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ABSTIACT 

This report presents the results of a design study of nuclcar-electric propelled unmanned 

spacecraft. The electric power source is in-core thermionie reactors based on either the 

The study guidelines and approachinternally (flashlight) or externally fueled diode concept. 

of the candidate launch vehicles, thrust subsystem, andare defined. The characteristics 


the payload and communications subsystem are presented,
 

The definition of two spacecraft/powerplant configutatio is are presented which deliver 

240 kWe net to the thruster array. This definition, presented for both the flashlight and 

includes the key items of spacecraft arrangement and a detailedexternally fueled reactors 

weight breakdown. Power conditioning, heat rejection subsystem, shielding, and space-

The results show about a 30 percent weight advantage forcraft structure are detailed. 

This is primarily due to a 120 vdcthe spacecraft based on the externally fueled reactor. 

power output from the externally fueled reactor, as compared to a 15 vdc power output 

from the flashlight reactor. 

Weight reduction by improved technology could further reduce the weight by 5 to 15 

percent.
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1. SUMMARY
 



1. SUMMARY
 

Preliminary design analysis to determine spacecraft component arrangement and configura­

tion was conducted. The resultant spacecraft design referred to as the baseline concept, 

with guidance from the weight optimization computer code studies, has resulted in a refined 

design layout. 

Reference spacecraft design layouts, and weight and power distribution summaries are pre­

sented for each of the two powerplant concepts. For this study, the externally fueled reac­

tor and flashlight reactor concepts are required to provide 240 kWe to the thrust system. 

Comparison of the two powerplant concepts and their effect on the total spacecraft are pre­

sented below. Each of the reference designs were developed under the common guidelines 

that all of the powerplant components, except the reactor, are current technology. 

1. 1 PERFORMANCE COMPARISON 

Using terminology recommended by the NASA-OART electric propulsion systems analysis 

task group (Reference 1), the spacecraft initial mass, mto, is defined as: 

m o =m p +m +m -m
 
0 pa p t n
 

where the masses are 

mps = low thrust propulsion system 

m = 	propellantP 

In t = 	 tankage 

m = 	net spacecraft (guidance, thermal control, attitude control, telecommun­
ications, structure, science, etc.) - includes the science payload, m L 

The propulsion system is further broken down: 

Ips'= mw ms 



where these masses are
 

In 	= power subsystem 

Iot 	 = thrust subsystem 

Similarly, net propulsion power is defined as 

P - +PfP 

PNP 
PTN 
 TPC 

where the component powers are 

P = ion engine grid powerTN 

PTPC = other ion engine power 

Gross reactor power is that reactor output power required to supply net propulsion power, 

PNP' to the thruster subsystem. Gross propulsion power is given by: 

pe= PN Mp 

where 77MPC is the main power conditioning efficiency. Specific weight of the propulsion 

system, a, is defined by 

m 
Pps
 

e
 

From the detailed weight and power breakdown, presented in Tables 1-2 and 1-3 for the 

externally fueled reactor.and in Tables 1-4 and 1-5 for the flashlight reactor, spacecraft 

performance is summarized in Table 1-1 for the state-of-art spacecraft designs. Also 

shown are performance data credible for advanced spacecraft concepts (Section 8) which 

account for the weight reduction associated with the following: 

a. 	 Replacement of Cu/SS radiators by Be/SS radiators for the 0. 95 non-puncture 
probability. 
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TABLE 1-1. SPACECRAFT PERFORMANCE COMPARISON -REFERENCE
 
BASELINE DESIGN AND ADVANCED CONCEPTS
 

Reactor Externally Fueled Flashlight
 
Reactor Spacecraft Reactor Spacecraft
 

State of State of 
Art* Advanced Art* Advanced 

Meo - pounds 31280 29015 37605 34970 
Lift-off mass (14200)** (13200) (17100) 

M o - pounds 30190 27940 36325 3690 
Initial mass (13700) (12700) (16500) 

Mps -pounds 13210 10960 19330 16710
 
Low thrust propulsion (6000) (4980) (8790)
 

system 

M, - pounds 9045 8235 12170 10950 
Power subsystem (4106) (3790), (5525) 

Mts - pounds '4165 2725 7160 5760
 
Thrust subsystem (1891) (1250) (3250) 

Mp - pounds 14500 14500 14500 14500 
Propellant .(6580) (6580) (6580) (6580) 

Mt - pounds 245 245 245 245 
Tankage (111) (111) (111) (ill) 

M n - pounds 2235 2235 2235 2235 
Net spacecraft (1015) (1015) (1015) (1015) 

Me - pounds 2065 2065 2065 2065 
Science payload (-1000) (-1000) (-1000) (-1000) 

PG - kWe 274 274 318 318 
Reactor gross power 

Pe -kWe 262 - 262 274 274 
Effective power 

input to PC units 

PNP -kWe 240 240 240 240
 
Net propulsion power 

PTH - kWe 223 223 223 223 
Ion engine grid power 

PTPC -kWe 17 17 17 17 
Other ion engine power 

a pounds/kWe*** 50.4 41.8 71.1 61.0 
Special weight 

' *Except for Reactor 
**Numbers in parenthesis are weights in kilograms 
***Based upon M /P
 

ps e
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b. 	 Increasing the maximum power conditioning temperature from 200 0 F to 300 0 F. 

c. 	 Increasing the main power conditioning efficiency by 2 percent. 

d. 	 Decreasing the critical power conditioning temperature drop from the transistor 
junction to the radiator surface from 25 0 F to 15 0 F. 

Structure weight is assumed to decrease in direct proportion to the decrease in the total low 

thrust propulsion system weight, Mps. 

Propulsion system specific weight, a, for the reference externally fueled reactor/spacecraft 

is 50. 4 pounds/kWe, and propulsion system specific weight of the reference flashlight reac­

tor/spacecraft is 71. 1 pounds/kWe. These specific weights are based on propulsion system 

power input of 262 kWe for the externally fueled reactor/spacecraft and 273. 1 kWe for the 

flashlight reactor/spacecraft. Table 1-1 indicates that technology advancements in the 

spacecraft, external to the reactor, can result in performance increases of about 12 percent 

for both systems. 

1.2 EXTERNALLY FUELED REACTOR BASED SPACECRAFT 

The reference spacecraft utilizing the externally fueled reactor concept is based on the 

following assumptions: 

a. 	 Reactor coolant outlet temperature of 13500F. 

b. 	 Single heat rejection loop between reactor and main radiator. 

c. 	 Main radiator in a position directly behind the forward Hg propellant tank and 
in front of the power conditioning radiator. 

Further details are presented in Subsection 7. 1. 

1.2.1 REFERENCE DESIGN LAYOUT 

Figure 1-1 shows a design layout of the spacecraft powered by the externally fueled reactor. 

The reference spacecraft is approximately 62. 7 feet long and 9. 2 feet in diameter. The 

conically shaped forward end of the spacecraft includes the reactor at the apex and 75 percent 

of the main radiator. Half-angle of the conical portion if 6. 6 degrees. The remainder of 

the vehicle from this point rearward is essentially a cylinder. 
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Figure 1-1 provides an overall arrangement of the major spacecraft components. The reac­

tor is located at the apex of the conical section to provide maximum separation distance 

from the payload at the opposite end of the spacecraft and to assure minimum required shield 

volume. The shield consists of a LiH block of neutron shielding followed by the forward tank 

of mercury (Hg) propellant which acts as a gamma shield. 

Located directly behind the propellant tank is the main radiator, which dissipates waste heat 

from the reactor by means of a single loop NaK-78 coolant. A very short section of auxiliary 

radiator, which dissipates heat generated in the EM pumps and the neutron shield, separates 

the main radiator from the power conditioning radiator. Individual power conditioning mod­

ules are placed uniformly on the eight-sided power conditioning radiator. Low voltage cables 

extend longitudinally from the reactor exit along the surfaces of the shield and main radiator 

to the power conditioning radiator. At five axial locations on the radiator, these cables run 

circumferentially to the 38 individual modules, Thirty-seven of these modules are required 

for the 37 ion engines, of which 31 are operational and 6 are spares. The remaining PC 

module provides for the necessary hotel load power conditioning. 

The rear section of the spacecraft includes the Hg propellant not required for gamma shield­

ing, the payload bay, and the thrust bay that houses 37 mercury ion engines. A communica­

tion antenna which extends radially for operation is shown in the stowed position behind the 

thrusters for launch. 

Cross-sectional views through the main radiator, power conditioning radiator, and payload 

sections of the externally fueled reactor/spacecraft are presented in Figures 1-2, 1-3, and 

1-4, respectively. 

1.2.2 WEIGHT AND POWER SUMMARY 

The weight summary for the reference designs of the spacecraft utilizing the externally 

fueled reactor concept is presented in Table 1-2. In order to provide 240 kWe of power to 

the ion engine system, a gross reactor power output of 274 kWe is required. Total space­

craft weight at launch is 31, 485 pounds. Disposable launch vehicle adapter and payload 

shroud weights, which are jettisoned, result in an Earth orbit spacecraft weight of 30,410 

pounds. 
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Figure 1-4. Payload Bay Cross-Sectional View, Externally Fueled Reactor/Spacecraft 

Weight of each of the three major spacecraft systems 	are: 

a. Propulsion system 13, 210 pounds 

b. Propellant 14, 500 pounds 

c. Propellant inert 260 pounds 

d. Payload system 2,235 pounds 

Electric power utilization for the externally fueled reactor concept is summarized in Table 

1-3. Net power to the ion engine system is 240 kWe, 	 of which 223 kWe are required for the 

3100 volt screen supply operation of the ion engines, and 17 kWe are required for other 

special ion engine power conditioning. A total of 274 kWe of gross reactor output power is 

required. 
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TABLE 1-3. ELECTRIC POWER SUMMARY 240 kWe (NET) 

THERMIONIC SPACECRAFT (EXTERNALLY FUELED REACTOR) 

Component Power kWe 

Reactor Output 274 

Low Voltage cable loss 5.87 

Hotel load section 4.031 

Cable losses 
PC losses 
Reactor pump input 
Auxiliary pump input 
Reactor controls input 
Cesium heater input 

.055 

.5246 
2.745 

.0064 

.20 

.50 

Payload and Thrust section 
Cable losses 
Special IonEngine PC input 
Payload input 
Spacecraft control input 
Powerplant control 

0.1 
17.0 

1.0 
0.5 
0.5 

19.1 

High Voltage PC Input 
PC losses 
Cable losses 

21.5 
0.5 

245 

Thruster Engine Input 223 

Net Power to Thruster* 240 

*The net power is the sum of the ion engine grid power input, after power 
conditioning, and the other special ion engine power. 

For purposes of mission analyses, 262 kWe are delivered to the main power conditioning, 

which operates at an effective efficiency of 91. 6 percent, including high voltage cable losses, 

to deliver 240 kWe to the 31 operating ion engines. 

1.2.3 KEY CHARACTERISTICS 

A summary of design characteristics of the shield, heat rejection and power conditioning 

subsystems are discussed in this section for the externally fueled reactor spacecraft ref­

erence design. 
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1.2. 3. 1 Reactor-Shield Subsystem 

Shielding is provided to ensure that the power conditioning and payload components meet the 

radiation criteria established by the design guidelines. Neutron radiation is attenuated by 

a lithium hydride shield, located immediately behind the externally fueled reactor. 

Additional attenuation is provided by the tank of mercury propellant located behind the shield. 

However, the primary purpose of mercury propellant in the forward section is to act as the 

primary gamma shield. 

The lithium hydride shield is 16 inches thick with an average diameter of 41. 8 inches. 

Total weight of the neutron shield is 765 pounds, of which 575 pounds is lithium hydride. 

Approximately 4500 pounds of mercurypropellant is contained in the tank located directly 

behind the shield. The conically shaped tank is 6 inches thick with an average diameter of 

44. 4 inches. 

Plugs of tungsten weighing 185 pounds back up the propellant shield where auxiliary coolant 

lines pass through the propellant tank. 

1. 2. 3.2 Heat Rejection Subsystem 

Heat rejection from the spacecraft is accomplished by the primary, auxiliary, power con­

ditioning, payload and thruster PC radiators. The primary and auxiliary radiators are part 

of an active cooling network; whereas, the power conditioning, payload and thruster radia­

tors transfer heat from temperature sensitive components to space bypassive means. In 

both the primary and auxiliary active loops, NaK-78 is used as the coolant fluid. The pay­

load and thrust subsystem have essentially been defined by the design guidelines. 

The function of the primary heat.rejection system is to actively transfer heat from the reac­

tor to space. The main radiator is located in the forward section of the spacecraft because 

the high reactor output voltage, about 120 volts, permits the aft location of the power con­

ditioning radiator without excessive 12 R losses. The forward location of the main radiator 

also minimizes coolant and piping weight, and the weight penalty associated with NaK-78 

coolant pumping. 
1-13 



The relative location of the main heat rejection system is shown in Figure 1-1. The main 

radiator consists of four bays of equal length, three of which form the conical surface of 

the spacecraft while the fourth occupies the forward section of the cylindrical spacecraft 

area. Each of the bays is divided into three 1200 panels. Dry weight of the copper/stainless 

steel radiator, which is 660 square feet in area, and associated headers is 1335 pounds. In 

addition to the required piping and two EM pmnps-(one working and one redundant), bellows 

in the input and return radiator feed lines takes up extension motion among the individual 

bays of the main radiator. 

1. 2. 3.3 Power Conditioning 

Low voltage cables transports 120 volts of reactor electrical power output to the 37 high 

voltage supply power conditioning units, the special payload and thrust power conditioning 

modules and hotel load low voltage power module. Path of the low voltage cables is shown 

in Figure 1-1. Each of the 37 main power conditioning modules supplies 3100 volts to each 

ion engine. The hotel power conditioning distributes low voltage power to operate the power 

plant as well as the electronic components which monitor and control the actuator drives of 

the reactor and the pumps of the active heat rejection loops in the power plant. 

Located directly behind the auxiliary radiator is the passive power conditioning radiator, 

also shown on Figure 1-1. The 38 power conditioning modules are placed uniformly over 

the aluminum radiator in which 480 square feet are required to dissipate waste heat to space. 

This radiator, based on a 0. 115 inch panel thickness, weighs 745 pounds. 

1.3 	 FLASHLIGHT REACTOR/SPACECRAFT 

The reference flashlight power plant and spacecraft design is based on the following require­

ments: 

a. 	 Reactor coolant outlet temperature of 1350OF 

b. 	 Two heat rejection loops in series between reactor and main radiator 

c. 	 Power conditioning radiator located directly behind the shield and in front of 
the main radiator 

d. Aluminum as the low voltage cable material. 
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1. 3.1 REFERENCE DESIGN LAYOUT-FLASHLIGHT REACTOR SPACECRAFT 

Figure 1-5 presents the design layout of the spacecraft powered by the flashlight reactor. 

The reference design spacecraft is a long, narrow vehicle, approximately 84 feet long and 

9. 2 feet in diameter. The conical front end section is 25. 6 feet long with a 7. 4 degree half 

angle while the rear of the vehicle is essentially a cylindrical section. The reactor is lo­

cated at the apex of the conical section to provide maximum separation distance from the 

payload, which is at the rear of the cylindrical section, and to assure minimum required 

shadow shield volume. The neutron shield is located as close as possible to the reactor, 

again to provide minimum shield volume and weight, with a portion of the mercury propel­

lant located in a tank behind the neutron shield to act as gamma shielding. 

The power conditioning modules and power conditioning radiator section are located directly 

behind the shield and propellant tank to minimize the length and, hence, the power losses 

in the low voltage cable. This is required due to the low voltage, 14 to 16 volts, character­

istic of the flashlight reactor. Individual PC modules are distributed uniformly on the sur­

face of the PC radiator, one module per pair of reactor fuel elements and low voltage cables. 

The cables are strung along the outer surface of the shield and PC radiator surface so that 

they can radiate their I R power losses directly to space. 

The PC radiator occupies most the conical surface of the spacecraft plus 9. 7 feet of the 

cylindrical section. A very short section auxiliary radiator surface, together with internal 

insulation rings, acts as a thermal buffer between the low temperature PC radiator and the 

high temperature main radiator, which covers most of the cylindrical section surface. 

The reactor waste heat is transported to the main radiator in two stages. The first loop 

pipes the NaK-78 reactor coolant, outside the shield to a heat exchanger placed between the 

neutron shield and the gamma shield (forward propellant tank). A second NaK-78 loop car­

ries the heat along the outer surface of the PC radiator to the main radiator. The nominal 

1300°F duct is insulated from the 175°F power conditioning radiator by combined nickel/ 

aluminum multifoil insulation. 
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Two series coolant loops are required because of unacceptable coolant activation due to the 

beryllium or beryllium oxide reflectors used in the flashlight reactor. This differs from the 

externally fueled reactor because of its heavy metal reflectors, which reduce coolant activa­

tion to the point where a single loop is acceptable. Comparing Tables 1-2 and 1-4, it is seen 

that the externally fueled reactor weighs about 1, 000 pounds more than the flashlight reactor. 

This is more than offset by a 2, 300 pound reduction in the primary heat rejection system for 

the externally fueled reactor, relative to the flashlight reactor. 

The payload section, thrust power conditioning section, and ion thruster engines are located 

in sequence at the rear of the vehicle. A single disk conmmunication antenna is shown in the 

launch position behind the thruster engines on Figure 1-5. After launch, it would be extended 

radially, beyond the vehicle diameter and forward of the thrust engines. 

Cross-sectional views through the heat exchanger bay, power conditioning radiator, main 

radiator, and payload sections of the flashlight reactor/spacecgaft are presented in Figure 

1-6, 1-7, 1-8, and 1-9, respectively. 

PRESSURE EM PUMPS
 
CONTROL
 
TANKS 

REACTOR RADATO 

FLIGHT 
FAIRING 

TO TO 
RADIATOR REACTOR 

HEAT EXCHANGER 

ACCUMULATORS . 
REACTOR LOOP 
 / 

Figure 1-6. Equipment Bay Cross-Sectibnal View, Flashlight Reactor/Spacecraft 

1-19
 



LONG FRON TFFNN 
RING 

DC
DUCT 

SFLIGHT
 

" / FAIRING
 

RADIATOR 
SURFACE 

LOW VOLTAGE OWER CONDITIONINGCABLES MOUNTING ENVELOPE 

Figure 1-7. Power Conditioning Radiator Cross-Sectional View, 
Flashlight Reactor/Spacecraft 

DIFFERENTIAL 

EXPANSION 
STIFFENING COMPENSATIONRING FEED DUCT 

HEADER FEEDFLIGHT 
LINES-TYP
FAIRING 


PRIMARY 
RADIATOR 

'EXPANSION• " DIFFERENTIAL 

COMPENSATIONRADITOR, ,"RETURN DUCT
, 


HEADER -TYP / 

ACCUMULATORS-/4 EM PUMPS

\. iiETC.
 

Figure 1-8. Main Radiator Cross-Sectional View, Flashlight Reactor/Spacecraft 

1-20 



PLASMA DETECTOR ELECTRIC FIELDDETECTOR
 

•COSMIC RAY .MAGNETOMETER 
DETECTOR
 

POWER SUPPLY DATA CONVERTER 

METEORITE METEORITE 
DETECTOR DETECTOR 

FLIGHT 
DIGITAL
FAIRING 


AUTOMATIONSYSTEM
 

COMMAND 
DECODER 

' PRESSURE 
CONTROL 

TANK 
MERCURY 
PROPELLANT 

TANKS 

DATA STORAGE 
SYSTEM :TRANSMITTER 

ULTRAVIOLET
 
SPECTROMETER TV CAMERA 

METEORDETECTOR METEORITE 

DETECTOR 
INFRARED 

SPECTROMETER 

Figure 1-9. Payload Bay Cross-Sectional View, Flashlight Reactor/Spacecraft 

1.3.2 WEIGHT AND POWER SUMMARY 

The weight summary for the reference design spacecraft utilizing the flashlight reactor con­

cept is presented in Table 1-4. In order to provide 240 kWe of power to the thruster system, 

a gross reactor power output of 318 kWe is required. Total spacecraft weight at launch is 

37,605 pounds. Disposable launch vehicle adapter and payload shroud weights result in an 

Earth orbit spacecraft weight of 36,325 pounds. 

Weight of each of the major spacecraft systems ai 

a. Propulsion system 19, 330 pounds 

b. Propellant 14, 500 pounds 

c. Propellant inert 260 pounds 

d. Payload system 2,235 pounds 
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For this study, the propellant and payload systems have .been defined by the study guidelines. 

Therefore, this design effort is devoted to configuring a weight optimum propulsion system. 

Summary of the key characteristics of each subsystem that comprise the propulsion system 

are discussed in Paragraph 1.3.3. 

Electric power utilization for the flashlight reactor concept is summarized in Table 1-5. 

Net power to the propulsion system is 240 kWe of which 223 kWe are required for the 3100 

volt screen supply operation of the ion engines, and 17 kWe are required for other special 

thrust power conditioning. A total of 318 kWe of reactor output power is required to meet 

the net 240 kWe requirement. 

For purposes of mission analysis, 274 kWe (Pe) are delivered to the main power conditioning, 

to deliver 240 kWe to the 31 operating ion engines. This power conditioning operates at an 

effective efficiency of 87. 6 percent, including subsequent high voltage cable and necessary 

ion engine isolation losses. 

1.3.3 KEY CHARACTERISTICS 

A summary of the key characteristics of the reference design spacecraft that utilizes the 

flashlight reactor is presented in this section. The shield, heat rejection, and power con­

ditioning subsystems are discussed. 

1.3.3.1 Reactor-Shield Subsystem 

Neutron and gamma shielding for the flashlight reactor shown in Figure 1-5 is accomplished 

in the same manner as that described for the externally fueled reactor. In the spacecraft 

powered by the flashlight reactor there is, however, an equipment bay between the lithium 

hydride neutron shield and the forward tank of mercury propellant, which functions as a 

gamma shield. The can of lithium hydride is configured as a section of a cone, with a mean 

diameter of 48 inches and thickness of 26 inches. Total weight of the neutron shield is 1610 

pounds.
 

Adequate gamma shielding is provided by 10, 800 pounds of mercury propellant in the forward 

section. The conically shaped propellant tank is 9 inches thick with a mean diameter of 56 

* inches. 
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TABLE 1-5. ELECTRIC POWER SUMMARY 240 kWe (NET)
 
THERMIONIC SPACECRAFT (FLASHLIGHT REACTOR)
 

aqtor / //ut 
Losses and Distribution 

Low voltage cable loss 
Main P. C. input 

P.C. loss 

Main P. C. output 


3100 volt output 
Cable losses 
Thrust interrupter 
Thrust engine input 

250 volt output 
Payload and ion engine 
section 

Cable losses 
Thrust P. C. input 
Payload input 
Spacecraft control 
input 
Powerplant control 
input 

Hotel load section 
Cable losses 
P.C. losses 
Reactor pump input 
Radiator pump input 
Shield pump input 
Auxiliary pump input 
Reactor controls 
input 
Cesium heater input 

Net Power to Ion Engines*/240 

0.3 
17.0 

1.0 

0.5 

0.5 

0.19 
2.71 
8.06 
6.5 
0.16 
0.03 

0.2 
0.5 

POWER - kWe 
318 

20.5 
297.5 

35.32
 
262.18
 

224.53 
0.28 
1.25 

223 

37.65 
19.3 

18.35 

*The net power to the ion engines is the sum of the ion engina grid power input 

(223 kWe), after power conditioning, and the special ion engine power 
requirements (17 kWe). 
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The increased gamma and neutron shielding requirement for the flashlight reactor, com­

pared to the externally fueled. reactor, -is due primarily to the shorter distance between the 

flashlight reactor and the radiation sensitive power conditioning units. 

The total heating rate in the shield subsystem is approximately 1. 8 kW with most of this 

heat being deposited in the front one-foot thickness of the neutron shield. This heat is 

removed by the auxiliary cooling loop. 

The reactor loop piping traces a helical path just below the lateral surface of the neutron 

shield. The resultant holes in the shield barrier are covered with plugs of canned lithium 

hydride on the front end and rear faces of the neutron shield. Similar plugs of tungsten, 

3. 5 inches thick and weighing 265 pounds, cover the voids through the mercury tank caused
 

by the passage of the radiator loop piping.
 

1. 3.3.2 Heat Rejection Subsystems 

The main radiator, which dissipates reactor waste heat to space, is located in the aft end 

of the spacecraft. As a result of the coolant activation analysis, two separate NaK-78 cool­

ing loops, joined in series by a heat exchanger are required. EM pumps and accumulators a: 

included in the reactor side loop, as well as the main radiator side loop. Design of the EM 

pumps and accumulators is similar to that for the externally fueled reactor/spacecraft. 

Also, bellows in the input and return feed lines compensate for expansion among the indi­

vidual bays of the main radiator. 

The heat exchanger is a tube and shell, counter-cross flow unit with the hot reactor NaK-78 

coolant flowing inside the tubes and the cooler radiator NaK-78 coolant across and counter 

to the tube flow. Weight of the dry heat exchanger is 180 pounds. 

The main radiator has a total area of 945 square feet divided into 4 axial bays with three 

panels per bay. Each panel covers one-third of a cylindfical lateral surface (1200 of arc) 

and is 9.8 feet wide and approximately 9 feet in axial length. Sixty-five coolant tubes, which 

run the length oteach panel, are joined by solid fin sections of copper-stainless steel con­

struction. The total weight of all panels plus their headers is 2190 pounds. Total weight of 

the primary heat rejection system is 4840 pounds. 
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The auxiliary cooling loop provides a thermal heat rejection mechanism for those system 

components which have temperature limitations lowEr than the temperatures in the main 

heat rejection system and higher than the electronic components in the spacecraft. These 

intermediate components are the electrical and magnetic sections of the EM pumps, and the 

neutron shield. Self cooling EM pumps force the NaK-78 coolant through cooling passages 

in the reactor EM pump electrical section, through cooling passages in the frontal regions 

of the neutron shield, and through the auxiliary radiator. The cooled flow is then circulated 

through the cooling passages of the radiator loop EM pump and returned to the auxiliary 

pump to complete the circuit. Accumulators control the expansion and pressure level of 

the coolant as in the main heat rejection loops. 

