
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



i

NASA TECHNICAL
MEMORANDUM

NASA TM X-52682

c%

N̂
f1

_-	 1

X

a
z

5

I

f	 RELIABILITY TESTING AND
S

}	 DEMONSTRATION SESSION IIIB
4.

by Vincent R. Lalli

iv	 Lewis Research Center
Cleveland, Ohio

45^L	 ^^ecture Notes for Seventh Annual Reliability 	 ^^;,, c	 .
Engineering and Management Institute
sponsored by the University of Arizona
Tucson, Arizona, November 3-12, 1969

7
(A"

^^MZCR)

f	 (/	 (COD

p	 (PAIS)

S	
(CATEGORY)

Q (NASA CR OR TMX OR AD NUMBER)



A

RELIABILITY TESTING AND DEMONSTRATION SESSION IIIB

by Vincent R. Lalli

Lewis Research Center
Cleveland, Ohio

Lecture Notes for

Seventh Annual Reliability Engineering and Management Institute

sponsored by the University of Arizona
Tucson, Arizona, November 3-12, 1969

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION



r

i

t.

i

RELIABILITY TESTING AND DEMONSTRATION SESSION IIIB

by Vincent R. Lalli

Lewis Research Cent^—L
National Aeronautics and Space Administration

Cleveland, Ohio

°o	 INTRODUCTION
M

The outline shown below describes the material that will be
W

covered in the Reliability Testing and Demonstration Lecture III B:

III B. Application of Statistical Methods

1. Testing with normal units

2. Determination of confidence limits

3. Testing with lognormal units

4. Determination of confidence limits

5. Testing with bionomial and Pbisson events

6. Determination of confidence limits

A great deal of work has been done by various researchers to

develop mathematical concepts suitable for reliability studies. The

interested reader should consult References 1 through 4 for additional

details pertaining to statistical methods for discrete and continuous

random variables.

In these notes effort will be concentrated on four functions:

(1) Failure, f(t), (2) Reliability, R(t); Failure rate, X; and (4) Hazard

rate, X'. Since it is usually important to know how well a point esti-

mate has been defined, some consideration will be given to calcula-

tion of confidence limits for normal, lognormal and bionomial functions.
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These notes consider specific cases to show how statistical methods

r.:	 can be used in analyzing test data.

1. Testing with normal units

A mechanical part is being used where friction, mechanical

loading and temperature are the principal failure causing stresses.

Assume that tests to failure have been conducted for these mechanical

parts resulting in the data shown in table I.

(a)Calculate the mean-time-between-failures and standard

deviation.

(b)What are the hazard rate at 85.3 K hours and failure rate dur-

ing the next 10. 3 K hour interval?

(c)What are the failure and reliability time functions?

The mean-time-between-failures and standard deviation can be calcu-

lated for the data given in table I as follows°
LF:F	 n

tf

(a) t = f 1
n

where

t mean-time-between-failures

tf time-to-failure

n number of observations

therefore, using the data from table I

t_ 750 K - 75 K hours
10
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2 1/2
n

2

n	 ^ tf
t2 - f=1
f	 n

f=1

n-1

where a = unbiased standard deviation

n	 2

t f = 7. 50 x 102 K hr
=1

n t
f 2 = (7.5 x 102)2 = 5.625 x 10 5 (K hr)2

f=1

Therefore,

Q = 57213 - 5625011/2 _ (9631 1/2 = 10. 3 K hr

(b) The hazard rate, A l and failure rate X are calculated as

follows:

