
Iv~ ~-i ~ ~-</-o ' k

4 NIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

N70-33834
(ACSI UMBER (THRU)~/

I§__
(NASACR OR TMX OR AD NUMBER) (CATEGORY) NT

TINFORMATIONSERVICE 1

A Report on Comvputer Performance

Evalu"a-ion Techniques

by
james Yeh

ACEN0 ,WxLEDRNT

to thank his advisor, Dr. Jack inker, for his
The author wishes

gentle criticism, encouragement, and continuing guidance .in the

of this paper, and for his patience in
development and execution

correcting the English.

mra. Sarahto make further acknowledgement to
The author wnishes

and significant sugges-
Crooke for her manxy enlightening discussions

tions.

also grateful for the financial assistance provid-
Te author is

ed during the period of this research by the National Aeronautics 'and

-

Space Administration under Grant NGB21-002-197.

ABSTRACT

This thesis is a report on performance evaluation techniques of

computer based data processing systems. n overview of the analysis

a review of some evaluation techniques are describedtechniaues and

first, followed by descriptions of three analysis techniques develop­

areed in this study. Experimental results using these techniques

given. Finally, a summary and a bibliography are provided.

TABLE OF CONTSEIS

ACKNOOEDGEENT
ABSTRACT

....... 1
1. 	 flNTRODUCTION

4
SYSTEY PERFOP"VNCE ANALYSIS
2. OVERVIEW OF COMPU

2.1. 	 Theoretical Analysis Techniques 4

2.1.1. 	 Analytical Modeling Technique

4

Simulation Model Analysis Technique 4
2.1.2.

Enpirical Perfonnance Analysis Technique 5

2.2.

6

2.2.1. 	Analytic Measurement Technique

Hardware Monitor Technique 7
2.2.1.1.

Software Monitor Technique 7
2.2.1.2.

2.2.2. 	 Benchmark Measurement Technique 10

............ 	 15

3. 	 REVIEW OF SOME PERFOfi4NCE ETVALUATION TEOHNIQUES

..... 15

3.1. 	 Simulation Model Analysis Technique

16

3.2. Hardware Measurement Techniques 	-

.............

3.2.1. 	 IBM 7094 Hardware Measurement Technique 17

IBM System/3 6 0 Hardware Measurement Technique 18
3.2.2.

hippewa Hardware Measurement3.2.3. 	 CDC 660oo
19
Technique

1108 Hardware 	 Measurement Technique 19
3.2.4. 	 Univac

Some Co.mercial Hardware Monitors.............. 19

3.2.5.

21

3.3. 	 Software Measuredient Techniques

3.3.1.

22

GE GECOS iI,ili Software Measurement Technique. 21

IBM TSS/360 Software Measurement Technique
....

3.3.2.

IBM 0S/360 Software Measurement Technique 23
3.3.3.

i

4. SYSTEM FUNCTION INALYSIS USING SOETWPFE MONITOR
30TEC RIQUE

30
Instruction Trace

32

4.1.

.............................
4.2. 	Functional Value Analysis

34
.......................
4.3. 	System Performance Data Extract

Other Techniques Under Cohsideration 35
4.4.

5. 	 EKPIRICAL STUDY OF T EVALUATION TECfHNIQUE OF EXPOOL 38

38
The Central Role of E200L
5.1.

38
5.1.1. The Buffer 	Pool

5.1.2. 	 Request for a Buffer from EPOOL 39

a Buffer from EXPOOL 4o
5.1.3. 	 Release of

.......... 41
5.2. 	 Preliminary Results of an Anailysis of EXPO0L

52
6., SUIMARY ...

54

7. BIBLIOGRAPHY ..

1. nqRODUCTION

The need for computer performance evaluation arises at the time

that a conputer is used for business and scientific data processing.

As computer systems increase in size and complexity, it becomes not

imortant but more difficult to measure performance., Theonly more

original problem for implementing a computer system is: 'What

configuration of hardware/software/personnel is required to perform

and to generate useful outputsthe anticipated data processing tasks

a required response time?'. Today a vast range of differentwithin

hardware/software are available, with a large variety of internal

and with a wide and complexcapacities, capabilities, and features,

range of peripheral functions. Most contemporary computers have the

capability for a concurrent processing between peripherals and in­

dividual prograns. The object then, is to determine which configura­

tion is 'optimal' for a particular application. That is, the total

nowcapability of a computer must be measured in terms of both time

order to make the evaluation meaningful,and space requirements. In

standard measures of system capabilities and techniques for analyzing

to these measures must be employed.systems and assigning weights

are: (1) to provide precise measurementsThe major evaluation goals

and response or
of iplementation costs, processing requirements,

turn-around times for feasibility analysis; (2) to provide the

ability to accurately specify performance requirements for adequate

and optimum computer system selection; (3) to provide a predictive

tool to allow the programer to optimize the capability and capacity

(4) to provide the 	ADP Mabnagement with the
utilization of the 	prograv's;

the change and/or peak workload.ability to measure

systems very difficultDue to their complexity, computer are to

run each user jobmeasure. In mar cases, computer systems may

correctly, but may still be grossly inefficient in using the computing

power of the system. Sometimes these 'performance bugs' are more fre­

no
quent and more serious than logic bugs. The performance bugs have

obvious symptops, except that they decrease the efficiency
of the sys­

time by 20% may not 	be
tem. A flow which degrades the average response

factor of two before the
recognized immediately. It freouently takes a

Detailed measurements from a quanti­
user realizes something is wrong.

tative study on the behavior of that system are perhaps the only way to

to examine the inefficiencies that may exist in

locate those bugs and

Also, a good quantitativethe structure and utilization of the system.

of an existing system or program is

understanding of the performance

necessary for designing a new and better system or program..

are applicable as a 	 functionThe available evaluation techniques

that no single technique can serve
of the level of analysis required, so

total computer system.measurement of a as a satisfactory performance

some of the presently
An examination of the assumptions that underlie

someIt is also important to review
available techniques is essential.

with their results. The emphasis in this
of the evaluation techniques

a
paper is on the software monitor technique. This technique provides

for obtaring data from '!iside' the operating system as it is
scheme

exact

running. These internal performance data not only reveal the

which occurred duting execution, but
sequences and patterns of events

The performance data
also assist in locating implementation problems.

3

can also be used as feedback to a system designer and/Or provide real­

istic calibration data input to simulation models.

2. 	 OVERVIhW OF COWJUTER SYSTE14S PERORMANCE ANALYSIS TECHNIQUE

In the classical scientific method, a complete analysis involves

a combination- of a theoretical approach and an empirical measurement.

The theoretical analysis may be handled with a mathematical. or simu­

lation mode. The empirical experiment is designed to gather statis­

tical data for testing the theory. Neither' the theory nor the measure­

ment alone is sufficient.

2.1. Theoretical Analysis Techniques

2.1.1. Analytical Modeling Technique. Analytical modeling tech­

niques describe the general characteristics of a computer system (or

subsystem) in terms of mathematics. A set of variables are defined to

represent the inputs, outputs, and internal states of the system. A

set of equations describing the relations between these variables are

formulated. By varying the given inputs, one can predict the behavior

of the computer system under different situations. Analytic models

provide a means of thorougily understanding specific critical aspects

of a computer system. These results are generally applicable to sys­

tem design and algorithm formulation. A limitation of analytic model­

ing is that the scope of the modeling is restricted to a sutsystem of

the total system. In general, attempts to describe a total system

mathematically result in a complex unsolvable model or the design of a

cnolete model with significant detail is not possible.

2.1.2. Simulation Model Analysis Tebni'que. A simulation model

may be used to represent some particular function of .a computer

4

5

system or subsystem. If constructed with sufficient accuracy the model

can reflect the effects of various changes as if made in the original

system. Thus, it enables the original system to be studied and analyz­

ed by studying and analyzing the behavior of the simulation model.

Today, there is perhaps no single technique more valuable than stiu­

lation for use in evaluating systems. Several simulation languages have

been developed to facilitate the expression of the components and logic

of complex systems to be simulated. Two general purpose system simu­

lation languages are GPSS (General Purpose System Simulator) [581,

and SIMSCRIP [50]. Languages developed especially for computer

system simulation are CSS (Conputer System Simulator) [46], and SSS

(System and Software Simulator) [341. Special purpose computer hard­

ware simulation languages include CDL (Computer Design _language) [33],

and HARGO (Hardware Oriented ALGOL language) [39]. Much simulation work

has also been done using general programming languages such as FOPRAIN,

ALGOL and PL/l. Perhaps the most critical factors in simulation are

the unavoidable asstmptions made concerning the behavior of variables

within the real system. The results produced by simulation are no

better than the asstmptions underlying the construction, of the model.

Several simulation models and the results of computer systems have

been reported. Two of the most interesting simulation models available

are CASE and SCET [32, 35, 40, 41, 47]. These models are reviewed in

Section 3.1.

2.2. Empirical Performance Analysis Technique

Epirical measurement is used in an operating computer system to

determine hardware, software, and user characteristics. It provides

6

information about what goes on inside the system as well as the system

throughput, capacity, and the characteristics of system load. There

are two major empirical measurement techniques: Analytical Measurement

and Benchmark Measurement. A comparison of these two techniques is

shown in Figure 2-41.

2.2.1. Analytic Measurement Technique. The analytic approach to

computer system measurement involves the insertion of hardware and/or

software probes into the system to allow measurement and recording of

the system's most subtle behavior. The application of analytic measure­

ment can be divided into four general categories: Program Analysis,

Supervisor Analysis, System Analysis, and System Research. Program

Analysis may involve debugging and understanding inter-program relation­

ships such as those found in the pr6cess of debugging a large data base

system, program tracing to pinpoint performance bugs, uncovering

Super­communication problems, and performing introspective analysis.

visor Analysis falls into two classes: Assessment and Evaluation. In

the first, the problem is to find and to measure the variables affecting

the executive's environment. The second class involves evaluating the

System analysis is concerned with the suitabilityexecutive response.

of the system for fulfilling its intended purpose. Essentially, it

provides an answer to the question: To what degree, and in what

complex affected its environment?.manner, has the man/hardware/software

System Research involves experimenting with a computer system by

observing and measuring the effects on the system as a result of con­

trolled changes deliberately induced. A comparison of the hardware

monitor, the software monitor, and the instruction trace methods are

shown in Figure 2-2.