The auxiliary radiator is a narrow band, containing a single cooling channel, attached to 

the 65 pound transition ring between the low temperature PC radiator and the high temperature 

main radiator. The radiating surface is ten square feet in area and 4.5 inches wide. Its 

weight is approximately 20 pounds. Total weight of the auxiliary loop is 110 pounds. 

1.3.3.3 Power Conditioning 

The power conditioning radiator rejects the heat generated in the high voltage supply and 

the hotel load power conditioners. The portion of the radiator, 35 square feet, corresponding 

to the hotel load power conditioning waste heat generation weighs 60 pounds. The remaining 

radiator area, 558 square feet, is attributable to the main power conditioning. The weight 

of this portion is 770 pounds, based on 0.10 inch thick aluminum radiator panels. 

The radiator heat loads from the special ion engine PC modules and the thruster isolation 

units located at'the base (rear) of the spacecraft, are 1.7 and 1.25 kW, respectively. The 

corresponding radiator areas and weights are 36 square feet and 70 pounds for the PC 

modules, and 26 square feet and 50 pounds for the isolation units. 

A low voltage cable assembly is a two component arrangement in series: a copper cable 

extending from the reactor fuel element extension to the front rim of the neutron shield, 

and an aluminum bus bar to a power conditioning module. A low voltage cable assembly is 
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attached to each of the 216 reactor fuel elements. Path of the low voltage cable along the 

spacecraft and the power conditioning equipment is shown in Figure 1-5. Because of the 

low voltage (14 to 16 volts) transported by the cable and resultant high I2R power losses, 

the power conditioning radiator with attached modules was located at the forward end of the 

spacecraft. One hundred and eight power conditioning modules, constituting the high ion 

engine screen grid (3100 volts) and medium hotel load (250 volts) power supply, are dis­

tributed on the inner surface of the power conditioning radiator panels. The integrated 

high/medium voltage supply power conditioning modules weigh 2640 pounds. 

The high voltage cable subsystem consists of the 3100 volt lines between the main power 

conditioning modules and the ion engines and the 250 volt lines between the main power 

conditioning modules and the hotel load, special payload and thrust power conditioning 

modules. 

The 3100 volt cabling consists of four separate wires forming two complete circuits. 

The extra circuit provides greatly increased reliability with negligible penalty. The cable 

starts at the rear end of one side panel of the PC radiator, runs forward the entire length 

of that panel, then returns down the length of an adjacent panel. This procedure, picking up 

the output power of all the main PC units, occurs across the six side panels of the PC 

radiator. The cable then traverses the axial length of main radiator and payload sections 

to reach the ion engines. 

The 250 volt line to the payload and thruster PC modules is of similar 4 strand construction 

and follows the same path. The level of 250 volts was selected from the moderately high 

voltage line because of the rather low 12R power losses and its convenience in designing 

hotel load power conditioning equipment compared to the low voltage (14 to 16 volts) cable. 

Difficulty of power handling and of power conditioning component selection precluded use of 

3100 volts for these lines. 

The power plant electric system consists of the hotel power conditioning units, and their 

radiators, plus the cabling to the pumps and equipment using the power. The special power 
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conditioning modules convert a 250 volt input power to the voltages required for the EM 

pumps and the reactor controls. Total hotel power conditioning weight is 185 pounds. 

1.4 COMMON PARAMETERS 

To aid in the design of the thermionic spacecraft and the comparison of the two propulsion 

systems, whose characteristics have been summarized in Subsections 1. 2 and 1. 3, a group 

of mission and component parameters which are common to both reactor concepts has been 

established. The following basic study ground rules define the mission objectives and remain 

constant throughout the study: 

" 	 Mission Definition - 600 day, unmanned Jupiter orbiter mission 

* 	 Launch Vehicle Interface - Spacecraft initial mass in earth orbit of 30, 000
 
pounds to be placed in 750 nautical mile circular orbit by Titan IJIC/7.
 

* 	 Payload - 2205 pounds based on Navigator studies and the Mariner program. 

* 	 Thrust - 37 mercury ion engines (including 6 spares), weighing 1233 pounds, 
based on current technology.
 

* 	Reactor Lifetime - Full power reactor operating time is 12, 000 hours. 

* 	 Propellant - 14, 500 pounds of mercury propellant is required to accomplish
 
mission.
 

* 	 Radiation Limits - The integrated neutron flux shall not exceed 10 
12 

nvt for 
neutron energy levels > 1 Mev; the integrated gamma dose shall not exceed 107 rads. 

* 	 Maximum power conditioning temperature of 2000F. 

* 	 NaK-78 coolant in all active coolant loops. 

* 	 Stainless steel coolant containment material. 

* 	 Copper-stainless steel material for active radiators. 

Furthermore, common characteristics identified in this study for the externally fueled 

reactor concept and the flashlight reactor power plants are listed below: 
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o Sink Temperature - approximate mean sink temperature for entire mission is 

300°R 

* 	 Aluminum material for passive radiators 

* 	 Active shield cooling mode 

" 	 No parallel cooling loops 

One working and one redundant pump in each cooling loop 

* 	 Maximum shield temperature of 10000 F 

* 	 Reactor controls power requirement of 0.2 kWe 

* 	 Cesium reservoir power requirement of 0. 5 kWe 

1-30 



2. INTRODUCTION
 



2. INTRODUCTION
 

A design study program of thermionic reactor power systems for nuclear electric propelled, 

unmanned spacecraft was performed by the General Electric Company Nuclear Systems 

Programs* in the period February 4, 1969 through June 30, 1970 for the Jet Propulsion 

Laboratory** under Contract Number JPL 952381. The purpose of this program is to pro­

vide designs of selected thermionic reactor power systems integrated with nuclear electric 

unmanned spacecrafts over the range of 70 to 500 kWe unconditioned power. The key design 

objective is a weight of 10, 000 pounds, including reactor, shielding, structure, radiators, 

power conditioning, and thruster subsystems at a 300 kWe unconditioned power level. Space­

craft propulsion will be provided by mercury electron bombardment ion thruster engines. 

The design study is performed in two consecutive phases: 

a. Phase I - Design of unmanned spacecraft and powerplant configurations, including 
powerplants with emphasis on state-of-the-art technology. Key ground rules 
include: 

1. 300 kWe unconditioned power 

2. NaK-78 coolant 

3. 1350 F reactor outlet temperature 

4. Copper-stainless conduction fin radiators 

5. Radiator non-puncture probability is 0. 95 

6. 200 F maximum electronic component temperature limits 

7. 10, 000 pounds powerplant weight (design objective) 

8. 10, 000 to 15, 000 full power hours 

* 	 Program Manager, W. Z. Prickett 

Technical Monitor, J. F. Mondt 
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b. Phase II - Emphasis on weight reduction techniques and the investigation of the 

effect of key parameters on power performance: 

1. Coolant: substitution of lithium for NaK-78 

2. Radiator non-puncture probability is 0.99 

3. Radiator type: the use of beryllium/stainless steel or vapor fin radiators 

4. Radiator type: the use of vapor chamber and heat pipe radiators 

Two spacecraft designs were completed, based on the externally fueled diode thermionic 

reactor, utilizing reactor data supplied by the Republic Aviation Division of the Fairchild-

Hiller Corporation, and a flashlight thermionic reactor, utilizing reactor data supplied by 

Nuclear Systems Programs of the General Electric Company. These two spacecraft designs 

are based upon the results of a spacecraft weight optimization computer code which was 

developed during the Phase I of the study (Reference 7). The scope of the designs presented 

includes detailed spacecraft layouts, and detailed weight summaries, including a discussion 

of the major causes for weight differences between the two spacecraft based on different 

reactor designs. 

This report also presents the study design guidelines, including the definition of the reactors, 

the payload and the ion engines. Launch vehicle capabilities are discussed and structural 

requirements are defined. A discussion of shield analysis and electric power processing 

design precedes the detailed design definition of the two spacecraft. 

Some preliminary results in the Mission Operations area are presented, including power­

plant startup, pre-launch operations, and aerospace nuclear safety. 

Weight reduction technique associated with higher temperature power conditioning (above 

200 0 F), substitution of lithium for NaK-78 as the reactor coolant, and the use of Be/SS 

radiators in place of Cu/SS radiators are discussed. The effect of unbonded TFE trilayers 

on powerplant weight is evaluated for the flashlight reactor. The effect of increasing the 

radiator survival probability from 0. 95 to 0.99 is assessed. The use of heat pipe radiators 

is investigated. 
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3. STUDY GUIDELINES
 

Program guidelines have been identified for the design study of a thermionic reactor 

powered spacecraft. System requirements and subsystem definition that comprise 

the established guidelines are presented in the following sections. 

3. 1 SYSTEM REQUIREMENTS
 

System requirements that have been defined for this study are summarized below:
 

a. 	 Reference powerplant shall provide 10,000 to 15,000 effective full power 
hours at a nominal 300 kWe gross reactor unconditioned electric power output. 

b. 	 The spacecraft system shall be designed for launch by the Titan IIIC/7, 
and shall be compatible with the launch environment of this vehicle. 

c. 	 The reference point for the launch vehicle/spacecraft interface shall be 
30,000 pounds delivered into a 750 nautical mile circular orbit. 

d. 	 The reference mission is a Jupiter planetary orbiter. Starting from the 
750 nautical mile circular orbit, the 30, 000 pound spacecraft will spiral 
away from earth (-50 days) and begin the trip to Jupiter. The following 
times and power levels are applicable: 

Power Level 	 Time
(kWe) 	 (days) 

Initial Thrust 300 210 
Coast 30 120 

Final Thrust 300 270 
Jupiter Orbit 30 (one orbit, 17 days minimum) 

e. 	 The meteoroid model will be compatible with the following models: 

1. 	 Penetration Model
 

0 3 5 2 Pm1/6v0.875
t = 0.5 m . 
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where
 

t = armor thickness, cm
 

pm = meteoroid density, gm/cm 3
 

.m 	 = meteoroid mass, gm 

v 	 = meteoroid velocity, km/sec 

2. 	 Meteoroid Flux 

(D= 	am 

where 

cumulative meteoroid flux, number particles/m2 sec 

= empirical coefficient 

empirical exponent 

m = meteoroid mass, gm 

3. 	 Probability of Penetration 

The non-puncture probability is, 

-
eDAT 
(0) 

where
 

P(0) = non-puncture probability
 

= cumulative meteoroid flux. number particles/m 2 sec 

2

A = projected vulnerable area of the spacecraft (radiator), m 

T = exposure time, seconds 
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The baseline data listed below is used in conjunction with the previous 
models to calculate an equivalent near earth meteoroid protection 
requirement: 

0.5 g/om3
 
m = 


V 	 = 20 km/sec
 

= 6.62 (10)15
S 

f 	 = 1.34 

P(0) 	= 0.95 

T = 7.2 (10)7 see [20,000 hr] 

Then, an effective thickness, teff for the Jupiter orbiter may be, 


calculated from 

teff 	 = 0.432 t (Jupiter) 

The 	radiator models used in this study have been developed from the 
SPARTAN Ill computer code (Reference 1) results and are based on the 
preceding near earth meteoroid protection requirement. 

f. 	 The reference design shall be based on: 

1. 	 NaK-78 coolant at 1350'F reactor outlet temperature 

2. 	 Electromagnetic pumps 

3. 	 Payload, power conditioning, and communications shielded to 
1012 NVT > 1 mev, and 107 rad y. Credit should be taken for 
attenuation from nonshielding materials. 

4. 	 14,500 pounds of mercury propellant 

5. A 	stainless-steel tube, copper fin, nondeployable radiator. 

g. 	 Power Conditioning 

1. 	 The power conditioning concepts identified in the reactor design studies 
will be evaluated and power conditioning systems will be defined which 
meet system requirements. Power conditioning module temperature 
is not to exceed 2000 F. 
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2. 	 Reactor control concepts will be those specified by the reactor contractors. 
The externally fueled reactor is controlled by maintaining constant voltage; 

whereas, the flashlight reactor is controlled by maintaining constant emitter 

temperature. 

h. 	 Payload and Communications 

1. The total payload and communications system will be assumed to weigh 
2200 	pounds.
 

2. 	 The total power requirement for this system is assumed to be one kWe. 
Electrical component temperature limit is 200 0 F. 

i. 	 Since reliability of individual components is unknown at this time, a reliability 

goal will not be established for the spacecraft. Emphasis will be placed on ­

suitable configuration, light weight, careful design, and good engineering 
judgement. 

Calculations were performed to define preliminary estimates of powerplant component 

weights and weight distributions. These baseline concept estimates are required for evalu­

ation of spacecraft structural requirements, selection between one main coolant loop versus 

two series coolant loops, and radiator configuration studies. In addition to the above system 

requirements, the design is based on the following assumptions: 

a. 	 A bonded wet cell trilayer diode reactor (13 percent reactor efficiency,
 
2010 kW reactor heat rejection) (at the direction of JPL).
 

b. 	 An allowable power conditioning and payload electronics temperature
 
level of 200°F; a corresponding radiator temperature of 175 0 F.
 

c. 	 Sink temperature is 300OF (approximate average for the entire mission). 

The 	details of this analysis have been previously reported (Reference 3) and the results are 

summarized in Section 10, Conclusions, items 2 through 9. These results are basic to the 

spacecraft designs summarized in Section 1. 
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3.2 SUBSYSTEMDEFINITION 

Characteristics of the externally fueled and flashlight reactor concepts have been provided 

by the reactor contractors. Also, characteristics of the thruster, science payload, corn 

munications, and thermal control subsystems have been identified; these systems are 

common to each of the thermionic reactor spacecraft concepts. 

J.Z. l n b A L l U n  JJLl'WlllUN 


This study is directed toward the evaluation of the impact of two reactor types on the 

a. hrternally fueled diode/Fairchild Hiller(Reference 4) 

b. Flashlight/General Electric (tri-layer, Reference 5) 

These different reactor configurations are illustrated in Figures 3-1 and 3-2, respectively. 

Figure 3-1. Externally Fueled Diode Reactor Concept 
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IN-CORE THERMIONIC FUEL ELEMENT 
SERIES-SACKED CELLS INTERNALLY-FUELED 

(FLASH IT CONCEPT) 

pt 

Figure 3-2. Flashlight Reactor Concept 

The contractors were requested to provide definition of reactor characteristics for this 

study, based upon the USAEC funded studies defined by Reference 4 and 5. 

Additional reactor information was requested. The data presented below was supplied. 

3.2. 1. 1 Externally Fueled Diode Reactor 

The basic element of the Fairchild Hiller thermionic reactor is the converter module. 

Each module consists of a fuel element which surrounds a cylindrical emitter. Coaxial 

with and inside the emitter is the cylindrical collector separated from the emitter by a 

10-mil gap. Inside the collector is the liquid metal coolant. The module configuration is 

different from other designs in that the fuel is external to the emitter. This geometry 

allows the maximum fuel volume fraction in the core. 
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The externally fueled reactor consists of 624 fueled converter modules, configured in an 

essentially cylindrical reactor core. The diodes are arranged in a triangular lattice with 

a uniform center-to-center distance of 1. 33 inches. The cylindrical modules are separated 

by 0. 060-inch vacuum gaps. 

The maximum emitter temperature in the reactor is 3270 F (1800°C) and the cesium 

reservoirs operate at 675 F. The NaK coolant nominal flow rate is 234 gpm, correspond­

ing to an average velocity of 6.5 ft/sec and a core pressure drop of 0.53 psi. The collector 

temperature varies from 1096°F to 14040F. 

2 
The emitter power density varies from 8.53 to 8.64 watts/cm. Around the periphery of 

the core are heat shields, a radial reflector, control drums, and structure. Axially there 

are the emitter leads, series leads, coolant plenums, and support structure. 

The 624 converters in the core are arranged electrically into 156 series-connected groups, 

each consisting of four converters in parallel, one from each ring. The reactor is designed 

for an unconditioned power output of 332 kW at beginning-of-life. Assuming 10 percent 

converter failures (20 percent power degradation), this yields an end-of-mission conditioned 

power of 240 kW at the electric thrusters. 

The baseline reactor design produces 300 kWe gross at the end of mission. Only about 

274 kWe gross are required to provide the 240 kWe required by the thrusters. The reactor 

characteristics for both the 300 kWe gross, and for the 274 kWe gross are presented on 

Tables 3-1 and 3-2, respectively. The data on these tables are taken from the computer 

printout sheets supplied by Fairchild-Hiller for this study. Details may be found in 

Reference 3. 

3.2.1.2 Flashlight Reactor Characteristics 

The flashlight reactor utilizes twelve diodes stacked in series to form a Thermionic Fuel 

Element (TFE). A total of 216 TFE's are grouped together to form the active core of the 

nominal, 300 kWe gross flashlight reactor, as illustrated in Figure 3-2. 
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TABLE 3-2. EXTERNALLY FUELED DIODE REACTOR
 
CHARACTERISTICS - 276 kWe EOM 

T
0 

= 2073 K 

TR = 630 K 
Core Height = 10 in 

Reactor Height = 20 in" 

Output Power = 332 kw (BOI) 
= 276 kv (EOM) 

0 

0 P-4 

0 ~ 00 

0 0. 

0 

1350. 250 110.12 2209. 31.94 3657. 345. 1.62 

1350. 250. 121.31 2105. 32.96 3909. 326. "1.03 

1350. 250. 131.62 2058. 34.37 4269. 316. 0.61 
1350. 250. 142.99 2048. 36.22 4764. 315. 0.35 

1350. 250. 152.92 2088. 38.46 5389. 323. 0.19 

1350. 350. 107.85 2213. 31.99 3669. 247. 0.85 

1350. 350. 120.77 2114. 33.06 3934. 234. 0.53 
1350. 350. 132.85 2066. 34 51 4307. 228. 0.32 

1350. 350. 144.22 2064. 36.39 4810. 227. 0.18 
1350. 350. 152.96 2101. 38.60 5431. 232. 0.10 

1350. 450. 111.31 2236. 32.28 3740. 194. 0.49 

1350. 450. 122.40 2141. 33.43 4028. 185. 0.30 
1350. 450. 132.40 2088. 34.91 4412. 179. 0.18 

- -3-11 
1350. 450. 146.24 2105. 36.99 4974. 181. 0.10 

1350. 450. 153.59 2144. 39.23 5612. 185. 0.05 



The TFE units are series connected-in pairs, -with the center connection grounded. Each 

TFE pair requires an individual power converter so that the electrical operation of each 

TFE can be adjusted for optimum conditions. The outputs of the 108 converters are sub­

sequently connected in parallel to provide common electrical outputs to the loads. 

The flashlight reactor data employed in this study is summarized in Table 3-3. The first 

column lists the parameters for the reference 300 kWe design reported in Reference 5. 

The basic TFE for this reference design uses an unbonded trilayer, where the interface 

between the insulator and the collectors of each diode is a slip fit. The remainder of the 

data of Table 3-3 presents the flashlight reactor characteristics under the assumption of a 

bonded trilayer. These data were employed in the Phase I effort. The Phase II effort 

assessed the effect of the unbonded design on the spacecraft performance (see Section 8). 

Further details have been reported in Reference 3. 

The various alternate designs presented in Table 3-3 provide the capability to assess the 

impact of various reactor operating points on the spacecraft performance. Reactor pa­

rameters varied include coolant temperature rise, coolant exit temperature, coolant pres­

sure drop inside the reactor, and their effect on reactor weight and dimensions. These 

data were employed to develop a model for use in the spacecraft weight optimization 

computer code. 

Past studies have shown that a nominal 1-inch TFE is close to the optimum diameter for 

this power range. No attempt was made to vary TFE diameter for these studies. The basic 

core arrangement was not changed for any of the alternate designs. 

Studies indicate that a fixed electric output from a fixed number of diodes leads to an 

optimum emitter temperature distribution. If the emitters are run too hot, the maximum 

efficiency point is passed. If the emitters are run too cool, the current density increases, 

forcing increased losses on the electrical system. The value of 1950°K selected for the 

reference design is very near optimal for the 300-kWe configuration, with 216 TFE units, 

each with 12 diodes. Recent improvements in analyses indicate that it is in fact possible 
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TABLE 3-3. PERFORMANCE OF 300 kWe
 
FLASHLIGHT REACTOR DESIGNS
 

Alternate Alt. No. I Alt. No. 2 Alt. No. 3 Alt. No. 4 Alt. No. 5 
Base Design
AEC Study 

1000-K (1350-F) 
Outlet 

8680K (11000 F) 
Outlet 

11450 K (160017) 
Outlet 

2000K 
Core AT 

6.8 psi 
Reactor Ap 

TFE 
TFE Diameter, in. 
Number of TFE 
Number of Cells/TFE 

Unbonded 
1.02 
217 
12 

Fully Bonded 
1.02 
217 
12 

Fully Bonded 
1.02 
217 
12 

Fully Bonded 
1.02 
217 
12 

Fully
Bonded 
1.02 
217 
12 

Fully Bonded 
1.02 
217 
12 

Core Structure 
Coolant 

SS 
NaX-44 

SS 
NaK-78 

SS 
NaK-78 

SS 
NaK-78 

SS 
NaK-78 

SS 
NaK-78 

Inlet Temp., 0K 
Outlet Temp. , OK 
Reactor, Ap, psi 

800 (980 0 F) 
900 (11600F) 
3.1 

906 
1006 
4.5 

(11700 F) 
(13500 F) 
3.7 

768 
868 
4.5 

(9200 F) 
(11000 F) 

945 
1045 
4.5 

(14200 F) 
(1606°F) 

806 
1006 
4.5 

(9900 F) 
(1360°F) 

906 
1006 
6.8 

(11700 F) 
(13500 F) 

Max. Emitter Temp., OK 
Electric Power, kWe 
Voltage Output Pbwer, v 
Current (TFE paiis), amp. 

1950 
330 

14.3 
23100 

1915 
330 

12.7 
26000 

1950 
330 

15.7 
21000 

1955 
330 

12.6 
26300 

1955 
330 

12.0 
27600 

1955 
330 

12.5 
26400 

1915 
330 

12.7 
26000 

Thermal Power, kW 
Coolant Heat, kW mm 

2840 
2510 

2900 
2570 

2470 
2140 

2980 
2650 

2960 
2630 

2980 
2660. 

2900 
2570 

EOM ---- 2600 2170 2680 2660 2680 2600 

Reactor Weight, lb 
Overall Length, in. 
Overall Diameter, in 
Flow Rate (EOM Cond) 

2970 
35.5 
28.8 

64.9 

2960 
25.6 
28.8 

54.1 

2960 
35.5 
28.8 
66.7 

2960 
35.5 
28.8 
66.4 

3040 
35.5 
28.0 
33.4 

3000 
35.5 
28.4 
64.9 

lbs/sec 

10% POWER (est.) 

Max. Emitter Temp., oK -1600 
Voltage Output Power, v 12.6 
Current (TFE pairs), amp 3000 
Thermal Power, kW 590 
Coolant Heat Load, kW 552 

Co 



Z
 

to achieve somewhat lower emitter temperature distributions for optimum conditions. The 

outputs of the 108 converters are subsequently connected in parallel to provide common 

electrical outputs to the loads. 

3.2.2 ION ENGINES 

Spacecraft propulsion will be provided by 31 equal size electron bombardment ion thrust 

engines. Mercury was chosen over other propellants because of the relatively well developec 

technology of mercury systems. Information concerning the weight, volume, and position 

requirements of the thruster subsystem has been specified by JPL. The general guidelines 

used to design the thrust subsystem are given in Table 3-4. 

TABLE 3-4. GUIDELINES FOR THRUSTER SUBSYSTEM DESIGN 

Power to the ion engines 240 kWe 

True specific impulse 5000 sec 

Thruster redundancy 20 percent 

Attitude control Electric propulsion 

Maximum envelope diameter 10 feet 

Thrust duration 12, 000 hr 

Number of ion engines (includes 6 spares) 37 

Six spare thrusters will bring the total to 37 units. Considering switching and power con­

ditioning requirements, this number of spares provides one spare engine for each group 

of five operating engines. Switching, logic, and spare Power Conditioning Control (PCC) 

units can also be grouped in this way to reduce the number of possible thrust - PCC combi­

nations. Thrust vector control will be provided by a three axis attitude control system (two 

axis translation, one axis gimbal). Thrust power supply requirements and subsystem 

weights are given in Tables 3-5 and 3-6 respectively. The thrust system design layout, 

which was contributed by JPL, is presented in Figure 3-3. 
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TABLE 3-5. ION ENGINE POWER SUPPLY REQUIREMENTS
 

NOMINAL RATING MAX RATING 

Supply 
Number 

Supply 
Name Type Output (1 ) Volts Amps Watts 

Keg. 
% 

Peak 
Ripple Volts Amps 

Amps 
Limit (2 )  

Control 
Range, A 

i Screen DC V 3100 2.32 7200 1.0(V) 5 3200 2.32 2.60 2.0 - 2.4 

2 Accelerator DC F 2000 .02 40 1.0(V) 5 @ 2100 0.20(3 ) 0.21 --­
0.2 A 

3 Discharge DC V 35 8.3 290 1.0(V) 2 150 @ 
50 mA 

9 (
37V 

10 7.5 - 9.0 

4 Nag - Man DC F 15 .7 11 1.0(I) 5 20 1.0 1.0 

5 Cath Htr (4 )  AC F 10 4.0 40 5.0 5 11 4.4 4.1 --­

6 Cath Keeper DC F 10 0.5 5 1.0(1) 5 150 @ 1.0 C. 1.0 --­
50 mA 20 V 

7 Main Vapor AC V 0.6 1.0 1 Loop 5 8(5) 2.0 2.2 0.5 - 1.5 

8 Cath Vapor AC V 0.3 0.5 1 Loop 5 8(5) 1.0 1.1 0.2 - 0.8 

9 Neut Cath Htr AC F 10 2.0 20 5.0 5 11 2.2 2.2 ---

LO Neuc Vapor AC V 0.3 0.5 1 Loop 5 8(5) 1.0 1.1 0.2 - 0.8 

11 Neut Keeper DC F 10 0.5 5 1.0(1) 5 150 @ 1.0 C2 1.0 --­
50 mA 20 V 

(1) V = Variable, F = Fixed (4) Needed only during startup or until 
discharge reaches 3A. 

