{Vs K-/ -00R~/17
‘6NIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

(N70-3383 4

o~
2 {ACCESSION NUMBER) =7 (THRU})
s P :
: /
i PAGES CODE}
. ORZV19 294 g -
g {NASA CR OR TMX OR AD NUMBER) {CATEGORY) N;Eoﬁf&of u'?ééllelCAL
\ . INFORMATION SERVICE -
e o L H;Jﬁj«"i‘?ﬁald’ Va. 22151 - .

A Report on Conputer Performance

Evaluation Technigues

by
James Yeh

ACKNOWLEDGENENT

The author wishes to thank his adviso‘r, Dr, Jack Minker, for his
gentle criticism, encouragement, and continuing guidance in the
development and execution of this paper, and for his patience in
correcting the English.

The author wishes to mske further acknowledgement to Mrs. Sarah
Crooke for her meny enlightening discussions and significant sugges-—
tions.

The author is also grateful for the financial assistance provid—
ed during' the period of this research by the I_Iatiorval Aeronautics ‘and

Space Administration under Granw

ABSTRACT

This thesis is a report on performance evaluation techniques of
computer based data: processing systems. An overview of the anglysis
techmigues and a review of some evaluation technigues are described
firas, followsd by éescrip‘i:io‘ﬂs of three anzlysis techniques develop-

ed in this study. Experimental results using these techniques are

given., Finally, a stmmary and a bibliography are provided.

TABLE OF CONTENTS

ACKNCWLEDGEMENT
ABSTRACT
1. TNTRODUCTIONceeuss PR Chtsiaranasssisirannanianas venn
5. OVERVIEW OF COMPUTER SYSTEMS PERFORMANCE ANALESIS wovvveces..
2. 1. 'Iheofetical. Analysis Techniques «..oeess heeestsseseana .
2.1.1. Analytical Modeling Technigue «icieeeacosscnres
2.1.2. Simulation Model Analysis Techrique «vseeecosee
2.2. Empirical Performsnce Analysis Techniqueeeee-e-
2.2.1. Malytic Measurement TechniQUE «veveesersensacs
5.2,1.]. Hardware Monitor Technigue ..c.ee...e
2,2.1.2. Software Monitor Techniquecceceen
5 9.5, Benchmark Measurement Technidquecvveaceeeerns
3. REVIEW OF SOME PERFORMANCE EVATUATION TECHNIQUES «ocovn- cenan
3.1, Simlation Model Analysis Technigue «.ocevees ceeasiasens
3.2, Hardware Measurement TechniqQues ...« teersaanans e v v
3.2.1. IBM 7094 Hardware Measurement Technique «ovesen

3.2.2. 1BM System/360 Hardware Measurement Technique .

3.2.3. CDC 6600 Chippewa Herdware Measurement:
Technigue +..... tisemverarateensrrran

3.2.4. Univac 1108 Hardware Measurement Technigue
3.2.5. Some Commercial Hapdware MOmitOTS «vseses el
3,3, Software Measureinent TechniQUes «...oeeecresveereeens .
3.3.1. GE GECOS II,IIT Software Measurement Technique.
3.3.2. IBM TSS/360 Software ‘Measuremeﬁt Techniq;le cees

3.3.3. IBM 03/360 Software Measurement Technique

% DR N — S — S N o

SYSTEM FUNCTION ANALYSIS USING SOFTWARE MONITOR

TECHNIQUES .icevaas saseaene sererassaesans fesareresearnanes
4.1. TInstruction Trace cererasarasans Cereessraaneas vens
I,2. Functional Value Analysis tnievemassasesanaese cens
4,3, System Performance Data Extractcoeeeveecacn Ceene
4. b, Other Techniques Under Consideration Ceaeeas
FMPTRICAL STUDY OF THE EVALUATION TECHNIQUE OF EXPCOL «......
5.1. The Central Role of EXPOOL +ivveavansns cereaas ceanens .o

5.3,1. The Buffer Pool ..v.vvnn Chetanan sereraeseens
5.1.2. Reguest for a Buffer from EXPOOL +vveanas Ceeeas
5.1.3. Release of a Buffer from EXPOOL ceveess veseenas
5.2, Preliminary Results of an Analysis of EXPOOL: vvvnasanss
SUMMARY vesenveonnss eiseenn esrsrastsrsirssaans Cheena\....
BIBLIOGRAPHY . ivvecarerrassrnoncornns Cearean eserrarassenn ver

ii

30
30
32
34
35
38
38
38
39
4o
41
52
54

1. INTRODUCTION

The need for compuber performsnce evaluation arises at the time
that a con@ﬁter is used for business and scientific data processing.
As computer systems increase in size and conplexity, it becomes not
only more important but more @ifficult to measure performance.- The
original problem for implementing a computer system is: 'What
conflguration of hardware}software/personnel is required to perform
the anticipated data processing tasks and to generate useful outputs
within a reguired response time?'. Today a vast range of different
nardware/software are avallable, with a large variety of infernal
capacities, capabilities, and featuves, and with a wide and complex
range of peripheral fur;ctions. Most contemporary computers have the
capability for a concurrent processing between peripherals and in-
dividual programs. The object then, is to determine which configura-
tion is 'optimal' for a particular application. That is ,' the total
capsbility of a computer must now be measured in terms of both time
and space requirements. In order ‘to make the evaluation meaningful,
standard measures of system capabilities and techniques for analyzing
systems and assigning welghts to these measures must be employed.
The major evaluation goals are: (1) to provide precise measurements
of implementation costs, processing requirements, and response or
furr-around times for feasibility analysis; (2) to provide the
ability to accurately specify performance require_aments for adeguate
and optimum computer system selection; (3) to provide a predictive

tool to allow the programmer to optimize the capability and capacity

utilization of the programs; (L) to prov:\Lde the ADP Management with the
ability to measure the change and/or peak workload.

Due to their complexity, computer systems are Very difficult to
measure. 1In many cases, computer systems may run each user job
correctly, but may still be grossly inefficient in using the éon@uting
power of the system. Sometimes these 'performance bugs! are more fre-
quont and more semous than logic bugs. The performance bugs have no
cbvious symptons, except that they decrease the efficiency or the sys—
tem. A flow which degrades the average response time by 20% may not be
recognized immediately. It frequently takes a factor of two before the
user realizes something is wrong. Detailed measurements from a guanti-
tative study on the behavior of that system are perhé.ps the only way to
locate those bugs and to examine the inefficiencies that may exist in
the structure and utilization of the system. Also, a good quantitative
understanding of the performsnce of an existing system or program is
necessary for designing a new and better system or program. .

The available evaluztion techniques are apolicable as a function
of the level of analysis required, so that no single technique can serve
as a satisfactory performance measurement of a totai coirrpu’ger system.
An examination of the assw@tions that underlie some of the presently
available technigues is essential. IT is also important to .review some
of the evaluation techniques with their results. The emphasis in this
paper is on the software monitor technique. This téchnique provides a
scheme for cbtairing data from 'inside' the operating system as 1t A8
runn:mg. These internal performance data not only reveal the exact
sequences and patterns of events which occurred durlng execution, but

also assist in locating implementation problems. The performance data

can also be used as feadback to & system designer and/or vrovide real-

istic calibration data input to simulation models.

2. OVERVIEW OF COMPUTER SYSTEMS PERFORMANCE ANATYSTS TECHNIQUE

In the classical scientific method, a complete analysis involves
a conbination-of a theoretical approach and an empirical measurement.
The theoretical analysis may be handled with a mathematical. or simu-
lation mode. The empirical experiment is designed to gather statis-
tical data for testing the theory. Neither’ the theory nor the measuré—

ment alone is sufficient.

2.1. Theoretical Analysis Techniques

2.1.1. Anzlytical Modeling Technique. Analytical modeling tech-

niques describe the general chsracteristics of a compuber system (or
subsystem) in terms of mathematics. A set of variables are defined to
represent the inputs, outputs, and internal states of the system. A
set of equations describing the relations between these varisbles ave
formulated. By varying the given inputs, one can predict the behavior
of the computer system under different situations. Analytic models
provide a means of thoroughly understanding specific critical aspects
of a computer system. These results are generally applicable to sys—
tem design and algorithm formulation. A limitation of analytic model-
ing is that the scope of the modeling is restricted to a subsystem of
the botal system. In general, attempts to describe a total system
mathematically result in a complex unsolvable model or the design of a
complete medel with significant detail is not possible.

2.1.2. Simulation Model Analysis Technique. ' A simalation model

may be used to represent some particular function of a compuber

system or subsystem. If constructed with sufficient accuracy the model
can reflect the effects of various changes as if made in the original
system. 'Thus, it ensbles the original system to be studied and analyz-
ed by gtudying and analyzing the behavior of the simulation model.
Today, there is perhaps no single technigue more valuable than slmu-
lation for use in evaluating systems. Several simulation languages have
been developeci} to facilitate the expression of the components and logic
of complex systems to be simulated. Two general purpose system simu-
lation languages are GPSS (General Purpose System Simulator) .{58],

and@ SIMSCRIP '_ [50]. Languagss developed especially for compubter
system simulation are €SS (Computer System Simulator) [46], and 3SS
(System and Soffware Simulator) [34]. Special purpose computer hsrd-
ware similation langusges include CDL (Computer Design Language) [331,
ard HARGO (Hardware Oriented ATGOL Language) [39]. Much simulation work
has also been done using general programming ianguages such as FORTRAN,
ATGOL and PL/1. Perhaps the most critical factors in simulation are
the unavoidable assumpbions made concerning the behavior of variables
within the real system. The results produced by simulation are no
better than the assumptions underlying the construction of’ the ruc;del.
Several simulation models and the results of computer systems have
been reported. Two of the most interesting simulation medels availeble
are CASE and SCERT [32, 35, 40, 41, 47]. These models are reviewed in

Section 3.1.

2.2, E‘mi)jrical Performance Analysis Technique
Empirical measurement is used in an operating computer system To

determine hardware, software, and user characteristies. It provides

information about what goes on inside the system as well as the system
throughput, capacity, and the characteristics of system load., 'There
are two major empirical measurement technigues: Analyticel Measurement
and Benchmark Measurement. A compariscon of these two technigues is
shown in Figure 2-1.

2.2.1. Analybic Measurement Technique. The analytic aoproach to

conputer system measurement involves the insertion of hardware and/or
software probes into the system to allow measurement and recording of
the system's most subtle behavior. The application of analytic measure—
ment cen be divided into four general categories: Program Analysis,
Supervisor Analysis, System Analysis, and System Research. Program
Analysis may involve debugging and understanding inter-program relation—
ships such as those found in the process of debugging a large data base
system, program tracing to pirpoint performance bugs, uncovering
communication problems, and performing introspective ané.lysis. Super-
visor Analysis falls inbto two classes: Assessment and Evaluation. In
the first, the problem is To find and -to measure the variables affecting
the executive's enviromment. rI‘he second class in.x}olves evaluating the
execu’éive response. System analysis is concerned with the sultability
of the system for fulfilling its intended purpose. Essentially, it
provides an answer to the question: To what degree, and in what

manner, has the man/hardware/software complex affected its enviromment?.
System Research involves experimenting with a conmputer syst-em by
observing and measuring i;he effects on the system as a result of con-
trolled changes delibera‘;:ely induced. A comparison of the hardware -
monitor, the software monitor, and the instruction trace methods are

shown in Figurs 2-2.