2.2. 1.1. Hardware Donitor Technicue. Hardware instrumentation

involves attaching electronic probes to conmonents of the computer

which are to be monitored. The probes are capable of generating a

signal upon detection of any voltage change presumably caused by some

known computer activity. The probes are attached to a hardware device

that .can logically cobine the signals and record their frequency,

value, and durations. Several papers have reported on the use of hard­

monitors [60, 64, 65, 66]. Some. of these techniques along withware

other conmercial products are discussed in Section 3.2. In most cases,

hardware monitoring is used to determi-ne system operating characteristics

such as I/0 waiting time, overlap of activities, resource utilization,

and idle time. The advantage of hardware monitoring is that it imposes

no interference upon the object system. The disadvantage is that it

needs a special hardware device, and only a limited subset of the total

system data and relationships are accessible to the probes.

2.2.1.2. Software Monitor Technioue. Software monitoring in­

volves modifying the system software so that the system's operation may

be interrupted at any point to permit access to pertinent data and

intra-system relationships. The disadvantage of software monitoring is

that it results in some system degradation as a function of the frequency

of data collection and recording. To compromise between resolution and

system degradation some design principles and implementation techniques

have been given in [71, 73]. Some of the results obtained using soft­

ware monitoring are reported in [12, 71, 72, 73, 75, 77].

The software measurement techniue -can be subdivided into the

folloTiTng areas of study: Instrumentation, Mbasurement, Recording and

Reduction.

8

1. 	 Instrundentation

The software instrumentation is a scheme to access the inter­

nal data as well as intra-system relationships. There are two

major techniques suitable for different purposes; the stand­

alone package is applied on the sampling measurement, and the

integrated system is used for continuous analysis.

2. 	 Measurement

A. 	Sapling Measurement

This technique can provide a frequency distribution which

describes the activity of a program. It is very useful

in selecting areas of a large program for analysis and

improvement. According to Cantrell and Ellison [72], 'If

an 	executing program is frequently interrupted according to

some 	random or periodic time schedule wich is knowxn to be

statistically independent of any natural execution pattern

in 	 the program, then the frequency with which the interrupt

location falls within a particular instruction sequence is

proportional to the total time spent by the program in

executing that instruction sequence.' The formula to com­

pute the proper sampling rate is described in'detail in

[70] and the clock interrupt feature of the computer is

used to control the sampling rate.

B. 	Trace Measurement

When the analyst is concerned with the identification and

the order of the events in a system function, trace

measurement is used. It results in a time-oriented list­

ing of the occurrence of the selected events. This

9

tec7nique is particularly suited for the debugging and

the analysis of intra-system behavior.

C. 	 Accounting Measurement

The standard accounting data provides resource usage in­

formation such as CPU ti e, channel time, peripheral

device time-, memory usage, amount of terminal tine, and

volume of file storage. The data available from standard

accounting files are frequently sufficient to determine

the resource utilization.

D. 	 Playback Measurement

This technique which provides the ability to recreate a

system or subsystem's operation for interactive study and

experimentation was successfully used in the sage system

and has been well described by Sacknpan [78]. It is also

in MIULTICS, which was described by Saltzer in [79].

3. 	 Recording

The recording corponent of the software monitor causes

significant problems due to the large volume of data which

must be transferred from ai memory to secondary storage.

Data comression, pre-aalysis, data selection, and inter­

leaving techniques are used for reducing the data volu7ne and/

or the time required for recording.

Reduction

Once 	 the data selected for measurement have been recorded,

reductiun iit-uteary to make them legible and meaningful to

a human analyst. The reduction operations may be required so

that -the data are time-sequenced or event sequenced, converted

10

to meaningfil units, and presented as sunrary counts-, graphs

or histo&rms.

2.2.2. Benchmark Measurement Technique. A benchmark is a routine

which is run on a number of different computer configurations to obtain

conparative. throughput nerfo-mence figures regarding the abilities of

the various configurations to handle specific applications (Joslin,

1966). The benchmark methodology involves the specification and execu­

tion of instraction mixes, and kernels or tasks to provide the compara­

tive measurement. An instruction mix is the weighting of each instruc­

tion execution time by a coefficient which represents the frequency of

occurrence of the associated instruction. A kernel is a block of code

which constitutes a basic function. A task is the type of work re­

quested by the user. There are many measures of software capability

that may be emphasized to varying degrees according to a specific

user's need. These measures are basically concerned with time and

utility to the user. They include programming time, checkout time,

comilation time, execution time, 1/0 utilization, product economy,

secondary storage utilization, hardware growth flexibility, I/0 and CPU

synchronization, facility maintenance cost, operator intervention,

machine independence, documentation, and programmer training.

The stimulus measurement technique used in evaluating time­

sharing systems is an outgrowth of the benchmark analysis technique.

It involves applying a controlled set of stimuli to the black box so

as to activate its functions -andthen observe its perfornnance. The

purpose of the measurement is to provide a measure of the throughput

and the response tire by measuring the effect of-certain key functions

upon the overall system's behavior. These functional variables must be

stimulated in a controlled and measureable manner by the benchmark

programs. Each of the programs provides one or more stimuli in con­

trolled quantities and determines the effect of the stimuli upon the

system in terms of its own performance. A total system (man/hardware/

software) may lbe viewed as a 'black box'. containing certain known Dnc­

tions which can be activated by external stimuli. The stimuli consist

of computation, terminal interaction, paging, !/0, swapping and resource

allocation activities. The effects are measured in terms of the through­

put and the response time. The throughput is a measure of the volume

-of work performed by the system. The response time is the speed with

which the system responds to an interactive user. By controlling the

stimuli and observing their effects, inferences can be made about the

behavior of both the system's functional components and the users

characteristics.

The stimulus measurement technique may be used in three different

environments in which the system's behavior is to be evaluated: A

stand-alone environment, a benchmark environment, and a real world

envirornent. A stand-alone environment is used to determine the best

throughput and response time which a given configuration of hardware/

software could ever deliver. This measure of maximum performance is

used to evaluate the cost/effectiveness of a proposed modification to

the system and to determine the performance dgradation introduced by a

time-sharing system. A benchmark environment represents a typical user

population which makes a typical set of demands upon the system.

Modifications to system .Tunctions such as job scheduling, swapping and

demand paging logic, which may affect more than one class of user, may

be evaluated quickly both for effectiveness and for correctness of

12

operation using benchmarks. A real-world environment is used to

measure the service behavior given to one pseudo-user of known

characteristics under real-world conditions. This technique involves

running a benchmark proq&am as the pseudo-user when the system has an

almost full comolement of real users. T1he major problem of the stimuli

measurement technique lies in establishing equivalent environments

within computer systems which are to be evaluated. Further, it does

not provide sufficient data for a clear insight into the system's

operation.

13

Factor Analytic Measurement Stimulus Measurement

Hifgh. Requires personnel Low. Personnel with
Development with sophisticated and little experience can
cost detailed knowledge of produce the benchmark

executive routines. programs. Testing can
Testing requires stand- be done under time
alone computer time. time-sharing. Errors
Errors may affect all affect no one else on the

users. 'system.

Operating Indrease in system over- Require some stand-alone

cost head. 	 time. Usurps a terminal

and increases system load

under time-sharing.

Detailed Data on the All behavior is measured
Measurement system behavior and in terms of response time

capability - interactions. Measure- and throughput.
- mnnt include sampling,
accountirg, tracing and
playback.

*Usually require extensive Result are online, simle
Knowledge offline analysis. Con- and immediate. Extended
of results siderable statistical and analysis is usually not

-analytic skill is requir- required.
ed.

Figure 2-1. Comparison of the Analytic and Stimulus

'asurement Techniques.

Techniques Hardware Performance instruction
Attribut Monitor Data Recording TRACE

Degradation on None Low 	 Very high
measured system

Level of detail LoaV Medium Very high
recorded

Special hardware Yes No No
required

Cost 	 High Medium Low

Flexibility 	 Very low Medium High

Purpose 	 Overall system Overall system Implementation
analysis analysis analysis

Figure 2-2. Comparison of Measurement Techniques.

3. EVlTEW OF SOE PERFOBIdANCE EVALUATION TECaNIQFS

3.1. Simulation Model Analysis Technique

SCEC '(System and Computers Evaluation and Review Technique) and

CASE (Comuter-_-ided System Evaluation) are simulation program pack­

ages. Both have been designed to'accept the definition of a computer

system's parameters and to build an application 'workload model' and

a 'configuration model'. Both simulation packages maintain a library

of hardware/software performance factors for a wide range of digital

computers. The simulation can extract the appropriate hardware/

software factors for all the components in any one configuration. With

this information, configuration models are built which satisfy the

performaunce requirements. Then during the simulation phase, it simu­

lates the response of each of the 'workload models' against the 'con­

figuration models' of each of the selected hardware/software complexes.

The results of this simulation are projected in terms of cost, time,

memory and manpower requirements. Since the functional structure of

SCER' and CABE are very much alike, A block diagram is shown in

Figure 3-1. Only SCERT was chosen and is described in detail in this

report.

SCERI consists of four major components: Definition Language,

a Factor Library, Simulation Programs, and Output Reports. The De­

finition Language is used to define the application system and the

Hardware/Software comlex to be simulated. The Factor Library con­

tains the characteristics of the hardware/software items such as cost,

performance, and technical specifications. The simulation pirograms

15

16

perform the necessary processing to accept the input definition data

and-create the output reports. Output reports consist of several

different types of reports. These may be broken down into four major

categories: Sunmary Reports, Computer Complement Report, Real-Time

and Multi-Prograwring Analysis, and Detailed Report.

From the acceptance of the input data to the preparation of the

output report, a SCFFT simulation involves five phases. Input to

Phase 1 consists of a series of definitions outlining the workloads and

computer processing recuirements of the system to be simulated. The

Output of Phase 1 is the model of the application system. Input to

Phase 2 is a series of definitions which outline the hardware com­

ponents, the software packages, and an environmental definition in

which the hardware/software configuration is to be operated. The out­

put of Phase 2 is a model of the hardware/software confioration com­

plex. In Phase 3, the models created in Phase 1 and 2 are combined with

each system/hardware/software cobination, and the raw timing figures

are computed. Phase 4 calculates the run time for each configuration

combination by considering simultaneous operations allowed by the hard­

ware, as well as any other constraints imposed upon such simultaneous

operations. Results of the previous four phases are then accumulated,

and in Phase 5 the output reports are created.

