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ABSTRACT

The elastic scattering of high-energy electrons from several 2s-ld
shell nuclei is studied. The method used mere is based on the solution
of the Dirac equation in the Glauber approximation, and was originally
developed by Bake! . 1 The initial and final states of the s-d shell nuclei
are obtained by pro,ecting states of good angular momentum from intrin-
sic Hartree-Fork states. The results are compared with Born approx-

T'.e seat"Wring of high-energy electrons from nuclei provid pa a very
powerful tool for use in the study of nuclear structure. As a means by
which nuclear models may be tested, electron scattering has the attract-
ive feature that the electron-nucleus interaction is well understood. This
is in contrast to the situation in nucleon scattering where the uncertainties
in the nuclear model are further complicated by the lack of detailed know-
ledge of the nucleon-nucleus force.

The analysis of high-energy electron scattering is carried out most
easily in first Born approximation. However, it is well known that this
approximation is inadequate except for the very lightest nuclei, and that
zeros occur at the diffraction minima. An alternative approach to Uie
problem is the method of phase shift analysis which has been successfully
applied over a wide range of nuclei. Unfortunately this method is very
complicated and would prove to be impractical for later investigations of
inelastic scattering. Bak3r has developed an approximation for high-
energy electron scattering based on the approach which Glauber developed
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for high-energy nucleon scattering. 1, 2 Baker's high-energy approximation
washes out the zeros of the diffraction minima which are given by the
Born approximation, and agrees well with the results of phase shift anal-
ysis. To our knowledge, however, this high-energy approximation has
only been tested for the very simplest nuclear models.

In this paper, the method of Baker is used to study the elastic scat-
tering of high-energy electrons from several light deformed nuclei. The
major objective of this investigation is to test the microscopic projected
Hartree-Fock wa`efunctions for the nuclei of interest.

-	 THEORY

The high-energy approximation for electron scattering consists of
ILI

using the approach of Glauber to solve the Dirac equation for an electron
in the presence of a scalar potential. Baker shows chat, in this a pp rox-
imation, the matrix element which must be evaluated is:

ks _ k / oo T 1-1.1-ix(b)

iQ

where

X(b) _ - E	 V(b, z) dz	 (2)
k f-0

V(b , z) = V(r) = f P(R)Vc (( R - r () dR	 (3)

p(R) is the nuclear density function and V c ((R - r J j is the screened
coulomb potential.

R

Vc(X)=-aZfX
X a
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where ac is the fine structure constant, Z is the nuclear charge, a is
the screening radius, and the screening function used here is

f 'X	 1 -	 XjxY+^^^ 	 4az

Assuming that the nuclear density is sphericaLy symmetric, it can be
shown that

rM
X(b) = 8^ i? 	 p(R) r vo(r, R) dz R` dR	 (4)J	 JO

where r =b^, v6 (r, R) is the zero order multipole of V  and
= otZ k . Now vo (r, R) must be known only for values of R < R6 under

the assumption that p(R) is negligibly small for R > R 6 _ Based on this
assumption, it can be shown that

1f(a), r 

v O (r , R) _	 (5)
R -1 ,	 r C R

Then it follows that

X(b) = XO (b) + X1 (b)	 (6a)

where

xO(b) = i1 log (1 + 4a2/0)	 (6b)



7

k_
i0`:

.a I

Y

x

4

and

Xi (b) = 8v

0 

00 
dz 001 - 1 p(R)R' dR	 (8c)

^R r^

We have found it convenient to integrate Eq. (1) ay parts obtaining

Go
M = k	 J1 (gb)X'(b)eiX(b)b db	 (7)

q fo
where y,' (b) = dX("o)/db. The evaluation of x^(b) is simple, and it can
be shown that

hi(b)=8^r► ^p 	 +r Jr2dr
b

(Vb	
(8)

V

This can then be integrated to obtain Xl (b) . Now, if we assume that
p(r) can be represented by a series of C=auss -Laguerre functions2