2.2.1.1. Hardware Monitor Technicue. Hardware instrumentation
involves attaching electronic probes to components of the computeﬁ .
which are to be monitored. The probes are capable of generating a
signal upon detecticn of any voltage change presumably caused by some
known comuter activity. The probes are attached to a hardware device
that.can logically combine the signals and record their freguency,
-value, and durations. Several papers have reported on the use of hard-
ware monitors [60, 6%, 65, 66]. Some of these techniques along with
other commercial products are discussed in Séction 3.2. In most cases,
hardware monitoring is used to determine system operating characteristics
such as I/0 waibing time, overlap of activities, resource utilization,
and idle time. The adventage of hardware monitoring is that it imposes
no interference upon the object system. The disadvantage is that it
needs a special hardwafe device, and only a limited subset of the total
system data and relationships are accessible to the probes.

2.2.1.2. Software Monitor Technigue. Software monitoring in—

volves modifying the system software so that the system's 6peration may
be interrupted at any point to permit access tTo pertinent data and
intra~system relationships. The disadvantage of software monitoring is
that it results in scme system degradation as a function of the frequency
of data collection and recording. To compromise between resolution and
system dégradation some design princivles and implementation techniques
have been given in [71, 73]. Some of the results obtained using soft;
ware monitoring are reported in [12, 71, 72, 73, 75, 771

The software measurement fechnique -can be s@bdivided into the
following areas of study: Instrumentation, Measurement, Recording and

Reduction.

Instrumentatlon

The software instrumentation is a scheme to access the inter-

nal data as well as intra-system relationships. There are two

major techniques suitable for differvent purposes; the stand-

alone package is applied on the sampling measurement, and the

integrated system is used for conbinuous analysis.

Measuremsnt

A,

Sampling Measurement

This technique can provide a frequency distribution which
describes the activity of a program. It is very useiful

in selecting areas of a large program for analysis and
improvement. According to Cantrell and Ellison [72], 'If
an execubing program 1s freguently interrupted according to
some random or periodic time schedule vhich is knovm to be
statistically independent of any natural execubtion pattern
in the program, then the frequency with which the interrupt
location falls within a particular instruction seq:uénce is
proportional to the total time spent by The program in
executing that instruction sequence.' The formula to com—-
pute the proper sampling rate 1is described in detail in
[70] and the clock interrupt feature of the.cor‘rg)uter .is_
used to control the sampling rate.

Trace Measurement

When the analyst is concerned with the identification and
the order of the events in a system function, trace
measurement is used. It results in a time-oriented 1ist-

ing of the occurrence of the selected events. This

pechnique is particularly suited for the debugging and
the analysis of intra—system behavior.
C. Accounbing Measurement
The standard accounting data provides resource usage in-
formation such as CPU time, channel time, peripheral
device time, memory usage, amount of terminal Time, and
volume of file storzse. The data available from standard
accounting files are frequently sufficient to deter;ﬁne
the resource utilization.
D. Playback ilzasurement
This technique which provides the abllity to recreate a
system or subsystem's operation for interactive study and
experimentation was successfully used in The sage system
and has been well described by Sackman [78]. It is also
in MULTICS, which was describeé by Saltzer in [79].
Recording
The recording component of the software monitor causes
significant problems dus to theﬁlarge volume of data which-
must be transferred from main memory to secondary storage.
Data comression, pre-anzlysis, data selection, and inter-
leaving techniques are used for reducing the data volume an@/
or the time required for recording.
Reduction
Once the data selected for measurement have been recorded,
reduction 1s nevessary to make them legible and meaningiul to
a human analyst. The reduction operations may be required so

that -the data are time-sequenced or event sequenced, converted

10

to meaningful units, and presented as summary counts, graphs
or histograms.

2.2.2, Benchmark Measurement Techrniigue. A benchmark is a roubtine

which is run on a mumber of differant computer configurations to obtain
comparative. throughout performance figures regarding the =sbilities of
the various configurations to handle specific applications (Joslin,
1966)}. The benchmark methodology involves the specificatien and execu-
tion of instruction mixes, and kernels or tasks to provide the compara—
tive measurement. An instruction mix is the welghting of each instruc-
tion execution Hime by a coerficient which represents the frequency of
occurrence of the associated instruction. A kernel is a block of code
which constitutes a basic function. A task is the type of work re-
quested by the user. There are many measures of software capabllity
that may be emphasized 'to varving degrees according to a specific
user's need. These measures are basically concerned with time and
utility to the user. They include programming time, checkout time,
compllation t‘:me, execution time, I/0 utilization, product econcony,
secondary sbtorage utilization, hardwars growth fleﬁbihty, I/0 and CPU
synchronization, facility maintenance cost, operater intervention,
machine independence, documentation, and programmer training.

The stimulus measurement techni'que used in evaluating time-
sharing éystem is an outgrowth of the benchmark aralysis technique.
It involves applying a controlled set of stimuli to the black box so
as to activate its functions and then observe its performance. The
purpose of the measurement is to provide a measure of the throughput
and the response time by measuring the effect of certain key functions

upon the overall system's behavior. These functional variables mist be

11

stimilated in a controlied and measureable mammer by the benchmark
programs. Each of the programs provides one or more stim:li in con-—
trolled quantities and determines the effect of the stimuii upon the
system:h# terms of its own performance. A total system (man/hardwars/
software) may be viewed as a 'black box' containing certain known func-
tions which can be activated by external stimli. The stimuli consist
of computation, terminal interaction, paging, I/0, swapping and resource
allocation activities. The effects are measured in terms of the through—
put and the response time. The throughput is a measure of the volume
~of" work perfbrmed by the system. The response time is the speed with
which the system responds to an interactive user. By conéfolling the
stimuli and observing their effects, inferences can be made about the
behavior of both the system's functional components and the users
characteristics. -

The stimulus measurement technique may be used in three different
environments in which the system's behavior is to be evaluated: A&
stand-alone enviroment, a benchmark environment, and a real world
environment. A stand-alone environment is used to determine the best
throughput and response time which a given configuration of hardware/
software could ever deliver. This measure of maximum performance is
used to evaluate the cost/effectiveness of a proposed'modification to
the system and to determine the performanpe dgradation introduced by a
time—sharing system. A benchmark envifonment represents a typical user
pdpulation which makes a typical set of demands upon the system.
Modifications to system.fﬁnctions such as job scheduling, swapping and
demand paging logic, which may affect more than one class of user, may

be evaluated quickly both for effectiveness and for correctness of

12

operation using benchmarks. A real-world envirorment is used to
measure the service behavior given to one pseudo-user of known
characteristics wder real-world conditions. This techniqﬁe involves
rumning a benchmark program as the pseudo-user when the system has an
almost full complement of rszl users. The major problem of the stimulus
messurement technique lies in establishing equivalent environments
within computer systems which are to be evaluated. Further, it does
not provide sufficient data for a clear insight into the system's

operation.

13

Factor Analytic Measurement Stimlus Measurement
High. BEReguires personnel iow. Persomnel with
Development with sophisticated and little experience can
cost : detailed knowledge of produce the benclunark
executive routines. programs. Testing can
Testing requires stand- be done under time
alone compubter time. time-sharing. Errors
Errors may affect all affect no one else on the
users. * system.
Operating Increase in system over— Regquire some stand-alone
cost head. time. Usurps a terminal
and increases system load
under time—sharing.
Detailed Data on the_ A3] behavior is measured
Measurement system behavior and in terms of response time
capsbility | - interactions. DMNeasure- and throughput.
-ment include sampling,
~accounbing, tracing and
playback.
- Usually require extensive Fesult are online, simple
Knowledge offline analysis. Con- and immediate. Extended
of results siderable statistical and analysis is usually not
~analytic skill is requir- reguired.
ed.
Figure 2-1. Comparison of the Analytic and Stimulus

Measurement Technigues.

Techniques Hardware Performance Instruction
Attribubtes Monitor Data Recording TRACE
Degradation on S Nene low 1 Very high
measvured system .

Ievel of detail - Iow Medivm Very high

recorded . 1

Special hardware -+ Yes No No

required .

Cost _ " High Medium Low

Flexibility ‘Very low Medivm High

Purpose Overall system| Overall system Tmplemencation
analysis analysis - analysis

Figure 2-2. Comparison of Measurement Techniques.

3. REVIEW OF SOME PERFORMANCE EVALUATION TECHNIQUES

3.1, -Simulation Model Analysis Technique

SCERT (System and Computers Evaluation and Review Technique) and
CASE (Computer—Aided System Evaluation) are simulation program pack-
ages. Both have been designed to accept the definition of a ccmputer
system's parameters and to bulld an application 'workload model' and
a 'configuration model'. Both simulation packages maintain a library
of hardware/software performance factors for a wide range of digital
computers. The simulation can extract the appropriate hardware/
software Tactors for all the c'omponents in any one configuration. With
this information, configuration mod;els are bullt which satisfly the
performance requirements. Then during the simulation phase, it simu-
lates the response of each of the ‘workload medels' against the 'con-
figuration models' of each of the selected hardware/software complexes.
Te results of this simudarion are projegted in terms of cost, t:‘_me_,
Memory and ma_ﬁp&rer reguirements. Since the functional structure oi;
SCERT and CASE are very much alike, A block diagram is shown in
Figure 3-1. Only SCERT was chosen and is described in detail in this
report.

SCERT consists of four major camonents: Definition Language,
a Factor Library, Simulation Programs, and Output Reports. The Te-
finition Language is used to define the application s;}stem and the
Hardware/Software complex to be simulated. The Factor Library con-
tains the characteristics of the hardware/software items such as cosg,

performence, and technical specifications. The simulation programs

15

16

perform the necessary processing to accept the input definifion data
and -create the outpubt reports. Oubput reports consist of\ Sever‘all
different typeé of reports. These may be broken down into four major
categories: Summary Reports, Computer Complement Report, Real-Time
and Multi-Programning Analysis, and Detailed Report.