3.2. Hardware.easurement Techniques

Within the normal standard hardware features of a digital com­

puter, such function as address stop switches, trap transfer modes, and

normal error-faulting procedures are sometimes used for measurement

purposes. In addition, some special hardware devices have also been

17

developed and added to systems so as to perform hardware monitorirg of

a computer's performance. Devices can be attached to a central pro­

cessor so as to passively examine each instruction as it is executed.

Hardware monitor devices have built-in counters and self-contained

output devices to record the occurrence of any given data pattern.

3.2.1. IBM 7094 Hardware Measurement Technique. This device is

designed to record information from, the 'CPU'- while; the ICFU' is pro-.

cessing data. The recorded data is then used to analyze the basic

nature of the program and to measure the performance of the hardware.

The hardware measurement device consists of a control unit, a control

panel, and an IBM 279 VI tape drive. There are three internal sections

of the control unit: (1) an input unit, which contains 40 lines from

the monitored 'CPU', six 24-bit dat& buffers, and one comparison unit.

Of the 40 lines, there are 24 data lines which are used to transfer 20

bits of the contents of the instruction counter, and 4 bits specifying

the channel in-use to one of the data buffers; 15 selector lines which

transfer the 15-bit op-code to the comparison unit; and 1 stroke line

which contains the status of the inut lines. The comparison unit

compares the 15 selector input lines with each of five sets of switches

manually set by the operator from the control panel. Data are record­

ed if there is a match between the 15 selector lines and one of the

five sets of switches; (2)an encoding unit and assenbly register,

which encodes the 24-bits of data to a variable length string, packs

the string into 6-bit groups, and transfers the string to the output

buffer one group at a time; (3) an output unit, which contains eight

6--bit output buffers and one tape controller. A block diagram of the

operation of the device is shown in Figure 3-2.

18

3.2.2. 	 IBM System/360 H1ardware Measurement Technicue. TS/SPAR

is hardware­(Time-Sharing §ystem Performance Activity llecorder) a

measuring device used to collect performance data for measuring the

dynamic operations of an information handling system. It can be used

of internal software and harfwareto measure the external effects

the internal operational characteristics ofoperations, and to measure

the frequencysoftware or hardware units. It can also be used to count

of an event, to clock its duration, and to record the gross time. A

block diagram of TS/SPAR is shown in Figure 3-3. Electronic counters

storage for up to 48 measurablewithin the device provide accumulative

Mechanical counters are activat­parameters of 3 decimal 	digit length..

from the electronic counters. Comparators are
ed when overflow occurs

the interface and to compare
used to dynamically monitor data paths in

These switches
them with fixed values indicated by switch settings.

unique address, an operation code,are used to indicate to 	the monitor a

contiguous memory locations. The sequencer can be used to de-

An event may be a reference to a real

or some

tect any three-event sequence.

or virtual memory address, an instruction counter, an on-code, a con­

trol signal, etc. The time interval between the occurrence of events

The plug­is not considered, only the event sequence is of interest.

board receives the interface signals and transfers the data and control

The logical circuitry
to the various functional areas in the recorder.

is accessible from the plugoard to logically 	combine interface signals

events or to generate control signals. Inout to so as to form complex

TS/SPAR is through a specially engineered interface which can handle

These iT.terface signals reflect
256 predetermined signals and strokes.

certain key states (internal or external) of the system to the recorder.

19

3.2.3. CDC 6600 Chippewa Hardware Measurement Technique. The

Lawrence Radiation Laboratory uses a PPU (Peripheral Processor Unit) as

a programable hardware monitor to record and to analyze the activity

in the CDC 6600 central processor and other peripheral processors. TWo

monitoring routines, Mr. See and Mr. Eye, are used. Mr. Eye gathers

informations on 'CPU' activity, central memory utilizations,, charnel

activity, PPU activity and control disoositions. P. Seeifurnishes

data on the disk utilization and the job profiles.

3.2.4. Univac lio8 Hardware Measurement Technique. A Univac 1108

is used to measure the performance of another 1108 system. The hard­

ware measurement system uses a special hardware device interface as a

recording processor to gather live data. (See Figure 3-4), it contains

a hardware monitor, data collection software, and data reduction soft­

ware. The monitor creates and records data each time a jump instruction

areas.is transferred to a drum via two large core storage buffers

When the drum is filled, the data are transferred to tape. A special

data reduction software package reduces the data into either graphic or

statistical form to provide a perspective of the performance analysis

of the monitored equipment.

3.2.5. Some Conmercial Hardware Monitors. CPM 11 (Computer

Performnce Monitor) [59], CPA 7700 (Computer Performance Analyzer)

[61], and SUM (System Utilization Monitor) [62, 63] are some of the

conynercial hardware monitors. In general, the hardware monitor consists

of three logcal elements: probe lines to convey statistical data

sensed in the computer being monitored, accumulators to temporarily

store counts or timing signals, and a computer compatible tape transport

to record system performance data for later analysis. Most of the

20

conuercial products also provide a data reduction and analysis program

tabular and graphicalihich reduces the accunulated data and prepares

reports representing system performance. The functional structures of

are very Much alike.. CPMthe available commercial hardware 	monitors

of these monitors and is described inhas been chosen as representative

detail here.

CPM consists of an operator console, a logical unit, .accntrp9l,

On the operator console, there is one ten­panel,-and a tape drive.

position decimal visual register whrich is used to display any one of

and ten function select switchesthe sixteen counters or the clock,

-The logical unit consiststhat control the main function of the COM.

the time of day in 100 US, 20of a real-time clock which records

the various functions tbroug-iout the
measurement prdoes to sense

each with 10 decimal place registersmonitored system, and 16 counters,

to measure the activity of the monitored functions. The measurement

probes are atached to individual circuit pins in 	 the computer system

The counter may bewhich are active when a particular event occurs.

used either to measure the length 	of time a function is active (Tlime

or to count the nizrber of times an event occurred 	(Event
Duration Mde)

Count Mode). The real-time clock is incremented every 100 US and over­

flws to zero at 24 hours. The clock is used to provide a measure of

as well as to allow direct correlation of thetotal elapsed time,

The control panel pro­
measure of total real-time, and console logs.

assigm-nts, thevides the operator w,,ith control of the -probe counter

counter operating mode, and the combinatorial logic functions. It

16
and/or elements, 2 hexadecimal recorders, fanouts, 8
consists of 26

(2 true exit and 1 false exit
latches, 16 inverters, 60 probe exit hubs

21

for each probe), 32 counter entry hubs (1 count entry and 1 time entry

for each counter), 20 clock exits (each exit has the following differ­

ent durations: i US, Io us, Ioo us, i 1S, 10 .S, 100 MS, 1 SEC, 10 SEC,

1 DN, 10 NN), and 10 function hubs. A 1200 foot reel mIuted on a

tape drive provides synchronous recording on 9 tracks 800 BPI, with a

mininni recording internal of 100 YS. Each record written on tape is

175 characters in length. Lncladed in each record are the contents of'

the clock, the 16 counters, and the settirs of the five data switches.

3.3. Software Measurement Techniques

There have been several developments in the field of applying

software techniques to monitor systems. Some of these developments are

described below.

3.3.1. GE GECOS !I Soifkare Measurement Technicue. The over­

all performance of a computer system depends on the efficiency of both

the hardware/software envirorniment and the programs which operate in that

environment. The software monitoring device used in 'GECOS III is de­

signed to permit analysis of the system performance and also of individual

programs. The system analysis includes user program accounting analysis,

overhead analysis, and trace analysis. To provide for individual program

analysis, that is Tnctional value analysis, high density sampling is

used. By frequently interrupting the system at random or periodic times,

the fraction of the total time spent in a particular instruction

sequence is found to be proportional to the number of samples taken while

in that sequence. The results of the periodic sampling are used as the

basis of I/0 and orogram execution time prbf!les. Several software

measurement techniques were applied during the development of TGECOS

22

IIt. Software measuarement of Processes internal to the system were

developed. Event counters were included in all functions of the system

so that they could be analyzed and studied separately. Internal system

auditing was provided to check on new entries in each of the system

queues, to checksum critical tables each time they are referenced, and

to checksum all system files as ,they are loaded into core for execution.

Event tracing is used to detect the occurrence of important- events.

Decisions made within the system,are monitored and made available for

subsequent analysis by recording, in a circular list, each intermodule

transfer. The total data collected on function usage, queue formation,

table and file manipulation, and event occurrences is sufficient to

sunmarize system operation and performance. The total analysis uses

as input, standard system accountinj data, the recorded trace entries,

and other parameters made available from the system.

3.3.2. BM TSS/360 Software Measurement Technique. SIPE (System

Internal Performance Evaluation) is an on-line software recording

technique used to collect the data necessary to measure and ro evaluate

the performance of the IBM System/360 Time-Sharing System (TSS/360).

SIPE is a selective, event-driven recording mechanism that operates

within TSS/360. The activating mechanism of SIPE is called a 'hook'.

(See Figure 3-5). Hooks have been implemented at var-±ut pulilb

throughout the resident supervisor code. Each hook includes an

identifier code. Based on this code, SIE collects the applicable data.

The degradation of the operating system with the SIPE monitor is pro­

portional to the number of times SIPE hooks are activated. It is also

affected to some degree by the volume of the output data. To compromise

between resolution and degradation, a selective option function (Delta­

23

Data-Set) has been implemented. The Delta-Data-Set is. input to SIPE

as a parameter at the start of a run. The given Delta-Data-Set in­

structs SIPE to 'turn-off' any hook or group of hooks for that run. In

order to derive meaningful information from the data collected by SIPE,

a library of data reduction programs has been developed. These,programs

convert the SIPE data to a sinole or elaborate form for use in perfor­

mance evaluation, system analysis and debuiinz as, requested by the

analyst. A functional diagan of the interface between TSS/360 and

SIPE is shown in Figure 3-6.