(2) Current limit or overload crip level 

(3) 
N 

Current at this level for less than 
(5) Startup only. 

5 min. at low repetition rate. 



TABLE 3-6. THRUST SUBSYSTEM WEIGHTS 

Component 	 Weight (lb) 

Ion Engines 	 585 

Thrust Vector Control System 	 550 

Miscellaneous (wiring, adapters, etc.) 	 100 

TOTAL 	 1235 

3.2.3 SCIENCE PAYLOAD AND COMMUNICATION SUBSYSTEM
 

The general size, power requirements, and key capabilities of representative Science
 

and Communications subsystems remain to be firmly defined for a Jupiter orbiter mission.
 

The major guidelines to be used in the selection of these systems are:
 

* 	 The total electric power available to the science payload and communications 
subsystems is one kWe. 

* 	 The total weight allocated to the science payload and communication subsystems 
(including thermal control radiators for these subsystems) is one metric ton. 

A preliminary assessment was made early in the study (Reference 3) 
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4. LAUNCH VEHICLE
 

The Titan IIIC/7 launch vehicle is defined as the reference booster for placing the 

spacecraft into a 750 nautical mile (design objective) circular earth orbit. This 

vehicle is similar to the Titan IIF except that it uses a standard transtage. It is a 

nonmanrated vehicle and employs the stretched Stage I tanks and seven segment, 120 

inch diameter solids characteristic of the Titan IIM. The overall length of the vehicle 

to the payload separation plane is approximately 117 feet. 

4.1 REQUIRED LAUNCH VEHICLE MODIFICATIONS 

For a payload that requires a 35 foot fairing length, the launch probability on an 

arrival basis is 99 percent with a worst quarter probability of 95 percent. As fairing 

length increases to 60 feet, the arrival launch probability decreases to 75 percent 

with a worst quarter probability of 45 percent. To maintain this launch probability 

for payload fairing lengths of 60 to 80 feet, the vehicle guidance steering must be 

modified. Moreover, for payload fairing lengths of greater than 80 feet, modification 

of guidance steering and strengthening of the transtage control module skirt is re­

quired. Weight penalty for skirt revision is estimated to be 60 pounds;---­

4.2 FLIGHT FAIRING WEIGHT AND PAYLOAD PENALTY 

During a "nominal" launch of the Titan 1IF vehicle, the flight fairing is normally 

jettisoned at 280 seconds, which is just after completion of the Stage I burn. In order 

to prevent freezing of the liquid metal coolant during launch, it may be desirable to 

retain the flight fairing as a radiation barrier until after reactor startup in earth orbit. 

However, this procedure imposes a severe payload weight penalty which depends on 

the shroud length (weight) and the terminal orbit altitude. 
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Figure 4-1 shows the flight fairing weight and the payload penalty as a function of 

shroud length, assuming shroud jettison at 280 seconds into the mission. If the shroud 

is retained-past Earth orbital insertion; then the payload weight penalty will be equal 

to the shroud weight. It should be noted that as the terminal orbital altitude increases, 

the payload penalty decreases for normal shroud ejection since a larger portion of the 

AV is added after shroud ejection. The curves are based on the data supplied by the 

Martin Marietta Corporation (Reference 6). 

The effect of shroud retention on payload capability is shown in Figure 4-2. The upper 

lines define the Titan EIIC/7 payload capability for a 28.5 degree orbital inclination 

mission with .shroud jettison occurring at 280 seconds into the mission. The lower 

curves show the effect of retaining the shroud through achievement of final Earth orbit. 
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Figure 4-1. Flight Fairing Weight and Payload Penalty (TitanNIC 
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Figure 4-2. Effect of Shroud Retention on Payload Capability (Titan flC/7) 

Under nominal conditions, and with a 35-foot shroud, the vehicle can deliver 30, 000 

pounds into a 630 nm circular orbit. Employing longer shrouds, with jettison at 280 

seconds, reduces the payload capability (initial mass in Earth orbit) as shown in 

Table 4-1. 

TABLE 4-1. MAXIMUM PAYLOAD CAPABILITY WITH 
SHROUD EJECTION AT 280 SECONDS 

Shroud Length Shroud Penalty Maximum Payload 
(feet) (pounds) Weight (pounds) 

60 808 29,191 

80 1021 28,978 

100 1234 28,765 

4-3 



Alternatively, injecting 30, 000 pounds of payload into circular orbit will decrease the 

maximum possible orbit altitude as shown in Table 4-2. 

TABLE 4-2. MAXIMUM EARTH ORBITAL ALTITUDE FOR A 
30, 000 POUND PAYLOAD WITH SHROUD JETTISON 

AT 280 SECONDS 

Shroud Length Maximum Orbit 
(feet) Altitude (nm) 

60 555 

80 530 

100 512 

If the shroud is jettisoned after achieving Earth orbit (630 nm), the payload capability 

will be reduced as shown in Table 4-3. 

TABLE 4-3. MAXIMUM PAYLOAD CAPABILITY AT 630 NAUTICAL MILE
 
WITH SHROUD EJECTION AFTER ACHIEVING EARTH ORBIT
 

Shroud Length Shround Penalty Maximum Payload 
(feet) (pounds) Weight (pounds) 

60 3300 26,700
 

80 4200 25,800
 

100 5000 25,000
 

4.3 ALTERNATE LAUNCH VEHICLE 

To provide flexibility in the selection of a launch vehicle, alternates to the Titan IIIC/7 

have been examined. A moderate increase in payload capability or initial Earth orbit 

altitude is offered by other members of the Titan family, such as Titan iD/Centaur 

and Titan IID/7/Centaur. The Titan IIID/Centaur is similar to the Titan ITIC except 
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that the transtage has been replaced by the Centaur upper stage. The Titan IID/7/ 

Centaur utilizes the stretched Stage I tanks and seven segment, 120 inch diameter 

solid rocket motors. These launch vehicles would experience even greater physical 

constraints than those outlined in Subsection4. 1. Consequently, launch from ETR 

Pad 37B, which has been used for S-IB launches, and major redesign of the universal 

environmental shelter would be required if a Titan launch vehicle is used.. 

Substantial increase in payload capability can be realized from the intermediate class 

of Saturn launch vehicles. For this study, the SIC/SIX and SIC/SIVB configurations 

have been considered. Launch pad modifications would not be required if a Saturn 

family launch vehicle were employed. 

Payload capability of the previously discussed launch vehicles are compared in Table 

4-4 for circular orbit altitude of 500, 630 and 750 nautical miles. For this configura­

tion, the payload capability of the Titan launch vehicles is based on nominal conditions 

and the use of a 35 foot shroud, which is jettisoned at 280 seconds into the mission. 

Similarly, shroud weight penalty associated with the longer thermionic spacecraft is 

not included in the payload capability presented for the Saturn vehicles. 

TABLE 4-4. COMPARISON OF PAYLOAD CAPABILITY (POUNDS) 
FOR TITAN AND SATURN LAUNCH VEHICLES 

~Orbit 
Altitude
 

Launch Vehicl 500 630 750
 

Titan I]IF 31,400 30,000 28,700 

Titan IIID/Centaur 32,000 30,700 29,500 

Titan IIHD/7/Centaur 41,000 39,300 38,000 

SIC/SI 54,000 - -


SIC/SIVB 120,000 106,000 103,000
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5. SHIELD ANALYSIS
 

Preliminary shielding calculations were performed at the Oak Ridge National Labora­

tory. A one-dimensional spherical geometry mock-up of the Flashlight/Shield assem­

bly formed the basis of the calculations. The neutron shield consisted of LiH contain­

ing 3 v/o of stainless steel, and Hg propellant was used as gamma shielding material. 

The shielding requirements were defined by assigning neutron and gamma dose limits 

at a point located 3 meters from the backface of the shield. The integrated neutron 

dose was to be no more than 1012 nvt for neutrons with energies greater than 1 Mev. 

The gamma dose limit was set at 10 7 rads. 

The one-dimensional spherical mock-up of the reactor/shield assembly is shown in 

Figure 5-1. Unlike the usual situation, the gamma shield in this case is composed of 

a material whose presence is independent of the need for shielding. This permits the 

location of the gamma shield outside of the neutron shield in the region of the lowest 

neutron flux, thereby minimizing the secondary gamma sources in the gamma shield. 

Ordinarily, this location for the gamma shield would be avoided if possible since it 

tends to increase the total shield weight. The dimensions shown in Figure 5-1 which 

locate the outer LiH and Hg surfaces were determined by the shielding calculations. 

All of the other dimensions were fixed input to the problem. 

Although the use of the Hg propellant as gamma shielding is a welcome weight saving 

device, it does present some complications. In the first place, it is expended during 

the mission, thereby becoming a time dependent gamma shield. Secondly, only that 

fraction of the Hg needed to satisfy the dose limitation is to be placed adjacent to the 

neutron shield. The remainder of the Hg is to be located at the opposite end of the 

vehicle. This distribution of the Hg represents a more stable configuration at launch 

than one in which all of the Hg were located at the shield. Consequently, less space­

craft supporting structure is required. 
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Figure 5-1. Flashlight Reactor/Shield Mockup 

The time dependence of the Hg shield thickness was determined on the basis of the 
following conditions. The Hg propellant was to be expended during two thrust periods 
as indicated in Figure 5-2. In addition, it was to be expended at the same uniform 

rate during each thrust period. The volume of Hg used for a given gamma shield 
thickness would be determined by the reactor/gamma shield separation distance and 
the cone half angle. The separation distance depends in part upon the neutron shield 

thickness, hence an iterative procedure is required to determine the necessary neu­
tron shield thickness and the time dependence of the gamma shield thickness. 

Given the vehicle geometry, cone half angle and total Hg weight assigned as a basis 
for the shield calculations, it was found that 25 inches of LiH and an initial thickness 
of Hg of 9. 9 inches would be required to satisfy the shielding requirements. The Hg 
thickness would remain constant until about 45 days into the .second thrust period. 
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Figure 5-2. Mission Profile 

From this point in time to the end of the second thrust period, the Hg thickness would 

decrease linearly to zero inches. Time dependent gamma and neutron dose rates have 

been previously reported (Reference 3). 

Shielding calculations have yet to be performed for the externally fueled reactor. Hence, 

the data described above for the flashlight reactor have been used to aid in estimating 

the externally fueled reactor shielding requirements. The estimates were based upon 

the assumptions listed below: 

a. 	 Fluxes and dose rates at a point one meter from the Hg tank are the same
 
for both reactor/shield assemblies
 

b. 	 Angular fluxes are uniform over the outward directions at the backface
 
of the Hg tank
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c. 	 Scalar fluxes are constant over the backface of the Hg tank 

d. 	 Attenuation of neutrons or photons by Lill or Hg could be adequately treated 
by fitting simple exponential functions to the curves shown in Figure 6-6. 

The second and third assumptions above were used to replace the Hg tank with an 

equivalent disc, or surface, source located at the backface of the tank. This disk 

source was then used to derive an expression which describes the variation of the 

flux or dose rate with distance from the source. The derived expression was: 

1/ 2 O(Z)= '(O) ( 2 

where: 

0 = flux or dose rate 

Z = distance from the disc source along the disc axis 

a = disc radius 

The quantity (p(0) was determined by applying the first of the assumptions listed 

above. 
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6. ELECTRICAL SYSTEM DESIGN
 

6.1 INTRODUCTION
 

The electrical power conversion system and its components have been designed for use 

in each of the thermionic powered spacecraft. The baseline 300 kWe design resulted in 

electrical systems having the following efficiencies and specific weights: 

Efficiency Specific Weight 

(%) (lb/kWe) 

Flashlight Reactor Electrical System 83 14.2 

Externally Fueled Reactor Electrical 89 7.0 
System 

Dynamic Electrical Power Conversion 93 7.2 

The DC/DC converters for the respective systems have characteristics as follows: 

Flashlight Reactor Converter 89 9.5 

Externally Fueled Reactor Converter­
90 vdc 89 5.1 

120 vdc 91 

The following sections and the Phase I report show the design detail which substantiates 

the estimates of size, weight, and efficiency of the electrical system for each reactor 

concept.
 

The electrical system design for the flashlight system design for the flashlight reactor 

system is based upon providing a DC/DC converter for each of the 108 thermionic pairs 

of the reactor. The outputs of these converters are paralleled forming two busses. One 

bus is a 3100 vdc potential for the thruster screens and the other is 250 vdc for distribution 

to the hotel and payloads. Individual thruster isolation is provided by SCR-reactor devices. 
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The externally fueled reactor electrical system is designed considering that the reactor 

has a single power output. Power is provided to a separate power conditioner for each 

thruster to develop the 3100 vdc screen potential. The hotel and payloads are supplied 

directly from the reactor output. 

The dynamic power system uses a motor-generator to convert the 15-volt dc output from 

a flashlight thermionic reactor to 250 vac for hotel and payloads and for transformation 

to 3100 volts for the thruster screen circuits. 

6.2 REQUIREMENTS/CHARACTERISTICS 

The primary requirements of the electrical system are to convert the electrical power 

developed by the thermionic reactor power generators to forms suitable for use by the 

various electrical loads and to distribute the electrical power with proper protection and 

control. 

6.2.1 BASELINE LOAD REQUIREMENTS 

A tabulation of the electrical requirements of the baseline spacecraft is given in Table 

6-1, and thruster power requirements are shown in Table 3-5. The main portion of the 

system electrical power is conditioned for the ion thruster screen grids which require 

about 80 percent of the thermionic reactor electrical output. A total of 37 thrusters are 

on the spacecraft of which 31 are active and 6 are spares. Each thruster screen requires 

7.2 kW at 3100 dc. 

The ion engines, which represent the principal electrical load of the system, are known 

to are frequently. The system has been designed so that when arcs occur three times 

within a 10-second period, it becomes necessary to shut down the engine to allow the are 

to extinguish and then restart the engine. 
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TABLE 6-1. BASELINE SPACECRAFT ELECTRICAL LOAD
 
REQUIREMENTS
 

Item Function Power Required (kW)
 

Primary Loop Cools Reactor 10 kW flashlight/4 kW ext. fueled 
Coolant Pump 

Secondary Loop Cools Power Loop 10 kW flashlight/0 kW ext. fueled 
Coolant Pump 

Shield Pump Cools Shield 0.12 

Auxiliary Pump* Cools Pumps, etc. 0.1 

Propellant Pump Pumps Mercury Prop. to 0.1 
Thrusters 

Reactor Controls Reactivity of Reactor 2.0 (later reduced to 0.2) 
Controls 

Cesium Heaters Maintains Temp. of Cesium 0.5 
Vapor 

Thrusters Propulsion 240.0 

Payload Science Science and Communications 1.0 

Guidance and Thrust Vector Control of Ion 0.5 
Control Engines 

System Protection, Switching and 0.5 
Controls Control of Electrical System 

* If separate from shield pump 

Analysis shows that even at the extreme arcing rate of 20 arcs per hour, the reduction 

in average load is only about 3. 5 percent. Since arcing frequency tends to diminish with 

time, the reduction in average load by thruster arcing may be neglected. 
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6.2.2 REACTOR ELECTRICAL REQUIREMENTS 

6.2.2.1 Flashlight Thermionic Electrical Requirements 

Details of reactor electrical characteristics as well as the method recommended for reactor 

control are presented in References 3, 4 and 5. Reactor control is basically a constant 

current control loop. The electrical characteristics corresponding to load requirements
 

during various flight phases are shown in Table 6-2.
 

TABLE 6-2. FLASHLIGHT REACTOR ELECTRICAL CHARACTERISTICS 

BOM (I ) EOM (2 )  Coast 

Electric Power, (kWe) 300 300 30 

Voltage Output, (volts) 16.8 15.7 12.5 

Current, (amperes) 17,900 19,100 2400 

TFE Pairs 108 97(3) 108 

Current/TFE Pair 165.7 196.9 23.8. 
o 

Emitter Temp., Maximum ( K) 1950 1950 1600 

Notes: 

1. Beginning of Mission 
2. End of Mission 
3. 10 Percent TFE pair loss at EOM 

The electrical power conditioning system is to provide control of the amount of power that 

is extracted from each Thermionic Fuel Element (TFE) pair to ensure proper electrical 

and thermal balance within the reactor. The flashlight reactor is divided into six zones for 

analysis purposes, each with different temperature characteristics. Consequently, for 

TFE's in other zones, the electrical output characteristics are different. Furthermore, the 

TFE's throughout the reactor may also be electrically different due to construction variations. 
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On the basis of these requirements and-the data of Table 6-2, the Power conversion equip­

ment is designed to accomodate input voltage during normal full power operation from a 

low of 14 volts to a high of 17 volts, and during the coast phase must accommodate an input of 

of 12 volts. Furthermore, since one-half of a TFE pair may fail, provisions are included 

for allowing the conversion equipment to operate from the remaining TFE. For power con­

ditioner design purposes, this is assumed to be one-half voltage condition at EOM under 

full power. 

6.2.2.2 Externally Fueled Thermionic Reactor Electrical Requirements 

The selected externally fueled thermionic reactor has a nominal power capability of 300 

kWe (Reference 4) and has a constant 120-volt direct current output. No need for control 

circuits for the thermionic diodes are defined for the power conversion system. 

Reactor control is based upon neutron flux and output voltage. -The reactor control circuit 

consists of an inner loop to control neutron density proportional to heat generation rate, 

and an outer loop which is slower than the inner loop, to produce incremental changes in 

heat evaluation to maintain constant input voltage. 

6.3 BASELINE ELECTRICAL POWER SYSTEM DESIGN 

6.3.1 FLASHLIGHT REACTOR ELECTRICAL POWER SYSTEM BASELINE DESIGN 

The weight of the equipment for the electrical system, including transmission, distribution, 

and interconnecting cables, but not radiators (which are assumed to be the primary structural 

mounting member for the electrical equipment), is estimated to be 4491 pounds. Total 

electrical power losses for the system are estimated to be 52, 870 watts, for an overall 

efficiency of 83 percent for the basic 300-kW system. A breakdown of the principal baseline 

components of weight is given in Tables 6-3 and 6-4. The baseline electrical power balance 

is given in Table 6-5. 
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TABLE 6-3. ELECTRIC SYSTEM WEIGHT SUMMARY 
FLASHLIGHT REACTOR SYSTEM 

Weight 
Component (pounds) 

Main Converters 2690 

Auxiliary Power Conditioning 507 

Power Distribution Cables 984 

Screen Supply Interrupters 310 

Total 4491 

Specific Weight 14.2 lb/kWe 
(Load 316.2 kWe) 

TABLE 6-4. FLASHLIGHT REACTOR SYSTEM MAIN 
CONVERTER WEIGHT BREAKDOWN 

WeightComponent (pounds) 

Bypass rectifiers 1.0 
Input filter 

Choke 3.0 
Capacitor 1.0 

Inverter
 
Power transformer 4.0 
Transistors 1.0 
Current transformer 0.26 
Contactor 2.0 
Base drive circuits 0.5 

HV output 
Rectifiers 0.05 
Filter inductor 1.5 
Filter capacitor 1.5 

MV output 
Rectifiers (SCR) 0.2 
Filter inductor 0.5 
Filter capacitor 0.5 

Control circuits 0.5 
Wire Brackets, Hardware, etc. 7.4 

Converter Weight, (single TFE pair) 24.9 

Total Weight Main Converter Flashlight 2690 
Reactor System (108 TFE pairs) 

DC/DC Converter Specific Weight
(lbkWe out, load 282. 8 kWe) 9.5 lb/kWe 
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TABLE 6-5. FLASHLIGHT BASELINE SYSTEM POWER BALANCE 

LOSSES WATTS 

Main Power Conditioners 

Transistor Conduction Loss (0. 55 x 165) 91
 
Transistor Switching Loss 25
 
Transistor Base Drive Loss (3vx 165/10) 49
 
Transformer (3%) 85
 
Input Filter (1%) 28
 
Output Rectifiers (HV) 3
 
Output Filter (HV) 12
 
Output Rectifiers (MV) 4.
 
'Output Filter (MV) 2
 
Control Circuits 10
 

Total Losses, single TFE pair unit 309 

Total Main Power Conditioning Losses, 108 units 33,400 

Screen Supply Interrupter 1,250 

EM Pump Power Conditioning 3,700 

Thruster Auxiliry PC* * 

Payload Power Conditioning 100 

Reactor, Powerplant and Spacecraft Controls 322 

Transmission Cables L4,100 

Total Losses 52,872 

LOADS 
 WATTS 

Thruster Screen 223,000 

Thruster Auxliary Power 15,500 

Payloads, Science 1,000 
Gudance 500 
System Control 500 

Primary EM Pump 10, 000 

Secondary EM Pump 10, 000 

Shield Pump 100 

Auxiliary Pump 100 

Propellant Pump 100 

Reactor Control 2,000 

Cesium Heater 500 

Total Loads 263, 300 

Total Power Required 316, 172 

Electrical System Efficiency 83% 

Power Conditioning Efficiency 89% 

*Losses are included in Ion Engine Efficiency 
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The basic electrical power system proposed for the spacecraft utilizing the flashlight thermi­

onic reactor is shown in Figure 6-1. In this system, each TFE pair is provided with a power 

conversion module and each provides a medium and high output voltage level of 250 volts and 

3100 volts, respectively. The outputs of each module are filtered and all modules are con­

nected in parallel to create the two distribution power busses. 

The high voltage output bus provides power to all of the screen electrodes of the ion engine 

thrusters. The 3-100-volt level is established by the voltage requirements of the screefns. 

The 250-volt output provides power to the remaining spacecraft loads including the auxiliary 

power supplies required for each thruster as well as the hotel loads and payloads. The 

250-volt potential was selected for auxiliary power distribution being relatively high voltage 

for cable power loss minimization, but below most corona and arc-over levels regardless 

of atmospheric pressure and humidity. 

Power to the hotel loads and to the auxiliary thruster power supplies and the payloads is 

distributed by means of two 250-volt busses; one group of loads near the reactor and one 

at the thruster/payload area. 

6.3.1.1 Main Power Converter Design 

Details of the basic TFE power converter modules selected for the flashlight reactor system 

are shown schematically on Figure 6-2. 

The individual converter design approach was used for equipment sizing for this study, since 

it results in the optimum design for a weight limitedspacecraft. The power conversion 

equipment was sized for average TFE current and average TFE voltage. It should be re­

membered, however, that some converters may be larger and some smaller than average. 

From the TFE data for the 300-kWe operating points shown on Table 6-2, it is clear that the 

TFE pair average current is largest at end of mission (197 amperes), and average voltage 
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is highest at beginning of mission (16. 8 volts). The end of mission current increase when 

compared with beginning of mission current primarily is due to the assumed loss of 10 

percent of the TFE's, and not necessarily to the characteristic change. 

Over the life of the reactor, while delivering full power and excluding failure of one-half 

of a TFE pair, the average output voltage will range from 15.7 volts to 16.8 volts. In 
considering the total voltage range for which to design the primary power converters, 

however, it is necessary to consider also the voltage range required by the reactor current 
regulating control scheme. For this purpose, acknowledging that the primary users of 

power are the relatively constant ion bombardment engines, assume the spacecraft load 

can change instantaneously by 10 percent full load (30 kW). The control system described 

for the flashlight reactor requires that in the steady state TFE current be proportional to 

reactor thermal power so that emitter temperature is controlled following electrical load 

changes (Reference 5). Transiently, in the first few milliseconds after an electrical 

load, diode temperatures remain constant and diode voltage and current approximately 

follow the isothermal characteristic curves, as shown for example on Figure 6-3. For 

large load changes, the corresponding thermionic diode voltage change would be large, but 

for relatively small load change of concern here, the corresponding instantaneous voltage 

change is quite small (i.e., ) 0. 8 volts which is approximately 5 percent at the operating 

levels). Assuming that the control system limits the total excursion to the 0. 8-volt value as 

a maximum, then the total input voltage range, for which the conversion equipment should 

be designed, is from about 14 volts to about 18 volts. Additional provisions are required 

for operation at the failed half input voltage and the coast voltage corresponding to 10 
percent power. For this range of input voltages, the output voltage should be held constant. 

Electrical input characteristics for the primary power conditioners design then are as 

follows: 

Input Voltage 

Full power: 14 to 18 vdc
 
Coast power: 11 vdc (minimum)
 
Half TFE failure: 7 to 9 vdc
 

6-11 



Input Current 

Full power: 196.9 amperes (maximum) 
Coast power: 23. 8 amperes 

Maximum Input Power Rating 

(18) (196.9)=3.55kW 

6.3.1.1.1 Inverter Design Summary 

For purposes of this study, power conversion equipment design is based on the following 

selections: 

Switching devices High speed silicon transistors 
(Westinghouse 1776 - 1460) 

Operating frequency 10 kHz 

Magnetic core material - Electrical steel such as Hymu-80 

Module size Full size for one TFE pair 196. 9 amperes, 
maximum 11-17 volt with provisions for 
half voltage operation 

Reliability provisions No additional circuit redundancy 

Supporting analyses has been-previously reported !Reference 3). 

6.3.1.1.2 Component Size Identification 

A complicating factor in the use of power transistors in this application is their limited 

current rating compared to the total current delivered by the source. For example, the 

rating of the Westinghouse 1776-1460 is 60 amperes, whereas the EOM current of a 

TFE pair is 196. 9 amperes. If the transistors are operated at 30 amperes, both to 

reduce the saturation collector-emitter voltage drop and to provide normal design margin 

for reliability (a standard JPL practice), six transistors operating in parallel are required 

per group. The problems associated with operating many transistors in parallel are at 

least twofold: proper sharing of current and coordination of turn-off characteristics, 

especially storage time, so that the transistors in a group all turn off together and one 

transistor does not carry all of the current during the switching interval. 
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Figure 6-3. Typical Thermionic Reactor I-V Characteristics 

The method with the greatest reliability considering series components is direct paralleling 

(Reference 3), and is selected for use in the flashlight thermionic power conditioner. 