From the acceptance of the input data to the preparation of the
output report, a SCERT simulation involves Tive phases. Input to:
Phase 1 consists of a series of definitions outlining the workloads and
computer processing reguirements of the sys;cern to be simulated. The
Qutput of Fhase 1 is the model of the application system. Input to
Phase 2 is a serdies of delinitions which outline the hardware com-
ponents, the software packages, and an environmental definition in
which the hardware/software configuration is to be operated. The oub-
put of Fhase 2 is a moélel of the hardware/software cdnﬁ.g;uration com-
plex. In Phase 3, the models created in Phase 1 and 2 are combined with
each system/hardware/software combination, and the raw timing figures
are compubed, Phase U calculates the run time for each configuration
canbination by considering simultaneous operations allowed by the hard-
ware, as well as any other constraints imposed upon such simultaneous
operations. Results of the previous four phases are then accumulated,

and in FPhase 5 the output reports are created.

3.2. Hardware Measurement Techniques
Within the normal standard hardware features of a digital com-
puter, such function as address stop switches, trap transfer modes, and
normal error-faulting procedures are sometimes used For measurement

purposes. In addition, some special hardware devices have also been

17

developed and added to systems so as to perform herdware morritoring of
a compuber's performance. Devices can be attached to a central pro-
cessor so as to passively examine each instruction as it is executed.
Hardware ﬁonitor devices have built-in counters and seli-contained
output devices to record the occurrence of any given data patfern.

3.2.1. IBM 7094 Hardware Measurement Technique. This device is

designed to record information from the 'CPU™ whileithe ICPU' is pro-.
cessing data. The recorded data is then used to analyze the basic
nature of the program and to measure the performance of the hardware.
The hardware measurement device consists of a control unit, a conbtrol
panel, and an IBM 279 VI tape drive. There are three internal sections
of the control unit: (1) an input unit, which contains 40 Iines from
the monitored 'CPU', six 2U-bit data buffers, and one comparison unit.
Of the Y0 lines, there are 2U data lines which are used toc transfer 20
bibs of the contents of the instruction counter, and U bits specifying
the channel in-use to one of the data buffers; 15 selector lines which
transfer the 15-bit op-code to the comparison unit; and 1 stroke line
vinhich contains the status of the input lines. The comparison unit
conpares the 15 sglector input lines with each of five ;ets of switches
manually set by the operator from the control panel. Data are record-
ed if there is a match between the 15 selector lines and one of the
five sets of switches; (2) an encoding unit and assembly register,
which encodes the 2U-bits of data to a variable length string, packs
the string into 6-bit groups, and transfers fie string to the output
puffer one group at a time; (3} an cutput unit, which contains eight.
6-bit output buffers and one tape controller. A block diagram of the

operation of the device is shown in Figure 3-2.

18

3.2.2. IBM System/360 Hardware Measurement Technicue. TS/SPAR

(gﬁhﬁ—§haring System Performance gﬁtivi%y Recorder) is a hardware-
measuring device used to collect performance data for measuring the
dynamic operations of an information handling system. It can be used
+o messure the external effects of internal software and harduare
operations, and to measuwre the internal operational characteristics of
software or hardware units. It can alsc be used to count the fregquency
of an event, to clock its duration, and to fecord the gross time. A
block diagram of TS/SPAR is shown in Figure 3-3. Electronic counters
within the device vrovide accumilative storage for up to 18 measursble
parameters of 3 decimal digit length.. Vechanleal counters are activat-—
ed when overflow occurs from the electronic counters. Comparators are
used to dynami.cally mornitor data.pa%hs in the interface and to compare
them with fixed values indicated by switch settings. These switches
aré ﬁséd to indicate Yo the monitor a unique address, an operation code,
or somé contiguous memory locations. The sequencer can be used to de-
tect‘any thréemevent sequence. An event may be a reference to a reail
or virtual memory address, an instructioﬁ counter; an op-code, a con-
trol signal, ete. The time interval between the cccurrence of events
is not considered, only the event sequence is of interest. The plug-
board receives the interfacevsignals and transfers the data and control
to the various functional areas in the recorder. The logical circuitry
is accesSsible from the plugboard to logically conbine interface signals
so as to form complex events or to generate control signals. Inout to
TS/SPAR is through a speclally engineered interface which can handlé
256 predebermined signals and strokes. These interface signals r@flect

certain key shates (internzl or external) of the system te the recorder.

19

3.2.3. CDC 6600 Chippewa Hardware Measuremenc Teclinicue. The

Tawrence Radiation Isboratory uses a PPU (Peripheral Processor Unit) as
a programmable hardware monitor to record and to anélyze the activity
in the ODC 6600 central processor and other peripheral processors. Two
mori toring fou‘cine;s, Mr. See and Mr. Bye, are used. Mr. Eye gathers
informations on 'CPU' activity, central memory utilizations, channel
activity, PPU activity and control dispositions. Mr. Seenfurn:ishes
data on the disk utilization and the job prefiles.

3.2.4, Univac 1108 Hardwafe Measurement Technique. A Univac 1108

_is used to measure the performence of another 1108 system. The hacxd-
ware messurement system uses a special hardware device interface as a
recording processor to gather live data. (See Figure 3~4), it contains
a hardware moritor, data collection software, and data reduction soft-
ware. The monitor crea;ces and records data each time a jump instruction
is transferred to a drum via two large core storage buffers areas.

T\lhen the drum is filled, the data are transferred to tape. A special
data reduction software package reduces the data into either gro.phlc or
statistical form to provide a perspective of the performance analysis

of the wonitored eguipment.

3.2.5. Some Commercial Hardware Monitors. CPM 11 (Computer

Performance Monitor) [597, CPA 7700 (Computer Performance Analyzer)
[61], and SUM (System Utilization Monitor) [62, 63] are some of the
commereial hardware monitors. In general, the hardware monitor consists
of three logical elements: probe lines to convey statistical data
sensed in the computer being monditored, accumulaters to temporarily
store counts or timing signals, and a computer compatible tape transport

to record system performance data for later analysis. DMost of the

20

commercial products also provide a data reduction and analysis program
which reduces the accumulated data and prepares tsbular and graphical
reporss representing system performance. The functional structures of
the available commercial hardware monitors are very much alike.. CPM
has been chosen as fepresentative of these monitors and is described in
detail here.

CPM consists of an operator console, a logical wit,a centrel |
panel,-and a tape drive. On the operator console, there is one ten-
position decimal visual register which is used to display any one of
the sixteen counters or the clock, and ten function select switches
that control the main function of the CFM. The logical unit consists
of a real-time clock which records the time of day in 100 Us, 20
measurement prcbes to sense the various functions throughout the
monitored system, and 16 counters, each with 10 decimal place registers
to méasure the activity of the monitored functions. The measurement
prcbes are acbached to individual circuit pins in the computer system
which are active vhen a particulsr event occurs. The counter mzy be
used either toc measure the length of timé a function is active (Time
Durat&on Mpde) or to count the mzrber of times an event occqrred (Event
Count Mode). The real-time clock is incremented every 100 US and over-
flows to zero at 2l howrs. The clock is used to provide a measure of
tobal elapsed time, as well as to allow direct correlation of the
measure of total real-time, and console logs. The control panel pro—
vides the operator with control of the probe counter assigrments, the
counter operating mode, and the conbinatorial logic functions. It
consists of 26 and/or elements, 2 hexadecimal recorders, 16 fanouts, 8

latches, 16 inverters, 60 probe exit hubs (2 true exit and 1 Talse exit

21

for each probe), 32 counter entry ﬁubs (1 count entry and 1 time entry
for each counber), 20 clock exits (each exit has thé following differ—
ent durations: 1 US, 10 US, 100 US, 1 M3, 10 MS, 100 M5, 1 SEc; 10 SEC,
1 MIN, 10 MIN), and 10 function hubs. A 1200 foot reel mounted on a
tape drive provideé synchronous recording on 9 tracks 800 BPI, with a
minimm recording internal of 100 MS. Each record written on tape is
175 characters in length. Included in each record are‘the éontent’s_ of”

the clock, the 16 counters, and the settings of the Ffive data switches.

3.3. Software Measurement Techniques
There have been several developrents in the field of applying
software technigues to monitor systems. Some of these developments are
described below.

3.3.1. GE GECOS IT,ITI Software Measurement Technique. The over—

all performsnce of a computer system depends on the efficiency of both
the hardware/software environment and the programs which operate in that
environment. The software monitoring device used in 'GECOS II' is de- .
signed to permit anzlysis of the system performance and also of individual
programs. The system analysis includes user program accounting analysis,
overhead analysis, and trace analysis. To provide for individual program
analysis, that is functional value analysis, high density sampling is
used., By freguently interrupting the system at random or periodic ti-mes,
the fraction of the total time spent in a particular instruction

sequence is found to be proportional to the number of samples taken while
in that sequence. The results of the perdcdic sampling are used as the
basis of I/0 and vrogram execution time prbf‘j‘:“les.. Several software

measurement techniques were applied during the development of 'GECOS

22

ITT'. Software measurement of processes internal to the system were
developad. Event counters tvére ineluded in all funchtions of the system
so that they could be analyzed and studied separately. Internal system
auditing was provided to check on new entries in each of the system
guaues, to checksum critical tables each time thes} are referenced, and
t0o checksum all system files as .they are loaded into core de: execution.
Bvent fracing is used to detect the occurrence of hupox;tant events. -
Decisions made within the system are monitored and made available for
subsequent analysis by recording, in a circular list, each intermodule
transfer. The total data collected on function usage, queue formation,
table and file manipulation, and event occurrences is sufficient to
summarize sysbem operation and performance. The total analysis uses

as input, standard system accounting data, the recorded trace entries,
and other parameters made available from the system.

3.3.2. IBM TSS/360 Software Measurement Technique. SIPE (System

Internal Performance Evaluation) is an on-line software recording
techrique used to collect the data necessary fo measure and tvo evaluate
the performance of the IBM System/360 Time-Sharing System (TSS/366) .
SIPE is a selective, event-driven recording mechanism that operates
within TSS/360. The activating mechanism of SIPE is called a ‘ﬁook' .
(See Figure 3-5). Hooks have been implemented at various puLis
throughout the resident supervisor ccode. EFach hook includes an
identifier code. Based on this code, STPE collects the applicable data. -
The degradation of the operating system with the SIFE monitor is pro—
portional to the nunber of times SIFE hooks are activated. It is alsc')
affected to some degree by the volume of the output data. To compromise

between resolution and degradation, a selective option fumction {D=lta-

Data-Set) has been implemented. The Delta-Data-Set is. input to SIFE

as a paramster at the start of a run. The given Delta~Data-3et in~
structs SIPE to 'turn-off! any hook or group of hooks for that run. In
order to derive meaningful information from the data collected by SIFE,
a library of daba reduction vrograms has been developed. These programs
convert the SIPE data to a simple or elaborate form for use in perfor-
mance evaluation, system analysis and debuesing as. requested ;(Jy the
analyst. A functional diagrem of the interface between TSS/360 and
SIPE is showm in Figure 3~6.

3.3.3. "TBY 03/360 Software Measurement Technigue. SM3/360

(Systems Measuremenc Software) is a software package developed by Boole
and Babbage, Inc. Two componenets of the SM3/360 described below are
the PPE-2 and the CUE-1 components.”