^, = Normal ordinate at 85. 3 K hr
Normal area 85.3 K hr to -o

Let Y1 = Normal ordinate at 85.3 K hr

Z 1 = Standardized normal variable
= t - t __ (85. 3 - 75.0) K hr . = +1.0

a	 10.3 K hr

and

Q=i
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Table 4 (p. 352 of ref. 5) for Z = + 1.0 gives Y 1 = 0.242. The scale

constant Ks for this problem is

K = n9
s v

where 0 = class interval

y  = f(t l) = Ksyl lox 1 F x 0.242 = 2. 35 x 10 -4 F/hr
10. 3 K hr

Let R (t,) = Normal area 85.3 hr to -o. From table 3 (p. 351 of

ref. 5) for Z 1 = +1.0

Q(t1) 0 . 841 area from -oo to Z 1

Since Q(t 1) + R(t 1) 1.000

R(t l) = 1.000 - 0.841= 0. 159

^° = 2.35 x 10 -4 F/hr = 1 47 x 10 -3 Failures/hr
1.59 x 10-1

and

1	 R(t2)A =— 1 -	 h^ 10.3Khr
h	 R(tl)

R(t2) = Normal area 95 . 6 K hr to

Z2- 
(95.6 K - 75.0) K hr = +2.02	 10. 3 K hr

From table 3, Q(t 2) = 0.977 and R (t 2) 0.023

A _	 1	 l - 0.023 , 8. 56 x 10 -1 = 8. 31 x 10 -5 Failures/hr
10.3 K hr C 0. 159	 4

1, 03 x 10

(c) The constants for f (t) and R (t) are calculated as follows:

1	 = 3.87 x 10-5
v	 1.03x 104x2.52

2v2 =2x (1.03x 104)2 =2.12x 108
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Therefore,

f(t) = 3.87x10-5 a -(t - 7. 5x104) 2 /2. 12x108

R(t) = 3.87x10-5 00 e- (t - 7. 5x104)2 /2. 12x10 8 dt
t

2. Determination of parameters and confidence limits

Twenty-five (25) mechanical parts have been tested to failure.

The mean-time -between failures has been calculated to be 75 K hours

with 0 = 10. 3 K hours (see problem 1) . (a) What are the upper and

lower confidence limits at a 90 percent confidence level?

The upper and low er confidence limits are given by:

U=t +Ka/2 ^0
it

L = t _ Ka/2 0

where

t	 mean-time -between failures

K	 normal coefficienta/2

_	 0	 unbiased standard deviation

n	 number of samples

a	 area under one tail
_	 2

For the same problem:

1 -a=0.90	 a=0.10	 a=0.05
2

Ka/2 = 1.64 from table 3 of reference 5
iF

U=75K+1.64x 10.3K_78 4Khr
25
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L=75K-1.64x 10.3K =71.6Khrs
25

This means that 90 percent of the time the mean-time-between-

failures estimate t for problem 1 with a larger sample size will be

between 71 600 and 78 400 hours. It should be noted that the sample

size for problem 1 was only 10 parts. If possible, try to keep n > 25

for estimating normal parameters with the above equations.

	

E'	 If the sample size, n < 25 then use should be made of the stu-

dent's t distribution (see ref. 6). If problem 2 is reworked for a

smaller sample size of 10, it will be interesting to see the effect that

sample size has on the size of confidence intervals.

U = t + t	 so/2

	

"	 Fn

L =t - to/2 s

where

to/2 student t coefficient

s	 standard deviation

For this case with a/2 = 0. 05, v = n - 1 = 10 - 1 = 9

f.4 . to/2 = 2.26 from table IV of reference 6, page 243

S = 57213 562501
1/2-	 = 9.82 K hrC	 /10

U= 75Khr+ 2.26x9.82 Khr =82.0Khr
110

L = 75 K hr -.2.26 x 9.82 K hr = 68.0 K hr
10
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It will be noted that the smaller sample size gives a larger interval

of uncertainty for t.

3. Testing with lognormal units

a

	

	 A cable used as guy supports for sail experiments in wind tunnel

testing exhibited the time-to-failure performance data given in table H.

(a) Write the failure and reliability functions.

(b)What is the hazard rate at 5715 hot rs ?

(c) What is the failure rate durirg the next 3000 hours?

a. The essential steps for solving this problem are given below:

r.. ;1) Table 2 gives the median rank for each ordered position.

(2) Plot on lognormal probability graph paper (probability x

2 log cycles) median ranks against failure age as shown in figure 1.

