a r e  omitted in equation (C3). 

Equation (C3) is a function of 7, which must be varied to  find the minimum values 
of pcyl. An approximate expression for  pcyl, based in part  on the assumption that 

is (ref. 54) 

39 



APPENDIX C 

where for ring-stiffened shells 

When De/Dy = 1, equation (C6) reduces to the expression obtained by Seide (ref. 52) for 
unstiffened shells. Note that equation (C6) gives the minimum value of pcyl directly. 

The correlation curve in figure 18 was obtained by Seide (ref. 52). The open sym- 
bols represent results from the present investigation for unstiffened shells; values of 
pcyl obtained from equations (C3) and (C6) were essentially the same. The agreement 
is quite good. Most of the scatter is for a! 2 45'; Singer (ref. 55) has shown that the cor- 
relation curve overestimates the ratio p/p somewhat for this range of CY. Results 
presented in reference 54 indicate the correlation curve can also be used to correlate 
data for orthotropic and ring-stiffened conical shells. Accordingly, results for ring- 
stiffened shells a r e  also shown in figure 18 as solid symbols. Equivalent orthotropic 
stiffness properties were calculated from the formulas given in table I, which neglect 
eccentricity effects. 

CY1 

The solid squares in figure 18 represent results from reference 56 (based on 
eq. (C6)) for De/Dy 5 25 and agree quite well with the correlation curve. Results 
from the present investigation for De/Dy = 316 (ring details a r e  given in fig. 12) a r e  
indicated by the solid circles for p defined by equation (C6) and by the solid symbols 
with ticks for pcYl defined by equation (C3). The scatter shown by these results sug- 
gest that the correlation curve becomes more approximate as De/Dy increases and that 
a family of curves would probably be required for  proper correlation, particularly for 
larger  values of the taper ratio 1 - R1/R2 > 0.6). Use of the more exact definition of 
pcyl (eq. (C3)) resulted in la rger  values of p/pcyl and somewhat better correlation than 
the results obtained by the use of the approximate expression (eq. (C6)). 

Effects of ring o r  stringer - stiffening.- The relative magnitudes of the effects of ring 

CY1 

( 

and stringer stiffening are indicated in figure 19 in t e rms  of the ratio of the buckling load 
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of the stiffened shell to that of the unstiffened shell and L/R1. 
same shells a r e  given in figure 12. The open symbols a re  for ring stiffeners and the 
solid symbols a r e  for stringer stiffeners; stiffener details a r e  given in figure 12. The 
equivalent orthotropic stiffnesses were based on the stringer spacing at the small  end of 
the cone. Stiffener s ize  and spacing was such that the ring- or stringer-stiffened shells 
were essentially of equal weight. The vertical lines connecting the open symbols in fig- 
ure  19 represent the variation in the ratio of the buckling loads with cone angle a; in 
general, the ratio decreased with increasing cone angle. The variations with cone angle 
for stringer stiffening was not significant. The advantage of ring stiffening o r  orthotropic 
stiffening for De/DY > 1) for hydrostatic pressure loading is obvious. The curves shown 
in figure 19 were obtained from the expressions for equivalent cylinders (eqs. (C3) and 
(C6)). The variation with a (for fixed L/R1) was not significant; thus, only a single 
curve (for each equation) is shown. The qualitative effect of stiffening indicated by the 
equivalent cylinder equations is in reasonable agreement with the actual, calculated cone 
results . 

Flutter results for the 
I 

3 

I 

( 

Elastically Supported Shells 

The results of the preceding sections show that from a theoretical standpoint the 
buckling of a simply supported unstiffened conical shell subjected to  hydrostatic pressure 
is adequately described by equation (C6) in conjunction with the correlation curve shown 
in figure 18. Furthermore, the buckling of ring-stiffened shells is fairly well described 
by equation (C3) or (C6), and the results obtained, if not sufficiently accurate for final 
buckling cri teria,  should at least prove useful for preliminary calculations. On the other 
hand, the considerable scatter in available experimental data is such that experimental 
values range from 60 percent to 140 percent of the values predicted for simply supported 
edges (ref. 3); the scatter is attributed to variation in cone edge conditions and to initial 
imperfections. In the next three sections, the effects of variations in edge conditions are 
shown to  have a significant effect on the buckling of conical shells. 