P(R) _	 An  ka, Nr),
n=0

Fn (a, or) = p-a^1
2
 r
2
 L1/2(02r2)..

and then make use of the addition theorem for Laguerre polynomials it
can be shown that

00

N
C 

b2 + r? 
= e-ag2b2 

p(r) - (0b) 2 	 1 Lm- 1(020)
m

m=1

00

k T-1 Am+nFn(a' or)
n= 0

(9)



a

s

F

5

From th`_s we obtain

I
00

X1(b) = 2 q e -ao b2 1 - 4;r (/b)2	
m Lm -1 (Q2b2) Bm

b	 m=1
J

where

00

BM 	 Am+n Dn
n=0

and

CO

Dn = f ,Fn (a, Qr)r2 dr

Equation ( ) may be integrated to yield

00	 00

X1 (b) = -277	
2

a - Q R2 dR + 4M	 Im-l(P2b2) Bm,
\	 R

0	 m=1

Im (x =	 e -O'y L y (v) ay.
X

The XO u) and x1 (b) and their derivatives are then used in Eq. (7) to
obtain A The final evaluation of the integral is carried out using the
same general procedure as was used by Baker. The electron scattering
form factor is related to the square of M divided by the point cross
section. The change in the electron wavelength as the electron approaches
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the scattering center must be accounted for in the calculation of the form
factor. The correction factor suggested by Ravenhall has been used here. 4
A gaussian form factor has been used in this work to correct for the finite
size of the proton.

S32)The nuclear structure calculations (for Mg 24 , S128 9 S32 ) were made
using projected Hartree-Fork wavefunctions. The basis spaces ,used in
the HF calculations span the first five major shells (is, 1p, 2s-ld, 2p-lf9

3s-2d-lg) and have harmonic oscillator radial dependence. The oscillator
parameter was chosen by reproducing, as closely as possible, the RMS
radius for the nuclei be considered; this essentially introduces a second
constraint into the Hartree-Fock problem.

RESULTS AND DISCUSSION

The failure of the Born approximation to yield reliable results in the
region of diffraction minima is demonstrated in figure i for electron

a	 scattering from Ne 20 . Unfortunately there is little experimental data
available on Ne20 , so comparison is not made with experiment; however,
within the range of validity of the nuclear model, it has been demonstrated
by Baker that the high-energy approximation is in excellent agreement
with phase shift analysis. Figure 1 demonstrates rather clearly that
Baker's approximation fills in the diffraction minima.

In figure 2 is presented the result of our calculation for S32 . These
results are unnormalized, and over the entire range of q are quite good
except for the slight displacement of the second minimum. In'_igures 3
and 4, the results are presented for M724 and Si28 . These results are
generally not in very good agreement with experiment. The first minima
are displaced considerably and the first maximum is quite low in both
ca3es.

In an attempt to understand this discrepancy, the data of Helm (from
which the RMS radii were determined) were re-examined. In figure 5 we
show Hel,n's results. The results for S32 are quite reliable for the de-
termination of an RMS radius; however, for Mg 24 and 5128 the minima
were not determined accurately. We feel. therefore, that it is not sur-
prising that the RMS radii determined by Helm yield poor structure re-

6
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sults and therefore poor elastic form factors for electron scattering.
The nuclear structure results have been adjusted through the param-
eters appearing in Eq. (9) so as to yield the results appearing in fig-
ures 6 and 7. These are considerable improvements over the p:—vious
results although the first maximum is still low in both cases.

It is gratifying that one can obtain the results appear ng in fig-
ures 2, 6, and 7 using fundamental wavefunctions in the description
of the nuclear structure. This is particularly true in the case of 932
where the wavefunction needs to be improved only slightly in order
to obtain excellent agreement with experiment. The results for Alg 24
and 3128 should be improved beyond the first diffraction minimum
when a more detailed study is made of the wavefunctions for these
nuclei.
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