3.3.3. IBM 0S/360 Softaare Measurement Technique. SP/360

(Systems reasurement Software) is a software package developed by Boole

and Babbage, Inc. Two componenets of the SWS/360 described below are

the PPE-2 and the CUE-i comonents.-

The PP -2 (Problem Proparam Efficiency) component is concerned with

the efficiency of the user's problem program. The output of the PPE

provides the distribution of CPU and I/0 time spent by the user's pro­

gram. The PPE consists of two elemnts: The Extractor Program and the

Analyzer Program. The Extractor Program randomly samples the problem

program during its execution and collects statistics for later analysis.

Each time the extractor records a sample, one of two events has taken

or aplace, either the instruction address falls within sample bounds,

SVC (Supervisor Call) has been invoked from within the sample bounds.

The analyzer uses the collected data to generate reports which indicate

where and how the program spends its time and how the program is balanc­

ed between being computer bound ard being input/output bound. The re­

oneports generated include a nunber of tabular displays and graphic

display called the Histograrm.

24

The CUE-1 (Configuration Utilization Efficiency) component is used

to aid in maximizing system throughput by determining the configuration

utilization and by showing specific hardware/software relationships

which contribute to configuration utilization. CUE is also divided in­

to two progra s the Extractor and the Analyzer. The Extractor collects

data on hardware usage, disk head movement, data cells, and transient

a configuration­supervisor call routine usage. The Pxalyzer generates

report, an equipment usage sub-report, a head movement sub-report, and

a SVC sub-report. The quantitative info=ration given in these reports

can assist in locating bottlenecks in a configuration which might

otherwise be overlooked.

-.
NEXT

MANUFACTURER

HARDWARE AND
SOFTWARE • -

CHARACTERISTICS

REPIORT'

Figure 3-1. Block Diara

DEFINE
WORKLODAD

yi
DETERKLNE

ITI'IAL
CONFIGURATION

C-FE CASE

ANALYZE RESULTS

FuAND BE-CONFIGURE

of the Functional Structure of CASE

IBM 7090

CPU

-... Recording Machine

COMPARISON Compare the 15 Selector Lines
NI-T with the 5 Sets of Switches.

r- I •Encodes the 24-bits of Data into
ENCODJNG UNIT 1 a Variable-Length String and then

ASSEKBLY REGISTER Packs the String into 6-bit Words.

'I
OUPYUNITI

t---------I--­

729 -VI

I • Writes Inter-record Gaps between
L DMLOOK Ieach Logical Record.

• Decodes the Variable-Length String
DECODE7 to 24-bits of data and Adds Tuime

! i Information.

DATA REDUCTION

IV Produces a Trace-like Printout or

CfGenerates CT Graphical Display.

Figure 3-2. -unctional Diagrim of the IBM 7090 Hardware
lbitor Device.

SHAE
SHARED

IgMY] I RY

PROCESSORTIIME- -TIME -
SHARING SWUTS e .PR SHAR NGCESSOR

s0

H C,)

PLUGD

_iC TONIC

ECHANICAL

O C

SEQUENCER COMhOCCRS fOUNTEGC
,

A

CONSROTS
 pif t

TAPE

ADAPTER

72 9 VI 72 D f

Figure 3-3. Functionai Diagram of TS/SPAR

Monitoring System

I4EF4ORY Y

I 432/1782Data Collection

.DrumRegion

Monitor Device

41 I

Recording Inter- Line Drivers
face Control

Tonitor Control n r -- control

Address, da-ttiP

Processor State

Nonitored System

UNIVAC 11o8

EXEC VIII
Programs

Figure 3-4. Block Diagram of the IIVAC !108

Hardware Monitor Device

yS T A . - ---- 4 T .54-- /
I N S T ;gS~wxCr ~ A g. 1/'56 - ---- M

__________________Noe, Holy~t

The "Hook" Structure of SIPE

-s0 /360

LI

/q

__I
ID

N4N

p/Yrtv*6k

Ip

z AAD ,avEWI

I
5zt

-

Figure 3-5. Functional Diagram of interface
between TSS/360 and SIPE

4. SYSTEM FUNCTION ANALYSIS USING SOFTWARE MONITOR TECHNIQUFS

The objective of the software monitoring efforts conducted under

this thesis was to develop techniques to permit the collection of data

from the operating system as it was running. A quantitative study of

an operating system using data on the behavior of that system is an

effective approach to permit one to locate and to examine defects that

may exist in the structure and utilization of the operating system.

In the design of a system monitor technique, the following capabili­

ties were desired: (1)to provide a technique that would permit one

to study the logic and behavior of programs so as to define and locate

significant events that occur within a program; (2)to provide a

technique which would permit analysis and evaluation of the implemen­

tation of a program, so that local performance errors could be de­

tected and possibly avoided; (3)to provide a technique to collect

the applicable data of the total operating system in order that the

interaction of system functions could be analyzed and evaluated; and

(4)to provide a technique to continuously report the performance sum­

mary on a display or on an on-line printer at specified periods of

time. To meet some of these objectives, several program were design­

ed and implemented on the Univac 1108. These programs are described

below.

4.1. Instruction Trace

TRACE is a special simulation tool which has-the ability to

simulate itself. It is written and developed 'for the purposes of

30

31

studying the logic and behavior of a program. It is sonetimes very

difficult to obtain documentation and descriptions of system routines.

This has been found to be the case with the 1108 executive routine.

aTRACE can provide useful information concerning the operation of

program, such as the location of the instruction, the data in the

operands of the instruction itself, and the contents of all registers

used by the instruction. The TRACE Routine records data at every

instruction, or at selected instructions, and then prints out a step-

From the printoutby-step account of the behavior of the program.

developed by TRACE, the prooamming technique of the traced program can

be observed and evaluated.

In the TRACE Program, we contrive to let the machine execute most

of the instructions as the instructlon appears in the program. The

exception is that TRACE modifies jump_ or conditional jurno instructions

before execution so as to insure that control will return to the TRACE

taken place. Inside the TRACE Routine, aRoutine after the jumo has

meory word is maintained to simulate the hardware instruction counter

which points to the current instruction to be traced. TRACE copies the

Before execution of thetraced instruction into its own work area.

so as to
instruction, a subfunction is called to analyze the op-code

identify whether this is an unconditional or conditional jump instruc­

tion. If the instruction is not a junp type instruction, the simulated

instruction counter is increased by one and the traced instruction is

executed. However, if the-instruction is a jimp type instruction, the

address field of the jump instruction is saved first and then replaced

that is, the condition ofby a specified address. If a jup occurs,

the jtmr is satisifed, the control then goes to the specified location

32

instead of to the successor instruction. In this fixed location, the

simulated instruction counter is replaced by the saved address field.

In this way the exact program instruction sequence can be traced. A

geheral flow chart of the TRACE Program is shown in Figure 4-1. An

output from the TRACE is also given in Figure l4-2.

4.2. Functional Value Analysis

The purpose of a functional value analysis is to try to improve

the efficiency of a program. Ln analyzing a program to achieve this

improvement, the payoff between the time spent in analysis, debugging,

and the total possible machine time gained should be considered. A

technique is described that will indicate to the uzer the most frequently

executed code within his program. Since it is executed frequently there

is a higher payoff if this portion of the code is improved.

Either in a high level language or rn a machine language program,

a juip instruction represents the end of a sequence of operation. Those

contiguous sequential operations can be considered as a single macro­

instruction. In this way, a program can be divided into several macros,

each terminated by a jump instruction. By 'Kirchhoff's Current Lawt ,

the hiuner of times the control flows out of a macro-instruction must

equal the nuntber of times control is transferred to the macro-instruction.

Hence, if we record the information when a transfer is made to a special

instruction (location), then we can get the exact number of times that

the macro-instruction has been executed.

This functional value analysis program is formed by modifying the

TRACE Routine described above by adding a sorted, linked list to record

the transfer information. See Figure 4-1. After the recording is

33

complete, another analysis routine is called to print the distribution

of CPU time for each macro-instruction. An analysis of EXPOOL on the

Univac 1108 that resulted from the use of ITFVA (instruction Trace and

nctional Value Analysis) is presented in Section 5.2 as a case

example.

Another technique most frequently used -for functional value

analysis is the high dentisty sampling method which was described in

Section 2.2.1.2. The advantages of using the TRA.CE Routine are: (1)

the TRACE Routine,is easily modified to permit recording information of

every instruction traced or to record the trace data only when a jump

occurs; (2) it provides a high level of information detail since the

recorded data contains the exact number of instructicns executed in

each macro, and if desired, provides the exact sequence of each macro­

instruction performed.

The disadvantage of using Trace is that it will greatly slow down

the execution of a system. Hence, TRACE is best suited for the analy­

sis of short input-data independent programs. An analysis of the ITFVA

Routine indicates that the time required by using ITFVA within a system

results in the need for an increase of 18 times the normal execution

for a non-jmp type of instruction, and an increase of 60 times fnr

jump instruction.

The above disadvantage can be avoided to a certain extent by using

the TRACE technique in conjunction with event counters. That is, set

a count in every basic system function which is to be monitored. It is

relatively simple and straight-forward to implement. According to the

contents of these counters, the most frequently executed function can

be detected. The procedure then is to analyze only frequently executed

34

functions with the trace technique. This provides a very simple and

usef'ul tool to imorove the implementation and efficiency of either a

system routine or a user program.

4.3. System Performance Data Extract

The purpose of evaluating an operating system is to dete7rmine and

to substantiate the capabilities and the limitations of that system.

The problem is to find out what is going on inside the system and where

the CPU spends the majority of its time. To solve this problem requires

that data be obtained 'inside' the system as it is running. OSPDE

(perating System Performance Data Extractor) is developed so as to

provide a software recording technique to extract internal system per­

formance data. Such data provides the exact sequence and patterns of

events that occurred during execution. It can be used as input to a

simulation model to provide a realistic caliibration and feedback to the

system designer. This provides a good, quantitative measure of the

existing system which permits pinointing 'performance bugs' - the re­

sults of errors in prograrmer evaluation and judgment on performance

optimization. Under this thesis, the program OSPDE has been designed,

but has not yet been implemented. The structure of the data item and

the data block of OSPDE is shown in Figure 4-3. The major objectives

of the design were: (1)to minimize the system degradation by pro­

viding a selective option, which permits the user to be selective in

the system events to be monitored at any given time; (2)to share a

tape path with the system, use a variable data length structure and a

data collection macro-instruction to get additional generatlity and

flexibility; and (3)to use the mechanism of a double output buffer,

35

that is, while one buffer is transferring data to tape, the- other buf­

fer is being filled with data. The CPU is forced to wait when the

second buffer is full and the first buffer has not yet transferred data

to tape. With this-arrangemnt, the loss of data is possibly avoided.