Effects of axial and rotational restraint.- Some effects of axial restraint (kl)  a r e  
-. - . _. 

shown in figure 20, which gives the variation of the buckling pressure coefficient 
with the ratio kl/E. Fairly large values of axial restraint  (kl/E > 0.001) a r e  required 
t o  noticeably affect Cp, but as the restraint approaches complete constraint the effect is 
appreciable. The value of CP for complete constraint is about 40 percent greater than 
the value for no axial restraint. The symbols shown in figure 20 represent buckling 
results for no axial restraint  and complete axial restraint obtained previously by Thurston 
(ref. 24) who used a very accurate prebuckling state. The results of the present investi- 
gation are in excellent agreement with the results of reference 24. 
agreement suggests that the extra computation involved in considering the accurate pre- 
buckling state is not necessary, at least for hydrostatic pressure loading and the edge 

Cp 

(See fig. 20.) This 
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conditions considered. Similar results and conclusions for  no axial restraint  and com- 
plete axial constraint were presented in reference 57. 

The variation of the effects of complete axial restraint  with L/R1 are shown in 

increases rapidly with L / R ~  
PUVB'O 

P V g O  
figure 21. The variation of the buckling ratio 

up to about 2 and apparently would reach a limiting value of between 1.4 and 1.5 for very 
large values of L/R1. More complete results on the variation of the effects of no axial 
restraint and complete axial constraint with L/R1, R h, and a are given in refer- 
ence 57 where similar trends are indicated. 

1 1  

Figure 22 shows some effects of rotational restraint in t e rms  of Cp as a function 

. The lower curve is for  no axial restraint, and the upper curve is for complete Rlk4 of - 
axial constraint. The results show that increasing rotational restraint increases the 
buckling pressure about 8 percent for no axial restraint but only about 2 percent for com- 
plete axial constraint. 
example, ref. 11) that the effect of a given edge restraint  depends on the magnitudes and 
types of other restraints acting on the shell edges. 

R1k4 greater than about 500, the restraint approaches the fully clamped condition. The 

square represents buckling resul ts  for  the fully clamped condition previously obtained by 
Singer (ref. 58); the computation is in excellent agreement with the results of the present 
investigation. The resul ts  shown in figure 22 indicate that the large increase in buckling 
pressure for clamped edges (square) compared with the results for  cylindrical simple 
support (circle) is primarily caused by axial constraint. The effect of axial restraint is 
sufficiently large to  preclude neglecting it in comparisons of theoretical and experimental 
results. Indeed, improved predictions of experimental results have been shown to occur 
when the axial constraint present in the experiment is considered in the analytical com- 
putations (ref. 57). 

DY 

This tends to  confirm the results of other investigations (for 

For complete axial constraint and 

DY 

Effects of circumferential and radial restraint.- Some effects of finite circumferen- 
tial (k2) and radial (k3) elastic restraint  are shown in figure 23, which gives the variation 
of CP with k3/E for a sandwich shell subjected to  lateral pressure and axial load such 
that the large end of the cone is free of stress. Shell structural  properties are given in 
table 11. The upper curve in figure 23 is for  k2/E = 1 
k2/E = k 
slight effect of changing the circumferential restraint f rom complete constraint vB = 0) 
t o  no restraint N 
triangle) at k3/E = 0 show the effect of changing the circumferential boundary condition 
from vB = 0 to  N y e ~  = 0 for no radial restraint; the effect is in marked contrast t o  
the effect when there is complete radial constraint. The reason for  the large effect of 

~- i- .-.__ L 

and the lower curve is for 
E; for both curves k l  = k4 = 0. The circle and square at k2/E = 1 show the 3/ 

( 
= 0) for  no radial displacement. The two symbols (diamond and ( YeB 
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circumferential restraint as the radial restraint becomes weak is that the constraint 
vB = 0 prevents the inextensional form of buckling (17 = 2), which is the critical mode of 
buckling when all edge restraints  are relatively weak (refs. 25 and 59). 
value of TJ becomes small  as the edge restraint becomes relatively weak, the present 
Donnell type theory becomes more approximate. Hence it might be desirable to  use more 

I 
$ 
41 

Since the critical 

1 
exact shell theories in analyses of buckling of shells with weak edge restraint. 