Transistor selection will be performed forming groups of six transistors with similar 

electrical characteristics. Since the transistors have been derated in application to 

carry half-rated current, a current sharing ratio of two to one can be tolerated (neglecting 

temperature derating). If necessary, a simple series resistor can be introduced in the 

emitter circuit of the transistors, effecting base drive current as well as collector current 

sharing. 

It should be noted that the saturation voltage drop of a transistor is a function of the transistor 

collector current. Hence, low saturation drop of even ordinary power transistors can be 

achieved to within limits by operating them at low currents. In part, this is the reason for 

operating the selected transistors at half rated current. 

6 13
 



6.3.1.1.3 Redundancy Considerations
 

Since the flashlight reactor contains 108 TFE pairs, each of which represents a separate
 

power source, it is assumed that no redundancy is required in the conversion equipment.
 

A loss of one power converter channel represents a loss of less than 1 percent in the
 

total power available from the reactor.
 

6. 3. 1.2 Flashlight Power System Integration 

6.3.1.2.1 Reactor Integration 

The main converter module detailed on Figure 6-2 is connected to the TFE pair through 

a limiter or fuse, the function of which is to open the circuit between the TFE pair and 

the converter in case of internal converter faults. The intention is to prevent physical 

damage within the converter because of high short circuit currents. It is recognized that 

operation of the fuse open circuits the TFE pair, and may cause overheating and failure 

of the TFE pairs. The alternative would be to provide some means of short circuiting the 

TFE's in the case of disconnection of the converter. Short circuiting means are not pro­

vided in the design because the condition of open-circuiting by converter failure is con­

sidered equivalent to open-circuiting of a TFE because of an internal fault. Consequently, 

there are no provisions against overheating for either a TFE failure or power conditioning 

failure. Future study should be performed to determine if a problem exists. 

Diodes across each TFE are included within the converter to provide a path for the current 

from the surviving TFE in the event of open-circuit failure of the other. 

An input filter consisting of a capacitor and reactor is included in the converter design to 

limit the voltage excursions at the input to the converter during those portions of the normal 

operating cycle when the converter transistors are off and the TFE pairs are unloaded. At 

a 10-kHz switching frequency for the converters connected to each TFE pair, the fluctua­

tions in unfiltered TFE current represented by converters switching with pulse width modu­

lation are not detrimental to the thermionic diodes. Diodes have long thermal time con­

stants of several seconds at least, so the rapid switching will not affect instantaneous 
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temperatures. Filtering may not be necessary from the standpoint of the diodes; however, 
instantaneous changes in current between some large value and zero will cause instantaneous 
changes in diode output voltages as indicated by the typical diode characteristics shown in 

Figure 6-3. 

During the intervals when current is zero, diode voltage will increase. Hence, from the 
standpoint of protection of the converters, input filtering is provided. In addition, the 
filter circuits provide nearly constant current flow in the low voltage leads from the 
thermionic reactor during the converter switching cycle, and effectively reduce the low 

voltage cable power loss. 

6.3.1.2.2 Electrical System Control 

Current transformers in the converters are included to provide signals representing TFE 
currents for system control load sharing, reactor control, and telemetry information. 

During each of the three modes of operation (normal, one-half voltage with one TFE failed, 
and 10 percent power) the load sharing by the TFE's is controlled by pulse width modulation 
cycling of the individual converters. Control of the inverter conduction cycle relative to the 
non-conduction time is exercised by regulation circuits which sense the input current. Modi­
fying functions to the control are the location of the TFE in the reactor, and whether the sys­

tem is operating in the coast phase. 

During normal and half-voltage operation, when the principal load is the thruster screens
 
and the high voltage output is utilized, voltage regulation is exercised by regulating cir­
cuits which sense the high voltage at the load bus and control the reactor operation to main­
tain this voltage constant. The 250-volt output is separately regulated by phase controlling 

SCR's as the rectifiers in its output circuit. 

During the coast period when 10 percent power is required, the thrusters are de-energized 
and there is no load on the 31 00-volt bus. Reactor control is maintained by switching regu­

lation to the 250-volt bus. 
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The third set of control circuits operates the contactor, which switches the main transistor 

groups from the normal to the 1/2-voltage taps. These control circuits sense voltage un­

balance in the TFE pairs and operate the contactors if the voltages become unbalanced 

because of a fault in one of the TFE's. 

In order that a common screen supply be feasible, several factors must be considered. 

If all screens are fed from a common supply, all are interconnected electrically. Hence, 

it is necessary that such interconnection be compatible with the complete electrical system, 

including the thruster auxiliary power conditioners. Also, it must be possible to isolate 

individual thrusters from the common supply in the event that the thrusters fail on momen­

tary arc-over. 

Each individual thruster screen is fed from the common high-voltage bus at the thrusters 

through a series network consisting of a high-speed electronic switch (SCR) and a series 

reactor (L). A simplified schematic diagram of the solid-state switch used as the screen 

circuit interrupter is shown in Figure 6-4. A number of SCR's are cohnected in series to 

withstand the high voltage of the screen supply and are connected in parallel with resistor­

capacitor networks to provide for proper steady-state and transient voltage division. Com­

mutation of the main SCR's is provided by firing the auxiliary SCR, connecting the charged 

capacitor across the main SCR's providing a momentary reverse bias, and shutting off 

the main SCR's. 

The interrupters operate immediately upon the development of a fault. The series inductors 

provide the energy necessary to clear the fault, as well as providing momentary, transient 

circuit isolation during faults. 

The main SCR interrupts the circuit between screen and the power bus in the event of an 

arc within the thrusters, as detected by a sudden drop in voltage at the screen, the appear­

ance of voltage across the series reactor, L, or a commanded signal. Following circuit 

interruption by the SCR, energy stored in the inductor, L, continues to supply power to 

the arc for a period of up to two milliseconds. The SCR remains off for a period of 0.2 
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seconds to allow time for the arc to clear and the thruster conditions to return to normal. 

After 0. 2 second, the SCR is switched on again, reestablishing screen voltage and hope­

fully restoring full thruster operation. If the are restrikes three times within ten seconds, 

the screen supply to that thruster and the inputs to the auxiliary power supplies for that 

thruster are permanently disconnected. This thruster is considered disabled and one of the 

six spare thrusters is placed into operation. 

During the spacecraft coast period when the thrusters are not required to operate, power 

to the thrusters is disconnected by the static switches in the screen supplies and by the 

contactors in the input circuits to the auxiliary thruster power supplies. 
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Figure 6-4. Screen Circuit Interrupter 
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6.3.1.3 Main Converter Mechanical Design 

6.3.1.3.1 Geometry 

Components of the main power conditioner are mounted using a baseplate integral to the 

radiator. Figure 6-5, layout drawing, and Figure 6-6, isometric drawing, show the com­
ponents configured within a 1 square-foot area. The suggested layout is designed to accept 

power at one side and have the outputs on the opposite side, thus simplifying the component 

construction, testing, and integration. 
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Figure 6-5. Component Geometry Main Power Converters Flashlight 

Reactor System 
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Figure 6-6. Reactor Power Regulation Arrangement Nominal 3 kWe Module Flashlight 
Reactor System 

6.3.1.3.2 Component Size 

The following components have been selected for use in the main power conditioners. 

Weights for each device are shown in Table 6-4. 

a. Input Filter 

Inductor: 	 2. 0 x 4.0 inches diameter 
5 h 7 turns, 5 cm length, 10 cm diameter 
AWG number 4, copper wire 

Capacitor: 	 1.3 x 2.5 x 3.0 inches H 
4 - GE-KSR Tantalum Foil 
200 gf, 100v, type 29F3265 

b. 	 Bypass Rectifiers: 2.5 x 1.2 inches diameter
 
200a, 200v
 

Type GE-1N3264
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c. Inverter 

Transformer: 

6-20 

d. 

e. 

f. 

g. 

h. 

Transistors: 

HV Output Rectifiers: 

HV Filter 

Inductor 

Capacitor: 

MV Output Rectifiers: 

MV Filter 

Inductor: 

Capacitor: 

Contactor: 

5.0 x 3.0 x 4.0 inches H 
Electrical steel, Hymu-80 
Input: 14 to 18 vdc, 196. 9a maximum 
Outputs: 3100 vdc, 2.3a 

250 vdc, 1. 7a 
Tapped Primary 

Mounted on two panels bonded to radiator 
Six transistors/heat sink 
Transistor type: Westinghouse 1776-1460 
0.5 x 0. 9 inches diameter 
60 a, 140v 

Bonded block, 1. 0 x 1. 0 x 0. 5 inches H 
12 diodes/block, 3 diodes/branch 

Diodes: 3a 800v
 
Type: GE-Al5N 
0. 15 x 0. 2 inches diamete 
Axial lead
 

2.25 x 1.8 x 1.8 inches H 
8 cubic inches 

3. 8 x 1. 6 inches diameter 
Axial 

0.4 x 0.3 x 0.6 inches H 
3-Silicon controlled rectifiers 
Stacked flat pack 
SCR: Similar to Type GE-C106 

0.4 x 0.3 x 0.2 inches H 

2.0 x 1.5 x 1.0 inches H 

1. 0 x 3.6 in. diameter 
Tubular tantalum foil 

4.0 x 4.0 x 3.0 inches H 
250a, 120vdc, DPDT, latching 



i. Control Circuits: 3.0 x 3.0 x . 5 inches H 
(Base drive, SCR 5 control boards 
Phasing) 2 power transistors, similar to 1776-1460 

j. 	 Current Transformer: 1. 0 x i.0 x 1.0 inches H 
2 toroids and power supply 

6.3.1.4 Influence of Reactor Output Voltage 

One means of increasing power conditioner efficiency that is within the state of the art is 

by increasing reactor output voltage. In addition, low voltage cable losses and weights 

are affected, as well as the system configuration, if the voltage can become high enough. 

It is recognized that there are many issues to be resolved, including: 

a. Reactor reliability against 	open-circuit failure 

b. Sheath arcing question at high collector potentials 

c. Mechanical and thermal/hydraulic design of a U-tube internal reactor electrical 
hookup
 

d. TFE lifetime 

This paragraph examines the sensitivity of the powerplant design to output voltage to de­

termine whether the potential savings warrant consideration of a more complex TFE elec­

trical arrangement approach. 

The effect of reactor output voltage on power conditioner module efficiency and weight is 

estimated in Figure 6-7. For greater than 60 volts, an alternate design concept, using 

Silicon Controlled Rectifier (SCR) switching, is employed. This information, together with 

reoptimization of low voltage leads, yields the specific weight savings data of Figure 6-8. 

At voltages above 50 volts, it ispossible to provide even greater weight savings by re­

locating the power conditioner equipment to the far end of the plant, thus saving more 

on shield and radiatorfeed line weight than is lost in cable losses, as is also shown on 

Figure 6-8. These computations are preliminary and do not take secondary effects, such 
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as a change in reactor efficiency for some methods of increasing voltage, into account. As 

may be noted, at about 40 volts, most of the potential gain is realized, and at about 50 volts, 

the savings are independent of configuration selection. 

6.3.1.5 Auxiliary Power Conditioning 

DC conduction electromagnetic pumps are selected for use with the thermionic reactor 

system. These pumps require very high current at very low voltage, specifically for the 

primary pump, 5000 amperes at 0. 5 to 1. 0 volts. Special additional power conditioning 

equipment, therefore, is necessary. Using conventional power conversion schemes for 

very low voltage, efficiencies of less than 50 percent are encountered. With dc-ac-dc 

conversion, the voltage drop in the output rectifiers approximates or exceeds the output 

voltage required and hence the efficiency is poor. 
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Figure 6-7. Parametric Characteristics of the Main Power Conditioner 
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In order to obtain the extremely low dc output voltage required at the pumps, standard 

low-voltage conversion to a higher output voltage is performed and several pumps are 
connected in series. With an output potential of 10 volts do, an efficiency of approximately 

85 percent is realizable. A standard 8 pounds/kWe has been applied for weight estimation 

for the main EM pump power conditioner. 

6.3.2 ,EXTERNALLY FUELED THERMIONIC REACTOR POWER SYSTEM DESIGN 

The electrical power system developed for the externally fueled thermionic reactor (EFTR) 

is shown in Figure 6-9. 

The following discussion is concerned with the main power conditioner design, since the 
baseline for the rest of the system is unchanged from the flashlight design insofar as tech­

niques and specific weights are concerned. 
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Figure 6-9. Main Power Conditioner Externally Fueled Thermionic 

Reactor System 

Electrical power output from the generator is sufficiently high so as to be an integral part 

of the medium voltage distribution bus. Power comes from a single output at a potential of 

120 volts, and is distributed directly to the auxiliary loads, as well as the main power con­

ditioners without being transformed. The main power conditioners convert the 120-volt 

input to 3100 volts for the screen electrodes of the ion thrusters. With individual power con­

ditioners for each engine, no separate screen circuit interrupters are necessary. Screen 

circuit current limiting and thruster turn-off will occur in the affected power conditioner. 

System weights and losses are shown in Tables 6-6 and 6-7, respectively. 

Baseline component weight for the EFTR power conditioner is presented in Table 6-8. 

The electrical schematic of the main power conditioner is shown on Figure 6-10. Figure 

6-11 shows the parametric characteristics of the EFR main power conditioner as a function 

of input voltage. 

6-24 



TABLE 6-6. ELECTRICAL SYSTEM WEIGHT SUMMARY EXTERNALLY 
FUELED REACTOR SYSTEM 

Component Weight (lb) 

Main Conditioners 1314 

Power Distribution Cables 275 

Screen Supply Interrupters ----

Auxiliary Power Conditioners 507 

Totals 2096 

Specific Weight (Load, 297.4 kW) 7. 0 lb/kWe 

Electrical system design for the externally fueled reactor system is based upon each 

ion-thruster being driven by a separate power conditioner. There are 37 thrusters/power 

conditioner groups on the spacecraft, 6 of which are spares to be used following a failure 

of one of the initially active engines. 

One of the control loops of the reactor senses the reactor output voltage, and regulates 

incremental changes in heat generation to maintain a constant output voltage. Therefore, 

under normal conditions, regardless of load, the input potential to the power conditioners is 

120 volts dc. Allowing for an input voltage to vary over a range due to other than normal 

reactor operation, the power conditioners are designed to perform with an input voltage of 

90 to 130 volts, direct current. 
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TABLE 6-7. EXTERNALLYFUELED REACTOR ELECTRICAL 
SYSTEM POWER BALANCE 

Losses Watts 

Main 	Power Conditioners
 
Main SCR's 
 464 
Auxiliary SCR's 96 
Transformers 216 
,Commutating Circuit 2 

(inductor/capacitor) 
Feedback Diodes 8 
Rectifier Diodes 7 
Output Filter 45 
Snubber Circuit 4 

(RCFilter) 
Input Filter 22 
Control Circuit 15 

Total Losses, Single Power Conditioner 879 

Total Main Power Conditioning Losses, 31 units 27,249 

Screen Supply Interrupter Not required
EM Pump Power Conditioning 3,700
Thruster Auxiliary PC* ,

Payload Power Conditioning 100 
Reactor, Powerplant and Spacecraft Controls 322 
Transmission Cables 6,420 

Total Losses 34,091 

Loads Watts 

Thruster Screen 223,000 
Thruster Auxiliary Power 15,500
Payloads, Science 1,000 

Guidance 
 500
 
System Control 500 

Primary EM Pump 10,000
 
Secondary EM Pump 10,000
Shield Pump 100 
Auxiliary Pump 100
 
Propellant Pump 100
 
Reactor Control 2,000 
Cesium Heater 500 

Total Loads 263,300 

Total Power Required 297,391 

Electrical System Efficiency 88.5% 

Power Conditioning Efficiency 91.0%
 

*Losses are included in Ion Engine Efficiency 
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TABLE 6-8. EXTERNALLY FUELED REACTOR MAIN
 
POWER CONDITIONER WEIGHT 

Component 

Transformer 

Main SCR's 


Commutating SCR's 


Commutating Circuit
 

Capacitor 


Inductor 


Feedback Diodes 


Rectifier Diodes 


Output Filter
 

Capacitor 


Inductor 


Snubber Circuit
 

Capacitor 


Resistor 


Input Filter
 

Capacitor 


Inductor 


Control Circuit 


Miscellaneous Piece Parts 

(Wire, Mounting Brackets,
 
Heatsines, etc.)
 

Individual Converter Weight 

Total Weight, Main Power
 
Conditioners, Externally
 
Fueled Reactor System 


Power Converter Specific Weight (7.2 kWe) 

Weight, lbs. 

17.20 

1.25 

0.10 

1.66 

0.04 

0.12 

0.13 

1.06 

0.10 

0.04 

0. 04 

1.60 

1.90 

0.30 

10.96 

36.50 

1314.00 

5. 1 lb/kWe 
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A power conditioner circuit is required which is capable of converting 7.2 kW from the 

nominal 12 0 volts input potential to the 3100 volts required by the ion thrusters. This 

would result in switching 60 amperes in each main power conditioner. Numerous circuits 

could be used, but considering normal transistor V CE limitations, and silicon controlled 

rectifier (SCR) commutation problems, the driven bridge circuit appears as the logical 

preference. 

Included in the power conditioners is the capability to current limit the output and to shut 

down completely for arc extinguishing. During the 10 percent operation phase, which is 

during coast without engine thrust, the power conditioners will be shut down. 

Electrical characteristics for the design of the main power conditioners to be used with the 

EFR system are as follows: 
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Input voltage: 90 to 130 vdc, 120 vdc nominal 

Input Current: 60 amperes 

Output Voltage: 3100 vdc, 1% regulation 

Current Limited: 125% overload 

6.3.2.1 Inverter Design 

The basic inversion function for the EFTR main power conditioner was selected to be 

performed by a bridge circuit; using SCR impulse commutation. 

Inverter circuits are typically arranged in either a parallel (push-pull) or bridge configura­

tion with transistors or Silicon Controlled Rectifier (SCR) switching elements. A bridge 

circuit has an advantage of operation up to twice the input voltage level limit of a parallel 

circuit due to the inherent auto-transformer action of the parallel circuit upon the switching 

device. With a 120-volt input potential, the effect upon transistors in a parallel circuit is 

to exceed the V level of most high-current devices. SCR's used in a parallel circuitCE 
have commutation difficulty in the presence of pulse width modulation and variable load. 

Consequently the bridge circuit was selected. 

6.3.2.2 Redundancy Considerations 

The electrical design for the externally fueled thermionic reactor system is based upon a 

single thruster being driven by one power conditioner. Thirty-seven thrusters and con­

ditioners are on board , of which six are spares. Although this provides some power con­

ditioning redundancy, the use of 37 ion engine-PC modules provides for ion engine isolation. 

6.3.2.3 Main Coverter Mechanical Design 

6.3.2.3.1 Geometry 

As with the power conditioners for the flashlight reactor, the components will be mounted 

using the baseplate as part of the radiator. Figure 6-12 shows the components configured 

in a minimum area design of approximately two square feet. Additional area may be re­

quired for thermal dissipation. 
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6.3.2.3.2 Component Size 

The following components have been selected for use in the main power conditioner for the 

externally fueled reactor system. 

a. 	 Input Filter
 

Inductor: 


Capacitors: 

b. Main SCR's, 4: 

c. Transformer: 

d. Feedback Diodes, 4: 

e. 	 RC Snubber 

Capacitor, 4: 

Resistor, 4: 

f. 	 Commutating Circuit 

Inductor, 2: 

2.25 x 1.6 x 4.12 inches 
16 turns No. 6 gauge wire 
AL-19 Silectron Core 
Arnold Engineering Company 

6, each 1.3 x 0. 75 x 2.5 inches H 
GEKSR Tantalum Foil 
100 gfd, 100 v 

3.25 x 1.4 inches diameter 
GE type C185 
600 v, 235 Amps 

SKLDe, 	 2kHz 
7.35 x 4 x 7 inches H 

1. 5 x 0. 	75 inches diameter 
GE type IN248 
14 ampere 

0.75 x 	0.25 inches diameter 
GE type 151EC, 61F19BA223 
Lectrofilm-B Tubular 
0. 02 f, 	 180v 

1.4 x 0.5 inches diameter 
20 ohm, 10 watt 

0.6 x 1 inch diameter 
Magnetics Inc. 
125 Permeability 
Powdered Permalloy 
10 turns, No. 13 gauge, bifiler 
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Capacitor, 2: 2.7 x 1.6 x4.5 inches H 
GE Type 160EC SCR Commutating Capacitor 
200 pkv, 20g[fd 

g. Auxiliary, SCR's, 4: 1.3 x 0.5 inches diameter 
GE Type C35 
35 ampere, rms 

h. Output Filter 

Inductor: 	 1. 5 x 2. 3 inches diameter 
Magnetics Inc. 55086 
Powder Permalloy 
333 turns, No. 16 guage wire 
32 mh 

Capacitor: 	 3.75 x 1.5 x 4 inches H 
GE Type 23FI132 
Paper/Pyranol 
5000 vdc, 1600 ac, 0.5 gfd 

i. 	 Rectifier Diodes, 8: Block 4 diodes, 1 x 1 x 1 inch H 
Each diode, IN1616R 
0. 8 	x 0.4 inch Diameter 

amperes, 600 pry 

j. 	 Control Circuit, 2: 3 x 1.5 x 3 inches H 
Flatpack, Board Construction 

6.4 DYNAMIC ELECTRIC POWER CONVERSION 

Dynamic electric power conversion is one in which power conversion is performed by use 

of a motor-generator (M-G) set. Application of a dynamic approach is considered for large 

space power systems, since a rotating generator is one of the most efficient and lightest weight 

energy electrical converters. A generator with an efficiency of about 94 percent with specific 

weight of less than 1 lb/kWe was selected for the Thermionic Spacecraft Application, resulting 

in a system with efficiency of 93 percent and a specific weight of 7.2 ib/kWe, not including 

radiator weight savings. 
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The dynamic electrical system for the 300-kWe electrical propulsion spacecraft with a 

flashlight thermionic reactor power source consists of a motor-generator set, transformers, 

and rectifiers. The power system schematic is shown in Figure 6-13. The estimated 

power loss and weight breakdowns for the principle components are shown in Tables 6-9 

and 6-10 respectively. 

Electrical power from the thermionic reactor at low voltage and high current is delivered to 

an acyclic motor which is coupled directly to a homopolar inductor-type alternator. The 

alternator develops an output of 250 volts, three phase, 2 kHz ac, which is fed to two types 

of loads. Part of the 250-volt ac output is rectified and supplies the 250-volt dc hotel bus. 

The remaining 250-volt ac power, which is approximately 80 percent of the system electrical 

capacity, is transformed to 3100 vac, and full wave rectified to form the 3100 vdc thruster 

screen bus. 

One of the most efficient dc machines operating from, or generating,, low voltage and 

high currents is the acyclic machine. A simplied form is shown in Figure 6-14. An 

acyclic motor consists of a conducting drum rotating in a dc magnetic field produced by 

the exciting coils. The voltage impressed on the conducting drum is applied through the 

sliding brushes on the drum creating a repelling force against the field, causing the shaft 

to rotate. According to Faraday's Law, the angular velocity of the machine is proportional 

to the total flux and the voltage supplied to the drum. Consequently, the motor shaft speed 

can be effected by changing these parameters, which can change the resulting generator 

output (Reference 8). 

Conventional sliding brushes on the drum have the undesirable features of high friction losses 

and high brush contact voltage drop and in a space application have the additional problem 

of brush particle accumulation. The acyclic machines employ a liquid-metal collecting 

system instead of sliding brushes, minimizing these problems. An alloy of sodium and 

potassium (NaK) effectively connects the current carrying parts of the rotor and stator. 
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TABLE 6-9. ACYCLIC ALTERNATOR SYSTEl POWER :BALANCE 

LOSSES WATTS 

Motor (7) = 97%) 900 
Generator (7) = 94%) 1,800 
Transformer 86 
Rectifiers 

High Voltage 528 
LOW Voltage 220 

Tranemiston cahlef 

Motor 9,60 
High Voltage 120 
Low Voltage 190 

Screen lnterrupters 1,250 
Thruster Auxiliary Power Conditioner * 
EM Pump Power Conditioners00 2, 
Payload Power Conditioner- 100 
Reactor Powerplant and Spacecraft Controls a22 

Total Losses 19; 15 

LOADS WATTS 

0 
Thru ter Aaxiliari lower 17,000 
Payloads, Science 1,00 

Guidgnee l500 
System Control 00 

Thruster Screen s2 OOO 

Primary EM Pump 1O000 
Secondary EM Pump 10,000 
Shield trap 00 -
Auxiliary Pump 100 
Propellant Pumr 100 

aRector Control 2,000 
cesium Hamer Soo 

2,00 
Tota Leads 264,800 

Total Power Required 284,415 

Efficiency 9S.1% 

*.Iosses Included in Ion Engine Efflocenoy 

0<2 



TABLE 6-10. ACYCLIC ALTERNATOR SYSTEM, ELECTRICAL SYSTEM WEIGHT 

Component Weight (Pounds) 

Motor 250 
Generator 250 
Transformer 180 
Screen Supply Interruptions 310 
Thruster Auxiliary Power Conditioners 272 
EM Pump Power Conditioners 55 
Payload Power Conditioners 30 
Reactor, Powerplant and Spacecraft Control 15 
Transmission Cables 490 
Rectifiers 10 
Wire, Brackets, Heat Paths, Control Logic 180 
Gas System, Bearings 25 

Total Weight 2067 Pounds 

Specific Weight 7.2 lb/kWe 

(Load, 284.4 kWe) 

FLUX PATH 
EXCITING 

CONDUCTING DRUM CORE 
WINDING 

OR ARMATURE 

AF ­

- _ --------...
 

BRUSHES -- Z 

Figure 6-14. Simplified Acyclic Motor 
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The generator is a homopolar inductor type of synchronous alternator. This machine has 

a solid unwound rotor, losses of which can be made low under these balanced load conditions. 