4.4. Other Techniques Under Consideration

If the OSPDE recording rate is approximately one millisecond,

there vTill be sixty thousand data items recorded every minute, and 3.6

million data items recorded every hour. It is obvious, from these huge

volumes of data, that a process to reduce data must be done on a com­

puter to give meaningful information to the user. Hence, a data­

reduction and reporting routine is needed. This routine should have

the capability to receive parameters from the user, to select any com­

bination of events of the recorded data, and to output the analysis

results in tables or graphs.

The Standard System Accounting Routine provides data concerning

the resources and the elapsed time used by a program. The Accounting

data can be used to measure gross performance, and can be combined with

0SPDE recorded data to sumarize the overall system performance during

long periods of computation time. As described above, such a technique

is required to provide continuous measurement analysis to the user.

36

TRACE

1

INITIAL!-

ZATION

CODEINST.
ANALYSIS

.4 PRINT
TRACE]

INST. TYPE jDATA.
ANALYSIS

I INSTRUCTION
EECTTONPMDITFY JUTF E ANALYSTS

INSTRUCTION

NO
'_ INO

E UTIIN INST --- DISTRI­

TI',r BUTTON

I SEQUENCE
CONTROL .- XT

ITFVA-

NO

ES

ETRACT" ._
MACRO DATA

Fgure 4i-1, FthntionaJ. Diag'am of ITFVA and TRACE.

43115 53 02 04 14 0 043071 A 000000000017 000200000000 000000000012 777777777777 777777777777
43117 25 16 14 00 0 000001 X 000000000011 777777777777 777777777777 777777777777 777777777777
43120 72 02 05 00 0 043115 777777777777 777777777777 777777777777 777777777777 777777777777

43115 53 02 04 14 0 043071 A 000000000017 000400000000 000000000011 777777777777 777777777777
43117 25 16 14 00 0 000001 X 000000000010 777777777777 777777777777 777777777777 777777777777
43120 72 02 05 00 0 043115 777777777777 777777777777 777777777777 777777777777 777777777777

43115 53 02 04 14 0 043071 A 000000000017 001000000000 000000000010 777777777777 777777777777
43116 74 04 00 00 0 04312 777777777777 777777777777 777777777777 777777777777 777777777777

43122 27 01 14 14 0 043071 X 000000000004 777777777777 000000000004 777777777777 777777777777
43123 10 13 04 13 0 000000 A 000000000000 001000000000 011530057010 777777777777 777777777777
43124 10 16 05 13 0 000000 A 000000057010 ooOOOO11400 011530057010 777777777777 777777777777
43125 74 o4 00 00 0 043130 777777777777 777777777777 777777777777 777777777777 777777777777

43130 74 13 13 00 0 043234 777777777777 777777777777 777777777777 777777777777 777777777777

43234 46 16 14 00 0 000000 X 0ooooooooo4 777777777777 777777777777 777777777777 777777777777
43235 50 13 00 00 0 043706 A OOOOOOOOOOO4 000000011530 777777777777 000000000000 777777777777
43237 53 16 00 00 0 000011 A 0O0000000004 000000011530 777777777777 777777777777 777777777777
43241 27 01 15 00 0 043713 X 000000000000 777777777777 777777777777 000000000000 777777777777
43242 54 01 01 00 0 043712 A 000000000000 040075413506 777777777777 022000033000 777777777777
43243 74 04 00 00 0 043246 777777777777 777777777777 777777777777 777777777777 777777777777

(1) (2) 	 (3) (4) (5) (6) (7) (8)

Figure 4-2. Sample Output from the TRACE Program.

1 	 The absolute address of the traced instruction.
2 	 The instruction code being traced.
3 	 An indicator of what type of control register is being used by the traced instruction, i.e., A, X, or

R register.
4 	The content of the register referenced or a code of 777777777777.

5 	The contents of the next sequential register or a code of 777777777777.

6 	The contents of the index register referenced or a code of 777777777777.

7 	The contents of the operand of the traced instruction before execution or a code of 777777777777.

8 	The contents of the operand of the traced instruction after execution or a code of 777777777777.

DATA ITEM

Job No. ID I- TIN

l-t

DATA BLOCK

Initiated time of this block

A l!
 A 2 _

Data block name

Data items

ID: Data id

LG: Data Length

Al: Niurber of items lost in previous block

A2: Number of words in previous block

Figure 4-3. A Data Item and Data Block of OSPDE.

5. EMPIRICAL STUDY OF THE EVALUATION TECHTIQUE OF EXPOOL

5.1. The Central Role of EXPOOL

EXP00L is a core resident elenent within the EXEC VIII operating

system that contains a buffer pool and two routines to maintain this

pool. EXP00L.is one of the most active elements in the CEVIII

supervisor. All system tables, queues, and control words are located

in the EXPOOL buffer pool. Because of its central role, the frequency

of use within the system, it was chosen for detailed analysis using

the techniques developed during this study.

5.1.1. The Buffer Pool. The conxnon buffer pool within EXPOOL

is maintained in order to provide a maximum number of buffers with a

minimun amount of overhead. The 'Buddy' System Storage Allocation

technique is used here with permissible buffer sizes of 2**N-! words,

where 2zN-9. The structure of a buffer is shown in Figure 5-1.

The EXPOL Buffer Pool initially contains 27 blocks of 2**9 -

words each as implemented in the University of Maryland EXEC VIII

operating system. Of the 27 blocks, 10 blocks are generated at

assembly time and 17 blocks are given to the EXPOOL Buffer Pool by

lild-ng 17 blocks of no-longer-needed core to the end of the avail­

able chain upon termination of system initialization. When all space

within EXPOOL has been allocated, the Buffer Pool may be expanded by

calling CRQED (Core Request for One Block EXEC D-Bank) to get a

block of 2**9 words from System D-Bank. The borrowed core space will

be released as soon as it is no longer needed in the Buffer Pool. When

39

http:EXP00L.is

11

4o

the total 	unused space is less than 4000 (octal) memory words, the

In the tight mode, only critical
Buffer Pool is set to a tight mode.

requests, that is, those with the .flag set, can be allocated space.

All other requests are linked to the EXPOOL request chain and the

requestor is deactivated by EXPOOL.

To request a buffer
5.1.2. Request for a Buffer from EXPOOL.

storage area from EXPOOL, the following calling sequence is used:

LXT,U XIl,P

LMJ XT!,EXPOOL

On exit from the request, the program leaves the external buffer

address in the AO Register, the return address in the Index Register

(XlI), and the address of the word that contain the user specified

parameters, P, in the Al Register. The infornation indicating the

exact nature of the buffer request is made available to EXP00L in the

following format:

P: 	 SIZE :N---FC" ADDFSS

...........

where:

SIZE
 Number of words in the buffer desired.

N=0 : Needs a buffer when it becomes available.

N=I : Must receive the buffer immediately to continue processing.

F=D : Add to the end of chain.

F1 : Add to the front of chain.

C=0 : No chaining.

C=1 : Chain as specified in F.

ADDRESS 	 A pointer to the control word if C=l; or the address of the

buffer to be assigned if C=0.

The 	Buffer Allocation Algorithm is as follows.

(1) 	Check if this is a legal buffer request size.

(2) 	Call request to request internal buffer.

(A) 	If buffer of size 2**K is'not available, then go to (C).

(B) 	Remove the first buffer of size 2**K from available

chain and go to (Q).

(C) 	K=K+l, if K>9, terminates unsuccessfully, otherwise,

recursively call request.

(D) 	If 2**K is the request size, then return to request,

otherwise K=K-l, break buffer into two equal pieces.

(E) 	Chain one piece into available chain and recursively

return to request.

(3) 	Update size indicator, tight mode indicator.

(4) 	Save switch list ID or function ID.

(5) 	Chain to the control word if it is so requested.

(6) 	Return to the requestor.

5.1.. Release of a Buffer from EXPOOL. To release a buffer

storage area from EXPCOL, the routine EXREL (EXPO0L Buffer Release) is

initiated by proving the following calling sequence:

LA AO,P

IM XIIEREL

Where P has the following format:

P: 	 SIZE ADDEESS

...........

The 	Buffer Release Algorithm is as follows.

(1) 	Check if this is a legal buffer release size.

(2) 	Update size indicator, tight mode indicator.

(3) 	 Call release to release internal buffer.

(A) 	 If the buddy of this buffer is free, go to (C).

(B) 	 Chain the buffer to available chain and return to re­

lease.

(C) 	 Remove the buddy from available chain.

(D) Corbine with the buddy, set K=K+l, and recursively call

-release.

(4) 	Return to the requestor.

5.2. 	Preliminary Results of an Analysis of EXPOOL

The efficiency of a function or program depends both on the algori­

thm used, and the effectiveness of the code used to implement the

algorithm. In evaluating EXPOOL, both the algorithm and the inplemen­

tation have been analyzed. As described in Section 3 of [12], a simu­

lation model of the buddy system storage allocation technique, as well

as several other allocation schemes have been constructed and run on

the Univac 1108.

Several core memory dumps of the EPOOL buffer pool have been

taken. The distribution of used buffer size was calculated according

to the results obtained from the memory dumps, and has been used-as

the input source to ITFVA (Instruction Trace and Thnctional Value

Analysis) described in Section 4.2. The time interval between a buffer

being allocated and released is assumed to be an exponential distribu­

tion. Under IT1A requests and releases are called. Figures 5-2 and

5-3 show the analysis results of the original E)POOL program. We see

23.7 percent of the allocation time has been spent in looking throug

the table, TAB2, to convert the external request size into the internal

buffer size index. It is interesting to note that within EXPOOL, ,the

table, TAB2 is ordered randomly as shown in Figure 5-4. That is, there

is no rationale for the sequence of entries in the table. It is of

interest to calculate the average time required to search for an entry

in the table. If we let E be the average search time to find a match­

ing entry in TAB2, N(I) be the nuber of instructions needed to access

the ith entry in the table, and P(I) be the probability that the ith

entry in the table is requested. Then

E= N(l)*P(l) + N(2)*P(2) + - - - +N(12)*P(12).

if N(I)=N*I, where N is a constant, the value of E is minimized if

P(I)'P(J) for all J>I. That is, a minimnm search time car-be obtained

if the table entry is given indecreasing order according to its pro­

bability of occurrence. in FigLues 5-5 and 5-6, the result of reorder­

ing the table, TAB2, according to the size usage distribution obtained

from the memory drmps is shown. The percentage of CPU time spent in

this table lookup is still high, but, an average of 15.5 percent of

allocation time has already been saved.