(3) If a straight line can be fit to these plotted points, then

the time-to-failure function is lognormal.
Mat

(4) The mean -time =Uetween-failures is calculated by

t' = loge(t) where t = 6970 hours as shown in figure 1 for a median

^y ranks of 50 percent, hence t' = 8: 84.

(5) The standard deviation is calculated by

loge 	loge-+	
Qt, =	

e U -	 e L where t  = 49 500 hours and tL = 1020 hours
3

as shown in figure 1 for a median and [1 -rank] of 93 . 3 percent; hence

Q = 15. 4 - 6.93 = 2.82. Using these constants the expressions
t	 3

for f(t) and R(t) can be obtained.

M) = 1.47x10-11 a -(t' -8.84)2/1. 59x10
t
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R(t) = 1.47x10-i
log 	

a -(t' -8.84) 2/1. 59x10 dt
e (t)

b. The lognormal ordinate required for X I can be calculated as

follows:

Z = t' - t' = 8.66 - 8.84 = -0.064
2	 vt,	 2.82

4	 Y2 = 0.398 from table 4 of reference 5

Y = NY2 = 10 x 0.398 = 1.41
2

	

	 2.82at,

f(t') 
= Y2 =	 i.41	 = 2.47x10 -4

 Failures/hr
t	 5. 715x103

The lognormal area from t' to infinity can be obtained directly

from figure 1 using the [1-rank] scale. Enter the time -to-failure

ttf ordinate at 5715 hours; project over to the lognormal life fanction

Q(t) and up to the [1-rank ] abscissa value of 0.638. Therefore the

the hazard rate X' at 5715 hours is:
4^, = 2.47x10- = 3.87x10 -4 Failures/hr

6. 3840 -1

c. The failure rate during the next 3000 hours is calculated knowing

the R(t1 ) = 0 . 638 at ttf = 5715 hours and obtaining R(t 2) = 0.437

from figure 1 at ttf = 8715 hours. Therefore,

=	 1	 1 _ 0.437 = 1.05x10 -4
 Failures/hr

3x103	 0.638
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4. Determination of confidence limits

It has been shown that the guy supports of problem 3 exhibited a

reliability of 0.628 at a ttf of 5715 hours. Consider now the procedure

for determining the confidence band on this lognormal estimate. The

dat., needed for the graphical construction of the 90 percent confidence

lines on the lognormal graph of figure 1 is also given in table H. The

steps necessary to graphically construct the confidence lines in fig-

ure 1 are as follows:

(1) Enter the ranks axis with the first 5 percent rank

value hitting Q(t) the lognormal life function shown in figure 1;

ordered sample number 3, 5 percei-t rank 8.7.

(2)Draw a vertical line to intersect Q(t) at point 1 as shown

in figure 1.

(3) Draw a horizontal line to cross the corresponding median

rank; ordered sample number 3, median rank 25.9.

(4) The intersection point (point 2 in fig. 1) of step 3 and the

median rank line is one point on the 95 percent confidence line.
F

(5) Repeat steps 1 through 4 until the desired time-to-failure

is covered, 5715 hours in this case.

(6) The 5 percent confidence line is obtained in a similar

manner. Enter the ranks axis with the 95 percent failure

rank, 25.9 for ordered sample number 1.

(7) Draw a vertical line which intersects Q(t) at point 3.

(8) Draw a horizontal line to cross the corresponding median

rank; ordered sample number 1, median rank 6. 7,
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(9) The intersection point (point 4 in figure 1) of these two

lines is one point on the 5 percent confidence line.

i

	

	 (10) Repeat steps 6 through 9 until the desired time-to-failure

is covered.

At 5715 hours the 90 percent confidence interval for Q(t) is from

figure 1: 19. 7 percent, 69.4 percent. Hence, a 90 percent confidence

interval for R(t) at 5715 hours is 0.803 to 0. 306. Incidentally, this

graphical procedure for finding confidence intervals is completely

general and can be used on other types of life test diagrams.

5. Testing with the binomial and Poisson events

The binomial and Poisson distributions are discrete functions of

the number of failures Nf which occur rather than time t. A summary

of these frequency functions is given in figure 1 of reference 4.