The PPE-2 (Problem Program Efficiency) component is concerned with
the efficiency of the user's problem prog_;ran-l. The outpﬁt of the PPE
provides the distribution of CPU and I/0 time spent by the user's pro-
gram. The PPE consists of two elements: The Extractor Program and the
Analyzer Program. The E‘xtractqr Program- randonﬂy. 'samples the problém
progt*ém during its execution and collects statistics for 1a1;er* analysis.
Each time the extractor records a sample, one of two events has taken
place, either the instruction address falls within sample bourds, or a
SVC (Supervisor Call) has been invoked from within the sample bounds.
The analyzer uses the ccollected data to generate reports which indicate
where and how the prog;r*ax;l sperds its time and how the program is balanc-
ed between being computef bound ard being input/output bound. The ré-
ports generated include a mumber of tabular displays and one graphic

display called the Histogram.

2U

The CUE~1 (Configuretion Utilization Efficiency) comporient is used
to aid in maximizing system throughput by determining the configurétion
utilization and by showing specific hardware/software relationships
which contribute to configuration utilization. CUE is also divided in-
to two programs; -the Extractor and the Analyzer. The Extractor cpllects
data on hardware usage, disk head movement, data cells, and transient
supervisor call routine usage. Tne Analyzersgenerates a configuration.-
report, an equipment usage sub-report, a head movement sub-report, and
a SVC sub-report. The quantitative information given in these reports
can assist in locating bottlehecks in a contiguration which might

otherwise be overlooked.

BEGIN

DEFINE
WORKLOAD
Y
NEXT DETERMINE
MANUFACTURER [INITTAL
CONFTGURATTION
LIBRARY OF J/
HARDWARE A3D .
SOFTWARE > EXECUTE CASE e
CHARACTERISTICS . /S
/ |
J!
P
- END

T

l REPORTS

A

Figure 3~1.

" ANATYZE, RESULTS |

>| AND RE-CONFIGURE |

Block Diagram of the Functional Structure of CASE

IBM 7090
CPU

'_‘____’-___p_;_;___:f

v
/ Y
COMPARTSON _
\mrr

ENCODING UNIT ‘

ASSEVBLY REGISTER

l

QUTPUT UNTT !

DECODE -~

|

DATA REDUCTION

j,
| o

\/

Recording Machine

« Compare the 15 Selector Lines
with the 5 Sets of Switches.

- Encodes the 2U-bits of Data into
a Varisble-Length String and then
Packs the String into 6-bit Vords.

« Writes Inter-record Gaps between
each Logical Record.

» Decodes the Variable-Length String
to 2U-vits of data and Adds Time
Information.

» Produces a Trace-like Printout or
Cenerates CRT Graphical Display.

Figure 3-2. Functional Diagram of the IBM 7090 Hardware

Monitor Device.

SHARED

SHARED
MEMORY MEMORY
]
o
Y
¥ \ \
TTME- TNPUT- TTIME—~
SHARTNG OUTPUE SHARTNG
PROCESSOR | SYSTEM PRCCESSOR
A ' IS
e8]
= o l[:i .
| E %éég -
< H (= <
— 8 i = b — 8
55 e ———
> PLUGEOARD [2
p
A) A h
A ¥ i | | y
. ELECTRONIC MECHANICAL 10GICAT,
SEQUENC“'R{ COMPARATORS COUNTERS COUNTERS | | CIRCUITRY
li\) A '
I AR
COMPUTER
READ-OUR PERATORS
CONTROLS CONSOLE
v
TAPE
ADAPTER
v

Figure 3-3.

Functional Diagram of TS/SPAR

Monitoring System

TEMORY MEMORY
) UNIVAC 1108
'/ZII | Data Collection [——.| IOC) 32/ 1782
TAPE Region
N 4
b
Monitor Device v
1 ! i
y |
Recording Inter— l | line Drivers
face Control Iy ﬂ -
1
’ E—- -=={ logic
Monitor Control l | ne‘cjlrrork &——wnem cONtToOl
tad . i 4
' B Address, e dALA

a w—— ¢ Pimien & Eetmmr Bum—— a2 S— -

Monitored System

UNIVAC 1108

BEXEC VIII
Programs

MEMORY MEMORY MEMORY

Figure 3-4. Block Diagram of the UNIVAC 1108
Hardware Monitor Device

Figure 3-5.

Functional Diagram of Interface
between TSS/360 and SIPE

i e N o e e -
INST. A — S ENST A
INS T 3 EX | Srvirclt AL it P |\~ S YO
Z NOP: HHedx TD-
ZrST. 13
‘,M.-—-__“_‘W
The "Hook" Structure of SIPE
7$5/360
[e
TNET. A R B
E X — SVC L CSIPE L.
HBP HTBE ID : ——m e -
INET 12 . y
1 I A i
R i P M 1
i v o 0
PSA REGIGN . |8 2 R R
pome e Tt e e e, R N 8
: RS . & & 3 A
1 SvC ‘ - to U =z
! ' C X
; | | | -
: ZOALD NEW .
! Sve '
! L !
1] STHERT e
; ; IE NECESsARY
! S .
1
' | sAvE S| cravee x|
; f‘//?'f\? 73) WARE ' REGISTER N O T A
] 1)
' - ZaAp svel, ! ES TONE
el VREGISTERS, 16— 'cLd pgwv X}K’E&/ITER

1
]
t
.

e e = x

4, SYSTEM FUNCTION ANATYSIS USING SOFTWARE MONITOR TECHNIQUES

The objective of the software monitoring efforts conducted under
this thesis was to develop techniques to permit the collectich of data
from the operating system as it was running. A quantitative study of
an operating system using data on the behavior of that system is an
effective approach to permit one to locate and to examine defects that
may exist in the siructure and utilization of the operating system.
In the design of a system monitor technigue, the follonvipg capabili-
ties were desired: (1) to provide a technique that would permit one
to study the logic and behavior of programs so as to define and locate
significant events that occur within a program; (2) to provide a
technigue which would permit analysis and evaluation of the iwplemen-
tation of a program, so that local performance evrors couid be de-
‘cectéd and possibly avoided; (3) to provide a technique to collect
the applicable data of the total operating system in order that the
interaction of system functions could be analyzed and evaluated; and
(4} to provide a technique to continuously report the performance sum—
mary on a display or on an on-line printer at specified periods of
time. To meet some of these objectives, several program were design-—
ed and implemented on the Univac 1108. These programs are desori’oed-

below.

4,1, Instruction Trace
TRACE is a specilal simulation tecol which has- the ability to

simulate itself. It is written and developed for the purpcoses of

30

31

studying the logic and behavior of a program. It is soretimes very
difficult to obtain documentation and descriptions of system routines.
This has been found to be the case with the 1108 executive routine.
TRACE can provide ugeful information concerming the operation of a‘
program, such as the location of the instruction, the data in the
operands of the instruction itself, and the contents of all registers
used by the instruction. The TRACE Roubine records data at every
instruction, or at selected instructions, and then prints out a step—
by-step account of the behavior of the program. From the printout
developed by TRACES the programming technique ‘of the traced program can
be observed and evaluated.

In the TRACH Program,'we contrive to let the machine execute most
of the instructions as the instruction appears in the program. The
exception is that TRACE modifies jump or conditional jump instructions
pefore execution so as to insure that control will return to the TRACE
Roubine after the jump has taken place. Inside the TRACE Routine, a
memory word is maintained to simulate the hardware instm;ction .counter
which peints to the current instruction To be traced. TRACE copies the
traced instruction into its own work area. Before execublon of Ehe
instruection, a subfunction is called to analyze the op~code so as to
identify whether this is an unconditional or conditional jump instruc-
tion. If the instruction is not a jump ?ype instruction, the simulated
instruction counter is increased by oﬁé and the traced instruction is
eﬁecuted. However, if the-instruction is a jump type instruction, the
address field of the jum instruction is saved first ard then replacéd
by a specified address. If a jump occurs, that ig, the condition of

the jump is satisifed, the control then goes to the specified location

32

instead of to the successor instruction. In this fixed location, the
simulated instruction counter is replaced by the saved address field.
In this way the exact program instruction sequence can he traced. A
general flow chart of the TRACE Program is shown in Figure 4-1. An

output from the TRACT is also glven in Figure 4-2.

h.2. Functional Value Anzlysis

The purpose of a functional value analysis is to try to improve
the efficiency of a program. In analyzing a program to achieve this
inprovement, the payoff between the time spent in analysis, debugging,
and the total possible machine time gained should be considered. A
technique is described that will indicate to the user the most frequently
axecuted code within his program. Since it is executed frequently there
is a higher payoff if this portion of the code is improved.

Either in a high level language or in 2 machine language Drogram,
a jtmb instruction revresents the end of a sequence of opefatién. Those
contiguous sequential cperations can be considered as a single macro-
instruction. In this way, & program can be divided into several macros,
each terminated by a jump instruction. By 'Kirchhoff's Current Law’®,
the tunber of times the control flows out of a macro=instruction must
equal the number of times control is transferred to fthe macro-instruction.
Hence, if we record the information when a transfer is made to a speclal
instruction (location), then we can get the exact number of times that
the macro-instruction has been executed. '

This functional value analysis program is formed by modifying the
TRACE Routine described above by adding a sorted,' linked list to record

the transfer information. See Figure 4-1. After the recording is

33

conplete, another analysis routine is called to print the distribution
of CPU time for each macro-instruction. An analysis of EXPOOL on the
Univac 1108 that resulted from the use of ITFVA (Instruction Trace and
Functional Value Analysis) is presented in Section 5.2 as a case
examplie.

Another technique most freguently used-for functional value
analysis is the hish dentisty sampling method which was described in
Section 2.2.1.2. The advantages of using the TRACE Routine are: (1)
the TRACE Routine, is easily modified'to permit recording information of
every instruction traced or to record the trace data only when & jump
occurs; (2) it provides a high level of informastion detail since the
recorded data contains the exact mmber of instructions executed in
each macro, and if desired, provides the exact sequence of each macro-
instruc‘;:ion periormed.

The disadvantage of using Trace ié that it will greatly slow down
the execution of a system. Hence, TRACE is best suited for the analy-
sis of short input-data independent programs. An analysis of the ITEVA
Routine indicates that the time required by using ITFVA within a system
results in the need for an increase of 18 times the normal execution
for a non-junmp type of instruction, and an increase of 60 times for
Jump instruction.