Furthermore, inductor alternator specific weight is sensitive to load power factor; however, 

with these types of loads, power factor is greater than 0. 8 and the effect is minimal. 

Both the motor and generator have gas bearings and operate in a low pressure argon or 

xenon environment. 

The acyclic motor has a solid rotor of 43:40 magnetic steel with inconel on the surface of the 

rotor to minimize windage losses. Stator punchings are of low carbon steel of thin lamination 

for reducing eddy currents. Windings are of copper. The homopolar inductor generator 

is similarly constructed. 

The M-G set, operating at 60, 000 rpm, with a coolant temperature of 300 F, weighs about
 

250 lb for each unit. The alternator having four poles has an output of 2000 Hertz. Each
 

unit has a volume of approximately 10 inches diameter by 12 inches long.
 

Excitation for both units of the M-G set is provided directly from the low voltage thermionic 

reactor. Excitation power required is about 0. 1 percent of the output rating of the units 

compared to 0. 5 percent to 1. 0 percent for commutator type generators. 

Reliability may be obtained through use of four independent motor-generator sets operating
 

in parallel. Each set may be provided with 33 percent reserve capacity, so that full power
 

can be maintained after failure of one set. Only very small weight penalties are involved
 

because of the inherent high efficiency and low specific weights of the dynamic systems.
 

Non-redundant system weights are shown in the weight tables for comparison with other
 

methods of conversion. Further study is required to fully assess the relative tradeoffs
 

associated with the dynamic power conditioning approach.
 

It is fully recognized that the inherent static power conversion system characteristics of
 

the thermionic approach cannot be fully utilized if dynamic power conditioning is employed.
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This cursory evaluation indicates that further investigation is required to assess the relative 

reliability aspects of the two approaches. Emphasis should be placed upon the definition 
of the relative reliability of these candidate static and dynamic power conditioning approaches. 

The scope of this effort should include reactor reliability and examination of smaller re­

dundant units. 
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7. SPACECRAFT DESIGN DEFINITION
 

This section of the report describes the reference designs for the externally fueled reactor 
spacecraft and the flashlight reactor spacecraft shown in layout in Figures 1-1 and 1-5, 
respectively. Each reference design has a net propulsion power of 240 kWe with' a reactor 
output power of 274 kWe for the externally fueled reactor and a reactor output power of 318 
kWe for the flashlight reactor. 

These designs are based on the results of a thermionic spacecraft weight optimization
 
computer code, which is reported separately (Reference 7).
 

7.1 EXTERNALLY FUELED POWERPLANT/SPACECRAFT 

An externally fueled reactor powered spacecraft was designed and optimized with a computer 
code 	analysis based on the design guidelines presented in Section 3, and the following 

additional conditions: 

a. 	 A single heat rejection loop between reactor and main radiator. 

b. 	 A radiator arrangement with the main radiator directly behind the shield and 
the power conditioning radiator at the rear of the spacecraft. 

c. 	 Aluminum as the electric cable material. 

As detailed in Section 1.2, the total net power of 240 kWe is the sum of the ion engine input 
and the special ion engine PC input power. Details of the powerplant hotel load and the 
payload plus ion engine PC section load are given in Table 1-3. 
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A layout drawing of the reference externally fueled reactor spacecraft is given in 

Figure 1-1. The vehicle is a long cylinder with the forward one-third section conical 

in configuration. The overall length is 62.7 feet with the conical section 29. 3 feet 

long and the diameter is 9. 2 feet. The conical section has a shield half angle of 6. 6 

degrees.
 

The reactor end of the vehicle, is designated the forward end since the spacecraft is 

propelled in that direction on a line coincident with the longitudinal axis of the vehicle 

by the ion engine thrusters at the rear end. The reactor is so located to provide 

maximum separation from the payload in the rear section of the vehicle and to assure 

minimum volume and weight for the shadow shield. The shield is formed in two sec­

tions; a solid block of neutron shielding directly behind the reactor, followed by a 

tank of mercury propellant which functions as the gamma shield. 

The main heat rejection radiator, which dissipates the waste thermal energy gener­

ated by the reactor, forms the conical section of the spacecraft behind the shield with 

an additional bay extending down the cylindrical section. A single piping loop trans­

ports the NaK reactor coolant around the shield to the main radiator feed line network. 

The coolant activation analysis indicates that use of a single primary coolant loop in the 

externally fueled reactor powered spacecraft does not violate the integrated gamma dose 

limit of 107 rads. 

A very short section of auxiliary radiator separates the main radiator from the power 

conditioning radiator, which occupies most of the cylindrical section of the vehicle. 

The PC radiator is actually eight-sided in cross section, rather than cylindrical, and 

separated axially into two halves by two narrow strips along which the low voltage 

cables are strung. The low voltage cables attach to -the reactor leads at the rear of 

the reactor, then run longitudinally along the surface of the shield and main radiator 

to the PC radiator distribution area. At 5 axial locations on the PC radiator, low 

voltage cables are strung circumferentially to 38 individual power conditioning mod­

ules spotted uniformly on the flat panel sides of the PC radiator. 

7-2 



The rear 4.8 feet of the spacecraft contain the payload and ion engine subsystems. Com­

munication antennas which extend radially for operation are shown in the stowed position 

behind the thrusters for launch. 

Summary descriptions of the spacecraft subsystems are presented in the following paragraphs. 

Further details may be found in.Reference 3. 

The propulsion system is the major system of interest in this report. It consists of two 

subsystem groups, the powerplant subsystem group and the thrust subsystem group. To 

simplify the numerical designations of the paragraph headings and subheadings in this report 

section, the two subsystem groups mentioned above will be given equal importance in numerical 

designation with the spacecraft propellant system and payload system. 

7.1.1 POWERPLANT SUBSYSTEM GROUP 

The Powerplant Subsystem Group consists of the reactor subsystem, the shield, the primary 
and auxiliary heat rejection subsystems, the electrical and control subsystem, and power­

plant structure. 

The 274 kWe externally-fueled reactor is 2.75 feet in diameter and 1.68 feet long. In the 

dry condition, it weighs 4150 pounds and holds 75 pounds of NaK when filled for operation. 

Twelve SNAP-8 type control actuators are mounted on the front face of the reactor to drive 

the control drums in the radial reflector. The control actuators are modified with the out­

put drive eccentric to the motor shafts. This allows grouping the actuators closer to the 

axial centerline of the reactor thus reducing the radial diameter of the shadow shield. The 

actuators are radiatively cooled and unprotected from the reactor nuclear radiation. The 

weight of the twelve actuators is 230 pounds. 

7.1.1.1 Shield Subsystem 

The shield subsystem consists of a canned block of lithium hydride and plugs of tungsten 

metal which shield the holes across the outer circumference of the propellant tank caused 

by the passage of the reactor loop piping. The lithium hydride block performs most of the 
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required neutron shielding with additional neutron attenuation occurring in the conically 

shaped mercury propellant tank placed directly behind the neutron shield. The primary 

reason for this mercury tank location is that it permits the mercury propellant to act as 

the primary gamma shield for the radiation sensitive components of the spacecraft. 

The neutron shield component is an internally supported can filled with lithium hydride. 

The can is 16 inches thick and has an average diameter of 41.8 inches. It weighs 765 

pounds of which 575 pounds is lithium hydride. 

The total heating rate in the shield subsystem is estimated to 1. 3 kW, with almost all 

of this heat being deposited in the frontal region of-the neutron shield. Cooling is 

achieved by a serpentine coil of pipe carrying-the auxiliary cooling system coolant. 

7.1.1.2 Primary Heat Rejection Subsystem 

The primary heat rejection is composed of the main radiator and the piping network 

which pumps and transports the reactor coolant to the radiator. The radiator con­

sists of four approximately equal length bays, three of which form the conical surface 

of the spaacecraft while the fourth occupies the forward section of the cylindrical 

spacecraft area. Each of the bays is divided into three panels, each of which cover 

a 120-degr.ee section of the bay. 

A typical -offset radiator tube-fin unit of the radiator is 1. 635 inches wide and has a coolant 

tube diameter of 0.18 inch and a thickness of 0.03 inch for the composite copper-stainless 

steel fin. The primary meteroid armor protection is 0. 089 inch thick and 0. 021 inch of 

bumpered armor protection surround each coolant channel. 

The weight of the twelve radiator panels, which total 661 square feet in area, and the 

associated headers is 1335 pounds when dry. The header description is included in the 

discussion of the feed line network portion of the loop piping. 
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The main heat rejection piping is made up of the reactor header configuration, the 
radiator feed line network, and the intermediate piping. The coolant inlet plenum is 

at the forward end of the reactor and the exit plenum at the rear end. Header arrange­
ments distribute and collect the coolant to each plenum. The inlet header is a circular 

torus of rectangular cross section, located at the rear and outside the outer diameter 

of the reactor, see Figure 7-1. 

CONTROL DRUM 
ACTUATORS
 

REACTOR
 

COOLANT
 
INLET I
 
HEADER
 

I COOLANT 
EXIT 

FROM TO HEADER
RADIATOR RADIATOR 

Figure 7-1. Coolant Header Arrangement for
 
Externally-Fueled Reactor
 

Two rectangular shaped ducts, 2 by 5 inches in cross section, transport the re_... 
coolant across the shield surface in a curving path. The rectangular configuration is 
utilized to minimize the depth of the channel made in the shield arid to lessen the radi­
ation dosage penetrating the resultant shield voids. These ducts connect to the feed hir 
network which distributes the coolant to the twelve radiator panels, as shown on Figuri 

7-2. The total weight of the radiator feed line network plus the connecting piping to th( 
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Figure 7-2. Main Radiator Feed Line Networi 

reactor is 198 pounds when 0.06-inch thick stainless -steel duct material is used. The 

total ducting weight for the heat rejection system -is 295 pounds. 

As shown in Figure 7-2, two EM pumps are installed in the main heat rejection pipe loop. 

Only one of the pumps is in operation at any one time with the second pump being in 

standby condition. Eachpump is a ac conduction pump, similar in concept and con­

figuration to the one shown in Figure 7-3. The coolant duct is divided into ten parallel 

channels which are arranged in circular fashion as shown on the figure. The parallel 

coolant ducts are flattened into a very thin rectangular configuration and each of these 

duct sections traverse the magnetic field of a magnet ring. A coil of heavy wire w-nnnp" 

around a magnet ring and narrvin n ,nvrntni +ho moano+in 4'a1,A 

The EM pumps for the reactor loop use ten parallel duct segments, with each segment 

in the pumping region being 0. 125 by 3.83 inches in cross section and 1. 2 inches long 

in the direction of coolant flow. The 1.2-inch thick magnet ring has inner and outer 
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Figure 7-3. Schematic Diagram of a DC
 
Powered EM Pump
 

diameters of 3.35 and 6.15 inches, respectively. Copper lead approximately 00033 square 
inch in area forms the energizing coil for the magnet. The total weight of each EM pump 

including transition ducts and insulation is 50 pounds. 

The electrical power requirement for the pump is 2.8 kW supplied at approximately 

10 volts and 280 amperes. 

The total inventory of NaK coolant contained in the heat rejection system is 650 pounds; 
75 pounds in the reactor, 195 pounds in the main radiator panels, and 490 pounds in the 
reactor headers, the radiator feed line network and connecting ducts, the EM pump, 

and the accumulators. 
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Thermal insulation protects the shield from the hot heat rejection ducts traversing
 

its surface, and the rear section of the vehicle from the main radiator. The latter
 

protection includes a radiation barrier across the entire cross section of the vehicle
 

at the back end of the main radiator, a fibrous mineral type of insulation under the
 

auxiliary radiator, and thermal conduction barriers at the front and rear mating
 

rings of the main radiator. The combined weight of all the insulation is 76 pounds.
 

7.1.1.3 Electrical Subsystem 

The electrical subsystem includes that portion of the spacecraft electrical network 

which processes and supplies the hotel power required to operate the powerplant. It 

also includes the electronic components which monitor and automatically control the 

actuator drives of the reactor, and the pumps of the various heat rejection loops in the 

powerplant. The power conditioning weight, based on the analysis shown in Section 

6 for the auxiliary PC units, is calculated to be 45 pounds for the hotel power re­

quirements. The corresponding portion of the PC radiator (about 10 square feet) is 

20 pounds. The weight of cabling to the PC units, pumps, and other components is 

another 20 pounds while the electronic powerplant control modules are estimated 

to weigh 50 pounds. 

7.1.1.4 Auxiliary Coolant Loop 

The auxiliary loop provides cooling for the neutron shield and the electrical and mag­

netic components of the main heat rejection loop EM pump. Figure 7-4 is a schematic 

representation of the auxiliary loop which includes a radiator, pumps, accumulators, 

cooling coils for the neutron shield, and all connecting piping. The auxiliary loop 

pump pressurizes the cooled fluid exiting the radiator and forces it, in sequence, 

through cooling passages in the main EM pump, the cooling channels in the lithium 

hydride shield, and the auxiliary radiator. The pump is a dc powered single duct unit. 

The weight of both pumps, the operating and the redundant pump, is 20 p6unds. The 

auxiliary radiator encircles the spacecraft in belt-like fashion between the main radi­

ator and the PC radiator. It consists of a single coolant tube attached to a 2-inch wide 

copper-stainless steel fin and weighs 10 pounds. Accumulators weigh another 10 pounds. 
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The largestweight item in the loop is the connecting piping because of some 75 feet of 

overall length. The piping, which is 1 inch in diameter, weighs 35 pounds and the total 

loop coolant inventory is another 25 pounds. 
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Figure 7-4. Schematic Representation of Auxiliary Loop
 

7.1.1.5 Powerplant Support Structure 

The powerplant support structure includes all the spacecraft structure required exc 

that needed for the propellant tanks, the payload, and the thrusters. It includes: 

a. Reactor support 

b. Shield support
 

c. Main radiator stiffeners and mating attachments
 

d. PC radiators stiffeners and mating attachments. 
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The reactor support structure is a sheet metal frustum, imbedded in the neutron shield, 

and attached at its base to the rearedge of the lithium hydride can. The smaller 

diameter of the frustum is attached to the front plate of the lithium hydride can oppo­

site the reactor. Attachment rings on both the upper and lower bases of the frustum 

provide the necessary connecting fixtures. The support frustum is constructed of 0.06 

thick stainless steel, lightened by 50 percent by hole punchouts. The total weight of 

the frustum and L-shaped attachment rings is 40 pounds. 

Shield support is provided by a lateral surface can wall thickness of 0. 08 inch stainless 

steel, coupled with four circumferential Z-shaped stiffeners. The combined weight of 

the can wall and stiffeners is 67 pounds. 

Structural additions to the main radiator section of the spacecraft include mating 

attachment rings, circumferential stiffeners and longerons. Mating rings are needed 

for the four main radiator bays which weigh a total of 140 pounds. The rings are J­

shaped and made from 0.08 inch thick sheet. A Z-shaped frame or stiffening ring is 

required in each of the two rearward radiator bays. Constructed of 0-, 06 inch thick 

stainless steel, the stiffeners weigh a total of 30 pounds. Four L-shaped longerons 

in each bay provide buckling support for the radiator. Constructed of 0. 125 inch 

thick stainless steel, they weigh a total of 165 pounds for the entire radiator. 

The power conditioning radiator also has structural additions in the form of mating 

rings, stiffeners and longerons. In addition, a portion of the radiator surface is 

blocked by the low-voltage cables. This blocked surface does not dissipate heat, but 

it must be present to provide structural rigidity to the radiator. Consequently, the 

weight of this blocked surface, 65 pounds, is attributed to powerplant structure. 

The two mating rings of the PC radiator, each formed from 0. 08 inch thick aluminum, 

weigh a total of 35 pounds. Z-frames, or stiffeners, located at four axial locations 

and constructed of 0. 094 inch thick aluminum weigh a total of 50 pounds. Twenty­

four longerons, T-shaped and constructed of 0. 156 inch thick aluminum, run the 

length of each PC radiator panel. The weight of these longerons is 210 pounds. The 

total weight of all structural components in the PC radiator location is 360 pounds. 
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7. 1 .2 THRIUST SUBSYSTEM GROUP 

The thrust subsystem group includes the subsystems which transfer and convert the 

electrical power generated by the reactor to propulsive power. These subsystems are 

the low and high voltage cable networks, the high voltage supply PC units with corres­

ponding radiator panels, and the thruster ion engines. 

7.l.2.1 Ion Engine Subsystem 

The Ion engine subsystem, including the individual engines and vector control hardware 

has been designated by JPL. The 37 engine anits weigh 585 pounds, the vector control 

assembly 550 pounds, and mnisellaneous hardware another 100 pounds. 

7.1.2.2 Low Voltge Cables 

The low voltage cable assembly consists of the reactor leads and low voltage bus bars 

which transport the reactor electric power output to the high voltage supply PC units 

and to the special payload and thruster PC modules. (The hotel load low voltage dis-­

tribution system ts included in the powerplant subsystem weight group,) The initial, 

high temperature copper reactor leads exit the reactor through the walls of the coolant 

outlet plenum. 

Both bus bars extend down the outer surface of the shield and main radiator osmpo­

ents into the power conditioning radiator section. The bus bars extend axially along 

the PC radiator with 4 pairs of leads turning 90 degrees at separate axial locations, 

to extend eircumferentially to individual PC modules. 

The high temperature copper reactor leads located near the reactor weigh less than 

three pounds including ceramic bead insulators. The aluminum bus bars are rectangu 

lar in cross section, 0, 165 imhes by 0, 28 inches, with a mean length of 44 feet. The 

total weight of these bus bars is 195 pounds with an additional weight of 28 pounds in 

ceramic insulation. Multifoil insulation of Al-Ni composition is placed between the 

bus bars and the high temperature surfaces, the main radiator and neutron shield, 

which the aluminum bus bar traverses. The weight of this insulation is 80 pounds. 
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Two pair of aluminum bus bars extend into the payload and thruster bays carrying power 

to the respective.PC units. The weight of this additional length of cable, plus insulation, 

is less than 6 pounds. 

7.1.2.3 High Voltage Cables 

The high voltage cables are the 3100-volt lines from the main power conditioning modules 

to the ion engines. A pair of leads, one positive and one negative, extend from each 

module to each ion engine. The total weight of these leads is 15 pounds which includes the, 

ceramic insulation. 

7.1.2.4 Power Conditioning Modules 

The power conditioning subsystem includes 37 high voltage supply units (one per ion engine) 

plus the special PC modules. The high voltage supply modules, which weigh a total of 

1390 pounds, are based on the concepts and component definitions described in Section 

6.2.2 for these units. The total weight of the special ion engine PC modules is 270 

pounds.
 

7.1.2.5 Power Conditioning Radiators 

The radiator surface corresponding to the 37 high voltage supply PC modules is 470 

square feet. (The rest of the radiator is chargeable to the hotel load PC units in the 

powerplant subsystem group.) The weight of this radiator surface area, based on a 

0.115-inch thickness for the aluminum panels, is 745 pounds. 

The special ion engine PC radiator, which dissipates 1.9 kW, weighs 85 pounds. 

7.1.2.6 Ion Engine Structure 

The payload and ion engine bays require mating rings, stiffeners, and longeron stringers 

for support structure. The mating rings weigh 23 pounds, the stiffeners weigh 3 pounds, 

and the longeron weigh 50 pounds. Of this total, approximately 40 pounds is chargeable 

to the thrust bay. 

7-12 

http:respective.PC


7.1.3 PROPELLANT SYSTEM 

The propellant system consists of the mercury propellant and the corresponding tanks, 

feed lines, and structural attachments. Of the total 14, 500 pounds of mercury speci­

fied in the design guidelines, approximately 4250 pounds are located in a tank behind 

the neutron shield to act as protection for the spacecraft from the reactor gamma 

radiation. The tank is a conical cylinder constructed of 0.10-inch thick stainless 

plate at the top and bottom and 0.08-inch thick plate for the lateral surface. The total 

weight of this tank with radial steel stiffening bars on the rear face and on internal 

expulsion bladder for the propellant is 160 pounds. 

A cylindrical tank located in the thrust bay contains the remaining 10, 250 pounds 

of propellant. The weight of this tank with mercury feed lines to the ion engines is 

70 pounds. Attachment brackets for both propellant tanks total 15 pounds. 

7.1.4 SPACECRAFT PAYLOAD COMPONENTS 

The delineation of the payload science package, communications equipment, space­

craft guidance and control, etc., has been provided by JPL. The weight of con­

duction fin radiator corresponding to the combined payload heat rejection require­

ments is 25 pounds. The weight of structural stiffeners and longerons attributable 

to the payload bay is an additional 25 pounds. 

7.1.5 LAUNCH COMPONENTS 

Two special components are required for the spacecraft during the launch phase of 

the mission; an adapter cone attaches the spacecraft to the launch booster, and a 

flight fairing or shroud protects the spacecraft from aerodynamic pressure loads and 

heating during the launch trajectory. The adapter cone, shown on the layout drawing, 

(Figure 1-1) surrounding the ion engines and stowed antennas weighs 250 pounds. 

The launch shroud, which is 66 feet long, weighs 3500 pounds. Since the shroud is 

jettisoned after peak aerodynamic pressure and heating conditions occur, but before 

booster cutoff, only a fraction of the shroud weight is chargeable as payload weight 

reduction. This fractional shroud weight or payload penalty is 825 pounds for the 

externally fueled reactor spacecraft system (24 percent). 
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7.2 FLASHLIGHT POWERPLANT/SPACECRAFT
 

The reference flashlight powerplant and spacecraft design is extrapolated from the results
 

obtained with a thermionic computer code optimization for a 300 kWe reactor output system.
 

Important conditions assigned for the computer analysis and for the reference design are:
 

a. 	 A reactor outlet temperature of 1350 F 

b. 	 A two loop, in-series, heat rejection system 

c. 	 A relative radiator arrangement having the power conditioning radiator
 
behind the shield and the main radiator at the rear of the spacecraft
 

d. 	 Aluminum as the low voltage cable composition 

As shown in Table 1-5, a reactor output power of 318 kWe is required to supply a net 

power of 240 kWe to the thruster subsystem. Cable losses of 20.5 kWe and power 

conditioning losses of 35.32 kWe occur in the low voltage end of the electrical circuit, 

with 	the remaining 262.18 kWe appearing as high voltage power from the PC com­

ponents. Most of this high voltage power is at 3100 volts, and provides 223 kWe to the 

thruster ion engines. The remaining high voltage power, which is at 250 volts, is di­

vided almost equally between the payload and special ion engine PC requirements, and 

the powerplant hotel load requirements. 

The spacecraft is a long, narrow vehicle, 84.15 feet long and 9.2 feet in diameter, 

made up of a conical front end section, having a 7.4-degree half angle, attached to a 

cylindrical rear section. The reactor is located at the apex of the front section cone to 

provide maximum separation distance from the payload, which is at the rear of the cyl­

indrical section, and to assure minimum volume for the shadow shield. 

The neutron shield is located as close as possible to the reactor, again to provide mini­

mum shield volume and weight, with a portion of the mercury propellant located in a 

tank 	behind the neutron shield to act as gamma shielding. 
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The power conditioning modules and power conditioning radiator section are located 
directly behind the shield and propellant tank to minimize the length and, hence, the 
power losses in the low voltage cable. This is required due to the low voltage, 14 to 
16 volts, characteristics of the flashlight reactor (see Section S. 3). Individual PC 
modules are distributed uniformly on the surface of the PC radiator, one module per 
pair of reactor fuel elements and low voltage cables. The cables are strung along the 
outer surface of the shield PC radiator surface so that they can radiate their I2R power 

losses directly to space. 

The PC radiator occupies most of the conical surface of the spacecraft plus 9.7 feet 
of the cylindrical section. A very short section auxiliary radiator surface acts as a 
thermal buffer between the low temperature PC radiator and the high temperature main 
radiator which covers most of the cylindrical section surface. The reactor waste heat 

is transported to the main radiator in two stages. The first loop pipes the reactor 
coolant, NaK, outside the shield to a heat exchanger placed between the neutron shield 
and the gamma shield (forward propellant tank). A second NaK loop carries the heat 

along the outer surface of the PC radiator to the main radiator. 
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7.2.1 POWERPLANT SUBSYSTEM GROUP 

Lhe propulsion system is made up of the power plant subsystem and the thruster sub­

system. The power plant subsystem, in turn, comprises all the subsystems which 

generate the propulsion power. 

7.2.1.1 Reactor Subsystem 

The 318 kWe reactor is 2. 37 feet in diameter, 2.96 feet long and weighs 3060 pounds 

in the dry condition. Twelve S8DR control actuators (SNAP-8 Ground Prototype), 

modified for eccentric output drive, are mounted on the front end of the reactor. These 

actuators are radiatively cooled and weigh a total of 230 pounds. They drive radial 

reflector segments in an axial direction to effect reactor control by varying neutron 

leakage. 

Fuel element extensions, electrical leads, cesium vapor feed tubes and reactor coolant 

piping all emerge from the back end of the reactor into the bay between the reactor and 

shield. The weights of the cesium vapor feed lines and the cesium resevoir are included 

in the reactor weight while the coolant header weights are included in the reactor loop 

subsystem and the reactor lead weights are included in the low voltage cable weight. 

A cesium heat pipe radiator removes excess heat from the cesium reservoir and 

dissipates it by radiation. This radiator, which weighs approximately 10 pounds and 

has approximately four square feet of surface area, encloses a portion of the equip­

ment bay which measure 15 inches in axial length. 

7.2.1.2 Shield Subsystem 

The shield subsystem consists of a block of lithium hydride acting as a neutron shield. 

A tank of mercury propellant is the main gamma shield but its weight is charged to 

its primary function as engine propellant. 
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The neutron shield is an internally supported tank filled with lithium hydride. Its 

configuration is a frustum of a cone, 26.4 inches thick with base diameters of 44.5 

and 51.5 inches and its weight is 1610 pounds. 