An additional saving in time may be obtained by recalling that the

buddy system storage allocation technique is so defined because each

buffer request made for a block of size N, where 2**K - N (2*k(K+l),

is allocated a block of exactly 2**(K+l) words providing 2**(K+l) is

less than or equal to the maximum block size permitted. In most allo­

cation schemes, to convert an external request length to the internal

size index, a table lookup is used. Actually, the feature of the

buddy system provides a very easy way to handle the conversion. The

simple formula is that the internal buffer size index K equals the

44

number of bits in the machine word minus the number of bits with lead­

ing zeros. For this, a single shift and count instruction can get the

index size immediately. Now the average search time E is decreased

substantially. For, in this case, N(l) becomes a constant, C, the

time to perform the shift count instruction. Hence, E = C. Figure

5-7 shows the result of the above change in the time required to access

the appropriate word. An average of 29.1 percent saving for each re­

quest (or release) is gained over the code currently implemented in

MC -VIII.

In the 1108 Executive System, there will be essentially the same

number of releases as requests for buffer storage after the system

stabilizes, so that, in the following discussion, no attempt is made

to distinguish the type of action r6quested in the allocation process.

In the EDEC -VIII version of the allocation routine, by using the TRACE

routine it was found that the average nutmber of instructions required

for an allocation was 103. In the 1108, the average time per instruc­

tion is 1.12 psec. Therefore, the time spent in one allocation process

is 1.12 Psec times 103 instructions or .116 msec.

By reordering the table, TAB2, so that the order of the entries in

TAB2 are given in decreasing order according to their probability of

occurrence, the average nuter of instructions required for an alloca­

tion was found to be 87. The time spent in the allocation process is

then .097 msec, a reduction of .019 msec per allocation. By intro­

ducing a shift and count instruction to replace the table lookup pro­

cess, the average number of instructions was reduced to 74. The time

spent in the allocation process is then .083 msec. This represents a

reduction of .033 msec over .the EXEC VIII version or a reduction of .014

over the version with a reordered TAB2.

46

__EXT

EXT: External Buffer Address
INT: Internal Buffer Address

A = 	 0 If the buffer is used.
B If the buffer is free.

B = 	The internal size index.

C = 	 The link to the next buffer if the buffer is free.
The function ID if the buffer is used by a function.
The switch ID if the buffer is not used by a function.
The retuan point if the buffer is used b& the XEC main interlock
code.

]igure 5-1. Structure of a One Block Buffer of Size 2-B.

47

CODE EXEC1ION FREQUENCY FOR EACH ITERVAL

LABEL FELATVE LOCATION TOTAL INST. PERCENT OF
START END EXECUTED RUN TINE

EXPOOL 0015 0030 3141 16.87
EXP2 0031 0037 500 2.69
EXP'EXT 0040 0070 1300 6.98
INLK 0071 0142 1300 6.98
REQUES 0143 0154 976 5.24
NONORE 0155 0171 1441- 7.74
REQ23 0172 0204 630 3.38
MCORE 0205 0277 3 .02
EXREL 0300 0316 3341 17.94
ER22 0317 0330 8o 4.30
DEXET 0331 0343 500 2.69
ER23A 0344 0356 0 .00
REL-AS 0357 0363 1680 9.02
RELl.1 0364 0413 1378 7.40
RELl.2 0414 0434 811 4.36
REL2 0435 0442 900 4.83
REL3 0443 0446 0 .00
EEL56 0447 0473 0 .00
OT[ER 0000 0000 2 .01

i 2 3 4 5

TOTAL 18619 INSTRUCTION EXECUTD DURING THIS ANALYSIS.

Figure 5-2. Code Execution Frequency for each Labeled Block of
the Accessing Routines (STOOL/EXREL) as Tmplemented

in EEC "VIII.

1. 	 The block syrrbolic name, that is the label.
2. 	 The relative location of the label to the start of the routine.
3. 	 The relative location of the instruction preceding the next label.
4. 	 Tne total nunber of executed instructions within each labeled

block of the routine.
5. 	 The percentage of total run time spent in each labeled block of the

routine.

48

THE MOXT FREQUENTLY EXECUTED INTERVALS

LABEL (EXHEL) TOTAL 3341 INSTRUCTION EXECUiED.

MACRO INST. LOCATION MACRO INST. EXECUTION TOTAL INST. PERCENT
STAFE END LENGTH -TFQUFNCY DECUIED

0300 0311 9 100 900 26.94
0312 0313 2 100 200 5.99
0312 0315. 3 747 2241 67.08

LABEL (EXPOOL) TOTAL 3141 INSTRUCTION EXECUTED.

MACRO INST. LOCATION MACRO INST. EXECUTION TOTAL INST. PERCENT
START END LENGTH FREQUENCY EXECUTED

0015 0023 7 100 700 22.29

0024 0025 2 100 200 6.37

0024 0027 3 747 22411 71.35

LABEL (RELEAS) TOTAL 1680 STUCTON EXECUTED.

MACRO INST. LOCATION MACRO INST. EXECUTION TOTAL INST. PERCENT

START END LENGTH FREQUENCY EXECUTED

0357 0403 16 60 960 57.14
0357 0405 18 40 720 42.86

1 2 3 4 9 6

F gure 5-3. 	 Analysis of Most Frequently Executed Labeled Blocks
of the Accessing Routines (EXPOOL/EXREL) as Tinale­
mented in EXEC IVIII.

1. The relative location of the first word of each macro-instruction

to the start of the routine.

2. The relative location of the last T*ord of each macro-instruction
to the start of the routine.

3. The number of instructions in each macro-instruction.
4. The nutrer df-times the macro-instruction was executed.
5. Total instruction executed in each macro-instruction.

6. The percentage of labeled block execution time spent in the macro­

instruction.

TAB2 AS LMPLEMENTED IN THE =-EC VII

TABLE OF EXTERNAL AND ThWEflNAL BU=FER SIZES
+ EXTERNAL SIZE, INTENAL SIZE

TAB:

+ 3,2
+ 6,3
+ 28,5
+ 56,6
+ 224,8
+ 127,7
+ 15,4
+ 7,3
+ 31,5
+ 63,6
+ 255,8
+ 511,9

TAB2 REODFERED TO OPTIMIZE TABLE LOOKUP PROCESS

TABLE OF EXmk9NAL AND I_WlEPIM BUFF?_ER SIZES
+ EXTERAL SIZE, INTERNAL SIZE

TAB2.

+ 511,9

+ 127,7

+ 224,8

+ 255,8

+ 56,6

+ 63,6
+ 6,3

+ 7,3

+ 15,4

+ 28,5

+ 31,5

+ 3,2

Figure 5-4. Structure of TAB2 as used in EXEC VIII
and Structure of Reordered TAB2.

50

CODE EXECUTION FREQUENCY FOR EACH INTERVAL

LABEL RELATIVE LOCATION TOTAL INST. PERCENT OF RUN
START END EXECUTED TIME

EXPOOL 0015 0030 1485 9.70
EXP2 0031 0037 500 3.27
EXPEXT 0040 0070 1300 8.49
IMLK 0071 0142 1300 8.49
REQUES 0143 0154 976 6.38
NOMORE 0155 0171 1441 9.41
REQ28 0172 0204 630 4.12
MCORE 0205 0277 3 .02
EXREL 0300 0316 1685 L1.01
ER22 0317 0330 8oo 5.23
EXREXT 0331 0343 500 3.27
ER23A 0344 0356 0 .00
j 4LTAS 0357 0363 1680 10.98
REL1.1 0364 0413 1378 9.00
REL.2 0414 0434 811 5.30
REL2 0435 0442 900 5.88
FEL3 0443 0446 0 .00
BEL56 0447 -0473 0 .00
OTHER 0000 0000 4 .03

1 2 3 4 5

TOTAL 15307 INSTRUCTION EXECUTE DURING THIS ANALYSIS.

Figure 5-5. Code Execution Frequency for each Labeled
Block of the Accessing Routines

(EXPOOEXREL) as Implemented in EXEC VIII.

1. The block symbolic nameythat is the label.
2. The relative location of the label to the start of the routine.
3. The relative location of the instruction preceding the next label.
4. 	 The total number of executed instructions withn each labeled

block of the routine.

5. 	The percentage of total run tire spent in each labeled block of

the routine.

51

THE MOST FREQUENTLY EXECUTED INTERVALS

LABEL (EX=EL) TOTAL 1685 INSTRUCTION EXECUEED.

MACRO INST. LOCATION MACRO INST. EXECUTION TOTAL INST. PERCENT
START END lENGTH FREQUENCY EXECUTED

0300 0311 9 100 900 53.41
0312 0313 2 100 200 11.87
0312 0315 3 195 585 34.72

LABEL (RELEAS) TOTAL 1680 INSTRUCTION EXECUTED.

MACRO LNST. LOCATION MACRO INST. EXECUTION TOTAL INST. PERCENT
START END LENGTH FREQUENCY EXECUTED

60 	 57.14
0357 0403 16 	 960

18 	 720 42.86
0357 0405 	 40

LABEL (EXPOOL) TOTAL 1485 INSTRUCTION EXECUTED.

MACRO INST. LOCATION MACRO INST. EXECUTION TOTAL INST. PERCENT
START END LENGTH FREQUENCY EXECUTED

0015 0023 7 100 700 47.14

0024 0025 2 100 200 13.47

0024 0027 3 195 585 39.39

1 2 3 	 4 5 6

Figure 5-6. Analysis of Most Frequency Executed
Labeled Blocks of the Accessing

Routines (EPOOL/EXEL) as Implemented
in EXEC VIII.

The relative location of the first word of each macro-instruction
to the start of the routine.

2. 	 The relative location of the last word of each macro-instruction to
the start of the routine.

3. 	 The number of instructions in each macro-instruction.
4. 	 The number of times the macro-instruction was executed.
5. 	 Total instruction executed in each macro-instruction.
6. 	 The percentage of labeled block execution tim spent in the macro­

instruction.