The above disadvantage can be avoide_d to a certain extent by using
the TRACE technique in conjunction witﬁ event counters. ‘Ihat is, set
a count in every basic system function which is to be monitored. It is
relatively simple and str'aight—forward to implement. According to tl'.le
contents of these -counters, the most frequently executed function can

be detected. The procedure then is to analyze only frequently executed

34

functions with the trace technique. This provides a very simple and
useful tool to improve the implementation and efficiency of either a

system routine or a user program.
Progy:

4.3, System Performance Data Extract

The purpose of evaluating an overating system is to determine and
to substantiate the capabilities and the limitations of + ‘t systam.
The prpblem is to find out what is going on inside the system and where
the CPU spends the majority of its time. To sclve this problem requires
that data be cbtained 'inside' the system as it is ruming. OSFIE
(Operating System Performance Data Extractor) is developed so as to
provide a software recording i:echniqué to extract internal system per-
formance daba. Such data provides the exact sequence and patterns of
events that occurrsd during execution. It can be used as input to a
simation model To provide a reglistic calibration and feedvack to the
system designer. This provides a good, quantitative measure of the
existing system which permits pimpointing 'performance bugs! — the re:—
sults of errors in programmer evaluatilon and judé;ment on performance
optimization. Under this thesis, the program OSPDE has been designed,
but has not yet been implemented. The structure of the data item and
the -d'ata block of OSPDE is shown in Figure 4-3. The major objectives
of the design were: (1) to minimize the system degradation by vro-
viding a selective option, which permits the user to be selective in
the system events tc be monitored at any given time; (2) to share a
tape path with the system. use a variable data length structure and a
data collection macro-instruction to get additional gerneratlity and

flexibility; and (3) to use the mechanism of a double vutput buffer,

35

that is, while one buffer is transferring data to tape, the other buf-
fer is being filled with data. The CPU is forced to wait when thé
second buffer is full and the first buffer has not 'yet transferred data

to tape. With this- arrangement, the loss of data 1s possibly avoided.

.Y, Other Technigues Under Consideration

If the OSPDIE recording rate is approzimately one millisecond,
there will be sixty thousand data items recorded every minute, and 3.6
million data items recorded every hour. It’ is obvious, from These huge
volumes of data, that a process to reduce data must be done on a com-
‘puter to give meaningful information to the user. Hence, a data-
reduction and reporting routine is needed. This routine should have
the capeblility to recelve parameters from the user, to select any con—
bination of events of the-recorded data, and to output the analysis
results in tables or graphs.

The Standard System Accounting Routine provides data concermning
%he resources and the elapsed time used by a program. ‘The accounting
data can be used to measure gross performance, and can be combined with
OSPIE recorded data to summarize the overall system performance during
long periods of computation time. As described above, such a techrique

is required to provide continuous measurement analysis to the user.

TRACE

T

INTTTALT~
ZATTON

.

36

R

INST. CODE
ANATYSTS

j.

INST. 1TYPE

ANALYSIS

MODIRY JUMP

INSTRUCTION

v

l

/ﬁﬁ\

e o Em ar e m o e e B A 4 mm e o e e A B e

T ~~__10
/

ITFVA

Figure U-1,

PRINT
TRACE

\1, Daa)

SEQUENCE
CONTROL

?

VIS
v

INSTRUCTTON
EXECGTTON
ANATYSTS

T

/ﬁﬁ_ YES | PROVE CPU_ |
<_IEL 77| TOE DS

BUTION

-~

<

AN

EXTRACT"

MACRO DATA

Runctional Diagram of ITTEVA and TRACE.

oh
14
05

o4
14

05

o4
00

14
ok
05
00

13

14
00

15
01
00

(2)

14
00
00

14
00
00

4
00

14
13
13
00

00

0o
00
0o
00
00
00

OO OO oo OO O oo O

o

OO OO OO

043071 A
000001 X
043115

043071 A
000001 X
043115

043071 A
04312

043071
000C00
000C00
043130

=g

0U43234

000000
043706
000011
043713
043712
043246

(3)

gtk S

Figure 4-2.

000000000017
000000000011

(Tt

000000000017
000000000010

17777777

000000000017
Ty

000000000004
(00000000000
000000057010
TTTrTrreTTT?

TTTTTTTTITTY

000000000004
000000000004
000000000004
000000000000
000000000000
TrrrrrireTTT

(4)

000200000000
TIITT77T7TT7
Tty

000400000000
1Ty
TTrrTTTrTTy

001000000000
1Ty

1777
001000000000
000000011400

1Tt
TITTTTTTTy

1Ty
000000011530
000000011530
Tt
040075413506

1Tt
(5)

000000000012
TOrTTTrTeT
T

000000000011
T
1Tt

000000000016
TITTTTTTTTT

000000000004
011530057010
011530057010
Tt

Ty

1Ty
1T
TITTITTTTiTi
TITTTTT777T7
Ty

CTTTTTTTTITTT

(6)

Sample Output from the TRACE Program.

The sbsolute address of the traced instruction.
The instruction code being traced.
An indicator of what type of conbrol reglster is being used by the traced instruction, il.e., A, X, or

content of the register referenced or a code of 777777777777,

of the next sequential register or a code of T7Y7TT77T7177.
of the index register referenced or a code of 777777777777,
of the operand of the traced instruction before execution or a code of TTTTTTITITTT.
of the operand of the traced instruction after execution or a code of T7777TTTT777.

b3115 53 02
43117 25 16
43120 T2 02
43115 53 02
3137 25 16
43120 72 02
43115 53 02
43316 74 04
43122 27 01
43123 10 13
43124 10 16
43125 T4 o4
43130 74 23
Y3234 46 16
43235 50 13
43237 53 16
43241 27 01
3242 54 01
. 43243 74 Oh
(1)
1
2
3
R register.
4 The
5 The contents
6 The contents
T The contents
8 The contents

11Ty
1T
Tt

TrITTrrITT
T
Ty

T
(i

T
TITTTTTTT77
(Tt
TIrrTrrerey

Ty

Tt
00000000C000
TTTTTrrrTTTT
000000000000
22000033000

Ty

(7

T
TTT1TTTTiTTy
Ty

TTrTTTTI7TT7
Tt
Tt

1T
TTTTTTITTeTT

s
TTTTITTITy
T
TTTTTTTTTTd

1Tt

TTTTTTT77777
TITTTTITTI77
T
1Ty
TITTTrTTiTT
TTrrrrrreTTy

(8)

DATA ITEM

Job No.

D

S

DATA BLOCK

Tnitiated time of this block

Al

A2

Data block name

Data items

I%: Data 1a
I1G: Data length
Al: Number of items lost in previous block
A2: Number of words in previous block

Figure U-3.

A Data Ttem and Data Block of OSPDE.

5. EMPIRICAL: STUDY OF THE EVALUATTION TECHENIQUE OF EXPCOL

5.1. The Central Role of EXPOOL

EXPOOL is a core resident element within the EXEC VIII operating
system that contains a buffer pool and two routines to maintain this
pool. EXPOOL is one of the most active elements in the EXEC VIII
supervisor. All system ftables, queues, and control words are located
in the EXPOOL buffer pool. Because of its central role, the frequency
of use within the system, it was chosen for detsiled analysis using
the techniques developed during this study.

5.1.1. The Buffer Pool. The common buffer vool within EXPOOL

is maintained in order to vrovide a maximum mumber of buffers with a
minimum samount of overhead., The 'Buddy! System Sto1_:=age Allocation
technique is used here with permissible buffer sizes of 2%#N-1 words,
where 24N49. The structure of a buffer is shown in Figure 5-1,

The EXPOOL Buffer Pool initially contains 27 biocks of 2¥%G
words each as implemented in ‘che' University of Maryland EXEC VITI
operating system. Of the 27 blocks, 10 blocks are gene%:'ate_d ab
assembly time and 17 blocks are given to the EXPOCL Buffer Pool by
linking 17 blocks of no-longer-needed core to the end orf the. avail-
able chain upon termination of system _initia]ization. When all space
within EXPOOL has been allocated, the Buffer Pool may be expanded by -
ealling CRQED (Core Requesf for One Block EXEC D-Bank) to get a
block of 2%%Q words from System D-Bank. The borrowed core space will

be released as soon as 1t is no longer needed in the Buffer Pool. When

http:EXP00L.is

ho

the total unused space is less than 4000 (octal) memory words, the

- Buffer Pool is set to a tight mode. In the tight mode, only critical
requests, that is, those with the.flag set, can be allocateé space.
A1l other requests are linked to the EXPOOL request chain and the
requestor is deactivated by EXPOOL.

5.1.2. Request for a Buffer from EXPOOL. To request a bufier

storage area from EXPOOL, the Tfollowing calli_rrg gequence is used:

IXT,U ai,r ‘

fRY) X1 ,EXPOOL

On exit from the request, the program leaves the extermal buffer
address in the A0 Reglster, the return address in the Index Register
11 (X11), and the address of the word that contain the user specified
parameters, P, in the Al Register. The information indicating the
exact nature of the buffer request is made g.vailable to EXPOCL in the

following format:
P: +USIZE INe——FCP ADDRESS :

where:
SIZE = Nurber of words in the buffer desired.
=0 : Needs a buffer when it becomes available.
N=1 : Must recelve the buffer immediately to continue processing.
F=D : Add to the end of chain.
F=1 : Add to vhe front of chain.
C=0 : No chaining._
C=1 : Chain as specified in F.
ADDRESS = A pointer to the control word if C=1; or the address of the .

puffer to be assigned if C=0.

AT,

The Buffer Allocation Algorithm is as follows.
(1) Check if this is a legal buffer request- size.
(2) Call request to request internal buffer.
(A} If buffer of size 2%¥¥X is not available, then go to (C).
(B) Remove the first buffer of size 2%¥¥¥ from available
chain and go to (D).
(C) EK=¥+l, if K>9, terminates unsuccessfully, otherwise,
recursively call request.
(D) If 2%%¥K is the request size, then return to request,
otherwise K=K-1, break buffer info two equal pieces.
(E) Chain one piece into available chain and recursively
return to request.
(3) TUpdate size indicator, ‘tight mode indicator.
(4) Save switch iist ID or function ID.
(5) Chain to the control word if it is so requested.
(6) Return to the reguestor.

5.1.3. Release of a Buffer from EXPOOL. To release a buffer

storage area from EXPOOL, the routine EXREL (EXPOOL Buffer Release) is
initiated by proving the fol‘]_owing calling seguence:

LA AO,P

T X113 ,EXREL

Where P has the following format:
P; R S, 7 ADDRESS :

The Buffer Release Algorithm is as follows.
(1) Check if this is a legal buffer release size.

(2) Update size indicator, wight mode indicator.

b2

(3) Call release to velease internal buffer.
(A) If the buddy of this buffer is free, go to (C).
(B) Chain the buffer to available chain and return to re-
lease.
(C) Remove the buddy from available chain.
(D) Conbine with the buddy, set K=K+l, and recursively call
release.

(1) Return to the requestor.

5.2. Preliminary Results of an Analysis of EXPOOL

The efficiency of a function or program depends both on the algori-
thm used, and the effectiveness of the code used to Implilement the
aigorithm. In evaluating EXPOOL, both the algorithm and the inplemen-
tation have been analyzed. As described in Section 3 of [12], a simu-
lation model of the buddy system storage allocaticn fechnidue, as well
as several other allocation schemes have been constructed and run on
the Univac 1108.