The sandwich shell considered in figure 23 has previously been analyzed by Cohen 
(ref. 25) who utilized Novozhilov shell theory (ref. 60) and very accurate prebuckling 
s t resses  and deformations. Although the main purpose of the analysis was to consider 
the effects of the edge restraint  imposed by rings, results for simply supported edges 
were also presented and a r e  indicated in figure 23 by the solid symbol. The result of 
the present investigation for simply supported edges is in good agreement with the result 
from the more rigorous analysis of Cohen, the difference being only about 6 percent. 

Effects of restraint of end rings.- Results for the sandwich shell considered in the 
previous section and a similarly loaded ring-stiffened shell a r e  presented in figure 24 in 
t e rms  of as a function of the ratio of the radius of the tubular end ring (of circular 
c ross  section) to the radius of the shell at the large end (r/R)2. The ratio (r/R)1 for 
both shells was constant and equal to  0.0312; structural details of the shells a r e  given in 
table 11. 71 = 72 = 0.125 in. (0.318 cm), and 
1-2 is varied. When the edge restraint  is weak (small values of (r/R)2), the shell tends 
to buckle inextensionally into two circumferential waves, but when the edge restraint 
becomes large,  the shell buckles extensionally into seven circumferential waves. The 
intersection of the curves for = 2 and 77 = 7 gives the minimum base-ring radius 
ratio ( I - /R)~  required to  suppress inextensional buckling; further stiffening would not 
have a significant effect on the buckling pressure.  The minimum value of (r/R)2 to 
suppress inextensional buckling obtained from the present analysis is conservative in that 
it is approximately 35 percent larger  than the value predicted by the more rigorous anal- 
ysis of reference 25 for  the sandwich shell and 18 percent larger  for the ring-stiffened 
shell. These differences are due primarily to use of Donnell theory and the membrane 
stress state in the present analysis and, also, t o  neglect of ring eccentricity. 

-_ 

Cp 

For the end rings,  r1 = 1.25 in. (3.18 cm), 

The results of figure 24 indicate that the present analysis gives fair predictions 
(compared with the more rigorous analysis of ref. 25) of the buckling pressure for ring- 
stiffened pressure-loaded shells. However, for axial load o r  stringer stiffening the 
neglect of eccentricity effects and the use of the membrane prebuckling state can lead to  
extremely inaccurate results. For example, in reference 61, which utilizes a Donnell 
type buckling analysis, it is shown that either eccentricity effects o r  the use of a very 
accurate prebuckling state can cause over a factor of 1.5 change in the buckling load. 
Results of the present analysis differed by about a factor of 2 f rom the results of 
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reference 61 for a clamped shell with a! = 5 O  and external stringers.  Thus, the present 
analysis should be used with caution for configuration and loading combinations sensitive 
to  prebuckling and eccentricity effects, 
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VIBRATION RESULTS 

Simply Supported Shells 

Effects of conicity.- Some effects of conicity on the vibration characteristics of 
shells with cylindrical simple support are shown in figure 25. The decrease of (w/w, )~  
with increasing Q! (fig. 25(a)) and L/R1 (fig. 25(b)) is s imilar  t o  the trends for 
buckling (fig. 17). 
agreement with the cylinder results obtained from equation (43) of reference 62, indi- 
cated by the circles in figure 25. 

Extrapolated results for zero cone angle a r e  seen to  be in excellent 

The minimum frequencies for isotropic conical shells have been correlated (ref. 63) 

by use of the taper ratio 1 - - R1 and the concept of equivalent cylinders. Results from 

the present analysis for a r e  
compared with the correlation curve of reference 63 in figure 26 which gives the varia- 

tion of wmin/(wcyl)min with 1 - - R1 An expression for  the natural frequency of an 

equivalent cylinder wcyl 
obtained by substituting equations (C2) into the cylindrical vibration equation (eq. (43) of 
ref. 62). 

R2 
50 2 a! 9 GOo,  1.26 2 L/R1 S 6.28, and 107 5 Rl/h 5 341 

R2’ 
applicable for unstiffened o r  ring stiffened shells can be 

The result for the lowest frequency (m = 1) for a given value of r] is 

r 
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where p is defined by equation (C4). It should be noted that equation (43) of refer- 
ence 62 contains expressions multiplied by zR, which can be either positive o r  nega- 
tive. These terms,  which account for eccentricity (one-sided) effects, a re  omitted in 
equation (Dl) . 