52

CODE EXECUTION FMEQUENCY FOR EACH f'EVAL

LABEL RELATIVE LOCATION TOTAL IST. PERCE N OF
START END EXECUTED RUN TIME

EXPOOL 0000 0004 900 7.12
EXP2 0005 0013 100 .79
EXPEXi 0014 0044 1300 10.29

INLK 0045 0112 900 7.12

REQUES
NOM4PE -

0113
0125

0124
01111

976
1441

7.72
11.40

REQ2B
MORE

0142
0155

0154
0247

630
3

4.99
.02

EXREL 0250 0254 800 6.33
ER22 0255 0266 600 4.75
EXRX 0267 0302 300 2.37
ER23A 0303 0311 0 .00
RELEAS 0312 0316 168o 13.29
REL1.l 0317 0347 1378 10.90
EELl.2 0350 0367 811 6.42
IREL2 0370 0375 900 7.12
REL3 0376 0401 0 .00
IEL56
O-]ER

0402
0000

0426
0000

0
6

.00

.05

1 2 3 4 5

TOTAL 12637 INSTRUCTICN EXECUIED DURING THIS ANALYSIS.

Figure 5-7. Code Execution Frequency for each
Labelled Block of the Accessing

Routines (E3OOL,Z7,=) as Tholemented
in EXEC VIII.

1. 	 The block symbolic name, that is the label.
2. 	 The relative location of the label to the start of the routine.
3. 	 The relative location of the LN.
4. 	 The total number of executed instructions within each labeled

block of the routine.
5. 	 The percentage of total run time spent in each labeled block of

the routine.

6. SUTMARY

The measurement and evaluation of computer systems has finally

been recognized as a significant field of endeavor for computer pro­

fessionals. This recognition is evidenced by an increasing flow of

literature. There is a dearth of available tools and techniques

which are capable of measuring the large man-hardware-sofftware com­

plexes that are presently being developed. This report has attempted

to describe various techniques for the measurement and analysis of

system behavior, with emphasis being placed on the empirical perfor­

mance analysis technique. The software monitoring of an existing

system's executive system.is a difficult and costly process. The

tight design constraints imposed on an executive malke it less amenable

to inserting data recording devices than the typical usert s program.

The acquisition of performance data by well-designed benchmarks can

provide useful measures of the system performance at a much laser

developmental cost than a software recording capability. However, it

is strongly recommended that a software recording utility be an early

design requirement for any new systemh Benchmarks cannot be sub­

stituted for comprehensive recording. There are three major concepts

concerning system design constraints and requirements which affect a

recording utility. These include interface and internal recordability

and recording selectivity. Interface recordability consists of the

ability to record the occurrence of any event that involves the inter­

face between a user object program and the computer used. This con­

cept forces the interface activity of a system to be clearly defined

53

http:system.is

5J

and standardized. Internal recordability is concerned solely with the

internal behavior of the object program, that is, the ability to re­

cord program-generated data which is never transferred to another com­

ponent of the user's conputer. This concept requires that the program

at any level should be able to initiate the operation of the recording

function. Recording selectivity states that the user can specify any

subset of the set of recordable data for actual recording. The ideal

goal then is to design a language which will permit procedural-like

statements which can be used to describe the recording operation. The

language would permit logical and conditional as well as declarative

statements. The logical and conditional statements would specify con­

ditions under which recording is to take place, while the declarative

statements would specify the data to be recorded.

7. BIBLIOGRPHY

The following paper are grouped in accordance with the topics

covered 	by this thesis; for a more complete bibliography, see [61

General

1. 	Arbuckle, R. A. Computer Analysis and Throughput Evaluation.

Comput.Autom, Vol. 15, No. 1 (January 1966) pp. 12-15, 19.

2. Arden, B. W., Boettner, D. Measurement and Performance of a

Multi-Programming System. Proc. ACM 2nd SYMP on O/S Princi­
ples, October 1969, 130-146.

3. Bonner, A. J. Using System Monitor Output to Improve Performance.

IBM System, J. 8, 4 (1969) 290-297.

4. Buchholz, W. A Selected Bibliography on Computer System Perf'or­
mance Evaluation. Comuter Group News (New York) 2, 8 (Dec.

1968), 21-22.

5. 	Calingaert, P. System Performance Evaluation: Survey and
Appraisal. (OR 11661) CACM 10, 1 (January 1967) pp. 12-18.

6. 	Crooke, S., Minker, J. Key Word in Context Index and Biblio­
graphy on Computer System Evaluation. TR-69-100, University

of Maryland. December 1969.

7. 	B]runmond, M. E., Jr. A Perspective on System Performance Evalua­
tion. IBM System, J. 8, 4 (1969) 252-263.

8. life, D. W. Alternatives in Evaluation of Computer Systems.

(AD 683693) Mitre Corporation, Bedford, Mass. Report idTR-413,

December 1968.

9. 	Gosden, J. A., Sisson, R. L. Standardized Comparisons of Com­
puter Performance. Information Processing 1962 (PROC. IFIP

Congress 1962), pp. 57-61.

10. 	 Joslin, E. 0. Cost-Value Technique for Evaluation of Computer
System Proposals! (CR 6166) PROC. AFIPS SJCC 1964, Volume 25,
pp. 367-381.

11. 	Knight, K. E. Changes in Computer Performance. Datamation, Vol.
12, No. 9 (September 1966), pp. 40-54.

12. 	 Yinker, J., Crooke, S., Yeh, j. Analysis of Data Processing

Systems. TR-69-99, University of Maryland, December 1969.

55

5S

13. 	Opler, A. Measurement of Software Characteristics. Datamation,

Vol. 10, No. 7 (July 1964), pp. 27-30.

14. 	 Patrick, R. L. Measuring Performance. Datamation, Vol. 10, No. 7
(July 1964),-pp. 24-27.

15. 	 Smith, J. M. A Review and Comparison of Certain Methods of Com­
puter Performance Evaluation. (CR 15293) Computer Bull 12, 1
(May 1968), pp. 13-18.

16. Statland, N. Methods of Evaluating Computer Systems Performance.

Comput. Autom., Vol. 13, No. 2 (February 1964), pp.. 18-23.

ANALYTIC M4ODEL A?ALYSIS TECHNIQUE

17. 	 Bryan, G. E., Shemer, J. E. The UTS Time-Sharing System -
Performance Analysis and Instrumentation. Proc. ACM 2nd
Symp on O/S Principles, October 1969, 147-158.

18. 	Coffman, E. P., Jr. Stochastic Models of Multiple and Time-Shared
Computer Operations. Ph.D. Dissertation. Report No. 66-38,
Department of English, U.C.L.A. 1966.

19. 	 Coffman, E. G., Jr. Markov Chain Analysis of Multiprogrammed
Computer Systems. (AD 692004), Naval Res. Log. Qtrly., 16, 2
(June 1969), 175-197.

20. 	 Coffman, E. G., Jr., Kleinrock, L. Feedback Queueing Models for
Time-Shared Systems. (CR 16432) JACM 15, 4 (October 1968),
pp. 549-576.

21. Demeis, W. M., Weizer, N. Measurement and Analysis of a Demand
Paging Time-Sharing System. Proc. ACM 24th National Conf.,

August 1969, 201-216.

22. 	 Gaver, D. P., Jr. Probability Models for Multiprogramming Computer
Systems. (CR 13459) J. ACM 14 (July 1967), pp. 423-438.

23. 	 Gurk, H. M., Minker, J. Storage Requirements for Informance Hand­
ling Centers. JACM (January 1970).

24. 	 McKinney, J. M. A Survey of Analytical Time-Sharing Models.
Computing Surveys 1, 2 (June 1969), 105-116.

25. 	 Minker, J. A Stochastic Model of an Information Center.
TR-69-90, University of Maryland, 1969.

26. 	 Patel, N. R. Mathematical Analysis of Computer Time-Sharing
Systems. MS Thesis - E. E. Department (AD 605 825) M.I.T.
Technical Report 20, MIT. Cambridge, Mass. July 1964.

27. 	 Pinkerton, T. B. Program Behavior and Control in Virtual Storage
Computer Systems. (Ph.D. Dissertation) Tech. Rpt. 4,

University of Michigan, Ann Arbor, Mich., 1968.

28. 	 Rasch, P. J. A Queueing Theory Study of Time-Shared Computer

Systems. N6920120. Ph.D. Thesis, Southern Methodist

University, Dallas, Texas. 1967, 95P.

29. 	 Smith, J. L. An Analysis of .Time-Sharing Computer Systems Using

Markov Models. (CR 10835) Proc. AFIPS SJCC 1966, pp. 87-95.

30. Wulf, W. A. Performance Monitors for Multiprogrmming Systems.

Proc. ACM 2nd Symp on 0/S Principles, October 1969, 175-181.

SETUIAITON MODEL ANALYSIS TECHNIQUE

31. Braddock, D. M., Dowling, 0. B. Simulation, Evaluation, and

Analysis Language: Seal. IBM Program Lib., IBM, Hawthorne,

New York.

32. 	 Canning, R. G., Edit. Data Processing Planning via Simulation.

EDP Analyzer, Vol. 6, No. 4 (April 1968).

33. 	 Chu, Y. An Algol Like Computer Design Language. CAOM 8, 10,
(October 1965), pp. 607-615.

34. 	 Cohen, L. J. Associates. System and Software Simulator: S3,

Technical Manual. AD679-269 - AD679-272.

35. 	 Compress. A Technical Description of SCERT. Compress RoEckville.

Maryland.

36. 	Estrin, G., Kieinrock, L. Measures, Models and Measurements for

Time-Shared Computer Utilities. (CR 13642) Proc. ACM 22nd

National Conf., (1967) pp. 85-96.

37. 	Fine, G. H., Mcissac, P. V. Simulation of a Time-Sharing System.

(CR 11118) Mgt. Science 12, 6 (February 1966), pp. B180-194.

38. 	 Goodman, R. M., Pivonka, L. M. A Simulation Study of the lme-

Sharing Computer System at the Naval Postgraduate School.

(AD 692447) Masters Thesis, Nav. Postgrad. School, Monterrey,

California, June 1969, 150P.