A suspicious lot of explosive bolts is estimated to be 15 percent

defective due to improper loading density observed in neutron radiog-

raphy.

(a) Calculate the probability of one defective unit appearing in a

flight quantity of four.

(b) Plot the resulting histogram.

(c) What is the reliability from the first defect?

Not much failure density data is available, however, past experience

with pyrotechnic devices has shown that the binomial distribution applies.

From the given data:

q p-ir unit number of effectives = 0. 85

p per unit number of defectives = 0.15

n sample size= 4

Nf possible number of failures = 0, 1, 2, 3, 4
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The frequency functions corresponding to these constants are given below:

_	 n'	 f 
q 
n-N f

f (Nf)

	

	
N

p
(n - Nf)! Nf! 

41	 Nf 4-Nf
f (Nf)	 P q

(4 - Nf)! Nf! 

n
R(N)	 n!	 pj qn -j

f - ,E (n - j)! j!
j=Nf

4
R(N)	 4!	 p  qn-j
R(Nf) - ^ 

j=Nf 
(4 - j)! j!

One easy method to obtain the binomial expansion coefficients is to

make use of Pascal's triangle. Pascal found that there was symmetry to

the coefficient development and explained it as shown in table III. Col-

umn 1 gives the sample size n. Column 2 gives the possible number of

failures. Column 3 gives the binomial expansion coefficients.

The numbers in the dashed triangle in column 3 are obtained by adding

the two numbers above the number to get that number; that is, refer to

dashed insertion the triangle 3 + 3 = 6. In expanded form f(Nf) becomes

f(Nf) = q4 + 4g3p + 6g2p2 + 4gp 3 + p4

The probability of one defective unit appearing in the flight quantity

of 4 is given by the second term in the expansion; hence,

4q3  = 4(0.85) 3(0. 15) = 0.37

The resulting histogram for this distribution is shown in figure 2. The

probability that 2, 3, or 4 defects will occur as the reliability from the
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first defect is the sum of the remaining terms in the binomial expansion.

This probability can be calculated using the following equation:

4

	

R(N) _	 4!	
pj 

qn -j
R(Nf) j=2 (4 - j)! j!

However, it is simpler to use the histogram graph and sum the proba-

bility defects over Nf from 2 to 4. Hence,

R(2) = 0.096 + 0.011 + 0.001 = 0. 108

f	 These explosive bolts in their present form are not suitable for use on

a flight spacecraft as the probability of zero defects is only 0. 522 much

below the usually desired 0.999 for pyrotechnic spacecraft devices.

The Poisson distribution is used to determine the probabilities

associated with a specified number of failures in the continuum of time.

Complex electrical components have been shown to follow the Poisson

distribution.	 s

Ten space power speed controllers were tested during the Sun-

flower development program. The time-to-failure test data is given

in table IV.

(a)Write the Poisson failure density and reliability functions.

(b)What is the probability of five failures in 10 000 hours?

(c)What is the probability that 6, 7, 8, 9, or 10 failures will

occur or the reliability from the 5th failure?

a. Using the data given in table IV , this problem can be solved as follows:

10

ti
4t _ i= 1 _ g, 586x10 = 8. 59x10 3 hr/failures

	

Nf	10
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Hence the Poisson failure density function is:

f(Nf) _ (t/8. 59x103) N f e -t/8. 59x103
Nf!

and the reliability function is:

10

R(N) -	 (t/8. 59x10 3) a -t/8. 59x103
f -	 j,

j=1

b. The probability of five failures f(5) in 10 000 hours makes use of

the ratio (t/f). Using this ratio, f(5) becomes

t = 1. ox 104 = 1. 16
t 8. 56x103

f(5) _ (1. 16)5 
a -1. 16 _ 2.09 x 0. 314 = 5.47x10-3

1.2x 102

One easy method to calculate the term (1. 16) 5 is as follows:

log (1. 16) 5 = 5 log 1. 16 = 5(0. 148) = 0. 740

(1. 16) 5 = 2.09

c. The reliability from the 5 th to the 10th failure is the sum of the

remaining terms in the Poisson expansion. This probability can

be calculated using the following equation

R(N) = 10 0. 314 (1-16)j
f z	 j,

j=6

R(6) = 0. 00 13
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6. Determination of confidence limits

When an estimate is made using discrete distributions, it is ex-

pected that additional estimates of the same parameter will be close to

the original estimate. It is desirable to be able to determine upper and

lower confidence limits at some stated confidence level for discrete dis-

tribution estimates. The analytical procedure for determining these

intervals is simplified by using specially prepared tables and graphs.