Severagl core memory dumps of the EXPOOL buffer pool have been
taken. The distribution of used buffer size was calculated according
to the results cbtained from the memory dwnias, and has t;een used 4s
the input source to ITFVA (Instruction Trace and Functional Value
Analysis) described in Section 4.2. The time interval between a buffer
being allocated and released is assumed tc be an exponential _distribu—
tion. Under TTFVA requests and relesases are called. Figures 5-2 and
53 sh-ow the ana-ljsis r-esul%s of the original EXPOOL program. We see
23.T percent of the allocation time has been spent in looking througﬁ

the table, TAB2, to convert the external request size into the intermal

i3

buffer size index. It is interesting Lo note that within EXPOOL, fhe
table, TAR2 is order;szd randonﬂ:; as show:ﬁ in Figure 5-4. That is, there
is no rationale for the seqﬁénce of entries in the table. It is of
interest to calculate the average time required to search for an entry
in the table. If we let E be the average search time to find a match-
ing entry in TAB2, N(I) be the number of instructions needed to access
the ith entry in the table, and P(I) be the probability that the ith
entry in the table is requested. Then

E = N(L)¥P(1) + N(2)*¥P(2) + - - — #N(12)*P(12).
if N(I)=N*I, where N is a constant, the value of E is minimized if
P(I)EP(J) for all J2I. That is, a minimum search time can be ocbtained
if the table entry is given indecreasing order according to its pro-
bability of occurrencé. In F:‘Lgures-E—S and 5-6, the result of reorder—
ing the table, TABZ, sccording to the size usage distribution obtained
from the memory dumps is shoim. The percentage of CPU tlme- spent in
this table lookup is still high, but, an average of 15.5 percent of
allocatic;n time has already been saved.

An additicnal saving in time may be obtained by recalling that the
buddy system storage allecation technique is so defined because each
buffer request made for a block of size N, where 2%¥X & N & 2¥¥(K+1),
is allocated a block of exactly 2¥¥(K+l) words providing 2¥¥(K+l) is
less than or equal to the maximum block size permitted. In most allo-
cation schemes, to convert an externai requeat length to the internal
size index, a table lockup is used. Actually, the feature of the
buddy system provides é very easy way to handle the conversion. The

sinple formula is that the internal buffer size index K eguals the

b

numbc?r of bits in the machine word minus the mmber of bifs with lead-
ing zeros. For this, a single shift and count instruction can get the
index size immecdiateldy. Now the average search tjjﬂe E is decreased
substantially. For, in this case, N(1) becomes a constant, C, the
time to perform the shift count instruction. Hence, E = C. -Figure
5-7 shows the result of the above change in the.tjme required to asccess
the aprropriate word. An average of 29.1 percent saving for each re—
quest (or release) is gained over the code ewrrently implemented in
EXEC VITI. -

In the 1108 Executive System, there will be essentially thé same
munber of releases as requests for buffer storage after the system
stabilizes, so that, in the following discussion, no attempt is made
to distinguish the type of action requested in the allocation process.
In the EXEC VIIT versio%x of the allocation routine, by using the TRACE
routine it was found that the average nurber of instructions required
for an allocation was 103. In tﬁe 1108, the average time per instruc-
tion is 1.12 psec. Therefore, the time spent in one allocation process
is 1.12 psec times 103 instructions or .116 msec.

By reordering the table, TAB2, so that the order of the entries in
TAB2 are given in decreasing order according to their probability of
occurrence, the average nuber of instructions required for an alloca—
tion was found to be 87. The time spent in the allccation process is
then .C097 msec, a reduction of .019 msec per allccation. By intro-
ducing a shift and count instruction to replace the table lookup pro-
cess, the average number of instructions was reduced to T4. The time
spent In the allocation process is then .083 msec. This represents a

reduction of .033 msec over.the EXEC VIII version or a reduction of .014

over the version with a reordered TAB2.

45

Le

e EXT

- A B f... .. ¢

——— INT

L
e 3

FXT: External Buffer Address
INT: Internal Buifer Address

A =0 If the buftfer is used.
B If the buffer is free.

B = The internal size index. ‘

[
It

Tne 1link to the next buffer if the buffer is free.

The function ID if the buffer is used by a function.

The switch ID if the buffer is not used by a function.

The vreturn point if the buffer is used by the EXEC main interlock
code.,

Figure 5-1. tructure of a Cne Block Buffer of Size 2%B.

bt

CODE EXECUTION FREQUENCY IFOR EACH INTERVAL

LABEL RELATIVE IOCATION TOTAL INST. PERCENT OF
START END EXECUIED RN TTME
EXPOOL, 0015 0030 3141 16.87
EXP2 0031 0037 500 2.69
EXPEXT 0040 0070 1300 6.98
INTK 0071 0142 1300 6.98
REQUES 0143 0154 976 5.2L
NOMORE 0155 0171 141 7.74
REQ23 0172 0204 630 3.38
MCORE 0205 0277 3 .02
EXREL 0300 0316 3341 17.94
ER22 0317 0330 800 5.30
- EXREXT 0331 0343 500 2.69
ER23A 0344 0356 0 .00
RELEAS 0357 0363 1680 9.02
REL1.1 0364 0413 1378 7.40
REL1.2 o414 0434 811 4,36
REL2 0435 o4le 900 4.83
RET3 o443 olh6 0 - .00
RELS6 olyy7 ou73 0 .00
OTHER 0000 0000 2 .01
1 2 3 h 5

TOTAL 18619 INSTRUCTION EXECUTED DURING THIS ANATYSTS.

Figure 5-2. Code Execution Fregquency for each Labeled Block of
the Accessing Routines (EXPOOL/EXREL) as Implemented
in EXEC VIII.

1. The block synbolic name, that is the label.

2. The relative location of the label to the start of the routine.

3. The relative location of the instruction preceding the next label.

4, The total number of executed instructions within each labeled
block of the routine.

5. The percentage of total run time spent in each labeled block of the
routine. .

THE MOXT FREQUENTLY EXECUTED INIERVALS-

LABEL, (EXREL) TOTAL 3341 INSTRUCTION EXECUTED.

MACRO INST.

MACRO INST, LOCATION EXECUTION TOTAL INST.
START END LENGTH FREQUENCY EXECUTED
0300 0311 9 100 900
0312 0313 2 100 200
0312 0315 3 747 ooh

LABEL, (EXPOOL) TOTAL 3141 INSTRUCTION EXECUTED.

MACRO INST. ILOCATION MACRO INST, EXECUTION TOTAL INST.
START END TENGTH FREQUENCY EXECUTED
0015 0023 7 100 700
0024 0025 2 100 200
0024 0027 3 ThT 2201

LABEL, (RELEAS) TOTAL 1680 INSTRUCTTON EXECUTED.

MACRO INST. LOCATTON MACRO INST. EXHECUTION TOTAL, INST.
START END LENGTH FREQUENCY EXECUTED
0357 0403 16 60 960
0357 0405 18 4o 720

1 2 3 4 5
Figure 5-3. Analysis of Most Frequently Execubed Labeled Blocks

of the Accessing Routines (E¥POOL/EXREL) as Imble-

mented in EXEC VITIT.

48

PERCENT

26.94
5.99
67.08

PERCENT

22.29
6.37
71.35

PERCENT'

57.14
42.86

1. The relative location of the Tirst word of each macro-instruction

to the start of the routine.

to the start of the routinz.

AT Bl no

instruction.

.. The number of instrucvions in each macro-instruction.
The number of times the macro-instruction was executed.
Total instruction executed in each macro-instruction.
The percentage of labeled block execution time spent in the macro-

The relative location of the last word of each macro-instruction

TAB2 AS IMPLEMENTED IN THE EXEC VIL

+ TABLE OF EXTERNAL AND TWTERNAL BUFFER SIZES
+ EXTERNAL SIZE, INIERNAL SIZE '

TAB:
+ 3,2
+ 6,3
+ 28,5
+ 56,6
+ 224.8
T 127,7
+ 15,4
+ 7,3
+ 31,5
+ 63,6
+ 255,8
+ 511,9

TAB2 REORDERED TO OPTIMIZE TABLE LOOKUP PROCESS

TABLE OF EXTERNAL AND INTERNAT. BUFFER STZES
+ EXTERITAL SIZE, INTERNAL SIZE

TAB2.
+ 511,9
+ 127,7
+ 224,8
+ 255,8
+ 56,6
+ 63,6
+ 6,3
+ 753
+ 15,4
+ 28,5
+ 31,5
+ 3.2

Figure 5-4. Structure of TAB? as used in EXEC VIIT
and Structure of Reordered TABZ2.

50

CODE EXECUTICN FREQUENCY. FOR EACH INTERVAL

LABEL RELATTVE LOCATICON TOTAL, INST. PERCENT OF RUN

START DD EXECUTED TIME
EXPOOL 0015 0030 1485 9.70
EXP2 0031 0037 500 3.27
EXPEXT 00LO 070 1300 8.49
INIK 0071 012 1300 8.49
REQUES 013 0154 976 6.38
NOMORE 0155 0171 1k 9.1
FEQ28 0172 0204 630 412
MCORE 0205 0277 3 .02
EXREL 0309 0316 1685 11.01
ER22 0317 0330 800 5.23
EXREXT 0331 0343 500 3.27

" ER23A 3Lk 0356 0 .00
RELEAS 0357 0363 1680 10.98
FEL1.1 036l 0413 1378 9.00
REL1.2 Ob1i 043y 811 5.30
REL2 0k35 02 900 5.88
FEL3 o413 oll6 0 .00
REL56 o447 0473 0 .00
OTHER 0000 0000 4 .03

1 2 3 4 5

TOTAL 15307 INSTRUCTION EXECUTED DURING THIS ANALYSTS.

Figure 5-5. Ccde Execution Irequency for each Labeled
Block of the Accessing Routines
(EXPOOL/EXREL) as Implemented in ZXEC VIIT.

The block symbolic name, that is the label.

The relative location of the label to the start of the routine.
The relative location of the instruction preceding the next label.
The total nunber of execubed instructions within sach labeled
block of the routine.

The percentage of total run time spent in each lsbeled block of
the routine.

\n Sl N

THE MOST FREQUENTLY EXECUTED INTERVALS

LABEL (EXREL) TOTAL 1685 INSTRUCTION EXECUTED.