39. 	 Grice, A. HARGOL - A Hardware Oriented Algol Language. Internal

Report No. VA5, August 1966, A/S Regnecentralen, Copenhagen,

Denmark.

40. 	 Herman, D. -J., Threr, -. C. The Use of a Computer to Evaluate

Computers. (CR6167) Proc. AFIPS SJCC 1964, Vol. 25, pp.383-395

41. 	Herman, D. J. SCERT: A Computer Evaluation Tool. Datamation,

Vol. 13, No. 2 (February 1967).

56

42. 	 Holland, F. C., Merikallio, R. A. Simulation of a Mtltiprocess­
ing System Using GPSS. !EE Trans. Syst. Sci. Cyb. Vol. SSC-4
(November 1968), pp. 395-400.

43. Huesmann, L. R., Goldberg, R. P. Evaluating Computer Systems
Through Simulation. (CR 13526) Computer J. 10, 2 (Aug 67)
pp. 150-156.

44. 	 Hutchinson, G. K. , Maguire, J. N. Coimuter Systems Design and
Analysis Tnrough Simulation. (CR 9939) Simulation Univac 1107.
Proc. AFIPS FJCC 1965, pp.1 61-1 6 7.

45. 	 Hutchinson, G. K. Some Problems in the Simulation of nulti- ­
processor Connuter Systems. (CR 15578) Proc. iFIP Working
Conf, Oslo, 1967.

46. 	 IBM Computer System Simulator/360 Program Description and
Operations Manual. IBM Form No. Y20-0130.

47. 	 Ithrer, F. C. Computer Performance Projected Through Simulation.
Comout. Autom., Vol. 17, }io. 4 (April 1967), pp. 22-27.

48. 	 Jacobson, R. V. Digital Simulation of Large-Scale Systems.
(CR 10843) Proc. AF!PS 1966 SJCC 159-164.

49. Lebman, M. M., Rosenfeld, J. L. Performance of a Simulated Multi­
prograrming System. Proc. AFIPS FJCC 1968, Vol. 33, PT2,

pp. 1431-1442.

50. 	 Markowitz, H. M., Hausner, B., Karr, H. W. SIMCRIPT: A Simu­
lation Progranming Language. Prentice Hall, Inc. Englewood
Cliffs, 	N. J. 63.

51. Nielsen, N. R. An Approach to the Simulation of a Time-Sharing
System. (CR 14066) Proc. A-PIPS FJCC 1967, pp. 419-428.

52. 	 Nielsen, N. R. Simulation of Time-Sharing Systems. (CR 12769)
CACM l0 (July 1967) pp. 397-412.

53. 	 Nielsen, N. R. Computer Simulation of Computer System Perfor­
mance. (CR 13525) Proc. ACM 22nd National Conf. (1967)
pp. 581-590.

54. Rebmarn, S. L., Gangwere, S. G., Jr. A Simulation Study of

Resource MDanagement in a Time-Sharing Environment. Proc. AFIPS
FJCC 1968, Vol. 33, PT2, pp. 1411-1430.

55. 	Scherr, A. L. An Analysis of Tie-Shared Conputer Systems.
(CR 14068) Ph.D. Dissertation (AD 470 715) M.I.T. Carbridge,
Mass., June 1965.

56. 	 Scherr, A. L. Analysis of Time-Shared Computer Systems - Simu­
lation of CTSS. (CR 12369) M.I.T. Res. Monograph No. 36, I=

59

Press, Catbridge, Mass. 1967.

57. Seaman, P. H., Soucy, R. C. Simulating Operating Systems. IBM
Sys. J. 8, 4 (1969) 264-279.

58. 	 UNIVAC. General Purpose System Simulator II (GPSS II) 'Reference
Manual'. UNIvAC Manual UP-4129.

HABDAEE 	 MONITOR _11LYSIS TECHNIQUE

59. Allied Comuter Technology, Inc. Computer Performance Monitor
System Sumnary Manual.

60. 	 Apple, C. T. The Program Monitor - A Device For Program Perfor­
mance Measurement. Proc. ACM 20th National Conf. (August 1965),
pp. 66-75.

61. 	 Computer and Progra=ning Analysis, Inc. Computer Performance
Analyzer Series 7700 Description.

62. 	 Conuter Synectics, Inc. System Utilization Monitor Model SM-416
Specification. Form No. A-416-4, CS, Santa Clara, California.

63. 	Computer Synectics, Inc. System Utilization Monitor Evaluation

Technique. Form No; 4-416-1, CSI, Santa Clara, California.

64. 	Estrin, G., Hopkins, D., Crocker, S. D. SNUPER Computer - A

Computer In instrumentation Automaton. (CR 13296) Proc. AFIPS

SJCO 1967, pp. 645-656.

65. Roek, D. J., Emerson, W. C. A Hardware InstrLmentation Approach
to Evaluation of Large Scale System. Proc. ACM 24th National
Conf., August 19691, 351-367.

66. 	 Schulman, F. D. Hardware Measurement Device for IBM System!360
Time-Sharing Evaluation. (CR13298) Proc. ACM 22nd National
Conf., (1967), pp. 103-109.

67. 	Stevens, D. F. System Evaluation on the Control Data 6600. Proc.
IP Congress 68 (Aug~ust 1968), P.C34-38.

SOFTARE MONITOR A ALYSIS TECHNIQUE

68. 	Bemer, R. W., Ellison, A. L. Software Instrumentation Systems

for Optimm Perfoirmance. Proc. IFIP Congress 68 (August

1968), pp. 39-42.

69. 	 Boole and Babbage, Assoc. Systems Measurement Software (SMS/360)

Users Guide For CUTE-1. Boole and Babbage Report 135, February

1969.

70. 	 Boole and Babbage, Assoc. Systems Measurement Software (SMS/360)

Users Guide For PPE. Boole and Babbage Report 41, May 1969.

6n

71. 	 Campbell, D. J., Heffner, W. J. Measurement and Analysis of Large
Operating Systems During System Development. (CR 16874) Proc.
AFIPS FJCC 1968, Vol. 33, PP. 903-914.

72. 	Cantrell, H. N., Ellison, A. L. Multiprogramming System Perfor­
mance Measurement and Analysis. Proc. AFTPS SCC 1968, Vol. 30,
pp. 213-221.

73. 	Deniston, W. R. SIPE - A TSS/360 Software Measurement Technique.
Proc. ACM 24th National Conf., August 1969, pp. 229-245.

74. 	 Hornbuckle, G. D. A Muitiprogramning Monitor for Small Macbines.
(OR 16431) Comm. ACM 10,5 (May 1967); pp. 273-278.

75. 	Karush, A. D. TWo Approaches for Measuring the Performance of
Time-Sharing Systems. Proc. ACM 2nd Syirp. on 0/S Principles,
October 1968, pp. 159-166.

76. 	 Karush, A. D. The Computer System Recording Utility: Application

and Theory. SP-3033, SDC, Santa Monica, California, February

1969.

77. Pinkerton, T. B. Performance Monitoring in a Time-Sharing System.
CACM 12, 11 (November 1969)608-610.

78. Sackman, H. Computers, System Science, and Evolving Society.

John Wiley and Sons, Inc., New York, 1967.

79. 	 Salrzer, J. H., Gintell, J. W. The Instrumentation of NULTICS.
Proc. ACM 2nd Synqp. on O/S Principles, October 1969, pp. 167­
174.

80. Stanley, W. I., Hertel, H. F. Statistics Gaithering and Simulation
for the APOLLO Real-Time Operating System. IBM System J.
No. 2 68, PD. 85-102.

81. 	 Van Horn, E. C. Three Criteria for Designing Computer Systems to
Facilitate Debugging. CACM, Vol. 11, No. 5, (may 1968) pp.
360-365.

BENCHMARK ANALYSIS TECHNIQUZ

82. 	 Arbuckle, R. A. Computer Analysis and Throughput Evaluation.
Comput Autom., (January 1966),.pp. 12-15.

83. Budd, A. E. A Method for the Evaluation of Software: Executive

Operating or Monitor Systems. Mitre Corporation, Bedford,
Mass. MTR-197.

84. 	 Joslin, E. 0. Application Benchma k: The Key to Meaningful Com­
puter Evaluations. Proc. ACM 20th National Conf. (1965), pp.
27-37.

http:1966),.pp

85. 	 Joslin, E. 0., Aiken, J. J. The Validity of Basing Computer
Selections on Bencbmark Results. Conmut Autom., (January
1966), pp. 22-23.

86. 	 Karush, A. D. Benchmark Analysis of Time-Sharing Systems.
(AD 689781) Report SP-3347, SDC, Santa Monica, California
June 1969, 40P.

87. Karush, A. D. Bencbnark Measurement of the Adept-50 Tihe-
Sharing System. Report T-4324, SDC, Santa Vonica, California,
(June 1969), 44P.

88. 	 Hillegass, J. R. Standardized Benchmark Problems Measure Computer
Performance. Comput Autom., (January 1966), pp. 16-19.

89. 	 Oppenheimer, G., Weizer, N. Resource Management for Medium Scale
Time-Sharing Operating Systems. CACM 11,5 (May 1968), pp. 313­
322.

90. 	 Rubey, R. J. A Comparative Evaluation of PL/1. Datamation,

Vol. 14, No. 12 (December 1968), pp. 22-25.

91. 	Totr, J. B. Real-T m Processing Power: A Standardized Evalua­
tion. Comput Autom. (Apr.67), pp. 16-19.

UNIVERSITY OF MARYLAND
THE GRADUATE SCHOOL

COLLEGE PARK. MARYLAND 20742

TO: The,,yduate School

FROM : -------
Advisor

SUBJECT: Certification of Completion of ,Master's Degree Without Thesis.

Pldase check appropriate Master's degree.

(v'° Master of Arts (Without Thesis)

() Master of Business Administration
() Master of Education
() Master of Library Science
() Master of Music
() Master of Science (Without Thesis)

() Master of Social Work

candidate for a MasterI ertify that ..

Name d Can.idate

of- degree, who sees the degree at the commencement

"-- Degree

of < ,-......... Z. .7. has met all the requirements of the department

or program for the degree including:

.......... Seminar or Research papers

.......... Comprehensive Examinations
(written or oral)

Signed,

................................

Tame of Professor dnv or)

............
...................
............

Title

...

Date'I

(rorra ,S. I-Jan. 19691,