Equation (Dl) is a function of 7,  which must be varied to  find ( WcSil)min* For 

unstiffened shells the expression for (wcyl)l),in becomes (ref. 63) 

A s  can be seen from figure 26, the results of the present analysis for unstiffened shells 
a r e  in good agreement with the correlation curve. Calculations were also made for ring- 
stiffened shells for which De/Dy 5 316 as indicated by the solid circles in figure 26. 
A s  can be seen, the equivalent cylinder vibration results for stiffened shells correlate 
better (fig. 26) than did the buckling results for similar shells (fig. 18). It should be 
noted that the equivalent cylinder concept has limited usefulness for  frequencies 
w > wmin (ref. 63). A s  r] increases,  the mode shapes become more confined to the 
region near the large end of the cone and, therefore, can deviate considerably from the 
sinusoidal shape of a vibrating simply supported cylinder. Thus, the difference in the 
frequencies for actual cones and equivalent cylinders increases as 7 increases; this 
trend was also noted by Weingarten (ref. 64) for ring-stiffened conical shells. 

Effects of applied loads.- Effects of hydrostatic pressure and axial load on the nat- 

as a function of the ratio p/pcr o r  P/Pcr  for sev- 
ural  frequencies of an isotropic conical shell with cylindrical simple support a r e  shown 
in figure 27 in t e rms  of ( W / W r l 2  

e ra l  values of 7. A s  can be seen from figure 27(a), ( W / W r ) 2  varies linearly with 
p/pcr and the slope of the curves increases with increasing 7. For the range of 7 
considered, which brackets the value for buckling (7 = lo ) ,  ( W / W r ) 2  decreases signifi- 
cantly with p/pcr. Weingarten (ref. 65) has presented results which also show signifi- 
cant effects of increasing p/pcr and, in addition, indicate that the frequency is nearly 
independent of p/pcr for q 5 2. 

in figure 27(a). In contrast to  the results for hydrostatic loading, figure 27(b) reveals 
that (O/Wr)2 does not vary linearly with P/Pcr; this is attributed to  the differences 
in the axial variation of NYA for hydrostatic loading and axial loading. For 
P/PCr < 0.5 the variation is nearly linear and the slope of the curves again increases 
with 7. 

Some effects of axial load a re  shown in figure 27(b) fo r  the same shell considered 
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Effects of ring or  stringer stiffening.- The relative magnitudes of the effects of 
. - ______-___ 

ring and stringer stiffeners on the minimum frequencies of conical shells are indicated 
in figure 28 in te rms  of the ratio of the frequency of the stiffened shell to the frequency 
of the unstiffened shell as a function of L/R1. Stiffener size and spacing was such that 
the shells were of equal total weight; stiffener details and flutter results a r e  given in fig- 
ure  12,  and buckling results a r e  given in figure 19. The equivalent orthotropic stiffnesses 
were calculated from the formulas given in table I and were based on the stringer spacing 
at the small end of the shell. The variation of the frequency ratio with Q! was not sig- 
nificant for the range considered ( 5 O  5 CY 2 6 0 O ) ;  thus, an average value is presented. The 
solid curves represent results for actual conical shells, and the dashed curve represents 
results for equivalent cylinders; the results for equivalent cylinders a re  in excellent 
agreement with the results for  actual conical shells. 
studied, the effect of rings is to  increase the minimum frequencies by a factor of 2 to 3. 
The addition of stringers has a slight effect, and may even lower the frequency. The 
effect on vibration results of adding stiffeners can be (and for the configuration studied 
is) considerably less  than the effect for buckling (fig. 19). The reason for the difference 
is that for vibration the additional mass  of the stiffeners can tend to offset the effects of 
inc r e  as ed st iff ne s s . 

For the particular configuration 

Elastically Supported Isotropic Shells 

The results of the preceding sections show that simply supported unstiffened o r  
ring-stiffened conical shells a r e  fairly well described by equation (Dl), or equation (D2) 
for unstiffened shells in conjunction with the correlation curve shown in figure 26. 
Agreement between theoretical and experimental results is generally good (for example, 
refs. 63 to 66); discrepancies that exist a r e  attributed to  effects of edge conditions 
(ref. 63). In the next two sections it is shown that the effects of variations in edge condi 
tions can have a significant effect on the vibration characteristics of conical shells. 