The total heating rate in the shield subsystem is approximately 1. 8 kW with great 

majority of this heat being deposited in the front one-foot thickness of the neutron 

shield. This heat is removed by the auxiliary cooling loop. 

The reactor loop piping races a helical path just below the lateral surface of the 

neutron shield. The resultant holes in the shield barrier are covered with plugs of 

canned lithium hydride on the front end and rear faces of the neutron shield. Similar 

plugs of tungsten, 3.5 inches thick and weighing 265 pounds; cover the voids through 

the mercury tank caused by the passage of the radiator loop piping. 

7.2. 1. 3 Reactor Loop Subsystem 

The reactor loop subsystem is shown semi-schematically on Figure 7-5. The loop 

consists of two coolant headers and coolant feed pipes at the rear face of the reactor, 

two EM pumps and three accumulators in the heat exchanger bay and the piping be­

tween the reactor and heat exchanger. The heat exchanger itself is arbitrarily assigned 

to the radiator loop subsystem. 

As shown on Figure 7-5 the headers are crescent shape tori which have an average 

width of 3.5 inches, a depth of 2 inches and an approximate diameter of 30 inches. 

Constructed of 0. 10 inch thick stainless steel plate, each header weighs 30 pounds. 

Six equally spaced 2 inch diameter pipes, weighing 9 pounds, distribute the coolant 

to the reactor from each header. A single duct, having a cross section area equiva­

lent to a 4. 3 inch round pipe, connects each header with the heat exchanger group. The 

total length of this ducting is 12.5 feet long and with a wall thickness of 0.06 inches, 

weighs 34 pounds. 
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Figure 7-5. Schematic of Reactor Loop 

Two EM pumps in series, one operating and one redundant, pump the reactor coolant. 

Thesepumps are similar indesign and concept as those described in Section 7.1. 1. 3 
for the externally fueled power plant. The electrical power requirements for each of 

the pumps in the flashlight reactor loop is 8.06 kW supplied at 10 volts and 800 am­

peres. 
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The total coolant weight in the reactor loop is 280 pounds; the reactor holds 133 pounds, 

the tube side of the heat exchanger contains 27 pounds and the remaining 120 pounds 

is distributed in the piping, headers and EM pump ducts. 

Multifoil insulation is used around sections of the reactor piping to protect adjacent 

equipment from the high temperatures of the coolant. The insulation is placed on the 

rear face of the neutron shield and the front face of the propellant tank for thermal 

protection from the heat exchanger, pumps, etc. Additional insulation surrounds the 

loop piping and headers to protect the shield, cesium system and electrical leads. 

The total weight of insulation in the reactor loop region is 65 pounds. 

1.2.1.4 Radiator Loop Subsystem 

The radiator loop transfers the reactor waste heat from the reactor loop and transports 

it to the main radiator for dissipation to space. The loop consists of the following 

components: 

a. Heat exchanger 

b. Main radiator 

c. Piping with EM pumps and accumulators 

d. Protective thermal insulation. 

The heat exchanger is a tube and shell, counter-cross flow, unit with the hot reactor 

NaK-78 coolant flowing inside the tubes and the cooler radiator NaK-78 coolant in 

combination flow, across and counter to the tube flow. The characteristics of the 

heat exchanger are as follows: 

Heat transfer rate 2520 kW 

Heat exchanger length 56.5 inches 

Heat exchangez diameter 4. 6 inches 
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Tube diameter 0.2 inches 

Number of tubes 433 

Shell thickness 00 10 inches 

Tube wall thickness 0002 inches 

Tube side pressure drop 1. 67 psi 

Cold side pressure drop 4.37 psi 

The weight of the dry heat exchanger is 180 pounds. 

The main radiater has a total area of 945 square feet divided into four axial bays with 

three panels per bay. Each panel covers one-third of a cylindrical lateral surface 

(120' of arc) and is 9.8 feet wide and feet in axial length. Sixty-five coolant tubes, 

which run the length of each panel are joined by solid fin sections of copper-stainless 

construction. The copper-stainless steel fins are 0.03 inches thick with the armor tubes 

spaced on 1. 752 inch centers. The coolant channels are 0.18 inches in diameter with 

0. 095 inches of primary armor protection and 0. 0244 inches of bumpered armor protectio 

The total weight of all the panels plus their headers, which will be described in the next 

paragraph, is 2190 pounds. 

The network of feed lines and headers which distribute the radiator loop coolant to the 

radiator panels is shown on Figure 7-6. Five rings of headers distribute the coolant 

to the twelve radiator panels. Each header ring is separated into three sections cor­

responding to the three panels per radiator bay. The second and fourth ring of headers 

dispense the incoming coolant with the second header ring feeding the first two bays and 

the fourth ring feeding the last two bays. The middle header ring collects the coolant 

from the two central bays while the two end header rings collect the coolant from the 

respective end bays. The three middle header rings, which service two bays are 1. 67 

inches in diameter, and the two end rings are 1. 18 inches in diameter. As noted 

above, the weights of these headers are included in the radiator weight. 
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,Figure 1-. Schematic of Main Radiator Loop 

The radiator feed line network consists of the axially directed input and return feed 

lines plus the radial, spoke-like feeders running to each header. These latter header 

feeders are. 1. 75 inches in diameter, while the input feed line has a 2.9 inch diameter 

and the return feed line is 2.04 inches in diameter. The piping to and from the heat 

exchanger up to the junction with the feed lines is 4. 0 inches in diameter. 

Two S-shaped duct segments of flat rectangular cross section are located in the radi­

ator loop piping, as shown on Figure 7-6. These duct segments bend to accommodate 

the relative expansions of the piping between the heat exchanger and the radiator and 

the radiator itself. Additional bellows in the input and return feed lines take up ex­

pansion motion between the individual bays of the radiator. 
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The total weight of the radiator loop piping including the radiator feed lines and expal 

sion bellows is 440 pounds. 

Two EM pumps in series, similar to those previously discussed, pump the radiator 

loop coolant. The weight of each pump is 45 pounds. 

Two dynamic and one static accumulator regulate the coolant expansion-pressure 

level conditions in the radiator loop. The dynamic accumulators are the same size 

and weight as those in the reactor loop. The static accumulator is approximately 1 

foot in diameter and weighs 60 pounds for a total accumulator weight of 100 pounds. 

The coolant inventory in the radiator loop consists of 263 pounds in the radiator, 112 

pounds in the shell side of the heat exchanger and 608 pounds in all the piping. 

Insulation surrounds radiator loop piping and separates the min radiator section of 

the vehicle from the auxiliary radiator and payload sections. The total-weight of this 

insulation is 210 pounds. 

7.2.1.5 Electric and Controls Subsystem 

The power plant electric system consists of the hotel PC units and their radiators, 

plus the cabling to the pumps and equipment using the power. Special PC modules 

convert a 250 volt input power to the voltages required for the EM pumps -and the 

reactor controls. The cesium heater requires no additional power conditioning. Fil 

7-7 shows the power distribution, voltages and PC unit efficiencies in the hotel load 

circuit. 'The PC units have a specific weigh of 12 lb/kW so the total PC weight is 18f 

pounds. The weight of the corresponding 0. 10 inch thick radiator panels, which tota: 

35 square feet in area, is 60 pounds. The total weight of cabling,. including 10 mils 

insulation, between the hotel PC modules and the user equipment is 45 pounds. - Power 

plant control equipment is assumed to weigh 50 pounds. 
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Figure 7-7. Hotel Load Power Distribution 

7.2.1.6 Auxiliary Cooling Loop 

The auxiliary cooling loop provides a thermal heat rejection mechanism for those 

system components which have temperature limitations lower than the temperatures 

in the main heat rejection system and higher than the electronic components in the 

spacecraft. These intermediate components are the electrical and magnetic sections 

of the EM pumps and the netron shield. Figure 7-8 is a schematic layout of the 

auxiliary cooling loop. Self cooling EM pumps force the NaK-78 coolant through cool­

ing passages in the reactor EM pump electrical section, then through cooling passages 

in the frontal regions of the neutron shield. The NaK is then at it' s hottest temperature 

and is passed through the auxiliary radiator. The cooled flow is then circulated through 
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Figure 7-8. Schematic of Auxiliary Cooling Loop 

the cooling passages of the radiator loop EM pump and returned to the auxiliary pump 

to complete'the circuit. Accumulators control the expansion and pressure level of 

the coolant as in the other heat rejection loops. 

The auxiliary radiator is a narrow fin band, containing a single cooling channel, lo­

cated between the low temperature PC radiator and the high temperature main 

radiator. The radiating surface is ten square feet in area and only 4. 5 inches wide. 

Its weight is approximately 20 pounds. -

The total length of the 1. 0 inch diameter piping is 71 feet and its dry weight is 33 

pounds. The coolant weight is 20.5 pounds in the piping and 4.5 pounds in the radiator 

and pumps for a total weight of 25 pounds. Two accumulators approximately 6 inches 

in diameter and 6 inches long weigh 5 pounds apiece. EM pumps are estimated 

to weigh 10 pounds apiece. The total weight of the auxiliary loop is 110 pounds. 
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7.2.1.7 Power Plant Support Structure 

The power plant support structure includes all the spacecraft structure required ex­

cept that needed for the propellant tanks and the payload and thruster bay sections. It 

includes: 

a. Reactor and shield support 

b. PC Radiator stiffeners and mating rings 

c. Main Radiator stiffeners and mating rings; 

The reactor support is a sheet metal section of a cone buried inside the lithium hy­

dride neutron shield and an attachment ring on the front face of the shield. The sheet 

metal cone is formed from 0.06 inches thick SS sheet and is reduced in weight by the 

use of lightening holes. The total weight of this support cone and the attachment ring 

is 56 pounds. 

Sixty mil thick, L-shaped stiffening rings at the, outer rim edges of the conical shield 

are required to achieve required rigidity in the neutron shield can. In addition, ap­

proximately 0. 08 inches of stainless steel meteoroid protection is required on the 

neutron shield surface areas which are not covered by the low voltage cable. The 

combined weight of the stiffening rings and added skin thickness of meteoroid pro­

tection is slightly less than 50 pounds. 

The conical section of the power conditioning radiator is actually a six-sided prism, 

while the cylindrical section is actually twelve-sided. A transition section, approxi­

mately 5 feet in axial length connects the six and twelve-sided sections. The PC 

radiator is split in half axially by the main radiator heat rejection piping running down 

opposite sides of the PC radiator surface. Therefore, a U-shaped support channel 

joins the two halves of the radiator. The thin 0.10 skin of the PC panels does not 

have sufficient strength to provide launch support for the heavy weights of the reactor, 
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shield and propellant tank in the front end of the vehicle. Consequently, longerons 

and circumferential stiffening rings are added to supply the required strength. 

Two U-shaped rings, 0.04 inch thick and weighing 8 pounds, provide mating connec­

tions for the twelve-sided cylindrical section of the PC radiator. A similar ring, 

weighing 4 pounds, allows the conical section of the radiator to be joined with the 

transition ring. Z-shaped stiffening rings, one in the cylindrical section and two in 

the conical section, weight a total of 15 pounds. 

The U-shaped beams which connect the two halves of the PC radiator around the main 

radiator loop coolant pipes are constructed of 0. 02 inch thick aluminum, and weigh a 

total of 25 pounds. T-shaped longerons, 14 in the cylindrical section and 8 in the 

conical section, provide the axial compressive strength capability. These members 

of 0. 060 inch thick aluminum, weigh a total of 120 pounds. 

A portion of the PC radiator panels can not radiate heat since they are covered by the 

low voltage cable. This fraction of the radiator still must be present to provide 

structural continuity so the weight of the blocked area is attributed to power plant 

structure. That weight of blocked area is 225 pounds. 

'A transition ring bridges the surface area occupied by the auxiliary radiator to con­

nect, structurally, the main radiator to the power conditioning radiator. This tran­

sition ring, shaped like two U-channels placed back-to-back and joined by a connecting 

web, is formed from titanium plus Min-K* insulation and weighs 65 pounds. It also 

provides the significant function of a thermal barrier. 

Stiffening rings to resist launch bending loads and mating rings are added to each bay 

of the main radiator. The mating rings at each end of each bay total 299 pounds. The 

Z-shaped stiffening rings are placed close together in the rear radiator bay and rela­

tively far apart in the forward radiator bay, as the buckling loads decrease with 

*T. M.Johns Manville Co. 
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increasing separation from the base of the spacecraft. The total weight of the fourteen 

stiffening rings is 126 pounds. Additionally, 650 pounds of longerons are required, added 
as increased tube wall thickness for extra, although unnecessary meteorid protection. The 

total structuraL weight is 1075 pounds in the main radiator bays. The total weight of all 

the powerplant structural components is 1655 pounds. 

7.2.2 THRUST SUBSYSTEM GROUP 

The thrust subsystem includes the ion engine subsystem, the low and high voltage power 
cables, the high voltage and special ion engine power conditioning subsystems and the 

related power conditioning radiators. These individual subsystems will be described in 

the following paragraphs. 

7.2.2.1 Ion Engine Subsystem 

The ion engines and TVC unit which comprise the Ion Engine Subsystem are identical to the 
components described for the externally fueled reactor spacecraft in Section 7.1.2.1. 

7.2.2.2 Low Voltage Cables 

A low voltage cable assembly is a two component arrangement in series; a copper cable 

extending from the reactor fuel element extension to the front rim of the neutron shield, 

and an aluminum bus bar extending from the junction with the copper cable to a power con­

ditioning module. A low voltage cable assembly is attached to each of the 216 reactor fuel 

elements. Two fuel elements, two LV cable assemblies and a power conditioning module 
make up a common low voltage electrical circuit. 

The copper reactor leads are 0. 327 inches in diameter and have an average length of 18 

inches. Ceramic bead insulation prevents electrical short circuiting and allows bundling 

of the leads for bracing and support. The leads are attached mechanically and brazed to 

the aluminum bus bars. 
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Each aluminum bus bar is rectangular with cross section dimensions of 0.39 inches 

by 0. 667 inches. The lengths of the bus bars vary from eight feet to 35 feet with an 

average length of 23.6 feet. The cross section dimensions and performance evaluations 

are based on the average length. 

The bus bars run axially along the conical surface of the shield, bend in a S-shaped 

curve at the juncture of the propellant tank and power conditioning radiator, proceed 

axially along the surface of PC radiator, then bend 900 in the plane of the radiator 

panel to attach to the PC module provided for each TFE pair. The busses are grouped 

in six bundles, one for each of the six sides of the conical section of the radiator. A 

thin layer of ceramic on the surfaces of the bus bars provides the required electrical 

isolation. Ceramic coated metal braces attach and support the bus bars to the various 

spacecraft components. In the shield and propellant tank areas, thermal insulation 

protects the bus bars from higher temperatures existing in those components. 

The weight of all the copper reactor leads is 105 pounds while the total weight of the 

aluminum bus-bars is 1515 pounds. The ceramic surface coating weighs an additional 

60 pounds. 

7.2.2.3 High Voltage Cables 

The high voltage cable subsystem consists of the 3100 volt lines between the main 

power conditioning modules and the ion engines, and the 250 volt lines between the 

main PC modules and the special payload and thruster PC modules. 

The 3100 volt cabling consists of four separate wires, forming two complete circuits. 

The extra circuit provides greatly increased reliability with negligible penalty. Each 

aluminum wire strand is approximately 0. 2 inches in diameter, 130 feet long and 

weighs 6. 2 pounds. The cable starts at the rear end of one side panel of the PC 

radiator, runs forward the entire length of that panel, then returns down the length 
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of an adjacent panel. This procedure occurs across the six side panels of the PC 

radiator. The cable then traverses the axial length of main radiator and payload 

sections to reach the ion engines. The wire strands are clamped in ceramic troughs 

which support and electrically insulate the feed and return strands from each other 

and from the spacecraft. Thermal insulation between the ceramic troughs and the 

main radiator surface keep cable temperatures at acceptable levels. 

The 250 volt line to the payload and thruster PC modules is of similar 4 strand con­

struction, follows the same path and is supported in the same ceramic trough as the 

3100 volt line. Each wire strand is 0.3 inches in diameter and weighs 9 pounds for 

a total weight of 35 pounds. The total insulation weight on both the 3100- and 250-volt 

cables is estimated at 10 pounds. 

7.2.2.4 Power Conditioning Modules 

One hundred and eight power conditioning modules, constituting the high voltage power 

supply, are distributed on the inner surface of the PC radiator panels. The circuit concepts 

and component definitions follow the designs formulated in Section 7. On thb basis of 8.9 

lb/kw of input power, the high voltage supply PC modules weigh 2640 pounds. 

The weights of the special ion engine PC units at 270 pounds were supplied by JPL. The 

thruster isolation weights are estimated at 310 pounds. 

7.2.2.5 Power Conditioning Radiators 

The power conditioning radiator as shown on the layout drawing, rejects the heat generated 

in the high voltage supply and the hotel load power conditioners.. The radiator weight 

corresponding to the hotel load PC waste heat generation has been included'in the power 

plant electric subsystem reported in Section 7.2.1.5. The remaining radiator area, 

558 square feet, is attributable to the high voltage supply PC. The weight of this latter 

portion is 770 pounds based on 0.10 inch thick aluminum radiator panels. 
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The radiator heat loads from the special ion engine PC modules and isolation units are 1. 7 

and 1. 25 kW, respectively. The corresponding radiator areas and weights are 36 square 

feet and 70 pounds for the PC modules, and 26 square feet and' 50 pounds for the isolation 

units. 

7.2.2.6 Thruster System Structure 

Two mating rings, a circumferential stiffening ring and thirty seven longerons are 

required in the payload-thrust bay for spacecraft assembly and launch support. The 

total weight of these structural members is 100 pounds of which 65 pounds is charge­

able to the ,thrust section. 

7.2.3 PROPELLANT SYSTEM 

The propellant system is made up of mercury propellant with associated tankage and 

support structure. The propellant weight is 14,500 pounds as in the externally fueled 

reactor spacecraft. Of this weight 10, 800 pounds is contained in a conical tank behind 

the heat exchanger bay acting as a gamma shield. The tank is 9 inches thick and has 

a mean diameter of 56 inches. Eighty mil thick plate is used for the conical areas of 

the tank for meteoroid protection while the front and rear faces of the tank are 0. 10 

inches thick. The total weight of the tank including radial stiffeners is 210 pounds. 

A cylindrical tank located in the thruster bay region holds the remaining 3700 pounds 

of propellant. The weight of this tank is 35 pounds and the weight of mounting brackets 

for both tanks is 15 pounds. 

7.2.4 SPACECRAFT COMPONENTS 

The guidance mechanisms, communication equipment, science payload, etc., for the 

flashlight reactor spacecraft, is the same as those specified for the externally fueled 

reactor spacecraft. 

7-30 



7.2.5 LAUNCH COMPONENTS 

The launch adapter joining the flashlight reactor spacecraft to the booster is the same 

250 pound unit designated for the externally fueled reactor spacecraft. The launch 

fairing for the 84 foot long flashlight reactor spacecraft weighs 4400 pounds of which 

1030 pounds is the payload penalty. 
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8. WEIGHT REDUCTION AND POWERPLANT TRADEOFFS
 



8. WEIGHT REDUCTION AND POWERPLANT DESIGN TRADEOFFS
 

The power system reference design described in Section I is predicated on a number of 

judgments with regard to the technology and/or operating conditions of specific system 

components. The effects on power system characteristics of alternate technologies and 

operating conditions is discussed in this section. The factors of most interest, of course, 

are those which would improve the weight and/or output power characteristics of the over­

all system, such as: 

a. 	 Alternate radiator designs 

1. 	 Beryllium-stainless steel conduction fin radiator 

2. 	 Vapor chamber fin radiator 

3. 	 Heat pipe radiator 

b. 	 Alternate reactor coolants 

I. 	 Lithium 

c. 	 Power conditioning (PC) characteristics 

1. 	 Maximum operating temperature 

2. 	 Efficiency 

3. 	 Temperature drop from PC module to PC radiator 

d. 	 Influence of reactor output voltage on system weight 

Other factors which are of interest, but which may have an adverse effect on the power 

system characteristics include: 

a, 	 Alternate reactor coolant exit temperatures 

b. 	 The use of an unbonded (slip-ft) insulation sleeve in the TFE of the flashlight type 
reactor 
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The consequences of each of the alternatives listed above are estimated and discussed in
 

the following paragraphs.
 

8.1 ALTERNATE RADIATOR DESIGNS 

The radiator concept utilized for the reference system is a stainless steel conduction fin 

design with stainless steel/copper fins. The concept is state of the art with only modest 

development necessary to bring the design to flight readiness. However, there are alternate 

designs which offer potential weight savings over the stainless steel/copper radiator. The 

weight savings are achieved by using different materials, such as beryllium or graphite, or 

by using advanced heat conduction techniques, such as vapor chamber fins or heat pipes. 

Three of the more promising alternates are discussed below. 

8.1.1 BERYLLIUM-STAINLESS STEEL RADIATORS 

The weight and performance of a conduction fin radiator is primarily a function of certain 

physical properties of the radiator material. Ideally, the material should have a high 

thermal conductivity, low density, high modulus of elasticity, good strength, and corrosion 

resistance to the coolant. In the Cu/SS reference radiator, the stainless steel provides the 

structural strength, the high modulus of elasticity for meteoroid protection, and the cor­

rosion resistance to the NaK coolant while the copper -layerprovides a high thermal con­

ductance on the fin. But both stainless steel and copper are medium density materials, so 

the weight of Cu/SS radiators is relatively high for spacecraft applications which, in general, 

utilize light weight construction. 

Beryllium is a low density material having the thermal and mechanical properties needed 

for high temperature radiator applications. Techniques for all types of metal forming and 

machining have been developed so that the quality and uniformity of fabricated beryllium 

products are now satisfactory for design purposes. Beryllium is readily attacked by NaK 

so another material is needed for the coolant channels. Of all the materials having the 

requisite liquid metal corrosion resistance, stainless steel best matches the beryllium 

properties. But techniques for brazing, braze welding, or diffusion bonding of the beryllium 

and stainless steel must still be developed before Be/SS radiators become a reality. 
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Figure 8-1 shows the cross section of a typical tube and fin assembly for a Be/SS radiator. 

The stainless steel is used only for coolant containment while the light weight beryllium 

forms the bulk of the radiator. 

rBERYLLIUI 

blAINLESS StEEL 

Figure 8-1. Cross Section of a Beryllium Stainless Steel Radiator 

A comparison of beryllium-stainless steel and copper-stainless steel radiators tor typical 

thermionic reactor conditions is presented in Table 8-1. A weight savings of 50 percent is 

realized for the Be/SS radiator along with a slightly smaller surface area, a lower coolant 

pressure drop, and a lower pumping power requirement. These factors combine to pro­

duc a reduction of 5 lb/kWe in powerplant specific weight. 

TABLE 8-1. COMPARISON OF A BERYLLIUM/STAINLESS STEEL AND A COPPER/
 
STAINLESS STEEL CONDUCTION FIN RADIATOR FOR EQUAL HEAT REJECTION
 

Beryllium- Copper-
Characteristic Stainless Stainless 

Heat rejected (kW) 1860 1860 
Inlet temperature (OF) 1350 1350 
Outlet temperature (OF) 1025 1025 
System weight pump penalty (lb/kW) 500 500 
Area (ft2 ) 706 725 
Effective radiator system weight (lb) 923 1825 
Fin length (in.) 0.55 0.707 
Fin thickness (in.) 0.031 0,030 
Inside tube diameter (in.) 0.18 0.18 
Tube liner thickness (in.) 0.015 0.015 
Outside tube diameter (in.) 0.211 0.221 
Total pressure drop (lb/in, 2) 1.42 2.18 
Total radiator weight (b) 842 1700 

Meteoroid survival probability = 0. 95 
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8.1.2 VAPOR CHAMBER FIN RADIATOR 

The use of vapor chamber fin (VCF) radiator is a possible method of obtaining a lighter, 

smaller, and more reliable heat rejection system than can be attained with a conduction fin 

radiator for high survival probabilities. Two principal reasons for considering the VCF 

radiator are the potential area reduction afforded by an isothermal fin and the possible 

weight savings due to a reduction in the meteoroid armor requirements. The use of vapor 

chamber fins enables a wider spacing between the primary fluid flow tubes and reduces the 

vulnerable area of this flow loop. Since a percentage of the vapor chambers can be allowed 

to fail, their armor requirements are usually satisfied by a minimum fabricable wall 

thickness. 

A VCFradiator was designed for the same conditions used in the comparison of Be/SS 

and Cu/SS radiators. The example model utilized in the program is shown in Figure 8-2. 

QREJECT | 

2 RIMARY VAPOR 

FLUID CHAMBER FINf 

FLOW 

Figure 8-2. Vapor Chamber Fin Radiator Design Concept 

Assuming all stainless steel construction with sodium vapor chambers, the VCP radiator 

weight is approximately equal to that of the Cu/SS example design. Primary characteristics 

of this design are shown in Table 8-2. 
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The apparent lack of a weight TABLE 8-2. VAPOR CHAMBER FIN RADIATOR 

advantage of the VCF CHARACTERISTIC METEOROID SURVIVAL 

radiator when compared Probabflity = 0. 95 
CharctersticValuewith the Cu/SS radiator Characteristic 

is due to the relatively low Reference heat rejected (kW) 1860Inlet temperature (OF), 1350 

meteoroid survival criterion Outlet temperature (OF) 1025 

of 0. 95 being used. In order Sjstem weight pump penalty (lb/kW) 500 
Area (ft2 ) 701 

to show the conditions for Effective radiator system weight (Ib) 1822 
which the VCF'radiator 	 Vapor chamber fin length (in.) 8.67 

Inside chamber height (in.) 0.32 
would be advantageous, both Inside chamber width (in.) 1.20 

VCF and Cu/SS radiators Chamber wall thickness (in.) 0. 020 
Inside primary duct height (in.) 0.25 

were designed for survival Inside primary duct width (in.) 2.65 

probabilities 	of 0. 99 and Primary duct wall thickness (in.) 0. 020 
Total fluid pressure drop (lb/in. 2) 0.251 

0. 999. The results are Total radiator weight (lb) 1808 

presented in Figure 8-3. 