Useful tables for the binomial distribution are given in references 5, 8,

9, and 10.

A prior calculation showed that the probability of one defective pyro-

technic unit appearing in a flight quantity of four was 0. 37.

What are the upper and lower confidence limits on this estimate at

a 90 percent confidence level?

If the number of defectives is r and the confidence level is y, this

problem has the constraints listed below:

n= 4	 r= 1	 y= 90 percent

Using these constraints, the upper U and lower L confidence limits

can be obtained from table I in reference 8.

L = 0.026

U = 0. 680

This means that with a 90 percent confidence the probability of one

defective bolt appearing in a flight quantity of four is in the interval from

0.026 to 0.680.

The reliability from the 5th to the 10th failure for speed controllers

was found to be 0.0013 in a previous problem. What are the upper and
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lower confidence limits on this estimate at a 95 percent confidence level?

The variation in t- can be found by using Chart I, page 23 from ref-

erence 10. Enter Chart I on the 5 percent line at the left hand end of the

5 interval, here T/t 1 = 10. 5; then t 1 = 10 t/T/t 1 = 8. 57x104/10. 5 =

,8160 hours. Using the left hand end of the 4 interval T/t2 = 9. 25; then

t2 = 8-57X10 /9.25 = 9530 hours. One easy method to find Q(6) is to use

figure 6-1 of reference 5, page 61. The t/t ratios of interest are 1. 05,

1. 16, and 1. 22, respectively. For these ratios with N f = 5, the values

of Q(6) from figure 6-1 are 0. 997, 0.9987, and 0. 9992, respectively.

Since the sum of the last five terms is desired, R(6) is 0.003, 0. 0013,

and 0. 0008, respectively.

This means that the probability of the 5th to the 10th failure of a

speed control occurring is in the interval from 0.0008 to 0.003 at a

confidence level of 95 percent.
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TABLE I. - TEST DATA FOR A MECHANICAL PART

Ordered sample number tf 9
K hr

^f '
(K hr) 2

1 60 3600

2 65 4225

3 68 4624

4 70 4900

5 75 5625

6 e'5 5625

7 80 6400

8 83 6889

9 85 7225

n = 10' 90 8100

Totals 750 57 213

TABLE H. - CABLE TIME-TO-FAILURE DATA

Ordered sample

number

Time-to-

failure,

hr

Median

rank-'

5% Ranka 95 0/() Ranka

1 1 10r. 6,7 0.5 25.9
2 1 890 16.2 3.7 39.4

3 2 920 25.9 8.7 50.7

4 4100 35.5 15.0 60.7

5 5 715 45.2 22.2 69.7

6 8 720 54.8 30.3 77.8

7 12 000 64.5 39.3 WO0

8 17 500 74.1 49.3 91.3
9 23 900 83.3 60.6 96.3

n = 10 46 020 93.3	 1 74.1 99.5

aFrom tables 2, 5, aid 15 of reference 7.
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TABLE III. - PASCAL'S TRIANGLE

FOR BINOMIAL COEFFICIENTS

Sample
size

Possible
failure

Binomial
coefficients

1 2 1
2 3 1	 1_2_
3 4 17-3	 371

n=4 5 1	 4 \6 / 4	 1

TABLE IV. - SPEED CONTROLLER

TIME-TO-FAILURE DATA

Ordered sample number Time Ao -failure,
hr

1 3 520.0
2 4 671.2
3 6 729. 3
4 7010.0
5 8 510.2

6 9 250.1
7 10 910.0
8 11 220.5
9 11815.6

10 12 226.4

Total 85 866.3
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