Effects of axial and rotational restraint.- Some effects of variations in elastic axial 
restraint (kl) and rotational restraint  (k4) are shown in figure 29. Figure 29(a) shows 
the variation of (W/Wr)’ with kl/E for  no rotational restraint ,  and figure 29(b), shows 
the variation of ( W / W r ) 2  with - Rlk4 for no axial restraint and complete axial constraint. 

A s  can be seen from figure 29, the effects of axial and rotational restraint on free vibra- 
tions are similar to the trends for buckling. 
restraint  appears to be sufficiently large to preclude neglecting it in comparisons of theo- 
retical  and experimental results. For example, in reference 66 the agreement between 
theoretical and experimental frequencies was improved by relaxing the axial constraint 
condition in the theoretical calculations. On the other hand, increasing axial restraint 
improves the agreement between theoretical frequencies and the experimental frequencies 

- 

DY 

(See figs. 20 and 22.) The effect of axial 
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presented in reference 65 as shown in figure 30 in t e rms  of ( O / W r ) 2  as a function of 7 
for p/pcr = -0.446, 0, and 0.446; pcr is the theoretical buckling pressure. The solid 
curves a re  for the conical simple support boundary conditions N y ~  = vB = WB =  my^ = 0 
and agree with the theoretical results presented in reference 65. The dashed curves a re  
for the cylindrical simple support, VB = VB = uHB = MyB = 0, and indicate slightly higher 
frequencies than the solid curves. The long-dash-short-dash curves a re  for the same 
support conditions as the dashed curves except that kl/E = 0.03; this amount of axial 
restraint was chosen so that the theoretical and experimental results would agree fo r  

vmin 
restraint in the theoretical calculations improves the agreement between theoretical and 
experiment a1 frequencies . 

= 6 and p = 0. As can be seen from figure 30, inclusion of some finite axial 

Effects of circumferential and radial restraint.- Some effects of variations in elas- 

as a function of the ratio k3/E. The upper curves a r e  f o r  71 = 10 and the 

-- 
t ic circumferential restraint (k2) and radial restraint (k3) a re  shown in figure 31 in t e rms  

of ( W / W r ) 2  

lower curves a re  for q = 6.  The open circle and square at k3/E = 1 (uHB = 0) show the 
slight effect of changing the circumferential restraint from complete constraint vB = 0) 
to no restraint NyeB = 0) fo r  no radial displacement. The results of the present inves- 
tigation a re  in good agreement with the results of reference 63 as indicated by the solid 
symbols in figure 31; the results for (present investigation) a re  slightly higher 
than the results for  wB = 0 (ref. 63). The trends exhibited by the curves for k2/E = 1 
(vB = 0) and k2/E = k3/E as kg/E decreases a re  similar to the trends for buckling 
(fig. 23). Results for other values of would exhibit s imilar  trends although the mag- 
nitude of the change in frequency due to  changing the edge restraint would vary with 7. 
For example, in reference 63 it is shown that changing the edge restraint  from vB = 0 
to NyeB = 0 (for wB = 0) changes the frequency by about 50 percent for 7 = 2,  whereas 
for 7 2 10 the change was about 2 percent or  less  as indicated in figure 31. 

( 
( 

uHB = 0 
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TABLE I 

ELASTIC CONSTANTS FOR RING OR STRINGER 

STIFFENED CONICAL SHELL 
. . -  

Constant 

De 

DY 
. 

BY 

Be 

BY 8 

For mula 
. -  . -  - 

ESAS +- Eh 
1 - p 2  dS 

E ~ A ~  +- Eh 
1 - p2 dR 

__ ... 

p ,  ring stiffened 

p -, stringer stiffened 

.~ ___~  . .____ 

De 

DY 
~ ~ 

p ,  ring stiffened 
. 