5000 

A 

F 	 4000 

Cu/SS CONDUCTION LIFETIME, 20, 000 HR 
FIN RADIATOR _ k EMISSIVITY, 0.90 

E 	 3000 
0o 

a) 

o 	 REFERENCE
 
2000 Cu/SS DESIGN 
 VAPOR CHAMBER FIN 

RADIATOR 
/

/ 

1000 - I I itiiil I I I iiiil 	 I 111111 
0.9 0.99 	 0.999 0.9999 

METEOROID NONPENETRATION PROBABILITY (Po) 

Figure 8-3. Effect of Meteoroid Non-Penetration Probability on Radiator Weight 
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As shown in the figure, the conduction fin radiator weight is extremely sensitive to variations 

in the meteoroid survival probability, P0 . The manner in which the design value of PO 

affects radiator geometry is provided in Table 8-3. Increasing P results in longer, thick­

er fins and fewer, larger tubes with an overall decrease in vulnerable area. 

While the conduction fin radiator weight increases by a factor of about 2. 5 in going from a 

P o of 0. 95 to 0. 999, the increase in the vapor chamber fin radiator weight is approximately 

10 percent. The small effect of the meteoroid survival probability criterion on the VCF 

radiator weight is a direct result of the ability of the vapor chamber fin to allow a percentage 

of vapor chamber failures, without unacceptable-damage to the radiator. The primary fluid 

loop in the VCF is well protected against meteoroids, since it is situated beneath the vapor 

chamber radiating surface. 

8.1.3 HEAT PIPE - VAPOR CHAMBER FIN RADIATOR 

The inclusion of VCF's in a radiator to eliminate the temperature drop occurring in the 

conduction fin suggests the replacement of the primary fluid loop with heat pipes as well. 

Such a design would have the advantages of eliminating the pump and associated hotel 

electric power load associated with this loop and could also result in a higher effective 

radiator temperature. 

In such a design, energy would be transferred from the primary loop directly to an array 

of heat pipes situated in a heat exchanger. These heat pipes would form the main energy 

distribution system to the entire radiator. 

Shorter heat pipes (vapor chambers), oriented perpendicular to the main heat pipes, would 

complete the heat rejection system to provide a high non-puncture probability. A conceptual 

design of this arrangement is shown in Figure 8-4. The main radiator has been placed 

near the shield in order to limit the primary heat pipe length. This necessitates moving 

the power conditioning radiator further away from the reactor, which results in greater 

losses in the low voltage electric cables. 
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An alternate configuration which avoids the 

problem of increased cable loss is shown 

in Figure 8-5. In this concept, the primary 

loop extends to the center of the main 

radiator. The primary heat pipes are 

limited in length to one-half of the main 

radiator length; therefore, the low tempera-

ture PC radiator can occupy the forward 

position. The potential disadvantage of 

this arrangement Is that the primary fluid, 

which may be activated, passes close by 

the PC modules and comes much closer 

to the radiation sensitive payload. 

Work performed for contract NAS 3-10615 

was used to estimate the weight savings 

associated with the use of a heat pipe 

radiator for the thermionic powerplant 

conditions of interest. The total weight 

decrement including the elimination of the 

circulating pump and accumulators is 

approximately 800 pounds, or about 3 lb/kWe. 

As with the vapor chamber fin radiator, 

the relative weight savings are greater at 

the higher meteoroid survival probabilities 

because the heat pipe radiator weight 

increases only a few percent while the Cu/SS 

conduction fin radiator is more than doubling 

in weight. 

TABLE 8-3. COPPER-STAINLESS CON-


DUCTION FIN RADIATOR WEIGHT FOR
 
HIGHER RELIABILITIES
 

Parameter 	 Ncopmcture Prokability 
0.9 T 0, 9-99
 

Reference heat rejected (WI) 1860 1860
 
Inlet temperature (OF) 1350 1350
 

Uettempera.ure &F) 1025 1025
 
Syatem 	weight pump penalty (lb/kW) 500 500
 

2

Area (0 ) 	 828- 919
 

Effective radiator system weight ilb) 2373 4390
 

Fn length (in.) 	 1.11 1.61 

Fluiciese (inM 	 0.30 0.055 

Inside tube diameter (in.) 0.185 0. 203
 

Tube litemarthiclwees (in.) 0.015 0.015 

ctside tube diameter (in.) 0. 281 0. 397
 
2
Total pressure drop Ob/.. ) 4.73 6.aS1 

Total radiator weight (b) 2103 4018
 

VAPOR 
CHAMBERS 

'- PRIMAR\ 
HEAT PIPE 

Figure 8-4. Conceptual Heat Pipe Radiator
 
Configuration
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8.2 ALTERNATE REACTOR COOLANT 

Lithium has long been recognized as an 

excellent coolant for high temperature, high 

power density, confpact nuclear reactors. 

Certain properties of lithium produce weight PC RADIATOR 

and specific weight advantages in the power­

plant while other properties result in testing 

and operational disadvantages. A detailed 

investigation of all facets in the use of 

lithium in the reactor and main heat rejection _c 

subsystems is precluded by the scope of 

this study. However, a qualitative summary 

of the various advantages, and disadvantages 

is presented, followed by estimates of the 

changes which accrue in the flashlight and Figure 8-5. Alternate Heat Pipe Radiator 

externally fueled reactor powerplant specific Arrangement 

weights when lithium, is substituted for NaK. 

The replacement of NaK with lithium in the reactor/main radiator loop (s) improves the 

characteristics of the powerplant in two ways: 

a. 	 The high specific heat of lithium (_ 1.0 compared to 0. 2 for NaK) allows a corres­
ponding reduction in coolant flow rate, or a reduction in coolant temperature rise, 
or some intermediate combination of the other two conditions. 

b. 	 Lithium,especially when enriched with Li 7 , does not become highly radioactive 
like NaK. 

A reduction in coolant flow rate in the lithium system produces one of the following conditions: 

a decrease in pumping power requirements if the component and piping sizes are maintained 

at the NaK loop dimensions, a decrease in component and piping sizes if the pumping power 

is maintained at the NaK loop values, or some intermediate combinations of the other two 

conditions. Changes in reactor size or coolant flow conditions are limited in scope if diode 
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dimensions, number and characteristics are to be maintained. Allowable changes in coolant 

flow area in the reactor are limited by a requirement to maintain a minimum gap between 

fuel elements that is not much smaller in physical dimension than the gap present in the 

reference design. Allowable changes in coolant flow rate may be limited on the low side to 

prevent laminar flow conditions in the reactor with corresponding flow maldistributions. 

It is assumed that the maximum diode temperatures are the same. in both NaK- and lithium­

cooled thermionic reactors. Then, the possible reduction in coolant temperature rise in 

the lithium-cooled thermionic reactor .is advantageous for two reasons: the average emitter 

temperature and the average collector temperature in the reactor may be increased. The 

higher average emitter temperature increases the voltage output - with corresponding 

smaller 12 R losses in the cable .- and the gross electrical power output from the reactor. 

The higher average coolant temperature results in smaller, lighter -heatrejection com­

ponents, especially the radiator whose area requirements are inversely proportional to the 

fourth power of the average temperature. 

The lower levels of coolant activation achieved with lithium will not reduce the primary 

shield thickness since the latter is set almost entirely by reactor considerations. However, 

for a reactor such as the current flashlight type, in which NaK becomes highly activated. 

lithium would allow the use of a single heat rejection, loop configuration and the elimination 

of the heat exchanger and pumps present in the second loop. The resultant decrease in 

powerplant weight would be approximately 3 percent. 

While the activation of lithium should not be a severe problem in the one-loop system, a 

hold-up tank can be included in the piping if the dose requirements are especially stringent. 

This approach would allow decay of Li 8 , which has a half life of 0. 85 seconds, in a region 

removed from radiation sensitive components. For example, a 10-second hold-up would 

reduce the dose level due to lithium activation by a factor of 3000 at a weight penalty of 

approximately 80 pounds, for minimum lithium flow rate conditions in a 300-kWe reactor. 
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The primary disadvantages of lithium stem from its corrosiveness to the more common 

containment materials and from its relatively high melting point. Unlike the other alkali 

metals, lithium is only marginally compatible with the stainless steels and the nickel base 

alloys at the temperature levels of interest to this study. Only the refractory metals have 

the required long term strength and corrosion resistance to lithium. Niobium alloys 

have been tested satisfactorily with lithium up to temperatures as high as 20000F for 

10, 000 hours without evidence of corrosion. But niobiumalloys oxidize readily in air at 

the operating temperature levels of interest, so system and component development of the 

powerplant would be extremely complicated by the inert atmosphere requirement for all 

tests at temperature. 

Prior to startup of the thermionic reactor, all coolant loops must be heated' or maintained 

at temperature levels above the melting point of the particular coolant. Lithium has a 

melting point of 3540F while the NaK eutectic utilized in the reference design has a melting 

point of only 12 0 F. Consequently, the preheat and/or the insulation requirements for the 

lithium cooled system would be considerably more difficult for an in-orbit startup of the 

system. The exact requirements for either system depend on the particular parking orbit 

chosen and the time interval between launch and power system startup. 

First order estimates of the change in specific weight accompanying the substitution of 

lithium for NaK were made for both the flashlight and the externally fueled reactor power­

plants. The estimates are predicated on a change in coolant flow rate only since data on 

the effect of a low coolant temperature rise in the flashlight reactor are not available. Com­

ponent and piping sizes were held at the dimensions computed for the NaK reference systems 

but the containment material in the main heat rejection subsystems was assumed to be 

niobium alloy. 

8.2.1 FLASHLIGHT REACTOR SYSTEM WITH LITHIUM 

The reference flashlight reactor power system contains a dual primary heat rejection loop 

subsystem. The effect of lithium substitution for NaK was estimated first for the dual loop 

configuration and second for a single loop configuration. In the dual loop configuration, the 

changes which follow the lithium substitution are: 
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a. 	 A coolant weight change since lithium has a lower density. 

b. 	 A change in coolant containment weight due to the substitution of niobium alloy for 
stainless steel. 

c. 	 A change in pumping power requirements. 

The density of lithium at the average coolant temperature in the heat rejectioh loop is 29.2 

lb/ft3 while NaK density is 44. 3 lb/ft3 . Consequently the total coolant weight in the heat 

rejection loops decreases about 34 percent. 

The 	density of niobium alloy is 535 lb/ft3 compared to 494 lb/ft3 for stainless steel. There­

fore, the weight of loop piping, heat exchanger, etc., increases by about 8 percent. The 

substitution of a niobium alloy radiator for the Cu/SS radiator will actually reduce the dry 

radiator weight by about 5. 5 percent since the Cu/SS combination is heavier. 

It can be shown that the ratio of lithium to NaK pumping power in a constant geometry 

system is given by: 

p0.2 2.8 p 2.0 
Li] (C,\(Li\ (NaK
 

PPNaK 'NaKj\pL!\L )
 

where: 

PP = pumping power requirements
 

P = viscosity
 

C = specific heat
P
 

p = density
 

Substituting property data for a temperature of 1250 0 F, the above ratio is determined to be 

0. 032. Thus, the lithium pumping power is only a very small fraction of NaK pumping 

power. The 97 percent reduction in pumping power increases the net power to the thrusters 

by about 5 percent. 
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The resultant change in the specific weight of the two-loop'flashlight reactor powerplant due 

to the weight and net power alterations given above is 6. 4 lbikWe. 

The alteration of a two-loop, lithium cooled system to a single-loop, lithium system results 

in: 

a. 	 The elimination of the heat exchanger 

b. 	 An increase in radiator temperature due to the elimination of the temperature 
drop across the heat exchanger 

c. 	 Elimination of the pump power required to pump the coolant through both sides 
of the heat exchanger 

The 	removal of the heat exchanger and the decrease inmain radiator weight reduce the 

powerplant weight by 400 lb. The elimination of the heat exchangers adds a modest 0. 05 

kWe 	to net power value. The resultant decrease in powerplant specific weight for the 

change from two loops to a single loop is 1. 6 lb/kWe. Therefore, the total specific weight 

advantage for a single-loop, lithium cooled flashlight reactor powerplant when compared to 

the two-loop, NaK cooled reference system is 8 lb/kWe. 

8.2.2 EXTERNALLY FUELED REACTOR SYSTEM WITH LITHIUM 

The reference externally fueled reactor powerplant is a high voltage, single heat rejection
 

loop system. The substitution of lithium for NaK in the main heat rejection system pro­

vides the same advantages and disadvantages as in the flashlight reactor system, namely:
 

a. 	 A coolant weight decrease 

b. 	 A slight increase in coolant containment weight 

c. 	 A significant decrease in pumping power 

The percentage change in coolant weight, containment weight, and pumping power are the 

same as those quoted for the flashlight reactor. But the total resultant decrease in power­
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plant specific weight is only 1. 6 lb/kWe, a much smaller change than the 8 lb/kWe for the 

flashlight reactor system. The relatively small advantage for the externally fueled system 

is due to: 

a. A much lower coolant inventory in the reference system. The externally fueled 
system does not have a heat exchanger and its main radiator feed lines are only 
one-third as long as the feed lines for the flashlight reactor system since its main 
radiator is located directly behind the shield. Consequently, the initial coolant 
inventory and the subsequent coolant savings are only one-half of the flashlight 
system. 

b. 	 A much lower pumping power in the reference system. The pumping power in the 
externally fueled reactor system is approximately one-fourth the pumping power 
in the flashlight reactor system. Consequently, the increase in system net power 
due to the substitution of lithium is also only one-fourth as great as the increase 
for the flashlight system. 

c. 	 The advantage of a single loop already exists for the reference system. 

8.3 	 POWER CONDITIONING OPERATING CHARACTERISTICS 

The reference flashlight and externally fueled reactor systems assume a power conditioning 

temperature of 200 0 F, a temperature drop of 25 0 F between the PC unit and the radiator fin 

root, and a PC efficiency of 86 to 88 percent for the flashlight system and auproximately 

92 percent for the high voltage externally fueled system. An improvement in any of these 

parameters can reduce the system weight substantially by decreasing the PC radiator size 

(and weight) which also tends to reduce voltage losses and cable weight. 

The following paragraphs present the estimated improvement in powerplant specific weight 

accompanying the individual changes in power conditioning characteristics. 

8.3. 1 POWER CONDITIONING MAXIMUM TEMPERATURE 

The effect of increasing the power conditioning temperature on the flashlight and externally 

fueled reactor system weights is shown in Figure 8-6. An increase of 100 F in the flash­

light reactor PC temperature, to 300 0 F, yields a decrease of about 6 percent in specific 

weight and an increase of 1 percent in net power. A similar change in the externally fueled 

PC subsystem results in corresponding changes of 8. 5 percent and approximately 0 percent, 

respectively. 	 8-13 



8.3.2 POWER CONDITIONING EFFICIENCY 

A significant change in the flashlight reactor system specific weight is possible with an 

increase in the power conditioning efficiency, as illustrated in Figure 8-7. For each per­

centage increase in the power conditioning efficiency, the system specific weight decreases 

by approximately 1 lb/kWe. The change in the efficiency from 88 to 93 percent also 

decreases the PC radiator area about 50 percent. 

No substantial improvement in PC efficiency is probable for the high voltage externally 

fueled reactor PC subsystem which is assumed to be operating at approximately 92 percent 

in the reference design. 

8.3.3 TEMPERATURE DIFFERENCE BETWEEN PC MODULE AND PC RADIATOR 

The influence of temperature difference between PC module operating temperature and PC 

radiator temperature is shown on Figure 8-8 for the flashlight reactor system. Approximately 

1 percent in powerplant specific weight is saved for a 100 F decrease in temperature difference. 

Also, as shown, the effect is greater at the 200OF nominal operating temperature for the PC 

modules than it would be if the modules were running at a higher temperature. In the 

externally fueled reactor system, the changes in specific weight would follow the same 

trends and be similar in absolute value. 

8.4 ALTERNATE REACTOR COOLANT EXIT TEMPERATURES 

A parameter having a significant influence on the characteristics of both the reactor and the 

overall power system is the reactor coolant exit temperature. In the reactor, conversion 

efficiency and the current-voltage characteristics of the output power are affected by the 

reactor coolant temperature, especially if the reactors are based on the same diode dimen­

sional design. In the overall power system, the reactor coolant temperature influences the 

size and weight of the main radiator; the surface area, size, and weight of the low voltage 

electric cables; and the length, size, and pumping power required for the main radiator 

coolant feed lines. 
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In coolant temperature tradeoff studies performed to date, the maximum emitter temperature 

has been held constant, the maximum allowable of 2073 0 K for the externally fueled reactor 

and 19500 K for the flashlight reactor. Then, the change in coolant temperature results in 

variations of reactor output voltage and efficiency. In the flashlight reactor it is possible 

to maintain voltage, as coolant exit temperature is changed, by increasing the emitter 

temperature; however, the comparison would not be quite fair, since the base case voltage 

could be significantly increased if the emitter temperature were allowed to be higher. In 

actuality, the emitter temperature as well as details of the reactor and TFE geometry and 

other system parameters are subject to optimization in arriving at minimum plant weight or 

size. for each coolant exit temperature, but fortunately these effects are secondary. The 

prime effect is the effect of collector temperature on reactor efficiency and voltage versus 

radiator size and weight. 

8.4.1 EXTERNALLY FUELED REACTOR SYSTEM 

The influence of reactor coolant exit temperature on the relative specific weight and output 

power is given in Figure 8-9 for the externally fueled reactor powerplant. The results show 

a minimum specific weight occurring at 1500°F exit temperature that is about 2 lb/kWe 

lower than the 1350°F reference case. A slight increase in reactor weight is more than 

offset by decreases in radiator weight and structure weight when the coolant temperature 

is raised from 13500 to 1500 0 F. The higher radiator temperature lowers its area and 

weight and the structure weight lessens because the lower radiator area results in a shorter 

vehicle length. In addition to the lower system weight, the net output power rises at, the 

higher temperature. Shorter cable lengths generate lower electrical losses, and a higher 

coolant temperature rise in the reactor results in a lower required pumping power. The 

two effects combine to provide a slightly higher net power at the higher temperature. 

8.4.2 FLASHLIGHT REACTOR SYSTEM 

The estimated changes in power system specific weight and power output with variation in 

reactor coolant exit temperature are presented in Figure 8-10 for the flashlight reactor 

system. The changes are presented as ratios to the conditions existing in the reference 

system design, which has a coolant exit temperature of 1350°F. Increasing the coolant 

8-16 



360 BOL REACTOR SIZE 

274 CROSS POWER 

121 VOLTS OUTPUT 

ALUMINUM 
CABLE 

244 
1.1 -0 

242 

2 ff 
1.05 
 40
 

0 

238 z 

0.95­
1100 1200 lam_ 1400 1500 1600 

REACTOR COOLANT EXIT TEMPERATURE (°F) 

Figure 8-9. Externally Fueled Reactor - Effect of Reactor Outlet Coolant Temperature 

1.35 

X =NOMINAL DESIGN POINT 

1.30 NET POWER 

1.0 1.25 

0. 98 1,21 ESG 

0.915 1.15 -(LPF 

0.0 

0.92 01.05 
PESENT
 

EXAMPLE 
DES*IGN 

0.90 LOD0 0- BONDED 

TRILAYER 

0.95 - * W/CU RADIATIORt 

1O00 11 00 120no 1300 14 00 is500 1600°OF 

1 I 1 1 
600 700 00 9000C 

REACTOR COOLANT EXIT TEMPERATRE 

Figure 8-10. Effect of Coolant Outlet Temperature on Flashlight System Characteristics 

8-17 



exit temperature from the nominal design temperature to 1600°F decreases the net power 

by 8 percent and increases the power system specific weight by 17 percent. Decreasing 

the coolant temperature to 1100°F decreases the net power by about 7 percent, and increases 

the power system specific weight by 30 percent. In all cases, the coolant temperature rise 

in the reactor is optimized for the coolant exit temperature. 

The lower reactor conversion efficiency at all temperatures other than the nominal design 

temperature produces higher heat rejection rates for a constant reactor electrical output. 

These higher heat rejection rates result in both higher pumping power, hence lower net 

system power, and bigger, heavier heat rejection radiators. At the low end of the coolant 

exit temperature range, the lower radiator temperatures increase the size and weight of 

the radiator, while at the other end of the coolant temperature range, the temperature 

effect on radiator size counteracts the effects of the lower reactor efficiency. 

8.5 EFFECT OF UNBONDED INSULATION IN TFE 

In the flashlight reactor design, use of a bonded trilayer produces a distinct performance 

improvement over the slip-fit designs, provided the nuclear penalties, which are not yet 

established, are not too severe. A coolant temperature increase of the order of 200°F can 

be realized at the same reactor efficiency by using a bonded trilayer, assuming the TFE 

design remains essentially the same in all other respects. Translating this into radiator 

weight gain for an unbonded design, it is possible to re-optimize the reactor coolant exit 

temperature as shown in Figure 8-10. Although the exact optimum temperature has shifted 

to a slightly higher temperature, there is little incentive to increase the exit temperature 

above the 1350°F level used in the fully bonded design. The system specific weight increase 

is about 6 percent or about 4 lb/kWe for the slip-fit TFE design. 
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9. MISSION OPERATIONS 

An integral part of the design study of a thermionic reactor spacecraft is the opera­

tions analysis of pre-launch and post-launch activities and a nuclear safety evaluation 

of the reactor system. This section provides a plan for insuring that the integration of 

all engineering operations results in accomplishment of the mission. Also, a basis 

for conducting power system acceptance testing as well as a reactor safety analysis 

are presented. 

9.1 OPERATIONS ANALYSIS 

The purpose of this section is to describe the established mission profile including 

pre-launch flow plans and post-launch operations. Plans for the integration of the 

power system fabrication, test, installation, and operation with associated space­

craft, payload and launch facility functions have been developed so that these 

individual operations can be combined in an orderly and logical fashion to meet all 

mission requirements. 

9. 1.1 DEFINITION OF MAJOR EVENTS 

Figure 9-1 presents in simplified form, the mission profile for a typical thermionic 

reactor powered spacecraft on a Jupiter Mission. The profile is broken into three 

segments: factory and test operations, launch site operations, and flight operations. 

The various spacecraft subsystems are first assembled at their respective sites and 

subjected to acceptance tests. Following these tests, the subsystems are joined 

together for operational checkout. The NASA Plumbrook Space Power Facility 

could accommodate the complete spacecraft assembly and could permit short term 

powered operation of flight units. Such testing must be incorporated in a schedule 

that permits the reactor fission products to decay sufficiently prior to their use during 

the relatively hazardous pre-launch countdown and launch ascent operations, and to 

permit safe shipment to the launch site. However, it is possible that Back Emission 

Testing (BET) could be used to eliminate nuclear testing. 
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Once at the ETR launch site, the thermionic spacecraft is installed on the already 

assembled Titan IIC/7 launch vehicle. Launch vehicle and spacecraft tests are per­

formed, spacecraft systems (e. g., coolant loops and propellant storage) are ser­

viced, and the flight fairing is installed. The booster is then fueled, final checkout 

of all systems is completed, and the terminal phase of the countdown takes place. 

The first three stages of the Titan IIIC/7 place the spacecraft in a low Earth orbit and 

the transtage is later fired to transfer the spacecraft to a 750 nautical mile orbit. At 

this point, communication with the spacecraft is established and the on-board systems 

are activated and checked out. Once acceptable performance levels have been verified 

and the orbit established, the reactor startup can be initiated. Following the achieve­

ment of criticality, the reactor is automatically controlled to a low power level (ap­

proximately 10 percent), and all auxiliary equipment is switched to reactor-produced 

power. The control system then brings the reactor to full power and the thrusters are 

activated, causing the spacecraft to spiral outward and ultimately assume a heliocen­

tric orbit in its trajectory to Jupiter. During the transit time, the spacecraft is 

tracked and its thrust vector is controlled (by ground station commands) to maintain 

the desired trajectory. Commands transmitted to the spacecraft shut off the ion engines 

and reduce reactor power during-mid-mission coast, and bring the reactor back up to 

full power so that retro-thrust can be applied during the latter phase of the transit. 

At the appropriate point following encounter with the Jovian gravitational field and at­

tainment of the required orbit, the science payload is deployed, the reactor power is 

reduced to a low level, and the ion engines are shut off. If a satellite lander capsule 

is included as part of the science payload, it would be separated from the spacecraft 

9-2 



Fir 9-1. Typical AMission Reactor-

Thernmionic Spacecraft 

FOLDOUT FRAME FOLDOUT FRAME , 

9-3/4 



when the appropriate relative orbital positions of the spacecraft and the Jupiter 

satellite (e. g., Callisto) is attained. The spacecraft then acts as a relay station for 

signals transmitted from the lander, while simultaneously transmitting data from 

on-board sensors as it continues to orbit the planet. 

9.1.2 POWER PLANT STARTUP 

Prior to reactor startup, power is required by several spacecraft systems, notably 

the reactor coolant loop and the reactor startup controls and instrumentation. The 

total power and energy requirements must be defined and a suitable auxiliary power 

system selected and characterized. Reactor startup cannot be initiated until the 

orbit altitude (750 nautical miles) prescribed by safety requirements has been 

attained and confirmed. Meanwhile, some of the following spacecraft functions that 

are dependent on electrical power must occur: 

a. 	 Circulation of reactor coolant 

b. 	 Heat addition to reactor coolant 

c. 	 Communications, including the transmitting of data and acceptance of 
commands by the spacecraft. 

d. 	 Instrumentation and control associated with reactor startup 

e. 	 Instrumentation required for monitoring and housekeeping 

f, 	 Operation of attitude control system. 

Because of the potential hazards that occur during and prior to launch, the reactor 

probably will not be operated until the spacecraft has acquired aproper orbit. Reactor 

startup must therefore be remote and automatic when the spacecraft has reached the 

minimum safe orbit, and it has been determined that all systems are functioning 

properly, the reactor can be started and taken to full power operation. The space­

craft auxiliary power load can be taken over by the reactor power system and the 

short-lived auxiliary power sources can be deactivated, and if practical, jettisoned 
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to improve subsequent performance in the electric propulsion phase. Thrust 

operation will be initiated in accordance with ground commands. The procedures 

and equipment required to effect startup and the subsequent generation of power must 

be determined. 