51

MACRO INST. IOCATION MACRO INST. EXECUTION TOTAL INST. PERCENT
START END 1ENGTH FREQUENCY EXECUTED
0300 0311 9 100 900 53.41
0312 0313 2 100 200 11.87
0312 0315 3 185 585 34,72
LABEL (RELFAS) TOTAT, 1680 INSTRUCTION EXECUTED.
MACRO INST. ILOCATTON MACRO INST. EXECUTION TOTAL INST. PERCENT
START D IENGTH FREQUENCY EXECUTED
0357 0403 16 60 960 57.14
0357 ohos 18 ho 720 42,86
TABEL (EXPOOL) TOTAL 1485 INSTRUCTION EXECUTED.
MACRO INST. IQCATION MACRO INST. EXECUTION TOTAL TNST. PERCENT
START END LENGTH FREQUENCY EXECUTED
0015 —— 0023 7 100 700 b7.14
002k 0025 2 100 200 13.47
0024 0027 3 195 585 39.39
1 2 3 4 5 6

Figure 5-6. Anzlysis of Most Frequency Executed
Tabeled Blocks of the Accessing
Routines (EXPOQOL/EXREL) as Implemented
in EXEC VIII.

The relative
to the start
The relabive

location of the first word of each macro-instruction
of the routine.)
location of the last word of each macro-instruction ©o

JeaR o)] -ETEM [Ae]

the start of the routine.

The nunber of instructions in each macro—instruction.
The mumber of times the macre~instruction was executed.
Total instruction executed in each macro-instruction.

The percentage of labeled block execution time spent in the macro-

instruction.

CODE EXECUTTON FREQUENCY FOR EACH INTERVAL

TABEL

EXPCOL
EXP2
BEXPEX]
INLK
REQUES

NOMORE -

REQ2B
MCORE
EXREL
ER22
EXREXT
ER234
RETEAS
RELL. 1
RELL.?2
REL2
REL3
REL56
OTHER

3

RELATTVE TOCATION TOTAT. INST.
START) EXECUTED
0000 0004 000
0005 0013 100
0014 0044 1300
0045 0112 900
0113 0124 g76
0125 0141 14
o142 0154 630
0155 0247 3
0250 0254 800
0255 0266 600
0267 0302 300
0303 0311 0
0312 0316 1680
0317 0347 1378
0350 0367 811
0370 0375 900
0376 0401 0
olo2 0426 0
0000 0000 6
2 3 il

52

PERCENI OF
RUN TIME

7.12

10.29
7.12
7.72

11.40
4.99

.02
6.33
4,75
2.37

.00

13.29

10.90
6.42
7.12

.00

.00

.05

TOTAL 12637 INSTRUCTICN EXECUTED DURING THLS ANALYSIS.

Figure 5-7.

Code Execution Freguency for each

Lsbelled Block of the Accessing
Routines (EXPOOL, ZXREL) as Implerented

in EXEC VIII.

The block synbolic name, that is the label.
The velative location of the label to the stert of the routine.
The relative locaiion of the IN.
The total number of executed instructions within each labeled
block of the routine.
The percentage of total run time spent in each labeled block of
the routine.

6. SUMMARY

The measurenent and evaluation of compuber systems has finally
been recognized as a significant field of endeavor for computer pro-
fessionals. This recognition is evidenced by an increasing flow of

iterature. There is a dearth of available tools and techniques

which are capsble of measuring the large man-hardwars-soitware com-
plexes that are presently being developed. This report has attempted
to describe various techniques for the measurement and apalysis of
system behavior, with emphasis being placed on the empirical perfor-
mance analysis technique. The soffiware monitoring of an existing
system's executive system is a difficult and costly process. The
tight design constraints imposed on an executive make it less amenable
to inserting data recording devices than the typical user's program.
-Tﬁé acquisition of performance date by well-designed benchmarks can
provide useful measures of the system performance at a much lower
developmental cost than a software recording capsbility. However, it
is strongly recommended that a software recording utility be an early
design requirement for any new system. Benchmarks cannot be sub-
stituted for comprehensive recording. There are three major concepts
concerning system design constraints and requirements which affect a‘
recording utility. These include interface and internal recordabililty
and recording selectivity. Interface recordability consists of the
ability to record the occurrence éf any event that involves the inter—
face between a user chject program and the computer used. This con-

cept forces the interface activity of a system fo be clearly defined

53

http:system.is

and standardized. Internal recordability is concerned solely with the
inbernal behavior of the object program, that is, the ability to re-
cord program-generated data which is never transferred to another com—
ponent of the user's computer. This concept requires that the program
at any level should be sble to initiate the operation of the recording
function. Recording selectivity states that the user can specify any
subset of the set of recordable data for actual recording. The idesal
goal then is to design a language which will permit procedural-~like
statements which can be used to describe the recording operation. The
language would pefmit logical and conditional as well as declarative
statements. The logical and conditional statements would speclfy con-
ditions under which recording is fo take place, while tﬁe declarative

statements would specify the data to be recorded.

7. BIBLICGRAPHY

The following paper are grouped in accordance with the topics

coverad by this thesis; for a more complete bibliography, see [6]

General

1.

10.

11.

12.

Atbuckle, R. A. Computer Anglysis and Throughput Evaluation. -
Comput.Autom.., Vol. 15, No. 1 (Jaruary 1966) pp. 12-15, 19.

Arden, B. W., Boettner, D. Measurement and Performance of a
Multi~Programming System. Proc. ACM 2nd SYMP on O/S Princi-~
ples, October 1969, 130-146.

Bormner, A. J. Using System Monitor Output to Improve Performance.
IBM System, J. 8, 4 (1969) 290-207.

Buchholz, W. A Selected Bibliography on Computer System Perfor-
mance Evaluation. Compubter Group News (New York) 2, § (Dec.
1968), 21~-22.

Calingzert, P. System Performance Evaluation: Swurvey and
Appraisal., (CR 11661) CACM 10, 1 (Janvary 1967) po. 12-18,

Crooke, S., Mirker s J. Key Word in Context Index and Biblio—
graphy on Computer System Evaluation. TR~69~100, University
of Maryland. December 1969.

Drummond, M. E., Jr. A Perspective-on System Performance Evalua-—
tion. 1IBM System, J. 8, U (1969) 252-263.

Fife, D. W. Alternatives in Evaluation of Computer Systems.
(AD 683693) Mitre Corporation, Bedford, Mass. Report MIR-413,
_Decenber 1968.

Gosden, J. A., Sisson, R. L. Standardized Comparisons of Com-
puter Performance. Information Processing 1962 (PROC. IFIP
Congress 1962), pp. 57-61.

Joslin, E. 0. Cost-Value Techriique for Evaluation of Computer
System Proposals.” (CR 6166) PROC. AFLPS SJCC 1964, Volume 25,
pp. 367-381.

Knight, K. E. Changes in Computer Performance. tamation, Vol.
12, No. 9 (September 1966), pp. 40-5i.

Minker, J., Crooke, S., Yeh, J. Analysis of Data Processing
Systems. TR-69-99, University of Maryland, December 1969.

55 -

13.

14,

15.

16.

13

Opler, A, WMeasurement of Software Characteristics. Datamation,
Vol. 10, No. 7 (July 1964), pp. 27-30.)

Patrick, R. L. Measuring Performance. Datamation, Vol. 10, No. 7
(July 1964}, -pp. 24-27.

Smith, J. M. A Review and Comparison of Certain Methods of Com-
puter Performance Evaluation. (CR 15293) Computer Bull 12, 1
(¥ay 1968), pp. 13~18.

Statland, N. Methods of Evaluabting Computer Systems Performance.
Comput. Autom., Vol. 13, No. 2 (February 1964), pp. 18-23.

ANATYTTC MODEL ANALYSIS TECHNIQUE

i7.

18.

19.

20.

21.

23.

2l

25,

26.

27.

Bryan, G. E., Shemer, J. E. The UIS Time-Sharing System -
Performance Analysis and Instrumentation. Proc. ACM 2nd
Symp on 0/S Principles, October 1969, 147-158.

Coffman, E. G., Jr. Sbtochastic Models of Multipie and Time-Shared
Computer Operations. Ph.D. Dissertation. Report No. 66-38,
Department of Fnglish, U.C.L.A. 1966.

Coffman, L. G., Jr. Markov Chain Analysis of Mulbtiprogrammed
Computer Systems. (AD 692004), Naval Res. log. Qtrly., 16, 2
(June 1969), 175-197.

Coffman, E. G., Jr., Kleinrock, L. TFeedback Gueueing ¥Models for
Time-Shared Systems. (CR 16432) JACM 15, 4 (October 1968),
pp. 549-576.

]jemeis, W. M., Weizer, N. Measurement and Analysis of a Demend
Paging Time~Sharing System. Proec. ACM 24th National Conf.,
August 1969, 201-216.)

Gaver, D. P., Jr. Prcbability Models for Multiprogramming Compuber
Systems. (CR 13459) J. ACM 14 (July 1967), pp. U423-438,

Gurk, H, M., Minker, J. Storage Requirements for Informance Hand-
ling Centers. JACM (January 1970).

MeKimmey, J. M. A Survey of Analytical Time-Sharing Models.
Computing Surveys 1, 2 (June 1969), 105-116.

Minker, J. A Sfochastic Model of an Information Center.
TR-69-90, University of Maryland, 1969.

Patel, N. R. Mathematical Analysis of Conputer Time-Sharing
Systems. MS Thesis - E. E. Department (AD 605 825) M.I.T.
Technical Report 20, MIT. Cambridge, Mass. July 196M4.

Binkerton, T. B. Program Behavior and Control in Virtual Storage
Computer Systems. (Ph.D. Dissertation) Tech. Rot. 4,

57

University of Michigen, Ann Arbor, Mich., 1968.

28. Rasch, P. J. A Queueing Theory Study of Time-~Shared Computer
Systems. N6920120. Ph.D. Thesis, Southern Methedist
University, Dallas, Texas. 1967, 95P.

29. Smith, J. L. £&n Analysis of Time-Sharing Computer Systems Using
Markov Models. (CR 10835) Proc. AFIPS SJCC 1966, pp. 87-95.

30. Wulf, W. A. Performance Monitors .f‘c-)r Multiprograming Systems.
Proc. ACM 2nd Symp on 0/S Principles, Oetober 1969, 175-181.

SIMULATION MODEL ANALYSIS TECHNIQUE

31. Braddock, D. M. , Dowling, ¢. B. Simlation, Evaluation, and
Mnalysis Language: Seal. IBM Program Idb., IBM, Hawthorne,
New York.

32. Camning, R. G., Edit. Data Processing Planning via Simulation.
EDP Analyzer, Vol. 6, No. 4 (April 1968).

33. Chu, Y. An Algol Like Computer Design Language. CACM 8, 10,
(Octcber 1965), pp. 607-615. :

34. Cochen, L. J. Associates. Systém and Software Simzlator: 33,
Technical Manual. AD679-269 —~ ADET9-272.

W
\J1

Compress. A Technical Description of SCERT. Compress, Rockvillie.
Marylang. :

36. Estrin, G., Xieinrock, L. Measures, Models and Measurements for
Time-Shared Computer Utilities. (CR 13642) Proc. ACM 22nd
National Conf., (1967) pp. 85-96.