Be 

BY 
p -, stringer stiffened 

.. . . 
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TABLE I1 

STRUCTURAL PROPERTIES O F  CONICAL MODELS 

STUDIED IN REFERENCE 25 

Face sheets 

- 

Sandwich shell 

E = 10.5 X lo6 psi  (72.5 GN/m2) 
G = 3.98 X lo6 psi (27.5 GN/m2) 
p = 0.32 
h = 0.020 in. (0.051 cm) 

Ring - s ti 

Skin 

E = 6.5 X 106 psi  (44.8 GN/m2) 
G = 2.4 X lo6 psi (16.6 GN/m2) 
p = 0.35 
h = 0.051 in. (1.30 cm) 

Core 

E = O  
G = O  
p = o  
h = 0.50 in. (1.27 cm) 

Eened shell 

Ring stiffeners 

ER = 6.5 X lo6 psi  (44.8 GN/m2) 
GR = 2.4 X lo6 psi  (16.6 GN/m2) 

IR = 0.00414 in4 

AR = 0.0635 in2 
d R =  1.8 in. (4.57 cm) 
zcR = 0.164 in. 

'sR 

pR = 0.35 
(0.172 cm4) 

(0.410 cm2) 
JR = 21R 

(0.418 cm) 
= 0.236 in. (0.600 cm) 
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(b) Force and moment resultants. 

(c) Loads. (a) Configuration; coordinates and displacements. 

Figure 1.- Configuration and notation for  coordinates and displacements, force and moment resultants, and loads. 
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No f l u t t e r  

g a  = 0 

- - -  - - g a  =0.0538h2’3; b a s e d  on  

a l u m i n u m  a t  s e a  l e v e l  
MI= 3 

I .. . ! 
6 12 

! 
18 

Figure 2.- Variation of flutter parameter A with wave number r l  for isotropic conical shell with cylindrical simple support. 
L / R 1  = 1; R l / h  = Mo; a = 200; p = P = 0. 

57 

k 



111...111 1111.1 .I 11.1 11.1 - ,111 I ..1" 11.1 1 1 1 1 1 . 1 1 1 1 1 1 .  I, 111..1..1 .I.-.- 

3000 

2000  

I ooc 

F l u t t e r  
1 

1 
/ 

/ 
I 

o R e f .  34  

2000  

IO00 

0 

I I I 

0 15 30 45 

a ,  deg 

a = 30' 

(a) Cone angle. 

F I u t t e r  

I 

2 
I I 

4 6 

(b) Length-radius ratio. 