Procedures involved in reactor startup begin prior to launch; the step-by-step pro­

cedures required include the assembly of the reactor to the spacecraft and carry 

through to the production of thrust by the ion engines. Factors to be considered 

are the charging of the reactor coolant systems, the maintenance of sufficiently 

high coolant temperatures through launch ascent and during orbital flight prior 

to reactor startups, the detailed procedures of the startup and the controls and 

instrumentation required to effect it, the timing of flight fairing ejection, power 

requirements of the startup process, and the auxiliary equipment (both vehicle­

mounted and ground support) required. In addition to detailed startup procedures, 

a startup system will thus be defined and consideration will be given to equipment 

redundancy and contingency planning in the event of component failures. 

Specific areas of investigation include: 

a. Means of preventing coolant freeze-up prior to startup of the reactor 

b. Suitable means of shipping the thermionic spacecraft from the assembly 
and test site to the launch site 

c. Mission contingency plans. 

9.1. 2.1 Primary Coolant During Startup 

A critical aspect of spacecraft heat rejection system design is the behavior of the 

radiator under startup conditions. Fundamental to the problem of startup is the 

necessity for the radiator. to respond to increasing power loads. This requirement 

demands that the radiator coolant be in a fluid condition when startup is initiated. 
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An investigation of radiator panel temperatures was conducted for a typical fin-tube 

geometry in a 750 nautical mile sun oriented, ecliptic orbit to estimate if the coolant 

in the thermionic spacecraft radiator system would freeze during the launch and 

orbit stabilization period. Since the launch time, trajectory and other specifics are 

unknown at this time, the object was to select a typical situation and assess the 

severity of the radiator startup problem. The assumptions used in this investigation 

include: 

a. 	 Conduction fin offset-tube geometry, stainless steel armor, stainless 

steel/copper fins (See Figure 9-2) 

b. 	 Incident heat flux varies with position as in a 750 nautical mile ecliptic orbit 

c. 	 NaK (78 wt % K) radiator coolant - freezing temperature of 12 0 F 

d. 	 Radiator emissivity and solar absorptivity of 0.9. 

e. 	 NaK is pumped into loop just prior to startup, therefore, its latent heat of 
fusion does not contribute to radiator heat capacity. 

f. 	 The radiator is cylindrical and is slowly rotating. 

(n
L) 

I 

0 

1.16 	 - *1L 

1.0 	 I 
S 	 0.10R 

Figure 9-2. Model for Thermionic Spacecraft Radiator Startup Study 
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The results obtained from the analysis are shown in Figures 9-3, and 9-4. Exami­

nation of Figure 9-3 shows that for a wide range of radiator temperatures at the 

beginning of the sun portion of the orbit, the temperature of the radiator will reach 

approximately 1200 to 140OF by the time it starts the shade portion. However, this 

situation results in a radiator temperature of -15°F by the time the vehicle again 

receives solar flux. In order for the radiator to remain above 12 0 F during the 

entire orbit, it must begin the swing behind the earth at about 310 0 F. The assumption 

that the NaK is not in the radiator is not required. Its effect is to reduce the tempera­

tures during heatup by about 10 0 F, and increase the temperatures during cooldown by 

the same amount, relative to the data of Figures 9-3 and 9-4. 

Whether or not the radiator will require pre-heating, insulation or an auxiliary power 

supply will depend on the startup power profile of the remainder of the system. A 

distinct possibility is present for system startup during the sun portion of the orbit, 

or during an orbit where a greater part of the time is spent in the solar flux. 
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Figure 9-3. Radiator Temperature Transients 
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Alternately, an orbit with a beta angle other than zero degrees may be selected. The 

radiator average temperature as a function of beta angle (angle between the sun ray 

and the orbit plane) for an isothermal cylindrical shape at an altitude of 750 nautical 

mile is shown on Figures 9-5 and 9-6. The cylinder considered was oriented with 

its roll axis parallel to the earth's surface, and perpendicular to the earth's surface. 

The ends of the cylinder were assumed to be blocked from seeing the external sink. 

The external conditions used were nominal, in terms of solar, albedo, earth and 

day of year. 

The curves labeled orbit average in Figures 9-5 and 9-6 show the temperature for 

the whole body averaged over the orbit. Maximum instantaneous is the highest 

temperature during the orbit and minimum instantaneous is the lowest. For the case 

with the roll axis parallel to the earth's surface, the minimum temperature is -1440F 
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and for the perpendicular case the minimum temperature is -175 0 F, when the beta 

angle is approximately less than 600. The amount of shade time during-which the sink 

is this minimum value can be found by referring to the curve in Figure 9-7 which 

gives the amount of shade time as a function of beta. 

Consequently, proper selection of the earth departure orbit will eliminate the need 

for special startup heating or insulation for NaK-78 cooled power plants. 

9.2 NUCLEAR SAFETY EVALUATION 

9.2.1 PURPOSE AND SCOPE 

An essential task in performing a design study for a thermionic reactor spacecraft 

is to provide a nuclear safety evaluation. The objective of this safety evaluation 

is to establish safety design criteria and performance objectives concurrent with 

reactor system development to assure a reactor configuration capable of safe 

mission operation. To obtain flight approval for the thermionic reactor powered 

spacecraft, the safety analysis must show that hazards and accident consequences 
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for 	each operational phase shall not involve an unacceptable risk to operational per-' 

sonnel and, the general public. 

The major areas which must be considered in reactor safety analysis are: 

a. 	 Identification of potential modes of failure in the ground handling, prelaunch, 
and flight phases of the mission which can affect the safety of the thermionic 
reactor system. 

b. 	Assessment of factors affecting the probability of the identified failures. 

c. 	 Description of the environments to which the reactor system is subjected 
following the identified failures. 

d, 	 Evaluation of the effect of failure environment on the reactor system an( 
determination of the probability for inadvertent criticality, as well as 
amount, condition, and location, of any fission product release. 

e. 	 Analysis of the potential radiological consequences of an inadvertent 
criticality or fissibn product release. 

The 	safety-analyses should be made concurrent with reactor system development. 

In some areas, analytical methods cannot predict failure modes or consequences with 

confidence. In these cases, a safety test program is conducted. Safety tests should 

verify the design capability to preclude radiological exposure to personnel and pre­

sent data required to evaluate the potential hazard in the event that a failure occurs. 

The 	safety of a thermionic reactor system for a Jupiter orbiter mission can be en­

hanced if the following approaches are employed: 

a. Through restrictions on prelaunch integrated power, there should be a low 
fission product hazard from conceivable accidents during checkout or 
launch operations. 

b. By delaying reactor startup until after the spacecraft has achieved a long 
lifetime earth orbit, i. e. , about 500 years or greater, fission products will 
have decayed to non-hazardous levels by the time re-entry occurs. 
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c. 	 By achieving a reactor design which would be incapable of (1) compaction 
into a critical configuration, or (2) inadvertent criticality induced through 
the control loop, the consequences of a pre-launch accident or post launch 
abort should not result in a radiological hazard to the general public. 

This section provides the basis for the safety evaluation to be performed for a ther­

mionic reactor spacecraft. Power system acceptance test requirements are pre­

sented, and a preliminary fault tree is developed to implement the application of 

probabilistic philosophy to the spacecraft reactor system. The information required 

for probabilistic definition of mission abort modes should be developed during the 

early phase of reactor system development. Possible hazardous operations and 

potential accidents are delineated for each operational phase of the mission. 

9.2.2 ACCEPTANCE TESTING 

Power system acceptance test requirements and mission safety requirements tend 

to be mutually exclusive. To reduce the possibility of undesirable radioactive fission 

product release in the event of a launch pad explosion or launch ascent abort, it is 

necessary to launch a reactor that has not been operated. This procedure is undesirable 

from the standpoint of acceptance testing since it affords no opportunity to verify the 

performance of the assembled thermionic reactor flight power plant prior to its 

commitment to the mission. 

A number of approaches that satisfy both requirements to varying degrees are 

possible. Some possibilities are presented in Table 9-1, ranging from an approach 

that entails no direct testing of the reactor to one that involves a test of the completely 

assembled power system followed by a waiting period to permit fission product decay 

to acceptably low levels. The acceptability of each of the approaches and the selection 

of one as the best to employ obviously hinges on operational and design characteristics 

of the spacecraft power system support facility complex. 
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TABLE 9-1. REACTOR-THERMIONIC POWER SYSTEM PRELAUNCH TESTING
 

Test Approach 

1. 	 Build two reactor-thermionic 
diode power systems simul-
taneously. Test one system 
extensively by operation in 
appropriate facility; install 
other system in spacecraft for 
flight use without pre-launch 
operation. 

2. 	 Simulate operational conditions 
within the reactor through the 
use of heaters or BET thereby 
obtaining test data that can be 
used directly or extrapolated 
to represent actual operating 
data. 

3. 	 Fabricate reactor-thermionic 
diode system and operate the 
unit in an appropriate facility. 
After suitable time period 
for the decay of fission products 
within the reactor then proceed 
with assembly of reactor into 
the power system and spacecraft. 

4. 	 Fabricate and assemble the 
entire power plant/spacecraft 
assembly and operate this 
entity in NASA Plumbrook facil-
ity. Provide suitable time 
period for decay of fission 
products within the reactor, 
then transport the spacecraft 
to the launch site for installa­
tion on the booster and sub­
sequent launch. 

Comments 

Safety hazard is minimized but 
the 	assurance of acceptable per­
formance from the thermionic 
reactor power system may also be 
minimized. 

Reactor and diode design must 
lend itself to use of heaters or 
BET. Simulated operation must 
reproduce actual conditions suf­
ficiently well to produce meaning­
ful test data. This approach 
might permit testing just prior 
to launch. 

Safety hazard presented by remain­
ing fission products must be analyzed. 
Length of time required to reduce 
fission products to acceptable level 
must be established. Post-opera­
tional assembly problems must be 
investigated. 

Provides maximum assurance of 
ability to meet performance require­
ments, provided that fission product 
decay period is not too long and 
that suitable means of transportation 
from test facility to launch site are 
available. Safety hazard must be 
analyzed. 
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9.2.3 PRELIMINARY FAULT TREE ANALYSIS 

The 	fault tree analytical technique permits the detailed evaluation of potential system 

incompatibilities or failure modes, and when used in conjunction with applicable 

failure consequence evaluation techniques, materially enhances the overall evaluation 

of the safety of a complex system. 

The 	fault tree approach: 

a. Assures an understanding of the overall system and its failure modes. 

b. Identifies those areas where improved or specific data are 
predict system safety 

required to 

c. Provides the overall failure mode probability information that permits 
determination of the degree of safety of a particular event in terms of its 
probability of occurrence. 

d. 	 Identifies those areas where program emphasis should be placed to enhance 
system safety. 

The 	thermionic reactor spacecraft mission and events leading to mission completion 

are 	illustrated in Figure 9-8. The points of departure relating to mission failure 

or credible accidents, shown under each normal mission event define some of the 

failure modes in the preliminary fault tree shown in Figure 9-9. The symbols used 

in this fault tree are defined'below: 

The 	Rectangle identifies an event, usually a malfunction that results from the 
combination of fault through the logic gates. 

The 	Diamond describes a fault that is considered basic in a given fault tree; 
however, the causes of the event have not been developed, whether because the 
event is an insufficient consequence, or the necessary information is unavailable. 

The 	Circle describes a basic fault event that requires no further development. 
This category includes component failures whose frequency and mode of failure 
are 	derived through testing. 
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The And Gate describes the logical operations whereby the coexistence of all 
input events are required to produce the output event. 

The Or Gate defines the situation whereby the output event will exist if any or all 
of the input events are present. 

Application of fault tree analysis to a thermionic reactor spacecraft system leads to 

the s~lection of the most undesired event as "Inadvertent Criticality." All the possible 

events that can lead up to this undesired event are defined and are used in the construc­

tion of the fault tree. Fault tree implementation requires that probability data be 

established for all identified events. The level of detail of this preliminary fault 

tree must be amplified to assure a complete safety evaluation. the identification of 

all contributing events and their probabilities will aid in identifying the direction and 

scope of the safety program, through the ability of the fault tree to focus on those 

areas where major effort may be required to assure that the safety requirements are 

achieved. 

9.2.4 	 POSSIBLE HAZARDOUS OPERATIONS AND POTENTIAL NUCLEAR 
ACCIDENTS 

To assess the nuclear safety problems associated with the utilization of a thermionic 

reactor system, a clear understanding of those types of accidents which may result 

in the 	release or generation of radioactive material is necessary. The mission 

phases 	where potential nuclear accidents may occur are: 

a. Transport of reactor to launch site 

b. Launch site handling and prelaunch checkout of reactor 

c. Mating of reactor to launch vehicle 

d. Launch 

e. Earth orbit injection. 
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The potential nuclear accidents are identified, and the possible engineering safe­

guards which could preclude these accidents or reduce their consequences are dis­

cussed for the above listed mission phase. 

9. 2. 4. 1 Transportation of Power Plant to Launch Site 

Transport accidents which can result in water immersion, core. compaction, or control 

device movement may lead to a criticality. Engineering safeguards should substantially 

reduce the probability of an accidental criticality during transit to launch site. This 

includes removal of the reflector control drums in addition to enclosing the reactor 

in a shipping container designed to absorb the loads associated with a transportation 

accident and to prevent reactor water immersion. 

9. 2.4.2 Launch Site Handling and Prelaunch Checkout of Power Plant 

Launch site handling may involve moving the power plant from the storage 

building to launch pad. Since the launch site is a controlled area, strict traffic 

control can be enforced during the transfer. Proper approved procedures and 

availability of instrumentation should reduce the probability of accidents occurring 

during reactor assembly, prelaunch reactor checkout, and launch site handling 

operations. Safety interlocks must be used after reactor assembly to prevent in­

advertent closure of the control drums. The reactor startup command system must 

be fail safe and must not be accidently activated. 

9. 2. 4. 3 Mating of Spacecraft to Launch Vehicle 

Upon completion of reactor assembly, the reactor will be mated to the launch vehicle. 

This mating operation is near the top of the launch vehicle. In the event that the 

reactor were to fall, core compaction and subsequent criticality may occur at pad 

impact. If the design objective of accomplishing a reactor design that is incapable 

of compaction into a critical configuration is met, this hazard would not exist. 

Aside from core compaction on pad impact, there is a remote possibility of a 
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criticality resulting from control drum closure. At this time in the prelaunch 

sequence and up to a few hours before launch, the reactor control drums should be 

secured in the open position by use of locking pins and/or nonreflecting void filler 

blocks (used on SNAP-10A). 

9.2.4.4 Launch 

The launch phase is perhaps the most hazardous phase from the standpoint of nuclear 

safety. An on-pad explosion and fireball, or an abort during boost, may subject the 

reactor system to the type of environment conducive to accidental criticality. Core 

compaction may occur from: blast or fragment damage; pad, land, or water impact; 

fireball damage; or liquid metal explosive reaction with pad deluge water or with the 

ocean where impact may occur. Core moderation may occur by reactor immersion in 

pad water deluge or falling into water. In fast thermionic reactors, hydrogen may have 

a limited worth and accidents involving water flooding of an unreflected assembly may 

not result in a criticality. Recent calculations indicate that for a near optimum 

hydrogen-to-uranimn ratio, criticality will not be achieved as a result of water im­

mersion. 

Another consideration in minimizing the nuclear hazard from a launch abort is to 

specify both prelaunch reactor operation, if any, and post operation storage times so 

that the fissionproduct inventory will be at an acceptablylow level at the time of launch. 

Then, a launch accident which leads to the destruction of the reactor should not 

disperse fission products in hazardous concentrations. The ideal mission plan 

would be to start up the reactor for the first time after the spacecraft has been in­

serted into a long-lived orbit so that even those pre-launch and launch accidents 

which do not result in criticality will not result in any fission product release. 
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9.2. 4. 5 Orbital Injection 

Should a mishap occur during the final booster orbital injection phase of the mission 

which would destroy the spacecraft or send it into an improper trajectory, it is 

conceivable that the reactor system may re-enter and impact on the surface of the 

earth. It may be required that the launch azimuth be selected such that failure of the 

launch vehicle up to orbital injection will result-in reactor impact into the open ocean 

or on an unpopulated land area. Upon ocean impact, core compaction or partial core 

separation can lead to a nuclear excursion. Again, reactor design can reduce this 

risk. Some degree of ocean contamination would occur if the reactor went critical, 

but natural diffusion and ocean currents should reduce activity to acceptable levels 

within a short time and a small distance from the impact point. 

If the spacecraft achieved a short-lived orbit, the reactor may burn up to some extent 

and impact onto a populated area. Since the reactor startup should not occur until the 

spacecraft has definitely achieved a long-lived orbit, fission products will not be 

released on re-entry burnup or land impact. 

After the spacecraft is inserted into the desired longlived orbit, reactor operation 

will be initiated. A startup accident at this point should not have hazardous conse­

quences, since the released fission products will have decayed to acceptable levels 

before they return to the earth's surface. 

Once the reactor is removed from the earth's gravitational field into a heliocentric 

orbit, an earth re-entry hazard should not exist. Based on safety considerations, 

achieving solar orbit is by far the preferred method of reactor disposal. 
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10. CONCLUSIONS 

1. 	 High voltage electric power is the most effective means of reducing the propulsion
 
system weight.
 

2. 	 Heavy metal reflectors in the thermionic reactor raise the average neutron energy,

minimizing coolant activation, and therefore permit the use of a single loop heat
 
rejection system for the externally fueled system evaluated.
 

3. 	 The conical (or conical - cylindrical) radiator, launched in the upright (apex: top)
position on the launch vehicle requires 5 lb/kWe of support structure. The structual 
penalty for the inverted (apex: down) launch configuration is 1. 5 to 2. 0 times as great. 

4. 	 The triform, flat plate and cruciform tube and fin radiator geometries require at least 
twice the structural penalty requirement of the conical radiator. 

5. 	 Spacecraft of the type evolving in this study will have lowest natural frequencies of the 
order of one cycle per second. Redesign of the autopilot for the Titan IIIC/7 launch 
vehicle will be required to permit launching. This approach was utilized in the MOL 
program, and it is the best technique to maximize IMEO. 

6. 	 Special thermal insulation may not be required to permit power plant startup in the
 
750 nautical mile earth departure orbit when NaK-78 is employed as the primary
 
radiator fluid.
 

7. 	 The system power level must be maintained below 77 percent of full power during initial 
spiral out from earth orbit to limit electronic component temperatures to the maximum 
allowable of 200 0F. Alternately, it may be acceptable to operate the electronics equip­
ment above 200OF (about 230 0 F) for the 50 to 70 days required to spiral out td escape 
velocity from earth orbit. 

8. 	 A two-loop primary heat rejection system will be required for the as-designed flash­
light reactor/spacecraft because beryllium oxide reflectors are used.
 

9. 	 The weight penalty of a two-loop primary heat rejection system, compared to a one
 
loop system, is approximately 550 pounds, or 2 lb/kWe.
 

10. 	 A spacecraft flight fairing length of about 80 to 90 feet will be required on thd 
Titan 10IC/7 launch vehicle (10-foot diameter). If this shroud is jettisoned in earth 
orbit, the payload weight penalty will be [00 percent of the shroud weight. If the 
flight fairing is jettisoned at Stage II burnout, the payload weight penalty will be only 
24 percent of the shroud weight. 

11. 	 Comparison of aluminum, copper, and sodium metal in stainless steel tubing for low 
voltage cable material has resulted in the selection of copper-aluminum for both space­
craft concepts. 
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12. 	 The flashlight reactor generates 318 kWe in order to supply 240 kWe to the ion engine. 
The propulsion system specific weight, a, is 71. 1 pounds/kWe. The resultant space­
craft is approximately 84 feet long. The spacecraft powered by the externally fueled 
reactor requires a gross reactor output of 274 kWe to supply 240 kWe to the ion engines. 
The resultant spacecraft is approximately 62. 7 feet long. Propulsion system specific 
weight, a, is 50.4 pounds/kWe. (Alpha values are based on power input to the power 
conditioning units.) 

13. 	 The failure of any one of the 108 main converter units in the flashlight reactor/space­
craft will result in a power loss of less than one percent.
 

14. 	 All thermionic reactor main power conditioning units will reQuire filtering of the 
reactor input power. For the flashlight reactor with 108 main converter units, the 
filter units represent a weight penalty of about 1. 5 pounds/kWe. For the externally 
fueled reactor with 37 main power conditioning units, the filter units represent a weight 
penalty of 0. 75 pounds/kWe. 

15. 	 The flashlight reactor electric system requires that all the thrust units operate in 
parallel from a single high voltage bus. Therefore, electric isolation will be provided 
for each engine to prevent the dumping of all thrust beam power into a single unit in 
the event of arcing. The weight penalty for the isolation system for all 37 units'is 
about 1.0 pound/kWe. 

16. 	 The total defined payload and communications subsystems weight of these subsystems, 
including data handling components, is approximately 262 pounds. Since 2200 pounds 
has been allocated for the payload, an additional 1940 pounds is available for payload 
equipment. 

17. 	 The replacement of the copper-stainless tube and fin radiator with a beryllium stain­
less radiator would reduce the radiator weight by approximately 50 percent; or by 
4. 6 lb/kWe for the flashligh reactor and by 2. 8 lb/kWe for the externally fueled 
reactor. 

18. 	 At the low 0. 95 radiator survival probability, the vapor chamber or heat pipe radiator 
offers no weight advantage over the copper-stainless tube and fin radiator. At a 0. 99 
radiator survival probability, the vapor chamber fin offers approximately a 15 percent 
weight advantage, which increases to approximately 115 percent for a 0. 999 radiator 
survival probability. 

19. 	 Replacement of the NaK-78 coolant with lithium in the flashlight reactor powerplant 
results in a weight reduction of 8 lb/kWe, whereas the same replacement in the 
externally fueled reactor powerplant results in a weight reduction of 2 lb/kWe. 

20. 	 An increase in the maximum allowable power conditioning temperature from 2000F to 
300OF results in a reduction of about 4.3 lb/kWe for both the flashlight and externally 
fueled reactor based powerplants. 
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21. 	 Each percent increase in power conditioning efficiency will result in a 1 lb/kWe 
decrease in specific weight for the flashlight reactor based powerplant. The 
corresponding incentive to increase the power conditioning efficiency for the 
externally fueled reactor powerplant is 0. 5 lb/kWe, 

22. 	 Approximately 1 percent in pcwerplant specific weight results from each 10F 
decrease between the power conditioning diode junction and its radiator surface, 
based on an initial calculated value of 25 0 F. 

23. 	 The use of a slip-fit TFE assembly in the flashlight reactor, relative to the all 

bonded TFE assumed in this study, results in a powerplant weight penalty of 
about 6 percent, or about 4 lb/kWe. 

24. 	 The use of a dynamic power conditioning system for the low voltage flashlight 
reactor reduces the power conditioning weight from 10. 7 lb/kWe to 7.2 lb/kWe 

and increases its efficiency from 88 to 93 percent. This efficiency increase, 
coupled with the ability of the dynamic system to operate at a temperature of at 
least 300OF results in a 72 percent reduction in the PC radiator weigbt, about 
2 lb/kWe. 
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11. RECOMMENDATIONS 

1. 	 The propulsion system weight penalty associated with low voltage thermionic reactors 
has been identified at about 20 lb/kWe. Evaluation of higher voltage reactors should 
be continued. 

2. 	 Techniques for raising the neutron energy spectrum of the flashlight reactor should be 
investigated to reduce coolant activation, permitting a single primary heat rejection 
loop. 

3. 	 Flashlight reactor designs permitting output voltages above 30 to 40 volts should be
 
investigated for electric propulsion missions.
 

4. 	 Increased weight savings of 2 lb/kWe can be realized if the externally fueled reactor 
coolant exit temperature is increased from 1350°F to 1500 0 F. The compatibility of 
the higher coolant exit temperatures with stainless steel technology and the need for 
refractory metal containment must be evaluated. 

5. 	 Copper-aluminum should be utilized for low voltage cable materials. The copper is 
required only at the higher temperature near the reactor location. 

6. 	 Shield analysis for the externally fueled reactor should be completed to the same de­
gree accomplished for the flashlight reactor. 

7. 	 Investigation should be made of a power conditioning thermal radiation cooling con­
cept in which each static power conditioning module is despersed uniformly over the 
individual radiator panel assigned to the module. 

8. 	 The feasibility of raising the power conditioning temperature from 200°F to 300°F
 
should be investigated, including the effect on radiator weight and low voltage cable
 
length.
 

9. 	 The feasibility of decreasing the power conditioning unit to radiator AT, from 25 0 F
 
to 15°F for example, by more efficient thermal contact should be determined.
 

10. 	 During initial spiral out from earth orbit, the system power level must be maintained 
below 77 percent of full power in order to limit electronic component temperatures 
to the maximum allowable of 200 0 F. Alternately, it may be acceptable to operate 
the electronics equipment at about 230°F for this 50- to 70-day period. The effect 
of these alternates on power conditioning performance and mission time should be 
evaluated.
 

11. 	 Filtering should be further investigated for all thermionic reactor main power con­
ditioning units. 
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12. 	 The conical (or conical-cylindrical) radiator configuration, integrated with the 
spacecraft and launched in the upright (apex: up) position on the launch vehicle 
should be employed to minimize spacecraft weight in earth orbit. 

13. 	 As soon as data are available for all powerplant components, a relative assessment 
should be completed. 

14. 	 Mission operations should be investigated in greater detail to permit improved defini­
tion of powerplant control system and startup operations. 

15. 	 Further evaluation of the dynamic power conditioning approach should be conducted. 

16. 	 Probability of mission completion should be assessed in terms of power system com­
ponent reliability requirements. 

17. 	 The effect of U-233 fueled reactors on powerplant weight should be assessed. 
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