37. Fine, G. H., MecIssac, P. V. Simulation of a Time-Sharing System.
(CR 11118) Mgt. Science 12, 6 (February 1966), vp. B180-194.

38. Gocdmsn, R. M., Pivonka, L. M. A Simulation Study of the Time-
Sharing Computer System at the Naval Postgraduate School.
(AD 6928L7) Masters Thesis, Nav. Postgrad. School, Monterrey,
California, June 1969, 150P. _

39. Grice, A. HARGOL - A Hardware Oriented Algol Language. Infternal
Report No. VA5, August 1966, A/S Regnecentralen, Coperhagen,
Dermark.)

40, Herman, D..J., Ihrer,-F. C. The Use of a Computer to Evaluate
Computers. (CR6167) Proc. AFIPS SJCC 1964, Vol. 25, pp.383-395.

41. Herman, D. J. SCERT: A Computer Evaluation Tool. Datamation,
Vol. 13, No. 2 (February 1967).

b2,

43.

hh,

b5,

he.
h7.
48.

hg.

50.

51.

52.

54,

25.

56.

5€

Holland, F. C., Merikallio, R. 4. Simulation of a Multiprocess-
ing System Using GPSS. IFER Trans. Syst. Sci. Cyb. Vol. SSC-4
(Noverber 1968), pp. 395-400.

Huesmann, L. R., Goldberg, R. P. Evaluating Computer Systems
Through Simulation. (CR 13526) Conputer J. 10, 2 (Aug 67)
po. 150-156.

Hutchinson, @. X., Maguire, J. N. Computer Systems Design and
Analysis Through Simulation. (CR 9932) Simulation Univac 1107.
Proc. AFTPS EJCC 1965, pp.ibl-167.

Hutchinson, G. K. Some Problems in the Simulation of Mulfi- .
processor Computer Systems. (CR 15578) Proc. IFLP Workd
Conf, Oslo, 1967.

IBM Computer System Simulator/360 Program Description and
Operations Marmual. IBM Form No. Y20-0130.

Threr, F. C. Comuter Performance Projected Through Simulation.
Comput. Autom., Vol. 17, No. 4 (April 1967), pp. 22-27.

Jacchson, R. V. Digital Simulation of Large-Scale Systems.
(CR 10843) Proc. AFIPS 1966 SJCC 159-164.

ILehman, M. M., Rosenfeld, J. L. Performance of a Simulated Multi-
programming System. Proc. AFIPS FJCC 1968, Vol. 33, PT2,
pp. 1431-1442, .

Markowitz, H. M., Hausner, B., Xarr, H. ¥W. SIECRIPT: A Simu-
lation Programming Language. Prentice Hzll, Inc. Englewood
Cliffs, N. J. 63.

Mielsen, N. R. An Approach to the Simulation of a Time-Sharing
System. {CR 14066) Proc. AFIPS FJCC 1967, vp. 419-428.

ﬁielsen, N. R. Similation of Time-Sharing Systems. (CR 12769)
CACM.10 (July 1967) pp. 397 --412,

. Nielsen, N. R. Computer Simulation of Computer System Perfor-

mance. (CR 13525) Proc. ACM 22nd National Conf. (1967)
pp. 581-590.

Rehmarin, S. L., Gangwere, S. G., Jr. A Simulation Study of
Resource Management in a Time-Sharing Environment. Proc. AFIPS
FJCC 1968, Vol. 33, PT2, pp. 1411-1430.

Scherr, A. L. An Analysis of Time-Shared Compubter Systems.
(CR 14068) Ph.D. Dissertation (AD 470 715) M.I.T. Canbridge,
Mass., June 1965.

Scherr, A. L. Analysis of Time-Shared Computer Systems — Simu-
lation of CTSS. (CR 12369) M.I.T. Res. Monograph No. 36, MIT

Press, Cambridge, Mass. 1967.

57. Seaman, P. H., Soucy, ®. C. Simulating Cperating Systems. IBM
Sys. J. 8, 4 (1969) 2564-279.

58. UNIVAC. General Purpose System Simulator II (GPSS II) 'Reference
Manual'. UNIVAC Mzrual UP-4129.

HARDWARE MONITOR ANATYSIS T=CANIQUE

59. Allied Computer Technology, Inc. Computer Performance Monitor
System Swumary Manusl.

60. Apple, C. T. 'The Program Monitor — A Device For Program Perfor-
manece Measurement. >roc. ACM 20th National Conf. (August 1965),
pp. 66-75.

61. Computer and Programmnirz Analysis, Inc. Compuber Performance
Analyzer Series 7700 Description.

62, Comuber Synectics, Inc. System Utilization Monitor Model SM-U416
Specification. Form No. A-416-4, CSI, Santa Clara, California.

63. Computer Synectics, Inc. System Utilization Monditor Evaluation
Technique. Form No: 4-416-1, CSI, Santa Clara, California.

6%. Estrin, G., Hopkins, D., Crocker, S. D. SNUPER Comuter — A
Computer Tn Instrumantabion Automaton. (CR 13296) Proc. AFIES
SJCC 1967, pp. 6U5-636.

65. Roekf, D. J., BEmerson, W. C. A Hardware Instrumentation Approach
to Evaluation of Iarze Scale System. Proc. ACM 24th Natlonal
Conf., August 1969, 351-367.

66. Schulman, F. D. Hardwz—e Measurement Device for IBM System/360
Time-Sharing Evalustion. (CR13298) Proc. ACM 22nd National
Conf., (1967), pp. 103-109.

67. Stevens, D. F. System Evaluation on the Control Data 6600. Proc.
IFIP Congress 68 (Zugust 1968), P.C34-38.

SOFTWARE MONTTOR ANATYSIS TECHNIQUE

68. Bemer, R. W., Ellison, A. L. Software Instrumentation Systems
for Cptimm Performence. FProc. IFIP Congress 68 (August
1968), pp. 39-L2.

69. Boole and Bzbbage, Assoc. Systems Measurement Software (SMS/360)
Users Guide For CUE-1. Boole and Babbage Report 135, February
1969.

70. Boole and Babbage, Assce. Systems Measurement Software {(SMS/360)
Users Guide For PPE. Boole and Babbage Report 41, May 1969.

71.

72,

73.

7h.

75.

76.

17.

78.

9.

8o.

81.

6N

Campbell, D. J., Heffner, W. J. Measurement and Analysis of Large
Operating Systems During System Development. (CR 16874) Proc.
AFIPS FJCC 1968, Vol. 33, pp. 903-914.

Cantrell, H. N., Ellison, A. L. Multiprogramming System Perfor-
mance Measurement and Analysis. Proc. AFIPS SJCC 1968, Vol. 30,
Pp. 213-221.

Deniston, W. R. SIFE -~ A TSS/360 Softwars Measurement Technique.
Proc. ACM 28th National Conf., August 1969, pp. 229-245,

Hormbuckle, G. D. A Multiprogramming Monitor for Small Machines.
(CR 16431) Comm. ACM 10,5 (May 1967}, pp. 273-278.

Karush, A. D. Two Approaches for Measuring the Performance of
Time-Sharing Systems. Proc. ACM 2nd Symp. on 0/S Principles,
Octobher 1968, pp. 159-166.

Karush, A. D. The Computer System Recording Utility: Application
and Theory. SP-3033, SDC, Santa Monica, California, February
19694 N

Pinkerton, T. B. Performance Monitoring in a Time-Sharing Systam.
CACM 12, 11 (November 1969)_608-610.

Sackman, H. Computers, System Science, and Evolving Society.
John Wiley and Sons, Inc., New York, 1967.

Saltzer, J. H., Gintell, J. W. fThe Instrumentation of MULTICS.
PI‘EC. ACM 2nd Symp. on O/S Principles, October 1969, pp. 167-
174,

Stanley, W. I., Hertel, H. F, Statistics Gaithering and Simulation
for the APOLLO Real-Time Operating System. IBM System J. -
No. 2 68, pp. 85-102.

Van Horn, E. C. Three Criteria for Designing Computer Systems to
¥acilitate Debugging. CACM, Vol. 11, No. 5, (May 1968} pp.
360-365.

BENCHMARK ANALYSIS TECHNIQUE

82.

83.

g4,

Arbuckle, R. A. Computer Analysis and Throughput Evaluation.
Comput Autom., (January 1966),.pp. 12-15.

Budd, A. E. A Method for the Evaluation of Software: FExecutive
Operating or Monitor Systems. Mitre Corporation, Bedford,
Mass. MIR-197.

Joslin, E. 0. Afoplication Benchmark: The Key to Meaningful Conr
puter Evaluations. Proc. ACM 20th National Conf. (1965), pp.
27-37.

http:1966),.pp

85.

86.

87.

88.

89.

90.

91.

61"

Joslin, E. 0., Aiken, J. J. The Validity of Basing Camputer
Selections on Benchmark Results. Comput Autom., (Janwary
1966), pp. 22-23.

Karush, A. D. Benchmark Analysis of Time-Sharing Systems.
(AD 689781) Report SP-3347, SDC, Santa Monica, California
June 1969, 40P.

Karush, A. D. Benchmark lMeasurement of the Adept-50 Time-=
Sharing System. Report T™M-U324, SDC, Santa Monica, California,
(June 1969), LiPp.

Hillegass, J. R. Standardized Benchmark Problems Megsure Compuber
Performance. Conput Autom., (Jarwary 1966), pp. 16-19.

Oppenheimer, G., Weizer, N. Resource Management for Medium Scale
Time-Sharing Operating Systems. CACM 11,5 (May 1968), pp. 313~
322.

Rubey, R. J. A Comparative Evaluation of PI/1. Datamation,
Vol. 14, No. 12 (December 1968), pp. 22-25.

Totar, J. B. Real-Time Processing Power: A Standardized Evalua-
tion. Comput Autom. (Apr, 67), pp. 16-19.

UNIVERSITY OF MARYLAND
THE GRADUATE SCHOOL
COLLEGE PARK, MARYLAND 20742

' TO: The duate School

FROM: "’/
Advisor ~

/

SUBJECT: Ceriification of Completion of -Master’s Degree Without Thesis.
Pléase check appropriate Master’s degree.

(] Master of Arts (Without Thesis)
Master of Business Administration
Master of Tducation

Master of Library Science

Master of Musie

Master of Science {Without Thesis)
Master of Social Work

o W N T s T s Bt

I cerufy that .4 candidate for a Master

M4</ Name 61/Candidate
/4“” ... degree, who seeks the degree at the commencement

4 Degree
P £L.272 has met all the requiremenis of the department

or progfam for the degree including:

N

................ Comprehensive Txaminations
(written or oral)

‘ame of Professor (Adw\or)

4W ﬂ/‘i, C i Pyions
T1tlc

WZ}/ 9 1970

ate

(Torra G.S. f-Jan, 1969}