Figure 3.- Some effects of conicity on flutter of isotropic conical shells with cylindrical simple support. Rl/h = 200; p = P = 0; ga = 0. 
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Figure 4.- Variation of frequency spectrum parameter A with semivertex angle a for isotropic conical shell w i th  cylindrical simple support. 
L/R1 = 6; Rl/h = 200; p = P = 0; h = 0. 
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Figure 5.- Variation of (q/p),a,/(q/p),I=o w i th  L/R1 for isotropic conical shells w i th  cylindrical simple support. p = P = 0; ga = 0. 
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Figure 6.- Comparison of X for flutter of conical shell with cylindrical simple support based on local and free-stream conditions. 
L /R l  = 6; Rl/h = 200; ga = 0; p = P = 0; & =  3. 
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Figure 7.- Some effects of cone angle on f lu t ter  mode shape of isotropic conical shells wi th cylindrical simple support. 
L/R1= 2; Rl/h = 200: g, = 0; p = P = 0. 
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Figure 8.- Some effects of length-radius rat io on f lut ter  mode shape of isotropic conical shel ls wi th  cyl indrical simple support. 
R h = 200; a = 300; ga = 0; p = P = 0. 1/ 
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Figure 10.- Some effects of hydrostatic pressure and axial load on flutter of isotropic conical shells with cylindrical simple support. 
L/R1 = 4; R l / h  = XIO; ga = 0. 
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Figure 11.- Some effects of axial load o n  f lutter mode shape of isotropic conical shells with cylindrical simple support. 
L/R1 = 4; R l / h  = 200; a = 10'; ga = 0; p = 0. 
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Figure 12.- Variation of effects of r i n g  and str inger stiffening wi th  L/R1 for  f lut ter  of conical shel ls wi th  cyl indrical simple support. 
Rl/h = 341; a = 30’; p = P = 0; ga = 0; dimensions are in in. (cm). 
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Figure 13.- Variation of effects of r i n g  and str inger stiffening wi th  a for  f lut ter  of conical shel ls wi th  cyl indrical simple support. 
L/R1 = 2.51; R l / h  = 341; p = P = 0; ga = 0; r i n g  and str inger details are shown in fig. 12. 
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Figure 14.- Some effects of axial restraint on flutter characteristics of isotropic conical shell. L/R1 = 4; Rl/h = 200; a = 300; 
P = P = 0; ga = 0; VB = uHB = MyB = 0. 
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Figure 15.- Some effects of rotational restraint on flutter of isotropic conical shell with no axial restraint and complete axial constraint. 
L/R1 = 4; Rl/h = 200; a = 300; p = P = 0; ga = 0; v B  = uHB = 0. 
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Figure 16.- Some effects of elastic circumferential (k2) and radial (k3) edge restraint on flutter of isotropic conical shell. 
L/R1 = 3.5; Rl /h = 107; a = 200; p = P = 0; Sa = 0; V =  my^ = 0. 
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Figure 17.- Some effects of conicity on buckling of isotropic conical shells with cylindrical simple support subjected to hydrostatic pressure. 
R l / h  = 341; P = 0. 
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Figure 18.- Correlation of results for buckling of equivalent cylindrical shells with conical shells with cylindrical simple support 
subjected to hydrostatic pressure. P = 0. 
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hydrostatic pressure. R l / h  = 341: P = 0; 5O 5 a 5 600; r ing and stringer details are  shown in fig. 12. 
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Figure 20.- Some effects of elastic axial restraint on buckling of isotropic truncated conical shel l  subjected to hydrostatic pressure. 
L/R1 = 2; R,/h = 500; a = 30°; P = 0; v B  = uHB =  my^ = 0. 
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Figure 21.- Variation of effects of complete axial constraint w i th  length-radius ratio L/R1 for buckl ing of isotropic truncated conical 
shel l  subjected to hydrostatic loading. Rl/h = 707; a = 45O; P = 0; VB = UHB =  my^ = 0. 
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Figure 22.- Some effects of rotational restraint on buckling of isotropic truncated conical shell subjected to hydrostatic pressure. 
L / R l  = 1; Rl/h = 707; a = 450; P = 0; V B  = U H B  = 0. 
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Figure 23.- Some effects of elastic circumferential (k2) and radial (k$ edge restraint on buckling of truncated conical sandwich shell 
subjected to lateral pressure. L/R1 = 0.72; a = a@; VB =  my^ = 0; shell details a r e  given in table I I .  
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Figure 24.- Some effects of circular tubular end rings on buckling of truncated conical shells subjected to lateral pressure. L / R ~  = 0.72; 
a = 600; (r/RI1 = 0.0312; R1 = 80.2 in .  (204 cm); T = 0.125 in. (0.318 cm); shell details are given i n  table 1 1 .  
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Figure 25.- Some effects of conicity on natural  frequencies of isotropic conical shells w i th  cylindrical simple support. 
R l / h  = 341; = 10; p = P = 0. 
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Figure 28.- Some effects of r ing  and str inger st i f fening on min imum natural frequencies of conical shells wi th  cyl indrical simple support. 
R l / h  = 341; 5 O  2 a 2 60°; r ing  and str inger details are shown in  fig. 12; p = P = 0. 

(a) Effects of axial restraint wi th  no 
rotational restraint. 

(b) Effects of rotational restraint wi th  no axial 
restraint and complete axial constraint. 

Figure 29.- Some effects of elastic axial restraint (kl) and rotational restraint (kq) o n  natura l  frequencies of isotropic conical shell. 
L / R l =  4; R l ( h  = 200; a = 300; Q = 10; VB = UHB = 0; p = P = 0. 
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Figure 30.- Comparison of theoretical and experimental vibration results for isotropic conical shell. L/R1 = 3.5; Rl/h = 107; 
a = Zoo; P = 0; V B  =  my^ = 0. 
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Figure 31.- Some effects of elastic circumferential (k2) and radial (k3) edge restraint  o n  natural frequencies of isotropic conical shell. 
L / R l  = 3.5; R l l h  = 107; a = 200; p = P = 0; VB = My6 = 0. 
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The lengthy expressions developed in the analysis and required for  complete 
documentation are included in a "Supplement to  NASA TN D-5759." 
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